process.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512
  1. /*
  2. * Blackfin architecture-dependent process handling
  3. *
  4. * Copyright 2004-2009 Analog Devices Inc.
  5. *
  6. * Licensed under the GPL-2 or later
  7. */
  8. #include <linux/module.h>
  9. #include <linux/unistd.h>
  10. #include <linux/user.h>
  11. #include <linux/uaccess.h>
  12. #include <linux/slab.h>
  13. #include <linux/sched.h>
  14. #include <linux/tick.h>
  15. #include <linux/fs.h>
  16. #include <linux/err.h>
  17. #include <asm/blackfin.h>
  18. #include <asm/fixed_code.h>
  19. #include <asm/mem_map.h>
  20. asmlinkage void ret_from_fork(void);
  21. /* Points to the SDRAM backup memory for the stack that is currently in
  22. * L1 scratchpad memory.
  23. */
  24. void *current_l1_stack_save;
  25. /* The number of tasks currently using a L1 stack area. The SRAM is
  26. * allocated/deallocated whenever this changes from/to zero.
  27. */
  28. int nr_l1stack_tasks;
  29. /* Start and length of the area in L1 scratchpad memory which we've allocated
  30. * for process stacks.
  31. */
  32. void *l1_stack_base;
  33. unsigned long l1_stack_len;
  34. /*
  35. * Powermanagement idle function, if any..
  36. */
  37. void (*pm_idle)(void) = NULL;
  38. EXPORT_SYMBOL(pm_idle);
  39. void (*pm_power_off)(void) = NULL;
  40. EXPORT_SYMBOL(pm_power_off);
  41. /*
  42. * The idle loop on BFIN
  43. */
  44. #ifdef CONFIG_IDLE_L1
  45. static void default_idle(void)__attribute__((l1_text));
  46. void cpu_idle(void)__attribute__((l1_text));
  47. #endif
  48. /*
  49. * This is our default idle handler. We need to disable
  50. * interrupts here to ensure we don't miss a wakeup call.
  51. */
  52. static void default_idle(void)
  53. {
  54. #ifdef CONFIG_IPIPE
  55. ipipe_suspend_domain();
  56. #endif
  57. hard_local_irq_disable();
  58. if (!need_resched())
  59. idle_with_irq_disabled();
  60. hard_local_irq_enable();
  61. }
  62. /*
  63. * The idle thread. We try to conserve power, while trying to keep
  64. * overall latency low. The architecture specific idle is passed
  65. * a value to indicate the level of "idleness" of the system.
  66. */
  67. void cpu_idle(void)
  68. {
  69. /* endless idle loop with no priority at all */
  70. while (1) {
  71. void (*idle)(void) = pm_idle;
  72. #ifdef CONFIG_HOTPLUG_CPU
  73. if (cpu_is_offline(smp_processor_id()))
  74. cpu_die();
  75. #endif
  76. if (!idle)
  77. idle = default_idle;
  78. tick_nohz_stop_sched_tick(1);
  79. while (!need_resched())
  80. idle();
  81. tick_nohz_restart_sched_tick();
  82. preempt_enable_no_resched();
  83. schedule();
  84. preempt_disable();
  85. }
  86. }
  87. /*
  88. * This gets run with P1 containing the
  89. * function to call, and R1 containing
  90. * the "args". Note P0 is clobbered on the way here.
  91. */
  92. void kernel_thread_helper(void);
  93. __asm__(".section .text\n"
  94. ".align 4\n"
  95. "_kernel_thread_helper:\n\t"
  96. "\tsp += -12;\n\t"
  97. "\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous");
  98. /*
  99. * Create a kernel thread.
  100. */
  101. pid_t kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
  102. {
  103. struct pt_regs regs;
  104. memset(&regs, 0, sizeof(regs));
  105. regs.r1 = (unsigned long)arg;
  106. regs.p1 = (unsigned long)fn;
  107. regs.pc = (unsigned long)kernel_thread_helper;
  108. regs.orig_p0 = -1;
  109. /* Set bit 2 to tell ret_from_fork we should be returning to kernel
  110. mode. */
  111. regs.ipend = 0x8002;
  112. __asm__ __volatile__("%0 = syscfg;":"=da"(regs.syscfg):);
  113. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL,
  114. NULL);
  115. }
  116. EXPORT_SYMBOL(kernel_thread);
  117. /*
  118. * Do necessary setup to start up a newly executed thread.
