x86.c 94 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Avi Kivity <avi@qumranet.com>
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/kvm_host.h>
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include "i8254.h"
  20. #include "tss.h"
  21. #include <linux/clocksource.h>
  22. #include <linux/kvm.h>
  23. #include <linux/fs.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/module.h>
  26. #include <linux/mman.h>
  27. #include <linux/highmem.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/msr.h>
  30. #include <asm/desc.h>
  31. #define MAX_IO_MSRS 256
  32. #define CR0_RESERVED_BITS \
  33. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  34. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  35. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  36. #define CR4_RESERVED_BITS \
  37. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  38. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  39. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  40. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  41. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  42. /* EFER defaults:
  43. * - enable syscall per default because its emulated by KVM
  44. * - enable LME and LMA per default on 64 bit KVM
  45. */
  46. #ifdef CONFIG_X86_64
  47. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  48. #else
  49. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  50. #endif
  51. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  52. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  53. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  54. struct kvm_cpuid_entry2 __user *entries);
  55. struct kvm_x86_ops *kvm_x86_ops;
  56. struct kvm_stats_debugfs_item debugfs_entries[] = {
  57. { "pf_fixed", VCPU_STAT(pf_fixed) },
  58. { "pf_guest", VCPU_STAT(pf_guest) },
  59. { "tlb_flush", VCPU_STAT(tlb_flush) },
  60. { "invlpg", VCPU_STAT(invlpg) },
  61. { "exits", VCPU_STAT(exits) },
  62. { "io_exits", VCPU_STAT(io_exits) },
  63. { "mmio_exits", VCPU_STAT(mmio_exits) },
  64. { "signal_exits", VCPU_STAT(signal_exits) },
  65. { "irq_window", VCPU_STAT(irq_window_exits) },
  66. { "halt_exits", VCPU_STAT(halt_exits) },
  67. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  68. { "hypercalls", VCPU_STAT(hypercalls) },
  69. { "request_irq", VCPU_STAT(request_irq_exits) },
  70. { "irq_exits", VCPU_STAT(irq_exits) },
  71. { "host_state_reload", VCPU_STAT(host_state_reload) },
  72. { "efer_reload", VCPU_STAT(efer_reload) },
  73. { "fpu_reload", VCPU_STAT(fpu_reload) },
  74. { "insn_emulation", VCPU_STAT(insn_emulation) },
  75. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  76. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  77. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  78. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  79. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  80. { "mmu_flooded", VM_STAT(mmu_flooded) },
  81. { "mmu_recycled", VM_STAT(mmu_recycled) },
  82. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  83. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  84. { "largepages", VM_STAT(lpages) },
  85. { NULL }
  86. };
  87. unsigned long segment_base(u16 selector)
  88. {
  89. struct descriptor_table gdt;
  90. struct desc_struct *d;
  91. unsigned long table_base;
  92. unsigned long v;
  93. if (selector == 0)
  94. return 0;
  95. asm("sgdt %0" : "=m"(gdt));
  96. table_base = gdt.base;
  97. if (selector & 4) { /* from ldt */
  98. u16 ldt_selector;
  99. asm("sldt %0" : "=g"(ldt_selector));
  100. table_base = segment_base(ldt_selector);
  101. }
  102. d = (struct desc_struct *)(table_base + (selector & ~7));
  103. v = d->base0 | ((unsigned long)d->base1 << 16) |
  104. ((unsigned long)d->base2 << 24);
  105. #ifdef CONFIG_X86_64
  106. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  107. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  108. #endif
  109. return v;
  110. }
  111. EXPORT_SYMBOL_GPL(segment_base);
  112. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  113. {
  114. if (irqchip_in_kernel(vcpu->kvm))
  115. return vcpu->arch.apic_base;
  116. else
  117. return vcpu->arch.apic_base;
  118. }
  119. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  120. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  121. {
  122. /* TODO: reserve bits check */
  123. if (irqchip_in_kernel(vcpu->kvm))
  124. kvm_lapic_set_base(vcpu, data);
  125. else
  126. vcpu->arch.apic_base = data;
  127. }
  128. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  129. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  130. {
  131. WARN_ON(vcpu->arch.exception.pending);
  132. vcpu->arch.exception.pending = true;
  133. vcpu->arch.exception.has_error_code = false;
  134. vcpu->arch.exception.nr = nr;
  135. }
  136. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  137. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  138. u32 error_code)
  139. {
  140. ++vcpu->stat.pf_guest;
  141. if (vcpu->arch.exception.pending) {
  142. if (vcpu->arch.exception.nr == PF_VECTOR) {
  143. printk(KERN_DEBUG "kvm: inject_page_fault:"
  144. " double fault 0x%lx\n", addr);
  145. vcpu->arch.exception.nr = DF_VECTOR;
  146. vcpu->arch.exception.error_code = 0;
  147. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  148. /* triple fault -> shutdown */
  149. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  150. }
  151. return;
  152. }
  153. vcpu->arch.cr2 = addr;
  154. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  155. }
  156. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  157. {
  158. WARN_ON(vcpu->arch.exception.pending);
  159. vcpu->arch.exception.pending = true;
  160. vcpu->arch.exception.has_error_code = true;
  161. vcpu->arch.exception.nr = nr;
  162. vcpu->arch.exception.error_code = error_code;
  163. }
  164. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  165. static void __queue_exception(struct kvm_vcpu *vcpu)
  166. {
  167. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  168. vcpu->arch.exception.has_error_code,
  169. vcpu->arch.exception.error_code);
  170. }
  171. /*
  172. * Load the pae pdptrs. Return true is they are all valid.
  173. */
  174. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  175. {
  176. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  177. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  178. int i;
  179. int ret;
  180. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  181. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  182. offset * sizeof(u64), sizeof(pdpte));
  183. if (ret < 0) {
  184. ret = 0;
  185. goto out;
  186. }
  187. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  188. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  189. ret = 0;
  190. goto out;
  191. }
  192. }
  193. ret = 1;
  194. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  195. out:
  196. return ret;
  197. }
  198. EXPORT_SYMBOL_GPL(load_pdptrs);
  199. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  200. {
  201. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  202. bool changed = true;
  203. int r;
  204. if (is_long_mode(vcpu) || !is_pae(vcpu))
  205. return false;
  206. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  207. if (r < 0)
  208. goto out;
  209. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  210. out:
  211. return changed;
  212. }
  213. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  214. {
  215. if (cr0 & CR0_RESERVED_BITS) {
  216. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  217. cr0, vcpu->arch.cr0);
  218. kvm_inject_gp(vcpu, 0);
  219. return;
  220. }
  221. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  222. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  223. kvm_inject_gp(vcpu, 0);
  224. return;
  225. }
  226. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  227. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  228. "and a clear PE flag\n");
  229. kvm_inject_gp(vcpu, 0);
  230. return;
  231. }
  232. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  233. #ifdef CONFIG_X86_64
  234. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  235. int cs_db, cs_l;
  236. if (!is_pae(vcpu)) {
  237. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  238. "in long mode while PAE is disabled\n");
  239. kvm_inject_gp(vcpu, 0);
  240. return;
  241. }
  242. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  243. if (cs_l) {
  244. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  245. "in long mode while CS.L == 1\n");
  246. kvm_inject_gp(vcpu, 0);
  247. return;
  248. }
  249. } else
  250. #endif
  251. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  252. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  253. "reserved bits\n");
  254. kvm_inject_gp(vcpu, 0);
  255. return;
  256. }
  257. }
  258. kvm_x86_ops->set_cr0(vcpu, cr0);
  259. vcpu->arch.cr0 = cr0;
  260. kvm_mmu_reset_context(vcpu);
  261. return;
  262. }
  263. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  264. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  265. {
  266. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  267. KVMTRACE_1D(LMSW, vcpu,
  268. (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
  269. handler);
  270. }
  271. EXPORT_SYMBOL_GPL(kvm_lmsw);
  272. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  273. {
  274. if (cr4 & CR4_RESERVED_BITS) {
  275. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  276. kvm_inject_gp(vcpu, 0);
  277. return;
  278. }
  279. if (is_long_mode(vcpu)) {
  280. if (!(cr4 & X86_CR4_PAE)) {
  281. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  282. "in long mode\n");
  283. kvm_inject_gp(vcpu, 0);
  284. return;
  285. }
  286. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  287. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  288. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  289. kvm_inject_gp(vcpu, 0);
  290. return;
  291. }
  292. if (cr4 & X86_CR4_VMXE) {
  293. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  294. kvm_inject_gp(vcpu, 0);
  295. return;
  296. }
  297. kvm_x86_ops->set_cr4(vcpu, cr4);
  298. vcpu->arch.cr4 = cr4;
  299. kvm_mmu_reset_context(vcpu);
  300. }
  301. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  302. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  303. {
  304. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  305. kvm_mmu_flush_tlb(vcpu);
  306. return;
  307. }
  308. if (is_long_mode(vcpu)) {
  309. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  310. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  311. kvm_inject_gp(vcpu, 0);
  312. return;
  313. }
  314. } else {
  315. if (is_pae(vcpu)) {
  316. if (cr3 & CR3_PAE_RESERVED_BITS) {
  317. printk(KERN_DEBUG
  318. "set_cr3: #GP, reserved bits\n");
  319. kvm_inject_gp(vcpu, 0);
  320. return;
  321. }
  322. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  323. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  324. "reserved bits\n");
  325. kvm_inject_gp(vcpu, 0);
  326. return;
  327. }
  328. }
  329. /*
  330. * We don't check reserved bits in nonpae mode, because
  331. * this isn't enforced, and VMware depends on this.
  332. */
  333. }
  334. /*
  335. * Does the new cr3 value map to physical memory? (Note, we
  336. * catch an invalid cr3 even in real-mode, because it would
  337. * cause trouble later on when we turn on paging anyway.)
  338. *
  339. * A real CPU would silently accept an invalid cr3 and would
  340. * attempt to use it - with largely undefined (and often hard
  341. * to debug) behavior on the guest side.
  342. */
  343. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  344. kvm_inject_gp(vcpu, 0);
  345. else {
  346. vcpu->arch.cr3 = cr3;
  347. vcpu->arch.mmu.new_cr3(vcpu);
  348. }
  349. }
  350. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  351. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  352. {
  353. if (cr8 & CR8_RESERVED_BITS) {
  354. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  355. kvm_inject_gp(vcpu, 0);
  356. return;
  357. }
  358. if (irqchip_in_kernel(vcpu->kvm))
  359. kvm_lapic_set_tpr(vcpu, cr8);
  360. else
  361. vcpu->arch.cr8 = cr8;
  362. }
  363. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  364. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  365. {
  366. if (irqchip_in_kernel(vcpu->kvm))
  367. return kvm_lapic_get_cr8(vcpu);
  368. else
  369. return vcpu->arch.cr8;
  370. }
  371. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  372. /*
  373. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  374. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  375. *
  376. * This list is modified at module load time to reflect the
  377. * capabilities of the host cpu.
  378. */
  379. static u32 msrs_to_save[] = {
  380. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  381. MSR_K6_STAR,
  382. #ifdef CONFIG_X86_64
  383. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  384. #endif
  385. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  386. MSR_IA32_PERF_STATUS,
  387. };
  388. static unsigned num_msrs_to_save;
  389. static u32 emulated_msrs[] = {
  390. MSR_IA32_MISC_ENABLE,
  391. };
  392. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  393. {
  394. if (efer & efer_reserved_bits) {
  395. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  396. efer);
  397. kvm_inject_gp(vcpu, 0);
  398. return;
  399. }
  400. if (is_paging(vcpu)
  401. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  402. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  403. kvm_inject_gp(vcpu, 0);
  404. return;
  405. }
  406. kvm_x86_ops->set_efer(vcpu, efer);
  407. efer &= ~EFER_LMA;
  408. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  409. vcpu->arch.shadow_efer = efer;
  410. }
  411. void kvm_enable_efer_bits(u64 mask)
  412. {
  413. efer_reserved_bits &= ~mask;
  414. }
  415. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  416. /*
  417. * Writes msr value into into the appropriate "register".
  418. * Returns 0 on success, non-0 otherwise.
  419. * Assumes vcpu_load() was already called.
