vmx.c 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "vmx.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <asm/io.h>
  28. #include <asm/desc.h>
  29. MODULE_AUTHOR("Qumranet");
  30. MODULE_LICENSE("GPL");
  31. static int bypass_guest_pf = 1;
  32. module_param(bypass_guest_pf, bool, 0);
  33. static int enable_vpid = 1;
  34. module_param(enable_vpid, bool, 0);
  35. static int flexpriority_enabled = 1;
  36. module_param(flexpriority_enabled, bool, 0);
  37. struct vmcs {
  38. u32 revision_id;
  39. u32 abort;
  40. char data[0];
  41. };
  42. struct vcpu_vmx {
  43. struct kvm_vcpu vcpu;
  44. int launched;
  45. u8 fail;
  46. u32 idt_vectoring_info;
  47. struct kvm_msr_entry *guest_msrs;
  48. struct kvm_msr_entry *host_msrs;
  49. int nmsrs;
  50. int save_nmsrs;
  51. int msr_offset_efer;
  52. #ifdef CONFIG_X86_64
  53. int msr_offset_kernel_gs_base;
  54. #endif
  55. struct vmcs *vmcs;
  56. struct {
  57. int loaded;
  58. u16 fs_sel, gs_sel, ldt_sel;
  59. int gs_ldt_reload_needed;
  60. int fs_reload_needed;
  61. int guest_efer_loaded;
  62. } host_state;
  63. struct {
  64. struct {
  65. bool pending;
  66. u8 vector;
  67. unsigned rip;
  68. } irq;
  69. } rmode;
  70. int vpid;
  71. };
  72. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  73. {
  74. return container_of(vcpu, struct vcpu_vmx, vcpu);
  75. }
  76. static int init_rmode_tss(struct kvm *kvm);
  77. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  78. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  79. static struct page *vmx_io_bitmap_a;
  80. static struct page *vmx_io_bitmap_b;
  81. static struct page *vmx_msr_bitmap;
  82. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  83. static DEFINE_SPINLOCK(vmx_vpid_lock);
  84. static struct vmcs_config {
  85. int size;
  86. int order;
  87. u32 revision_id;
  88. u32 pin_based_exec_ctrl;
  89. u32 cpu_based_exec_ctrl;
  90. u32 cpu_based_2nd_exec_ctrl;
  91. u32 vmexit_ctrl;
  92. u32 vmentry_ctrl;
  93. } vmcs_config;
  94. #define VMX_SEGMENT_FIELD(seg) \
  95. [VCPU_SREG_##seg] = { \
  96. .selector = GUEST_##seg##_SELECTOR, \
  97. .base = GUEST_##seg##_BASE, \
  98. .limit = GUEST_##seg##_LIMIT, \
  99. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  100. }
  101. static struct kvm_vmx_segment_field {
  102. unsigned selector;
  103. unsigned base;
  104. unsigned limit;
  105. unsigned ar_bytes;
  106. } kvm_vmx_segment_fields[] = {
  107. VMX_SEGMENT_FIELD(CS),
  108. VMX_SEGMENT_FIELD(DS),
  109. VMX_SEGMENT_FIELD(ES),
  110. VMX_SEGMENT_FIELD(FS),
  111. VMX_SEGMENT_FIELD(GS),
  112. VMX_SEGMENT_FIELD(SS),
  113. VMX_SEGMENT_FIELD(TR),
  114. VMX_SEGMENT_FIELD(LDTR),
  115. };
  116. /*
  117. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  118. * away by decrementing the array size.
  119. */
  120. static const u32 vmx_msr_index[] = {
  121. #ifdef CONFIG_X86_64
  122. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  123. #endif
  124. MSR_EFER, MSR_K6_STAR,
  125. };
  126. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  127. static void load_msrs(struct kvm_msr_entry *e, int n)
  128. {
  129. int i;
  130. for (i = 0; i < n; ++i)
  131. wrmsrl(e[i].index, e[i].data);
  132. }
  133. static void save_msrs(struct kvm_msr_entry *e, int n)
  134. {
  135. int i;
  136. for (i = 0; i < n; ++i)
  137. rdmsrl(e[i].index, e[i].data);
  138. }
  139. static inline int is_page_fault(u32 intr_info)
  140. {
  141. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  142. INTR_INFO_VALID_MASK)) ==
  143. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  144. }
  145. static inline int is_no_device(u32 intr_info)
  146. {
  147. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  148. INTR_INFO_VALID_MASK)) ==
  149. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  150. }
  151. static inline int is_invalid_opcode(u32 intr_info)
  152. {
  153. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  154. INTR_INFO_VALID_MASK)) ==
  155. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  156. }
  157. static inline int is_external_interrupt(u32 intr_info)
  158. {
  159. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  160. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  161. }
  162. static inline int cpu_has_vmx_msr_bitmap(void)
  163. {
  164. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  165. }
  166. static inline int cpu_has_vmx_tpr_shadow(void)
  167. {
  168. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  169. }
  170. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  171. {
  172. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  173. }
  174. static inline int cpu_has_secondary_exec_ctrls(void)
  175. {
  176. return (vmcs_config.cpu_based_exec_ctrl &
  177. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  178. }
  179. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  180. {
  181. return flexpriority_enabled
  182. && (vmcs_config.cpu_based_2nd_exec_ctrl &
  183. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  184. }
  185. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  186. {
  187. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  188. (irqchip_in_kernel(kvm)));
  189. }
  190. static inline int cpu_has_vmx_vpid(void)
  191. {
  192. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  193. SECONDARY_EXEC_ENABLE_VPID);
  194. }
  195. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  196. {
  197. int i;
  198. for (i = 0; i < vmx->nmsrs; ++i)
  199. if (vmx->guest_msrs[i].index == msr)
  200. return i;
  201. return -1;
  202. }
  203. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  204. {
  205. struct {
  206. u64 vpid : 16;
  207. u64 rsvd : 48;
  208. u64 gva;
  209. } operand = { vpid, 0, gva };
  210. asm volatile (ASM_VMX_INVVPID
  211. /* CF==1 or ZF==1 --> rc = -1 */
  212. "; ja 1f ; ud2 ; 1:"
  213. : : "a"(&operand), "c"(ext) : "cc", "memory");
  214. }
  215. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  216. {
  217. int i;
  218. i = __find_msr_index(vmx, msr);
  219. if (i >= 0)
  220. return &vmx->guest_msrs[i];
  221. return NULL;
  222. }
  223. static void vmcs_clear(struct vmcs *vmcs)
  224. {
  225. u64 phys_addr = __pa(vmcs);
  226. u8 error;
  227. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  228. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  229. : "cc", "memory");
  230. if (error)
  231. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  232. vmcs, phys_addr);
  233. }
  234. static void __vcpu_clear(void *arg)
  235. {
  236. struct vcpu_vmx *vmx = arg;
  237. int cpu = raw_smp_processor_id();
  238. if (vmx->vcpu.cpu == cpu)
  239. vmcs_clear(vmx->vmcs);
  240. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  241. per_cpu(current_vmcs, cpu) = NULL;
  242. rdtscll(vmx->vcpu.arch.host_tsc);
  243. }
  244. static void vcpu_clear(struct vcpu_vmx *vmx)
  245. {
  246. if (vmx->vcpu.cpu == -1)
  247. return;
  248. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
  249. vmx->launched = 0;
  250. }
  251. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  252. {
  253. if (vmx->vpid == 0)
  254. return;
  255. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  256. }
  257. static unsigned long vmcs_readl(unsigned long field)
  258. {
  259. unsigned long value;
  260. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  261. : "=a"(value) : "d"(field) : "cc");
  262. return value;
  263. }
  264. static u16 vmcs_read16(unsigned long field)
  265. {
  266. return vmcs_readl(field);
  267. }
  268. static u32 vmcs_read32(unsigned long field)
  269. {
  270. return vmcs_readl(field);
  271. }
  272. static u64 vmcs_read64(unsigned long field)
  273. {
  274. #ifdef CONFIG_X86_64
  275. return vmcs_readl(field);
  276. #else
  277. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  278. #endif
  279. }
  280. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  281. {
  282. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  283. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  284. dump_stack();
  285. }
  286. static void vmcs_writel(unsigned long field, unsigned long value)
  287. {
  288. u8 error;
  289. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  290. : "=q"(error) : "a"(value), "d"(field) : "cc");
  291. if (unlikely(error))
  292. vmwrite_error(field, value);
  293. }
  294. static void vmcs_write16(unsigned long field, u16 value)
  295. {
  296. vmcs_writel(field, value);
  297. }
  298. static void vmcs_write32(unsigned long field, u32 value)
  299. {
  300. vmcs_writel(field, value);
  301. }
  302. static void vmcs_write64(unsigned long field, u64 value)
  303. {
  304. #ifdef CONFIG_X86_64
  305. vmcs_writel(field, value);
  306. #else
  307. vmcs_writel(field, value);
  308. asm volatile ("");
  309. vmcs_writel(field+1, value >> 32);
  310. #endif
  311. }
  312. static void vmcs_clear_bits(unsigned long field, u32 mask)
  313. {
  314. vmcs_writel(field, vmcs_readl(field) & ~mask);
  315. }
  316. static void vmcs_set_bits(unsigned long field, u32 mask)
  317. {
  318. vmcs_writel(field, vmcs_readl(field) | mask);
  319. }
  320. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  321. {
  322. u32 eb;
  323. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  324. if (!vcpu->fpu_active)
  325. eb |= 1u << NM_VECTOR;
  326. if (vcpu->guest_debug.enabled)
  327. eb |= 1u << 1;
  328. if (vcpu->arch.rmode.active)
  329. eb = ~0;
  330. vmcs_write32(EXCEPTION_BITMAP, eb);
  331. }
  332. static void reload_tss(void)
  333. {
  334. /*
  335. * VT restores TR but not its size. Useless.
