process.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359
  1. /*
  2. * This file handles the architecture dependent parts of process handling.
  3. *
  4. * Copyright IBM Corp. 1999,2009
  5. * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>,
  6. * Hartmut Penner <hp@de.ibm.com>,
  7. * Denis Joseph Barrow,
  8. */
  9. #include <linux/compiler.h>
  10. #include <linux/cpu.h>
  11. #include <linux/sched.h>
  12. #include <linux/kernel.h>
  13. #include <linux/mm.h>
  14. #include <linux/elfcore.h>
  15. #include <linux/smp.h>
  16. #include <linux/slab.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/tick.h>
  19. #include <linux/personality.h>
  20. #include <linux/syscalls.h>
  21. #include <linux/compat.h>
  22. #include <linux/kprobes.h>
  23. #include <linux/random.h>
  24. #include <linux/module.h>
  25. #include <asm/system.h>
  26. #include <asm/io.h>
  27. #include <asm/processor.h>
  28. #include <asm/irq.h>
  29. #include <asm/timer.h>
  30. #include <asm/nmi.h>
  31. #include <asm/compat.h>
  32. #include <asm/smp.h>
  33. #include "entry.h"
  34. asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
  35. /*
  36. * Return saved PC of a blocked thread. used in kernel/sched.
  37. * resume in entry.S does not create a new stack frame, it
  38. * just stores the registers %r6-%r15 to the frame given by
  39. * schedule. We want to return the address of the caller of
  40. * schedule, so we have to walk the backchain one time to
  41. * find the frame schedule() store its return address.
  42. */
  43. unsigned long thread_saved_pc(struct task_struct *tsk)
  44. {
  45. struct stack_frame *sf, *low, *high;
  46. if (!tsk || !task_stack_page(tsk))
  47. return 0;
  48. low = task_stack_page(tsk);
  49. high = (struct stack_frame *) task_pt_regs(tsk);
  50. sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
  51. if (sf <= low || sf > high)
  52. return 0;
  53. sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
  54. if (sf <= low || sf > high)
  55. return 0;
  56. return sf->gprs[8];
  57. }
  58. /*
  59. * The idle loop on a S390...
  60. */
  61. static void default_idle(void)
  62. {
  63. if (cpu_is_offline(smp_processor_id()))
  64. cpu_die();
  65. local_irq_disable();
  66. if (need_resched()) {
  67. local_irq_enable();
  68. return;
  69. }
  70. local_mcck_disable();
  71. if (test_thread_flag(TIF_MCCK_PENDING)) {
  72. local_mcck_enable();
  73. local_irq_enable();
  74. s390_handle_mcck();
  75. return;
  76. }
  77. trace_hardirqs_on();
  78. /* Don't trace preempt off for idle. */
  79. stop_critical_timings();
  80. /* Stop virtual timer and halt the cpu. */
  81. vtime_stop_cpu();
  82. /* Reenable preemption tracer. */
  83. start_critical_timings();
  84. }
  85. void cpu_idle(void)
  86. {
  87. for (;;) {
  88. tick_nohz_stop_sched_tick(1);
  89. while (!need_resched())
  90. default_idle();
  91. tick_nohz_restart_sched_tick();
  92. preempt_enable_no_resched();
  93. schedule();
  94. preempt_disable();
  95. }
  96. }
  97. extern void __kprobes kernel_thread_starter(void);
  98. asm(
  99. ".section .kprobes.text, \"ax\"\n"
  100. ".global kernel_thread_starter\n"
  101. "kernel_thread_starter:\n"
  102. " la 2,0(10)\n"
  103. " basr 14,9\n"
  104. " la 2,0\n"
  105. " br 11\n"
  106. ".previous\n");
  107. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  108. {
  109. struct pt_regs regs;
  110. memset(&regs, 0, sizeof(regs));
  111. regs.psw.mask = psw_kernel_bits |
  112. PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
  113. regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
  114. regs.gprs[9] = (unsigned long) fn;
  115. regs.gprs[10] = (unsigned long) arg;
  116. regs.gprs[11] = (unsigned long) do_exit;
  117. regs.orig_gpr2 = -1;
  118. /* Ok, create the new process.. */
  119. return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
  120. 0, &regs, 0, NULL, NULL);
  121. }
  122. EXPORT_SYMBOL(kernel_thread);
  123. /*
  124. * Free current thread data structures etc..
