process.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. /*
  2. * linux/arch/arm/kernel/process.c
  3. *
  4. * Copyright (C) 1996-2000 Russell King - Converted to ARM.
  5. * Original Copyright (C) 1995 Linus Torvalds
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <stdarg.h>
  12. #include <linux/export.h>
  13. #include <linux/sched.h>
  14. #include <linux/kernel.h>
  15. #include <linux/mm.h>
  16. #include <linux/stddef.h>
  17. #include <linux/unistd.h>
  18. #include <linux/user.h>
  19. #include <linux/delay.h>
  20. #include <linux/reboot.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/kallsyms.h>
  23. #include <linux/init.h>
  24. #include <linux/cpu.h>
  25. #include <linux/elfcore.h>
  26. #include <linux/pm.h>
  27. #include <linux/tick.h>
  28. #include <linux/utsname.h>
  29. #include <linux/uaccess.h>
  30. #include <linux/random.h>
  31. #include <linux/hw_breakpoint.h>
  32. #include <linux/cpuidle.h>
  33. #include <asm/cacheflush.h>
  34. #include <asm/leds.h>
  35. #include <asm/processor.h>
  36. #include <asm/system.h>
  37. #include <asm/thread_notify.h>
  38. #include <asm/stacktrace.h>
  39. #include <asm/mach/time.h>
  40. #ifdef CONFIG_CC_STACKPROTECTOR
  41. #include <linux/stackprotector.h>
  42. unsigned long __stack_chk_guard __read_mostly;
  43. EXPORT_SYMBOL(__stack_chk_guard);
  44. #endif
  45. static const char *processor_modes[] = {
  46. "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
  47. "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
  48. "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
  49. "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
  50. };
  51. static const char *isa_modes[] = {
  52. "ARM" , "Thumb" , "Jazelle", "ThumbEE"
  53. };
  54. extern void setup_mm_for_reboot(char mode);
  55. static volatile int hlt_counter;
  56. #include <mach/system.h>
  57. void disable_hlt(void)
  58. {
  59. hlt_counter++;
  60. }
  61. EXPORT_SYMBOL(disable_hlt);
  62. void enable_hlt(void)
  63. {
  64. hlt_counter--;
  65. }
  66. EXPORT_SYMBOL(enable_hlt);
  67. static int __init nohlt_setup(char *__unused)
  68. {
  69. hlt_counter = 1;
  70. return 1;
  71. }
  72. static int __init hlt_setup(char *__unused)
  73. {
  74. hlt_counter = 0;
  75. return 1;
  76. }
  77. __setup("nohlt", nohlt_setup);
  78. __setup("hlt", hlt_setup);
  79. void arm_machine_restart(char mode, const char *cmd)
  80. {
  81. /* Disable interrupts first */
  82. local_irq_disable();
  83. local_fiq_disable();
  84. /*
  85. * Tell the mm system that we are going to reboot -
  86. * we may need it to insert some 1:1 mappings so that
  87. * soft boot works.
  88. */
  89. setup_mm_for_reboot(mode);
  90. /* Clean and invalidate caches */
  91. flush_cache_all();
  92. /* Turn off caching */
  93. cpu_proc_fin();
  94. /* Push out any further dirty data, and ensure cache is empty */
  95. flush_cache_all();
  96. /*
  97. * Now call the architecture specific reboot code.
  98. */
  99. arch_reset(mode, cmd);
  100. /*
  101. * Whoops - the architecture was unable to reboot.
  102. * Tell the user!
  103. */
  104. mdelay(1000);
  105. printk("Reboot failed -- System halted\n");
  106. while (1);
  107. }
  108. /*
  109. * Function pointers to optional machine specific functions
  110. */
  111. void (*pm_power_off)(void);
  112. EXPORT_SYMBOL(pm_power_off);
  113. void (*arm_pm_restart)(char str, const char *cmd) = arm_machine_restart;
  114. EXPORT_SYMBOL_GPL(arm_pm_restart);
  115. static void do_nothing(void *unused)
  116. {
  117. }
  118. /*
  119. * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
  120. * pm_idle and update to new pm_idle value. Required while changing pm_idle
  121. * handler on SMP systems.