  336. */
  337. struct descriptor_table gdt;
  338. struct desc_struct *descs;
  339. get_gdt(&gdt);
  340. descs = (void *)gdt.base;
  341. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  342. load_TR_desc();
  343. }
  344. static void load_transition_efer(struct vcpu_vmx *vmx)
  345. {
  346. int efer_offset = vmx->msr_offset_efer;
  347. u64 host_efer = vmx->host_msrs[efer_offset].data;
  348. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  349. u64 ignore_bits;
  350. if (efer_offset < 0)
  351. return;
  352. /*
  353. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  354. * outside long mode
  355. */
  356. ignore_bits = EFER_NX | EFER_SCE;
  357. #ifdef CONFIG_X86_64
  358. ignore_bits |= EFER_LMA | EFER_LME;
  359. /* SCE is meaningful only in long mode on Intel */
  360. if (guest_efer & EFER_LMA)
  361. ignore_bits &= ~(u64)EFER_SCE;
  362. #endif
  363. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  364. return;
  365. vmx->host_state.guest_efer_loaded = 1;
  366. guest_efer &= ~ignore_bits;
  367. guest_efer |= host_efer & ignore_bits;
  368. wrmsrl(MSR_EFER, guest_efer);
  369. vmx->vcpu.stat.efer_reload++;
  370. }
  371. static void reload_host_efer(struct vcpu_vmx *vmx)
  372. {
  373. if (vmx->host_state.guest_efer_loaded) {
  374. vmx->host_state.guest_efer_loaded = 0;
  375. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  376. }
  377. }
  378. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  379. {
  380. struct vcpu_vmx *vmx = to_vmx(vcpu);
  381. if (vmx->host_state.loaded)
  382. return;
  383. vmx->host_state.loaded = 1;
  384. /*
  385. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  386. * allow segment selectors with cpl > 0 or ti == 1.
  387. */
  388. vmx->host_state.ldt_sel = read_ldt();
  389. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  390. vmx->host_state.fs_sel = read_fs();
  391. if (!(vmx->host_state.fs_sel & 7)) {
  392. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  393. vmx->host_state.fs_reload_needed = 0;
  394. } else {
  395. vmcs_write16(HOST_FS_SELECTOR, 0);
  396. vmx->host_state.fs_reload_needed = 1;
  397. }
  398. vmx->host_state.gs_sel = read_gs();
  399. if (!(vmx->host_state.gs_sel & 7))
  400. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  401. else {
  402. vmcs_write16(HOST_GS_SELECTOR, 0);
  403. vmx->host_state.gs_ldt_reload_needed = 1;
  404. }
  405. #ifdef CONFIG_X86_64
  406. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  407. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  408. #else
  409. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  410. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  411. #endif
  412. #ifdef CONFIG_X86_64
  413. if (is_long_mode(&vmx->vcpu))
  414. save_msrs(vmx->host_msrs +
  415. vmx->msr_offset_kernel_gs_base, 1);
  416. #endif
  417. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  418. load_transition_efer(vmx);
  419. }
  420. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  421. {
  422. unsigned long flags;
  423. if (!vmx->host_state.loaded)
  424. return;
  425. ++vmx->vcpu.stat.host_state_reload;
  426. vmx->host_state.loaded = 0;
  427. if (vmx->host_state.fs_reload_needed)
  428. load_fs(vmx->host_state.fs_sel);
  429. if (vmx->host_state.gs_ldt_reload_needed) {
  430. load_ldt(vmx->host_state.ldt_sel);
  431. /*
  432. * If we have to reload gs, we must take care to
  433. * preserve our gs base.
  434. */
  435. local_irq_save(flags);
  436. load_gs(vmx->host_state.gs_sel);
  437. #ifdef CONFIG_X86_64
  438. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  439. #endif
  440. local_irq_restore(flags);
  441. }
  442. reload_tss();
  443. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  444. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  445. reload_host_efer(vmx);
  446. }
  447. /*
  448. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  449. * vcpu mutex is already taken.
  450. */
  451. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  452. {
  453. struct vcpu_vmx *vmx = to_vmx(vcpu);
  454. u64 phys_addr = __pa(vmx->vmcs);
  455. u64 tsc_this, delta, new_offset;
  456. if (vcpu->cpu != cpu) {
  457. vcpu_clear(vmx);
  458. kvm_migrate_apic_timer(vcpu);
  459. vpid_sync_vcpu_all(vmx);
  460. }
  461. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  462. u8 error;
  463. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  464. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  465. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  466. : "cc");
  467. if (error)
  468. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  469. vmx->vmcs, phys_addr);
  470. }
  471. if (vcpu->cpu != cpu) {
  472. struct descriptor_table dt;
  473. unsigned long sysenter_esp;
  474. vcpu->cpu = cpu;
  475. /*
  476. * Linux uses per-cpu TSS and GDT, so set these when switching
  477. * processors.
  478. */
  479. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  480. get_gdt(&dt);
  481. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  482. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  483. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  484. /*
  485. * Make sure the time stamp counter is monotonous.
  486. */
  487. rdtscll(tsc_this);
  488. if (tsc_this < vcpu->arch.host_tsc) {
  489. delta = vcpu->arch.host_tsc - tsc_this;
  490. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  491. vmcs_write64(TSC_OFFSET, new_offset);
  492. }
  493. }
  494. }
  495. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  496. {
  497. vmx_load_host_state(to_vmx(vcpu));
  498. }
  499. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  500. {
  501. if (vcpu->fpu_active)
  502. return;
  503. vcpu->fpu_active = 1;
  504. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  505. if (vcpu->arch.cr0 & X86_CR0_TS)
  506. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  507. update_exception_bitmap(vcpu);
  508. }
  509. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  510. {
  511. if (!vcpu->fpu_active)
  512. return;
  513. vcpu->fpu_active = 0;
  514. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  515. update_exception_bitmap(vcpu);
  516. }
  517. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  518. {
  519. vcpu_clear(to_vmx(vcpu));
  520. }
  521. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  522. {
  523. return vmcs_readl(GUEST_RFLAGS);
  524. }
  525. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  526. {
  527. if (vcpu->arch.rmode.active)
  528. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  529. vmcs_writel(GUEST_RFLAGS, rflags);
  530. }
  531. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  532. {
  533. unsigned long rip;
  534. u32 interruptibility;
  535. rip = vmcs_readl(GUEST_RIP);
  536. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  537. vmcs_writel(GUEST_RIP, rip);
  538. /*
  539. * We emulated an instruction, so temporary interrupt blocking
  540. * should be removed, if set.
