sched_fair.c 130 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. /*
  26. * Targeted preemption latency for CPU-bound tasks:
  27. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  28. *
  29. * NOTE: this latency value is not the same as the concept of
  30. * 'timeslice length' - timeslices in CFS are of variable length
  31. * and have no persistent notion like in traditional, time-slice
  32. * based scheduling concepts.
  33. *
  34. * (to see the precise effective timeslice length of your workload,
  35. * run vmstat and monitor the context-switches (cs) field)
  36. */
  37. unsigned int sysctl_sched_latency = 6000000ULL;
  38. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  39. /*
  40. * The initial- and re-scaling of tunables is configurable
  41. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  42. *
  43. * Options are:
  44. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  45. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  46. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  47. */
  48. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  49. = SCHED_TUNABLESCALING_LOG;
  50. /*
  51. * Minimal preemption granularity for CPU-bound tasks:
  52. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  53. */
  54. unsigned int sysctl_sched_min_granularity = 750000ULL;
  55. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  56. /*
  57. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  58. */
  59. static unsigned int sched_nr_latency = 8;
  60. /*
  61. * After fork, child runs first. If set to 0 (default) then
  62. * parent will (try to) run first.
  63. */
  64. unsigned int sysctl_sched_child_runs_first __read_mostly;
  65. /*
  66. * SCHED_OTHER wake-up granularity.
  67. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  68. *
  69. * This option delays the preemption effects of decoupled workloads
  70. * and reduces their over-scheduling. Synchronous workloads will still
  71. * have immediate wakeup/sleep latencies.
  72. */
  73. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  74. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  75. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  76. /*
  77. * The exponential sliding window over which load is averaged for shares
  78. * distribution.
  79. * (default: 10msec)
  80. */
  81. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  82. #ifdef CONFIG_CFS_BANDWIDTH
  83. /*
  84. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  85. * each time a cfs_rq requests quota.
  86. *
  87. * Note: in the case that the slice exceeds the runtime remaining (either due
  88. * to consumption or the quota being specified to be smaller than the slice)
  89. * we will always only issue the remaining available time.
  90. *
  91. * default: 5 msec, units: microseconds
  92. */
  93. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  94. #endif
  95. static const struct sched_class fair_sched_class;
  96. /**************************************************************
  97. * CFS operations on generic schedulable entities:
  98. */
  99. #ifdef CONFIG_FAIR_GROUP_SCHED
  100. /* cpu runqueue to which this cfs_rq is attached */
  101. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  102. {
  103. return cfs_rq->rq;
  104. }
  105. /* An entity is a task if it doesn't "own" a runqueue */
  106. #define entity_is_task(se) (!se->my_q)
  107. static inline struct task_struct *task_of(struct sched_entity *se)
  108. {
  109. #ifdef CONFIG_SCHED_DEBUG
  110. WARN_ON_ONCE(!entity_is_task(se));
  111. #endif
  112. return container_of(se, struct task_struct, se);
  113. }
  114. /* Walk up scheduling entities hierarchy */
  115. #define for_each_sched_entity(se) \
  116. for (; se; se = se->parent)
  117. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  118. {
  119. return p->se.cfs_rq;
  120. }
  121. /* runqueue on which this entity is (to be) queued */
  122. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  123. {
  124. return se->cfs_rq;
  125. }
  126. /* runqueue "owned" by this group */
  127. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  128. {
  129. return grp->my_q;
  130. }
  131. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  132. {
  133. if (!cfs_rq->on_list) {
  134. /*
  135. * Ensure we either appear before our parent (if already
  136. * enqueued) or force our parent to appear after us when it is
  137. * enqueued. The fact that we always enqueue bottom-up
  138. * reduces this to two cases.
  139. */
  140. if (cfs_rq->tg->parent &&
  141. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  142. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  143. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  144. } else {
  145. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  146. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  147. }
  148. cfs_rq->on_list = 1;
  149. }
  150. }
  151. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  152. {
  153. if (cfs_rq->on_list) {
  154. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  155. cfs_rq->on_list = 0;
  156. }
  157. }
  158. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  159. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  160. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  161. /* Do the two (enqueued) entities belong to the same group ? */
  162. static inline int
  163. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  164. {
  165. if (se->cfs_rq == pse->cfs_rq)
  166. return 1;
  167. return 0;
  168. }
  169. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  170. {
  171. return se->parent;
  172. }
  173. /* return depth at which a sched entity is present in the hierarchy */
  174. static inline int depth_se(struct sched_entity *se)
  175. {
  176. int depth = 0;
  177. for_each_sched_entity(se)
  178. depth++;
  179. return depth;
  180. }
  181. static void
  182. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  183. {
  184. int se_depth, pse_depth;
  185. /*
  186. * preemption test can be made between sibling entities who are in the
  187. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  188. * both tasks until we find their ancestors who are siblings of common
  189. * parent.
  190. */
  191. /* First walk up until both entities are at same depth */
  192. se_depth = depth_se(*se);
  193. pse_depth = depth_se(*pse);
  194. while (se_depth > pse_depth) {
  195. se_depth--;
  196. *se = parent_entity(*se);
  197. }
  198. while (pse_depth > se_depth) {
  199. pse_depth--;
  200. *pse = parent_entity(*pse);
  201. }
  202. while (!is_same_group(*se, *pse)) {
  203. *se = parent_entity(*se);
  204. *pse = parent_entity(*pse);
  205. }
  206. }
  207. #else /* !CONFIG_FAIR_GROUP_SCHED */
  208. static inline struct task_struct *task_of(struct sched_entity *se)
  209. {
  210. return container_of(se, struct task_struct, se);
  211. }
  212. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  213. {
  214. return container_of(cfs_rq, struct rq, cfs);
  215. }
  216. #define entity_is_task(se) 1
  217. #define for_each_sched_entity(se) \
  218. for (; se; se = NULL)
  219. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  220. {
  221. return &task_rq(p)->cfs;
  222. }
  223. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  224. {
  225. struct task_struct *p = task_of(se);
  226. struct rq *rq = task_rq(p);
  227. return &rq->cfs;
  228. }
  229. /* runqueue "owned" by this group */
  230. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  231. {
  232. return NULL;
  233. }
  234. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  235. {
  236. }
  237. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  238. {
  239. }
  240. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  241. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  242. static inline int
  243. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  244. {
  245. return 1;
  246. }
  247. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  248. {
  249. return NULL;
  250. }
  251. static inline void
  252. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  253. {
  254. }
  255. #endif /* CONFIG_FAIR_GROUP_SCHED */
  256. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  257. unsigned long delta_exec);
  258. /**************************************************************
  259. * Scheduling class tree data structure manipulation methods:
  260. */
  261. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  262. {
  263. s64 delta = (s64)(vruntime - min_vruntime);
  264. if (delta > 0)
  265. min_vruntime = vruntime;
  266. return min_vruntime;
  267. }
  268. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  269. {
  270. s64 delta = (s64)(vruntime - min_vruntime);
  271. if (delta < 0)
  272. min_vruntime = vruntime;
  273. return min_vruntime;
  274. }
  275. static inline int entity_before(struct sched_entity *a,
  276. struct sched_entity *b)
  277. {
  278. return (s64)(a->vruntime - b->vruntime) < 0;
  279. }
  280. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  281. {
  282. u64 vruntime = cfs_rq->min_vruntime;
  283. if (cfs_rq->curr)
  284. vruntime = cfs_rq->curr->vruntime;
  285. if (cfs_rq->rb_leftmost) {
  286. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  287. struct sched_entity,
  288. run_node);
  289. if (!cfs_rq->curr)
  290. vruntime = se->vruntime;
  291. else
  292. vruntime = min_vruntime(vruntime, se->vruntime);
  293. }
  294. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  295. #ifndef CONFIG_64BIT
  296. smp_wmb();
  297. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  298. #endif
  299. }
  300. /*
  301. * Enqueue an entity into the rb-tree:
  302. */
  303. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  304. {
  305. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  306. struct rb_node *parent = NULL;
  307. struct sched_entity *entry;
  308. int leftmost = 1;
  309. /*
  310. * Find the right place in the rbtree:
  311. */
  312. while (*link) {
  313. parent = *link;
  314. entry = rb_entry(parent, struct sched_entity, run_node);
  315. /*
  316. * We dont care about collisions. Nodes with
  317. * the same key stay together.
  318. */
  319. if (entity_before(se, entry)) {
  320. link = &parent->rb_left;
  321. } else {
  322. link = &parent->rb_right;
  323. leftmost = 0;
  324. }
  325. }
  326. /*
  327. * Maintain a cache of leftmost tree entries (it is frequently
  328. * used):
  329. */
  330. if (leftmost)
  331. cfs_rq->rb_leftmost = &se->run_node;
  332. rb_link_node(&se->run_node, parent, link);
  333. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  334. }
  335. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  336. {
  337. if (cfs_rq->rb_leftmost == &se->run_node) {
  338. struct rb_node *next_node;
  339. next_node = rb_next(&se->run_node);
  340. cfs_rq->rb_leftmost = next_node;
  341. }
  342. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  343. }
  344. static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  345. {
  346. struct rb_node *left = cfs_rq->rb_leftmost;
  347. if (!left)
  348. return NULL;
  349. return rb_entry(left, struct sched_entity, run_node);
  350. }
  351. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  352. {
  353. struct rb_node *next = rb_next(&se->run_node);
  354. if (!next)
  355. return NULL;
  356. return rb_entry(next, struct sched_entity, run_node);
  357. }
  358. #ifdef CONFIG_SCHED_DEBUG
  359. static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  360. {
  361. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  362. if (!last)
  363. return NULL;
  364. return rb_entry(last, struct sched_entity, run_node);
  365. }
  366. /**************************************************************
  367. * Scheduling class statistics methods:
  368. */
  369. int sched_proc_update_handler(struct ctl_table *table, int write,
  370. void __user *buffer, size_t *lenp,
  371. loff_t *ppos)
  372. {
  373. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  374. int factor = get_update_sysctl_factor();
  375. if (ret || !write)
  376. return ret;
  377. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  378. sysctl_sched_min_granularity);
  379. #define WRT_SYSCTL(name) \
  380. (normalized_sysctl_##name = sysctl_##name / (factor))
  381. WRT_SYSCTL(sched_min_granularity);
  382. WRT_SYSCTL(sched_latency);
  383. WRT_SYSCTL(sched_wakeup_granularity);
  384. #undef WRT_SYSCTL
  385. return 0;
  386. }
  387. #endif
  388. /*
  389. * delta /= w
  390. */
  391. static inline unsigned long
  392. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  393. {
  394. if (unlikely(se->load.weight != NICE_0_LOAD))
  395. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  396. return delta;
  397. }
  398. /*
  399. * The idea is to set a period in which each task runs once.
  400. *
  401. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  402. * this period because otherwise the slices get too small.
  403. *
  404. * p = (nr <= nl) ? l : l*nr/nl
  405. */
  406. static u64 __sched_period(unsigned long nr_running)
  407. {
  408. u64 period = sysctl_sched_latency;
  409. unsigned long nr_latency = sched_nr_latency;
  410. if (unlikely(nr_running > nr_latency)) {
  411. period = sysctl_sched_min_granularity;
  412. period *= nr_running;
  413. }
  414. return period;
  415. }
  416. /*
  417. * We calculate the wall-time slice from the period by taking a part
  418. * proportional to the weight.
  419. *
  420. * s = p*P[w/rw]
  421. */
  422. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  423. {
  424. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  425. for_each_sched_entity(se) {
  426. struct load_weight *load;
  427. struct load_weight lw;
  428. cfs_rq = cfs_rq_of(se);
  429. load = &cfs_rq->load;
  430. if (unlikely(!se->on_rq)) {
  431. lw = cfs_rq->load;
  432. update_load_add(&lw, se->load.weight);
  433. load = &lw;
  434. }
  435. slice = calc_delta_mine(slice, se->load.weight, load);
  436. }
  437. return slice;
  438. }
  439. /*
  440. * We calculate the vruntime slice of a to be inserted task
  441. *
  442. * vs = s/w
  443. */
  444. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  445. {
  446. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  447. }
  448. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  449. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  450. /*
  451. * Update the current task's runtime statistics. Skip current tasks that
  452. * are not in our scheduling class.
  453. */
  454. static inline void
  455. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  456. unsigned long delta_exec)
  457. {
  458. unsigned long delta_exec_weighted;
  459. schedstat_set(curr->statistics.exec_max,
  460. max((u64)delta_exec, curr->statistics.exec_max));
  461. curr->sum_exec_runtime += delta_exec;
  462. schedstat_add(cfs_rq, exec_clock, delta_exec);
  463. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  464. curr->vruntime += delta_exec_weighted;
  465. update_min_vruntime(cfs_rq);
  466. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  467. cfs_rq->load_unacc_exec_time += delta_exec;
  468. #endif
  469. }
  470. static void update_curr(struct cfs_rq *cfs_rq)
  471. {
  472. struct sched_entity *curr = cfs_rq->curr;
  473. u64 now = rq_of(cfs_rq)->clock_task;
  474. unsigned long delta_exec;
  475. if (unlikely(!curr))
  476. return;
  477. /*
  478. * Get the amount of time the current task was running
  479. * since the last time we changed load (this cannot
  480. * overflow on 32 bits):
  481. */
  482. delta_exec = (unsigned long)(now - curr->exec_start);
  483. if (!delta_exec)
  484. return;
  485. __update_curr(cfs_rq, curr, delta_exec);
  486. curr->exec_start = now;
  487. if (entity_is_task(curr)) {
  488. struct task_struct *curtask = task_of(curr);
  489. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  490. cpuacct_charge(curtask, delta_exec);
  491. account_group_exec_runtime(curtask, delta_exec);
  492. }
  493. account_cfs_rq_runtime(cfs_rq, delta_exec);
  494. }
  495. static inline void
  496. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  497. {
  498. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  499. }
  500. /*
  501. * Task is being enqueued - update stats:
  502. */
  503. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  504. {
  505. /*
  506. * Are we enqueueing a waiting task? (for current tasks
  507. * a dequeue/enqueue event is a NOP)
  508. */
  509. if (se != cfs_rq->curr)
  510. update_stats_wait_start(cfs_rq, se);
  511. }
  512. static void
  513. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  514. {
  515. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  516. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  517. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  518. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  519. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  520. #ifdef CONFIG_SCHEDSTATS
  521. if (entity_is_task(se)) {
  522. trace_sched_stat_wait(task_of(se),
  523. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  524. }
  525. #endif
  526. schedstat_set(se->statistics.wait_start, 0);
  527. }
  528. static inline void
  529. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  530. {
  531. /*
  532. * Mark the end of the wait period if dequeueing a
  533. * waiting task:
  534. */
  535. if (se != cfs_rq->curr)
  536. update_stats_wait_end(cfs_rq, se);
  537. }
  538. /*
  539. * We are picking a new current task - update its stats:
  540. */
  541. static inline void
  542. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  543. {
  544. /*
  545. * We are starting a new run period:
  546. */
  547. se->exec_start = rq_of(cfs_rq)->clock_task;
  548. }
  549. /**************************************************
  550. * Scheduling class queueing methods:
  551. */
  552. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  553. static void
  554. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  555. {
  556. cfs_rq->task_weight += weight;
  557. }
  558. #else
  559. static inline void
  560. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  561. {
  562. }
  563. #endif
  564. static void
  565. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  566. {
  567. update_load_add(&cfs_rq->load, se->load.weight);
  568. if (!parent_entity(se))
  569. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  570. if (entity_is_task(se)) {
  571. add_cfs_task_weight(cfs_rq, se->load.weight);
  572. list_add(&se->group_node, &cfs_rq->tasks);
  573. }
  574. cfs_rq->nr_running++;
  575. }
  576. static void
  577. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  578. {
  579. update_load_sub(&cfs_rq->load, se->load.weight);
  580. if (!parent_entity(se))
  581. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  582. if (entity_is_task(se)) {
  583. add_cfs_task_weight(cfs_rq, -se->load.weight);
  584. list_del_init(&se->group_node);
  585. }
  586. cfs_rq->nr_running--;
  587. }
  588. #ifdef CONFIG_FAIR_GROUP_SCHED
  589. /* we need this in update_cfs_load and load-balance functions below */
  590. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  591. # ifdef CONFIG_SMP
  592. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  593. int global_update)
  594. {
  595. struct task_group *tg = cfs_rq->tg;
  596. long load_avg;
  597. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  598. load_avg -= cfs_rq->load_contribution;
  599. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  600. atomic_add(load_avg, &tg->load_weight);
  601. cfs_rq->load_contribution += load_avg;
  602. }
  603. }
  604. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  605. {
  606. u64 period = sysctl_sched_shares_window;
  607. u64 now, delta;
  608. unsigned long load = cfs_rq->load.weight;
  609. if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
  610. return;
  611. now = rq_of(cfs_rq)->clock_task;
  612. delta = now - cfs_rq->load_stamp;
  613. /* truncate load history at 4 idle periods */
  614. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  615. now - cfs_rq->load_last > 4 * period) {
  616. cfs_rq->load_period = 0;
  617. cfs_rq->load_avg = 0;
  618. delta = period - 1;
  619. }
  620. cfs_rq->load_stamp = now;
  621. cfs_rq->load_unacc_exec_time = 0;
  622. cfs_rq->load_period += delta;
  623. if (load) {
  624. cfs_rq->load_last = now;
  625. cfs_rq->load_avg += delta * load;
  626. }
  627. /* consider updating load contribution on each fold or truncate */
  628. if (global_update || cfs_rq->load_period > period
  629. || !cfs_rq->load_period)
  630. update_cfs_rq_load_contribution(cfs_rq, global_update);
  631. while (cfs_rq->load_period > period) {
  632. /*
  633. * Inline assembly required to prevent the compiler
  634. * optimising this loop into a divmod call.
  635. * See __iter_div_u64_rem() for another example of this.
  636. */
  637. asm("" : "+rm" (cfs_rq->load_period));
  638. cfs_rq->load_period /= 2;
  639. cfs_rq->load_avg /= 2;
  640. }
  641. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  642. list_del_leaf_cfs_rq(cfs_rq);
  643. }
  644. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  645. {
  646. long tg_weight;
  647. /*
  648. * Use this CPU's actual weight instead of the last load_contribution
  649. * to gain a more accurate current total weight. See
  650. * update_cfs_rq_load_contribution().