  420. */
  421. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  422. {
  423. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  424. }
  425. /*
  426. * Adapt set_msr() to msr_io()'s calling convention
  427. */
  428. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  429. {
  430. return kvm_set_msr(vcpu, index, *data);
  431. }
  432. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  433. {
  434. static int version;
  435. struct kvm_wall_clock wc;
  436. struct timespec wc_ts;
  437. if (!wall_clock)
  438. return;
  439. version++;
  440. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  441. wc_ts = current_kernel_time();
  442. wc.wc_sec = wc_ts.tv_sec;
  443. wc.wc_nsec = wc_ts.tv_nsec;
  444. wc.wc_version = version;
  445. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  446. version++;
  447. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  448. }
  449. static void kvm_write_guest_time(struct kvm_vcpu *v)
  450. {
  451. struct timespec ts;
  452. unsigned long flags;
  453. struct kvm_vcpu_arch *vcpu = &v->arch;
  454. void *shared_kaddr;
  455. if ((!vcpu->time_page))
  456. return;
  457. /* Keep irq disabled to prevent changes to the clock */
  458. local_irq_save(flags);
  459. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  460. &vcpu->hv_clock.tsc_timestamp);
  461. ktime_get_ts(&ts);
  462. local_irq_restore(flags);
  463. /* With all the info we got, fill in the values */
  464. vcpu->hv_clock.system_time = ts.tv_nsec +
  465. (NSEC_PER_SEC * (u64)ts.tv_sec);
  466. /*
  467. * The interface expects us to write an even number signaling that the
  468. * update is finished. Since the guest won't see the intermediate
  469. * state, we just write "2" at the end
  470. */
  471. vcpu->hv_clock.version = 2;
  472. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  473. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  474. sizeof(vcpu->hv_clock));
  475. kunmap_atomic(shared_kaddr, KM_USER0);
  476. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  477. }
  478. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  479. {
  480. switch (msr) {
  481. case MSR_EFER:
  482. set_efer(vcpu, data);
  483. break;
  484. case MSR_IA32_MC0_STATUS:
  485. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  486. __func__, data);
  487. break;
  488. case MSR_IA32_MCG_STATUS:
  489. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  490. __func__, data);
  491. break;
  492. case MSR_IA32_MCG_CTL:
  493. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  494. __func__, data);
  495. break;
  496. case MSR_IA32_UCODE_REV:
  497. case MSR_IA32_UCODE_WRITE:
  498. case 0x200 ... 0x2ff: /* MTRRs */
  499. break;
  500. case MSR_IA32_APICBASE:
  501. kvm_set_apic_base(vcpu, data);
  502. break;
  503. case MSR_IA32_MISC_ENABLE:
  504. vcpu->arch.ia32_misc_enable_msr = data;
  505. break;
  506. case MSR_KVM_WALL_CLOCK:
  507. vcpu->kvm->arch.wall_clock = data;
  508. kvm_write_wall_clock(vcpu->kvm, data);
  509. break;
  510. case MSR_KVM_SYSTEM_TIME: {
  511. if (vcpu->arch.time_page) {
  512. kvm_release_page_dirty(vcpu->arch.time_page);
  513. vcpu->arch.time_page = NULL;
  514. }
  515. vcpu->arch.time = data;
  516. /* we verify if the enable bit is set... */
  517. if (!(data & 1))
  518. break;
  519. /* ...but clean it before doing the actual write */
  520. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  521. vcpu->arch.hv_clock.tsc_to_system_mul =
  522. clocksource_khz2mult(tsc_khz, 22);
  523. vcpu->arch.hv_clock.tsc_shift = 22;
  524. down_read(&current->mm->mmap_sem);
  525. vcpu->arch.time_page =
  526. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  527. up_read(&current->mm->mmap_sem);
  528. if (is_error_page(vcpu->arch.time_page)) {
  529. kvm_release_page_clean(vcpu->arch.time_page);
  530. vcpu->arch.time_page = NULL;
  531. }
  532. kvm_write_guest_time(vcpu);
  533. break;
  534. }
  535. default:
  536. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  537. return 1;
  538. }
  539. return 0;
  540. }
  541. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  542. /*
  543. * Reads an msr value (of 'msr_index') into 'pdata'.
  544. * Returns 0 on success, non-0 otherwise.
  545. * Assumes vcpu_load() was already called.
  546. */
  547. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  548. {
  549. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  550. }
  551. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  552. {
  553. u64 data;
  554. switch (msr) {
  555. case 0xc0010010: /* SYSCFG */
  556. case 0xc0010015: /* HWCR */
  557. case MSR_IA32_PLATFORM_ID:
  558. case MSR_IA32_P5_MC_ADDR:
  559. case MSR_IA32_P5_MC_TYPE:
  560. case MSR_IA32_MC0_CTL:
  561. case MSR_IA32_MCG_STATUS:
  562. case MSR_IA32_MCG_CAP:
  563. case MSR_IA32_MCG_CTL:
  564. case MSR_IA32_MC0_MISC:
  565. case MSR_IA32_MC0_MISC+4:
  566. case MSR_IA32_MC0_MISC+8:
  567. case MSR_IA32_MC0_MISC+12:
  568. case MSR_IA32_MC0_MISC+16:
  569. case MSR_IA32_UCODE_REV:
  570. case MSR_IA32_EBL_CR_POWERON:
  571. /* MTRR registers */
  572. case 0xfe:
  573. case 0x200 ... 0x2ff:
  574. data = 0;
  575. break;
  576. case 0xcd: /* fsb frequency */
  577. data = 3;
  578. break;
  579. case MSR_IA32_APICBASE:
  580. data = kvm_get_apic_base(vcpu);
  581. break;
  582. case MSR_IA32_MISC_ENABLE:
  583. data = vcpu->arch.ia32_misc_enable_msr;
  584. break;
  585. case MSR_IA32_PERF_STATUS:
  586. /* TSC increment by tick */
  587. data = 1000ULL;
  588. /* CPU multiplier */
  589. data |= (((uint64_t)4ULL) << 40);
  590. break;
  591. case MSR_EFER:
  592. data = vcpu->arch.shadow_efer;
  593. break;
  594. case MSR_KVM_WALL_CLOCK:
  595. data = vcpu->kvm->arch.wall_clock;
  596. break;
  597. case MSR_KVM_SYSTEM_TIME:
  598. data = vcpu->arch.time;
  599. break;
  600. default:
  601. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  602. return 1;
  603. }
  604. *pdata = data;
  605. return 0;
  606. }
  607. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  608. /*
  609. * Read or write a bunch of msrs. All parameters are kernel addresses.
  610. *
  611. * @return number of msrs set successfully.
  612. */
  613. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  614. struct kvm_msr_entry *entries,
  615. int (*do_msr)(struct kvm_vcpu *vcpu,
  616. unsigned index, u64 *data))
  617. {
  618. int i;
  619. vcpu_load(vcpu);
  620. down_read(&vcpu->kvm->slots_lock);
  621. for (i = 0; i < msrs->nmsrs; ++i)
  622. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  623. break;
  624. up_read(&vcpu->kvm->slots_lock);
  625. vcpu_put(vcpu);
  626. return i;
  627. }
  628. /*
  629. * Read or write a bunch of msrs. Parameters are user addresses.
  630. *
  631. * @return number of msrs set successfully.
  632. */
  633. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  634. int (*do_msr)(struct kvm_vcpu *vcpu,
  635. unsigned index, u64 *data),
  636. int writeback)
  637. {
  638. struct kvm_msrs msrs;
  639. struct kvm_msr_entry *entries;
  640. int r, n;
  641. unsigned size;
  642. r = -EFAULT;
  643. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  644. goto out;
  645. r = -E2BIG;
  646. if (msrs.nmsrs >= MAX_IO_MSRS)
  647. goto out;
  648. r = -ENOMEM;
  649. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  650. entries = vmalloc(size);
  651. if (!entries)
  652. goto out;
  653. r = -EFAULT;
  654. if (copy_from_user(entries, user_msrs->entries, size))
  655. goto out_free;
  656. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  657. if (r < 0)
  658. goto out_free;
  659. r = -EFAULT;
  660. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  661. goto out_free;
  662. r = n;
  663. out_free:
  664. vfree(entries);
  665. out:
  666. return r;
  667. }
  668. /*
  669. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  670. * cached on it.
  671. */
  672. void decache_vcpus_on_cpu(int cpu)
  673. {
  674. struct kvm *vm;
  675. struct kvm_vcpu *vcpu;
  676. int i;
  677. spin_lock(&kvm_lock);
  678. list_for_each_entry(vm, &vm_list, vm_list)
  679. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  680. vcpu = vm->vcpus[i];
  681. if (!vcpu)
  682. continue;
  683. /*
  684. * If the vcpu is locked, then it is running on some
  685. * other cpu and therefore it is not cached on the
  686. * cpu in question.
  687. *
  688. * If it's not locked, check the last cpu it executed
  689. * on.
  690. */
  691. if (mutex_trylock(&vcpu->mutex)) {
  692. if (vcpu->cpu == cpu) {
  693. kvm_x86_ops->vcpu_decache(vcpu);
  694. vcpu->cpu = -1;
  695. }
  696. mutex_unlock(&vcpu->mutex);
  697. }
  698. }
  699. spin_unlock(&kvm_lock);
  700. }
  701. int kvm_dev_ioctl_check_extension(long ext)
  702. {
  703. int r;
  704. switch (ext) {
  705. case KVM_CAP_IRQCHIP:
  706. case KVM_CAP_HLT:
  707. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  708. case KVM_CAP_USER_MEMORY:
  709. case KVM_CAP_SET_TSS_ADDR:
  710. case KVM_CAP_EXT_CPUID:
  711. case KVM_CAP_CLOCKSOURCE:
  712. case KVM_CAP_PIT:
  713. case KVM_CAP_NOP_IO_DELAY:
  714. case KVM_CAP_MP_STATE:
  715. r = 1;
  716. break;
  717. case KVM_CAP_VAPIC:
  718. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  719. break;
  720. case KVM_CAP_NR_VCPUS:
  721. r = KVM_MAX_VCPUS;
  722. break;
  723. case KVM_CAP_NR_MEMSLOTS:
  724. r = KVM_MEMORY_SLOTS;
  725. break;
  726. case KVM_CAP_PV_MMU:
  727. r = !tdp_enabled;
  728. break;
  729. default:
  730. r = 0;
  731. break;
  732. }
  733. return r;
  734. }
  735. long kvm_arch_dev_ioctl(struct file *filp,
  736. unsigned int ioctl, unsigned long arg)
  737. {
  738. void __user *argp = (void __user *)arg;
  739. long r;
  740. switch (ioctl) {
  741. case KVM_GET_MSR_INDEX_LIST: {
  742. struct kvm_msr_list __user *user_msr_list = argp;
  743. struct kvm_msr_list msr_list;
  744. unsigned n;
  745. r = -EFAULT;
  746. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  747. goto out;
  748. n = msr_list.nmsrs;
  749. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  750. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  751. goto out;
  752. r = -E2BIG;
  753. if (n < num_msrs_to_save)
  754. goto out;
  755. r = -EFAULT;
  756. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  757. num_msrs_to_save * sizeof(u32)))
  758. goto out;
  759. if (copy_to_user(user_msr_list->indices
  760. + num_msrs_to_save * sizeof(u32),
  761. &emulated_msrs,
  762. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  763. goto out;
  764. r = 0;
  765. break;
  766. }
  767. case KVM_GET_SUPPORTED_CPUID: {
  768. struct kvm_cpuid2 __user *cpuid_arg = argp;
  769. struct kvm_cpuid2 cpuid;
  770. r = -EFAULT;
  771. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  772. goto out;
  773. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  774. cpuid_arg->entries);
  775. if (r)
  776. goto out;
  777. r = -EFAULT;
  778. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  779. goto out;
  780. r = 0;
  781. break;
  782. }
  783. default:
  784. r = -EINVAL;
  785. }
  786. out:
  787. return r;
  788. }
  789. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  790. {
  791. kvm_x86_ops->vcpu_load(vcpu, cpu);
  792. kvm_write_guest_time(vcpu);
  793. }
  794. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  795. {
  796. kvm_x86_ops->vcpu_put(vcpu);
  797. kvm_put_guest_fpu(vcpu);
  798. }
  799. static int is_efer_nx(void)
  800. {
  801. u64 efer;
  802. rdmsrl(MSR_EFER, efer);
  803. return efer & EFER_NX;
  804. }
  805. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  806. {
  807. int i;
  808. struct kvm_cpuid_entry2 *e, *entry;
  809. entry = NULL;
  810. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  811. e = &vcpu->arch.cpuid_entries[i];
  812. if (e->function == 0x80000001) {
  813. entry = e;
  814. break;
  815. }
  816. }
  817. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  818. entry->edx &= ~(1 << 20);
  819. printk(KERN_INFO "kvm: guest NX capability removed\n");
  820. }
  821. }
  822. /* when an old userspace process fills a new kernel module */
  823. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  824. struct kvm_cpuid *cpuid,
  825. struct kvm_cpuid_entry __user *entries)
  826. {
  827. int r, i;
  828. struct kvm_cpuid_entry *cpuid_entries;
  829. r = -E2BIG;
  830. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  831. goto out;
  832. r = -ENOMEM;
  833. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  834. if (!cpuid_entries)
  835. goto out;
  836. r = -EFAULT;
  837. if (copy_from_user(cpuid_entries, entries,
  838. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  839. goto out_free;
  840. for (i = 0; i < cpuid->nent; i++) {
  841. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  842. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  843. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  844. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  845. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  846. vcpu->arch.cpuid_entries[i].index = 0;
  847. vcpu->arch.cpuid_entries[i].flags = 0;
  848. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  849. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  850. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  851. }
  852. vcpu->arch.cpuid_nent = cpuid->nent;
  853. cpuid_fix_nx_cap(vcpu);
  854. r = 0;
  855. out_free:
  856. vfree(cpuid_entries);
  857. out:
  858. return r;
  859. }
  860. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  861. struct kvm_cpuid2 *cpuid,
  862. struct kvm_cpuid_entry2 __user *entries)
  863. {
  864. int r;
  865. r = -E2BIG;
  866. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  867. goto out;
  868. r = -EFAULT;
  869. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  870. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  871. goto out;
  872. vcpu->arch.cpuid_nent = cpuid->nent;
  873. return 0;
  874. out:
  875. return r;
  876. }
  877. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  878. struct kvm_cpuid2 *cpuid,
  879. struct kvm_cpuid_entry2 __user *entries)
  880. {
  881. int r;
  882. r = -E2BIG;
  883. if (cpuid->nent < vcpu->arch.cpuid_nent)
  884. goto out;
  885. r = -EFAULT;
  886. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  887. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  888. goto out;
  889. return 0;
  890. out:
  891. cpuid->nent = vcpu->arch.cpuid_nent;
