task_mmu.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115
  1. #include <linux/mm.h>
  2. #include <linux/hugetlb.h>
  3. #include <linux/huge_mm.h>
  4. #include <linux/mount.h>
  5. #include <linux/seq_file.h>
  6. #include <linux/highmem.h>
  7. #include <linux/ptrace.h>
  8. #include <linux/slab.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/mempolicy.h>
  11. #include <linux/rmap.h>
  12. #include <linux/swap.h>
  13. #include <linux/swapops.h>
  14. #include <asm/elf.h>
  15. #include <asm/uaccess.h>
  16. #include <asm/tlbflush.h>
  17. #include "internal.h"
  18. void task_mem(struct seq_file *m, struct mm_struct *mm)
  19. {
  20. unsigned long data, text, lib, swap;
  21. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  22. /*
  23. * Note: to minimize their overhead, mm maintains hiwater_vm and
  24. * hiwater_rss only when about to *lower* total_vm or rss. Any
  25. * collector of these hiwater stats must therefore get total_vm
  26. * and rss too, which will usually be the higher. Barriers? not
  27. * worth the effort, such snapshots can always be inconsistent.
  28. */
  29. hiwater_vm = total_vm = mm->total_vm;
  30. if (hiwater_vm < mm->hiwater_vm)
  31. hiwater_vm = mm->hiwater_vm;
  32. hiwater_rss = total_rss = get_mm_rss(mm);
  33. if (hiwater_rss < mm->hiwater_rss)
  34. hiwater_rss = mm->hiwater_rss;
  35. data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  36. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  37. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  38. swap = get_mm_counter(mm, MM_SWAPENTS);
  39. seq_printf(m,
  40. "VmPeak:\t%8lu kB\n"
  41. "VmSize:\t%8lu kB\n"
  42. "VmLck:\t%8lu kB\n"
  43. "VmPin:\t%8lu kB\n"
  44. "VmHWM:\t%8lu kB\n"
  45. "VmRSS:\t%8lu kB\n"
  46. "VmData:\t%8lu kB\n"
  47. "VmStk:\t%8lu kB\n"
  48. "VmExe:\t%8lu kB\n"
  49. "VmLib:\t%8lu kB\n"
  50. "VmPTE:\t%8lu kB\n"
  51. "VmSwap:\t%8lu kB\n",
  52. hiwater_vm << (PAGE_SHIFT-10),
  53. (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
  54. mm->locked_vm << (PAGE_SHIFT-10),
  55. mm->pinned_vm << (PAGE_SHIFT-10),
  56. hiwater_rss << (PAGE_SHIFT-10),
  57. total_rss << (PAGE_SHIFT-10),
  58. data << (PAGE_SHIFT-10),
  59. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  60. (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
  61. swap << (PAGE_SHIFT-10));
  62. }
  63. unsigned long task_vsize(struct mm_struct *mm)
  64. {
  65. return PAGE_SIZE * mm->total_vm;
  66. }
  67. unsigned long task_statm(struct mm_struct *mm,
  68. unsigned long *shared, unsigned long *text,
  69. unsigned long *data, unsigned long *resident)
  70. {
  71. *shared = get_mm_counter(mm, MM_FILEPAGES);
  72. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  73. >> PAGE_SHIFT;
  74. *data = mm->total_vm - mm->shared_vm;
  75. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  76. return mm->total_vm;
  77. }
  78. static void pad_len_spaces(struct seq_file *m, int len)
  79. {
  80. len = 25 + sizeof(void*) * 6 - len;
  81. if (len < 1)
  82. len = 1;
  83. seq_printf(m, "%*c", len, ' ');
  84. }
  85. static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
  86. {
  87. if (vma && vma != priv->tail_vma) {
  88. struct mm_struct *mm = vma->vm_mm;
  89. up_read(&mm->mmap_sem);
  90. mmput(mm);
  91. }
  92. }
  93. static void *m_start(struct seq_file *m, loff_t *pos)
  94. {
  95. struct proc_maps_private *priv = m->private;
  96. unsigned long last_addr = m->version;
  97. struct mm_struct *mm;
  98. struct vm_area_struct *vma, *tail_vma = NULL;
  99. loff_t l = *pos;
  100. /* Clear the per syscall fields in priv */
  101. priv->task = NULL;
  102. priv->tail_vma = NULL;
  103. /*
  104. * We remember last_addr rather than next_addr to hit with
  105. * mmap_cache most of the time. We have zero last_addr at
  106. * the beginning and also after lseek. We will have -1 last_addr
  107. * after the end of the vmas.