  651. */
  652. tg_weight = atomic_read(&tg->load_weight);
  653. tg_weight -= cfs_rq->load_contribution;
  654. tg_weight += cfs_rq->load.weight;
  655. return tg_weight;
  656. }
  657. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  658. {
  659. long tg_weight, load, shares;
  660. tg_weight = calc_tg_weight(tg, cfs_rq);
  661. load = cfs_rq->load.weight;
  662. shares = (tg->shares * load);
  663. if (tg_weight)
  664. shares /= tg_weight;
  665. if (shares < MIN_SHARES)
  666. shares = MIN_SHARES;
  667. if (shares > tg->shares)
  668. shares = tg->shares;
  669. return shares;
  670. }
  671. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  672. {
  673. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  674. update_cfs_load(cfs_rq, 0);
  675. update_cfs_shares(cfs_rq);
  676. }
  677. }
  678. # else /* CONFIG_SMP */
  679. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  680. {
  681. }
  682. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  683. {
  684. return tg->shares;
  685. }
  686. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  687. {
  688. }
  689. # endif /* CONFIG_SMP */
  690. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  691. unsigned long weight)
  692. {
  693. if (se->on_rq) {
  694. /* commit outstanding execution time */
  695. if (cfs_rq->curr == se)
  696. update_curr(cfs_rq);
  697. account_entity_dequeue(cfs_rq, se);
  698. }
  699. update_load_set(&se->load, weight);
  700. if (se->on_rq)
  701. account_entity_enqueue(cfs_rq, se);
  702. }
  703. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  704. {
  705. struct task_group *tg;
  706. struct sched_entity *se;
  707. long shares;
  708. tg = cfs_rq->tg;
  709. se = tg->se[cpu_of(rq_of(cfs_rq))];
  710. if (!se || throttled_hierarchy(cfs_rq))
  711. return;
  712. #ifndef CONFIG_SMP
  713. if (likely(se->load.weight == tg->shares))
  714. return;
  715. #endif
  716. shares = calc_cfs_shares(cfs_rq, tg);
  717. reweight_entity(cfs_rq_of(se), se, shares);
  718. }
  719. #else /* CONFIG_FAIR_GROUP_SCHED */
  720. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  721. {
  722. }
  723. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  724. {
  725. }
  726. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  727. {
  728. }
  729. #endif /* CONFIG_FAIR_GROUP_SCHED */
  730. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  731. {
  732. #ifdef CONFIG_SCHEDSTATS
  733. struct task_struct *tsk = NULL;
  734. if (entity_is_task(se))
  735. tsk = task_of(se);
  736. if (se->statistics.sleep_start) {
  737. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  738. if ((s64)delta < 0)
  739. delta = 0;
  740. if (unlikely(delta > se->statistics.sleep_max))
  741. se->statistics.sleep_max = delta;
  742. se->statistics.sleep_start = 0;
  743. se->statistics.sum_sleep_runtime += delta;
  744. if (tsk) {
  745. account_scheduler_latency(tsk, delta >> 10, 1);
  746. trace_sched_stat_sleep(tsk, delta);
  747. }
  748. }
  749. if (se->statistics.block_start) {
  750. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  751. if ((s64)delta < 0)
  752. delta = 0;
  753. if (unlikely(delta > se->statistics.block_max))
  754. se->statistics.block_max = delta;
  755. se->statistics.block_start = 0;
  756. se->statistics.sum_sleep_runtime += delta;
  757. if (tsk) {
  758. if (tsk->in_iowait) {
  759. se->statistics.iowait_sum += delta;
  760. se->statistics.iowait_count++;
  761. trace_sched_stat_iowait(tsk, delta);
  762. }
  763. /*
  764. * Blocking time is in units of nanosecs, so shift by
  765. * 20 to get a milliseconds-range estimation of the
  766. * amount of time that the task spent sleeping:
  767. */
  768. if (unlikely(prof_on == SLEEP_PROFILING)) {
  769. profile_hits(SLEEP_PROFILING,
  770. (void *)get_wchan(tsk),
  771. delta >> 20);
  772. }
  773. account_scheduler_latency(tsk, delta >> 10, 0);
  774. }
  775. }
  776. #endif
  777. }
  778. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  779. {
  780. #ifdef CONFIG_SCHED_DEBUG
  781. s64 d = se->vruntime - cfs_rq->min_vruntime;
  782. if (d < 0)
  783. d = -d;
  784. if (d > 3*sysctl_sched_latency)
  785. schedstat_inc(cfs_rq, nr_spread_over);
  786. #endif
  787. }
  788. static void
  789. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  790. {
  791. u64 vruntime = cfs_rq->min_vruntime;
  792. /*
  793. * The 'current' period is already promised to the current tasks,
  794. * however the extra weight of the new task will slow them down a
  795. * little, place the new task so that it fits in the slot that
  796. * stays open at the end.
  797. */
  798. if (initial && sched_feat(START_DEBIT))
  799. vruntime += sched_vslice(cfs_rq, se);
  800. /* sleeps up to a single latency don't count. */
  801. if (!initial) {
  802. unsigned long thresh = sysctl_sched_latency;
  803. /*
  804. * Halve their sleep time's effect, to allow
  805. * for a gentler effect of sleepers:
  806. */
  807. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  808. thresh >>= 1;
  809. vruntime -= thresh;
  810. }
  811. /* ensure we never gain time by being placed backwards. */
  812. vruntime = max_vruntime(se->vruntime, vruntime);
  813. se->vruntime = vruntime;
  814. }
  815. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  816. static void
  817. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  818. {
  819. /*
  820. * Update the normalized vruntime before updating min_vruntime
  821. * through callig update_curr().
  822. */
  823. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  824. se->vruntime += cfs_rq->min_vruntime;
  825. /*
  826. * Update run-time statistics of the 'current'.
  827. */
  828. update_curr(cfs_rq);
  829. update_cfs_load(cfs_rq, 0);
  830. account_entity_enqueue(cfs_rq, se);
  831. update_cfs_shares(cfs_rq);
  832. if (flags & ENQUEUE_WAKEUP) {
  833. place_entity(cfs_rq, se, 0);
  834. enqueue_sleeper(cfs_rq, se);
  835. }
  836. update_stats_enqueue(cfs_rq, se);
  837. check_spread(cfs_rq, se);
  838. if (se != cfs_rq->curr)
  839. __enqueue_entity(cfs_rq, se);
  840. se->on_rq = 1;
  841. if (cfs_rq->nr_running == 1) {
  842. list_add_leaf_cfs_rq(cfs_rq);
  843. check_enqueue_throttle(cfs_rq);
  844. }
  845. }
  846. static void __clear_buddies_last(struct sched_entity *se)
  847. {
  848. for_each_sched_entity(se) {
  849. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  850. if (cfs_rq->last == se)
  851. cfs_rq->last = NULL;
  852. else
  853. break;
  854. }
  855. }
  856. static void __clear_buddies_next(struct sched_entity *se)
  857. {
  858. for_each_sched_entity(se) {
  859. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  860. if (cfs_rq->next == se)
  861. cfs_rq->next = NULL;
  862. else
  863. break;
  864. }
  865. }
  866. static void __clear_buddies_skip(struct sched_entity *se)
  867. {
  868. for_each_sched_entity(se) {
  869. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  870. if (cfs_rq->skip == se)
  871. cfs_rq->skip = NULL;
  872. else
  873. break;
  874. }
  875. }
  876. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  877. {
  878. if (cfs_rq->last == se)
  879. __clear_buddies_last(se);
  880. if (cfs_rq->next == se)
  881. __clear_buddies_next(se);
  882. if (cfs_rq->skip == se)
  883. __clear_buddies_skip(se);
  884. }
  885. static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  886. static void
  887. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  888. {
  889. /*
  890. * Update run-time statistics of the 'current'.
  891. */
  892. update_curr(cfs_rq);
  893. update_stats_dequeue(cfs_rq, se);
  894. if (flags & DEQUEUE_SLEEP) {
  895. #ifdef CONFIG_SCHEDSTATS
  896. if (entity_is_task(se)) {
  897. struct task_struct *tsk = task_of(se);
  898. if (tsk->state & TASK_INTERRUPTIBLE)
  899. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  900. if (tsk->state & TASK_UNINTERRUPTIBLE)
  901. se->statistics.block_start = rq_of(cfs_rq)->clock;
  902. }
  903. #endif
  904. }
  905. clear_buddies(cfs_rq, se);
  906. if (se != cfs_rq->curr)
  907. __dequeue_entity(cfs_rq, se);
  908. se->on_rq = 0;
  909. update_cfs_load(cfs_rq, 0);
  910. account_entity_dequeue(cfs_rq, se);
  911. /*
  912. * Normalize the entity after updating the min_vruntime because the
  913. * update can refer to the ->curr item and we need to reflect this
  914. * movement in our normalized position.
  915. */
  916. if (!(flags & DEQUEUE_SLEEP))
  917. se->vruntime -= cfs_rq->min_vruntime;
  918. /* return excess runtime on last dequeue */
  919. return_cfs_rq_runtime(cfs_rq);
  920. update_min_vruntime(cfs_rq);
  921. update_cfs_shares(cfs_rq);
  922. }
  923. /*
  924. * Preempt the current task with a newly woken task if needed:
  925. */
  926. static void
  927. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  928. {
  929. unsigned long ideal_runtime, delta_exec;
  930. struct sched_entity *se;
  931. s64 delta;
  932. ideal_runtime = sched_slice(cfs_rq, curr);
  933. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  934. if (delta_exec > ideal_runtime) {
  935. resched_task(rq_of(cfs_rq)->curr);
  936. /*
  937. * The current task ran long enough, ensure it doesn't get
  938. * re-elected due to buddy favours.
  939. */
  940. clear_buddies(cfs_rq, curr);
  941. return;
  942. }
  943. /*
  944. * Ensure that a task that missed wakeup preemption by a
  945. * narrow margin doesn't have to wait for a full slice.
  946. * This also mitigates buddy induced latencies under load.
  947. */
  948. if (delta_exec < sysctl_sched_min_granularity)
  949. return;
  950. se = __pick_first_entity(cfs_rq);
  951. delta = curr->vruntime - se->vruntime;
  952. if (delta < 0)
  953. return;
  954. if (delta > ideal_runtime)
  955. resched_task(rq_of(cfs_rq)->curr);
  956. }
  957. static void
  958. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  959. {
  960. /* 'current' is not kept within the tree. */
  961. if (se->on_rq) {
  962. /*
  963. * Any task has to be enqueued before it get to execute on
  964. * a CPU. So account for the time it spent waiting on the
  965. * runqueue.
  966. */
  967. update_stats_wait_end(cfs_rq, se);
  968. __dequeue_entity(cfs_rq, se);
  969. }
  970. update_stats_curr_start(cfs_rq, se);
  971. cfs_rq->curr = se;
  972. #ifdef CONFIG_SCHEDSTATS
  973. /*
  974. * Track our maximum slice length, if the CPU's load is at
  975. * least twice that of our own weight (i.e. dont track it
  976. * when there are only lesser-weight tasks around):
  977. */
  978. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  979. se->statistics.slice_max = max(se->statistics.slice_max,
  980. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  981. }
  982. #endif
  983. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  984. }
  985. static int
  986. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  987. /*
  988. * Pick the next process, keeping these things in mind, in this order:
  989. * 1) keep things fair between processes/task groups
  990. * 2) pick the "next" process, since someone really wants that to run
  991. * 3) pick the "last" process, for cache locality
  992. * 4) do not run the "skip" process, if something else is available
  993. */
  994. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  995. {
  996. struct sched_entity *se = __pick_first_entity(cfs_rq);
  997. struct sched_entity *left = se;
  998. /*
  999. * Avoid running the skip buddy, if running something else can
  1000. * be done without getting too unfair.
  1001. */
  1002. if (cfs_rq->skip == se) {
  1003. struct sched_entity *second = __pick_next_entity(se);
  1004. if (second && wakeup_preempt_entity(second, left) < 1)
  1005. se = second;
  1006. }
  1007. /*
  1008. * Prefer last buddy, try to return the CPU to a preempted task.
  1009. */
  1010. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  1011. se = cfs_rq->last;
  1012. /*
  1013. * Someone really wants this to run. If it's not unfair, run it.
  1014. */
  1015. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  1016. se = cfs_rq->next;
  1017. clear_buddies(cfs_rq, se);
  1018. return se;
  1019. }
  1020. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  1021. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1022. {
  1023. /*
  1024. * If still on the runqueue then deactivate_task()
  1025. * was not called and update_curr() has to be done:
  1026. */
  1027. if (prev->on_rq)
  1028. update_curr(cfs_rq);
  1029. /* throttle cfs_rqs exceeding runtime */
  1030. check_cfs_rq_runtime(cfs_rq);
  1031. check_spread(cfs_rq, prev);
  1032. if (prev->on_rq) {
  1033. update_stats_wait_start(cfs_rq, prev);
  1034. /* Put 'current' back into the tree. */
  1035. __enqueue_entity(cfs_rq, prev);
  1036. }
  1037. cfs_rq->curr = NULL;
  1038. }
  1039. static void
  1040. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1041. {
  1042. /*
  1043. * Update run-time statistics of the 'current'.
  1044. */
  1045. update_curr(cfs_rq);
  1046. /*
  1047. * Update share accounting for long-running entities.
  1048. */
  1049. update_entity_shares_tick(cfs_rq);
  1050. #ifdef CONFIG_SCHED_HRTICK
  1051. /*
  1052. * queued ticks are scheduled to match the slice, so don't bother
  1053. * validating it and just reschedule.
  1054. */
  1055. if (queued) {
  1056. resched_task(rq_of(cfs_rq)->curr);
  1057. return;
  1058. }
  1059. /*
  1060. * don't let the period tick interfere with the hrtick preemption
  1061. */
  1062. if (!sched_feat(DOUBLE_TICK) &&
  1063. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1064. return;
  1065. #endif
  1066. if (cfs_rq->nr_running > 1)
  1067. check_preempt_tick(cfs_rq, curr);
  1068. }
  1069. /**************************************************
  1070. * CFS bandwidth control machinery
  1071. */
  1072. #ifdef CONFIG_CFS_BANDWIDTH
  1073. /*
  1074. * default period for cfs group bandwidth.
  1075. * default: 0.1s, units: nanoseconds
  1076. */
  1077. static inline u64 default_cfs_period(void)
  1078. {
  1079. return 100000000ULL;
  1080. }
  1081. static inline u64 sched_cfs_bandwidth_slice(void)
  1082. {
  1083. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  1084. }
  1085. /*
  1086. * Replenish runtime according to assigned quota and update expiration time.
  1087. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  1088. * additional synchronization around rq->lock.
  1089. *
  1090. * requires cfs_b->lock
  1091. */
  1092. static void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  1093. {
  1094. u64 now;
  1095. if (cfs_b->quota == RUNTIME_INF)
  1096. return;
  1097. now = sched_clock_cpu(smp_processor_id());
  1098. cfs_b->runtime = cfs_b->quota;
  1099. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  1100. }
  1101. /* returns 0 on failure to allocate runtime */
  1102. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1103. {
  1104. struct task_group *tg = cfs_rq->tg;
  1105. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  1106. u64 amount = 0, min_amount, expires;
  1107. /* note: this is a positive sum as runtime_remaining <= 0 */
  1108. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  1109. raw_spin_lock(&cfs_b->lock);
  1110. if (cfs_b->quota == RUNTIME_INF)
  1111. amount = min_amount;
  1112. else {
  1113. /*
  1114. * If the bandwidth pool has become inactive, then at least one
  1115. * period must have elapsed since the last consumption.
  1116. * Refresh the global state and ensure bandwidth timer becomes
  1117. * active.
  1118. */
  1119. if (!cfs_b->timer_active) {
  1120. __refill_cfs_bandwidth_runtime(cfs_b);
  1121. __start_cfs_bandwidth(cfs_b);
  1122. }
  1123. if (cfs_b->runtime > 0) {
  1124. amount = min(cfs_b->runtime, min_amount);
  1125. cfs_b->runtime -= amount;
  1126. cfs_b->idle = 0;
  1127. }
  1128. }
  1129. expires = cfs_b->runtime_expires;
  1130. raw_spin_unlock(&cfs_b->lock);
  1131. cfs_rq->runtime_remaining += amount;
  1132. /*
  1133. * we may have advanced our local expiration to account for allowed
  1134. * spread between our sched_clock and the one on which runtime was
  1135. * issued.
  1136. */
  1137. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  1138. cfs_rq->runtime_expires = expires;
  1139. return cfs_rq->runtime_remaining > 0;
  1140. }
  1141. /*
  1142. * Note: This depends on the synchronization provided by sched_clock and the
  1143. * fact that rq->clock snapshots this value.
  1144. */
  1145. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1146. {
  1147. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1148. struct rq *rq = rq_of(cfs_rq);
  1149. /* if the deadline is ahead of our clock, nothing to do */
  1150. if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
  1151. return;
  1152. if (cfs_rq->runtime_remaining < 0)
  1153. return;
  1154. /*
  1155. * If the local deadline has passed we have to consider the
  1156. * possibility that our sched_clock is 'fast' and the global deadline
  1157. * has not truly expired.
  1158. *
  1159. * Fortunately we can check determine whether this the case by checking
  1160. * whether the global deadline has advanced.
  1161. */
  1162. if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
  1163. /* extend local deadline, drift is bounded above by 2 ticks */
  1164. cfs_rq->runtime_expires += TICK_NSEC;
  1165. } else {
  1166. /* global deadline is ahead, expiration has passed */
  1167. cfs_rq->runtime_remaining = 0;
  1168. }
  1169. }
  1170. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1171. unsigned long delta_exec)
  1172. {
  1173. /* dock delta_exec before expiring quota (as it could span periods) */
  1174. cfs_rq->runtime_remaining -= delta_exec;
  1175. expire_cfs_rq_runtime(cfs_rq);
  1176. if (likely(cfs_rq->runtime_remaining > 0))
  1177. return;
  1178. /*
  1179. * if we're unable to extend our runtime we resched so that the active
  1180. * hierarchy can be throttled
  1181. */
  1182. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  1183. resched_task(rq_of(cfs_rq)->curr);
  1184. }
  1185. static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1186. unsigned long delta_exec)
  1187. {
  1188. if (!cfs_rq->runtime_enabled)
  1189. return;
  1190. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  1191. }
  1192. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1193. {
  1194. return cfs_rq->throttled;
  1195. }
  1196. /* check whether cfs_rq, or any parent, is throttled */
  1197. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1198. {
  1199. return cfs_rq->throttle_count;
  1200. }
  1201. /*
  1202. * Ensure that neither of the group entities corresponding to src_cpu or
  1203. * dest_cpu are members of a throttled hierarchy when performing group
  1204. * load-balance operations.
