pgtable.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356
  1. /*
  2. * arch/arm/include/asm/pgtable.h
  3. *
  4. * Copyright (C) 1995-2002 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #ifndef _ASMARM_PGTABLE_H
  11. #define _ASMARM_PGTABLE_H
  12. #include <linux/const.h>
  13. #include <asm-generic/4level-fixup.h>
  14. #include <asm/proc-fns.h>
  15. #ifndef CONFIG_MMU
  16. #include "pgtable-nommu.h"
  17. #else
  18. #include <asm/memory.h>
  19. #include <mach/vmalloc.h>
  20. #include <asm/pgtable-hwdef.h>
  21. #include <asm/pgtable-2level.h>
  22. /*
  23. * Just any arbitrary offset to the start of the vmalloc VM area: the
  24. * current 8MB value just means that there will be a 8MB "hole" after the
  25. * physical memory until the kernel virtual memory starts. That means that
  26. * any out-of-bounds memory accesses will hopefully be caught.
  27. * The vmalloc() routines leaves a hole of 4kB between each vmalloced
  28. * area for the same reason. ;)
  29. *
  30. * Note that platforms may override VMALLOC_START, but they must provide
  31. * VMALLOC_END. VMALLOC_END defines the (exclusive) limit of this space,
  32. * which may not overlap IO space.
  33. */
  34. #ifndef VMALLOC_START
  35. #define VMALLOC_OFFSET (8*1024*1024)
  36. #define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
  37. #endif
  38. #define LIBRARY_TEXT_START 0x0c000000
  39. #ifndef __ASSEMBLY__
  40. extern void __pte_error(const char *file, int line, pte_t);
  41. extern void __pmd_error(const char *file, int line, pmd_t);
  42. extern void __pgd_error(const char *file, int line, pgd_t);
  43. #define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte)
  44. #define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd)
  45. #define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd)
  46. /*
  47. * This is the lowest virtual address we can permit any user space
  48. * mapping to be mapped at. This is particularly important for
  49. * non-high vector CPUs.
  50. */
  51. #define FIRST_USER_ADDRESS PAGE_SIZE
  52. /*
  53. * The pgprot_* and protection_map entries will be fixed up in runtime
  54. * to include the cachable and bufferable bits based on memory policy,
  55. * as well as any architecture dependent bits like global/ASID and SMP
  56. * shared mapping bits.
  57. */
  58. #define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG
  59. extern pgprot_t pgprot_user;
  60. extern pgprot_t pgprot_kernel;
  61. #define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b))
  62. #define PAGE_NONE _MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY)
  63. #define PAGE_SHARED _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN)
  64. #define PAGE_SHARED_EXEC _MOD_PROT(pgprot_user, L_PTE_USER)
  65. #define PAGE_COPY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
  66. #define PAGE_COPY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
  67. #define PAGE_READONLY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
  68. #define PAGE_READONLY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY)
  69. #define PAGE_KERNEL _MOD_PROT(pgprot_kernel, L_PTE_XN)
  70. #define PAGE_KERNEL_EXEC pgprot_kernel
  71. #define __PAGE_NONE __pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN)
  72. #define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN)
  73. #define __PAGE_SHARED_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER)
  74. #define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
  75. #define __PAGE_COPY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
  76. #define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN)
  77. #define __PAGE_READONLY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY)
  78. #define __pgprot_modify(prot,mask,bits) \
  79. __pgprot((pgprot_val(prot) & ~(mask)) | (bits))
  80. #define pgprot_noncached(prot) \
  81. __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
  82. #define pgprot_writecombine(prot) \
  83. __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE)
  84. #define pgprot_stronglyordered(prot) \
  85. __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED)
  86. #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
  87. #define pgprot_dmacoherent(prot) \
  88. __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN)
  89. #define __HAVE_PHYS_MEM_ACCESS_PROT
  90. struct file;
  91. extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
  92. unsigned long size, pgprot_t vma_prot);
  93. #else
  94. #define pgprot_dmacoherent(prot) \
  95. __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN)
  96. #endif
  97. #endif /* __ASSEMBLY__ */
  98. /*
  99. * The table below defines the page protection levels that we insert into our
  100. * Linux page table version. These get translated into the best that the
  101. * architecture can perform. Note that on most ARM hardware:
  102. * 1) We cannot do execute protection
  103. * 2) If we could do execute protection, then read is implied
  104. * 3) write implies read permissions
  105. */
  106. #define __P000 __PAGE_NONE
  107. #define __P001 __PAGE_READONLY
  108. #define __P010 __PAGE_COPY
  109. #define __P011 __PAGE_COPY
  110. #define __P100 __PAGE_READONLY_EXEC
  111. #define __P101 __PAGE_READONLY_EXEC
  112. #define __P110 __PAGE_COPY_EXEC
  113. #define __P111 __PAGE_COPY_EXEC
  114. #define __S000 __PAGE_NONE
  115. #define __S001 __PAGE_READONLY
  116. #define __S010 __PAGE_SHARED
  117. #define __S011 __PAGE_SHARED
  118. #define __S100 __PAGE_READONLY_EXEC
  119. #define __S101 __PAGE_READONLY_EXEC
  120. #define __S110 __PAGE_SHARED_EXEC
  121. #define __S111 __PAGE_SHARED_EXEC
  122. #ifndef __ASSEMBLY__
  123. /*
  124. * ZERO_PAGE is a global shared page that is always zero: used
  125. * for zero-mapped memory areas etc..