  541. */
  542. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  543. if (interruptibility & 3)
  544. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  545. interruptibility & ~3);
  546. vcpu->arch.interrupt_window_open = 1;
  547. }
  548. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  549. bool has_error_code, u32 error_code)
  550. {
  551. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  552. nr | INTR_TYPE_EXCEPTION
  553. | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
  554. | INTR_INFO_VALID_MASK);
  555. if (has_error_code)
  556. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  557. }
  558. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  559. {
  560. struct vcpu_vmx *vmx = to_vmx(vcpu);
  561. return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  562. }
  563. /*
  564. * Swap MSR entry in host/guest MSR entry array.
  565. */
  566. #ifdef CONFIG_X86_64
  567. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  568. {
  569. struct kvm_msr_entry tmp;
  570. tmp = vmx->guest_msrs[to];
  571. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  572. vmx->guest_msrs[from] = tmp;
  573. tmp = vmx->host_msrs[to];
  574. vmx->host_msrs[to] = vmx->host_msrs[from];
  575. vmx->host_msrs[from] = tmp;
  576. }
  577. #endif
  578. /*
  579. * Set up the vmcs to automatically save and restore system
  580. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  581. * mode, as fiddling with msrs is very expensive.
  582. */
  583. static void setup_msrs(struct vcpu_vmx *vmx)
  584. {
  585. int save_nmsrs;
  586. vmx_load_host_state(vmx);
  587. save_nmsrs = 0;
  588. #ifdef CONFIG_X86_64
  589. if (is_long_mode(&vmx->vcpu)) {
  590. int index;
  591. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  592. if (index >= 0)
  593. move_msr_up(vmx, index, save_nmsrs++);
  594. index = __find_msr_index(vmx, MSR_LSTAR);
  595. if (index >= 0)
  596. move_msr_up(vmx, index, save_nmsrs++);
  597. index = __find_msr_index(vmx, MSR_CSTAR);
  598. if (index >= 0)
  599. move_msr_up(vmx, index, save_nmsrs++);
  600. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  601. if (index >= 0)
  602. move_msr_up(vmx, index, save_nmsrs++);
  603. /*
  604. * MSR_K6_STAR is only needed on long mode guests, and only
  605. * if efer.sce is enabled.
  606. */
  607. index = __find_msr_index(vmx, MSR_K6_STAR);
  608. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  609. move_msr_up(vmx, index, save_nmsrs++);
  610. }
  611. #endif
  612. vmx->save_nmsrs = save_nmsrs;
  613. #ifdef CONFIG_X86_64
  614. vmx->msr_offset_kernel_gs_base =
  615. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  616. #endif
  617. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  618. }
  619. /*
  620. * reads and returns guest's timestamp counter "register"
  621. * guest_tsc = host_tsc + tsc_offset -- 21.3
  622. */
  623. static u64 guest_read_tsc(void)
  624. {
  625. u64 host_tsc, tsc_offset;
  626. rdtscll(host_tsc);
  627. tsc_offset = vmcs_read64(TSC_OFFSET);
  628. return host_tsc + tsc_offset;
  629. }
  630. /*
  631. * writes 'guest_tsc' into guest's timestamp counter "register"
  632. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  633. */
  634. static void guest_write_tsc(u64 guest_tsc)
  635. {
  636. u64 host_tsc;
  637. rdtscll(host_tsc);
  638. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  639. }
  640. /*
  641. * Reads an msr value (of 'msr_index') into 'pdata'.
  642. * Returns 0 on success, non-0 otherwise.
  643. * Assumes vcpu_load() was already called.
  644. */
  645. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  646. {
  647. u64 data;
  648. struct kvm_msr_entry *msr;
  649. if (!pdata) {
  650. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  651. return -EINVAL;
  652. }
  653. switch (msr_index) {
  654. #ifdef CONFIG_X86_64
  655. case MSR_FS_BASE:
  656. data = vmcs_readl(GUEST_FS_BASE);
  657. break;
  658. case MSR_GS_BASE:
  659. data = vmcs_readl(GUEST_GS_BASE);
  660. break;
  661. case MSR_EFER:
  662. return kvm_get_msr_common(vcpu, msr_index, pdata);
  663. #endif
  664. case MSR_IA32_TIME_STAMP_COUNTER:
  665. data = guest_read_tsc();
  666. break;
  667. case MSR_IA32_SYSENTER_CS:
  668. data = vmcs_read32(GUEST_SYSENTER_CS);
  669. break;
  670. case MSR_IA32_SYSENTER_EIP:
  671. data = vmcs_readl(GUEST_SYSENTER_EIP);
  672. break;
  673. case MSR_IA32_SYSENTER_ESP:
  674. data = vmcs_readl(GUEST_SYSENTER_ESP);
  675. break;
  676. default:
  677. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  678. if (msr) {
  679. data = msr->data;
  680. break;
  681. }
  682. return kvm_get_msr_common(vcpu, msr_index, pdata);
  683. }
  684. *pdata = data;
  685. return 0;
  686. }
  687. /*
  688. * Writes msr value into into the appropriate "register".
  689. * Returns 0 on success, non-0 otherwise.
  690. * Assumes vcpu_load() was already called.
  691. */
  692. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  693. {
  694. struct vcpu_vmx *vmx = to_vmx(vcpu);
  695. struct kvm_msr_entry *msr;
  696. int ret = 0;
  697. switch (msr_index) {
  698. #ifdef CONFIG_X86_64
  699. case MSR_EFER:
  700. ret = kvm_set_msr_common(vcpu, msr_index, data);
  701. if (vmx->host_state.loaded) {
  702. reload_host_efer(vmx);
  703. load_transition_efer(vmx);
  704. }
  705. break;
  706. case MSR_FS_BASE:
  707. vmcs_writel(GUEST_FS_BASE, data);
  708. break;
  709. case MSR_GS_BASE:
  710. vmcs_writel(GUEST_GS_BASE, data);
  711. break;
  712. #endif
  713. case MSR_IA32_SYSENTER_CS:
  714. vmcs_write32(GUEST_SYSENTER_CS, data);
  715. break;
  716. case MSR_IA32_SYSENTER_EIP:
  717. vmcs_writel(GUEST_SYSENTER_EIP, data);
  718. break;
  719. case MSR_IA32_SYSENTER_ESP:
  720. vmcs_writel(GUEST_SYSENTER_ESP, data);
  721. break;
  722. case MSR_IA32_TIME_STAMP_COUNTER:
  723. guest_write_tsc(data);
  724. break;
  725. default:
  726. msr = find_msr_entry(vmx, msr_index);
  727. if (msr) {
  728. msr->data = data;
  729. if (vmx->host_state.loaded)
  730. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  731. break;
  732. }
  733. ret = kvm_set_msr_common(vcpu, msr_index, data);
  734. }
  735. return ret;
  736. }
  737. /*
  738. * Sync the rsp and rip registers into the vcpu structure. This allows
  739. * registers to be accessed by indexing vcpu->arch.regs.
  740. */
  741. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  742. {
  743. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  744. vcpu->arch.rip = vmcs_readl(GUEST_RIP);
  745. }
  746. /*
  747. * Syncs rsp and rip back into the vmcs. Should be called after possible
  748. * modification.