  1205. */
  1206. static inline int throttled_lb_pair(struct task_group *tg,
  1207. int src_cpu, int dest_cpu)
  1208. {
  1209. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  1210. src_cfs_rq = tg->cfs_rq[src_cpu];
  1211. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  1212. return throttled_hierarchy(src_cfs_rq) ||
  1213. throttled_hierarchy(dest_cfs_rq);
  1214. }
  1215. /* updated child weight may affect parent so we have to do this bottom up */
  1216. static int tg_unthrottle_up(struct task_group *tg, void *data)
  1217. {
  1218. struct rq *rq = data;
  1219. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1220. cfs_rq->throttle_count--;
  1221. #ifdef CONFIG_SMP
  1222. if (!cfs_rq->throttle_count) {
  1223. u64 delta = rq->clock_task - cfs_rq->load_stamp;
  1224. /* leaving throttled state, advance shares averaging windows */
  1225. cfs_rq->load_stamp += delta;
  1226. cfs_rq->load_last += delta;
  1227. /* update entity weight now that we are on_rq again */
  1228. update_cfs_shares(cfs_rq);
  1229. }
  1230. #endif
  1231. return 0;
  1232. }
  1233. static int tg_throttle_down(struct task_group *tg, void *data)
  1234. {
  1235. struct rq *rq = data;
  1236. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1237. /* group is entering throttled state, record last load */
  1238. if (!cfs_rq->throttle_count)
  1239. update_cfs_load(cfs_rq, 0);
  1240. cfs_rq->throttle_count++;
  1241. return 0;
  1242. }
  1243. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  1244. {
  1245. struct rq *rq = rq_of(cfs_rq);
  1246. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1247. struct sched_entity *se;
  1248. long task_delta, dequeue = 1;
  1249. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1250. /* account load preceding throttle */
  1251. rcu_read_lock();
  1252. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  1253. rcu_read_unlock();
  1254. task_delta = cfs_rq->h_nr_running;
  1255. for_each_sched_entity(se) {
  1256. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  1257. /* throttled entity or throttle-on-deactivate */
  1258. if (!se->on_rq)
  1259. break;
  1260. if (dequeue)
  1261. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  1262. qcfs_rq->h_nr_running -= task_delta;
  1263. if (qcfs_rq->load.weight)
  1264. dequeue = 0;
  1265. }
  1266. if (!se)
  1267. rq->nr_running -= task_delta;
  1268. cfs_rq->throttled = 1;
  1269. cfs_rq->throttled_timestamp = rq->clock;
  1270. raw_spin_lock(&cfs_b->lock);
  1271. list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  1272. raw_spin_unlock(&cfs_b->lock);
  1273. }
  1274. static void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  1275. {
  1276. struct rq *rq = rq_of(cfs_rq);
  1277. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1278. struct sched_entity *se;
  1279. int enqueue = 1;
  1280. long task_delta;
  1281. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1282. cfs_rq->throttled = 0;
  1283. raw_spin_lock(&cfs_b->lock);
  1284. cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
  1285. list_del_rcu(&cfs_rq->throttled_list);
  1286. raw_spin_unlock(&cfs_b->lock);
  1287. cfs_rq->throttled_timestamp = 0;
  1288. update_rq_clock(rq);
  1289. /* update hierarchical throttle state */
  1290. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  1291. if (!cfs_rq->load.weight)
  1292. return;
  1293. task_delta = cfs_rq->h_nr_running;
  1294. for_each_sched_entity(se) {
  1295. if (se->on_rq)
  1296. enqueue = 0;
  1297. cfs_rq = cfs_rq_of(se);
  1298. if (enqueue)
  1299. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  1300. cfs_rq->h_nr_running += task_delta;
  1301. if (cfs_rq_throttled(cfs_rq))
  1302. break;
  1303. }
  1304. if (!se)
  1305. rq->nr_running += task_delta;
  1306. /* determine whether we need to wake up potentially idle cpu */
  1307. if (rq->curr == rq->idle && rq->cfs.nr_running)
  1308. resched_task(rq->curr);
  1309. }
  1310. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  1311. u64 remaining, u64 expires)
  1312. {
  1313. struct cfs_rq *cfs_rq;
  1314. u64 runtime = remaining;
  1315. rcu_read_lock();
  1316. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  1317. throttled_list) {
  1318. struct rq *rq = rq_of(cfs_rq);
  1319. raw_spin_lock(&rq->lock);
  1320. if (!cfs_rq_throttled(cfs_rq))
  1321. goto next;
  1322. runtime = -cfs_rq->runtime_remaining + 1;
  1323. if (runtime > remaining)
  1324. runtime = remaining;
  1325. remaining -= runtime;
  1326. cfs_rq->runtime_remaining += runtime;
  1327. cfs_rq->runtime_expires = expires;
  1328. /* we check whether we're throttled above */
  1329. if (cfs_rq->runtime_remaining > 0)
  1330. unthrottle_cfs_rq(cfs_rq);
  1331. next:
  1332. raw_spin_unlock(&rq->lock);
  1333. if (!remaining)
  1334. break;
  1335. }
  1336. rcu_read_unlock();
  1337. return remaining;
  1338. }
  1339. /*
  1340. * Responsible for refilling a task_group's bandwidth and unthrottling its
  1341. * cfs_rqs as appropriate. If there has been no activity within the last
  1342. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  1343. * used to track this state.
  1344. */
  1345. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  1346. {
  1347. u64 runtime, runtime_expires;
  1348. int idle = 1, throttled;
  1349. raw_spin_lock(&cfs_b->lock);
  1350. /* no need to continue the timer with no bandwidth constraint */
  1351. if (cfs_b->quota == RUNTIME_INF)
  1352. goto out_unlock;
  1353. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1354. /* idle depends on !throttled (for the case of a large deficit) */
  1355. idle = cfs_b->idle && !throttled;
  1356. cfs_b->nr_periods += overrun;
  1357. /* if we're going inactive then everything else can be deferred */
  1358. if (idle)
  1359. goto out_unlock;
  1360. __refill_cfs_bandwidth_runtime(cfs_b);
  1361. if (!throttled) {
  1362. /* mark as potentially idle for the upcoming period */
  1363. cfs_b->idle = 1;
  1364. goto out_unlock;
  1365. }
  1366. /* account preceding periods in which throttling occurred */
  1367. cfs_b->nr_throttled += overrun;
  1368. /*
  1369. * There are throttled entities so we must first use the new bandwidth
  1370. * to unthrottle them before making it generally available. This
  1371. * ensures that all existing debts will be paid before a new cfs_rq is
  1372. * allowed to run.
  1373. */
  1374. runtime = cfs_b->runtime;
  1375. runtime_expires = cfs_b->runtime_expires;
  1376. cfs_b->runtime = 0;
  1377. /*
  1378. * This check is repeated as we are holding onto the new bandwidth
  1379. * while we unthrottle. This can potentially race with an unthrottled
  1380. * group trying to acquire new bandwidth from the global pool.
  1381. */
  1382. while (throttled && runtime > 0) {
  1383. raw_spin_unlock(&cfs_b->lock);
  1384. /* we can't nest cfs_b->lock while distributing bandwidth */
  1385. runtime = distribute_cfs_runtime(cfs_b, runtime,
  1386. runtime_expires);
  1387. raw_spin_lock(&cfs_b->lock);
  1388. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1389. }
  1390. /* return (any) remaining runtime */
  1391. cfs_b->runtime = runtime;
  1392. /*
  1393. * While we are ensured activity in the period following an
  1394. * unthrottle, this also covers the case in which the new bandwidth is
  1395. * insufficient to cover the existing bandwidth deficit. (Forcing the
  1396. * timer to remain active while there are any throttled entities.)
  1397. */
  1398. cfs_b->idle = 0;
  1399. out_unlock:
  1400. if (idle)
  1401. cfs_b->timer_active = 0;
  1402. raw_spin_unlock(&cfs_b->lock);
  1403. return idle;
  1404. }
  1405. /* a cfs_rq won't donate quota below this amount */
  1406. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  1407. /* minimum remaining period time to redistribute slack quota */
  1408. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  1409. /* how long we wait to gather additional slack before distributing */
  1410. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  1411. /* are we near the end of the current quota period? */
  1412. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  1413. {
  1414. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  1415. u64 remaining;
  1416. /* if the call-back is running a quota refresh is already occurring */
  1417. if (hrtimer_callback_running(refresh_timer))
  1418. return 1;
  1419. /* is a quota refresh about to occur? */
  1420. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  1421. if (remaining < min_expire)
  1422. return 1;
  1423. return 0;
  1424. }
  1425. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  1426. {
  1427. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  1428. /* if there's a quota refresh soon don't bother with slack */
  1429. if (runtime_refresh_within(cfs_b, min_left))
  1430. return;
  1431. start_bandwidth_timer(&cfs_b->slack_timer,
  1432. ns_to_ktime(cfs_bandwidth_slack_period));
  1433. }
  1434. /* we know any runtime found here is valid as update_curr() precedes return */
  1435. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1436. {
  1437. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1438. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  1439. if (slack_runtime <= 0)
  1440. return;
  1441. raw_spin_lock(&cfs_b->lock);
  1442. if (cfs_b->quota != RUNTIME_INF &&
  1443. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  1444. cfs_b->runtime += slack_runtime;
  1445. /* we are under rq->lock, defer unthrottling using a timer */
  1446. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  1447. !list_empty(&cfs_b->throttled_cfs_rq))
  1448. start_cfs_slack_bandwidth(cfs_b);
  1449. }
  1450. raw_spin_unlock(&cfs_b->lock);
  1451. /* even if it's not valid for return we don't want to try again */
  1452. cfs_rq->runtime_remaining -= slack_runtime;
  1453. }
  1454. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1455. {
  1456. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  1457. return;
  1458. __return_cfs_rq_runtime(cfs_rq);
  1459. }
  1460. /*
  1461. * This is done with a timer (instead of inline with bandwidth return) since
  1462. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  1463. */
  1464. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  1465. {
  1466. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  1467. u64 expires;
  1468. /* confirm we're still not at a refresh boundary */
  1469. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
  1470. return;
  1471. raw_spin_lock(&cfs_b->lock);
  1472. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
  1473. runtime = cfs_b->runtime;
  1474. cfs_b->runtime = 0;
  1475. }
  1476. expires = cfs_b->runtime_expires;
  1477. raw_spin_unlock(&cfs_b->lock);
  1478. if (!runtime)
  1479. return;
  1480. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  1481. raw_spin_lock(&cfs_b->lock);
  1482. if (expires == cfs_b->runtime_expires)
  1483. cfs_b->runtime = runtime;
  1484. raw_spin_unlock(&cfs_b->lock);
  1485. }
  1486. /*
  1487. * When a group wakes up we want to make sure that its quota is not already
  1488. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  1489. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  1490. */
  1491. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  1492. {
  1493. /* an active group must be handled by the update_curr()->put() path */
  1494. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  1495. return;
  1496. /* ensure the group is not already throttled */
  1497. if (cfs_rq_throttled(cfs_rq))
  1498. return;
  1499. /* update runtime allocation */
  1500. account_cfs_rq_runtime(cfs_rq, 0);
  1501. if (cfs_rq->runtime_remaining <= 0)
  1502. throttle_cfs_rq(cfs_rq);
  1503. }
  1504. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  1505. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1506. {
  1507. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  1508. return;
  1509. /*
  1510. * it's possible for a throttled entity to be forced into a running
  1511. * state (e.g. set_curr_task), in this case we're finished.
  1512. */
  1513. if (cfs_rq_throttled(cfs_rq))
  1514. return;
  1515. throttle_cfs_rq(cfs_rq);
  1516. }
  1517. #else
  1518. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1519. unsigned long delta_exec) {}
  1520. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1521. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  1522. static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1523. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1524. {
  1525. return 0;
  1526. }
  1527. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1528. {
  1529. return 0;
  1530. }
  1531. static inline int throttled_lb_pair(struct task_group *tg,
  1532. int src_cpu, int dest_cpu)
  1533. {
  1534. return 0;
  1535. }
  1536. #endif
  1537. /**************************************************
  1538. * CFS operations on tasks:
  1539. */
  1540. #ifdef CONFIG_SCHED_HRTICK
  1541. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1542. {
  1543. struct sched_entity *se = &p->se;
  1544. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1545. WARN_ON(task_rq(p) != rq);
  1546. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  1547. u64 slice = sched_slice(cfs_rq, se);
  1548. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1549. s64 delta = slice - ran;
  1550. if (delta < 0) {
  1551. if (rq->curr == p)
  1552. resched_task(p);
  1553. return;
  1554. }
  1555. /*
  1556. * Don't schedule slices shorter than 10000ns, that just
  1557. * doesn't make sense. Rely on vruntime for fairness.
  1558. */
  1559. if (rq->curr != p)
  1560. delta = max_t(s64, 10000LL, delta);
  1561. hrtick_start(rq, delta);
  1562. }
  1563. }
  1564. /*
  1565. * called from enqueue/dequeue and updates the hrtick when the
  1566. * current task is from our class and nr_running is low enough
  1567. * to matter.
  1568. */
  1569. static void hrtick_update(struct rq *rq)
  1570. {
  1571. struct task_struct *curr = rq->curr;
  1572. if (curr->sched_class != &fair_sched_class)
  1573. return;
  1574. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1575. hrtick_start_fair(rq, curr);
  1576. }
  1577. #else /* !CONFIG_SCHED_HRTICK */
  1578. static inline void
  1579. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1580. {
  1581. }
  1582. static inline void hrtick_update(struct rq *rq)
  1583. {
  1584. }
  1585. #endif
  1586. /*
  1587. * The enqueue_task method is called before nr_running is
  1588. * increased. Here we update the fair scheduling stats and
  1589. * then put the task into the rbtree:
  1590. */
  1591. static void
  1592. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1593. {
  1594. struct cfs_rq *cfs_rq;
  1595. struct sched_entity *se = &p->se;
  1596. for_each_sched_entity(se) {
  1597. if (se->on_rq)
  1598. break;
  1599. cfs_rq = cfs_rq_of(se);
  1600. enqueue_entity(cfs_rq, se, flags);
  1601. /*
  1602. * end evaluation on encountering a throttled cfs_rq
  1603. *
  1604. * note: in the case of encountering a throttled cfs_rq we will
  1605. * post the final h_nr_running increment below.
  1606. */
  1607. if (cfs_rq_throttled(cfs_rq))
  1608. break;
  1609. cfs_rq->h_nr_running++;
  1610. flags = ENQUEUE_WAKEUP;
  1611. }
  1612. for_each_sched_entity(se) {
  1613. cfs_rq = cfs_rq_of(se);
  1614. cfs_rq->h_nr_running++;
  1615. if (cfs_rq_throttled(cfs_rq))
  1616. break;
  1617. update_cfs_load(cfs_rq, 0);
  1618. update_cfs_shares(cfs_rq);
  1619. }
  1620. if (!se)
  1621. inc_nr_running(rq);
  1622. hrtick_update(rq);
  1623. }
  1624. static void set_next_buddy(struct sched_entity *se);
  1625. /*
  1626. * The dequeue_task method is called before nr_running is
  1627. * decreased. We remove the task from the rbtree and
  1628. * update the fair scheduling stats:
  1629. */
  1630. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1631. {
  1632. struct cfs_rq *cfs_rq;
  1633. struct sched_entity *se = &p->se;
  1634. int task_sleep = flags & DEQUEUE_SLEEP;
  1635. for_each_sched_entity(se) {
  1636. cfs_rq = cfs_rq_of(se);
  1637. dequeue_entity(cfs_rq, se, flags);
  1638. /*
  1639. * end evaluation on encountering a throttled cfs_rq
  1640. *
  1641. * note: in the case of encountering a throttled cfs_rq we will
  1642. * post the final h_nr_running decrement below.
  1643. */
  1644. if (cfs_rq_throttled(cfs_rq))
  1645. break;
  1646. cfs_rq->h_nr_running--;
  1647. /* Don't dequeue parent if it has other entities besides us */
  1648. if (cfs_rq->load.weight) {
  1649. /*
  1650. * Bias pick_next to pick a task from this cfs_rq, as
  1651. * p is sleeping when it is within its sched_slice.
  1652. */
  1653. if (task_sleep && parent_entity(se))
  1654. set_next_buddy(parent_entity(se));
  1655. /* avoid re-evaluating load for this entity */
  1656. se = parent_entity(se);
  1657. break;
  1658. }
  1659. flags |= DEQUEUE_SLEEP;
  1660. }
  1661. for_each_sched_entity(se) {
  1662. cfs_rq = cfs_rq_of(se);
  1663. cfs_rq->h_nr_running--;
  1664. if (cfs_rq_throttled(cfs_rq))
  1665. break;
  1666. update_cfs_load(cfs_rq, 0);
  1667. update_cfs_shares(cfs_rq);
  1668. }
  1669. if (!se)
  1670. dec_nr_running(rq);
  1671. hrtick_update(rq);
  1672. }
  1673. #ifdef CONFIG_SMP
  1674. static void task_waking_fair(struct task_struct *p)
  1675. {
  1676. struct sched_entity *se = &p->se;
  1677. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1678. u64 min_vruntime;
  1679. #ifndef CONFIG_64BIT
  1680. u64 min_vruntime_copy;
  1681. do {
  1682. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  1683. smp_rmb();
  1684. min_vruntime = cfs_rq->min_vruntime;
  1685. } while (min_vruntime != min_vruntime_copy);
  1686. #else
  1687. min_vruntime = cfs_rq->min_vruntime;
  1688. #endif
  1689. se->vruntime -= min_vruntime;
  1690. }
  1691. #ifdef CONFIG_FAIR_GROUP_SCHED
  1692. /*
  1693. * effective_load() calculates the load change as seen from the root_task_group
  1694. *
  1695. * Adding load to a group doesn't make a group heavier, but can cause movement
  1696. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1697. * can calculate the shift in shares.
  1698. *
  1699. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  1700. * on this @cpu and results in a total addition (subtraction) of @wg to the
  1701. * total group weight.
  1702. *
  1703. * Given a runqueue weight distribution (rw_i) we can compute a shares
  1704. * distribution (s_i) using:
  1705. *
  1706. * s_i = rw_i / \Sum rw_j (1)
  1707. *
  1708. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  1709. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  1710. * shares distribution (s_i):
  1711. *
  1712. * rw_i = { 2, 4, 1, 0 }
  1713. * s_i = { 2/7, 4/7, 1/7, 0 }
  1714. *
  1715. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  1716. * task used to run on and the CPU the waker is running on), we need to
  1717. * compute the effect of waking a task on either CPU and, in case of a sync
  1718. * wakeup, compute the effect of the current task going to sleep.