  108. */
  109. if (last_addr == -1UL)
  110. return NULL;
  111. priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
  112. if (!priv->task)
  113. return ERR_PTR(-ESRCH);
  114. mm = mm_for_maps(priv->task);
  115. if (!mm || IS_ERR(mm))
  116. return mm;
  117. down_read(&mm->mmap_sem);
  118. tail_vma = get_gate_vma(priv->task->mm);
  119. priv->tail_vma = tail_vma;
  120. /* Start with last addr hint */
  121. vma = find_vma(mm, last_addr);
  122. if (last_addr && vma) {
  123. vma = vma->vm_next;
  124. goto out;
  125. }
  126. /*
  127. * Check the vma index is within the range and do
  128. * sequential scan until m_index.
  129. */
  130. vma = NULL;
  131. if ((unsigned long)l < mm->map_count) {
  132. vma = mm->mmap;
  133. while (l-- && vma)
  134. vma = vma->vm_next;
  135. goto out;
  136. }
  137. if (l != mm->map_count)
  138. tail_vma = NULL; /* After gate vma */
  139. out:
  140. if (vma)
  141. return vma;
  142. /* End of vmas has been reached */
  143. m->version = (tail_vma != NULL)? 0: -1UL;
  144. up_read(&mm->mmap_sem);
  145. mmput(mm);
  146. return tail_vma;
  147. }
  148. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  149. {
  150. struct proc_maps_private *priv = m->private;
  151. struct vm_area_struct *vma = v;
  152. struct vm_area_struct *tail_vma = priv->tail_vma;
  153. (*pos)++;
  154. if (vma && (vma != tail_vma) && vma->vm_next)
  155. return vma->vm_next;
  156. vma_stop(priv, vma);
  157. return (vma != tail_vma)? tail_vma: NULL;
  158. }
  159. static void m_stop(struct seq_file *m, void *v)
  160. {
  161. struct proc_maps_private *priv = m->private;
  162. struct vm_area_struct *vma = v;
  163. if (!IS_ERR(vma))
  164. vma_stop(priv, vma);
  165. if (priv->task)
  166. put_task_struct(priv->task);
  167. }
  168. static int do_maps_open(struct inode *inode, struct file *file,
  169. const struct seq_operations *ops)
  170. {
  171. struct proc_maps_private *priv;
  172. int ret = -ENOMEM;
  173. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  174. if (priv) {
  175. priv->pid = proc_pid(inode);
  176. ret = seq_open(file, ops);
  177. if (!ret) {
  178. struct seq_file *m = file->private_data;
  179. m->private = priv;
  180. } else {
  181. kfree(priv);
  182. }
  183. }
  184. return ret;
  185. }
  186. static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
  187. {
  188. struct mm_struct *mm = vma->vm_mm;
  189. struct file *file = vma->vm_file;
  190. vm_flags_t flags = vma->vm_flags;
  191. unsigned long ino = 0;
  192. unsigned long long pgoff = 0;
  193. unsigned long start, end;
  194. dev_t dev = 0;
  195. int len;
  196. if (file) {
  197. struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
  198. dev = inode->i_sb->s_dev;
  199. ino = inode->i_ino;
  200. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  201. }
  202. /* We don't show the stack guard page in /proc/maps */
  203. start = vma->vm_start;
  204. if (stack_guard_page_start(vma, start))
  205. start += PAGE_SIZE;
  206. end = vma->vm_end;
  207. if (stack_guard_page_end(vma, end))
  208. end -= PAGE_SIZE;
  209. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
  210. start,
  211. end,
  212. flags & VM_READ ? 'r' : '-',
  213. flags & VM_WRITE ? 'w' : '-',
  214. flags & VM_EXEC ? 'x' : '-',
  215. flags & VM_MAYSHARE ? 's' : 'p',
  216. pgoff,
  217. MAJOR(dev), MINOR(dev), ino, &len);
  218. /*
  219. * Print the dentry name for named mappings, and a
  220. * special [heap] marker for the heap:
  221. */
  222. if (file) {
  223. pad_len_spaces(m, len);
  224. seq_path(m, &file->f_path, "\n");
  225. } else {
  226. const char *name = arch_vma_name(vma);
  227. if (!name) {
  228. if (mm) {
  229. if (vma->vm_start <= mm->brk &&
  230. vma->vm_end >= mm->start_brk) {
  231. name = "[heap]";
  232. } else if (vma->vm_start <= mm->start_stack &&
  233. vma->vm_end >= mm->start_stack) {
  234. name = "[stack]";
  235. }
  236. } else {
  237. name = "[vdso]";
  238. }
  239. }
  240. if (name) {
  241. pad_len_spaces(m, len);
  242. seq_puts(m, name);
  243. }
  244. }
  245. seq_putc(m, '\n');
  246. }
  247. static int show_map(struct seq_file *m, void *v)
  248. {
  249. struct vm_area_struct *vma = v;
  250. struct proc_maps_private *priv = m->private;
  251. struct task_struct *task = priv->task;
  252. show_map_vma(m, vma);
  253. if (m->count < m->size) /* vma is copied successfully */
  254. m->version = (vma != get_gate_vma(task->mm))
  255. ? vma->vm_start : 0;
  256. return 0;
  257. }
  258. static const struct seq_operations proc_pid_maps_op = {
  259. .start = m_start,
  260. .next = m_next,
  261. .stop = m_stop,
  262. .show = show_map
  263. };
  264. static int maps_open(struct inode *inode, struct file *file)
  265. {
  266. return do_maps_open(inode, file, &proc_pid_maps_op);
  267. }
  268. const struct file_operations proc_maps_operations = {
  269. .open = maps_open,
  270. .read = seq_read,
  271. .llseek = seq_lseek,
  272. .release = seq_release_private,
  273. };
  274. /*
  275. * Proportional Set Size(PSS): my share of RSS.