  749. */
  750. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  751. {
  752. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  753. vmcs_writel(GUEST_RIP, vcpu->arch.rip);
  754. }
  755. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  756. {
  757. unsigned long dr7 = 0x400;
  758. int old_singlestep;
  759. old_singlestep = vcpu->guest_debug.singlestep;
  760. vcpu->guest_debug.enabled = dbg->enabled;
  761. if (vcpu->guest_debug.enabled) {
  762. int i;
  763. dr7 |= 0x200; /* exact */
  764. for (i = 0; i < 4; ++i) {
  765. if (!dbg->breakpoints[i].enabled)
  766. continue;
  767. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  768. dr7 |= 2 << (i*2); /* global enable */
  769. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  770. }
  771. vcpu->guest_debug.singlestep = dbg->singlestep;
  772. } else
  773. vcpu->guest_debug.singlestep = 0;
  774. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  775. unsigned long flags;
  776. flags = vmcs_readl(GUEST_RFLAGS);
  777. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  778. vmcs_writel(GUEST_RFLAGS, flags);
  779. }
  780. update_exception_bitmap(vcpu);
  781. vmcs_writel(GUEST_DR7, dr7);
  782. return 0;
  783. }
  784. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  785. {
  786. struct vcpu_vmx *vmx = to_vmx(vcpu);
  787. u32 idtv_info_field;
  788. idtv_info_field = vmx->idt_vectoring_info;
  789. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  790. if (is_external_interrupt(idtv_info_field))
  791. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  792. else
  793. printk(KERN_DEBUG "pending exception: not handled yet\n");
  794. }
  795. return -1;
  796. }
  797. static __init int cpu_has_kvm_support(void)
  798. {
  799. unsigned long ecx = cpuid_ecx(1);
  800. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  801. }
  802. static __init int vmx_disabled_by_bios(void)
  803. {
  804. u64 msr;
  805. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  806. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  807. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  808. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  809. /* locked but not enabled */
  810. }
  811. static void hardware_enable(void *garbage)
  812. {
  813. int cpu = raw_smp_processor_id();
  814. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  815. u64 old;
  816. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  817. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  818. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  819. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  820. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  821. /* enable and lock */
  822. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  823. MSR_IA32_FEATURE_CONTROL_LOCKED |
  824. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  825. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  826. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  827. : "memory", "cc");
  828. }
  829. static void hardware_disable(void *garbage)
  830. {
  831. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  832. }
  833. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  834. u32 msr, u32 *result)
  835. {
  836. u32 vmx_msr_low, vmx_msr_high;
  837. u32 ctl = ctl_min | ctl_opt;
  838. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  839. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  840. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  841. /* Ensure minimum (required) set of control bits are supported. */
  842. if (ctl_min & ~ctl)
  843. return -EIO;
  844. *result = ctl;
  845. return 0;
  846. }
  847. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  848. {
  849. u32 vmx_msr_low, vmx_msr_high;
  850. u32 min, opt;
  851. u32 _pin_based_exec_control = 0;
  852. u32 _cpu_based_exec_control = 0;
  853. u32 _cpu_based_2nd_exec_control = 0;
  854. u32 _vmexit_control = 0;
  855. u32 _vmentry_control = 0;
  856. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  857. opt = 0;
  858. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  859. &_pin_based_exec_control) < 0)
  860. return -EIO;
  861. min = CPU_BASED_HLT_EXITING |
  862. #ifdef CONFIG_X86_64
  863. CPU_BASED_CR8_LOAD_EXITING |
  864. CPU_BASED_CR8_STORE_EXITING |
  865. #endif
  866. CPU_BASED_USE_IO_BITMAPS |
  867. CPU_BASED_MOV_DR_EXITING |
  868. CPU_BASED_USE_TSC_OFFSETING;
  869. opt = CPU_BASED_TPR_SHADOW |
  870. CPU_BASED_USE_MSR_BITMAPS |
  871. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  872. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  873. &_cpu_based_exec_control) < 0)
  874. return -EIO;
  875. #ifdef CONFIG_X86_64
  876. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  877. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  878. ~CPU_BASED_CR8_STORE_EXITING;
  879. #endif
  880. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  881. min = 0;
  882. opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  883. SECONDARY_EXEC_WBINVD_EXITING |
  884. SECONDARY_EXEC_ENABLE_VPID;
  885. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
  886. &_cpu_based_2nd_exec_control) < 0)
  887. return -EIO;
  888. }
  889. #ifndef CONFIG_X86_64
  890. if (!(_cpu_based_2nd_exec_control &
  891. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  892. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  893. #endif
  894. min = 0;
  895. #ifdef CONFIG_X86_64
  896. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  897. #endif
  898. opt = 0;
  899. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  900. &_vmexit_control) < 0)
  901. return -EIO;
  902. min = opt = 0;
  903. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  904. &_vmentry_control) < 0)
  905. return -EIO;
  906. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  907. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  908. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  909. return -EIO;
  910. #ifdef CONFIG_X86_64
  911. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  912. if (vmx_msr_high & (1u<<16))
  913. return -EIO;
  914. #endif
  915. /* Require Write-Back (WB) memory type for VMCS accesses. */
  916. if (((vmx_msr_high >> 18) & 15) != 6)
  917. return -EIO;
  918. vmcs_conf->size = vmx_msr_high & 0x1fff;
  919. vmcs_conf->order = get_order(vmcs_config.size);
  920. vmcs_conf->revision_id = vmx_msr_low;
  921. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  922. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  923. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  924. vmcs_conf->vmexit_ctrl = _vmexit_control;
  925. vmcs_conf->vmentry_ctrl = _vmentry_control;
  926. return 0;
  927. }
  928. static struct vmcs *alloc_vmcs_cpu(int cpu)
  929. {
  930. int node = cpu_to_node(cpu);
  931. struct page *pages;
  932. struct vmcs *vmcs;
  933. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  934. if (!pages)
  935. return NULL;
  936. vmcs = page_address(pages);
  937. memset(vmcs, 0, vmcs_config.size);
  938. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  939. return vmcs;
  940. }
  941. static struct vmcs *alloc_vmcs(void)
  942. {
  943. return alloc_vmcs_cpu(raw_smp_processor_id());
  944. }
  945. static void free_vmcs(struct vmcs *vmcs)
  946. {
  947. free_pages((unsigned long)vmcs, vmcs_config.order);
  948. }
  949. static void free_kvm_area(void)
  950. {
  951. int cpu;
  952. for_each_online_cpu(cpu)
  953. free_vmcs(per_cpu(vmxarea, cpu));
  954. }
  955. static __init int alloc_kvm_area(void)
  956. {
  957. int cpu;
  958. for_each_online_cpu(cpu) {
  959. struct vmcs *vmcs;
  960. vmcs = alloc_vmcs_cpu(cpu);
  961. if (!vmcs) {
  962. free_kvm_area();
  963. return -ENOMEM;
  964. }
  965. per_cpu(vmxarea, cpu) = vmcs;
  966. }
  967. return 0;
  968. }
  969. static __init int hardware_setup(void)
  970. {
  971. if (setup_vmcs_config(&vmcs_config) < 0)
  972. return -EIO;
  973. if (boot_cpu_has(X86_FEATURE_NX))
  974. kvm_enable_efer_bits(EFER_NX);
  975. return alloc_kvm_area();
  976. }
  977. static __exit void hardware_unsetup(void)
  978. {
  979. free_kvm_area();
  980. }
  981. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  982. {
  983. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  984. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  985. vmcs_write16(sf->selector, save->selector);
  986. vmcs_writel(sf->base, save->base);
  987. vmcs_write32(sf->limit, save->limit);
  988. vmcs_write32(sf->ar_bytes, save->ar);
  989. } else {
  990. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  991. << AR_DPL_SHIFT;
  992. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  993. }
  994. }
  995. static void enter_pmode(struct kvm_vcpu *vcpu)
  996. {
  997. unsigned long flags;
  998. vcpu->arch.rmode.active = 0;
  999. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1000. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1001. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1002. flags = vmcs_readl(GUEST_RFLAGS);