  1719. *
  1720. * So for a change of @wl to the local @cpu with an overall group weight change
  1721. * of @wl we can compute the new shares distribution (s'_i) using:
  1722. *
  1723. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  1724. *
  1725. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  1726. * differences in waking a task to CPU 0. The additional task changes the
  1727. * weight and shares distributions like:
  1728. *
  1729. * rw'_i = { 3, 4, 1, 0 }
  1730. * s'_i = { 3/8, 4/8, 1/8, 0 }
  1731. *
  1732. * We can then compute the difference in effective weight by using:
  1733. *
  1734. * dw_i = S * (s'_i - s_i) (3)
  1735. *
  1736. * Where 'S' is the group weight as seen by its parent.
  1737. *
  1738. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  1739. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  1740. * 4/7) times the weight of the group.
  1741. */
  1742. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  1743. {
  1744. struct sched_entity *se = tg->se[cpu];
  1745. if (!tg->parent) /* the trivial, non-cgroup case */
  1746. return wl;
  1747. for_each_sched_entity(se) {
  1748. long w, W;
  1749. tg = se->my_q->tg;
  1750. /*
  1751. * W = @wg + \Sum rw_j
  1752. */
  1753. W = wg + calc_tg_weight(tg, se->my_q);
  1754. /*
  1755. * w = rw_i + @wl
  1756. */
  1757. w = se->my_q->load.weight + wl;
  1758. /*
  1759. * wl = S * s'_i; see (2)
  1760. */
  1761. if (W > 0 && w < W)
  1762. wl = (w * tg->shares) / W;
  1763. else
  1764. wl = tg->shares;
  1765. /*
  1766. * Per the above, wl is the new se->load.weight value; since
  1767. * those are clipped to [MIN_SHARES, ...) do so now. See
  1768. * calc_cfs_shares().
  1769. */
  1770. if (wl < MIN_SHARES)
  1771. wl = MIN_SHARES;
  1772. /*
  1773. * wl = dw_i = S * (s'_i - s_i); see (3)
  1774. */
  1775. wl -= se->load.weight;
  1776. /*
  1777. * Recursively apply this logic to all parent groups to compute
  1778. * the final effective load change on the root group. Since
  1779. * only the @tg group gets extra weight, all parent groups can
  1780. * only redistribute existing shares. @wl is the shift in shares
  1781. * resulting from this level per the above.
  1782. */
  1783. wg = 0;
  1784. }
  1785. return wl;
  1786. }
  1787. #else
  1788. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  1789. unsigned long wl, unsigned long wg)
  1790. {
  1791. return wl;
  1792. }
  1793. #endif
  1794. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  1795. {
  1796. s64 this_load, load;
  1797. int idx, this_cpu, prev_cpu;
  1798. unsigned long tl_per_task;
  1799. struct task_group *tg;
  1800. unsigned long weight;
  1801. int balanced;
  1802. idx = sd->wake_idx;
  1803. this_cpu = smp_processor_id();
  1804. prev_cpu = task_cpu(p);
  1805. load = source_load(prev_cpu, idx);
  1806. this_load = target_load(this_cpu, idx);
  1807. /*
  1808. * If sync wakeup then subtract the (maximum possible)
  1809. * effect of the currently running task from the load
  1810. * of the current CPU:
  1811. */
  1812. if (sync) {
  1813. tg = task_group(current);
  1814. weight = current->se.load.weight;
  1815. this_load += effective_load(tg, this_cpu, -weight, -weight);
  1816. load += effective_load(tg, prev_cpu, 0, -weight);
  1817. }
  1818. tg = task_group(p);
  1819. weight = p->se.load.weight;
  1820. /*
  1821. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  1822. * due to the sync cause above having dropped this_load to 0, we'll
  1823. * always have an imbalance, but there's really nothing you can do
  1824. * about that, so that's good too.
  1825. *
  1826. * Otherwise check if either cpus are near enough in load to allow this
  1827. * task to be woken on this_cpu.
  1828. */
  1829. if (this_load > 0) {
  1830. s64 this_eff_load, prev_eff_load;
  1831. this_eff_load = 100;
  1832. this_eff_load *= power_of(prev_cpu);
  1833. this_eff_load *= this_load +
  1834. effective_load(tg, this_cpu, weight, weight);
  1835. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  1836. prev_eff_load *= power_of(this_cpu);
  1837. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  1838. balanced = this_eff_load <= prev_eff_load;
  1839. } else
  1840. balanced = true;
  1841. /*
  1842. * If the currently running task will sleep within
  1843. * a reasonable amount of time then attract this newly
  1844. * woken task:
  1845. */
  1846. if (sync && balanced)
  1847. return 1;
  1848. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  1849. tl_per_task = cpu_avg_load_per_task(this_cpu);
  1850. if (balanced ||
  1851. (this_load <= load &&
  1852. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  1853. /*
  1854. * This domain has SD_WAKE_AFFINE and
  1855. * p is cache cold in this domain, and
  1856. * there is no bad imbalance.
  1857. */
  1858. schedstat_inc(sd, ttwu_move_affine);
  1859. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  1860. return 1;
  1861. }
  1862. return 0;
  1863. }
  1864. /*
  1865. * find_idlest_group finds and returns the least busy CPU group within the
  1866. * domain.
  1867. */
  1868. static struct sched_group *
  1869. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  1870. int this_cpu, int load_idx)
  1871. {
  1872. struct sched_group *idlest = NULL, *group = sd->groups;
  1873. unsigned long min_load = ULONG_MAX, this_load = 0;
  1874. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  1875. do {
  1876. unsigned long load, avg_load;
  1877. int local_group;
  1878. int i;
  1879. /* Skip over this group if it has no CPUs allowed */
  1880. if (!cpumask_intersects(sched_group_cpus(group),
  1881. tsk_cpus_allowed(p)))
  1882. continue;
  1883. local_group = cpumask_test_cpu(this_cpu,
  1884. sched_group_cpus(group));
  1885. /* Tally up the load of all CPUs in the group */
  1886. avg_load = 0;
  1887. for_each_cpu(i, sched_group_cpus(group)) {
  1888. /* Bias balancing toward cpus of our domain */
  1889. if (local_group)
  1890. load = source_load(i, load_idx);
  1891. else
  1892. load = target_load(i, load_idx);
  1893. avg_load += load;
  1894. }
  1895. /* Adjust by relative CPU power of the group */
  1896. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  1897. if (local_group) {
  1898. this_load = avg_load;
  1899. } else if (avg_load < min_load) {
  1900. min_load = avg_load;
  1901. idlest = group;
  1902. }
  1903. } while (group = group->next, group != sd->groups);
  1904. if (!idlest || 100*this_load < imbalance*min_load)
  1905. return NULL;
  1906. return idlest;
  1907. }
  1908. /*
  1909. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  1910. */
  1911. static int
  1912. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  1913. {
  1914. unsigned long load, min_load = ULONG_MAX;
  1915. int idlest = -1;
  1916. int i;
  1917. /* Traverse only the allowed CPUs */
  1918. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  1919. load = weighted_cpuload(i);
  1920. if (load < min_load || (load == min_load && i == this_cpu)) {
  1921. min_load = load;
  1922. idlest = i;
  1923. }
  1924. }
  1925. return idlest;
  1926. }
  1927. /*
  1928. * Try and locate an idle CPU in the sched_domain.
  1929. */
  1930. static int select_idle_sibling(struct task_struct *p, int target)
  1931. {
  1932. int cpu = smp_processor_id();
  1933. int prev_cpu = task_cpu(p);
  1934. struct sched_domain *sd;
  1935. struct sched_group *sg;
  1936. int i, smt = 0;
  1937. /*
  1938. * If the task is going to be woken-up on this cpu and if it is
  1939. * already idle, then it is the right target.
  1940. */
  1941. if (target == cpu && idle_cpu(cpu))
  1942. return cpu;
  1943. /*
  1944. * If the task is going to be woken-up on the cpu where it previously
  1945. * ran and if it is currently idle, then it the right target.
  1946. */
  1947. if (target == prev_cpu && idle_cpu(prev_cpu))
  1948. return prev_cpu;
  1949. /*
  1950. * Otherwise, iterate the domains and find an elegible idle cpu.
  1951. */
  1952. rcu_read_lock();
  1953. again:
  1954. for_each_domain(target, sd) {
  1955. if (!smt && (sd->flags & SD_SHARE_CPUPOWER))
  1956. continue;
  1957. if (!(sd->flags & SD_SHARE_PKG_RESOURCES)) {
  1958. if (!smt) {
  1959. smt = 1;
  1960. goto again;
  1961. }
  1962. break;
  1963. }
  1964. sg = sd->groups;
  1965. do {
  1966. if (!cpumask_intersects(sched_group_cpus(sg),
  1967. tsk_cpus_allowed(p)))
  1968. goto next;
  1969. for_each_cpu(i, sched_group_cpus(sg)) {
  1970. if (!idle_cpu(i))
  1971. goto next;
  1972. }
  1973. target = cpumask_first_and(sched_group_cpus(sg),
  1974. tsk_cpus_allowed(p));
  1975. goto done;
  1976. next:
  1977. sg = sg->next;
  1978. } while (sg != sd->groups);
  1979. }
  1980. done:
  1981. rcu_read_unlock();
  1982. return target;
  1983. }
  1984. /*
  1985. * sched_balance_self: balance the current task (running on cpu) in domains
  1986. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1987. * SD_BALANCE_EXEC.
  1988. *
  1989. * Balance, ie. select the least loaded group.
  1990. *
  1991. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1992. *
  1993. * preempt must be disabled.
  1994. */
  1995. static int
  1996. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  1997. {
  1998. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  1999. int cpu = smp_processor_id();
  2000. int prev_cpu = task_cpu(p);
  2001. int new_cpu = cpu;
  2002. int want_affine = 0;
  2003. int want_sd = 1;
  2004. int sync = wake_flags & WF_SYNC;
  2005. if (sd_flag & SD_BALANCE_WAKE) {
  2006. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  2007. want_affine = 1;
  2008. new_cpu = prev_cpu;
  2009. }
  2010. rcu_read_lock();
  2011. for_each_domain(cpu, tmp) {
  2012. if (!(tmp->flags & SD_LOAD_BALANCE))
  2013. continue;
  2014. /*
  2015. * If power savings logic is enabled for a domain, see if we
  2016. * are not overloaded, if so, don't balance wider.
  2017. */
  2018. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  2019. unsigned long power = 0;
  2020. unsigned long nr_running = 0;
  2021. unsigned long capacity;
  2022. int i;
  2023. for_each_cpu(i, sched_domain_span(tmp)) {
  2024. power += power_of(i);
  2025. nr_running += cpu_rq(i)->cfs.nr_running;
  2026. }
  2027. capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
  2028. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  2029. nr_running /= 2;
  2030. if (nr_running < capacity)
  2031. want_sd = 0;
  2032. }
  2033. /*
  2034. * If both cpu and prev_cpu are part of this domain,
  2035. * cpu is a valid SD_WAKE_AFFINE target.
  2036. */
  2037. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  2038. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  2039. affine_sd = tmp;
  2040. want_affine = 0;
  2041. }
  2042. if (!want_sd && !want_affine)
  2043. break;
  2044. if (!(tmp->flags & sd_flag))
  2045. continue;
  2046. if (want_sd)
  2047. sd = tmp;
  2048. }
  2049. if (affine_sd) {
  2050. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  2051. prev_cpu = cpu;
  2052. new_cpu = select_idle_sibling(p, prev_cpu);
  2053. goto unlock;
  2054. }
  2055. while (sd) {
  2056. int load_idx = sd->forkexec_idx;
  2057. struct sched_group *group;
  2058. int weight;
  2059. if (!(sd->flags & sd_flag)) {
  2060. sd = sd->child;
  2061. continue;
  2062. }
  2063. if (sd_flag & SD_BALANCE_WAKE)
  2064. load_idx = sd->wake_idx;
  2065. group = find_idlest_group(sd, p, cpu, load_idx);
  2066. if (!group) {
  2067. sd = sd->child;
  2068. continue;
  2069. }
  2070. new_cpu = find_idlest_cpu(group, p, cpu);
  2071. if (new_cpu == -1 || new_cpu == cpu) {
  2072. /* Now try balancing at a lower domain level of cpu */
  2073. sd = sd->child;
  2074. continue;
  2075. }
  2076. /* Now try balancing at a lower domain level of new_cpu */
  2077. cpu = new_cpu;
  2078. weight = sd->span_weight;
  2079. sd = NULL;
  2080. for_each_domain(cpu, tmp) {
  2081. if (weight <= tmp->span_weight)
  2082. break;
  2083. if (tmp->flags & sd_flag)
  2084. sd = tmp;
  2085. }
  2086. /* while loop will break here if sd == NULL */
  2087. }
  2088. unlock:
  2089. rcu_read_unlock();
  2090. return new_cpu;
  2091. }
  2092. #endif /* CONFIG_SMP */
  2093. static unsigned long
  2094. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  2095. {
  2096. unsigned long gran = sysctl_sched_wakeup_granularity;
  2097. /*
  2098. * Since its curr running now, convert the gran from real-time
  2099. * to virtual-time in his units.
  2100. *
  2101. * By using 'se' instead of 'curr' we penalize light tasks, so
  2102. * they get preempted easier. That is, if 'se' < 'curr' then
  2103. * the resulting gran will be larger, therefore penalizing the
  2104. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  2105. * be smaller, again penalizing the lighter task.
  2106. *
  2107. * This is especially important for buddies when the leftmost
  2108. * task is higher priority than the buddy.
  2109. */
  2110. return calc_delta_fair(gran, se);
  2111. }
  2112. /*
  2113. * Should 'se' preempt 'curr'.
  2114. *
  2115. * |s1
  2116. * |s2
  2117. * |s3
  2118. * g
  2119. * |<--->|c
  2120. *
  2121. * w(c, s1) = -1
  2122. * w(c, s2) = 0
  2123. * w(c, s3) = 1
  2124. *
  2125. */
  2126. static int
  2127. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  2128. {
  2129. s64 gran, vdiff = curr->vruntime - se->vruntime;
  2130. if (vdiff <= 0)
  2131. return -1;
  2132. gran = wakeup_gran(curr, se);
  2133. if (vdiff > gran)
  2134. return 1;
  2135. return 0;
  2136. }
  2137. static void set_last_buddy(struct sched_entity *se)
  2138. {
  2139. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2140. return;
  2141. for_each_sched_entity(se)
  2142. cfs_rq_of(se)->last = se;
  2143. }
  2144. static void set_next_buddy(struct sched_entity *se)
  2145. {
  2146. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2147. return;
  2148. for_each_sched_entity(se)
  2149. cfs_rq_of(se)->next = se;
  2150. }
  2151. static void set_skip_buddy(struct sched_entity *se)
  2152. {
  2153. for_each_sched_entity(se)
  2154. cfs_rq_of(se)->skip = se;
  2155. }
  2156. /*
  2157. * Preempt the current task with a newly woken task if needed:
  2158. */
  2159. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2160. {
  2161. struct task_struct *curr = rq->curr;
  2162. struct sched_entity *se = &curr->se, *pse = &p->se;
  2163. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2164. int scale = cfs_rq->nr_running >= sched_nr_latency;
  2165. int next_buddy_marked = 0;
  2166. if (unlikely(se == pse))
  2167. return;
  2168. /*
  2169. * This is possible from callers such as pull_task(), in which we
  2170. * unconditionally check_prempt_curr() after an enqueue (which may have
  2171. * lead to a throttle). This both saves work and prevents false
  2172. * next-buddy nomination below.
  2173. */
  2174. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  2175. return;
  2176. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  2177. set_next_buddy(pse);
  2178. next_buddy_marked = 1;
  2179. }
  2180. /*
  2181. * We can come here with TIF_NEED_RESCHED already set from new task
  2182. * wake up path.
  2183. *
  2184. * Note: this also catches the edge-case of curr being in a throttled
  2185. * group (e.g. via set_curr_task), since update_curr() (in the
  2186. * enqueue of curr) will have resulted in resched being set. This
  2187. * prevents us from potentially nominating it as a false LAST_BUDDY
  2188. * below.
  2189. */
  2190. if (test_tsk_need_resched(curr))
  2191. return;
  2192. /* Idle tasks are by definition preempted by non-idle tasks. */
  2193. if (unlikely(curr->policy == SCHED_IDLE) &&
  2194. likely(p->policy != SCHED_IDLE))
  2195. goto preempt;
  2196. /*
  2197. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  2198. * is driven by the tick):
  2199. */
  2200. if (unlikely(p->policy != SCHED_NORMAL))
  2201. return;
  2202. find_matching_se(&se, &pse);
  2203. update_curr(cfs_rq_of(se));
  2204. BUG_ON(!pse);
  2205. if (wakeup_preempt_entity(se, pse) == 1) {
  2206. /*
  2207. * Bias pick_next to pick the sched entity that is
  2208. * triggering this preemption.
  2209. */
  2210. if (!next_buddy_marked)
  2211. set_next_buddy(pse);
  2212. goto preempt;
  2213. }
  2214. return;
  2215. preempt:
  2216. resched_task(curr);
  2217. /*
  2218. * Only set the backward buddy when the current task is still
  2219. * on the rq. This can happen when a wakeup gets interleaved
  2220. * with schedule on the ->pre_schedule() or idle_balance()
  2221. * point, either of which can * drop the rq lock.
  2222. *
  2223. * Also, during early boot the idle thread is in the fair class,
  2224. * for obvious reasons its a bad idea to schedule back to it.
  2225. */
  2226. if (unlikely(!se->on_rq || curr == rq->idle))
  2227. return;
  2228. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  2229. set_last_buddy(se);
  2230. }
  2231. static struct task_struct *pick_next_task_fair(struct rq *rq)
  2232. {
  2233. struct task_struct *p;
  2234. struct cfs_rq *cfs_rq = &rq->cfs;
  2235. struct sched_entity *se;
  2236. if (!cfs_rq->nr_running)
  2237. return NULL;
  2238. do {
  2239. se = pick_next_entity(cfs_rq);
  2240. set_next_entity(cfs_rq, se);
  2241. cfs_rq = group_cfs_rq(se);
  2242. } while (cfs_rq);
  2243. p = task_of(se);
  2244. hrtick_start_fair(rq, p);
  2245. return p;
  2246. }
  2247. /*
  2248. * Account for a descheduled task:
  2249. */
  2250. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  2251. {
  2252. struct sched_entity *se = &prev->se;
  2253. struct cfs_rq *cfs_rq;
  2254. for_each_sched_entity(se) {
  2255. cfs_rq = cfs_rq_of(se);
  2256. put_prev_entity(cfs_rq, se);
  2257. }
  2258. }
  2259. /*
  2260. * sched_yield() is very simple
  2261. *
  2262. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  2263. */
  2264. static void yield_task_fair(struct rq *rq)
  2265. {
  2266. struct task_struct *curr = rq->curr;
  2267. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2268. struct sched_entity *se = &curr->se;
  2269. /*
  2270. * Are we the only task in the tree?