  119. *
  120. * pass the data segment into user programs if it exists,
  121. * it can't hurt anything as far as I can tell
  122. */
  123. void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
  124. {
  125. regs->pc = new_ip;
  126. if (current->mm)
  127. regs->p5 = current->mm->start_data;
  128. #ifndef CONFIG_SMP
  129. task_thread_info(current)->l1_task_info.stack_start =
  130. (void *)current->mm->context.stack_start;
  131. task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
  132. memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
  133. sizeof(*L1_SCRATCH_TASK_INFO));
  134. #endif
  135. wrusp(new_sp);
  136. }
  137. EXPORT_SYMBOL_GPL(start_thread);
  138. void flush_thread(void)
  139. {
  140. }
  141. asmlinkage int bfin_vfork(struct pt_regs *regs)
  142. {
  143. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL,
  144. NULL);
  145. }
  146. asmlinkage int bfin_clone(struct pt_regs *regs)
  147. {
  148. unsigned long clone_flags;
  149. unsigned long newsp;
  150. #ifdef __ARCH_SYNC_CORE_DCACHE
  151. if (current->rt.nr_cpus_allowed == num_possible_cpus())
  152. set_cpus_allowed_ptr(current, cpumask_of(smp_processor_id()));
  153. #endif
  154. /* syscall2 puts clone_flags in r0 and usp in r1 */
  155. clone_flags = regs->r0;
  156. newsp = regs->r1;
  157. if (!newsp)
  158. newsp = rdusp();
  159. else
  160. newsp -= 12;
  161. return do_fork(clone_flags, newsp, regs, 0, NULL, NULL);
  162. }
  163. int
  164. copy_thread(unsigned long clone_flags,
  165. unsigned long usp, unsigned long topstk,
  166. struct task_struct *p, struct pt_regs *regs)
  167. {
  168. struct pt_regs *childregs;
  169. childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
  170. *childregs = *regs;
  171. childregs->r0 = 0;
  172. p->thread.usp = usp;
  173. p->thread.ksp = (unsigned long)childregs;
  174. p->thread.pc = (unsigned long)ret_from_fork;
  175. return 0;
  176. }
  177. /*
  178. * sys_execve() executes a new program.
  179. */
  180. asmlinkage int sys_execve(const char __user *name,
  181. const char __user *const __user *argv,
  182. const char __user *const __user *envp)
  183. {
  184. int error;
  185. char *filename;
  186. struct pt_regs *regs = (struct pt_regs *)((&name) + 6);
  187. filename = getname(name);
  188. error = PTR_ERR(filename);
  189. if (IS_ERR(filename))
  190. return error;
  191. error = do_execve(filename, argv, envp, regs);
  192. putname(filename);
  193. return error;
  194. }
  195. unsigned long get_wchan(struct task_struct *p)
  196. {
  197. unsigned long fp, pc;
  198. unsigned long stack_page;
  199. int count = 0;
  200. if (!p || p == current || p->state == TASK_RUNNING)
  201. return 0;
  202. stack_page = (unsigned long)p;
  203. fp = p->thread.usp;
  204. do {
  205. if (fp < stack_page + sizeof(struct thread_info) ||
  206. fp >= 8184 + stack_page)
  207. return 0;