  122. *
  123. * Caller must have changed pm_idle to the new value before the call. Old
  124. * pm_idle value will not be used by any CPU after the return of this function.
  125. */
  126. void cpu_idle_wait(void)
  127. {
  128. smp_mb();
  129. /* kick all the CPUs so that they exit out of pm_idle */
  130. smp_call_function(do_nothing, NULL, 1);
  131. }
  132. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  133. /*
  134. * This is our default idle handler. We need to disable
  135. * interrupts here to ensure we don't miss a wakeup call.
  136. */
  137. static void default_idle(void)
  138. {
  139. if (!need_resched())
  140. arch_idle();
  141. local_irq_enable();
  142. }
  143. void (*pm_idle)(void) = default_idle;
  144. EXPORT_SYMBOL(pm_idle);
  145. /*
  146. * The idle thread, has rather strange semantics for calling pm_idle,
  147. * but this is what x86 does and we need to do the same, so that
  148. * things like cpuidle get called in the same way. The only difference
  149. * is that we always respect 'hlt_counter' to prevent low power idle.
  150. */
  151. void cpu_idle(void)
  152. {
  153. local_fiq_enable();
  154. /* endless idle loop with no priority at all */
  155. while (1) {
  156. tick_nohz_stop_sched_tick(1);
  157. leds_event(led_idle_start);
  158. while (!need_resched()) {
  159. #ifdef CONFIG_HOTPLUG_CPU
  160. if (cpu_is_offline(smp_processor_id()))
  161. cpu_die();
  162. #endif
  163. local_irq_disable();
  164. #ifdef CONFIG_PL310_ERRATA_769419
  165. wmb();
  166. #endif
  167. if (hlt_counter) {
  168. local_irq_enable();
  169. cpu_relax();
  170. } else {
  171. stop_critical_timings();
  172. if (cpuidle_idle_call())
  173. pm_idle();
  174. start_critical_timings();
  175. /*
  176. * This will eventually be removed - pm_idle
  177. * functions should always return with IRQs
  178. * enabled.
  179. */
  180. WARN_ON(irqs_disabled());
  181. local_irq_enable();
  182. }
  183. }
  184. leds_event(led_idle_end);
  185. tick_nohz_restart_sched_tick();
  186. preempt_enable_no_resched();
  187. schedule();
  188. preempt_disable();
  189. }
  190. }
  191. static char reboot_mode = 'h';
  192. int __init reboot_setup(char *str)
  193. {
  194. reboot_mode = str[0];
  195. return 1;
  196. }
  197. __setup("reboot=", reboot_setup);
  198. void machine_shutdown(void)
  199. {
  200. #ifdef CONFIG_SMP
  201. smp_send_stop();
  202. #endif
  203. }
  204. void machine_halt(void)
  205. {
  206. machine_shutdown();
  207. while (1);
  208. }
  209. void machine_power_off(void)
  210. {
  211. machine_shutdown();
  212. if (pm_power_off)
  213. pm_power_off();
  214. }
  215. void machine_restart(char *cmd)
  216. {
  217. machine_shutdown();
  218. arm_pm_restart(reboot_mode, cmd);
  219. }
  220. void __show_regs(struct pt_regs *regs)
  221. {
  222. unsigned long flags;
  223. char buf[64];
  224. printk("CPU: %d %s (%s %.*s)\n",
  225. raw_smp_processor_id(), print_tainted(),
  226. init_utsname()->release,
  227. (int)strcspn(init_utsname()->version, " "),
  228. init_utsname()->version);
  229. print_symbol("PC is at %s\n", instruction_pointer(regs));
  230. print_symbol("LR is at %s\n", regs->ARM_lr);
  231. printk("pc : [<%08lx>] lr : [<%08lx>] psr: %08lx\n"
  232. "sp : %08lx ip : %08lx fp : %08lx\n",
  233. regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
  234. regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
  235. printk("r10: %08lx r9 : %08lx r8 : %08lx\n",
  236. regs->ARM_r10, regs->ARM_r9,