  2271. */
  2272. if (unlikely(rq->nr_running == 1))
  2273. return;
  2274. clear_buddies(cfs_rq, se);
  2275. if (curr->policy != SCHED_BATCH) {
  2276. update_rq_clock(rq);
  2277. /*
  2278. * Update run-time statistics of the 'current'.
  2279. */
  2280. update_curr(cfs_rq);
  2281. }
  2282. set_skip_buddy(se);
  2283. }
  2284. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  2285. {
  2286. struct sched_entity *se = &p->se;
  2287. /* throttled hierarchies are not runnable */
  2288. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  2289. return false;
  2290. /* Tell the scheduler that we'd really like pse to run next. */
  2291. set_next_buddy(se);
  2292. yield_task_fair(rq);
  2293. return true;
  2294. }
  2295. #ifdef CONFIG_SMP
  2296. /**************************************************
  2297. * Fair scheduling class load-balancing methods:
  2298. */
  2299. /*
  2300. * pull_task - move a task from a remote runqueue to the local runqueue.
  2301. * Both runqueues must be locked.
  2302. */
  2303. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2304. struct rq *this_rq, int this_cpu)
  2305. {
  2306. deactivate_task(src_rq, p, 0);
  2307. set_task_cpu(p, this_cpu);
  2308. activate_task(this_rq, p, 0);
  2309. check_preempt_curr(this_rq, p, 0);
  2310. }
  2311. /*
  2312. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2313. */
  2314. static
  2315. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2316. struct sched_domain *sd, enum cpu_idle_type idle,
  2317. int *all_pinned)
  2318. {
  2319. int tsk_cache_hot = 0;
  2320. /*
  2321. * We do not migrate tasks that are:
  2322. * 1) running (obviously), or
  2323. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2324. * 3) are cache-hot on their current CPU.
  2325. */
  2326. if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
  2327. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  2328. return 0;
  2329. }
  2330. *all_pinned = 0;
  2331. if (task_running(rq, p)) {
  2332. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  2333. return 0;
  2334. }
  2335. /*
  2336. * Aggressive migration if:
  2337. * 1) task is cache cold, or
  2338. * 2) too many balance attempts have failed.
  2339. */
  2340. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  2341. if (!tsk_cache_hot ||
  2342. sd->nr_balance_failed > sd->cache_nice_tries) {
  2343. #ifdef CONFIG_SCHEDSTATS
  2344. if (tsk_cache_hot) {
  2345. schedstat_inc(sd, lb_hot_gained[idle]);
  2346. schedstat_inc(p, se.statistics.nr_forced_migrations);
  2347. }
  2348. #endif
  2349. return 1;
  2350. }
  2351. if (tsk_cache_hot) {
  2352. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  2353. return 0;
  2354. }
  2355. return 1;
  2356. }
  2357. /*
  2358. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2359. * part of active balancing operations within "domain".
  2360. * Returns 1 if successful and 0 otherwise.
  2361. *
  2362. * Called with both runqueues locked.
  2363. */
  2364. static int
  2365. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2366. struct sched_domain *sd, enum cpu_idle_type idle)
  2367. {
  2368. struct task_struct *p, *n;
  2369. struct cfs_rq *cfs_rq;
  2370. int pinned = 0;
  2371. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  2372. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  2373. if (throttled_lb_pair(task_group(p),
  2374. busiest->cpu, this_cpu))
  2375. break;
  2376. if (!can_migrate_task(p, busiest, this_cpu,
  2377. sd, idle, &pinned))
  2378. continue;
  2379. pull_task(busiest, p, this_rq, this_cpu);
  2380. /*
  2381. * Right now, this is only the second place pull_task()
  2382. * is called, so we can safely collect pull_task()
  2383. * stats here rather than inside pull_task().
  2384. */
  2385. schedstat_inc(sd, lb_gained[idle]);
  2386. return 1;
  2387. }
  2388. }
  2389. return 0;
  2390. }
  2391. static unsigned long
  2392. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2393. unsigned long max_load_move, struct sched_domain *sd,
  2394. enum cpu_idle_type idle, int *all_pinned,
  2395. struct cfs_rq *busiest_cfs_rq)
  2396. {
  2397. int loops = 0, pulled = 0;
  2398. long rem_load_move = max_load_move;
  2399. struct task_struct *p, *n;
  2400. if (max_load_move == 0)
  2401. goto out;
  2402. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  2403. if (loops++ > sysctl_sched_nr_migrate)
  2404. break;
  2405. if ((p->se.load.weight >> 1) > rem_load_move ||
  2406. !can_migrate_task(p, busiest, this_cpu, sd, idle,
  2407. all_pinned))
  2408. continue;
  2409. pull_task(busiest, p, this_rq, this_cpu);
  2410. pulled++;
  2411. rem_load_move -= p->se.load.weight;
  2412. #ifdef CONFIG_PREEMPT
  2413. /*
  2414. * NEWIDLE balancing is a source of latency, so preemptible
  2415. * kernels will stop after the first task is pulled to minimize
  2416. * the critical section.
  2417. */
  2418. if (idle == CPU_NEWLY_IDLE)
  2419. break;
  2420. #endif
  2421. /*
  2422. * We only want to steal up to the prescribed amount of
  2423. * weighted load.
  2424. */
  2425. if (rem_load_move <= 0)
  2426. break;
  2427. }
  2428. out:
  2429. /*
  2430. * Right now, this is one of only two places pull_task() is called,
  2431. * so we can safely collect pull_task() stats here rather than
  2432. * inside pull_task().
  2433. */
  2434. schedstat_add(sd, lb_gained[idle], pulled);
  2435. return max_load_move - rem_load_move;
  2436. }
  2437. #ifdef CONFIG_FAIR_GROUP_SCHED
  2438. /*
  2439. * update tg->load_weight by folding this cpu's load_avg
  2440. */
  2441. static int update_shares_cpu(struct task_group *tg, int cpu)
  2442. {
  2443. struct cfs_rq *cfs_rq;
  2444. unsigned long flags;
  2445. struct rq *rq;
  2446. if (!tg->se[cpu])
  2447. return 0;
  2448. rq = cpu_rq(cpu);
  2449. cfs_rq = tg->cfs_rq[cpu];
  2450. raw_spin_lock_irqsave(&rq->lock, flags);
  2451. update_rq_clock(rq);
  2452. update_cfs_load(cfs_rq, 1);
  2453. /*
  2454. * We need to update shares after updating tg->load_weight in
  2455. * order to adjust the weight of groups with long running tasks.
  2456. */
  2457. update_cfs_shares(cfs_rq);
  2458. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2459. return 0;
  2460. }
  2461. static void update_shares(int cpu)
  2462. {
  2463. struct cfs_rq *cfs_rq;
  2464. struct rq *rq = cpu_rq(cpu);
  2465. rcu_read_lock();
  2466. /*
  2467. * Iterates the task_group tree in a bottom up fashion, see
  2468. * list_add_leaf_cfs_rq() for details.
  2469. */
  2470. for_each_leaf_cfs_rq(rq, cfs_rq) {
  2471. /* throttled entities do not contribute to load */
  2472. if (throttled_hierarchy(cfs_rq))
  2473. continue;
  2474. update_shares_cpu(cfs_rq->tg, cpu);
  2475. }
  2476. rcu_read_unlock();
  2477. }
  2478. /*
  2479. * Compute the cpu's hierarchical load factor for each task group.
  2480. * This needs to be done in a top-down fashion because the load of a child
  2481. * group is a fraction of its parents load.
  2482. */
  2483. static int tg_load_down(struct task_group *tg, void *data)
  2484. {
  2485. unsigned long load;
  2486. long cpu = (long)data;
  2487. if (!tg->parent) {
  2488. load = cpu_rq(cpu)->load.weight;
  2489. } else {
  2490. load = tg->parent->cfs_rq[cpu]->h_load;
  2491. load *= tg->se[cpu]->load.weight;
  2492. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  2493. }
  2494. tg->cfs_rq[cpu]->h_load = load;
  2495. return 0;
  2496. }
  2497. static void update_h_load(long cpu)
  2498. {
  2499. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  2500. }
  2501. static unsigned long
  2502. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2503. unsigned long max_load_move,
  2504. struct sched_domain *sd, enum cpu_idle_type idle,
  2505. int *all_pinned)
  2506. {
  2507. long rem_load_move = max_load_move;
  2508. struct cfs_rq *busiest_cfs_rq;
  2509. rcu_read_lock();
  2510. update_h_load(cpu_of(busiest));
  2511. for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
  2512. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  2513. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  2514. u64 rem_load, moved_load;
  2515. /*
  2516. * empty group or part of a throttled hierarchy
  2517. */
  2518. if (!busiest_cfs_rq->task_weight ||
  2519. throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
  2520. continue;
  2521. rem_load = (u64)rem_load_move * busiest_weight;
  2522. rem_load = div_u64(rem_load, busiest_h_load + 1);
  2523. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  2524. rem_load, sd, idle, all_pinned,
  2525. busiest_cfs_rq);
  2526. if (!moved_load)
  2527. continue;
  2528. moved_load *= busiest_h_load;
  2529. moved_load = div_u64(moved_load, busiest_weight + 1);
  2530. rem_load_move -= moved_load;
  2531. if (rem_load_move < 0)
  2532. break;
  2533. }
  2534. rcu_read_unlock();
  2535. return max_load_move - rem_load_move;
  2536. }
  2537. #else
  2538. static inline void update_shares(int cpu)
  2539. {
  2540. }
  2541. static unsigned long
  2542. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2543. unsigned long max_load_move,
  2544. struct sched_domain *sd, enum cpu_idle_type idle,
  2545. int *all_pinned)
  2546. {
  2547. return balance_tasks(this_rq, this_cpu, busiest,
  2548. max_load_move, sd, idle, all_pinned,
  2549. &busiest->cfs);
  2550. }
  2551. #endif
  2552. /*
  2553. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2554. * this_rq, as part of a balancing operation within domain "sd".
  2555. * Returns 1 if successful and 0 otherwise.
  2556. *
  2557. * Called with both runqueues locked.
  2558. */
  2559. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2560. unsigned long max_load_move,
  2561. struct sched_domain *sd, enum cpu_idle_type idle,
  2562. int *all_pinned)
  2563. {
  2564. unsigned long total_load_moved = 0, load_moved;
  2565. do {
  2566. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  2567. max_load_move - total_load_moved,
  2568. sd, idle, all_pinned);
  2569. total_load_moved += load_moved;
  2570. #ifdef CONFIG_PREEMPT
  2571. /*
  2572. * NEWIDLE balancing is a source of latency, so preemptible
  2573. * kernels will stop after the first task is pulled to minimize
  2574. * the critical section.
  2575. */
  2576. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2577. break;
  2578. if (raw_spin_is_contended(&this_rq->lock) ||
  2579. raw_spin_is_contended(&busiest->lock))
  2580. break;
  2581. #endif
  2582. } while (load_moved && max_load_move > total_load_moved);
  2583. return total_load_moved > 0;
  2584. }
  2585. /********** Helpers for find_busiest_group ************************/
  2586. /*
  2587. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2588. * during load balancing.
  2589. */
  2590. struct sd_lb_stats {
  2591. struct sched_group *busiest; /* Busiest group in this sd */
  2592. struct sched_group *this; /* Local group in this sd */
  2593. unsigned long total_load; /* Total load of all groups in sd */
  2594. unsigned long total_pwr; /* Total power of all groups in sd */
  2595. unsigned long avg_load; /* Average load across all groups in sd */
  2596. /** Statistics of this group */
  2597. unsigned long this_load;
  2598. unsigned long this_load_per_task;
  2599. unsigned long this_nr_running;
  2600. unsigned long this_has_capacity;
  2601. unsigned int this_idle_cpus;
  2602. /* Statistics of the busiest group */
  2603. unsigned int busiest_idle_cpus;
  2604. unsigned long max_load;
  2605. unsigned long busiest_load_per_task;
  2606. unsigned long busiest_nr_running;
  2607. unsigned long busiest_group_capacity;
  2608. unsigned long busiest_has_capacity;
  2609. unsigned int busiest_group_weight;
  2610. int group_imb; /* Is there imbalance in this sd */
  2611. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2612. int power_savings_balance; /* Is powersave balance needed for this sd */
  2613. struct sched_group *group_min; /* Least loaded group in sd */
  2614. struct sched_group *group_leader; /* Group which relieves group_min */
  2615. unsigned long min_load_per_task; /* load_per_task in group_min */
  2616. unsigned long leader_nr_running; /* Nr running of group_leader */
  2617. unsigned long min_nr_running; /* Nr running of group_min */
  2618. #endif
  2619. };
  2620. /*
  2621. * sg_lb_stats - stats of a sched_group required for load_balancing
  2622. */
  2623. struct sg_lb_stats {
  2624. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2625. unsigned long group_load; /* Total load over the CPUs of the group */
  2626. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2627. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2628. unsigned long group_capacity;
  2629. unsigned long idle_cpus;
  2630. unsigned long group_weight;
  2631. int group_imb; /* Is there an imbalance in the group ? */
  2632. int group_has_capacity; /* Is there extra capacity in the group? */
  2633. };
  2634. /**
  2635. * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
  2636. * @group: The group whose first cpu is to be returned.
  2637. */
  2638. static inline unsigned int group_first_cpu(struct sched_group *group)
  2639. {
  2640. return cpumask_first(sched_group_cpus(group));
  2641. }
  2642. /**
  2643. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2644. * @sd: The sched_domain whose load_idx is to be obtained.
  2645. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2646. */
  2647. static inline int get_sd_load_idx(struct sched_domain *sd,
  2648. enum cpu_idle_type idle)
  2649. {
  2650. int load_idx;
  2651. switch (idle) {
  2652. case CPU_NOT_IDLE:
  2653. load_idx = sd->busy_idx;
  2654. break;
  2655. case CPU_NEWLY_IDLE:
  2656. load_idx = sd->newidle_idx;
  2657. break;
  2658. default:
  2659. load_idx = sd->idle_idx;
  2660. break;
  2661. }
  2662. return load_idx;
  2663. }
  2664. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2665. /**
  2666. * init_sd_power_savings_stats - Initialize power savings statistics for
  2667. * the given sched_domain, during load balancing.
  2668. *
  2669. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2670. * @sds: Variable containing the statistics for sd.
  2671. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2672. */
  2673. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2674. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2675. {
  2676. /*
  2677. * Busy processors will not participate in power savings
  2678. * balance.
  2679. */
  2680. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2681. sds->power_savings_balance = 0;
  2682. else {
  2683. sds->power_savings_balance = 1;
  2684. sds->min_nr_running = ULONG_MAX;
  2685. sds->leader_nr_running = 0;
  2686. }
  2687. }
  2688. /**
  2689. * update_sd_power_savings_stats - Update the power saving stats for a
  2690. * sched_domain while performing load balancing.
  2691. *
  2692. * @group: sched_group belonging to the sched_domain under consideration.
  2693. * @sds: Variable containing the statistics of the sched_domain
  2694. * @local_group: Does group contain the CPU for which we're performing
  2695. * load balancing ?
  2696. * @sgs: Variable containing the statistics of the group.
  2697. */
  2698. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2699. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2700. {
  2701. if (!sds->power_savings_balance)
  2702. return;
  2703. /*
  2704. * If the local group is idle or completely loaded
  2705. * no need to do power savings balance at this domain
  2706. */
  2707. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2708. !sds->this_nr_running))
  2709. sds->power_savings_balance = 0;
  2710. /*
  2711. * If a group is already running at full capacity or idle,
  2712. * don't include that group in power savings calculations
  2713. */
  2714. if (!sds->power_savings_balance ||
  2715. sgs->sum_nr_running >= sgs->group_capacity ||
  2716. !sgs->sum_nr_running)
  2717. return;
  2718. /*
  2719. * Calculate the group which has the least non-idle load.
  2720. * This is the group from where we need to pick up the load
  2721. * for saving power
  2722. */
  2723. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  2724. (sgs->sum_nr_running == sds->min_nr_running &&
  2725. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  2726. sds->group_min = group;
  2727. sds->min_nr_running = sgs->sum_nr_running;
  2728. sds->min_load_per_task = sgs->sum_weighted_load /
  2729. sgs->sum_nr_running;
  2730. }
  2731. /*
  2732. * Calculate the group which is almost near its
  2733. * capacity but still has some space to pick up some load
  2734. * from other group and save more power
  2735. */
  2736. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  2737. return;
  2738. if (sgs->sum_nr_running > sds->leader_nr_running ||
  2739. (sgs->sum_nr_running == sds->leader_nr_running &&
  2740. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  2741. sds->group_leader = group;
  2742. sds->leader_nr_running = sgs->sum_nr_running;
  2743. }
  2744. }
  2745. /**
  2746. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  2747. * @sds: Variable containing the statistics of the sched_domain
  2748. * under consideration.
  2749. * @this_cpu: Cpu at which we're currently performing load-balancing.
  2750. * @imbalance: Variable to store the imbalance.
  2751. *
  2752. * Description:
  2753. * Check if we have potential to perform some power-savings balance.
  2754. * If yes, set the busiest group to be the least loaded group in the
  2755. * sched_domain, so that it's CPUs can be put to idle.
  2756. *
  2757. * Returns 1 if there is potential to perform power-savings balance.
  2758. * Else returns 0.