  208. pc = ((unsigned long *)fp)[1];
  209. if (!in_sched_functions(pc))
  210. return pc;
  211. fp = *(unsigned long *)fp;
  212. }
  213. while (count++ < 16);
  214. return 0;
  215. }
  216. void finish_atomic_sections (struct pt_regs *regs)
  217. {
  218. int __user *up0 = (int __user *)regs->p0;
  219. switch (regs->pc) {
  220. default:
  221. /* not in middle of an atomic step, so resume like normal */
  222. return;
  223. case ATOMIC_XCHG32 + 2:
  224. put_user(regs->r1, up0);
  225. break;
  226. case ATOMIC_CAS32 + 2:
  227. case ATOMIC_CAS32 + 4:
  228. if (regs->r0 == regs->r1)
  229. case ATOMIC_CAS32 + 6:
  230. put_user(regs->r2, up0);
  231. break;
  232. case ATOMIC_ADD32 + 2:
  233. regs->r0 = regs->r1 + regs->r0;
  234. /* fall through */
  235. case ATOMIC_ADD32 + 4:
  236. put_user(regs->r0, up0);
  237. break;
  238. case ATOMIC_SUB32 + 2:
  239. regs->r0 = regs->r1 - regs->r0;
  240. /* fall through */
  241. case ATOMIC_SUB32 + 4:
  242. put_user(regs->r0, up0);
  243. break;
  244. case ATOMIC_IOR32 + 2:
  245. regs->r0 = regs->r1 | regs->r0;
  246. /* fall through */
  247. case ATOMIC_IOR32 + 4:
  248. put_user(regs->r0, up0);
  249. break;
  250. case ATOMIC_AND32 + 2:
  251. regs->r0 = regs->r1 & regs->r0;
  252. /* fall through */
  253. case ATOMIC_AND32 + 4:
  254. put_user(regs->r0, up0);
  255. break;
  256. case ATOMIC_XOR32 + 2:
  257. regs->r0 = regs->r1 ^ regs->r0;
  258. /* fall through */
  259. case ATOMIC_XOR32 + 4:
  260. put_user(regs->r0, up0);
  261. break;
  262. }
  263. /*
  264. * We've finished the atomic section, and the only thing left for
  265. * userspace is to do a RTS, so we might as well handle that too
  266. * since we need to update the PC anyways.
  267. */
  268. regs->pc = regs->rets;
  269. }
  270. static inline
  271. int in_mem(unsigned long addr, unsigned long size,
  272. unsigned long start, unsigned long end)
  273. {
  274. return addr >= start && addr + size <= end;
  275. }
  276. static inline
  277. int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
  278. unsigned long const_addr, unsigned long const_size)
  279. {
  280. return const_size &&
  281. in_mem(addr, size, const_addr + off, const_addr + const_size);
  282. }
  283. static inline
  284. int in_mem_const(unsigned long addr, unsigned long size,
  285. unsigned long const_addr, unsigned long const_size)
  286. {
  287. return in_mem_const_off(addr, size, 0, const_addr, const_size);
  288. }
  289. #define ASYNC_ENABLED(bnum, bctlnum) \
  290. ({ \
  291. (bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? 0 : \
  292. bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? 0 : \
  293. 1; \
  294. })
  295. /*
  296. * We can't read EBIU banks that aren't enabled or we end up hanging
  297. * on the access to the async space. Make sure we validate accesses
  298. * that cross async banks too.
