oom_kill.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591
  1. /*
  2. * linux/mm/oom_kill.c
  3. *
  4. * Copyright (C) 1998,2000 Rik van Riel
  5. * Thanks go out to Claus Fischer for some serious inspiration and
  6. * for goading me into coding this file...
  7. *
  8. * The routines in this file are used to kill a process when
  9. * we're seriously out of memory. This gets called from __alloc_pages()
  10. * in mm/page_alloc.c when we really run out of memory.
  11. *
  12. * Since we won't call these routines often (on a well-configured
  13. * machine) this file will double as a 'coding guide' and a signpost
  14. * for newbie kernel hackers. It features several pointers to major
  15. * kernel subsystems and hints as to where to find out what things do.
  16. */
  17. #include <linux/oom.h>
  18. #include <linux/mm.h>
  19. #include <linux/err.h>
  20. #include <linux/sched.h>
  21. #include <linux/swap.h>
  22. #include <linux/timex.h>
  23. #include <linux/jiffies.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/module.h>
  26. #include <linux/notifier.h>
  27. #include <linux/memcontrol.h>
  28. int sysctl_panic_on_oom;
  29. int sysctl_oom_kill_allocating_task;
  30. int sysctl_oom_dump_tasks;
  31. static DEFINE_SPINLOCK(zone_scan_mutex);
  32. /* #define DEBUG */
  33. /**
  34. * badness - calculate a numeric value for how bad this task has been
  35. * @p: task struct of which task we should calculate
  36. * @uptime: current uptime in seconds
  37. * @mem: target memory controller
  38. *
  39. * The formula used is relatively simple and documented inline in the
  40. * function. The main rationale is that we want to select a good task
  41. * to kill when we run out of memory.
  42. *
  43. * Good in this context means that:
  44. * 1) we lose the minimum amount of work done
  45. * 2) we recover a large amount of memory
  46. * 3) we don't kill anything innocent of eating tons of memory
  47. * 4) we want to kill the minimum amount of processes (one)
  48. * 5) we try to kill the process the user expects us to kill, this
  49. * algorithm has been meticulously tuned to meet the principle
  50. * of least surprise ... (be careful when you change it)
  51. */
  52. unsigned long badness(struct task_struct *p, unsigned long uptime,
  53. struct mem_cgroup *mem)
  54. {
  55. unsigned long points, cpu_time, run_time, s;
  56. struct mm_struct *mm;
  57. struct task_struct *child;
  58. task_lock(p);
  59. mm = p->mm;
  60. if (!mm) {
  61. task_unlock(p);
  62. return 0;
  63. }
  64. /*
  65. * The memory size of the process is the basis for the badness.
  66. */
  67. points = mm->total_vm;
  68. /*
  69. * After this unlock we can no longer dereference local variable `mm'
  70. */
  71. task_unlock(p);
  72. /*
  73. * swapoff can easily use up all memory, so kill those first.
  74. */
  75. if (p->flags & PF_SWAPOFF)
  76. return ULONG_MAX;
  77. /*
  78. * Processes which fork a lot of child processes are likely
  79. * a good choice. We add half the vmsize of the children if they
  80. * have an own mm. This prevents forking servers to flood the
  81. * machine with an endless amount of children. In case a single
  82. * child is eating the vast majority of memory, adding only half
  83. * to the parents will make the child our kill candidate of choice.
  84. */
  85. list_for_each_entry(child, &p->children, sibling) {
  86. task_lock(child);
  87. if (child->mm != mm && child->mm)
  88. points += child->mm->total_vm/2 + 1;
  89. task_unlock(child);
  90. }
  91. /*
  92. * CPU time is in tens of seconds and run time is in thousands
  93. * of seconds. There is no particular reason for this other than
  94. * that it turned out to work very well in practice.
  95. */
  96. cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
  97. >> (SHIFT_HZ + 3);
  98. if (uptime >= p->start_time.tv_sec)
  99. run_time = (uptime - p->start_time.tv_sec) >> 10;
  100. else
  101. run_time = 0;
  102. s = int_sqrt(cpu_time);
  103. if (s)
  104. points /= s;
  105. s = int_sqrt(int_sqrt(run_time));
  106. if (s)
  107. points /= s;
  108. /*
  109. * Niced processes are most likely less important, so double
  110. * their badness points.
  111. */
  112. if (task_nice(p) > 0)
  113. points *= 2;
  114. /*
  115. * Superuser processes are usually more important, so we make it
  116. * less likely that we kill those.
  117. */
  118. if (__capable(p, CAP_SYS_ADMIN) || __capable(p, CAP_SYS_RESOURCE))
  119. points /= 4;
  120. /*
  121. * We don't want to kill a process with direct hardware access.