  892. return r;
  893. }
  894. static inline u32 bit(int bitno)
  895. {
  896. return 1 << (bitno & 31);
  897. }
  898. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  899. u32 index)
  900. {
  901. entry->function = function;
  902. entry->index = index;
  903. cpuid_count(entry->function, entry->index,
  904. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  905. entry->flags = 0;
  906. }
  907. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  908. u32 index, int *nent, int maxnent)
  909. {
  910. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  911. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  912. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  913. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  914. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  915. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  916. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  917. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  918. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  919. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  920. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  921. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  922. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  923. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  924. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  925. bit(X86_FEATURE_PGE) |
  926. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  927. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  928. bit(X86_FEATURE_SYSCALL) |
  929. (bit(X86_FEATURE_NX) && is_efer_nx()) |
  930. #ifdef CONFIG_X86_64
  931. bit(X86_FEATURE_LM) |
  932. #endif
  933. bit(X86_FEATURE_MMXEXT) |
  934. bit(X86_FEATURE_3DNOWEXT) |
  935. bit(X86_FEATURE_3DNOW);
  936. const u32 kvm_supported_word3_x86_features =
  937. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  938. const u32 kvm_supported_word6_x86_features =
  939. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
  940. /* all func 2 cpuid_count() should be called on the same cpu */
  941. get_cpu();
  942. do_cpuid_1_ent(entry, function, index);
  943. ++*nent;
  944. switch (function) {
  945. case 0:
  946. entry->eax = min(entry->eax, (u32)0xb);
  947. break;
  948. case 1:
  949. entry->edx &= kvm_supported_word0_x86_features;
  950. entry->ecx &= kvm_supported_word3_x86_features;
  951. break;
  952. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  953. * may return different values. This forces us to get_cpu() before
  954. * issuing the first command, and also to emulate this annoying behavior
  955. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  956. case 2: {
  957. int t, times = entry->eax & 0xff;
  958. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  959. for (t = 1; t < times && *nent < maxnent; ++t) {
  960. do_cpuid_1_ent(&entry[t], function, 0);
  961. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  962. ++*nent;
  963. }
  964. break;
  965. }
  966. /* function 4 and 0xb have additional index. */
  967. case 4: {
  968. int i, cache_type;
  969. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  970. /* read more entries until cache_type is zero */
  971. for (i = 1; *nent < maxnent; ++i) {
  972. cache_type = entry[i - 1].eax & 0x1f;
  973. if (!cache_type)
  974. break;
  975. do_cpuid_1_ent(&entry[i], function, i);
  976. entry[i].flags |=
  977. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  978. ++*nent;
  979. }
  980. break;
  981. }
  982. case 0xb: {
  983. int i, level_type;
  984. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  985. /* read more entries until level_type is zero */
  986. for (i = 1; *nent < maxnent; ++i) {
  987. level_type = entry[i - 1].ecx & 0xff;
  988. if (!level_type)
  989. break;
  990. do_cpuid_1_ent(&entry[i], function, i);
  991. entry[i].flags |=
  992. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  993. ++*nent;
  994. }
  995. break;
  996. }
  997. case 0x80000000:
  998. entry->eax = min(entry->eax, 0x8000001a);
  999. break;
  1000. case 0x80000001:
  1001. entry->edx &= kvm_supported_word1_x86_features;
  1002. entry->ecx &= kvm_supported_word6_x86_features;
  1003. break;
  1004. }
  1005. put_cpu();
  1006. }
  1007. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1008. struct kvm_cpuid_entry2 __user *entries)
  1009. {
  1010. struct kvm_cpuid_entry2 *cpuid_entries;
  1011. int limit, nent = 0, r = -E2BIG;
  1012. u32 func;
  1013. if (cpuid->nent < 1)
  1014. goto out;
  1015. r = -ENOMEM;
  1016. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1017. if (!cpuid_entries)
  1018. goto out;
  1019. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1020. limit = cpuid_entries[0].eax;
  1021. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1022. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1023. &nent, cpuid->nent);
  1024. r = -E2BIG;
  1025. if (nent >= cpuid->nent)
  1026. goto out_free;
  1027. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1028. limit = cpuid_entries[nent - 1].eax;
  1029. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1030. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1031. &nent, cpuid->nent);
  1032. r = -EFAULT;
  1033. if (copy_to_user(entries, cpuid_entries,
  1034. nent * sizeof(struct kvm_cpuid_entry2)))
  1035. goto out_free;
  1036. cpuid->nent = nent;
  1037. r = 0;
  1038. out_free:
  1039. vfree(cpuid_entries);
  1040. out:
  1041. return r;
  1042. }
  1043. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1044. struct kvm_lapic_state *s)
  1045. {
  1046. vcpu_load(vcpu);
  1047. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1048. vcpu_put(vcpu);
  1049. return 0;
  1050. }
  1051. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1052. struct kvm_lapic_state *s)
  1053. {
  1054. vcpu_load(vcpu);
  1055. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1056. kvm_apic_post_state_restore(vcpu);
  1057. vcpu_put(vcpu);
  1058. return 0;
  1059. }
  1060. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1061. struct kvm_interrupt *irq)
  1062. {
  1063. if (irq->irq < 0 || irq->irq >= 256)
  1064. return -EINVAL;
  1065. if (irqchip_in_kernel(vcpu->kvm))
  1066. return -ENXIO;
  1067. vcpu_load(vcpu);
  1068. set_bit(irq->irq, vcpu->arch.irq_pending);
  1069. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1070. vcpu_put(vcpu);
  1071. return 0;
  1072. }
  1073. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1074. struct kvm_tpr_access_ctl *tac)
  1075. {
  1076. if (tac->flags)
  1077. return -EINVAL;
  1078. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1079. return 0;
  1080. }
  1081. long kvm_arch_vcpu_ioctl(struct file *filp,
  1082. unsigned int ioctl, unsigned long arg)
  1083. {
  1084. struct kvm_vcpu *vcpu = filp->private_data;
  1085. void __user *argp = (void __user *)arg;
  1086. int r;
  1087. switch (ioctl) {
  1088. case KVM_GET_LAPIC: {
  1089. struct kvm_lapic_state lapic;
  1090. memset(&lapic, 0, sizeof lapic);
  1091. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  1092. if (r)
  1093. goto out;
  1094. r = -EFAULT;
  1095. if (copy_to_user(argp, &lapic, sizeof lapic))
  1096. goto out;
  1097. r = 0;
  1098. break;
  1099. }
  1100. case KVM_SET_LAPIC: {
  1101. struct kvm_lapic_state lapic;
  1102. r = -EFAULT;
  1103. if (copy_from_user(&lapic, argp, sizeof lapic))
  1104. goto out;
  1105. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  1106. if (r)
  1107. goto out;
  1108. r = 0;
  1109. break;
  1110. }
  1111. case KVM_INTERRUPT: {
  1112. struct kvm_interrupt irq;
  1113. r = -EFAULT;
  1114. if (copy_from_user(&irq, argp, sizeof irq))
  1115. goto out;
  1116. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1117. if (r)
  1118. goto out;
  1119. r = 0;
  1120. break;
  1121. }
  1122. case KVM_SET_CPUID: {
  1123. struct kvm_cpuid __user *cpuid_arg = argp;
  1124. struct kvm_cpuid cpuid;
  1125. r = -EFAULT;
  1126. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1127. goto out;
  1128. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1129. if (r)
  1130. goto out;
  1131. break;
  1132. }
  1133. case KVM_SET_CPUID2: {
  1134. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1135. struct kvm_cpuid2 cpuid;
  1136. r = -EFAULT;
  1137. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1138. goto out;
  1139. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1140. cpuid_arg->entries);
  1141. if (r)
  1142. goto out;
  1143. break;
  1144. }
  1145. case KVM_GET_CPUID2: {
  1146. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1147. struct kvm_cpuid2 cpuid;
  1148. r = -EFAULT;
  1149. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1150. goto out;
  1151. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1152. cpuid_arg->entries);
  1153. if (r)
  1154. goto out;
  1155. r = -EFAULT;
  1156. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1157. goto out;
  1158. r = 0;
  1159. break;
  1160. }
  1161. case KVM_GET_MSRS:
  1162. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1163. break;
  1164. case KVM_SET_MSRS:
  1165. r = msr_io(vcpu, argp, do_set_msr, 0);
  1166. break;
  1167. case KVM_TPR_ACCESS_REPORTING: {
  1168. struct kvm_tpr_access_ctl tac;
  1169. r = -EFAULT;
  1170. if (copy_from_user(&tac, argp, sizeof tac))
  1171. goto out;
  1172. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1173. if (r)
  1174. goto out;
  1175. r = -EFAULT;
  1176. if (copy_to_user(argp, &tac, sizeof tac))
  1177. goto out;
  1178. r = 0;
  1179. break;
  1180. };
  1181. case KVM_SET_VAPIC_ADDR: {
  1182. struct kvm_vapic_addr va;
  1183. r = -EINVAL;
  1184. if (!irqchip_in_kernel(vcpu->kvm))
  1185. goto out;
  1186. r = -EFAULT;
  1187. if (copy_from_user(&va, argp, sizeof va))
  1188. goto out;
  1189. r = 0;
  1190. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1191. break;
  1192. }
  1193. default:
  1194. r = -EINVAL;
  1195. }
  1196. out:
  1197. return r;
  1198. }
  1199. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1200. {
  1201. int ret;
  1202. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1203. return -1;
  1204. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1205. return ret;
  1206. }
  1207. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1208. u32 kvm_nr_mmu_pages)
  1209. {
  1210. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1211. return -EINVAL;
  1212. down_write(&kvm->slots_lock);
  1213. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1214. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1215. up_write(&kvm->slots_lock);
  1216. return 0;
  1217. }
  1218. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1219. {
  1220. return kvm->arch.n_alloc_mmu_pages;
  1221. }
  1222. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1223. {
  1224. int i;
  1225. struct kvm_mem_alias *alias;
  1226. for (i = 0; i < kvm->arch.naliases; ++i) {
  1227. alias = &kvm->arch.aliases[i];
  1228. if (gfn >= alias->base_gfn
  1229. && gfn < alias->base_gfn + alias->npages)
  1230. return alias->target_gfn + gfn - alias->base_gfn;
  1231. }
  1232. return gfn;
  1233. }
  1234. /*
  1235. * Set a new alias region. Aliases map a portion of physical memory into
  1236. * another portion. This is useful for memory windows, for example the PC
  1237. * VGA region.
  1238. */
  1239. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1240. struct kvm_memory_alias *alias)
  1241. {
  1242. int r, n;
  1243. struct kvm_mem_alias *p;
  1244. r = -EINVAL;
  1245. /* General sanity checks */
  1246. if (alias->memory_size & (PAGE_SIZE - 1))
  1247. goto out;
  1248. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1249. goto out;
  1250. if (alias->slot >= KVM_ALIAS_SLOTS)
  1251. goto out;
  1252. if (alias->guest_phys_addr + alias->memory_size
  1253. < alias->guest_phys_addr)
  1254. goto out;
  1255. if (alias->target_phys_addr + alias->memory_size
  1256. < alias->target_phys_addr)
  1257. goto out;
  1258. down_write(&kvm->slots_lock);
  1259. p = &kvm->arch.aliases[alias->slot];
  1260. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1261. p->npages = alias->memory_size >> PAGE_SHIFT;
  1262. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1263. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1264. if (kvm->arch.aliases[n - 1].npages)
  1265. break;
  1266. kvm->arch.naliases = n;
  1267. kvm_mmu_zap_all(kvm);
  1268. up_write(&kvm->slots_lock);
  1269. return 0;
  1270. out:
  1271. return r;
  1272. }
  1273. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1274. {
  1275. int r;
  1276. r = 0;
  1277. switch (chip->chip_id) {
  1278. case KVM_IRQCHIP_PIC_MASTER:
  1279. memcpy(&chip->chip.pic,
  1280. &pic_irqchip(kvm)->pics[0],
  1281. sizeof(struct kvm_pic_state));
  1282. break;
  1283. case KVM_IRQCHIP_PIC_SLAVE:
  1284. memcpy(&chip->chip.pic,
  1285. &pic_irqchip(kvm)->pics[1],
  1286. sizeof(struct kvm_pic_state));
  1287. break;
  1288. case KVM_IRQCHIP_IOAPIC:
  1289. memcpy(&chip->chip.ioapic,
  1290. ioapic_irqchip(kvm),
  1291. sizeof(struct kvm_ioapic_state));
  1292. break;
  1293. default:
  1294. r = -EINVAL;
  1295. break;
  1296. }
  1297. return r;
  1298. }
  1299. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1300. {
  1301. int r;
  1302. r = 0;
  1303. switch (chip->chip_id) {
  1304. case KVM_IRQCHIP_PIC_MASTER:
  1305. memcpy(&pic_irqchip(kvm)->pics[0],
  1306. &chip->chip.pic,
  1307. sizeof(struct kvm_pic_state));
  1308. break;
  1309. case KVM_IRQCHIP_PIC_SLAVE:
  1310. memcpy(&pic_irqchip(kvm)->pics[1],
  1311. &chip->chip.pic,
  1312. sizeof(struct kvm_pic_state));
  1313. break;
  1314. case KVM_IRQCHIP_IOAPIC:
  1315. memcpy(ioapic_irqchip(kvm),
  1316. &chip->chip.ioapic,
  1317. sizeof(struct kvm_ioapic_state));
  1318. break;
  1319. default:
  1320. r = -EINVAL;
  1321. break;
  1322. }
  1323. kvm_pic_update_irq(pic_irqchip(kvm));
  1324. return r;
  1325. }
  1326. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1327. {
  1328. int r = 0;
  1329. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1330. return r;
  1331. }
  1332. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1333. {
  1334. int r = 0;
  1335. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1336. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1337. return r;
  1338. }
  1339. /*
  1340. * Get (and clear) the dirty memory log for a memory slot.