  2759. */
  2760. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2761. int this_cpu, unsigned long *imbalance)
  2762. {
  2763. if (!sds->power_savings_balance)
  2764. return 0;
  2765. if (sds->this != sds->group_leader ||
  2766. sds->group_leader == sds->group_min)
  2767. return 0;
  2768. *imbalance = sds->min_load_per_task;
  2769. sds->busiest = sds->group_min;
  2770. return 1;
  2771. }
  2772. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2773. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2774. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2775. {
  2776. return;
  2777. }
  2778. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2779. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2780. {
  2781. return;
  2782. }
  2783. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  2784. int this_cpu, unsigned long *imbalance)
  2785. {
  2786. return 0;
  2787. }
  2788. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  2789. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  2790. {
  2791. return SCHED_POWER_SCALE;
  2792. }
  2793. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  2794. {
  2795. return default_scale_freq_power(sd, cpu);
  2796. }
  2797. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  2798. {
  2799. unsigned long weight = sd->span_weight;
  2800. unsigned long smt_gain = sd->smt_gain;
  2801. smt_gain /= weight;
  2802. return smt_gain;
  2803. }
  2804. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  2805. {
  2806. return default_scale_smt_power(sd, cpu);
  2807. }
  2808. unsigned long scale_rt_power(int cpu)
  2809. {
  2810. struct rq *rq = cpu_rq(cpu);
  2811. u64 total, available;
  2812. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  2813. if (unlikely(total < rq->rt_avg)) {
  2814. /* Ensures that power won't end up being negative */
  2815. available = 0;
  2816. } else {
  2817. available = total - rq->rt_avg;
  2818. }
  2819. if (unlikely((s64)total < SCHED_POWER_SCALE))
  2820. total = SCHED_POWER_SCALE;
  2821. total >>= SCHED_POWER_SHIFT;
  2822. return div_u64(available, total);
  2823. }
  2824. static void update_cpu_power(struct sched_domain *sd, int cpu)
  2825. {
  2826. unsigned long weight = sd->span_weight;
  2827. unsigned long power = SCHED_POWER_SCALE;
  2828. struct sched_group *sdg = sd->groups;
  2829. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  2830. if (sched_feat(ARCH_POWER))
  2831. power *= arch_scale_smt_power(sd, cpu);
  2832. else
  2833. power *= default_scale_smt_power(sd, cpu);
  2834. power >>= SCHED_POWER_SHIFT;
  2835. }
  2836. sdg->sgp->power_orig = power;
  2837. if (sched_feat(ARCH_POWER))
  2838. power *= arch_scale_freq_power(sd, cpu);
  2839. else
  2840. power *= default_scale_freq_power(sd, cpu);
  2841. power >>= SCHED_POWER_SHIFT;
  2842. power *= scale_rt_power(cpu);
  2843. power >>= SCHED_POWER_SHIFT;
  2844. if (!power)
  2845. power = 1;
  2846. cpu_rq(cpu)->cpu_power = power;
  2847. sdg->sgp->power = power;
  2848. }
  2849. static void update_group_power(struct sched_domain *sd, int cpu)
  2850. {
  2851. struct sched_domain *child = sd->child;
  2852. struct sched_group *group, *sdg = sd->groups;
  2853. unsigned long power;
  2854. if (!child) {
  2855. update_cpu_power(sd, cpu);
  2856. return;
  2857. }
  2858. power = 0;
  2859. group = child->groups;
  2860. do {
  2861. power += group->sgp->power;
  2862. group = group->next;
  2863. } while (group != child->groups);
  2864. sdg->sgp->power = power;
  2865. }
  2866. /*
  2867. * Try and fix up capacity for tiny siblings, this is needed when
  2868. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  2869. * which on its own isn't powerful enough.
  2870. *
  2871. * See update_sd_pick_busiest() and check_asym_packing().
  2872. */
  2873. static inline int
  2874. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  2875. {
  2876. /*
  2877. * Only siblings can have significantly less than SCHED_POWER_SCALE
  2878. */
  2879. if (!(sd->flags & SD_SHARE_CPUPOWER))
  2880. return 0;
  2881. /*
  2882. * If ~90% of the cpu_power is still there, we're good.
  2883. */
  2884. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  2885. return 1;
  2886. return 0;
  2887. }
  2888. /**
  2889. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  2890. * @sd: The sched_domain whose statistics are to be updated.
  2891. * @group: sched_group whose statistics are to be updated.
  2892. * @this_cpu: Cpu for which load balance is currently performed.
  2893. * @idle: Idle status of this_cpu
  2894. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  2895. * @local_group: Does group contain this_cpu.
  2896. * @cpus: Set of cpus considered for load balancing.
  2897. * @balance: Should we balance.
  2898. * @sgs: variable to hold the statistics for this group.
  2899. */
  2900. static inline void update_sg_lb_stats(struct sched_domain *sd,
  2901. struct sched_group *group, int this_cpu,
  2902. enum cpu_idle_type idle, int load_idx,
  2903. int local_group, const struct cpumask *cpus,
  2904. int *balance, struct sg_lb_stats *sgs)
  2905. {
  2906. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  2907. int i;
  2908. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  2909. unsigned long avg_load_per_task = 0;
  2910. if (local_group)
  2911. balance_cpu = group_first_cpu(group);
  2912. /* Tally up the load of all CPUs in the group */
  2913. max_cpu_load = 0;
  2914. min_cpu_load = ~0UL;
  2915. max_nr_running = 0;
  2916. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  2917. struct rq *rq = cpu_rq(i);
  2918. /* Bias balancing toward cpus of our domain */
  2919. if (local_group) {
  2920. if (idle_cpu(i) && !first_idle_cpu) {
  2921. first_idle_cpu = 1;
  2922. balance_cpu = i;
  2923. }
  2924. load = target_load(i, load_idx);
  2925. } else {
  2926. load = source_load(i, load_idx);
  2927. if (load > max_cpu_load) {
  2928. max_cpu_load = load;
  2929. max_nr_running = rq->nr_running;
  2930. }
  2931. if (min_cpu_load > load)
  2932. min_cpu_load = load;
  2933. }
  2934. sgs->group_load += load;
  2935. sgs->sum_nr_running += rq->nr_running;
  2936. sgs->sum_weighted_load += weighted_cpuload(i);
  2937. if (idle_cpu(i))
  2938. sgs->idle_cpus++;
  2939. }
  2940. /*
  2941. * First idle cpu or the first cpu(busiest) in this sched group
  2942. * is eligible for doing load balancing at this and above
  2943. * domains. In the newly idle case, we will allow all the cpu's
  2944. * to do the newly idle load balance.
  2945. */
  2946. if (idle != CPU_NEWLY_IDLE && local_group) {
  2947. if (balance_cpu != this_cpu) {
  2948. *balance = 0;
  2949. return;
  2950. }
  2951. update_group_power(sd, this_cpu);
  2952. }
  2953. /* Adjust by relative CPU power of the group */
  2954. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
  2955. /*
  2956. * Consider the group unbalanced when the imbalance is larger
  2957. * than the average weight of a task.
  2958. *
  2959. * APZ: with cgroup the avg task weight can vary wildly and
  2960. * might not be a suitable number - should we keep a
  2961. * normalized nr_running number somewhere that negates
  2962. * the hierarchy?
  2963. */
  2964. if (sgs->sum_nr_running)
  2965. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  2966. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
  2967. sgs->group_imb = 1;
  2968. sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
  2969. SCHED_POWER_SCALE);
  2970. if (!sgs->group_capacity)
  2971. sgs->group_capacity = fix_small_capacity(sd, group);
  2972. sgs->group_weight = group->group_weight;
  2973. if (sgs->group_capacity > sgs->sum_nr_running)
  2974. sgs->group_has_capacity = 1;
  2975. }
  2976. /**
  2977. * update_sd_pick_busiest - return 1 on busiest group
  2978. * @sd: sched_domain whose statistics are to be checked
  2979. * @sds: sched_domain statistics
  2980. * @sg: sched_group candidate to be checked for being the busiest
  2981. * @sgs: sched_group statistics
  2982. * @this_cpu: the current cpu
  2983. *
  2984. * Determine if @sg is a busier group than the previously selected
  2985. * busiest group.
  2986. */
  2987. static bool update_sd_pick_busiest(struct sched_domain *sd,
  2988. struct sd_lb_stats *sds,
  2989. struct sched_group *sg,
  2990. struct sg_lb_stats *sgs,
  2991. int this_cpu)
  2992. {
  2993. if (sgs->avg_load <= sds->max_load)
  2994. return false;
  2995. if (sgs->sum_nr_running > sgs->group_capacity)
  2996. return true;
  2997. if (sgs->group_imb)
  2998. return true;
  2999. /*
  3000. * ASYM_PACKING needs to move all the work to the lowest
  3001. * numbered CPUs in the group, therefore mark all groups
  3002. * higher than ourself as busy.
  3003. */
  3004. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  3005. this_cpu < group_first_cpu(sg)) {
  3006. if (!sds->busiest)
  3007. return true;
  3008. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  3009. return true;
  3010. }
  3011. return false;
  3012. }
  3013. /**
  3014. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  3015. * @sd: sched_domain whose statistics are to be updated.
  3016. * @this_cpu: Cpu for which load balance is currently performed.
  3017. * @idle: Idle status of this_cpu
  3018. * @cpus: Set of cpus considered for load balancing.
  3019. * @balance: Should we balance.
  3020. * @sds: variable to hold the statistics for this sched_domain.
  3021. */
  3022. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3023. enum cpu_idle_type idle, const struct cpumask *cpus,
  3024. int *balance, struct sd_lb_stats *sds)
  3025. {
  3026. struct sched_domain *child = sd->child;
  3027. struct sched_group *sg = sd->groups;
  3028. struct sg_lb_stats sgs;
  3029. int load_idx, prefer_sibling = 0;
  3030. if (child && child->flags & SD_PREFER_SIBLING)
  3031. prefer_sibling = 1;
  3032. init_sd_power_savings_stats(sd, sds, idle);
  3033. load_idx = get_sd_load_idx(sd, idle);
  3034. do {
  3035. int local_group;
  3036. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  3037. memset(&sgs, 0, sizeof(sgs));
  3038. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
  3039. local_group, cpus, balance, &sgs);
  3040. if (local_group && !(*balance))
  3041. return;
  3042. sds->total_load += sgs.group_load;
  3043. sds->total_pwr += sg->sgp->power;
  3044. /*
  3045. * In case the child domain prefers tasks go to siblings
  3046. * first, lower the sg capacity to one so that we'll try
  3047. * and move all the excess tasks away. We lower the capacity
  3048. * of a group only if the local group has the capacity to fit
  3049. * these excess tasks, i.e. nr_running < group_capacity. The
  3050. * extra check prevents the case where you always pull from the
  3051. * heaviest group when it is already under-utilized (possible
  3052. * with a large weight task outweighs the tasks on the system).
  3053. */
  3054. if (prefer_sibling && !local_group && sds->this_has_capacity)
  3055. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3056. if (local_group) {
  3057. sds->this_load = sgs.avg_load;
  3058. sds->this = sg;
  3059. sds->this_nr_running = sgs.sum_nr_running;
  3060. sds->this_load_per_task = sgs.sum_weighted_load;
  3061. sds->this_has_capacity = sgs.group_has_capacity;
  3062. sds->this_idle_cpus = sgs.idle_cpus;
  3063. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  3064. sds->max_load = sgs.avg_load;
  3065. sds->busiest = sg;
  3066. sds->busiest_nr_running = sgs.sum_nr_running;
  3067. sds->busiest_idle_cpus = sgs.idle_cpus;
  3068. sds->busiest_group_capacity = sgs.group_capacity;
  3069. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3070. sds->busiest_has_capacity = sgs.group_has_capacity;
  3071. sds->busiest_group_weight = sgs.group_weight;
  3072. sds->group_imb = sgs.group_imb;
  3073. }
  3074. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  3075. sg = sg->next;
  3076. } while (sg != sd->groups);
  3077. }
  3078. int __weak arch_sd_sibling_asym_packing(void)
  3079. {
  3080. return 0*SD_ASYM_PACKING;
  3081. }
  3082. /**
  3083. * check_asym_packing - Check to see if the group is packed into the
  3084. * sched doman.
  3085. *
  3086. * This is primarily intended to used at the sibling level. Some
  3087. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  3088. * case of POWER7, it can move to lower SMT modes only when higher
  3089. * threads are idle. When in lower SMT modes, the threads will
  3090. * perform better since they share less core resources. Hence when we
  3091. * have idle threads, we want them to be the higher ones.
  3092. *
  3093. * This packing function is run on idle threads. It checks to see if
  3094. * the busiest CPU in this domain (core in the P7 case) has a higher
  3095. * CPU number than the packing function is being run on. Here we are
  3096. * assuming lower CPU number will be equivalent to lower a SMT thread
  3097. * number.
  3098. *
  3099. * Returns 1 when packing is required and a task should be moved to
  3100. * this CPU. The amount of the imbalance is returned in *imbalance.
  3101. *
  3102. * @sd: The sched_domain whose packing is to be checked.
  3103. * @sds: Statistics of the sched_domain which is to be packed
  3104. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3105. * @imbalance: returns amount of imbalanced due to packing.
  3106. */
  3107. static int check_asym_packing(struct sched_domain *sd,
  3108. struct sd_lb_stats *sds,
  3109. int this_cpu, unsigned long *imbalance)
  3110. {
  3111. int busiest_cpu;
  3112. if (!(sd->flags & SD_ASYM_PACKING))
  3113. return 0;
  3114. if (!sds->busiest)
  3115. return 0;
  3116. busiest_cpu = group_first_cpu(sds->busiest);
  3117. if (this_cpu > busiest_cpu)
  3118. return 0;
  3119. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
  3120. SCHED_POWER_SCALE);
  3121. return 1;
  3122. }
  3123. /**
  3124. * fix_small_imbalance - Calculate the minor imbalance that exists
  3125. * amongst the groups of a sched_domain, during
  3126. * load balancing.
  3127. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3128. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3129. * @imbalance: Variable to store the imbalance.
  3130. */
  3131. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3132. int this_cpu, unsigned long *imbalance)
  3133. {
  3134. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3135. unsigned int imbn = 2;
  3136. unsigned long scaled_busy_load_per_task;
  3137. if (sds->this_nr_running) {
  3138. sds->this_load_per_task /= sds->this_nr_running;
  3139. if (sds->busiest_load_per_task >
  3140. sds->this_load_per_task)
  3141. imbn = 1;
  3142. } else
  3143. sds->this_load_per_task =
  3144. cpu_avg_load_per_task(this_cpu);
  3145. scaled_busy_load_per_task = sds->busiest_load_per_task
  3146. * SCHED_POWER_SCALE;
  3147. scaled_busy_load_per_task /= sds->busiest->sgp->power;
  3148. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  3149. (scaled_busy_load_per_task * imbn)) {
  3150. *imbalance = sds->busiest_load_per_task;
  3151. return;
  3152. }
  3153. /*
  3154. * OK, we don't have enough imbalance to justify moving tasks,
  3155. * however we may be able to increase total CPU power used by
  3156. * moving them.
  3157. */
  3158. pwr_now += sds->busiest->sgp->power *
  3159. min(sds->busiest_load_per_task, sds->max_load);
  3160. pwr_now += sds->this->sgp->power *
  3161. min(sds->this_load_per_task, sds->this_load);
  3162. pwr_now /= SCHED_POWER_SCALE;
  3163. /* Amount of load we'd subtract */
  3164. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3165. sds->busiest->sgp->power;
  3166. if (sds->max_load > tmp)
  3167. pwr_move += sds->busiest->sgp->power *
  3168. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3169. /* Amount of load we'd add */
  3170. if (sds->max_load * sds->busiest->sgp->power <
  3171. sds->busiest_load_per_task * SCHED_POWER_SCALE)
  3172. tmp = (sds->max_load * sds->busiest->sgp->power) /
  3173. sds->this->sgp->power;
  3174. else
  3175. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3176. sds->this->sgp->power;
  3177. pwr_move += sds->this->sgp->power *
  3178. min(sds->this_load_per_task, sds->this_load + tmp);
  3179. pwr_move /= SCHED_POWER_SCALE;
  3180. /* Move if we gain throughput */
  3181. if (pwr_move > pwr_now)
  3182. *imbalance = sds->busiest_load_per_task;
  3183. }
  3184. /**
  3185. * calculate_imbalance - Calculate the amount of imbalance present within the
  3186. * groups of a given sched_domain during load balance.
  3187. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3188. * @this_cpu: Cpu for which currently load balance is being performed.
  3189. * @imbalance: The variable to store the imbalance.
  3190. */
  3191. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3192. unsigned long *imbalance)
  3193. {
  3194. unsigned long max_pull, load_above_capacity = ~0UL;
  3195. sds->busiest_load_per_task /= sds->busiest_nr_running;
  3196. if (sds->group_imb) {
  3197. sds->busiest_load_per_task =
  3198. min(sds->busiest_load_per_task, sds->avg_load);
  3199. }
  3200. /*
  3201. * In the presence of smp nice balancing, certain scenarios can have
  3202. * max load less than avg load(as we skip the groups at or below
  3203. * its cpu_power, while calculating max_load..)
  3204. */
  3205. if (sds->max_load < sds->avg_load) {
  3206. *imbalance = 0;
  3207. return fix_small_imbalance(sds, this_cpu, imbalance);
  3208. }
  3209. if (!sds->group_imb) {
  3210. /*
  3211. * Don't want to pull so many tasks that a group would go idle.
  3212. */
  3213. load_above_capacity = (sds->busiest_nr_running -
  3214. sds->busiest_group_capacity);
  3215. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  3216. load_above_capacity /= sds->busiest->sgp->power;
  3217. }
  3218. /*
  3219. * We're trying to get all the cpus to the average_load, so we don't
  3220. * want to push ourselves above the average load, nor do we wish to
  3221. * reduce the max loaded cpu below the average load. At the same time,
  3222. * we also don't want to reduce the group load below the group capacity
  3223. * (so that we can implement power-savings policies etc). Thus we look
  3224. * for the minimum possible imbalance.
  3225. * Be careful of negative numbers as they'll appear as very large values
  3226. * with unsigned longs.
  3227. */
  3228. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  3229. /* How much load to actually move to equalise the imbalance */
  3230. *imbalance = min(max_pull * sds->busiest->sgp->power,
  3231. (sds->avg_load - sds->this_load) * sds->this->sgp->power)
  3232. / SCHED_POWER_SCALE;
  3233. /*
  3234. * if *imbalance is less than the average load per runnable task
  3235. * there is no guarantee that any tasks will be moved so we'll have
  3236. * a think about bumping its value to force at least one task to be
  3237. * moved
  3238. */
  3239. if (*imbalance < sds->busiest_load_per_task)
  3240. return fix_small_imbalance(sds, this_cpu, imbalance);
  3241. }
  3242. /******* find_busiest_group() helpers end here *********************/
  3243. /**
  3244. * find_busiest_group - Returns the busiest group within the sched_domain
  3245. * if there is an imbalance. If there isn't an imbalance, and
  3246. * the user has opted for power-savings, it returns a group whose
  3247. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3248. * such a group exists.
  3249. *
  3250. * Also calculates the amount of weighted load which should be moved
  3251. * to restore balance.
  3252. *
  3253. * @sd: The sched_domain whose busiest group is to be returned.
  3254. * @this_cpu: The cpu for which load balancing is currently being performed.
  3255. * @imbalance: Variable which stores amount of weighted load which should
  3256. * be moved to restore balance/put a group to idle.
  3257. * @idle: The idle status of this_cpu.
  3258. * @cpus: The set of CPUs under consideration for load-balancing.