  122. * Not only could that mess up the hardware, but usually users
  123. * tend to only have this flag set on applications they think
  124. * of as important.
  125. */
  126. if (__capable(p, CAP_SYS_RAWIO))
  127. points /= 4;
  128. /*
  129. * If p's nodes don't overlap ours, it may still help to kill p
  130. * because p may have allocated or otherwise mapped memory on
  131. * this node before. However it will be less likely.
  132. */
  133. if (!cpuset_mems_allowed_intersects(current, p))
  134. points /= 8;
  135. /*
  136. * Adjust the score by oomkilladj.
  137. */
  138. if (p->oomkilladj) {
  139. if (p->oomkilladj > 0) {
  140. if (!points)
  141. points = 1;
  142. points <<= p->oomkilladj;
  143. } else
  144. points >>= -(p->oomkilladj);
  145. }
  146. #ifdef DEBUG
  147. printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
  148. p->pid, p->comm, points);
  149. #endif
  150. return points;
  151. }
  152. /*
  153. * Determine the type of allocation constraint.
  154. */
  155. static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
  156. gfp_t gfp_mask)
  157. {
  158. #ifdef CONFIG_NUMA
  159. struct zone *zone;
  160. struct zoneref *z;
  161. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  162. nodemask_t nodes = node_states[N_HIGH_MEMORY];
  163. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  164. if (cpuset_zone_allowed_softwall(zone, gfp_mask))
  165. node_clear(zone_to_nid(zone), nodes);
  166. else
  167. return CONSTRAINT_CPUSET;
  168. if (!nodes_empty(nodes))
  169. return CONSTRAINT_MEMORY_POLICY;
  170. #endif
  171. return CONSTRAINT_NONE;
  172. }
  173. /*
  174. * Simple selection loop. We chose the process with the highest
  175. * number of 'points'. We expect the caller will lock the tasklist.
  176. *
  177. * (not docbooked, we don't want this one cluttering up the manual)
  178. */
  179. static struct task_struct *select_bad_process(unsigned long *ppoints,
  180. struct mem_cgroup *mem)
  181. {
  182. struct task_struct *g, *p;
  183. struct task_struct *chosen = NULL;
  184. struct timespec uptime;
  185. *ppoints = 0;
  186. do_posix_clock_monotonic_gettime(&uptime);
  187. do_each_thread(g, p) {
  188. unsigned long points;
  189. /*
  190. * skip kernel threads and tasks which have already released
  191. * their mm.
  192. */
  193. if (!p->mm)
  194. continue;
  195. /* skip the init task */
  196. if (is_global_init(p))
  197. continue;
  198. if (mem && !task_in_mem_cgroup(p, mem))
  199. continue;
  200. /*
  201. * This task already has access to memory reserves and is
  202. * being killed. Don't allow any other task access to the
  203. * memory reserve.
  204. *
  205. * Note: this may have a chance of deadlock if it gets
  206. * blocked waiting for another task which itself is waiting
  207. * for memory. Is there a better alternative?
  208. */
  209. if (test_tsk_thread_flag(p, TIF_MEMDIE))
  210. return ERR_PTR(-1UL);
  211. /*
  212. * This is in the process of releasing memory so wait for it
  213. * to finish before killing some other task by mistake.
  214. *
  215. * However, if p is the current task, we allow the 'kill' to
  216. * go ahead if it is exiting: this will simply set TIF_MEMDIE,
  217. * which will allow it to gain access to memory reserves in
  218. * the process of exiting and releasing its resources.
  219. * Otherwise we could get an easy OOM deadlock.
  220. */
  221. if (p->flags & PF_EXITING) {
  222. if (p != current)
  223. return ERR_PTR(-1UL);
  224. chosen = p;
  225. *ppoints = ULONG_MAX;
  226. }
  227. if (p->oomkilladj == OOM_DISABLE)
  228. continue;
  229. points = badness(p, uptime.tv_sec, mem);
  230. if (points > *ppoints || !chosen) {
  231. chosen = p;
  232. *ppoints = points;
  233. }
  234. } while_each_thread(g, p);
  235. return chosen;
  236. }
  237. /**
  238. * dump_tasks - dump current memory state of all system tasks
  239. * @mem: target memory controller
  240. *
  241. * Dumps the current memory state of all system tasks, excluding kernel threads.
  242. * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
  243. * score, and name.
  244. *
  245. * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
  246. * shown.
  247. *
  248. * Call with tasklist_lock read-locked.
  249. */
  250. static void dump_tasks(const struct mem_cgroup *mem)
  251. {
  252. struct task_struct *g, *p;
  253. printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj "
  254. "name\n");
  255. do_each_thread(g, p) {
  256. /*
  257. * total_vm and rss sizes do not exist for tasks with a
  258. * detached mm so there's no need to report them.