  1003. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1004. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1005. vmcs_writel(GUEST_RFLAGS, flags);
  1006. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1007. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1008. update_exception_bitmap(vcpu);
  1009. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1010. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1011. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1012. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1013. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1014. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1015. vmcs_write16(GUEST_CS_SELECTOR,
  1016. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1017. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1018. }
  1019. static gva_t rmode_tss_base(struct kvm *kvm)
  1020. {
  1021. if (!kvm->arch.tss_addr) {
  1022. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1023. kvm->memslots[0].npages - 3;
  1024. return base_gfn << PAGE_SHIFT;
  1025. }
  1026. return kvm->arch.tss_addr;
  1027. }
  1028. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1029. {
  1030. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1031. save->selector = vmcs_read16(sf->selector);
  1032. save->base = vmcs_readl(sf->base);
  1033. save->limit = vmcs_read32(sf->limit);
  1034. save->ar = vmcs_read32(sf->ar_bytes);
  1035. vmcs_write16(sf->selector, save->base >> 4);
  1036. vmcs_write32(sf->base, save->base & 0xfffff);
  1037. vmcs_write32(sf->limit, 0xffff);
  1038. vmcs_write32(sf->ar_bytes, 0xf3);
  1039. }
  1040. static void enter_rmode(struct kvm_vcpu *vcpu)
  1041. {
  1042. unsigned long flags;
  1043. vcpu->arch.rmode.active = 1;
  1044. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1045. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1046. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1047. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1048. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1049. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1050. flags = vmcs_readl(GUEST_RFLAGS);
  1051. vcpu->arch.rmode.save_iopl
  1052. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1053. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1054. vmcs_writel(GUEST_RFLAGS, flags);
  1055. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1056. update_exception_bitmap(vcpu);
  1057. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1058. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1059. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1060. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1061. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1062. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1063. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1064. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1065. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1066. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1067. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1068. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1069. kvm_mmu_reset_context(vcpu);
  1070. init_rmode_tss(vcpu->kvm);
  1071. }
  1072. #ifdef CONFIG_X86_64
  1073. static void enter_lmode(struct kvm_vcpu *vcpu)
  1074. {
  1075. u32 guest_tr_ar;
  1076. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1077. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1078. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1079. __func__);
  1080. vmcs_write32(GUEST_TR_AR_BYTES,
  1081. (guest_tr_ar & ~AR_TYPE_MASK)
  1082. | AR_TYPE_BUSY_64_TSS);
  1083. }
  1084. vcpu->arch.shadow_efer |= EFER_LMA;
  1085. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1086. vmcs_write32(VM_ENTRY_CONTROLS,
  1087. vmcs_read32(VM_ENTRY_CONTROLS)
  1088. | VM_ENTRY_IA32E_MODE);
  1089. }
  1090. static void exit_lmode(struct kvm_vcpu *vcpu)
  1091. {
  1092. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1093. vmcs_write32(VM_ENTRY_CONTROLS,
  1094. vmcs_read32(VM_ENTRY_CONTROLS)
  1095. & ~VM_ENTRY_IA32E_MODE);
  1096. }
  1097. #endif
  1098. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1099. {
  1100. vpid_sync_vcpu_all(to_vmx(vcpu));
  1101. }
  1102. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1103. {
  1104. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1105. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1106. }
  1107. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1108. {
  1109. vmx_fpu_deactivate(vcpu);
  1110. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1111. enter_pmode(vcpu);
  1112. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1113. enter_rmode(vcpu);
  1114. #ifdef CONFIG_X86_64
  1115. if (vcpu->arch.shadow_efer & EFER_LME) {
  1116. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1117. enter_lmode(vcpu);
  1118. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1119. exit_lmode(vcpu);
  1120. }
  1121. #endif
  1122. vmcs_writel(CR0_READ_SHADOW, cr0);
  1123. vmcs_writel(GUEST_CR0,
  1124. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  1125. vcpu->arch.cr0 = cr0;
  1126. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1127. vmx_fpu_activate(vcpu);
  1128. }
  1129. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1130. {
  1131. vmx_flush_tlb(vcpu);
  1132. vmcs_writel(GUEST_CR3, cr3);
  1133. if (vcpu->arch.cr0 & X86_CR0_PE)
  1134. vmx_fpu_deactivate(vcpu);
  1135. }
  1136. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1137. {
  1138. vmcs_writel(CR4_READ_SHADOW, cr4);
  1139. vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ?
  1140. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  1141. vcpu->arch.cr4 = cr4;
  1142. }
  1143. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1144. {
  1145. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1146. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1147. vcpu->arch.shadow_efer = efer;
  1148. if (!msr)
  1149. return;
  1150. if (efer & EFER_LMA) {
  1151. vmcs_write32(VM_ENTRY_CONTROLS,
  1152. vmcs_read32(VM_ENTRY_CONTROLS) |
  1153. VM_ENTRY_IA32E_MODE);
  1154. msr->data = efer;
  1155. } else {
  1156. vmcs_write32(VM_ENTRY_CONTROLS,
  1157. vmcs_read32(VM_ENTRY_CONTROLS) &
  1158. ~VM_ENTRY_IA32E_MODE);
  1159. msr->data = efer & ~EFER_LME;
  1160. }
  1161. setup_msrs(vmx);
  1162. }
  1163. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1164. {
  1165. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1166. return vmcs_readl(sf->base);
  1167. }
  1168. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1169. struct kvm_segment *var, int seg)
  1170. {
  1171. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1172. u32 ar;
  1173. var->base = vmcs_readl(sf->base);
  1174. var->limit = vmcs_read32(sf->limit);
  1175. var->selector = vmcs_read16(sf->selector);
  1176. ar = vmcs_read32(sf->ar_bytes);
  1177. if (ar & AR_UNUSABLE_MASK)
  1178. ar = 0;
  1179. var->type = ar & 15;
  1180. var->s = (ar >> 4) & 1;
  1181. var->dpl = (ar >> 5) & 3;
  1182. var->present = (ar >> 7) & 1;
  1183. var->avl = (ar >> 12) & 1;
  1184. var->l = (ar >> 13) & 1;
  1185. var->db = (ar >> 14) & 1;
  1186. var->g = (ar >> 15) & 1;
  1187. var->unusable = (ar >> 16) & 1;
  1188. }
  1189. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1190. {
  1191. struct kvm_segment kvm_seg;
  1192. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1193. return 0;
  1194. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1195. return 3;
  1196. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1197. return kvm_seg.selector & 3;
  1198. }
  1199. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1200. {
  1201. u32 ar;
  1202. if (var->unusable)
  1203. ar = 1 << 16;
  1204. else {
  1205. ar = var->type & 15;
  1206. ar |= (var->s & 1) << 4;
  1207. ar |= (var->dpl & 3) << 5;
  1208. ar |= (var->present & 1) << 7;
  1209. ar |= (var->avl & 1) << 12;
  1210. ar |= (var->l & 1) << 13;
  1211. ar |= (var->db & 1) << 14;
  1212. ar |= (var->g & 1) << 15;
  1213. }
  1214. if (ar == 0) /* a 0 value means unusable */
  1215. ar = AR_UNUSABLE_MASK;
  1216. return ar;
  1217. }
  1218. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1219. struct kvm_segment *var, int seg)
  1220. {
  1221. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1222. u32 ar;
  1223. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1224. vcpu->arch.rmode.tr.selector = var->selector;
  1225. vcpu->arch.rmode.tr.base = var->base;
  1226. vcpu->arch.rmode.tr.limit = var->limit;
  1227. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1228. return;
  1229. }
  1230. vmcs_writel(sf->base, var->base);
  1231. vmcs_write32(sf->limit, var->limit);
  1232. vmcs_write16(sf->selector, var->selector);
  1233. if (vcpu->arch.rmode.active && var->s) {
  1234. /*
  1235. * Hack real-mode segments into vm86 compatibility.