  3259. * @balance: Pointer to a variable indicating if this_cpu
  3260. * is the appropriate cpu to perform load balancing at this_level.
  3261. *
  3262. * Returns: - the busiest group if imbalance exists.
  3263. * - If no imbalance and user has opted for power-savings balance,
  3264. * return the least loaded group whose CPUs can be
  3265. * put to idle by rebalancing its tasks onto our group.
  3266. */
  3267. static struct sched_group *
  3268. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3269. unsigned long *imbalance, enum cpu_idle_type idle,
  3270. const struct cpumask *cpus, int *balance)
  3271. {
  3272. struct sd_lb_stats sds;
  3273. memset(&sds, 0, sizeof(sds));
  3274. /*
  3275. * Compute the various statistics relavent for load balancing at
  3276. * this level.
  3277. */
  3278. update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
  3279. /*
  3280. * this_cpu is not the appropriate cpu to perform load balancing at
  3281. * this level.
  3282. */
  3283. if (!(*balance))
  3284. goto ret;
  3285. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  3286. check_asym_packing(sd, &sds, this_cpu, imbalance))
  3287. return sds.busiest;
  3288. /* There is no busy sibling group to pull tasks from */
  3289. if (!sds.busiest || sds.busiest_nr_running == 0)
  3290. goto out_balanced;
  3291. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  3292. /*
  3293. * If the busiest group is imbalanced the below checks don't
  3294. * work because they assumes all things are equal, which typically
  3295. * isn't true due to cpus_allowed constraints and the like.
  3296. */
  3297. if (sds.group_imb)
  3298. goto force_balance;
  3299. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  3300. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  3301. !sds.busiest_has_capacity)
  3302. goto force_balance;
  3303. /*
  3304. * If the local group is more busy than the selected busiest group
  3305. * don't try and pull any tasks.
  3306. */
  3307. if (sds.this_load >= sds.max_load)
  3308. goto out_balanced;
  3309. /*
  3310. * Don't pull any tasks if this group is already above the domain
  3311. * average load.
  3312. */
  3313. if (sds.this_load >= sds.avg_load)
  3314. goto out_balanced;
  3315. if (idle == CPU_IDLE) {
  3316. /*
  3317. * This cpu is idle. If the busiest group load doesn't
  3318. * have more tasks than the number of available cpu's and
  3319. * there is no imbalance between this and busiest group
  3320. * wrt to idle cpu's, it is balanced.
  3321. */
  3322. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  3323. sds.busiest_nr_running <= sds.busiest_group_weight)
  3324. goto out_balanced;
  3325. } else {
  3326. /*
  3327. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  3328. * imbalance_pct to be conservative.
  3329. */
  3330. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3331. goto out_balanced;
  3332. }
  3333. force_balance:
  3334. /* Looks like there is an imbalance. Compute it */
  3335. calculate_imbalance(&sds, this_cpu, imbalance);
  3336. return sds.busiest;
  3337. out_balanced:
  3338. /*
  3339. * There is no obvious imbalance. But check if we can do some balancing
  3340. * to save power.
  3341. */
  3342. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3343. return sds.busiest;
  3344. ret:
  3345. *imbalance = 0;
  3346. return NULL;
  3347. }
  3348. /*
  3349. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3350. */
  3351. static struct rq *
  3352. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  3353. enum cpu_idle_type idle, unsigned long imbalance,
  3354. const struct cpumask *cpus)
  3355. {
  3356. struct rq *busiest = NULL, *rq;
  3357. unsigned long max_load = 0;
  3358. int i;
  3359. for_each_cpu(i, sched_group_cpus(group)) {
  3360. unsigned long power = power_of(i);
  3361. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  3362. SCHED_POWER_SCALE);
  3363. unsigned long wl;
  3364. if (!capacity)
  3365. capacity = fix_small_capacity(sd, group);
  3366. if (!cpumask_test_cpu(i, cpus))
  3367. continue;
  3368. rq = cpu_rq(i);
  3369. wl = weighted_cpuload(i);
  3370. /*
  3371. * When comparing with imbalance, use weighted_cpuload()
  3372. * which is not scaled with the cpu power.
  3373. */
  3374. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3375. continue;
  3376. /*
  3377. * For the load comparisons with the other cpu's, consider
  3378. * the weighted_cpuload() scaled with the cpu power, so that
  3379. * the load can be moved away from the cpu that is potentially
  3380. * running at a lower capacity.
  3381. */
  3382. wl = (wl * SCHED_POWER_SCALE) / power;
  3383. if (wl > max_load) {
  3384. max_load = wl;
  3385. busiest = rq;
  3386. }
  3387. }
  3388. return busiest;
  3389. }
  3390. /*
  3391. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3392. * so long as it is large enough.
  3393. */
  3394. #define MAX_PINNED_INTERVAL 512
  3395. /* Working cpumask for load_balance and load_balance_newidle. */
  3396. static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3397. static int need_active_balance(struct sched_domain *sd, int idle,
  3398. int busiest_cpu, int this_cpu)
  3399. {
  3400. if (idle == CPU_NEWLY_IDLE) {
  3401. /*
  3402. * ASYM_PACKING needs to force migrate tasks from busy but
  3403. * higher numbered CPUs in order to pack all tasks in the
  3404. * lowest numbered CPUs.
  3405. */
  3406. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  3407. return 1;
  3408. /*
  3409. * The only task running in a non-idle cpu can be moved to this
  3410. * cpu in an attempt to completely freeup the other CPU
  3411. * package.
  3412. *
  3413. * The package power saving logic comes from
  3414. * find_busiest_group(). If there are no imbalance, then
  3415. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3416. * f_b_g() will select a group from which a running task may be
  3417. * pulled to this cpu in order to make the other package idle.
  3418. * If there is no opportunity to make a package idle and if
  3419. * there are no imbalance, then f_b_g() will return NULL and no
  3420. * action will be taken in load_balance_newidle().
  3421. *
  3422. * Under normal task pull operation due to imbalance, there
  3423. * will be more than one task in the source run queue and
  3424. * move_tasks() will succeed. ld_moved will be true and this
  3425. * active balance code will not be triggered.
  3426. */
  3427. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3428. return 0;
  3429. }
  3430. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  3431. }
  3432. static int active_load_balance_cpu_stop(void *data);
  3433. /*
  3434. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3435. * tasks if there is an imbalance.
  3436. */
  3437. static int load_balance(int this_cpu, struct rq *this_rq,
  3438. struct sched_domain *sd, enum cpu_idle_type idle,
  3439. int *balance)
  3440. {
  3441. int ld_moved, all_pinned = 0, active_balance = 0;
  3442. struct sched_group *group;
  3443. unsigned long imbalance;
  3444. struct rq *busiest;
  3445. unsigned long flags;
  3446. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3447. cpumask_copy(cpus, cpu_active_mask);
  3448. schedstat_inc(sd, lb_count[idle]);
  3449. redo:
  3450. group = find_busiest_group(sd, this_cpu, &imbalance, idle,
  3451. cpus, balance);
  3452. if (*balance == 0)
  3453. goto out_balanced;
  3454. if (!group) {
  3455. schedstat_inc(sd, lb_nobusyg[idle]);
  3456. goto out_balanced;
  3457. }
  3458. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  3459. if (!busiest) {
  3460. schedstat_inc(sd, lb_nobusyq[idle]);
  3461. goto out_balanced;
  3462. }
  3463. BUG_ON(busiest == this_rq);
  3464. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3465. ld_moved = 0;
  3466. if (busiest->nr_running > 1) {
  3467. /*
  3468. * Attempt to move tasks. If find_busiest_group has found
  3469. * an imbalance but busiest->nr_running <= 1, the group is
  3470. * still unbalanced. ld_moved simply stays zero, so it is
  3471. * correctly treated as an imbalance.
  3472. */
  3473. all_pinned = 1;
  3474. local_irq_save(flags);
  3475. double_rq_lock(this_rq, busiest);
  3476. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3477. imbalance, sd, idle, &all_pinned);
  3478. double_rq_unlock(this_rq, busiest);
  3479. local_irq_restore(flags);
  3480. /*
  3481. * some other cpu did the load balance for us.
  3482. */
  3483. if (ld_moved && this_cpu != smp_processor_id())
  3484. resched_cpu(this_cpu);
  3485. /* All tasks on this runqueue were pinned by CPU affinity */
  3486. if (unlikely(all_pinned)) {
  3487. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3488. if (!cpumask_empty(cpus))
  3489. goto redo;
  3490. goto out_balanced;
  3491. }
  3492. }
  3493. if (!ld_moved) {
  3494. schedstat_inc(sd, lb_failed[idle]);
  3495. /*
  3496. * Increment the failure counter only on periodic balance.
  3497. * We do not want newidle balance, which can be very
  3498. * frequent, pollute the failure counter causing
  3499. * excessive cache_hot migrations and active balances.
  3500. */
  3501. if (idle != CPU_NEWLY_IDLE)
  3502. sd->nr_balance_failed++;
  3503. if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
  3504. raw_spin_lock_irqsave(&busiest->lock, flags);
  3505. /* don't kick the active_load_balance_cpu_stop,
  3506. * if the curr task on busiest cpu can't be
  3507. * moved to this_cpu
  3508. */
  3509. if (!cpumask_test_cpu(this_cpu,
  3510. tsk_cpus_allowed(busiest->curr))) {
  3511. raw_spin_unlock_irqrestore(&busiest->lock,
  3512. flags);
  3513. all_pinned = 1;
  3514. goto out_one_pinned;
  3515. }
  3516. /*
  3517. * ->active_balance synchronizes accesses to
  3518. * ->active_balance_work. Once set, it's cleared
  3519. * only after active load balance is finished.
  3520. */
  3521. if (!busiest->active_balance) {
  3522. busiest->active_balance = 1;
  3523. busiest->push_cpu = this_cpu;
  3524. active_balance = 1;
  3525. }
  3526. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3527. if (active_balance)
  3528. stop_one_cpu_nowait(cpu_of(busiest),
  3529. active_load_balance_cpu_stop, busiest,
  3530. &busiest->active_balance_work);
  3531. /*
  3532. * We've kicked active balancing, reset the failure
  3533. * counter.
  3534. */
  3535. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3536. }
  3537. } else
  3538. sd->nr_balance_failed = 0;
  3539. if (likely(!active_balance)) {
  3540. /* We were unbalanced, so reset the balancing interval */
  3541. sd->balance_interval = sd->min_interval;
  3542. } else {
  3543. /*
  3544. * If we've begun active balancing, start to back off. This
  3545. * case may not be covered by the all_pinned logic if there
  3546. * is only 1 task on the busy runqueue (because we don't call
  3547. * move_tasks).
  3548. */
  3549. if (sd->balance_interval < sd->max_interval)
  3550. sd->balance_interval *= 2;
  3551. }
  3552. goto out;
  3553. out_balanced:
  3554. schedstat_inc(sd, lb_balanced[idle]);
  3555. sd->nr_balance_failed = 0;
  3556. out_one_pinned:
  3557. /* tune up the balancing interval */
  3558. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3559. (sd->balance_interval < sd->max_interval))
  3560. sd->balance_interval *= 2;
  3561. ld_moved = 0;
  3562. out:
  3563. return ld_moved;
  3564. }
  3565. /*
  3566. * idle_balance is called by schedule() if this_cpu is about to become
  3567. * idle. Attempts to pull tasks from other CPUs.
  3568. */
  3569. static void idle_balance(int this_cpu, struct rq *this_rq)
  3570. {
  3571. struct sched_domain *sd;
  3572. int pulled_task = 0;
  3573. unsigned long next_balance = jiffies + HZ;
  3574. this_rq->idle_stamp = this_rq->clock;
  3575. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3576. return;
  3577. /*
  3578. * Drop the rq->lock, but keep IRQ/preempt disabled.
  3579. */
  3580. raw_spin_unlock(&this_rq->lock);
  3581. update_shares(this_cpu);
  3582. rcu_read_lock();
  3583. for_each_domain(this_cpu, sd) {
  3584. unsigned long interval;
  3585. int balance = 1;
  3586. if (!(sd->flags & SD_LOAD_BALANCE))
  3587. continue;
  3588. if (sd->flags & SD_BALANCE_NEWIDLE) {
  3589. /* If we've pulled tasks over stop searching: */
  3590. pulled_task = load_balance(this_cpu, this_rq,
  3591. sd, CPU_NEWLY_IDLE, &balance);
  3592. }
  3593. interval = msecs_to_jiffies(sd->balance_interval);
  3594. if (time_after(next_balance, sd->last_balance + interval))
  3595. next_balance = sd->last_balance + interval;
  3596. if (pulled_task) {
  3597. this_rq->idle_stamp = 0;
  3598. break;
  3599. }
  3600. }
  3601. rcu_read_unlock();
  3602. raw_spin_lock(&this_rq->lock);
  3603. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3604. /*
  3605. * We are going idle. next_balance may be set based on
  3606. * a busy processor. So reset next_balance.
  3607. */
  3608. this_rq->next_balance = next_balance;
  3609. }
  3610. }
  3611. /*
  3612. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  3613. * running tasks off the busiest CPU onto idle CPUs. It requires at
  3614. * least 1 task to be running on each physical CPU where possible, and
  3615. * avoids physical / logical imbalances.
  3616. */
  3617. static int active_load_balance_cpu_stop(void *data)
  3618. {
  3619. struct rq *busiest_rq = data;
  3620. int busiest_cpu = cpu_of(busiest_rq);
  3621. int target_cpu = busiest_rq->push_cpu;
  3622. struct rq *target_rq = cpu_rq(target_cpu);
  3623. struct sched_domain *sd;
  3624. raw_spin_lock_irq(&busiest_rq->lock);
  3625. /* make sure the requested cpu hasn't gone down in the meantime */
  3626. if (unlikely(busiest_cpu != smp_processor_id() ||
  3627. !busiest_rq->active_balance))
  3628. goto out_unlock;
  3629. /* Is there any task to move? */
  3630. if (busiest_rq->nr_running <= 1)
  3631. goto out_unlock;
  3632. /*
  3633. * This condition is "impossible", if it occurs
  3634. * we need to fix it. Originally reported by
  3635. * Bjorn Helgaas on a 128-cpu setup.
  3636. */
  3637. BUG_ON(busiest_rq == target_rq);
  3638. /* move a task from busiest_rq to target_rq */
  3639. double_lock_balance(busiest_rq, target_rq);
  3640. /* Search for an sd spanning us and the target CPU. */
  3641. rcu_read_lock();
  3642. for_each_domain(target_cpu, sd) {
  3643. if ((sd->flags & SD_LOAD_BALANCE) &&
  3644. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3645. break;
  3646. }
  3647. if (likely(sd)) {
  3648. schedstat_inc(sd, alb_count);
  3649. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3650. sd, CPU_IDLE))
  3651. schedstat_inc(sd, alb_pushed);
  3652. else
  3653. schedstat_inc(sd, alb_failed);
  3654. }
  3655. rcu_read_unlock();
  3656. double_unlock_balance(busiest_rq, target_rq);
  3657. out_unlock:
  3658. busiest_rq->active_balance = 0;
  3659. raw_spin_unlock_irq(&busiest_rq->lock);
  3660. return 0;
  3661. }
  3662. #ifdef CONFIG_NO_HZ
  3663. /*
  3664. * idle load balancing details
  3665. * - One of the idle CPUs nominates itself as idle load_balancer, while
  3666. * entering idle.
  3667. * - This idle load balancer CPU will also go into tickless mode when
  3668. * it is idle, just like all other idle CPUs
  3669. * - When one of the busy CPUs notice that there may be an idle rebalancing
  3670. * needed, they will kick the idle load balancer, which then does idle
  3671. * load balancing for all the idle CPUs.
  3672. */
  3673. static struct {
  3674. atomic_t load_balancer;
  3675. atomic_t first_pick_cpu;
  3676. atomic_t second_pick_cpu;
  3677. cpumask_var_t idle_cpus_mask;
  3678. cpumask_var_t grp_idle_mask;
  3679. unsigned long next_balance; /* in jiffy units */
  3680. } nohz ____cacheline_aligned;
  3681. int get_nohz_load_balancer(void)
  3682. {
  3683. return atomic_read(&nohz.load_balancer);
  3684. }
  3685. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3686. /**
  3687. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3688. * @cpu: The cpu whose lowest level of sched domain is to
  3689. * be returned.
  3690. * @flag: The flag to check for the lowest sched_domain
  3691. * for the given cpu.
  3692. *
  3693. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3694. */
  3695. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3696. {
  3697. struct sched_domain *sd;
  3698. for_each_domain(cpu, sd)
  3699. if (sd->flags & flag)
  3700. break;
  3701. return sd;
  3702. }
  3703. /**
  3704. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3705. * @cpu: The cpu whose domains we're iterating over.
  3706. * @sd: variable holding the value of the power_savings_sd
  3707. * for cpu.
  3708. * @flag: The flag to filter the sched_domains to be iterated.
  3709. *
  3710. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3711. * set, starting from the lowest sched_domain to the highest.
  3712. */
  3713. #define for_each_flag_domain(cpu, sd, flag) \
  3714. for (sd = lowest_flag_domain(cpu, flag); \
  3715. (sd && (sd->flags & flag)); sd = sd->parent)
  3716. /**
  3717. * is_semi_idle_group - Checks if the given sched_group is semi-idle.
  3718. * @ilb_group: group to be checked for semi-idleness
  3719. *
  3720. * Returns: 1 if the group is semi-idle. 0 otherwise.
  3721. *
  3722. * We define a sched_group to be semi idle if it has atleast one idle-CPU
  3723. * and atleast one non-idle CPU. This helper function checks if the given
  3724. * sched_group is semi-idle or not.
  3725. */
  3726. static inline int is_semi_idle_group(struct sched_group *ilb_group)
  3727. {
  3728. cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
  3729. sched_group_cpus(ilb_group));
  3730. /*
  3731. * A sched_group is semi-idle when it has atleast one busy cpu
  3732. * and atleast one idle cpu.
  3733. */
  3734. if (cpumask_empty(nohz.grp_idle_mask))
  3735. return 0;
  3736. if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
  3737. return 0;
  3738. return 1;
  3739. }
  3740. /**
  3741. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3742. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3743. *
  3744. * Returns: Returns the id of the idle load balancer if it exists,
  3745. * Else, returns >= nr_cpu_ids.
  3746. *
  3747. * This algorithm picks the idle load balancer such that it belongs to a
  3748. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3749. * completely idle packages/cores just for the purpose of idle load balancing
  3750. * when there are other idle cpu's which are better suited for that job.