  1341. */
  1342. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1343. struct kvm_dirty_log *log)
  1344. {
  1345. int r;
  1346. int n;
  1347. struct kvm_memory_slot *memslot;
  1348. int is_dirty = 0;
  1349. down_write(&kvm->slots_lock);
  1350. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1351. if (r)
  1352. goto out;
  1353. /* If nothing is dirty, don't bother messing with page tables. */
  1354. if (is_dirty) {
  1355. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1356. kvm_flush_remote_tlbs(kvm);
  1357. memslot = &kvm->memslots[log->slot];
  1358. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1359. memset(memslot->dirty_bitmap, 0, n);
  1360. }
  1361. r = 0;
  1362. out:
  1363. up_write(&kvm->slots_lock);
  1364. return r;
  1365. }
  1366. long kvm_arch_vm_ioctl(struct file *filp,
  1367. unsigned int ioctl, unsigned long arg)
  1368. {
  1369. struct kvm *kvm = filp->private_data;
  1370. void __user *argp = (void __user *)arg;
  1371. int r = -EINVAL;
  1372. switch (ioctl) {
  1373. case KVM_SET_TSS_ADDR:
  1374. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1375. if (r < 0)
  1376. goto out;
  1377. break;
  1378. case KVM_SET_MEMORY_REGION: {
  1379. struct kvm_memory_region kvm_mem;
  1380. struct kvm_userspace_memory_region kvm_userspace_mem;
  1381. r = -EFAULT;
  1382. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1383. goto out;
  1384. kvm_userspace_mem.slot = kvm_mem.slot;
  1385. kvm_userspace_mem.flags = kvm_mem.flags;
  1386. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1387. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1388. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1389. if (r)
  1390. goto out;
  1391. break;
  1392. }
  1393. case KVM_SET_NR_MMU_PAGES:
  1394. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1395. if (r)
  1396. goto out;
  1397. break;
  1398. case KVM_GET_NR_MMU_PAGES:
  1399. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1400. break;
  1401. case KVM_SET_MEMORY_ALIAS: {
  1402. struct kvm_memory_alias alias;
  1403. r = -EFAULT;
  1404. if (copy_from_user(&alias, argp, sizeof alias))
  1405. goto out;
  1406. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  1407. if (r)
  1408. goto out;
  1409. break;
  1410. }
  1411. case KVM_CREATE_IRQCHIP:
  1412. r = -ENOMEM;
  1413. kvm->arch.vpic = kvm_create_pic(kvm);
  1414. if (kvm->arch.vpic) {
  1415. r = kvm_ioapic_init(kvm);
  1416. if (r) {
  1417. kfree(kvm->arch.vpic);
  1418. kvm->arch.vpic = NULL;
  1419. goto out;
  1420. }
  1421. } else
  1422. goto out;
  1423. break;
  1424. case KVM_CREATE_PIT:
  1425. r = -ENOMEM;
  1426. kvm->arch.vpit = kvm_create_pit(kvm);
  1427. if (kvm->arch.vpit)
  1428. r = 0;
  1429. break;
  1430. case KVM_IRQ_LINE: {
  1431. struct kvm_irq_level irq_event;
  1432. r = -EFAULT;
  1433. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1434. goto out;
  1435. if (irqchip_in_kernel(kvm)) {
  1436. mutex_lock(&kvm->lock);
  1437. if (irq_event.irq < 16)
  1438. kvm_pic_set_irq(pic_irqchip(kvm),
  1439. irq_event.irq,
  1440. irq_event.level);
  1441. kvm_ioapic_set_irq(kvm->arch.vioapic,
  1442. irq_event.irq,
  1443. irq_event.level);
  1444. mutex_unlock(&kvm->lock);
  1445. r = 0;
  1446. }
  1447. break;
  1448. }
  1449. case KVM_GET_IRQCHIP: {
  1450. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1451. struct kvm_irqchip chip;
  1452. r = -EFAULT;
  1453. if (copy_from_user(&chip, argp, sizeof chip))
  1454. goto out;
  1455. r = -ENXIO;
  1456. if (!irqchip_in_kernel(kvm))
  1457. goto out;
  1458. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  1459. if (r)
  1460. goto out;
  1461. r = -EFAULT;
  1462. if (copy_to_user(argp, &chip, sizeof chip))
  1463. goto out;
  1464. r = 0;
  1465. break;
  1466. }
  1467. case KVM_SET_IRQCHIP: {
  1468. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1469. struct kvm_irqchip chip;
  1470. r = -EFAULT;
  1471. if (copy_from_user(&chip, argp, sizeof chip))
  1472. goto out;
  1473. r = -ENXIO;
  1474. if (!irqchip_in_kernel(kvm))
  1475. goto out;
  1476. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  1477. if (r)
  1478. goto out;
  1479. r = 0;
  1480. break;
  1481. }
  1482. case KVM_GET_PIT: {
  1483. struct kvm_pit_state ps;
  1484. r = -EFAULT;
  1485. if (copy_from_user(&ps, argp, sizeof ps))
  1486. goto out;
  1487. r = -ENXIO;
  1488. if (!kvm->arch.vpit)
  1489. goto out;
  1490. r = kvm_vm_ioctl_get_pit(kvm, &ps);
  1491. if (r)
  1492. goto out;
  1493. r = -EFAULT;
  1494. if (copy_to_user(argp, &ps, sizeof ps))
  1495. goto out;
  1496. r = 0;
  1497. break;
  1498. }
  1499. case KVM_SET_PIT: {
  1500. struct kvm_pit_state ps;
  1501. r = -EFAULT;
  1502. if (copy_from_user(&ps, argp, sizeof ps))
  1503. goto out;
  1504. r = -ENXIO;
  1505. if (!kvm->arch.vpit)
  1506. goto out;
  1507. r = kvm_vm_ioctl_set_pit(kvm, &ps);
  1508. if (r)
  1509. goto out;
  1510. r = 0;
  1511. break;
  1512. }
  1513. default:
  1514. ;
  1515. }
  1516. out:
  1517. return r;
  1518. }
  1519. static void kvm_init_msr_list(void)
  1520. {
  1521. u32 dummy[2];
  1522. unsigned i, j;
  1523. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1524. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1525. continue;
  1526. if (j < i)
  1527. msrs_to_save[j] = msrs_to_save[i];
  1528. j++;
  1529. }
  1530. num_msrs_to_save = j;
  1531. }
  1532. /*
  1533. * Only apic need an MMIO device hook, so shortcut now..
  1534. */
  1535. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1536. gpa_t addr)
  1537. {
  1538. struct kvm_io_device *dev;
  1539. if (vcpu->arch.apic) {
  1540. dev = &vcpu->arch.apic->dev;
  1541. if (dev->in_range(dev, addr))
  1542. return dev;
  1543. }
  1544. return NULL;
  1545. }
  1546. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1547. gpa_t addr)
  1548. {
  1549. struct kvm_io_device *dev;
  1550. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1551. if (dev == NULL)
  1552. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1553. return dev;
  1554. }
  1555. int emulator_read_std(unsigned long addr,
  1556. void *val,
  1557. unsigned int bytes,
  1558. struct kvm_vcpu *vcpu)
  1559. {
  1560. void *data = val;
  1561. int r = X86EMUL_CONTINUE;
  1562. while (bytes) {
  1563. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1564. unsigned offset = addr & (PAGE_SIZE-1);
  1565. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1566. int ret;
  1567. if (gpa == UNMAPPED_GVA) {
  1568. r = X86EMUL_PROPAGATE_FAULT;
  1569. goto out;
  1570. }
  1571. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1572. if (ret < 0) {
  1573. r = X86EMUL_UNHANDLEABLE;
  1574. goto out;
  1575. }
  1576. bytes -= tocopy;
  1577. data += tocopy;
  1578. addr += tocopy;
  1579. }
  1580. out:
  1581. return r;
  1582. }
  1583. EXPORT_SYMBOL_GPL(emulator_read_std);
  1584. static int emulator_read_emulated(unsigned long addr,
  1585. void *val,
  1586. unsigned int bytes,
  1587. struct kvm_vcpu *vcpu)
  1588. {
  1589. struct kvm_io_device *mmio_dev;
  1590. gpa_t gpa;
  1591. if (vcpu->mmio_read_completed) {
  1592. memcpy(val, vcpu->mmio_data, bytes);
  1593. vcpu->mmio_read_completed = 0;
  1594. return X86EMUL_CONTINUE;
  1595. }
  1596. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1597. /* For APIC access vmexit */
  1598. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1599. goto mmio;
  1600. if (emulator_read_std(addr, val, bytes, vcpu)
  1601. == X86EMUL_CONTINUE)
  1602. return X86EMUL_CONTINUE;
  1603. if (gpa == UNMAPPED_GVA)
  1604. return X86EMUL_PROPAGATE_FAULT;
  1605. mmio:
  1606. /*
  1607. * Is this MMIO handled locally?
  1608. */
  1609. mutex_lock(&vcpu->kvm->lock);
  1610. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1611. if (mmio_dev) {
  1612. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1613. mutex_unlock(&vcpu->kvm->lock);
  1614. return X86EMUL_CONTINUE;
  1615. }
  1616. mutex_unlock(&vcpu->kvm->lock);
  1617. vcpu->mmio_needed = 1;
  1618. vcpu->mmio_phys_addr = gpa;
  1619. vcpu->mmio_size = bytes;
  1620. vcpu->mmio_is_write = 0;
  1621. return X86EMUL_UNHANDLEABLE;
  1622. }
  1623. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1624. const void *val, int bytes)
  1625. {
  1626. int ret;
  1627. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1628. if (ret < 0)
  1629. return 0;
  1630. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1631. return 1;
  1632. }
  1633. static int emulator_write_emulated_onepage(unsigned long addr,
  1634. const void *val,
  1635. unsigned int bytes,
  1636. struct kvm_vcpu *vcpu)
  1637. {
  1638. struct kvm_io_device *mmio_dev;
  1639. gpa_t gpa;
  1640. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1641. if (gpa == UNMAPPED_GVA) {
  1642. kvm_inject_page_fault(vcpu, addr, 2);
  1643. return X86EMUL_PROPAGATE_FAULT;
  1644. }
  1645. /* For APIC access vmexit */
  1646. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1647. goto mmio;
  1648. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1649. return X86EMUL_CONTINUE;
  1650. mmio:
  1651. /*
  1652. * Is this MMIO handled locally?
  1653. */
  1654. mutex_lock(&vcpu->kvm->lock);
  1655. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1656. if (mmio_dev) {
  1657. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1658. mutex_unlock(&vcpu->kvm->lock);
  1659. return X86EMUL_CONTINUE;
  1660. }
  1661. mutex_unlock(&vcpu->kvm->lock);
  1662. vcpu->mmio_needed = 1;
  1663. vcpu->mmio_phys_addr = gpa;
  1664. vcpu->mmio_size = bytes;
  1665. vcpu->mmio_is_write = 1;
  1666. memcpy(vcpu->mmio_data, val, bytes);
  1667. return X86EMUL_CONTINUE;
  1668. }
  1669. int emulator_write_emulated(unsigned long addr,
  1670. const void *val,
  1671. unsigned int bytes,
  1672. struct kvm_vcpu *vcpu)
  1673. {
  1674. /* Crossing a page boundary? */
  1675. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1676. int rc, now;
  1677. now = -addr & ~PAGE_MASK;
  1678. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1679. if (rc != X86EMUL_CONTINUE)
  1680. return rc;
  1681. addr += now;
  1682. val += now;
  1683. bytes -= now;
  1684. }
  1685. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1686. }
  1687. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1688. static int emulator_cmpxchg_emulated(unsigned long addr,
  1689. const void *old,
  1690. const void *new,
  1691. unsigned int bytes,
  1692. struct kvm_vcpu *vcpu)
  1693. {
  1694. static int reported;
  1695. if (!reported) {
  1696. reported = 1;
  1697. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1698. }
  1699. #ifndef CONFIG_X86_64
  1700. /* guests cmpxchg8b have to be emulated atomically */
  1701. if (bytes == 8) {
  1702. gpa_t gpa;
  1703. struct page *page;
  1704. char *kaddr;
  1705. u64 val;
  1706. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1707. if (gpa == UNMAPPED_GVA ||
  1708. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1709. goto emul_write;
  1710. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  1711. goto emul_write;
  1712. val = *(u64 *)new;
  1713. down_read(&current->mm->mmap_sem);
  1714. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1715. up_read(&current->mm->mmap_sem);
  1716. kaddr = kmap_atomic(page, KM_USER0);
  1717. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  1718. kunmap_atomic(kaddr, KM_USER0);
  1719. kvm_release_page_dirty(page);
  1720. }
  1721. emul_write:
  1722. #endif
  1723. return emulator_write_emulated(addr, new, bytes, vcpu);
  1724. }
  1725. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1726. {
  1727. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1728. }
  1729. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1730. {
  1731. return X86EMUL_CONTINUE;
  1732. }
  1733. int emulate_clts(struct kvm_vcpu *vcpu)
  1734. {
  1735. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  1736. return X86EMUL_CONTINUE;
  1737. }
  1738. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1739. {
  1740. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1741. switch (dr) {
  1742. case 0 ... 3:
  1743. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1744. return X86EMUL_CONTINUE;
  1745. default:
  1746. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  1747. return X86EMUL_UNHANDLEABLE;
  1748. }
  1749. }
  1750. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1751. {
  1752. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1753. int exception;
  1754. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1755. if (exception) {
  1756. /* FIXME: better handling */
  1757. return X86EMUL_UNHANDLEABLE;
  1758. }
  1759. return X86EMUL_CONTINUE;
  1760. }
  1761. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1762. {
  1763. static int reported;
  1764. u8 opcodes[4];
  1765. unsigned long rip = vcpu->arch.rip;
  1766. unsigned long rip_linear;
  1767. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1768. if (reported)
  1769. return;
  1770. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1771. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1772. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1773. reported = 1;
  1774. }
  1775. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1776. static struct x86_emulate_ops emulate_ops = {
  1777. .read_std = emulator_read_std,
  1778. .read_emulated = emulator_read_emulated,
  1779. .write_emulated = emulator_write_emulated,
  1780. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1781. };
  1782. int emulate_instruction(struct kvm_vcpu *vcpu,
  1783. struct kvm_run *run,
  1784. unsigned long cr2,
  1785. u16 error_code,
  1786. int emulation_type)
  1787. {
  1788. int r;