  125. */
  126. void exit_thread(void)
  127. {
  128. }
  129. void flush_thread(void)
  130. {
  131. }
  132. void release_thread(struct task_struct *dead_task)
  133. {
  134. }
  135. int copy_thread(unsigned long clone_flags, unsigned long new_stackp,
  136. unsigned long unused,
  137. struct task_struct *p, struct pt_regs *regs)
  138. {
  139. struct thread_info *ti;
  140. struct fake_frame
  141. {
  142. struct stack_frame sf;
  143. struct pt_regs childregs;
  144. } *frame;
  145. frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
  146. p->thread.ksp = (unsigned long) frame;
  147. /* Store access registers to kernel stack of new process. */
  148. frame->childregs = *regs;
  149. frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
  150. frame->childregs.gprs[15] = new_stackp;
  151. frame->sf.back_chain = 0;
  152. /* new return point is ret_from_fork */
  153. frame->sf.gprs[8] = (unsigned long) ret_from_fork;
  154. /* fake return stack for resume(), don't go back to schedule */
  155. frame->sf.gprs[9] = (unsigned long) frame;
  156. /* Save access registers to new thread structure. */
  157. save_access_regs(&p->thread.acrs[0]);
  158. #ifndef CONFIG_64BIT
  159. /*
  160. * save fprs to current->thread.fp_regs to merge them with
  161. * the emulated registers and then copy the result to the child.
  162. */
  163. save_fp_regs(&current->thread.fp_regs);
  164. memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
  165. sizeof(s390_fp_regs));
  166. /* Set a new TLS ? */
  167. if (clone_flags & CLONE_SETTLS)
  168. p->thread.acrs[0] = regs->gprs[6];
  169. #else /* CONFIG_64BIT */
  170. /* Save the fpu registers to new thread structure. */
  171. save_fp_regs(&p->thread.fp_regs);
  172. /* Set a new TLS ? */
  173. if (clone_flags & CLONE_SETTLS) {
  174. if (is_compat_task()) {
  175. p->thread.acrs[0] = (unsigned int) regs->gprs[6];
  176. } else {
  177. p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
  178. p->thread.acrs[1] = (unsigned int) regs->gprs[6];
  179. }
  180. }
  181. #endif /* CONFIG_64BIT */
  182. /* start new process with ar4 pointing to the correct address space */
  183. p->thread.mm_segment = get_fs();
  184. /* Don't copy debug registers */
  185. memset(&p->thread.per_user, 0, sizeof(p->thread.per_user));
  186. memset(&p->thread.per_event, 0, sizeof(p->thread.per_event));
  187. clear_tsk_thread_flag(p, TIF_SINGLE_STEP);
  188. clear_tsk_thread_flag(p, TIF_PER_TRAP);
  189. /* Initialize per thread user and system timer values */
  190. ti = task_thread_info(p);
  191. ti->user_timer = 0;
  192. ti->system_timer = 0;
  193. return 0;
  194. }
  195. SYSCALL_DEFINE0(fork)
  196. {
  197. struct pt_regs *regs = task_pt_regs(current);
  198. return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
  199. }
  200. SYSCALL_DEFINE4(clone, unsigned long, newsp, unsigned long, clone_flags,
  201. int __user *, parent_tidptr, int __user *, child_tidptr)
  202. {
  203. struct pt_regs *regs = task_pt_regs(current);
  204. if (!newsp)
  205. newsp = regs->gprs[15];
  206. return do_fork(clone_flags, newsp, regs, 0,
  207. parent_tidptr, child_tidptr);
  208. }
  209. /*
  210. * This is trivial, and on the face of it looks like it
  211. * could equally well be done in user mode.