  237. regs->ARM_r8);
  238. printk("r7 : %08lx r6 : %08lx r5 : %08lx r4 : %08lx\n",
  239. regs->ARM_r7, regs->ARM_r6,
  240. regs->ARM_r5, regs->ARM_r4);
  241. printk("r3 : %08lx r2 : %08lx r1 : %08lx r0 : %08lx\n",
  242. regs->ARM_r3, regs->ARM_r2,
  243. regs->ARM_r1, regs->ARM_r0);
  244. flags = regs->ARM_cpsr;
  245. buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
  246. buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
  247. buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
  248. buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
  249. buf[4] = '\0';
  250. printk("Flags: %s IRQs o%s FIQs o%s Mode %s ISA %s Segment %s\n",
  251. buf, interrupts_enabled(regs) ? "n" : "ff",
  252. fast_interrupts_enabled(regs) ? "n" : "ff",
  253. processor_modes[processor_mode(regs)],
  254. isa_modes[isa_mode(regs)],
  255. get_fs() == get_ds() ? "kernel" : "user");
  256. #ifdef CONFIG_CPU_CP15
  257. {
  258. unsigned int ctrl;
  259. buf[0] = '\0';
  260. #ifdef CONFIG_CPU_CP15_MMU
  261. {
  262. unsigned int transbase, dac;
  263. asm("mrc p15, 0, %0, c2, c0\n\t"
  264. "mrc p15, 0, %1, c3, c0\n"
  265. : "=r" (transbase), "=r" (dac));
  266. snprintf(buf, sizeof(buf), " Table: %08x DAC: %08x",
  267. transbase, dac);
  268. }
  269. #endif
  270. asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
  271. printk("Control: %08x%s\n", ctrl, buf);
  272. }
  273. #endif
  274. }
  275. void show_regs(struct pt_regs * regs)
  276. {
  277. printk("\n");
  278. printk("Pid: %d, comm: %20s\n", task_pid_nr(current), current->comm);
  279. __show_regs(regs);
  280. dump_stack();
  281. }
  282. ATOMIC_NOTIFIER_HEAD(thread_notify_head);
  283. EXPORT_SYMBOL_GPL(thread_notify_head);
  284. /*
  285. * Free current thread data structures etc..
  286. */
  287. void exit_thread(void)
  288. {
  289. thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
  290. }
  291. void flush_thread(void)
  292. {
  293. struct thread_info *thread = current_thread_info();
  294. struct task_struct *tsk = current;
  295. flush_ptrace_hw_breakpoint(tsk);
  296. memset(thread->used_cp, 0, sizeof(thread->used_cp));
  297. memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
  298. memset(&thread->fpstate, 0, sizeof(union fp_state));
  299. thread_notify(THREAD_NOTIFY_FLUSH, thread);
  300. }
  301. void release_thread(struct task_struct *dead_task)
  302. {
  303. }
  304. asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  305. int
  306. copy_thread(unsigned long clone_flags, unsigned long stack_start,
  307. unsigned long stk_sz, struct task_struct *p, struct pt_regs *regs)
  308. {
  309. struct thread_info *thread = task_thread_info(p);
  310. struct pt_regs *childregs = task_pt_regs(p);
  311. *childregs = *regs;
  312. childregs->ARM_r0 = 0;
  313. childregs->ARM_sp = stack_start;
  314. memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
  315. thread->cpu_context.sp = (unsigned long)childregs;
  316. thread->cpu_context.pc = (unsigned long)ret_from_fork;
  317. clear_ptrace_hw_breakpoint(p);
  318. if (clone_flags & CLONE_SETTLS)
  319. thread->tp_value = regs->ARM_r3;
  320. thread_notify(THREAD_NOTIFY_COPY, thread);
  321. return 0;
  322. }
  323. /*
  324. * Fill in the task's elfregs structure for a core dump.
  325. */
  326. int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
  327. {
  328. elf_core_copy_regs(elfregs, task_pt_regs(t));
  329. return 1;
  330. }
  331. /*
  332. * fill in the fpe structure for a core dump...