  1789. struct decode_cache *c;
  1790. vcpu->arch.mmio_fault_cr2 = cr2;
  1791. kvm_x86_ops->cache_regs(vcpu);
  1792. vcpu->mmio_is_write = 0;
  1793. vcpu->arch.pio.string = 0;
  1794. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  1795. int cs_db, cs_l;
  1796. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1797. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  1798. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1799. vcpu->arch.emulate_ctxt.mode =
  1800. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  1801. ? X86EMUL_MODE_REAL : cs_l
  1802. ? X86EMUL_MODE_PROT64 : cs_db
  1803. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1804. if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1805. vcpu->arch.emulate_ctxt.cs_base = 0;
  1806. vcpu->arch.emulate_ctxt.ds_base = 0;
  1807. vcpu->arch.emulate_ctxt.es_base = 0;
  1808. vcpu->arch.emulate_ctxt.ss_base = 0;
  1809. } else {
  1810. vcpu->arch.emulate_ctxt.cs_base =
  1811. get_segment_base(vcpu, VCPU_SREG_CS);
  1812. vcpu->arch.emulate_ctxt.ds_base =
  1813. get_segment_base(vcpu, VCPU_SREG_DS);
  1814. vcpu->arch.emulate_ctxt.es_base =
  1815. get_segment_base(vcpu, VCPU_SREG_ES);
  1816. vcpu->arch.emulate_ctxt.ss_base =
  1817. get_segment_base(vcpu, VCPU_SREG_SS);
  1818. }
  1819. vcpu->arch.emulate_ctxt.gs_base =
  1820. get_segment_base(vcpu, VCPU_SREG_GS);
  1821. vcpu->arch.emulate_ctxt.fs_base =
  1822. get_segment_base(vcpu, VCPU_SREG_FS);
  1823. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1824. /* Reject the instructions other than VMCALL/VMMCALL when
  1825. * try to emulate invalid opcode */
  1826. c = &vcpu->arch.emulate_ctxt.decode;
  1827. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  1828. (!(c->twobyte && c->b == 0x01 &&
  1829. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  1830. c->modrm_mod == 3 && c->modrm_rm == 1)))
  1831. return EMULATE_FAIL;
  1832. ++vcpu->stat.insn_emulation;
  1833. if (r) {
  1834. ++vcpu->stat.insn_emulation_fail;
  1835. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1836. return EMULATE_DONE;
  1837. return EMULATE_FAIL;
  1838. }
  1839. }
  1840. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1841. if (vcpu->arch.pio.string)
  1842. return EMULATE_DO_MMIO;
  1843. if ((r || vcpu->mmio_is_write) && run) {
  1844. run->exit_reason = KVM_EXIT_MMIO;
  1845. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1846. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1847. run->mmio.len = vcpu->mmio_size;
  1848. run->mmio.is_write = vcpu->mmio_is_write;
  1849. }
  1850. if (r) {
  1851. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1852. return EMULATE_DONE;
  1853. if (!vcpu->mmio_needed) {
  1854. kvm_report_emulation_failure(vcpu, "mmio");
  1855. return EMULATE_FAIL;
  1856. }
  1857. return EMULATE_DO_MMIO;
  1858. }
  1859. kvm_x86_ops->decache_regs(vcpu);
  1860. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  1861. if (vcpu->mmio_is_write) {
  1862. vcpu->mmio_needed = 0;
  1863. return EMULATE_DO_MMIO;
  1864. }
  1865. return EMULATE_DONE;
  1866. }
  1867. EXPORT_SYMBOL_GPL(emulate_instruction);
  1868. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  1869. {
  1870. int i;
  1871. for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
  1872. if (vcpu->arch.pio.guest_pages[i]) {
  1873. kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
  1874. vcpu->arch.pio.guest_pages[i] = NULL;
  1875. }
  1876. }
  1877. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1878. {
  1879. void *p = vcpu->arch.pio_data;
  1880. void *q;
  1881. unsigned bytes;
  1882. int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
  1883. q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1884. PAGE_KERNEL);
  1885. if (!q) {
  1886. free_pio_guest_pages(vcpu);
  1887. return -ENOMEM;
  1888. }
  1889. q += vcpu->arch.pio.guest_page_offset;
  1890. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  1891. if (vcpu->arch.pio.in)
  1892. memcpy(q, p, bytes);
  1893. else
  1894. memcpy(p, q, bytes);
  1895. q -= vcpu->arch.pio.guest_page_offset;
  1896. vunmap(q);
  1897. free_pio_guest_pages(vcpu);
  1898. return 0;
  1899. }
  1900. int complete_pio(struct kvm_vcpu *vcpu)
  1901. {
  1902. struct kvm_pio_request *io = &vcpu->arch.pio;
  1903. long delta;
  1904. int r;
  1905. kvm_x86_ops->cache_regs(vcpu);
  1906. if (!io->string) {
  1907. if (io->in)
  1908. memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
  1909. io->size);
  1910. } else {
  1911. if (io->in) {
  1912. r = pio_copy_data(vcpu);
  1913. if (r) {
  1914. kvm_x86_ops->cache_regs(vcpu);
  1915. return r;
  1916. }
  1917. }
  1918. delta = 1;
  1919. if (io->rep) {
  1920. delta *= io->cur_count;
  1921. /*
  1922. * The size of the register should really depend on
  1923. * current address size.
  1924. */
  1925. vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
  1926. }
  1927. if (io->down)
  1928. delta = -delta;
  1929. delta *= io->size;
  1930. if (io->in)
  1931. vcpu->arch.regs[VCPU_REGS_RDI] += delta;
  1932. else
  1933. vcpu->arch.regs[VCPU_REGS_RSI] += delta;
  1934. }
  1935. kvm_x86_ops->decache_regs(vcpu);
  1936. io->count -= io->cur_count;
  1937. io->cur_count = 0;
  1938. return 0;
  1939. }
  1940. static void kernel_pio(struct kvm_io_device *pio_dev,
  1941. struct kvm_vcpu *vcpu,
  1942. void *pd)
  1943. {
  1944. /* TODO: String I/O for in kernel device */
  1945. mutex_lock(&vcpu->kvm->lock);
  1946. if (vcpu->arch.pio.in)
  1947. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  1948. vcpu->arch.pio.size,
  1949. pd);
  1950. else
  1951. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  1952. vcpu->arch.pio.size,
  1953. pd);
  1954. mutex_unlock(&vcpu->kvm->lock);
  1955. }
  1956. static void pio_string_write(struct kvm_io_device *pio_dev,
  1957. struct kvm_vcpu *vcpu)
  1958. {
  1959. struct kvm_pio_request *io = &vcpu->arch.pio;
  1960. void *pd = vcpu->arch.pio_data;
  1961. int i;
  1962. mutex_lock(&vcpu->kvm->lock);
  1963. for (i = 0; i < io->cur_count; i++) {
  1964. kvm_iodevice_write(pio_dev, io->port,
  1965. io->size,
  1966. pd);
  1967. pd += io->size;
  1968. }
  1969. mutex_unlock(&vcpu->kvm->lock);
  1970. }
  1971. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1972. gpa_t addr)
  1973. {
  1974. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1975. }
  1976. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1977. int size, unsigned port)
  1978. {
  1979. struct kvm_io_device *pio_dev;
  1980. vcpu->run->exit_reason = KVM_EXIT_IO;
  1981. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1982. vcpu->run->io.size = vcpu->arch.pio.size = size;
  1983. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1984. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  1985. vcpu->run->io.port = vcpu->arch.pio.port = port;
  1986. vcpu->arch.pio.in = in;
  1987. vcpu->arch.pio.string = 0;
  1988. vcpu->arch.pio.down = 0;
  1989. vcpu->arch.pio.guest_page_offset = 0;
  1990. vcpu->arch.pio.rep = 0;
  1991. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  1992. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  1993. handler);
  1994. else
  1995. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  1996. handler);
  1997. kvm_x86_ops->cache_regs(vcpu);
  1998. memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
  1999. kvm_x86_ops->decache_regs(vcpu);
  2000. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2001. pio_dev = vcpu_find_pio_dev(vcpu, port);
  2002. if (pio_dev) {
  2003. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2004. complete_pio(vcpu);
  2005. return 1;
  2006. }
  2007. return 0;
  2008. }
  2009. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2010. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2011. int size, unsigned long count, int down,
  2012. gva_t address, int rep, unsigned port)
  2013. {
  2014. unsigned now, in_page;
  2015. int i, ret = 0;
  2016. int nr_pages = 1;
  2017. struct page *page;
  2018. struct kvm_io_device *pio_dev;
  2019. vcpu->run->exit_reason = KVM_EXIT_IO;
  2020. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2021. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2022. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2023. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2024. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2025. vcpu->arch.pio.in = in;
  2026. vcpu->arch.pio.string = 1;
  2027. vcpu->arch.pio.down = down;
  2028. vcpu->arch.pio.guest_page_offset = offset_in_page(address);
  2029. vcpu->arch.pio.rep = rep;
  2030. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2031. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2032. handler);
  2033. else
  2034. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2035. handler);
  2036. if (!count) {
  2037. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2038. return 1;
  2039. }
  2040. if (!down)
  2041. in_page = PAGE_SIZE - offset_in_page(address);
  2042. else
  2043. in_page = offset_in_page(address) + size;
  2044. now = min(count, (unsigned long)in_page / size);
  2045. if (!now) {
  2046. /*
  2047. * String I/O straddles page boundary. Pin two guest pages
  2048. * so that we satisfy atomicity constraints. Do just one
  2049. * transaction to avoid complexity.
  2050. */
  2051. nr_pages = 2;
  2052. now = 1;
  2053. }
  2054. if (down) {
  2055. /*
  2056. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2057. */
  2058. pr_unimpl(vcpu, "guest string pio down\n");
  2059. kvm_inject_gp(vcpu, 0);
  2060. return 1;
  2061. }
  2062. vcpu->run->io.count = now;
  2063. vcpu->arch.pio.cur_count = now;
  2064. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2065. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2066. for (i = 0; i < nr_pages; ++i) {
  2067. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  2068. vcpu->arch.pio.guest_pages[i] = page;
  2069. if (!page) {
  2070. kvm_inject_gp(vcpu, 0);
  2071. free_pio_guest_pages(vcpu);
  2072. return 1;
  2073. }
  2074. }
  2075. pio_dev = vcpu_find_pio_dev(vcpu, port);
  2076. if (!vcpu->arch.pio.in) {
  2077. /* string PIO write */
  2078. ret = pio_copy_data(vcpu);
  2079. if (ret >= 0 && pio_dev) {
  2080. pio_string_write(pio_dev, vcpu);
  2081. complete_pio(vcpu);
  2082. if (vcpu->arch.pio.count == 0)
  2083. ret = 1;
  2084. }
  2085. } else if (pio_dev)
  2086. pr_unimpl(vcpu, "no string pio read support yet, "
  2087. "port %x size %d count %ld\n",
  2088. port, size, count);
  2089. return ret;
  2090. }
  2091. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2092. int kvm_arch_init(void *opaque)
  2093. {
  2094. int r;
  2095. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2096. if (kvm_x86_ops) {
  2097. printk(KERN_ERR "kvm: already loaded the other module\n");
  2098. r = -EEXIST;
  2099. goto out;
  2100. }
  2101. if (!ops->cpu_has_kvm_support()) {
  2102. printk(KERN_ERR "kvm: no hardware support\n");
  2103. r = -EOPNOTSUPP;
  2104. goto out;
  2105. }
  2106. if (ops->disabled_by_bios()) {
  2107. printk(KERN_ERR "kvm: disabled by bios\n");
  2108. r = -EOPNOTSUPP;
  2109. goto out;
  2110. }
  2111. r = kvm_mmu_module_init();
  2112. if (r)
  2113. goto out;
  2114. kvm_init_msr_list();
  2115. kvm_x86_ops = ops;
  2116. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2117. return 0;
  2118. out:
  2119. return r;
  2120. }
  2121. void kvm_arch_exit(void)
  2122. {
  2123. kvm_x86_ops = NULL;
  2124. kvm_mmu_module_exit();
  2125. }
  2126. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2127. {
  2128. ++vcpu->stat.halt_exits;
  2129. KVMTRACE_0D(HLT, vcpu, handler);
  2130. if (irqchip_in_kernel(vcpu->kvm)) {
  2131. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2132. up_read(&vcpu->kvm->slots_lock);
  2133. kvm_vcpu_block(vcpu);
  2134. down_read(&vcpu->kvm->slots_lock);
  2135. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  2136. return -EINTR;
  2137. return 1;
  2138. } else {
  2139. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2140. return 0;
  2141. }
  2142. }
  2143. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2144. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2145. unsigned long a1)
  2146. {
  2147. if (is_long_mode(vcpu))
  2148. return a0;
  2149. else
  2150. return a0 | ((gpa_t)a1 << 32);
  2151. }
  2152. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2153. {
  2154. unsigned long nr, a0, a1, a2, a3, ret;
  2155. int r = 1;
  2156. kvm_x86_ops->cache_regs(vcpu);
  2157. nr = vcpu->arch.regs[VCPU_REGS_RAX];
  2158. a0 = vcpu->arch.regs[VCPU_REGS_RBX];
  2159. a1 = vcpu->arch.regs[VCPU_REGS_RCX];
  2160. a2 = vcpu->arch.regs[VCPU_REGS_RDX];
  2161. a3 = vcpu->arch.regs[VCPU_REGS_RSI];
  2162. KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
  2163. if (!is_long_mode(vcpu)) {
  2164. nr &= 0xFFFFFFFF;
  2165. a0 &= 0xFFFFFFFF;
  2166. a1 &= 0xFFFFFFFF;
  2167. a2 &= 0xFFFFFFFF;
  2168. a3 &= 0xFFFFFFFF;
  2169. }
  2170. switch (nr) {
  2171. case KVM_HC_VAPIC_POLL_IRQ:
  2172. ret = 0;
  2173. break;
  2174. case KVM_HC_MMU_OP:
  2175. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2176. break;
  2177. default:
  2178. ret = -KVM_ENOSYS;
  2179. break;
  2180. }
  2181. vcpu->arch.regs[VCPU_REGS_RAX] = ret;
  2182. kvm_x86_ops->decache_regs(vcpu);
  2183. ++vcpu->stat.hypercalls;
  2184. return r;
  2185. }
  2186. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2187. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2188. {
  2189. char instruction[3];
  2190. int ret = 0;
  2191. /*
  2192. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2193. * to ensure that the updated hypercall appears atomically across all
  2194. * VCPUs.