  1236. */
  1237. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1238. vmcs_writel(sf->base, 0xf0000);
  1239. ar = 0xf3;
  1240. } else
  1241. ar = vmx_segment_access_rights(var);
  1242. vmcs_write32(sf->ar_bytes, ar);
  1243. }
  1244. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1245. {
  1246. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1247. *db = (ar >> 14) & 1;
  1248. *l = (ar >> 13) & 1;
  1249. }
  1250. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1251. {
  1252. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1253. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1254. }
  1255. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1256. {
  1257. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1258. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1259. }
  1260. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1261. {
  1262. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1263. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1264. }
  1265. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1266. {
  1267. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1268. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1269. }
  1270. static int init_rmode_tss(struct kvm *kvm)
  1271. {
  1272. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1273. u16 data = 0;
  1274. int ret = 0;
  1275. int r;
  1276. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1277. if (r < 0)
  1278. goto out;
  1279. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1280. r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
  1281. if (r < 0)
  1282. goto out;
  1283. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1284. if (r < 0)
  1285. goto out;
  1286. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1287. if (r < 0)
  1288. goto out;
  1289. data = ~0;
  1290. r = kvm_write_guest_page(kvm, fn, &data,
  1291. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1292. sizeof(u8));
  1293. if (r < 0)
  1294. goto out;
  1295. ret = 1;
  1296. out:
  1297. return ret;
  1298. }
  1299. static void seg_setup(int seg)
  1300. {
  1301. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1302. vmcs_write16(sf->selector, 0);
  1303. vmcs_writel(sf->base, 0);
  1304. vmcs_write32(sf->limit, 0xffff);
  1305. vmcs_write32(sf->ar_bytes, 0x93);
  1306. }
  1307. static int alloc_apic_access_page(struct kvm *kvm)
  1308. {
  1309. struct kvm_userspace_memory_region kvm_userspace_mem;
  1310. int r = 0;
  1311. down_write(&kvm->slots_lock);
  1312. if (kvm->arch.apic_access_page)
  1313. goto out;
  1314. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1315. kvm_userspace_mem.flags = 0;
  1316. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1317. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1318. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1319. if (r)
  1320. goto out;
  1321. down_read(&current->mm->mmap_sem);
  1322. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1323. up_read(&current->mm->mmap_sem);
  1324. out:
  1325. up_write(&kvm->slots_lock);
  1326. return r;
  1327. }
  1328. static void allocate_vpid(struct vcpu_vmx *vmx)
  1329. {
  1330. int vpid;
  1331. vmx->vpid = 0;
  1332. if (!enable_vpid || !cpu_has_vmx_vpid())
  1333. return;
  1334. spin_lock(&vmx_vpid_lock);
  1335. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1336. if (vpid < VMX_NR_VPIDS) {
  1337. vmx->vpid = vpid;
  1338. __set_bit(vpid, vmx_vpid_bitmap);
  1339. }
  1340. spin_unlock(&vmx_vpid_lock);
  1341. }
  1342. void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
  1343. {
  1344. void *va;
  1345. if (!cpu_has_vmx_msr_bitmap())
  1346. return;
  1347. /*
  1348. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1349. * have the write-low and read-high bitmap offsets the wrong way round.
  1350. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1351. */
  1352. va = kmap(msr_bitmap);
  1353. if (msr <= 0x1fff) {
  1354. __clear_bit(msr, va + 0x000); /* read-low */
  1355. __clear_bit(msr, va + 0x800); /* write-low */
  1356. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1357. msr &= 0x1fff;
  1358. __clear_bit(msr, va + 0x400); /* read-high */
  1359. __clear_bit(msr, va + 0xc00); /* write-high */
  1360. }
  1361. kunmap(msr_bitmap);
  1362. }
  1363. /*
  1364. * Sets up the vmcs for emulated real mode.
  1365. */
  1366. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1367. {
  1368. u32 host_sysenter_cs;
  1369. u32 junk;
  1370. unsigned long a;
  1371. struct descriptor_table dt;
  1372. int i;
  1373. unsigned long kvm_vmx_return;
  1374. u32 exec_control;
  1375. /* I/O */
  1376. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1377. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1378. if (cpu_has_vmx_msr_bitmap())
  1379. vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
  1380. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1381. /* Control */
  1382. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1383. vmcs_config.pin_based_exec_ctrl);
  1384. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1385. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1386. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1387. #ifdef CONFIG_X86_64
  1388. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1389. CPU_BASED_CR8_LOAD_EXITING;
  1390. #endif
  1391. }
  1392. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1393. if (cpu_has_secondary_exec_ctrls()) {
  1394. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1395. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1396. exec_control &=
  1397. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1398. if (vmx->vpid == 0)
  1399. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1400. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1401. }
  1402. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1403. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1404. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1405. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1406. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1407. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1408. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1409. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1410. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1411. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1412. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1413. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1414. #ifdef CONFIG_X86_64
  1415. rdmsrl(MSR_FS_BASE, a);
  1416. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1417. rdmsrl(MSR_GS_BASE, a);
  1418. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1419. #else
  1420. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1421. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1422. #endif
  1423. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1424. get_idt(&dt);
  1425. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1426. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1427. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1428. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1429. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1430. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1431. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1432. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1433. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1434. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1435. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1436. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1437. for (i = 0; i < NR_VMX_MSR; ++i) {
  1438. u32 index = vmx_msr_index[i];
  1439. u32 data_low, data_high;
  1440. u64 data;
  1441. int j = vmx->nmsrs;
  1442. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1443. continue;
  1444. if (wrmsr_safe(index, data_low, data_high) < 0)
  1445. continue;
  1446. data = data_low | ((u64)data_high << 32);
  1447. vmx->host_msrs[j].index = index;
  1448. vmx->host_msrs[j].reserved = 0;
  1449. vmx->host_msrs[j].data = data;
  1450. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1451. ++vmx->nmsrs;
  1452. }
  1453. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1454. /* 22.2.1, 20.8.1 */
  1455. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1456. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1457. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1458. return 0;
  1459. }
  1460. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1461. {
  1462. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1463. u64 msr;
  1464. int ret;
  1465. down_read(&vcpu->kvm->slots_lock);
  1466. if (!init_rmode_tss(vmx->vcpu.kvm)) {
  1467. ret = -ENOMEM;
  1468. goto out;
  1469. }
  1470. vmx->vcpu.arch.rmode.active = 0;
  1471. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1472. kvm_set_cr8(&vmx->vcpu, 0);
  1473. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1474. if (vmx->vcpu.vcpu_id == 0)
  1475. msr |= MSR_IA32_APICBASE_BSP;
  1476. kvm_set_apic_base(&vmx->vcpu, msr);
  1477. fx_init(&vmx->vcpu);
  1478. /*
  1479. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1480. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1481. */
  1482. if (vmx->vcpu.vcpu_id == 0) {
  1483. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1484. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1485. } else {
  1486. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1487. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1488. }
  1489. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1490. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1491. seg_setup(VCPU_SREG_DS);