  276. *
  277. * PSS of a process is the count of pages it has in memory, where each
  278. * page is divided by the number of processes sharing it. So if a
  279. * process has 1000 pages all to itself, and 1000 shared with one other
  280. * process, its PSS will be 1500.
  281. *
  282. * To keep (accumulated) division errors low, we adopt a 64bit
  283. * fixed-point pss counter to minimize division errors. So (pss >>
  284. * PSS_SHIFT) would be the real byte count.
  285. *
  286. * A shift of 12 before division means (assuming 4K page size):
  287. * - 1M 3-user-pages add up to 8KB errors;
  288. * - supports mapcount up to 2^24, or 16M;
  289. * - supports PSS up to 2^52 bytes, or 4PB.
  290. */
  291. #define PSS_SHIFT 12
  292. #ifdef CONFIG_PROC_PAGE_MONITOR
  293. struct mem_size_stats {
  294. struct vm_area_struct *vma;
  295. unsigned long resident;
  296. unsigned long shared_clean;
  297. unsigned long shared_dirty;
  298. unsigned long private_clean;
  299. unsigned long private_dirty;
  300. unsigned long referenced;
  301. unsigned long anonymous;
  302. unsigned long anonymous_thp;
  303. unsigned long swap;
  304. u64 pss;
  305. };
  306. static void smaps_pte_entry(pte_t ptent, unsigned long addr,
  307. unsigned long ptent_size, struct mm_walk *walk)
  308. {
  309. struct mem_size_stats *mss = walk->private;
  310. struct vm_area_struct *vma = mss->vma;
  311. struct page *page;
  312. int mapcount;
  313. if (is_swap_pte(ptent)) {
  314. mss->swap += ptent_size;
  315. return;
  316. }
  317. if (!pte_present(ptent))
  318. return;
  319. page = vm_normal_page(vma, addr, ptent);
  320. if (!page)
  321. return;
  322. if (PageAnon(page))
  323. mss->anonymous += ptent_size;
  324. mss->resident += ptent_size;
  325. /* Accumulate the size in pages that have been accessed. */
  326. if (pte_young(ptent) || PageReferenced(page))
  327. mss->referenced += ptent_size;
  328. mapcount = page_mapcount(page);
  329. if (mapcount >= 2) {
  330. if (pte_dirty(ptent) || PageDirty(page))
  331. mss->shared_dirty += ptent_size;
  332. else
  333. mss->shared_clean += ptent_size;
  334. mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
  335. } else {
  336. if (pte_dirty(ptent) || PageDirty(page))
  337. mss->private_dirty += ptent_size;
  338. else
  339. mss->private_clean += ptent_size;
  340. mss->pss += (ptent_size << PSS_SHIFT);
  341. }
  342. }
  343. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  344. struct mm_walk *walk)
  345. {
  346. struct mem_size_stats *mss = walk->private;
  347. struct vm_area_struct *vma = mss->vma;
  348. pte_t *pte;
  349. spinlock_t *ptl;
  350. spin_lock(&walk->mm->page_table_lock);
  351. if (pmd_trans_huge(*pmd)) {
  352. if (pmd_trans_splitting(*pmd)) {
  353. spin_unlock(&walk->mm->page_table_lock);
  354. wait_split_huge_page(vma->anon_vma, pmd);
  355. } else {
  356. smaps_pte_entry(*(pte_t *)pmd, addr,
  357. HPAGE_PMD_SIZE, walk);
  358. spin_unlock(&walk->mm->page_table_lock);
  359. mss->anonymous_thp += HPAGE_PMD_SIZE;
  360. return 0;
  361. }
  362. } else {
  363. spin_unlock(&walk->mm->page_table_lock);
  364. }
  365. /*
  366. * The mmap_sem held all the way back in m_start() is what
  367. * keeps khugepaged out of here and from collapsing things
  368. * in here.