  2195. */
  2196. kvm_mmu_zap_all(vcpu->kvm);
  2197. kvm_x86_ops->cache_regs(vcpu);
  2198. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2199. if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
  2200. != X86EMUL_CONTINUE)
  2201. ret = -EFAULT;
  2202. return ret;
  2203. }
  2204. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2205. {
  2206. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2207. }
  2208. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2209. {
  2210. struct descriptor_table dt = { limit, base };
  2211. kvm_x86_ops->set_gdt(vcpu, &dt);
  2212. }
  2213. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2214. {
  2215. struct descriptor_table dt = { limit, base };
  2216. kvm_x86_ops->set_idt(vcpu, &dt);
  2217. }
  2218. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2219. unsigned long *rflags)
  2220. {
  2221. kvm_lmsw(vcpu, msw);
  2222. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2223. }
  2224. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2225. {
  2226. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2227. switch (cr) {
  2228. case 0:
  2229. return vcpu->arch.cr0;
  2230. case 2:
  2231. return vcpu->arch.cr2;
  2232. case 3:
  2233. return vcpu->arch.cr3;
  2234. case 4:
  2235. return vcpu->arch.cr4;
  2236. case 8:
  2237. return kvm_get_cr8(vcpu);
  2238. default:
  2239. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2240. return 0;
  2241. }
  2242. }
  2243. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2244. unsigned long *rflags)
  2245. {
  2246. switch (cr) {
  2247. case 0:
  2248. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2249. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2250. break;
  2251. case 2:
  2252. vcpu->arch.cr2 = val;
  2253. break;
  2254. case 3:
  2255. kvm_set_cr3(vcpu, val);
  2256. break;
  2257. case 4:
  2258. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2259. break;
  2260. case 8:
  2261. kvm_set_cr8(vcpu, val & 0xfUL);
  2262. break;
  2263. default:
  2264. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2265. }
  2266. }
  2267. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2268. {
  2269. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2270. int j, nent = vcpu->arch.cpuid_nent;
  2271. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2272. /* when no next entry is found, the current entry[i] is reselected */
  2273. for (j = i + 1; j == i; j = (j + 1) % nent) {
  2274. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2275. if (ej->function == e->function) {
  2276. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2277. return j;
  2278. }
  2279. }
  2280. return 0; /* silence gcc, even though control never reaches here */
  2281. }
  2282. /* find an entry with matching function, matching index (if needed), and that
  2283. * should be read next (if it's stateful) */
  2284. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2285. u32 function, u32 index)
  2286. {
  2287. if (e->function != function)
  2288. return 0;
  2289. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2290. return 0;
  2291. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2292. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2293. return 0;
  2294. return 1;
  2295. }
  2296. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2297. {
  2298. int i;
  2299. u32 function, index;
  2300. struct kvm_cpuid_entry2 *e, *best;
  2301. kvm_x86_ops->cache_regs(vcpu);
  2302. function = vcpu->arch.regs[VCPU_REGS_RAX];
  2303. index = vcpu->arch.regs[VCPU_REGS_RCX];
  2304. vcpu->arch.regs[VCPU_REGS_RAX] = 0;
  2305. vcpu->arch.regs[VCPU_REGS_RBX] = 0;
  2306. vcpu->arch.regs[VCPU_REGS_RCX] = 0;
  2307. vcpu->arch.regs[VCPU_REGS_RDX] = 0;
  2308. best = NULL;
  2309. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2310. e = &vcpu->arch.cpuid_entries[i];
  2311. if (is_matching_cpuid_entry(e, function, index)) {
  2312. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2313. move_to_next_stateful_cpuid_entry(vcpu, i);
  2314. best = e;
  2315. break;
  2316. }
  2317. /*
  2318. * Both basic or both extended?
  2319. */
  2320. if (((e->function ^ function) & 0x80000000) == 0)
  2321. if (!best || e->function > best->function)
  2322. best = e;
  2323. }
  2324. if (best) {
  2325. vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
  2326. vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
  2327. vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
  2328. vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
  2329. }
  2330. kvm_x86_ops->decache_regs(vcpu);
  2331. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2332. KVMTRACE_5D(CPUID, vcpu, function,
  2333. (u32)vcpu->arch.regs[VCPU_REGS_RAX],
  2334. (u32)vcpu->arch.regs[VCPU_REGS_RBX],
  2335. (u32)vcpu->arch.regs[VCPU_REGS_RCX],
  2336. (u32)vcpu->arch.regs[VCPU_REGS_RDX], handler);
  2337. }
  2338. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2339. /*
  2340. * Check if userspace requested an interrupt window, and that the
  2341. * interrupt window is open.
  2342. *
  2343. * No need to exit to userspace if we already have an interrupt queued.
  2344. */
  2345. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2346. struct kvm_run *kvm_run)
  2347. {
  2348. return (!vcpu->arch.irq_summary &&
  2349. kvm_run->request_interrupt_window &&
  2350. vcpu->arch.interrupt_window_open &&
  2351. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2352. }
  2353. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2354. struct kvm_run *kvm_run)
  2355. {
  2356. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2357. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2358. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2359. if (irqchip_in_kernel(vcpu->kvm))
  2360. kvm_run->ready_for_interrupt_injection = 1;
  2361. else
  2362. kvm_run->ready_for_interrupt_injection =
  2363. (vcpu->arch.interrupt_window_open &&
  2364. vcpu->arch.irq_summary == 0);
  2365. }
  2366. static void vapic_enter(struct kvm_vcpu *vcpu)
  2367. {
  2368. struct kvm_lapic *apic = vcpu->arch.apic;
  2369. struct page *page;
  2370. if (!apic || !apic->vapic_addr)
  2371. return;
  2372. down_read(&current->mm->mmap_sem);
  2373. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2374. up_read(&current->mm->mmap_sem);
  2375. vcpu->arch.apic->vapic_page = page;
  2376. }
  2377. static void vapic_exit(struct kvm_vcpu *vcpu)
  2378. {
  2379. struct kvm_lapic *apic = vcpu->arch.apic;
  2380. if (!apic || !apic->vapic_addr)
  2381. return;
  2382. kvm_release_page_dirty(apic->vapic_page);
  2383. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2384. }
  2385. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2386. {
  2387. int r;
  2388. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  2389. pr_debug("vcpu %d received sipi with vector # %x\n",
  2390. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2391. kvm_lapic_reset(vcpu);
  2392. r = kvm_x86_ops->vcpu_reset(vcpu);
  2393. if (r)
  2394. return r;
  2395. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  2396. }
  2397. down_read(&vcpu->kvm->slots_lock);
  2398. vapic_enter(vcpu);
  2399. preempted:
  2400. if (vcpu->guest_debug.enabled)
  2401. kvm_x86_ops->guest_debug_pre(vcpu);
  2402. again:
  2403. if (vcpu->requests)
  2404. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2405. kvm_mmu_unload(vcpu);
  2406. r = kvm_mmu_reload(vcpu);
  2407. if (unlikely(r))
  2408. goto out;
  2409. if (vcpu->requests) {
  2410. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2411. __kvm_migrate_apic_timer(vcpu);
  2412. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2413. &vcpu->requests)) {
  2414. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2415. r = 0;
  2416. goto out;
  2417. }
  2418. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  2419. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2420. r = 0;
  2421. goto out;
  2422. }
  2423. }
  2424. kvm_inject_pending_timer_irqs(vcpu);
  2425. preempt_disable();
  2426. kvm_x86_ops->prepare_guest_switch(vcpu);
  2427. kvm_load_guest_fpu(vcpu);
  2428. local_irq_disable();
  2429. if (need_resched()) {
  2430. local_irq_enable();
  2431. preempt_enable();
  2432. r = 1;
  2433. goto out;
  2434. }
  2435. if (vcpu->requests)
  2436. if (test_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) {
  2437. local_irq_enable();
  2438. preempt_enable();
  2439. r = 1;
  2440. goto out;
  2441. }
  2442. if (signal_pending(current)) {
  2443. local_irq_enable();
  2444. preempt_enable();
  2445. r = -EINTR;
  2446. kvm_run->exit_reason = KVM_EXIT_INTR;
  2447. ++vcpu->stat.signal_exits;
  2448. goto out;
  2449. }
  2450. vcpu->guest_mode = 1;
  2451. /*
  2452. * Make sure that guest_mode assignment won't happen after
  2453. * testing the pending IRQ vector bitmap.
  2454. */
  2455. smp_wmb();
  2456. if (vcpu->arch.exception.pending)
  2457. __queue_exception(vcpu);
  2458. else if (irqchip_in_kernel(vcpu->kvm))
  2459. kvm_x86_ops->inject_pending_irq(vcpu);
  2460. else
  2461. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2462. kvm_lapic_sync_to_vapic(vcpu);
  2463. up_read(&vcpu->kvm->slots_lock);
  2464. kvm_guest_enter();
  2465. if (vcpu->requests)
  2466. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2467. kvm_x86_ops->tlb_flush(vcpu);
  2468. KVMTRACE_0D(VMENTRY, vcpu, entryexit);
  2469. kvm_x86_ops->run(vcpu, kvm_run);
  2470. vcpu->guest_mode = 0;
  2471. local_irq_enable();
  2472. ++vcpu->stat.exits;
  2473. /*
  2474. * We must have an instruction between local_irq_enable() and
  2475. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2476. * the interrupt shadow. The stat.exits increment will do nicely.
  2477. * But we need to prevent reordering, hence this barrier():
  2478. */
  2479. barrier();
  2480. kvm_guest_exit();
  2481. preempt_enable();
  2482. down_read(&vcpu->kvm->slots_lock);
  2483. /*
  2484. * Profile KVM exit RIPs:
  2485. */
  2486. if (unlikely(prof_on == KVM_PROFILING)) {
  2487. kvm_x86_ops->cache_regs(vcpu);
  2488. profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
  2489. }
  2490. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2491. vcpu->arch.exception.pending = false;
  2492. kvm_lapic_sync_from_vapic(vcpu);
  2493. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2494. if (r > 0) {
  2495. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2496. r = -EINTR;
  2497. kvm_run->exit_reason = KVM_EXIT_INTR;
  2498. ++vcpu->stat.request_irq_exits;
  2499. goto out;
  2500. }
  2501. if (!need_resched())
  2502. goto again;
  2503. }
  2504. out:
  2505. up_read(&vcpu->kvm->slots_lock);
  2506. if (r > 0) {
  2507. kvm_resched(vcpu);
  2508. down_read(&vcpu->kvm->slots_lock);
  2509. goto preempted;
  2510. }
  2511. post_kvm_run_save(vcpu, kvm_run);
  2512. down_read(&vcpu->kvm->slots_lock);
  2513. vapic_exit(vcpu);
  2514. up_read(&vcpu->kvm->slots_lock);
  2515. return r;
  2516. }
  2517. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2518. {
  2519. int r;
  2520. sigset_t sigsaved;
  2521. vcpu_load(vcpu);
  2522. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  2523. kvm_vcpu_block(vcpu);
  2524. vcpu_put(vcpu);
  2525. return -EAGAIN;
  2526. }
  2527. if (vcpu->sigset_active)
  2528. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2529. /* re-sync apic's tpr */
  2530. if (!irqchip_in_kernel(vcpu->kvm))
  2531. kvm_set_cr8(vcpu, kvm_run->cr8);
  2532. if (vcpu->arch.pio.cur_count) {
  2533. r = complete_pio(vcpu);
  2534. if (r)
  2535. goto out;
  2536. }
  2537. #if CONFIG_HAS_IOMEM
  2538. if (vcpu->mmio_needed) {
  2539. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2540. vcpu->mmio_read_completed = 1;
  2541. vcpu->mmio_needed = 0;
  2542. down_read(&vcpu->kvm->slots_lock);
  2543. r = emulate_instruction(vcpu, kvm_run,
  2544. vcpu->arch.mmio_fault_cr2, 0,
  2545. EMULTYPE_NO_DECODE);
  2546. up_read(&vcpu->kvm->slots_lock);
  2547. if (r == EMULATE_DO_MMIO) {
  2548. /*
  2549. * Read-modify-write. Back to userspace.