  259. */
  260. if (!p->mm)
  261. continue;
  262. if (mem && !task_in_mem_cgroup(p, mem))
  263. continue;
  264. task_lock(p);
  265. printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n",
  266. p->pid, p->uid, p->tgid, p->mm->total_vm,
  267. get_mm_rss(p->mm), (int)task_cpu(p), p->oomkilladj,
  268. p->comm);
  269. task_unlock(p);
  270. } while_each_thread(g, p);
  271. }
  272. /*
  273. * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
  274. * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
  275. * set.
  276. */
  277. static void __oom_kill_task(struct task_struct *p, int verbose)
  278. {
  279. if (is_global_init(p)) {
  280. WARN_ON(1);
  281. printk(KERN_WARNING "tried to kill init!\n");
  282. return;
  283. }
  284. if (!p->mm) {
  285. WARN_ON(1);
  286. printk(KERN_WARNING "tried to kill an mm-less task!\n");
  287. return;
  288. }
  289. if (verbose)
  290. printk(KERN_ERR "Killed process %d (%s)\n",
  291. task_pid_nr(p), p->comm);
  292. /*
  293. * We give our sacrificial lamb high priority and access to
  294. * all the memory it needs. That way it should be able to
  295. * exit() and clear out its resources quickly...
  296. */
  297. p->rt.time_slice = HZ;
  298. set_tsk_thread_flag(p, TIF_MEMDIE);
  299. force_sig(SIGKILL, p);
  300. }
  301. static int oom_kill_task(struct task_struct *p)
  302. {
  303. struct mm_struct *mm;
  304. struct task_struct *g, *q;
  305. mm = p->mm;
  306. /* WARNING: mm may not be dereferenced since we did not obtain its
  307. * value from get_task_mm(p). This is OK since all we need to do is
  308. * compare mm to q->mm below.
  309. *
  310. * Furthermore, even if mm contains a non-NULL value, p->mm may
  311. * change to NULL at any time since we do not hold task_lock(p).
  312. * However, this is of no concern to us.
  313. */
  314. if (mm == NULL)
  315. return 1;
  316. /*
  317. * Don't kill the process if any threads are set to OOM_DISABLE
  318. */
  319. do_each_thread(g, q) {
  320. if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
  321. return 1;
  322. } while_each_thread(g, q);
  323. __oom_kill_task(p, 1);
  324. /*
  325. * kill all processes that share the ->mm (i.e. all threads),
  326. * but are in a different thread group. Don't let them have access
  327. * to memory reserves though, otherwise we might deplete all memory.
  328. */
  329. do_each_thread(g, q) {
  330. if (q->mm == mm && !same_thread_group(q, p))
  331. force_sig(SIGKILL, q);
  332. } while_each_thread(g, q);
  333. return 0;
  334. }
  335. static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
  336. unsigned long points, struct mem_cgroup *mem,
  337. const char *message)
  338. {
  339. struct task_struct *c;
  340. if (printk_ratelimit()) {
  341. printk(KERN_WARNING "%s invoked oom-killer: "
  342. "gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
  343. current->comm, gfp_mask, order, current->oomkilladj);
  344. dump_stack();
  345. show_mem();
  346. if (sysctl_oom_dump_tasks)
  347. dump_tasks(mem);
  348. }
  349. /*
  350. * If the task is already exiting, don't alarm the sysadmin or kill
  351. * its children or threads, just set TIF_MEMDIE so it can die quickly
  352. */
  353. if (p->flags & PF_EXITING) {
  354. __oom_kill_task(p, 0);
  355. return 0;
  356. }
  357. printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
  358. message, task_pid_nr(p), p->comm, points);
  359. /* Try to kill a child first */
  360. list_for_each_entry(c, &p->children, sibling) {
  361. if (c->mm == p->mm)
  362. continue;
  363. if (!oom_kill_task(c))
  364. return 0;
  365. }
  366. return oom_kill_task(p);
  367. }
  368. #ifdef CONFIG_CGROUP_MEM_RES_CTLR
  369. void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
  370. {
  371. unsigned long points = 0;
  372. struct task_struct *p;
  373. cgroup_lock();
  374. read_lock(&tasklist_lock);
  375. retry:
  376. p = select_bad_process(&points, mem);
  377. if (PTR_ERR(p) == -1UL)
  378. goto out;
  379. if (!p)
  380. p = current;
  381. if (oom_kill_process(p, gfp_mask, 0, points, mem,
  382. "Memory cgroup out of memory"))
  383. goto retry;
  384. out:
  385. read_unlock(&tasklist_lock);
  386. cgroup_unlock();
  387. }
  388. #endif
  389. static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
  390. int register_oom_notifier(struct notifier_block *nb)
  391. {
  392. return blocking_notifier_chain_register(&oom_notify_list, nb);
  393. }
  394. EXPORT_SYMBOL_GPL(register_oom_notifier);
  395. int unregister_oom_notifier(struct notifier_block *nb)
  396. {
  397. return blocking_notifier_chain_unregister(&oom_notify_list, nb);
  398. }
  399. EXPORT_SYMBOL_GPL(unregister_oom_notifier);
  400. /*
  401. * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
  402. * if a parallel OOM killing is already taking place that includes a zone in
  403. * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
  404. */
  405. int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
  406. {
  407. struct zoneref *z;
  408. struct zone *zone;
  409. int ret = 1;
  410. spin_lock(&zone_scan_mutex);
  411. for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
  412. if (zone_is_oom_locked(zone)) {
  413. ret = 0;
  414. goto out;
  415. }
  416. }
  417. for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
  418. /*
  419. * Lock each zone in the zonelist under zone_scan_mutex so a
  420. * parallel invocation of try_set_zone_oom() doesn't succeed
  421. * when it shouldn't.