  369. */
  370. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  371. for (; addr != end; pte++, addr += PAGE_SIZE)
  372. smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
  373. pte_unmap_unlock(pte - 1, ptl);
  374. cond_resched();
  375. return 0;
  376. }
  377. static int show_smap(struct seq_file *m, void *v)
  378. {
  379. struct proc_maps_private *priv = m->private;
  380. struct task_struct *task = priv->task;
  381. struct vm_area_struct *vma = v;
  382. struct mem_size_stats mss;
  383. struct mm_walk smaps_walk = {
  384. .pmd_entry = smaps_pte_range,
  385. .mm = vma->vm_mm,
  386. .private = &mss,
  387. };
  388. memset(&mss, 0, sizeof mss);
  389. mss.vma = vma;
  390. /* mmap_sem is held in m_start */
  391. if (vma->vm_mm && !is_vm_hugetlb_page(vma))
  392. walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
  393. show_map_vma(m, vma);
  394. seq_printf(m,
  395. "Size: %8lu kB\n"
  396. "Rss: %8lu kB\n"
  397. "Pss: %8lu kB\n"
  398. "Shared_Clean: %8lu kB\n"
  399. "Shared_Dirty: %8lu kB\n"
  400. "Private_Clean: %8lu kB\n"
  401. "Private_Dirty: %8lu kB\n"
  402. "Referenced: %8lu kB\n"
  403. "Anonymous: %8lu kB\n"
  404. "AnonHugePages: %8lu kB\n"
  405. "Swap: %8lu kB\n"
  406. "KernelPageSize: %8lu kB\n"
  407. "MMUPageSize: %8lu kB\n"
  408. "Locked: %8lu kB\n",
  409. (vma->vm_end - vma->vm_start) >> 10,
  410. mss.resident >> 10,
  411. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  412. mss.shared_clean >> 10,
  413. mss.shared_dirty >> 10,
  414. mss.private_clean >> 10,
  415. mss.private_dirty >> 10,
  416. mss.referenced >> 10,
  417. mss.anonymous >> 10,
  418. mss.anonymous_thp >> 10,
  419. mss.swap >> 10,
  420. vma_kernel_pagesize(vma) >> 10,
  421. vma_mmu_pagesize(vma) >> 10,
  422. (vma->vm_flags & VM_LOCKED) ?
  423. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
  424. if (m->count < m->size) /* vma is copied successfully */
  425. m->version = (vma != get_gate_vma(task->mm))
  426. ? vma->vm_start : 0;
  427. return 0;
  428. }
  429. static const struct seq_operations proc_pid_smaps_op = {
  430. .start = m_start,
  431. .next = m_next,
  432. .stop = m_stop,
  433. .show = show_smap
  434. };
  435. static int smaps_open(struct inode *inode, struct file *file)
  436. {
  437. return do_maps_open(inode, file, &proc_pid_smaps_op);
  438. }
  439. const struct file_operations proc_smaps_operations = {
  440. .open = smaps_open,
  441. .read = seq_read,
  442. .llseek = seq_lseek,
  443. .release = seq_release_private,
  444. };
  445. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  446. unsigned long end, struct mm_walk *walk)
  447. {
  448. struct vm_area_struct *vma = walk->private;
  449. pte_t *pte, ptent;
  450. spinlock_t *ptl;
  451. struct page *page;
  452. split_huge_page_pmd(walk->mm, pmd);
  453. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  454. for (; addr != end; pte++, addr += PAGE_SIZE) {
  455. ptent = *pte;
  456. if (!pte_present(ptent))
  457. continue;
  458. page = vm_normal_page(vma, addr, ptent);
  459. if (!page)
  460. continue;
  461. /* Clear accessed and referenced bits. */
  462. ptep_test_and_clear_young(vma, addr, pte);
  463. ClearPageReferenced(page);
  464. }
  465. pte_unmap_unlock(pte - 1, ptl);
  466. cond_resched();
  467. return 0;
  468. }
  469. #define CLEAR_REFS_ALL 1
  470. #define CLEAR_REFS_ANON 2
  471. #define CLEAR_REFS_MAPPED 3
  472. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  473. size_t count, loff_t *ppos)
  474. {
  475. struct task_struct *task;
  476. char buffer[PROC_NUMBUF];
  477. struct mm_struct *mm;
  478. struct vm_area_struct *vma;
  479. int type;
  480. int rv;
  481. memset(buffer, 0, sizeof(buffer));
  482. if (count > sizeof(buffer) - 1)
  483. count = sizeof(buffer) - 1;
  484. if (copy_from_user(buffer, buf, count))
  485. return -EFAULT;
  486. rv = kstrtoint(strstrip(buffer), 10, &type);
  487. if (rv < 0)
  488. return rv;
  489. if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
  490. return -EINVAL;