  2550. */
  2551. r = 0;
  2552. goto out;
  2553. }
  2554. }
  2555. #endif
  2556. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  2557. kvm_x86_ops->cache_regs(vcpu);
  2558. vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  2559. kvm_x86_ops->decache_regs(vcpu);
  2560. }
  2561. r = __vcpu_run(vcpu, kvm_run);
  2562. out:
  2563. if (vcpu->sigset_active)
  2564. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2565. vcpu_put(vcpu);
  2566. return r;
  2567. }
  2568. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2569. {
  2570. vcpu_load(vcpu);
  2571. kvm_x86_ops->cache_regs(vcpu);
  2572. regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
  2573. regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
  2574. regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
  2575. regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
  2576. regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
  2577. regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
  2578. regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  2579. regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
  2580. #ifdef CONFIG_X86_64
  2581. regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
  2582. regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
  2583. regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
  2584. regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
  2585. regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
  2586. regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
  2587. regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
  2588. regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
  2589. #endif
  2590. regs->rip = vcpu->arch.rip;
  2591. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2592. /*
  2593. * Don't leak debug flags in case they were set for guest debugging
  2594. */
  2595. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  2596. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2597. vcpu_put(vcpu);
  2598. return 0;
  2599. }
  2600. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2601. {
  2602. vcpu_load(vcpu);
  2603. vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
  2604. vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
  2605. vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
  2606. vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
  2607. vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
  2608. vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
  2609. vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
  2610. vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
  2611. #ifdef CONFIG_X86_64
  2612. vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
  2613. vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
  2614. vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
  2615. vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
  2616. vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
  2617. vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
  2618. vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
  2619. vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
  2620. #endif
  2621. vcpu->arch.rip = regs->rip;
  2622. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2623. kvm_x86_ops->decache_regs(vcpu);
  2624. vcpu_put(vcpu);
  2625. return 0;
  2626. }
  2627. static void get_segment(struct kvm_vcpu *vcpu,
  2628. struct kvm_segment *var, int seg)
  2629. {
  2630. kvm_x86_ops->get_segment(vcpu, var, seg);
  2631. }
  2632. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2633. {
  2634. struct kvm_segment cs;
  2635. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2636. *db = cs.db;
  2637. *l = cs.l;
  2638. }
  2639. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2640. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2641. struct kvm_sregs *sregs)
  2642. {
  2643. struct descriptor_table dt;
  2644. int pending_vec;
  2645. vcpu_load(vcpu);
  2646. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2647. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2648. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2649. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2650. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2651. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2652. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2653. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2654. kvm_x86_ops->get_idt(vcpu, &dt);
  2655. sregs->idt.limit = dt.limit;
  2656. sregs->idt.base = dt.base;
  2657. kvm_x86_ops->get_gdt(vcpu, &dt);
  2658. sregs->gdt.limit = dt.limit;
  2659. sregs->gdt.base = dt.base;
  2660. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2661. sregs->cr0 = vcpu->arch.cr0;
  2662. sregs->cr2 = vcpu->arch.cr2;
  2663. sregs->cr3 = vcpu->arch.cr3;
  2664. sregs->cr4 = vcpu->arch.cr4;
  2665. sregs->cr8 = kvm_get_cr8(vcpu);
  2666. sregs->efer = vcpu->arch.shadow_efer;
  2667. sregs->apic_base = kvm_get_apic_base(vcpu);
  2668. if (irqchip_in_kernel(vcpu->kvm)) {
  2669. memset(sregs->interrupt_bitmap, 0,
  2670. sizeof sregs->interrupt_bitmap);
  2671. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2672. if (pending_vec >= 0)
  2673. set_bit(pending_vec,
  2674. (unsigned long *)sregs->interrupt_bitmap);
  2675. } else
  2676. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  2677. sizeof sregs->interrupt_bitmap);
  2678. vcpu_put(vcpu);
  2679. return 0;
  2680. }
  2681. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  2682. struct kvm_mp_state *mp_state)
  2683. {
  2684. vcpu_load(vcpu);
  2685. mp_state->mp_state = vcpu->arch.mp_state;
  2686. vcpu_put(vcpu);
  2687. return 0;
  2688. }
  2689. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  2690. struct kvm_mp_state *mp_state)
  2691. {
  2692. vcpu_load(vcpu);
  2693. vcpu->arch.mp_state = mp_state->mp_state;
  2694. vcpu_put(vcpu);
  2695. return 0;
  2696. }
  2697. static void set_segment(struct kvm_vcpu *vcpu,
  2698. struct kvm_segment *var, int seg)
  2699. {
  2700. kvm_x86_ops->set_segment(vcpu, var, seg);
  2701. }
  2702. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  2703. struct kvm_segment *kvm_desct)
  2704. {
  2705. kvm_desct->base = seg_desc->base0;
  2706. kvm_desct->base |= seg_desc->base1 << 16;
  2707. kvm_desct->base |= seg_desc->base2 << 24;
  2708. kvm_desct->limit = seg_desc->limit0;
  2709. kvm_desct->limit |= seg_desc->limit << 16;
  2710. kvm_desct->selector = selector;
  2711. kvm_desct->type = seg_desc->type;
  2712. kvm_desct->present = seg_desc->p;
  2713. kvm_desct->dpl = seg_desc->dpl;
  2714. kvm_desct->db = seg_desc->d;
  2715. kvm_desct->s = seg_desc->s;
  2716. kvm_desct->l = seg_desc->l;
  2717. kvm_desct->g = seg_desc->g;
  2718. kvm_desct->avl = seg_desc->avl;
  2719. if (!selector)
  2720. kvm_desct->unusable = 1;
  2721. else
  2722. kvm_desct->unusable = 0;
  2723. kvm_desct->padding = 0;
  2724. }
  2725. static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
  2726. u16 selector,
  2727. struct descriptor_table *dtable)
  2728. {
  2729. if (selector & 1 << 2) {
  2730. struct kvm_segment kvm_seg;
  2731. get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  2732. if (kvm_seg.unusable)
  2733. dtable->limit = 0;
  2734. else
  2735. dtable->limit = kvm_seg.limit;
  2736. dtable->base = kvm_seg.base;
  2737. }
  2738. else
  2739. kvm_x86_ops->get_gdt(vcpu, dtable);
  2740. }
  2741. /* allowed just for 8 bytes segments */
  2742. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2743. struct desc_struct *seg_desc)
  2744. {
  2745. struct descriptor_table dtable;
  2746. u16 index = selector >> 3;
  2747. get_segment_descritptor_dtable(vcpu, selector, &dtable);
  2748. if (dtable.limit < index * 8 + 7) {
  2749. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  2750. return 1;
  2751. }
  2752. return kvm_read_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
  2753. }
  2754. /* allowed just for 8 bytes segments */
  2755. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2756. struct desc_struct *seg_desc)
  2757. {
  2758. struct descriptor_table dtable;
  2759. u16 index = selector >> 3;
  2760. get_segment_descritptor_dtable(vcpu, selector, &dtable);
  2761. if (dtable.limit < index * 8 + 7)
  2762. return 1;
  2763. return kvm_write_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
  2764. }
  2765. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  2766. struct desc_struct *seg_desc)
  2767. {
  2768. u32 base_addr;
  2769. base_addr = seg_desc->base0;
  2770. base_addr |= (seg_desc->base1 << 16);
  2771. base_addr |= (seg_desc->base2 << 24);
  2772. return base_addr;
  2773. }
  2774. static int load_tss_segment32(struct kvm_vcpu *vcpu,
  2775. struct desc_struct *seg_desc,
  2776. struct tss_segment_32 *tss)
  2777. {
  2778. u32 base_addr;
  2779. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2780. return kvm_read_guest(vcpu->kvm, base_addr, tss,
  2781. sizeof(struct tss_segment_32));
  2782. }
  2783. static int save_tss_segment32(struct kvm_vcpu *vcpu,
  2784. struct desc_struct *seg_desc,
  2785. struct tss_segment_32 *tss)
  2786. {
  2787. u32 base_addr;
  2788. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2789. return kvm_write_guest(vcpu->kvm, base_addr, tss,
  2790. sizeof(struct tss_segment_32));
  2791. }
  2792. static int load_tss_segment16(struct kvm_vcpu *vcpu,
  2793. struct desc_struct *seg_desc,
  2794. struct tss_segment_16 *tss)
  2795. {
  2796. u32 base_addr;
  2797. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2798. return kvm_read_guest(vcpu->kvm, base_addr, tss,
  2799. sizeof(struct tss_segment_16));
  2800. }
  2801. static int save_tss_segment16(struct kvm_vcpu *vcpu,
  2802. struct desc_struct *seg_desc,
  2803. struct tss_segment_16 *tss)
  2804. {
  2805. u32 base_addr;
  2806. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2807. return kvm_write_guest(vcpu->kvm, base_addr, tss,
  2808. sizeof(struct tss_segment_16));
  2809. }
  2810. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  2811. {
  2812. struct kvm_segment kvm_seg;
  2813. get_segment(vcpu, &kvm_seg, seg);
  2814. return kvm_seg.selector;
  2815. }
  2816. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  2817. u16 selector,
  2818. struct kvm_segment *kvm_seg)
  2819. {
  2820. struct desc_struct seg_desc;
  2821. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  2822. return 1;
  2823. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  2824. return 0;
  2825. }
  2826. static int load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2827. int type_bits, int seg)
  2828. {
  2829. struct kvm_segment kvm_seg;
  2830. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  2831. return 1;
  2832. kvm_seg.type |= type_bits;
  2833. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  2834. seg != VCPU_SREG_LDTR)
  2835. if (!kvm_seg.s)
  2836. kvm_seg.unusable = 1;
  2837. set_segment(vcpu, &kvm_seg, seg);
  2838. return 0;
  2839. }
  2840. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  2841. struct tss_segment_32 *tss)
  2842. {
  2843. tss->cr3 = vcpu->arch.cr3;
  2844. tss->eip = vcpu->arch.rip;
  2845. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  2846. tss->eax = vcpu->arch.regs[VCPU_REGS_RAX];
  2847. tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2848. tss->edx = vcpu->arch.regs[VCPU_REGS_RDX];
  2849. tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX];
  2850. tss->esp = vcpu->arch.regs[VCPU_REGS_RSP];
  2851. tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP];
  2852. tss->esi = vcpu->arch.regs[VCPU_REGS_RSI];
  2853. tss->edi = vcpu->arch.regs[VCPU_REGS_RDI];
  2854. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  2855. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  2856. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  2857. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  2858. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  2859. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  2860. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  2861. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  2862. }
  2863. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  2864. struct tss_segment_32 *tss)
  2865. {
  2866. kvm_set_cr3(vcpu, tss->cr3);
  2867. vcpu->arch.rip = tss->eip;
  2868. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  2869. vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax;
  2870. vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx;
  2871. vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx;
  2872. vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx;
  2873. vcpu->arch.regs[VCPU_REGS_RSP] = tss->esp;
  2874. vcpu->arch.regs[VCPU_REGS_RBP] = tss->ebp;
  2875. vcpu->arch.regs[VCPU_REGS_RSI] = tss->esi;
  2876. vcpu->arch.regs[VCPU_REGS_RDI] = tss->edi;
  2877. if (load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  2878. return 1;
  2879. if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  2880. return 1;
  2881. if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  2882. return 1;
  2883. if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  2884. return 1;
  2885. if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  2886. return 1;
  2887. if (load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  2888. return 1;
  2889. if (load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  2890. return 1;
  2891. return 0;
  2892. }
  2893. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  2894. struct tss_segment_16 *tss)
  2895. {
  2896. tss->ip = vcpu->arch.rip;
  2897. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  2898. tss->ax = vcpu->arch.regs[VCPU_REGS_RAX];
  2899. tss->cx = vcpu->arch.regs[VCPU_REGS_RCX];
  2900. tss->dx = vcpu->arch.regs[VCPU_REGS_RDX];
  2901. tss->bx = vcpu->arch.regs[VCPU_REGS_RBX];
  2902. tss->sp = vcpu->arch.regs[VCPU_REGS_RSP];
  2903. tss->bp = vcpu->arch.regs[VCPU_REGS_RBP];
  2904. tss->si = vcpu->arch.regs[VCPU_REGS_RSI];
  2905. tss->di = vcpu->arch.regs[VCPU_REGS_RDI];
  2906. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  2907. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  2908. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  2909. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  2910. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  2911. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  2912. }
  2913. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  2914. struct tss_segment_16 *tss)
  2915. {
  2916. vcpu->arch.rip = tss->ip;
  2917. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  2918. vcpu->arch.regs[VCPU_REGS_RAX] = tss->ax;
  2919. vcpu->arch.regs[VCPU_REGS_RCX] = tss->cx;
  2920. vcpu->arch.regs[VCPU_REGS_RDX] = tss->dx;
  2921. vcpu->arch.regs[VCPU_REGS_RBX] = tss->bx;
  2922. vcpu->arch.regs[VCPU_REGS_RSP] = tss->sp;
  2923. vcpu->arch.regs[VCPU_REGS_RBP] = tss->bp;
  2924. vcpu->arch.regs[VCPU_REGS_RSI] = tss->si;
  2925. vcpu->arch.regs[VCPU_REGS_RDI] = tss->di;
  2926. if (load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  2927. return 1;
  2928. if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  2929. return 1;
  2930. if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  2931. return 1;
  2932. if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  2933. return 1;
  2934. if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  2935. return 1;
  2936. return 0;
  2937. }
  2938. int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  2939. struct desc_struct *cseg_desc,
  2940. struct desc_struct *nseg_desc)
  2941. {
  2942. struct tss_segment_16 tss_segment_16;
  2943. int ret = 0;
  2944. if (load_tss_segment16(vcpu, cseg_desc, &tss_segment_16))
  2945. goto out;
  2946. save_state_to_tss16(vcpu, &tss_segment_16);
  2947. save_tss_segment16(vcpu, cseg_desc, &tss_segment_16);
  2948. if (load_tss_segment16(vcpu, nseg_desc, &tss_segment_16))
  2949. goto out;
  2950. if (load_state_from_tss16(vcpu, &tss_segment_16))
  2951. goto out;
  2952. ret = 1;
  2953. out:
  2954. return ret;
  2955. }
  2956. int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  2957. struct desc_struct *cseg_desc,
  2958. struct desc_struct *nseg_desc)
  2959. {
  2960. struct tss_segment_32 tss_segment_32;
  2961. int ret = 0;
  2962. if (load_tss_segment32(vcpu, cseg_desc, &tss_segment_32))
  2963. goto out;
  2964. save_state_to_tss32(vcpu, &tss_segment_32);
  2965. save_tss_segment32(vcpu, cseg_desc, &tss_segment_32);
  2966. if (load_tss_segment32(vcpu, nseg_desc, &tss_segment_32))
  2967. goto out;
  2968. if (load_state_from_tss32(vcpu, &tss_segment_32))
  2969. goto out;
  2970. ret = 1;
  2971. out:
  2972. return ret;
  2973. }
  2974. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  2975. {
  2976. struct kvm_segment tr_seg;
  2977. struct desc_struct cseg_desc;
  2978. struct desc_struct nseg_desc;
  2979. int ret = 0;
  2980. get_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  2981. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  2982. goto out;
  2983. if (load_guest_segment_descriptor(vcpu, tr_seg.selector, &cseg_desc))
  2984. goto out;
  2985. if (reason != TASK_SWITCH_IRET) {
  2986. int cpl;
  2987. cpl = kvm_x86_ops->get_cpl(vcpu);
  2988. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  2989. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  2990. return 1;
  2991. }
  2992. }
  2993. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  2994. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  2995. return 1;
  2996. }
  2997. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  2998. cseg_desc.type &= ~(1 << 8); //clear the B flag
  2999. save_guest_segment_descriptor(vcpu, tr_seg.selector,
  3000. &cseg_desc);
  3001. }
  3002. if (reason == TASK_SWITCH_IRET) {
  3003. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3004. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3005. }
  3006. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3007. kvm_x86_ops->cache_regs(vcpu);
  3008. if (nseg_desc.type & 8)
  3009. ret = kvm_task_switch_32(vcpu, tss_selector, &cseg_desc,
  3010. &nseg_desc);
  3011. else
  3012. ret = kvm_task_switch_16(vcpu, tss_selector, &cseg_desc,
  3013. &nseg_desc);
  3014. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3015. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3016. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3017. }
  3018. if (reason != TASK_SWITCH_IRET) {
  3019. nseg_desc.type |= (1 << 8);
  3020. save_guest_segment_descriptor(vcpu, tss_selector,
  3021. &nseg_desc);
  3022. }
  3023. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3024. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3025. tr_seg.type = 11;
  3026. set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3027. out:
  3028. kvm_x86_ops->decache_regs(vcpu);
  3029. return ret;
  3030. }
  3031. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3032. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3033. struct kvm_sregs *sregs)
  3034. {
  3035. int mmu_reset_needed = 0;
  3036. int i, pending_vec, max_bits;
  3037. struct descriptor_table dt;
  3038. vcpu_load(vcpu);
  3039. dt.limit = sregs->idt.limit;
  3040. dt.base = sregs->idt.base;
  3041. kvm_x86_ops->set_idt(vcpu, &dt);
  3042. dt.limit = sregs->gdt.limit;
  3043. dt.base = sregs->gdt.base;
  3044. kvm_x86_ops->set_gdt(vcpu, &dt);
  3045. vcpu->arch.cr2 = sregs->cr2;
  3046. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3047. vcpu->arch.cr3 = sregs->cr3;
  3048. kvm_set_cr8(vcpu, sregs->cr8);
  3049. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3050. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3051. kvm_set_apic_base(vcpu, sregs->apic_base);
  3052. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3053. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3054. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3055. vcpu->arch.cr0 = sregs->cr0;
  3056. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3057. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3058. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3059. load_pdptrs(vcpu, vcpu->arch.cr3);
  3060. if (mmu_reset_needed)
  3061. kvm_mmu_reset_context(vcpu);
  3062. if (!irqchip_in_kernel(vcpu->kvm)) {
  3063. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  3064. sizeof vcpu->arch.irq_pending);
  3065. vcpu->arch.irq_summary = 0;
  3066. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  3067. if (vcpu->arch.irq_pending[i])
  3068. __set_bit(i, &vcpu->arch.irq_summary);
  3069. } else {
  3070. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3071. pending_vec = find_first_bit(
  3072. (const unsigned long *)sregs->interrupt_bitmap,
  3073. max_bits);
  3074. /* Only pending external irq is handled here */
  3075. if (pending_vec < max_bits) {
  3076. kvm_x86_ops->set_irq(vcpu, pending_vec);
  3077. pr_debug("Set back pending irq %d\n",
  3078. pending_vec);
  3079. }
  3080. }
  3081. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3082. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3083. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3084. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3085. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3086. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3087. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3088. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3089. vcpu_put(vcpu);
  3090. return 0;
  3091. }
  3092. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  3093. struct kvm_debug_guest *dbg)
  3094. {
  3095. int r;
  3096. vcpu_load(vcpu);
  3097. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3098. vcpu_put(vcpu);
  3099. return r;
  3100. }
  3101. /*
  3102. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3103. * we have asm/x86/processor.h
  3104. */
  3105. struct fxsave {
  3106. u16 cwd;
  3107. u16 swd;
  3108. u16 twd;
  3109. u16 fop;
  3110. u64 rip;
  3111. u64 rdp;
  3112. u32 mxcsr;
  3113. u32 mxcsr_mask;
  3114. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3115. #ifdef CONFIG_X86_64
  3116. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3117. #else
  3118. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3119. #endif
  3120. };
  3121. /*
  3122. * Translate a guest virtual address to a guest physical address.