  126. */
  127. extern struct page *empty_zero_page;
  128. #define ZERO_PAGE(vaddr) (empty_zero_page)
  129. extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
  130. /* to find an entry in a page-table-directory */
  131. #define pgd_index(addr) ((addr) >> PGDIR_SHIFT)
  132. #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
  133. /* to find an entry in a kernel page-table-directory */
  134. #define pgd_offset_k(addr) pgd_offset(&init_mm, addr)
  135. /*
  136. * The "pgd_xxx()" functions here are trivial for a folded two-level
  137. * setup: the pgd is never bad, and a pmd always exists (as it's folded
  138. * into the pgd entry)
  139. */
  140. #define pgd_none(pgd) (0)
  141. #define pgd_bad(pgd) (0)
  142. #define pgd_present(pgd) (1)
  143. #define pgd_clear(pgdp) do { } while (0)
  144. #define set_pgd(pgd,pgdp) do { } while (0)
  145. #define set_pud(pud,pudp) do { } while (0)
  146. /* Find an entry in the second-level page table.. */
  147. #define pmd_offset(dir, addr) ((pmd_t *)(dir))
  148. #define pmd_none(pmd) (!pmd_val(pmd))
  149. #define pmd_present(pmd) (pmd_val(pmd))
  150. #define pmd_bad(pmd) (pmd_val(pmd) & 2)
  151. #define copy_pmd(pmdpd,pmdps) \
  152. do { \
  153. pmdpd[0] = pmdps[0]; \
  154. pmdpd[1] = pmdps[1]; \
  155. flush_pmd_entry(pmdpd); \
  156. } while (0)
  157. #define pmd_clear(pmdp) \
  158. do { \
  159. pmdp[0] = __pmd(0); \
  160. pmdp[1] = __pmd(0); \
  161. clean_pmd_entry(pmdp); \
  162. } while (0)
  163. static inline pte_t *pmd_page_vaddr(pmd_t pmd)
  164. {
  165. return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK);
  166. }
  167. #define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
  168. /* we don't need complex calculations here as the pmd is folded into the pgd */
  169. #define pmd_addr_end(addr,end) (end)
  170. #ifndef CONFIG_HIGHPTE
  171. #define __pte_map(pmd) pmd_page_vaddr(*(pmd))
  172. #define __pte_unmap(pte) do { } while (0)
  173. #else
  174. #define __pte_map(pmd) (pte_t *)kmap_atomic(pmd_page(*(pmd)))
  175. #define __pte_unmap(pte) kunmap_atomic(pte)
  176. #endif
  177. #define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
  178. #define pte_offset_kernel(pmd,addr) (pmd_page_vaddr(*(pmd)) + pte_index(addr))
  179. #define pte_offset_map(pmd,addr) (__pte_map(pmd) + pte_index(addr))
  180. #define pte_unmap(pte) __pte_unmap(pte)
  181. #define pte_pfn(pte) ((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT)
  182. #define pfn_pte(pfn,prot) __pte(__pfn_to_phys(pfn) | pgprot_val(prot))
  183. #define pte_page(pte) pfn_to_page(pte_pfn(pte))
  184. #define mk_pte(page,prot) pfn_pte(page_to_pfn(page), prot)
  185. #define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
  186. #define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0)
  187. #if __LINUX_ARM_ARCH__ < 6
  188. static inline void __sync_icache_dcache(pte_t pteval)
  189. {
  190. }
  191. #else
  192. extern void __sync_icache_dcache(pte_t pteval);
  193. #endif
  194. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  195. pte_t *ptep, pte_t pteval)
  196. {
  197. if (addr >= TASK_SIZE)
  198. set_pte_ext(ptep, pteval, 0);
  199. else {
  200. __sync_icache_dcache(pteval);
  201. set_pte_ext(ptep, pteval, PTE_EXT_NG);
  202. }
  203. }
  204. #define pte_none(pte) (!pte_val(pte))
  205. #define pte_present(pte) (pte_val(pte) & L_PTE_PRESENT)
  206. #define pte_write(pte) (!(pte_val(pte) & L_PTE_RDONLY))
  207. #define pte_dirty(pte) (pte_val(pte) & L_PTE_DIRTY)
  208. #define pte_young(pte) (pte_val(pte) & L_PTE_YOUNG)