  491. task = get_proc_task(file->f_path.dentry->d_inode);
  492. if (!task)
  493. return -ESRCH;
  494. mm = get_task_mm(task);
  495. if (mm) {
  496. struct mm_walk clear_refs_walk = {
  497. .pmd_entry = clear_refs_pte_range,
  498. .mm = mm,
  499. };
  500. down_read(&mm->mmap_sem);
  501. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  502. clear_refs_walk.private = vma;
  503. if (is_vm_hugetlb_page(vma))
  504. continue;
  505. /*
  506. * Writing 1 to /proc/pid/clear_refs affects all pages.
  507. *
  508. * Writing 2 to /proc/pid/clear_refs only affects
  509. * Anonymous pages.
  510. *
  511. * Writing 3 to /proc/pid/clear_refs only affects file
  512. * mapped pages.
  513. */
  514. if (type == CLEAR_REFS_ANON && vma->vm_file)
  515. continue;
  516. if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
  517. continue;
  518. walk_page_range(vma->vm_start, vma->vm_end,
  519. &clear_refs_walk);
  520. }
  521. flush_tlb_mm(mm);
  522. up_read(&mm->mmap_sem);
  523. mmput(mm);
  524. }
  525. put_task_struct(task);
  526. return count;
  527. }
  528. const struct file_operations proc_clear_refs_operations = {
  529. .write = clear_refs_write,
  530. .llseek = noop_llseek,
  531. };
  532. struct pagemapread {
  533. int pos, len;
  534. u64 *buffer;
  535. };
  536. #define PM_ENTRY_BYTES sizeof(u64)
  537. #define PM_STATUS_BITS 3
  538. #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
  539. #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
  540. #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
  541. #define PM_PSHIFT_BITS 6
  542. #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
  543. #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
  544. #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
  545. #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
  546. #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
  547. #define PM_PRESENT PM_STATUS(4LL)
  548. #define PM_SWAP PM_STATUS(2LL)
  549. #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
  550. #define PM_END_OF_BUFFER 1
  551. static int add_to_pagemap(unsigned long addr, u64 pfn,
  552. struct pagemapread *pm)
  553. {
  554. pm->buffer[pm->pos++] = pfn;
  555. if (pm->pos >= pm->len)
  556. return PM_END_OF_BUFFER;
  557. return 0;
  558. }
  559. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  560. struct mm_walk *walk)
  561. {
  562. struct pagemapread *pm = walk->private;
  563. unsigned long addr;
  564. int err = 0;
  565. for (addr = start; addr < end; addr += PAGE_SIZE) {
  566. err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
  567. if (err)
  568. break;
  569. }
  570. return err;
  571. }
  572. static u64 swap_pte_to_pagemap_entry(pte_t pte)
  573. {
  574. swp_entry_t e = pte_to_swp_entry(pte);
  575. return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
  576. }
  577. static u64 pte_to_pagemap_entry(pte_t pte)
  578. {
  579. u64 pme = 0;
  580. if (is_swap_pte(pte))
  581. pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
  582. | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
  583. else if (pte_present(pte))
  584. pme = PM_PFRAME(pte_pfn(pte))
  585. | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
  586. return pme;
  587. }
  588. static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  589. struct mm_walk *walk)
  590. {
  591. struct vm_area_struct *vma;
  592. struct pagemapread *pm = walk->private;
  593. pte_t *pte;
  594. int err = 0;
  595. split_huge_page_pmd(walk->mm, pmd);
  596. /* find the first VMA at or above 'addr' */
  597. vma = find_vma(walk->mm, addr);
  598. for (; addr != end; addr += PAGE_SIZE) {
  599. u64 pfn = PM_NOT_PRESENT;
  600. /* check to see if we've left 'vma' behind
  601. * and need a new, higher one */
  602. if (vma && (addr >= vma->vm_end))
  603. vma = find_vma(walk->mm, addr);
  604. /* check that 'vma' actually covers this address,
  605. * and that it isn't a huge page vma */
  606. if (vma && (vma->vm_start <= addr) &&
  607. !is_vm_hugetlb_page(vma)) {
  608. pte = pte_offset_map(pmd, addr);