  422. */
  423. zone_set_flag(zone, ZONE_OOM_LOCKED);
  424. }
  425. out:
  426. spin_unlock(&zone_scan_mutex);
  427. return ret;
  428. }
  429. /*
  430. * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
  431. * allocation attempts with zonelists containing them may now recall the OOM
  432. * killer, if necessary.
  433. */
  434. void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
  435. {
  436. struct zoneref *z;
  437. struct zone *zone;
  438. spin_lock(&zone_scan_mutex);
  439. for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
  440. zone_clear_flag(zone, ZONE_OOM_LOCKED);
  441. }
  442. spin_unlock(&zone_scan_mutex);
  443. }
  444. /**
  445. * out_of_memory - kill the "best" process when we run out of memory
  446. * @zonelist: zonelist pointer
  447. * @gfp_mask: memory allocation flags
  448. * @order: amount of memory being requested as a power of 2
  449. *
  450. * If we run out of memory, we have the choice between either
  451. * killing a random task (bad), letting the system crash (worse)
  452. * OR try to be smart about which process to kill. Note that we
  453. * don't have to be perfect here, we just have to be good.
  454. */
  455. void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
  456. {
  457. struct task_struct *p;
  458. unsigned long points = 0;
  459. unsigned long freed = 0;
  460. enum oom_constraint constraint;
  461. blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
  462. if (freed > 0)
  463. /* Got some memory back in the last second. */
  464. return;
  465. if (sysctl_panic_on_oom == 2)
  466. panic("out of memory. Compulsory panic_on_oom is selected.\n");
  467. /*
  468. * Check if there were limitations on the allocation (only relevant for
  469. * NUMA) that may require different handling.
  470. */
  471. constraint = constrained_alloc(zonelist, gfp_mask);
  472. read_lock(&tasklist_lock);
  473. switch (constraint) {
  474. case CONSTRAINT_MEMORY_POLICY:
  475. oom_kill_process(current, gfp_mask, order, points, NULL,
  476. "No available memory (MPOL_BIND)");
  477. break;
  478. case CONSTRAINT_NONE:
  479. if (sysctl_panic_on_oom)
  480. panic("out of memory. panic_on_oom is selected\n");
  481. /* Fall-through */
  482. case CONSTRAINT_CPUSET:
  483. if (sysctl_oom_kill_allocating_task) {
  484. oom_kill_process(current, gfp_mask, order, points, NULL,
  485. "Out of memory (oom_kill_allocating_task)");
  486. break;
  487. }
  488. retry:
  489. /*
  490. * Rambo mode: Shoot down a process and hope it solves whatever
  491. * issues we may have.
  492. */
  493. p = select_bad_process(&points, NULL);
  494. if (PTR_ERR(p) == -1UL)
  495. goto out;
  496. /* Found nothing?!?! Either we hang forever, or we panic. */
  497. if (!p) {
  498. read_unlock(&tasklist_lock);
  499. panic("Out of memory and no killable processes...\n");
  500. }
  501. if (oom_kill_process(p, gfp_mask, order, points, NULL,
  502. "Out of memory"))
  503. goto retry;
  504. break;
  505. }
  506. out:
  507. read_unlock(&tasklist_lock);
  508. /*
  509. * Give "p" a good chance of killing itself before we
  510. * retry to allocate memory unless "p" is current
  511. */
  512. if (!test_thread_flag(TIF_MEMDIE))
  513. schedule_timeout_uninterruptible(1);
  514. }