  209. #define pte_exec(pte) (!(pte_val(pte) & L_PTE_XN))
  210. #define pte_special(pte) (0)
  211. #define pte_present_user(pte) \
  212. ((pte_val(pte) & (L_PTE_PRESENT | L_PTE_USER)) == \
  213. (L_PTE_PRESENT | L_PTE_USER))
  214. #define PTE_BIT_FUNC(fn,op) \
  215. static inline pte_t pte_##fn(pte_t pte) { pte_val(pte) op; return pte; }
  216. PTE_BIT_FUNC(wrprotect, |= L_PTE_RDONLY);
  217. PTE_BIT_FUNC(mkwrite, &= ~L_PTE_RDONLY);
  218. PTE_BIT_FUNC(mkclean, &= ~L_PTE_DIRTY);
  219. PTE_BIT_FUNC(mkdirty, |= L_PTE_DIRTY);
  220. PTE_BIT_FUNC(mkold, &= ~L_PTE_YOUNG);
  221. PTE_BIT_FUNC(mkyoung, |= L_PTE_YOUNG);
  222. static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
  223. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  224. {
  225. const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER;
  226. pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
  227. return pte;
  228. }
  229. /*
  230. * Encode and decode a swap entry. Swap entries are stored in the Linux
  231. * page tables as follows:
  232. *
  233. * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
  234. * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
  235. * <--------------- offset --------------------> <- type --> 0 0 0
  236. *
  237. * This gives us up to 63 swap files and 32GB per swap file. Note that
  238. * the offset field is always non-zero.
  239. */
  240. #define __SWP_TYPE_SHIFT 3
  241. #define __SWP_TYPE_BITS 6
  242. #define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1)
  243. #define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
  244. #define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
  245. #define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
  246. #define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
  247. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  248. #define __swp_entry_to_pte(swp) ((pte_t) { (swp).val })
  249. /*
  250. * It is an error for the kernel to have more swap files than we can
  251. * encode in the PTEs. This ensures that we know when MAX_SWAPFILES
  252. * is increased beyond what we presently support.
  253. */
  254. #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
  255. /*
  256. * Encode and decode a file entry. File entries are stored in the Linux
  257. * page tables as follows:
  258. *
  259. * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
  260. * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
  261. * <----------------------- offset ------------------------> 1 0 0
  262. */
  263. #define pte_file(pte) (pte_val(pte) & L_PTE_FILE)
  264. #define pte_to_pgoff(x) (pte_val(x) >> 3)
  265. #define pgoff_to_pte(x) __pte(((x) << 3) | L_PTE_FILE)
  266. #define PTE_FILE_MAX_BITS 29
  267. /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
  268. /* FIXME: this is not correct */
  269. #define kern_addr_valid(addr) (1)
  270. #include <asm-generic/pgtable.h>
  271. /*
  272. * We provide our own arch_get_unmapped_area to cope with VIPT caches.
  273. */
  274. #define HAVE_ARCH_UNMAPPED_AREA
  275. /*
  276. * remap a physical page `pfn' of size `size' with page protection `prot'
  277. * into virtual address `from'
  278. */
  279. #define io_remap_pfn_range(vma,from,pfn,size,prot) \
  280. remap_pfn_range(vma, from, pfn, size, prot)
  281. #define pgtable_cache_init() do { } while (0)
  282. void identity_mapping_add(pgd_t *, unsigned long, unsigned long);
  283. void identity_mapping_del(pgd_t *, unsigned long, unsigned long);
  284. #endif /* !__ASSEMBLY__ */
  285. #endif /* CONFIG_MMU */
  286. #endif /* _ASMARM_PGTABLE_H */