  609. pfn = pte_to_pagemap_entry(*pte);
  610. /* unmap before userspace copy */
  611. pte_unmap(pte);
  612. }
  613. err = add_to_pagemap(addr, pfn, pm);
  614. if (err)
  615. return err;
  616. }
  617. cond_resched();
  618. return err;
  619. }
  620. #ifdef CONFIG_HUGETLB_PAGE
  621. static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
  622. {
  623. u64 pme = 0;
  624. if (pte_present(pte))
  625. pme = PM_PFRAME(pte_pfn(pte) + offset)
  626. | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
  627. return pme;
  628. }
  629. /* This function walks within one hugetlb entry in the single call */
  630. static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
  631. unsigned long addr, unsigned long end,
  632. struct mm_walk *walk)
  633. {
  634. struct pagemapread *pm = walk->private;
  635. int err = 0;
  636. u64 pfn;
  637. for (; addr != end; addr += PAGE_SIZE) {
  638. int offset = (addr & ~hmask) >> PAGE_SHIFT;
  639. pfn = huge_pte_to_pagemap_entry(*pte, offset);
  640. err = add_to_pagemap(addr, pfn, pm);
  641. if (err)
  642. return err;
  643. }
  644. cond_resched();
  645. return err;
  646. }
  647. #endif /* HUGETLB_PAGE */
  648. /*
  649. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  650. *
  651. * For each page in the address space, this file contains one 64-bit entry
  652. * consisting of the following:
  653. *
  654. * Bits 0-55 page frame number (PFN) if present
  655. * Bits 0-4 swap type if swapped
  656. * Bits 5-55 swap offset if swapped
  657. * Bits 55-60 page shift (page size = 1<<page shift)
  658. * Bit 61 reserved for future use
  659. * Bit 62 page swapped
  660. * Bit 63 page present
  661. *
  662. * If the page is not present but in swap, then the PFN contains an
  663. * encoding of the swap file number and the page's offset into the
  664. * swap. Unmapped pages return a null PFN. This allows determining
  665. * precisely which pages are mapped (or in swap) and comparing mapped
  666. * pages between processes.
  667. *
  668. * Efficient users of this interface will use /proc/pid/maps to
  669. * determine which areas of memory are actually mapped and llseek to
  670. * skip over unmapped regions.
  671. */
  672. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  673. #define PAGEMAP_WALK_MASK (PMD_MASK)
  674. static ssize_t pagemap_read(struct file *file, char __user *buf,
  675. size_t count, loff_t *ppos)
  676. {
  677. struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
  678. struct mm_struct *mm;
  679. struct pagemapread pm;
  680. int ret = -ESRCH;
  681. struct mm_walk pagemap_walk = {};
  682. unsigned long src;
  683. unsigned long svpfn;
  684. unsigned long start_vaddr;
  685. unsigned long end_vaddr;
  686. int copied = 0;
  687. if (!task)
  688. goto out;
  689. ret = -EINVAL;
  690. /* file position must be aligned */
  691. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  692. goto out_task;
  693. ret = 0;
  694. if (!count)
  695. goto out_task;
  696. pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  697. pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
  698. ret = -ENOMEM;
  699. if (!pm.buffer)
  700. goto out_task;
  701. mm = mm_for_maps(task);
  702. ret = PTR_ERR(mm);
  703. if (!mm || IS_ERR(mm))
  704. goto out_free;
  705. pagemap_walk.pmd_entry = pagemap_pte_range;
  706. pagemap_walk.pte_hole = pagemap_pte_hole;
  707. #ifdef CONFIG_HUGETLB_PAGE
  708. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  709. #endif
  710. pagemap_walk.mm = mm;
  711. pagemap_walk.private = &pm;
  712. src = *ppos;
  713. svpfn = src / PM_ENTRY_BYTES;
  714. start_vaddr = svpfn << PAGE_SHIFT;
  715. end_vaddr = TASK_SIZE_OF(task);
  716. /* watch out for wraparound */
  717. if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
  718. start_vaddr = end_vaddr;
  719. /*
  720. * The odds are that this will stop walking way
  721. * before end_vaddr, because the length of the
  722. * user buffer is tracked in "pm", and the walk
  723. * will stop when we hit the end of the buffer.