  212. *
  213. * Not so, for quite unobvious reasons - register pressure.
  214. * In user mode vfork() cannot have a stack frame, and if
  215. * done by calling the "clone()" system call directly, you
  216. * do not have enough call-clobbered registers to hold all
  217. * the information you need.
  218. */
  219. SYSCALL_DEFINE0(vfork)
  220. {
  221. struct pt_regs *regs = task_pt_regs(current);
  222. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
  223. regs->gprs[15], regs, 0, NULL, NULL);
  224. }
  225. asmlinkage void execve_tail(void)
  226. {
  227. current->thread.fp_regs.fpc = 0;
  228. if (MACHINE_HAS_IEEE)
  229. asm volatile("sfpc %0,%0" : : "d" (0));
  230. }
  231. /*
  232. * sys_execve() executes a new program.
  233. */
  234. SYSCALL_DEFINE3(execve, const char __user *, name,
  235. const char __user *const __user *, argv,
  236. const char __user *const __user *, envp)
  237. {
  238. struct pt_regs *regs = task_pt_regs(current);
  239. char *filename;
  240. long rc;
  241. filename = getname(name);
  242. rc = PTR_ERR(filename);
  243. if (IS_ERR(filename))
  244. return rc;
  245. rc = do_execve(filename, argv, envp, regs);
  246. if (rc)
  247. goto out;
  248. execve_tail();
  249. rc = regs->gprs[2];
  250. out:
  251. putname(filename);
  252. return rc;
  253. }
  254. /*
  255. * fill in the FPU structure for a core dump.
  256. */
  257. int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
  258. {
  259. #ifndef CONFIG_64BIT
  260. /*
  261. * save fprs to current->thread.fp_regs to merge them with
  262. * the emulated registers and then copy the result to the dump.
  263. */
  264. save_fp_regs(&current->thread.fp_regs);
  265. memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
  266. #else /* CONFIG_64BIT */
  267. save_fp_regs(fpregs);
  268. #endif /* CONFIG_64BIT */
  269. return 1;
  270. }
  271. EXPORT_SYMBOL(dump_fpu);
  272. unsigned long get_wchan(struct task_struct *p)
  273. {
  274. struct stack_frame *sf, *low, *high;
  275. unsigned long return_address;
  276. int count;
  277. if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
  278. return 0;
  279. low = task_stack_page(p);
  280. high = (struct stack_frame *) task_pt_regs(p);
  281. sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
  282. if (sf <= low || sf > high)
  283. return 0;
  284. for (count = 0; count < 16; count++) {
  285. sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
  286. if (sf <= low || sf > high)
  287. return 0;
  288. return_address = sf->gprs[8] & PSW_ADDR_INSN;
  289. if (!in_sched_functions(return_address))
  290. return return_address;
  291. }
  292. return 0;
  293. }
  294. unsigned long arch_align_stack(unsigned long sp)
  295. {
  296. if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
  297. sp -= get_random_int() & ~PAGE_MASK;
  298. return sp & ~0xf;
  299. }
  300. static inline unsigned long brk_rnd(void)
  301. {
  302. /* 8MB for 32bit, 1GB for 64bit */
  303. if (is_32bit_task())
  304. return (get_random_int() & 0x7ffUL) << PAGE_SHIFT;
  305. else
  306. return (get_random_int() & 0x3ffffUL) << PAGE_SHIFT;
  307. }
  308. unsigned long arch_randomize_brk(struct mm_struct *mm)
  309. {
  310. unsigned long ret = PAGE_ALIGN(mm->brk + brk_rnd());
  311. if (ret < mm->brk)
  312. return mm->brk;
  313. return ret;
  314. }
  315. unsigned long randomize_et_dyn(unsigned long base)
  316. {
  317. unsigned long ret = PAGE_ALIGN(base + brk_rnd());
  318. if (!(current->flags & PF_RANDOMIZE))
  319. return base;
  320. if (ret < base)
  321. return base;
  322. return ret;
  323. }