  1492. seg_setup(VCPU_SREG_ES);
  1493. seg_setup(VCPU_SREG_FS);
  1494. seg_setup(VCPU_SREG_GS);
  1495. seg_setup(VCPU_SREG_SS);
  1496. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1497. vmcs_writel(GUEST_TR_BASE, 0);
  1498. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1499. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1500. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1501. vmcs_writel(GUEST_LDTR_BASE, 0);
  1502. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1503. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1504. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1505. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1506. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1507. vmcs_writel(GUEST_RFLAGS, 0x02);
  1508. if (vmx->vcpu.vcpu_id == 0)
  1509. vmcs_writel(GUEST_RIP, 0xfff0);
  1510. else
  1511. vmcs_writel(GUEST_RIP, 0);
  1512. vmcs_writel(GUEST_RSP, 0);
  1513. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1514. vmcs_writel(GUEST_DR7, 0x400);
  1515. vmcs_writel(GUEST_GDTR_BASE, 0);
  1516. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1517. vmcs_writel(GUEST_IDTR_BASE, 0);
  1518. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1519. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1520. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1521. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1522. guest_write_tsc(0);
  1523. /* Special registers */
  1524. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1525. setup_msrs(vmx);
  1526. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1527. if (cpu_has_vmx_tpr_shadow()) {
  1528. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1529. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1530. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1531. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1532. vmcs_write32(TPR_THRESHOLD, 0);
  1533. }
  1534. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1535. vmcs_write64(APIC_ACCESS_ADDR,
  1536. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1537. if (vmx->vpid != 0)
  1538. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  1539. vmx->vcpu.arch.cr0 = 0x60000010;
  1540. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  1541. vmx_set_cr4(&vmx->vcpu, 0);
  1542. vmx_set_efer(&vmx->vcpu, 0);
  1543. vmx_fpu_activate(&vmx->vcpu);
  1544. update_exception_bitmap(&vmx->vcpu);
  1545. vpid_sync_vcpu_all(vmx);
  1546. ret = 0;
  1547. out:
  1548. up_read(&vcpu->kvm->slots_lock);
  1549. return ret;
  1550. }
  1551. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1552. {
  1553. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1554. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  1555. if (vcpu->arch.rmode.active) {
  1556. vmx->rmode.irq.pending = true;
  1557. vmx->rmode.irq.vector = irq;
  1558. vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
  1559. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1560. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1561. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1562. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
  1563. return;
  1564. }
  1565. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1566. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1567. }
  1568. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1569. {
  1570. int word_index = __ffs(vcpu->arch.irq_summary);
  1571. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1572. int irq = word_index * BITS_PER_LONG + bit_index;
  1573. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1574. if (!vcpu->arch.irq_pending[word_index])
  1575. clear_bit(word_index, &vcpu->arch.irq_summary);
  1576. vmx_inject_irq(vcpu, irq);
  1577. }
  1578. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1579. struct kvm_run *kvm_run)
  1580. {
  1581. u32 cpu_based_vm_exec_control;
  1582. vcpu->arch.interrupt_window_open =
  1583. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1584. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1585. if (vcpu->arch.interrupt_window_open &&
  1586. vcpu->arch.irq_summary &&
  1587. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1588. /*
  1589. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1590. */
  1591. kvm_do_inject_irq(vcpu);
  1592. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1593. if (!vcpu->arch.interrupt_window_open &&
  1594. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  1595. /*
  1596. * Interrupts blocked. Wait for unblock.
  1597. */
  1598. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1599. else
  1600. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1601. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1602. }
  1603. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1604. {
  1605. int ret;
  1606. struct kvm_userspace_memory_region tss_mem = {
  1607. .slot = 8,
  1608. .guest_phys_addr = addr,
  1609. .memory_size = PAGE_SIZE * 3,
  1610. .flags = 0,
  1611. };
  1612. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  1613. if (ret)
  1614. return ret;
  1615. kvm->arch.tss_addr = addr;
  1616. return 0;
  1617. }
  1618. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1619. {
  1620. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1621. set_debugreg(dbg->bp[0], 0);
  1622. set_debugreg(dbg->bp[1], 1);
  1623. set_debugreg(dbg->bp[2], 2);
  1624. set_debugreg(dbg->bp[3], 3);
  1625. if (dbg->singlestep) {
  1626. unsigned long flags;
  1627. flags = vmcs_readl(GUEST_RFLAGS);
  1628. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1629. vmcs_writel(GUEST_RFLAGS, flags);
  1630. }
  1631. }
  1632. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1633. int vec, u32 err_code)
  1634. {
  1635. if (!vcpu->arch.rmode.active)
  1636. return 0;
  1637. /*
  1638. * Instruction with address size override prefix opcode 0x67
  1639. * Cause the #SS fault with 0 error code in VM86 mode.
  1640. */
  1641. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1642. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1643. return 1;
  1644. return 0;
  1645. }
  1646. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1647. {
  1648. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1649. u32 intr_info, error_code;
  1650. unsigned long cr2, rip;
  1651. u32 vect_info;
  1652. enum emulation_result er;
  1653. vect_info = vmx->idt_vectoring_info;
  1654. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1655. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1656. !is_page_fault(intr_info))
  1657. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1658. "intr info 0x%x\n", __func__, vect_info, intr_info);
  1659. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1660. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1661. set_bit(irq, vcpu->arch.irq_pending);
  1662. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1663. }
  1664. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1665. return 1; /* already handled by vmx_vcpu_run() */
  1666. if (is_no_device(intr_info)) {
  1667. vmx_fpu_activate(vcpu);
  1668. return 1;
  1669. }
  1670. if (is_invalid_opcode(intr_info)) {
  1671. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  1672. if (er != EMULATE_DONE)
  1673. kvm_queue_exception(vcpu, UD_VECTOR);
  1674. return 1;
  1675. }
  1676. error_code = 0;
  1677. rip = vmcs_readl(GUEST_RIP);
  1678. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  1679. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1680. if (is_page_fault(intr_info)) {
  1681. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1682. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  1683. (u32)((u64)cr2 >> 32), handler);
  1684. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  1685. }
  1686. if (vcpu->arch.rmode.active &&
  1687. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1688. error_code)) {
  1689. if (vcpu->arch.halt_request) {
  1690. vcpu->arch.halt_request = 0;
  1691. return kvm_emulate_halt(vcpu);
  1692. }
  1693. return 1;
  1694. }
  1695. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1696. (INTR_TYPE_EXCEPTION | 1)) {
  1697. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1698. return 0;
  1699. }
  1700. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1701. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1702. kvm_run->ex.error_code = error_code;
  1703. return 0;
  1704. }
  1705. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1706. struct kvm_run *kvm_run)
  1707. {
  1708. ++vcpu->stat.irq_exits;
  1709. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  1710. return 1;
  1711. }
  1712. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1713. {
  1714. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1715. return 0;
  1716. }
  1717. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1718. {
  1719. unsigned long exit_qualification;
  1720. int size, down, in, string, rep;
  1721. unsigned port;
  1722. ++vcpu->stat.io_exits;
  1723. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1724. string = (exit_qualification & 16) != 0;
  1725. if (string) {
  1726. if (emulate_instruction(vcpu,
  1727. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  1728. return 0;
  1729. return 1;
  1730. }
  1731. size = (exit_qualification & 7) + 1;
  1732. in = (exit_qualification & 8) != 0;
  1733. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1734. rep = (exit_qualification & 32) != 0;
  1735. port = exit_qualification >> 16;
  1736. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1737. }