  724. */
  725. ret = 0;
  726. while (count && (start_vaddr < end_vaddr)) {
  727. int len;
  728. unsigned long end;
  729. pm.pos = 0;
  730. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  731. /* overflow ? */
  732. if (end < start_vaddr || end > end_vaddr)
  733. end = end_vaddr;
  734. down_read(&mm->mmap_sem);
  735. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  736. up_read(&mm->mmap_sem);
  737. start_vaddr = end;
  738. len = min(count, PM_ENTRY_BYTES * pm.pos);
  739. if (copy_to_user(buf, pm.buffer, len)) {
  740. ret = -EFAULT;
  741. goto out_mm;
  742. }
  743. copied += len;
  744. buf += len;
  745. count -= len;
  746. }
  747. *ppos += copied;
  748. if (!ret || ret == PM_END_OF_BUFFER)
  749. ret = copied;
  750. out_mm:
  751. mmput(mm);
  752. out_free:
  753. kfree(pm.buffer);
  754. out_task:
  755. put_task_struct(task);
  756. out:
  757. return ret;
  758. }
  759. const struct file_operations proc_pagemap_operations = {
  760. .llseek = mem_lseek, /* borrow this */
  761. .read = pagemap_read,
  762. };
  763. #endif /* CONFIG_PROC_PAGE_MONITOR */
  764. #ifdef CONFIG_NUMA
  765. struct numa_maps {
  766. struct vm_area_struct *vma;
  767. unsigned long pages;
  768. unsigned long anon;
  769. unsigned long active;
  770. unsigned long writeback;
  771. unsigned long mapcount_max;
  772. unsigned long dirty;
  773. unsigned long swapcache;
  774. unsigned long node[MAX_NUMNODES];
  775. };
  776. struct numa_maps_private {
  777. struct proc_maps_private proc_maps;
  778. struct numa_maps md;
  779. };
  780. static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
  781. unsigned long nr_pages)
  782. {
  783. int count = page_mapcount(page);
  784. md->pages += nr_pages;
  785. if (pte_dirty || PageDirty(page))
  786. md->dirty += nr_pages;
  787. if (PageSwapCache(page))
  788. md->swapcache += nr_pages;
  789. if (PageActive(page) || PageUnevictable(page))
  790. md->active += nr_pages;
  791. if (PageWriteback(page))
  792. md->writeback += nr_pages;
  793. if (PageAnon(page))
  794. md->anon += nr_pages;
  795. if (count > md->mapcount_max)
  796. md->mapcount_max = count;
  797. md->node[page_to_nid(page)] += nr_pages;
  798. }
  799. static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
  800. unsigned long addr)
  801. {
  802. struct page *page;
  803. int nid;
  804. if (!pte_present(pte))
  805. return NULL;
  806. page = vm_normal_page(vma, addr, pte);
  807. if (!page)
  808. return NULL;
  809. if (PageReserved(page))
  810. return NULL;
  811. nid = page_to_nid(page);
  812. if (!node_isset(nid, node_states[N_HIGH_MEMORY]))
  813. return NULL;
  814. return page;
  815. }
  816. static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
  817. unsigned long end, struct mm_walk *walk)
  818. {
  819. struct numa_maps *md;
  820. spinlock_t *ptl;
  821. pte_t *orig_pte;
  822. pte_t *pte;
  823. md = walk->private;
  824. spin_lock(&walk->mm->page_table_lock);
  825. if (pmd_trans_huge(*pmd)) {
  826. if (pmd_trans_splitting(*pmd)) {
  827. spin_unlock(&walk->mm->page_table_lock);
  828. wait_split_huge_page(md->vma->anon_vma, pmd);
  829. } else {
  830. pte_t huge_pte = *(pte_t *)pmd;
  831. struct page *page;
  832. page = can_gather_numa_stats(huge_pte, md->vma, addr);
  833. if (page)
  834. gather_stats(page, md, pte_dirty(huge_pte),
  835. HPAGE_PMD_SIZE/PAGE_SIZE);
  836. spin_unlock(&walk->mm->page_table_lock);
  837. return 0;
  838. }
  839. } else {
  840. spin_unlock(&walk->mm->page_table_lock);
  841. }
  842. orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
  843. do {
  844. struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
  845. if (!page)
  846. continue;
  847. gather_stats(page, md, pte_dirty(*pte), 1);
  848. } while (pte++, addr += PAGE_SIZE, addr != end);
  849. pte_unmap_unlock(orig_pte, ptl);
  850. return 0;
  851. }
  852. #ifdef CONFIG_HUGETLB_PAGE
  853. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  854. unsigned long addr, unsigned long end, struct mm_walk *walk)
  855. {
  856. struct numa_maps *md;
  857. struct page *page;
  858. if (pte_none(*pte))
  859. return 0;
  860. page = pte_page(*pte);
  861. if (!page)
  862. return 0;
  863. md = walk->private;
  864. gather_stats(page, md, pte_dirty(*pte), 1);
  865. return 0;
  866. }
  867. #else
  868. static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
  869. unsigned long addr, unsigned long end, struct mm_walk *walk)
  870. {
  871. return 0;
  872. }
  873. #endif
  874. /*
  875. * Display pages allocated per node and memory policy via /proc.