  3751. */
  3752. static int find_new_ilb(int cpu)
  3753. {
  3754. struct sched_domain *sd;
  3755. struct sched_group *ilb_group;
  3756. int ilb = nr_cpu_ids;
  3757. /*
  3758. * Have idle load balancer selection from semi-idle packages only
  3759. * when power-aware load balancing is enabled
  3760. */
  3761. if (!(sched_smt_power_savings || sched_mc_power_savings))
  3762. goto out_done;
  3763. /*
  3764. * Optimize for the case when we have no idle CPUs or only one
  3765. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  3766. */
  3767. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  3768. goto out_done;
  3769. rcu_read_lock();
  3770. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  3771. ilb_group = sd->groups;
  3772. do {
  3773. if (is_semi_idle_group(ilb_group)) {
  3774. ilb = cpumask_first(nohz.grp_idle_mask);
  3775. goto unlock;
  3776. }
  3777. ilb_group = ilb_group->next;
  3778. } while (ilb_group != sd->groups);
  3779. }
  3780. unlock:
  3781. rcu_read_unlock();
  3782. out_done:
  3783. return ilb;
  3784. }
  3785. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  3786. static inline int find_new_ilb(int call_cpu)
  3787. {
  3788. return nr_cpu_ids;
  3789. }
  3790. #endif
  3791. /*
  3792. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  3793. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  3794. * CPU (if there is one).
  3795. */
  3796. static void nohz_balancer_kick(int cpu)
  3797. {
  3798. int ilb_cpu;
  3799. nohz.next_balance++;
  3800. ilb_cpu = get_nohz_load_balancer();
  3801. if (ilb_cpu >= nr_cpu_ids) {
  3802. ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
  3803. if (ilb_cpu >= nr_cpu_ids)
  3804. return;
  3805. }
  3806. if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
  3807. cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
  3808. smp_mb();
  3809. /*
  3810. * Use smp_send_reschedule() instead of resched_cpu().
  3811. * This way we generate a sched IPI on the target cpu which
  3812. * is idle. And the softirq performing nohz idle load balance
  3813. * will be run before returning from the IPI.
  3814. */
  3815. smp_send_reschedule(ilb_cpu);
  3816. }
  3817. return;
  3818. }
  3819. /*
  3820. * This routine will try to nominate the ilb (idle load balancing)
  3821. * owner among the cpus whose ticks are stopped. ilb owner will do the idle
  3822. * load balancing on behalf of all those cpus.
  3823. *
  3824. * When the ilb owner becomes busy, we will not have new ilb owner until some
  3825. * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
  3826. * idle load balancing by kicking one of the idle CPUs.
  3827. *
  3828. * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
  3829. * ilb owner CPU in future (when there is a need for idle load balancing on
  3830. * behalf of all idle CPUs).
  3831. */
  3832. void select_nohz_load_balancer(int stop_tick)
  3833. {
  3834. int cpu = smp_processor_id();
  3835. if (stop_tick) {
  3836. if (!cpu_active(cpu)) {
  3837. if (atomic_read(&nohz.load_balancer) != cpu)
  3838. return;
  3839. /*
  3840. * If we are going offline and still the leader,
  3841. * give up!
  3842. */
  3843. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3844. nr_cpu_ids) != cpu)
  3845. BUG();
  3846. return;
  3847. }
  3848. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  3849. if (atomic_read(&nohz.first_pick_cpu) == cpu)
  3850. atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
  3851. if (atomic_read(&nohz.second_pick_cpu) == cpu)
  3852. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  3853. if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
  3854. int new_ilb;
  3855. /* make me the ilb owner */
  3856. if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
  3857. cpu) != nr_cpu_ids)
  3858. return;
  3859. /*
  3860. * Check to see if there is a more power-efficient
  3861. * ilb.
  3862. */
  3863. new_ilb = find_new_ilb(cpu);
  3864. if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
  3865. atomic_set(&nohz.load_balancer, nr_cpu_ids);
  3866. resched_cpu(new_ilb);
  3867. return;
  3868. }
  3869. return;
  3870. }
  3871. } else {
  3872. if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
  3873. return;
  3874. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  3875. if (atomic_read(&nohz.load_balancer) == cpu)
  3876. if (atomic_cmpxchg(&nohz.load_balancer, cpu,
  3877. nr_cpu_ids) != cpu)
  3878. BUG();
  3879. }
  3880. return;
  3881. }
  3882. #endif
  3883. static DEFINE_SPINLOCK(balancing);
  3884. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  3885. /*
  3886. * Scale the max load_balance interval with the number of CPUs in the system.
  3887. * This trades load-balance latency on larger machines for less cross talk.
  3888. */
  3889. static void update_max_interval(void)
  3890. {
  3891. max_load_balance_interval = HZ*num_online_cpus()/10;
  3892. }
  3893. /*
  3894. * It checks each scheduling domain to see if it is due to be balanced,
  3895. * and initiates a balancing operation if so.
  3896. *
  3897. * Balancing parameters are set up in arch_init_sched_domains.
  3898. */
  3899. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  3900. {
  3901. int balance = 1;
  3902. struct rq *rq = cpu_rq(cpu);
  3903. unsigned long interval;
  3904. struct sched_domain *sd;
  3905. /* Earliest time when we have to do rebalance again */
  3906. unsigned long next_balance = jiffies + 60*HZ;
  3907. int update_next_balance = 0;
  3908. int need_serialize;
  3909. update_shares(cpu);
  3910. rcu_read_lock();
  3911. for_each_domain(cpu, sd) {
  3912. if (!(sd->flags & SD_LOAD_BALANCE))
  3913. continue;
  3914. interval = sd->balance_interval;
  3915. if (idle != CPU_IDLE)
  3916. interval *= sd->busy_factor;
  3917. /* scale ms to jiffies */
  3918. interval = msecs_to_jiffies(interval);
  3919. interval = clamp(interval, 1UL, max_load_balance_interval);
  3920. need_serialize = sd->flags & SD_SERIALIZE;
  3921. if (need_serialize) {
  3922. if (!spin_trylock(&balancing))
  3923. goto out;
  3924. }
  3925. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  3926. if (load_balance(cpu, rq, sd, idle, &balance)) {
  3927. /*
  3928. * We've pulled tasks over so either we're no
  3929. * longer idle.
  3930. */
  3931. idle = CPU_NOT_IDLE;
  3932. }
  3933. sd->last_balance = jiffies;
  3934. }
  3935. if (need_serialize)
  3936. spin_unlock(&balancing);
  3937. out:
  3938. if (time_after(next_balance, sd->last_balance + interval)) {
  3939. next_balance = sd->last_balance + interval;
  3940. update_next_balance = 1;
  3941. }
  3942. /*
  3943. * Stop the load balance at this level. There is another
  3944. * CPU in our sched group which is doing load balancing more
  3945. * actively.
  3946. */
  3947. if (!balance)
  3948. break;
  3949. }
  3950. rcu_read_unlock();
  3951. /*
  3952. * next_balance will be updated only when there is a need.
  3953. * When the cpu is attached to null domain for ex, it will not be
  3954. * updated.
  3955. */
  3956. if (likely(update_next_balance))
  3957. rq->next_balance = next_balance;
  3958. }
  3959. #ifdef CONFIG_NO_HZ
  3960. /*
  3961. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  3962. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  3963. */
  3964. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  3965. {
  3966. struct rq *this_rq = cpu_rq(this_cpu);
  3967. struct rq *rq;
  3968. int balance_cpu;
  3969. if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
  3970. return;
  3971. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  3972. if (balance_cpu == this_cpu)
  3973. continue;
  3974. /*
  3975. * If this cpu gets work to do, stop the load balancing
  3976. * work being done for other cpus. Next load
  3977. * balancing owner will pick it up.
  3978. */
  3979. if (need_resched()) {
  3980. this_rq->nohz_balance_kick = 0;
  3981. break;
  3982. }
  3983. raw_spin_lock_irq(&this_rq->lock);
  3984. update_rq_clock(this_rq);
  3985. update_cpu_load(this_rq);
  3986. raw_spin_unlock_irq(&this_rq->lock);
  3987. rebalance_domains(balance_cpu, CPU_IDLE);
  3988. rq = cpu_rq(balance_cpu);
  3989. if (time_after(this_rq->next_balance, rq->next_balance))
  3990. this_rq->next_balance = rq->next_balance;
  3991. }
  3992. nohz.next_balance = this_rq->next_balance;
  3993. this_rq->nohz_balance_kick = 0;
  3994. }
  3995. /*
  3996. * Current heuristic for kicking the idle load balancer
  3997. * - first_pick_cpu is the one of the busy CPUs. It will kick
  3998. * idle load balancer when it has more than one process active. This
  3999. * eliminates the need for idle load balancing altogether when we have
  4000. * only one running process in the system (common case).
  4001. * - If there are more than one busy CPU, idle load balancer may have
  4002. * to run for active_load_balance to happen (i.e., two busy CPUs are
  4003. * SMT or core siblings and can run better if they move to different
  4004. * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
  4005. * which will kick idle load balancer as soon as it has any load.
  4006. */
  4007. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  4008. {
  4009. unsigned long now = jiffies;
  4010. int ret;
  4011. int first_pick_cpu, second_pick_cpu;
  4012. if (time_before(now, nohz.next_balance))
  4013. return 0;
  4014. if (idle_cpu(cpu))
  4015. return 0;
  4016. first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
  4017. second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
  4018. if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
  4019. second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
  4020. return 0;
  4021. ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
  4022. if (ret == nr_cpu_ids || ret == cpu) {
  4023. atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
  4024. if (rq->nr_running > 1)
  4025. return 1;
  4026. } else {
  4027. ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
  4028. if (ret == nr_cpu_ids || ret == cpu) {
  4029. if (rq->nr_running)
  4030. return 1;
  4031. }
  4032. }
  4033. return 0;
  4034. }
  4035. #else
  4036. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  4037. #endif
  4038. /*
  4039. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4040. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  4041. */
  4042. static void run_rebalance_domains(struct softirq_action *h)
  4043. {
  4044. int this_cpu = smp_processor_id();
  4045. struct rq *this_rq = cpu_rq(this_cpu);
  4046. enum cpu_idle_type idle = this_rq->idle_balance ?
  4047. CPU_IDLE : CPU_NOT_IDLE;
  4048. rebalance_domains(this_cpu, idle);
  4049. /*
  4050. * If this cpu has a pending nohz_balance_kick, then do the
  4051. * balancing on behalf of the other idle cpus whose ticks are
  4052. * stopped.
  4053. */
  4054. nohz_idle_balance(this_cpu, idle);
  4055. }
  4056. static inline int on_null_domain(int cpu)
  4057. {
  4058. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  4059. }
  4060. /*
  4061. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4062. */
  4063. static inline void trigger_load_balance(struct rq *rq, int cpu)
  4064. {
  4065. /* Don't need to rebalance while attached to NULL domain */
  4066. if (time_after_eq(jiffies, rq->next_balance) &&
  4067. likely(!on_null_domain(cpu)))
  4068. raise_softirq(SCHED_SOFTIRQ);
  4069. #ifdef CONFIG_NO_HZ
  4070. else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  4071. nohz_balancer_kick(cpu);
  4072. #endif
  4073. }
  4074. static void rq_online_fair(struct rq *rq)
  4075. {
  4076. update_sysctl();
  4077. }
  4078. static void rq_offline_fair(struct rq *rq)
  4079. {
  4080. update_sysctl();
  4081. }
  4082. #else /* CONFIG_SMP */
  4083. /*
  4084. * on UP we do not need to balance between CPUs:
  4085. */
  4086. static inline void idle_balance(int cpu, struct rq *rq)
  4087. {
  4088. }
  4089. #endif /* CONFIG_SMP */
  4090. /*
  4091. * scheduler tick hitting a task of our scheduling class:
  4092. */
  4093. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  4094. {
  4095. struct cfs_rq *cfs_rq;
  4096. struct sched_entity *se = &curr->se;
  4097. for_each_sched_entity(se) {
  4098. cfs_rq = cfs_rq_of(se);
  4099. entity_tick(cfs_rq, se, queued);
  4100. }
  4101. }
  4102. /*
  4103. * called on fork with the child task as argument from the parent's context
  4104. * - child not yet on the tasklist
  4105. * - preemption disabled
  4106. */
  4107. static void task_fork_fair(struct task_struct *p)
  4108. {
  4109. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  4110. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  4111. int this_cpu = smp_processor_id();
  4112. struct rq *rq = this_rq();
  4113. unsigned long flags;
  4114. raw_spin_lock_irqsave(&rq->lock, flags);
  4115. update_rq_clock(rq);
  4116. if (unlikely(task_cpu(p) != this_cpu)) {
  4117. rcu_read_lock();
  4118. __set_task_cpu(p, this_cpu);
  4119. rcu_read_unlock();
  4120. }
  4121. update_curr(cfs_rq);
  4122. if (curr)
  4123. se->vruntime = curr->vruntime;
  4124. place_entity(cfs_rq, se, 1);
  4125. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  4126. /*
  4127. * Upon rescheduling, sched_class::put_prev_task() will place
  4128. * 'current' within the tree based on its new key value.
  4129. */
  4130. swap(curr->vruntime, se->vruntime);
  4131. resched_task(rq->curr);
  4132. }
  4133. se->vruntime -= cfs_rq->min_vruntime;
  4134. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4135. }
  4136. /*
  4137. * Priority of the task has changed. Check to see if we preempt
  4138. * the current task.
  4139. */
  4140. static void
  4141. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  4142. {
  4143. if (!p->se.on_rq)
  4144. return;
  4145. /*
  4146. * Reschedule if we are currently running on this runqueue and
  4147. * our priority decreased, or if we are not currently running on
  4148. * this runqueue and our priority is higher than the current's
  4149. */
  4150. if (rq->curr == p) {
  4151. if (p->prio > oldprio)
  4152. resched_task(rq->curr);
  4153. } else
  4154. check_preempt_curr(rq, p, 0);
  4155. }
  4156. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  4157. {
  4158. struct sched_entity *se = &p->se;
  4159. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4160. /*
  4161. * Ensure the task's vruntime is normalized, so that when its
  4162. * switched back to the fair class the enqueue_entity(.flags=0) will
  4163. * do the right thing.
  4164. *
  4165. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  4166. * have normalized the vruntime, if it was !on_rq, then only when
  4167. * the task is sleeping will it still have non-normalized vruntime.
  4168. */
  4169. if (!se->on_rq && p->state != TASK_RUNNING) {
  4170. /*
  4171. * Fix up our vruntime so that the current sleep doesn't
  4172. * cause 'unlimited' sleep bonus.
  4173. */
  4174. place_entity(cfs_rq, se, 0);
  4175. se->vruntime -= cfs_rq->min_vruntime;
  4176. }
  4177. }
  4178. /*
  4179. * We switched to the sched_fair class.
  4180. */
  4181. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  4182. {
  4183. if (!p->se.on_rq)
  4184. return;
  4185. /*
  4186. * We were most likely switched from sched_rt, so
  4187. * kick off the schedule if running, otherwise just see
  4188. * if we can still preempt the current task.
  4189. */
  4190. if (rq->curr == p)
  4191. resched_task(rq->curr);
  4192. else
  4193. check_preempt_curr(rq, p, 0);
  4194. }
  4195. /* Account for a task changing its policy or group.
  4196. *
  4197. * This routine is mostly called to set cfs_rq->curr field when a task
  4198. * migrates between groups/classes.
  4199. */
  4200. static void set_curr_task_fair(struct rq *rq)
  4201. {
  4202. struct sched_entity *se = &rq->curr->se;
  4203. for_each_sched_entity(se) {
  4204. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4205. set_next_entity(cfs_rq, se);
  4206. /* ensure bandwidth has been allocated on our new cfs_rq */
  4207. account_cfs_rq_runtime(cfs_rq, 0);
  4208. }
  4209. }
  4210. #ifdef CONFIG_FAIR_GROUP_SCHED
  4211. static void task_move_group_fair(struct task_struct *p, int on_rq)
  4212. {
  4213. /*
  4214. * If the task was not on the rq at the time of this cgroup movement
  4215. * it must have been asleep, sleeping tasks keep their ->vruntime
  4216. * absolute on their old rq until wakeup (needed for the fair sleeper
  4217. * bonus in place_entity()).
  4218. *
  4219. * If it was on the rq, we've just 'preempted' it, which does convert
  4220. * ->vruntime to a relative base.
  4221. *
  4222. * Make sure both cases convert their relative position when migrating
  4223. * to another cgroup's rq. This does somewhat interfere with the
  4224. * fair sleeper stuff for the first placement, but who cares.
  4225. */
  4226. if (!on_rq)
  4227. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  4228. set_task_rq(p, task_cpu(p));
  4229. if (!on_rq)
  4230. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  4231. }
  4232. #endif
  4233. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  4234. {
  4235. struct sched_entity *se = &task->se;
  4236. unsigned int rr_interval = 0;
  4237. /*
  4238. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  4239. * idle runqueue:
  4240. */
  4241. if (rq->cfs.load.weight)
  4242. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4243. return rr_interval;
  4244. }
  4245. /*
  4246. * All the scheduling class methods:
  4247. */
  4248. static const struct sched_class fair_sched_class = {
  4249. .next = &idle_sched_class,
  4250. .enqueue_task = enqueue_task_fair,
  4251. .dequeue_task = dequeue_task_fair,
  4252. .yield_task = yield_task_fair,
  4253. .yield_to_task = yield_to_task_fair,
  4254. .check_preempt_curr = check_preempt_wakeup,
  4255. .pick_next_task = pick_next_task_fair,
  4256. .put_prev_task = put_prev_task_fair,
  4257. #ifdef CONFIG_SMP
  4258. .select_task_rq = select_task_rq_fair,
  4259. .rq_online = rq_online_fair,
  4260. .rq_offline = rq_offline_fair,
  4261. .task_waking = task_waking_fair,
  4262. #endif
  4263. .set_curr_task = set_curr_task_fair,
  4264. .task_tick = task_tick_fair,
  4265. .task_fork = task_fork_fair,
  4266. .prio_changed = prio_changed_fair,
  4267. .switched_from = switched_from_fair,
  4268. .switched_to = switched_to_fair,
  4269. .get_rr_interval = get_rr_interval_fair,
  4270. #ifdef CONFIG_FAIR_GROUP_SCHED
  4271. .task_move_group = task_move_group_fair,
  4272. #endif
  4273. };
  4274. #ifdef CONFIG_SCHED_DEBUG
  4275. static void print_cfs_stats(struct seq_file *m, int cpu)
  4276. {
  4277. struct cfs_rq *cfs_rq;
  4278. rcu_read_lock();
  4279. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  4280. print_cfs_rq(m, cpu, cfs_rq);
  4281. rcu_read_unlock();
  4282. }
  4283. #endif