  3123. */
  3124. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3125. struct kvm_translation *tr)
  3126. {
  3127. unsigned long vaddr = tr->linear_address;
  3128. gpa_t gpa;
  3129. vcpu_load(vcpu);
  3130. down_read(&vcpu->kvm->slots_lock);
  3131. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3132. up_read(&vcpu->kvm->slots_lock);
  3133. tr->physical_address = gpa;
  3134. tr->valid = gpa != UNMAPPED_GVA;
  3135. tr->writeable = 1;
  3136. tr->usermode = 0;
  3137. vcpu_put(vcpu);
  3138. return 0;
  3139. }
  3140. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3141. {
  3142. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3143. vcpu_load(vcpu);
  3144. memcpy(fpu->fpr, fxsave->st_space, 128);
  3145. fpu->fcw = fxsave->cwd;
  3146. fpu->fsw = fxsave->swd;
  3147. fpu->ftwx = fxsave->twd;
  3148. fpu->last_opcode = fxsave->fop;
  3149. fpu->last_ip = fxsave->rip;
  3150. fpu->last_dp = fxsave->rdp;
  3151. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3152. vcpu_put(vcpu);
  3153. return 0;
  3154. }
  3155. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3156. {
  3157. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3158. vcpu_load(vcpu);
  3159. memcpy(fxsave->st_space, fpu->fpr, 128);
  3160. fxsave->cwd = fpu->fcw;
  3161. fxsave->swd = fpu->fsw;
  3162. fxsave->twd = fpu->ftwx;
  3163. fxsave->fop = fpu->last_opcode;
  3164. fxsave->rip = fpu->last_ip;
  3165. fxsave->rdp = fpu->last_dp;
  3166. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3167. vcpu_put(vcpu);
  3168. return 0;
  3169. }
  3170. void fx_init(struct kvm_vcpu *vcpu)
  3171. {
  3172. unsigned after_mxcsr_mask;
  3173. /* Initialize guest FPU by resetting ours and saving into guest's */
  3174. preempt_disable();
  3175. fx_save(&vcpu->arch.host_fx_image);
  3176. fpu_init();
  3177. fx_save(&vcpu->arch.guest_fx_image);
  3178. fx_restore(&vcpu->arch.host_fx_image);
  3179. preempt_enable();
  3180. vcpu->arch.cr0 |= X86_CR0_ET;
  3181. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3182. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3183. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3184. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3185. }
  3186. EXPORT_SYMBOL_GPL(fx_init);
  3187. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3188. {
  3189. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3190. return;
  3191. vcpu->guest_fpu_loaded = 1;
  3192. fx_save(&vcpu->arch.host_fx_image);
  3193. fx_restore(&vcpu->arch.guest_fx_image);
  3194. }
  3195. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3196. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3197. {
  3198. if (!vcpu->guest_fpu_loaded)
  3199. return;
  3200. vcpu->guest_fpu_loaded = 0;
  3201. fx_save(&vcpu->arch.guest_fx_image);
  3202. fx_restore(&vcpu->arch.host_fx_image);
  3203. ++vcpu->stat.fpu_reload;
  3204. }
  3205. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3206. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3207. {
  3208. kvm_x86_ops->vcpu_free(vcpu);
  3209. }
  3210. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3211. unsigned int id)
  3212. {
  3213. return kvm_x86_ops->vcpu_create(kvm, id);
  3214. }
  3215. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3216. {
  3217. int r;
  3218. /* We do fxsave: this must be aligned. */
  3219. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3220. vcpu_load(vcpu);
  3221. r = kvm_arch_vcpu_reset(vcpu);
  3222. if (r == 0)
  3223. r = kvm_mmu_setup(vcpu);
  3224. vcpu_put(vcpu);
  3225. if (r < 0)
  3226. goto free_vcpu;
  3227. return 0;
  3228. free_vcpu:
  3229. kvm_x86_ops->vcpu_free(vcpu);
  3230. return r;
  3231. }
  3232. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3233. {
  3234. vcpu_load(vcpu);
  3235. kvm_mmu_unload(vcpu);
  3236. vcpu_put(vcpu);
  3237. kvm_x86_ops->vcpu_free(vcpu);
  3238. }
  3239. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3240. {
  3241. return kvm_x86_ops->vcpu_reset(vcpu);
  3242. }
  3243. void kvm_arch_hardware_enable(void *garbage)
  3244. {
  3245. kvm_x86_ops->hardware_enable(garbage);
  3246. }
  3247. void kvm_arch_hardware_disable(void *garbage)
  3248. {
  3249. kvm_x86_ops->hardware_disable(garbage);
  3250. }
  3251. int kvm_arch_hardware_setup(void)
  3252. {
  3253. return kvm_x86_ops->hardware_setup();
  3254. }
  3255. void kvm_arch_hardware_unsetup(void)
  3256. {
  3257. kvm_x86_ops->hardware_unsetup();
  3258. }
  3259. void kvm_arch_check_processor_compat(void *rtn)
  3260. {
  3261. kvm_x86_ops->check_processor_compatibility(rtn);
  3262. }
  3263. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3264. {
  3265. struct page *page;
  3266. struct kvm *kvm;
  3267. int r;
  3268. BUG_ON(vcpu->kvm == NULL);
  3269. kvm = vcpu->kvm;
  3270. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3271. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3272. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3273. else
  3274. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3275. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3276. if (!page) {
  3277. r = -ENOMEM;
  3278. goto fail;
  3279. }
  3280. vcpu->arch.pio_data = page_address(page);
  3281. r = kvm_mmu_create(vcpu);
  3282. if (r < 0)
  3283. goto fail_free_pio_data;
  3284. if (irqchip_in_kernel(kvm)) {
  3285. r = kvm_create_lapic(vcpu);
  3286. if (r < 0)
  3287. goto fail_mmu_destroy;
  3288. }
  3289. return 0;
  3290. fail_mmu_destroy:
  3291. kvm_mmu_destroy(vcpu);
  3292. fail_free_pio_data:
  3293. free_page((unsigned long)vcpu->arch.pio_data);
  3294. fail:
  3295. return r;
  3296. }
  3297. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3298. {
  3299. kvm_free_lapic(vcpu);
  3300. down_read(&vcpu->kvm->slots_lock);
  3301. kvm_mmu_destroy(vcpu);
  3302. up_read(&vcpu->kvm->slots_lock);
  3303. free_page((unsigned long)vcpu->arch.pio_data);
  3304. }
  3305. struct kvm *kvm_arch_create_vm(void)
  3306. {
  3307. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3308. if (!kvm)
  3309. return ERR_PTR(-ENOMEM);
  3310. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3311. return kvm;
  3312. }
  3313. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  3314. {
  3315. vcpu_load(vcpu);
  3316. kvm_mmu_unload(vcpu);
  3317. vcpu_put(vcpu);
  3318. }
  3319. static void kvm_free_vcpus(struct kvm *kvm)
  3320. {
  3321. unsigned int i;
  3322. /*
  3323. * Unpin any mmu pages first.
  3324. */
  3325. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  3326. if (kvm->vcpus[i])
  3327. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  3328. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3329. if (kvm->vcpus[i]) {
  3330. kvm_arch_vcpu_free(kvm->vcpus[i]);
  3331. kvm->vcpus[i] = NULL;
  3332. }
  3333. }
  3334. }
  3335. void kvm_arch_destroy_vm(struct kvm *kvm)
  3336. {
  3337. kvm_free_pit(kvm);
  3338. kfree(kvm->arch.vpic);
  3339. kfree(kvm->arch.vioapic);
  3340. kvm_free_vcpus(kvm);
  3341. kvm_free_physmem(kvm);
  3342. if (kvm->arch.apic_access_page)
  3343. put_page(kvm->arch.apic_access_page);
  3344. kfree(kvm);
  3345. }
  3346. int kvm_arch_set_memory_region(struct kvm *kvm,
  3347. struct kvm_userspace_memory_region *mem,
  3348. struct kvm_memory_slot old,
  3349. int user_alloc)
  3350. {
  3351. int npages = mem->memory_size >> PAGE_SHIFT;
  3352. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  3353. /*To keep backward compatibility with older userspace,
  3354. *x86 needs to hanlde !user_alloc case.
  3355. */
  3356. if (!user_alloc) {
  3357. if (npages && !old.rmap) {
  3358. down_write(&current->mm->mmap_sem);
  3359. memslot->userspace_addr = do_mmap(NULL, 0,
  3360. npages * PAGE_SIZE,
  3361. PROT_READ | PROT_WRITE,
  3362. MAP_SHARED | MAP_ANONYMOUS,
  3363. 0);
  3364. up_write(&current->mm->mmap_sem);
  3365. if (IS_ERR((void *)memslot->userspace_addr))
  3366. return PTR_ERR((void *)memslot->userspace_addr);
  3367. } else {
  3368. if (!old.user_alloc && old.rmap) {
  3369. int ret;
  3370. down_write(&current->mm->mmap_sem);
  3371. ret = do_munmap(current->mm, old.userspace_addr,
  3372. old.npages * PAGE_SIZE);
  3373. up_write(&current->mm->mmap_sem);
  3374. if (ret < 0)
  3375. printk(KERN_WARNING
  3376. "kvm_vm_ioctl_set_memory_region: "
  3377. "failed to munmap memory\n");
  3378. }
  3379. }
  3380. }
  3381. if (!kvm->arch.n_requested_mmu_pages) {
  3382. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  3383. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  3384. }
  3385. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  3386. kvm_flush_remote_tlbs(kvm);
  3387. return 0;
  3388. }
  3389. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  3390. {
  3391. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  3392. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
  3393. }
  3394. static void vcpu_kick_intr(void *info)
  3395. {
  3396. #ifdef DEBUG
  3397. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  3398. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  3399. #endif
  3400. }
  3401. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  3402. {
  3403. int ipi_pcpu = vcpu->cpu;
  3404. int cpu = get_cpu();
  3405. if (waitqueue_active(&vcpu->wq)) {
  3406. wake_up_interruptible(&vcpu->wq);
  3407. ++vcpu->stat.halt_wakeup;
  3408. }
  3409. /*
  3410. * We may be called synchronously with irqs disabled in guest mode,
  3411. * So need not to call smp_call_function_single() in that case.
  3412. */
  3413. if (vcpu->guest_mode && vcpu->cpu != cpu)
  3414. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);
  3415. put_cpu();
  3416. }