  333. */
  334. int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
  335. {
  336. struct thread_info *thread = current_thread_info();
  337. int used_math = thread->used_cp[1] | thread->used_cp[2];
  338. if (used_math)
  339. memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
  340. return used_math != 0;
  341. }
  342. EXPORT_SYMBOL(dump_fpu);
  343. /*
  344. * Shuffle the argument into the correct register before calling the
  345. * thread function. r4 is the thread argument, r5 is the pointer to
  346. * the thread function, and r6 points to the exit function.
  347. */
  348. extern void kernel_thread_helper(void);
  349. asm( ".pushsection .text\n"
  350. " .align\n"
  351. " .type kernel_thread_helper, #function\n"
  352. "kernel_thread_helper:\n"
  353. #ifdef CONFIG_TRACE_IRQFLAGS
  354. " bl trace_hardirqs_on\n"
  355. #endif
  356. " msr cpsr_c, r7\n"
  357. " mov r0, r4\n"
  358. " mov lr, r6\n"
  359. " mov pc, r5\n"
  360. " .size kernel_thread_helper, . - kernel_thread_helper\n"
  361. " .popsection");
  362. #ifdef CONFIG_ARM_UNWIND
  363. extern void kernel_thread_exit(long code);
  364. asm( ".pushsection .text\n"
  365. " .align\n"
  366. " .type kernel_thread_exit, #function\n"
  367. "kernel_thread_exit:\n"
  368. " .fnstart\n"
  369. " .cantunwind\n"
  370. " bl do_exit\n"
  371. " nop\n"
  372. " .fnend\n"
  373. " .size kernel_thread_exit, . - kernel_thread_exit\n"
  374. " .popsection");
  375. #else
  376. #define kernel_thread_exit do_exit
  377. #endif
  378. /*
  379. * Create a kernel thread.
  380. */
  381. pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
  382. {
  383. struct pt_regs regs;
  384. memset(&regs, 0, sizeof(regs));
  385. regs.ARM_r4 = (unsigned long)arg;
  386. regs.ARM_r5 = (unsigned long)fn;
  387. regs.ARM_r6 = (unsigned long)kernel_thread_exit;
  388. regs.ARM_r7 = SVC_MODE | PSR_ENDSTATE | PSR_ISETSTATE;
  389. regs.ARM_pc = (unsigned long)kernel_thread_helper;
  390. regs.ARM_cpsr = regs.ARM_r7 | PSR_I_BIT;
  391. return do_fork(flags|CLONE_VM|CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
  392. }
  393. EXPORT_SYMBOL(kernel_thread);
  394. unsigned long get_wchan(struct task_struct *p)
  395. {
  396. struct stackframe frame;
  397. int count = 0;
  398. if (!p || p == current || p->state == TASK_RUNNING)
  399. return 0;
  400. frame.fp = thread_saved_fp(p);
  401. frame.sp = thread_saved_sp(p);
  402. frame.lr = 0; /* recovered from the stack */
  403. frame.pc = thread_saved_pc(p);
  404. do {
  405. int ret = unwind_frame(&frame);
  406. if (ret < 0)
  407. return 0;
  408. if (!in_sched_functions(frame.pc))
  409. return frame.pc;
  410. } while (count ++ < 16);
  411. return 0;
  412. }
  413. unsigned long arch_randomize_brk(struct mm_struct *mm)
  414. {
  415. unsigned long range_end = mm->brk + 0x02000000;
  416. return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
  417. }
  418. #ifdef CONFIG_MMU
  419. /*
  420. * The vectors page is always readable from user space for the
  421. * atomic helpers and the signal restart code. Let's declare a mapping
  422. * for it so it is visible through ptrace and /proc/<pid>/mem.
  423. */
  424. int vectors_user_mapping(void)
  425. {
  426. struct mm_struct *mm = current->mm;
  427. return install_special_mapping(mm, 0xffff0000, PAGE_SIZE,
  428. VM_READ | VM_EXEC |
  429. VM_MAYREAD | VM_MAYEXEC |
  430. VM_ALWAYSDUMP | VM_RESERVED,
  431. NULL);
  432. }
  433. const char *arch_vma_name(struct vm_area_struct *vma)
  434. {
  435. return (vma->vm_start == 0xffff0000) ? "[vectors]" : NULL;
  436. }
  437. #endif