  299. * 0 - found, but unusable
  300. * 1 - found & usable
  301. * 2 - not found
  302. */
  303. static
  304. int in_async(unsigned long addr, unsigned long size)
  305. {
  306. if (addr >= ASYNC_BANK0_BASE && addr < ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE) {
  307. if (!ASYNC_ENABLED(0, 0))
  308. return 0;
  309. if (addr + size <= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE)
  310. return 1;
  311. size -= ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE - addr;
  312. addr = ASYNC_BANK0_BASE + ASYNC_BANK0_SIZE;
  313. }
  314. if (addr >= ASYNC_BANK1_BASE && addr < ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE) {
  315. if (!ASYNC_ENABLED(1, 0))
  316. return 0;
  317. if (addr + size <= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE)
  318. return 1;
  319. size -= ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE - addr;
  320. addr = ASYNC_BANK1_BASE + ASYNC_BANK1_SIZE;
  321. }
  322. if (addr >= ASYNC_BANK2_BASE && addr < ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE) {
  323. if (!ASYNC_ENABLED(2, 1))
  324. return 0;
  325. if (addr + size <= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE)
  326. return 1;
  327. size -= ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE - addr;
  328. addr = ASYNC_BANK2_BASE + ASYNC_BANK2_SIZE;
  329. }
  330. if (addr >= ASYNC_BANK3_BASE && addr < ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE) {
  331. if (ASYNC_ENABLED(3, 1))
  332. return 0;
  333. if (addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
  334. return 1;
  335. return 0;
  336. }
  337. /* not within async bounds */
  338. return 2;
  339. }
  340. int bfin_mem_access_type(unsigned long addr, unsigned long size)
  341. {
  342. int cpu = raw_smp_processor_id();
  343. /* Check that things do not wrap around */
  344. if (addr > ULONG_MAX - size)
  345. return -EFAULT;
  346. if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
  347. return BFIN_MEM_ACCESS_CORE;
  348. if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
  349. return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
  350. if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
  351. return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
  352. if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
  353. return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
  354. if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
  355. return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
  356. #ifdef COREB_L1_CODE_START
  357. if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
  358. return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
  359. if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
  360. return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
  361. if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
  362. return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
  363. if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
  364. return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
  365. #endif
  366. if (in_mem_const(addr, size, L2_START, L2_LENGTH))
  367. return BFIN_MEM_ACCESS_CORE;
  368. if (addr >= SYSMMR_BASE)
  369. return BFIN_MEM_ACCESS_CORE_ONLY;
  370. switch (in_async(addr, size)) {
  371. case 0: return -EFAULT;
  372. case 1: return BFIN_MEM_ACCESS_CORE;
  373. case 2: /* fall through */;
  374. }
  375. if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
  376. return BFIN_MEM_ACCESS_CORE;
  377. if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
  378. return BFIN_MEM_ACCESS_DMA;
  379. return -EFAULT;
  380. }
  381. #if defined(CONFIG_ACCESS_CHECK)
  382. #ifdef CONFIG_ACCESS_OK_L1
  383. __attribute__((l1_text))
  384. #endif
  385. /* Return 1 if access to memory range is OK, 0 otherwise */
  386. int _access_ok(unsigned long addr, unsigned long size)
  387. {
  388. int aret;
  389. if (size == 0)
  390. return 1;
  391. /* Check that things do not wrap around */
  392. if (addr > ULONG_MAX - size)
  393. return 0;
  394. if (segment_eq(get_fs(), KERNEL_DS))
  395. return 1;
  396. #ifdef CONFIG_MTD_UCLINUX
  397. if (1)
  398. #else
  399. if (0)
  400. #endif
  401. {
  402. if (in_mem(addr, size, memory_start, memory_end))
  403. return 1;
  404. if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
  405. return 1;
  406. # ifndef CONFIG_ROMFS_ON_MTD
  407. if (0)
  408. # endif
  409. /* For XIP, allow user space to use pointers within the ROMFS. */
  410. if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
  411. return 1;
  412. } else {
  413. if (in_mem(addr, size, memory_start, physical_mem_end))
  414. return 1;
  415. }
  416. if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
  417. return 1;
  418. if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
  419. return 1;
  420. if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
  421. return 1;
  422. if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
  423. return 1;
  424. if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
  425. return 1;
  426. #ifdef COREB_L1_CODE_START
  427. if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
  428. return 1;
  429. if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
  430. return 1;
  431. if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
  432. return 1;
  433. if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
  434. return 1;
  435. #endif
  436. #ifndef CONFIG_EXCEPTION_L1_SCRATCH
  437. if (in_mem_const(addr, size, (unsigned long)l1_stack_base, l1_stack_len))
  438. return 1;
  439. #endif
  440. aret = in_async(addr, size);
  441. if (aret < 2)
  442. return aret;
  443. if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
  444. return 1;
  445. if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
  446. return 1;
  447. if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
  448. return 1;
  449. return 0;
  450. }
  451. EXPORT_SYMBOL(_access_ok);
  452. #endif /* CONFIG_ACCESS_CHECK */