  876. */
  877. static int show_numa_map(struct seq_file *m, void *v)
  878. {
  879. struct numa_maps_private *numa_priv = m->private;
  880. struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
  881. struct vm_area_struct *vma = v;
  882. struct numa_maps *md = &numa_priv->md;
  883. struct file *file = vma->vm_file;
  884. struct mm_struct *mm = vma->vm_mm;
  885. struct mm_walk walk = {};
  886. struct mempolicy *pol;
  887. int n;
  888. char buffer[50];
  889. if (!mm)
  890. return 0;
  891. /* Ensure we start with an empty set of numa_maps statistics. */
  892. memset(md, 0, sizeof(*md));
  893. md->vma = vma;
  894. walk.hugetlb_entry = gather_hugetbl_stats;
  895. walk.pmd_entry = gather_pte_stats;
  896. walk.private = md;
  897. walk.mm = mm;
  898. pol = get_vma_policy(proc_priv->task, vma, vma->vm_start);
  899. mpol_to_str(buffer, sizeof(buffer), pol, 0);
  900. mpol_cond_put(pol);
  901. seq_printf(m, "%08lx %s", vma->vm_start, buffer);
  902. if (file) {
  903. seq_printf(m, " file=");
  904. seq_path(m, &file->f_path, "\n\t= ");
  905. } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
  906. seq_printf(m, " heap");
  907. } else if (vma->vm_start <= mm->start_stack &&
  908. vma->vm_end >= mm->start_stack) {
  909. seq_printf(m, " stack");
  910. }
  911. if (is_vm_hugetlb_page(vma))
  912. seq_printf(m, " huge");
  913. walk_page_range(vma->vm_start, vma->vm_end, &walk);
  914. if (!md->pages)
  915. goto out;
  916. if (md->anon)
  917. seq_printf(m, " anon=%lu", md->anon);
  918. if (md->dirty)
  919. seq_printf(m, " dirty=%lu", md->dirty);
  920. if (md->pages != md->anon && md->pages != md->dirty)
  921. seq_printf(m, " mapped=%lu", md->pages);
  922. if (md->mapcount_max > 1)
  923. seq_printf(m, " mapmax=%lu", md->mapcount_max);
  924. if (md->swapcache)
  925. seq_printf(m, " swapcache=%lu", md->swapcache);
  926. if (md->active < md->pages && !is_vm_hugetlb_page(vma))
  927. seq_printf(m, " active=%lu", md->active);
  928. if (md->writeback)
  929. seq_printf(m, " writeback=%lu", md->writeback);
  930. for_each_node_state(n, N_HIGH_MEMORY)
  931. if (md->node[n])
  932. seq_printf(m, " N%d=%lu", n, md->node[n]);
  933. out:
  934. seq_putc(m, '\n');
  935. if (m->count < m->size)
  936. m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
  937. return 0;
  938. }
  939. static const struct seq_operations proc_pid_numa_maps_op = {
  940. .start = m_start,
  941. .next = m_next,
  942. .stop = m_stop,
  943. .show = show_numa_map,
  944. };
  945. static int numa_maps_open(struct inode *inode, struct file *file)
  946. {
  947. struct numa_maps_private *priv;
  948. int ret = -ENOMEM;
  949. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  950. if (priv) {
  951. priv->proc_maps.pid = proc_pid(inode);
  952. ret = seq_open(file, &proc_pid_numa_maps_op);
  953. if (!ret) {
  954. struct seq_file *m = file->private_data;
  955. m->private = priv;
  956. } else {
  957. kfree(priv);
  958. }
  959. }
  960. return ret;
  961. }
  962. const struct file_operations proc_numa_maps_operations = {
  963. .open = numa_maps_open,
  964. .read = seq_read,
  965. .llseek = seq_lseek,
  966. .release = seq_release_private,
  967. };
  968. #endif /* CONFIG_NUMA */