  1738. static void
  1739. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1740. {
  1741. /*
  1742. * Patch in the VMCALL instruction:
  1743. */
  1744. hypercall[0] = 0x0f;
  1745. hypercall[1] = 0x01;
  1746. hypercall[2] = 0xc1;
  1747. }
  1748. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1749. {
  1750. unsigned long exit_qualification;
  1751. int cr;
  1752. int reg;
  1753. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1754. cr = exit_qualification & 15;
  1755. reg = (exit_qualification >> 8) & 15;
  1756. switch ((exit_qualification >> 4) & 3) {
  1757. case 0: /* mov to cr */
  1758. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)vcpu->arch.regs[reg],
  1759. (u32)((u64)vcpu->arch.regs[reg] >> 32), handler);
  1760. switch (cr) {
  1761. case 0:
  1762. vcpu_load_rsp_rip(vcpu);
  1763. kvm_set_cr0(vcpu, vcpu->arch.regs[reg]);
  1764. skip_emulated_instruction(vcpu);
  1765. return 1;
  1766. case 3:
  1767. vcpu_load_rsp_rip(vcpu);
  1768. kvm_set_cr3(vcpu, vcpu->arch.regs[reg]);
  1769. skip_emulated_instruction(vcpu);
  1770. return 1;
  1771. case 4:
  1772. vcpu_load_rsp_rip(vcpu);
  1773. kvm_set_cr4(vcpu, vcpu->arch.regs[reg]);
  1774. skip_emulated_instruction(vcpu);
  1775. return 1;
  1776. case 8:
  1777. vcpu_load_rsp_rip(vcpu);
  1778. kvm_set_cr8(vcpu, vcpu->arch.regs[reg]);
  1779. skip_emulated_instruction(vcpu);
  1780. if (irqchip_in_kernel(vcpu->kvm))
  1781. return 1;
  1782. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1783. return 0;
  1784. };
  1785. break;
  1786. case 2: /* clts */
  1787. vcpu_load_rsp_rip(vcpu);
  1788. vmx_fpu_deactivate(vcpu);
  1789. vcpu->arch.cr0 &= ~X86_CR0_TS;
  1790. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1791. vmx_fpu_activate(vcpu);
  1792. KVMTRACE_0D(CLTS, vcpu, handler);
  1793. skip_emulated_instruction(vcpu);
  1794. return 1;
  1795. case 1: /*mov from cr*/
  1796. switch (cr) {
  1797. case 3:
  1798. vcpu_load_rsp_rip(vcpu);
  1799. vcpu->arch.regs[reg] = vcpu->arch.cr3;
  1800. vcpu_put_rsp_rip(vcpu);
  1801. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  1802. (u32)vcpu->arch.regs[reg],
  1803. (u32)((u64)vcpu->arch.regs[reg] >> 32),
  1804. handler);
  1805. skip_emulated_instruction(vcpu);
  1806. return 1;
  1807. case 8:
  1808. vcpu_load_rsp_rip(vcpu);
  1809. vcpu->arch.regs[reg] = kvm_get_cr8(vcpu);
  1810. vcpu_put_rsp_rip(vcpu);
  1811. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  1812. (u32)vcpu->arch.regs[reg], handler);
  1813. skip_emulated_instruction(vcpu);
  1814. return 1;
  1815. }
  1816. break;
  1817. case 3: /* lmsw */
  1818. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1819. skip_emulated_instruction(vcpu);
  1820. return 1;
  1821. default:
  1822. break;
  1823. }
  1824. kvm_run->exit_reason = 0;
  1825. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  1826. (int)(exit_qualification >> 4) & 3, cr);
  1827. return 0;
  1828. }
  1829. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1830. {
  1831. unsigned long exit_qualification;
  1832. unsigned long val;
  1833. int dr, reg;
  1834. /*
  1835. * FIXME: this code assumes the host is debugging the guest.
  1836. * need to deal with guest debugging itself too.
  1837. */
  1838. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1839. dr = exit_qualification & 7;
  1840. reg = (exit_qualification >> 8) & 15;
  1841. vcpu_load_rsp_rip(vcpu);
  1842. if (exit_qualification & 16) {
  1843. /* mov from dr */
  1844. switch (dr) {
  1845. case 6:
  1846. val = 0xffff0ff0;
  1847. break;
  1848. case 7:
  1849. val = 0x400;
  1850. break;
  1851. default:
  1852. val = 0;
  1853. }
  1854. vcpu->arch.regs[reg] = val;
  1855. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  1856. } else {
  1857. /* mov to dr */
  1858. }
  1859. vcpu_put_rsp_rip(vcpu);
  1860. skip_emulated_instruction(vcpu);
  1861. return 1;
  1862. }
  1863. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1864. {
  1865. kvm_emulate_cpuid(vcpu);
  1866. return 1;
  1867. }
  1868. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1869. {
  1870. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  1871. u64 data;
  1872. if (vmx_get_msr(vcpu, ecx, &data)) {
  1873. kvm_inject_gp(vcpu, 0);
  1874. return 1;
  1875. }
  1876. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  1877. handler);
  1878. /* FIXME: handling of bits 32:63 of rax, rdx */
  1879. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  1880. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1881. skip_emulated_instruction(vcpu);
  1882. return 1;
  1883. }
  1884. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1885. {
  1886. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  1887. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  1888. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  1889. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  1890. handler);
  1891. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1892. kvm_inject_gp(vcpu, 0);
  1893. return 1;
  1894. }
  1895. skip_emulated_instruction(vcpu);
  1896. return 1;
  1897. }
  1898. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  1899. struct kvm_run *kvm_run)
  1900. {
  1901. return 1;
  1902. }
  1903. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1904. struct kvm_run *kvm_run)
  1905. {
  1906. u32 cpu_based_vm_exec_control;
  1907. /* clear pending irq */
  1908. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1909. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1910. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1911. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  1912. /*
  1913. * If the user space waits to inject interrupts, exit as soon as
  1914. * possible
  1915. */
  1916. if (kvm_run->request_interrupt_window &&
  1917. !vcpu->arch.irq_summary) {
  1918. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1919. ++vcpu->stat.irq_window_exits;
  1920. return 0;
  1921. }
  1922. return 1;
  1923. }
  1924. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1925. {
  1926. skip_emulated_instruction(vcpu);
  1927. return kvm_emulate_halt(vcpu);
  1928. }
  1929. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1930. {
  1931. skip_emulated_instruction(vcpu);
  1932. kvm_emulate_hypercall(vcpu);
  1933. return 1;
  1934. }
  1935. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1936. {
  1937. skip_emulated_instruction(vcpu);
  1938. /* TODO: Add support for VT-d/pass-through device */
  1939. return 1;
  1940. }
  1941. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1942. {
  1943. u64 exit_qualification;
  1944. enum emulation_result er;
  1945. unsigned long offset;
  1946. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1947. offset = exit_qualification & 0xffful;
  1948. KVMTRACE_1D(APIC_ACCESS, vcpu, (u32)offset, handler);
  1949. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  1950. if (er != EMULATE_DONE) {
  1951. printk(KERN_ERR
  1952. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  1953. offset);
  1954. return -ENOTSUPP;
  1955. }
  1956. return 1;
  1957. }
  1958. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1959. {
  1960. unsigned long exit_qualification;
  1961. u16 tss_selector;
  1962. int reason;
  1963. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1964. reason = (u32)exit_qualification >> 30;
  1965. tss_selector = exit_qualification;
  1966. return kvm_task_switch(vcpu, tss_selector, reason);
  1967. }
  1968. /*
  1969. * The exit handlers return 1 if the exit was handled fully and guest execution
  1970. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1971. * to be done to userspace and return 0.
  1972. */
  1973. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1974. struct kvm_run *kvm_run) = {
  1975. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1976. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1977. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1978. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1979. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1980. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1981. [EXIT_REASON_CPUID] = handle_cpuid,
  1982. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1983. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1984. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1985. [EXIT_REASON_HLT] = handle_halt,
  1986. [EXIT_REASON_VMCALL] = handle_vmcall,
  1987. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  1988. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  1989. [EXIT_REASON_WBINVD] = handle_wbinvd,
  1990. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  1991. };
  1992. static const int kvm_vmx_max_exit_handlers =
  1993. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1994. /*
  1995. * The guest has exited. See if we can fix it or if we need userspace
  1996. * assistance.
  1997. */
  1998. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1999. {
  2000. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2001. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2002. u32 vectoring_info = vmx->idt_vectoring_info;
  2003. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)vmcs_readl(GUEST_RIP),
  2004. (u32)((u64)vmcs_readl(GUEST_RIP) >> 32), entryexit);
  2005. if (unlikely(vmx->fail)) {
  2006. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2007. kvm_run->fail_entry.hardware_entry_failure_reason
  2008. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2009. return 0;
  2010. }
  2011. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2012. exit_reason != EXIT_REASON_EXCEPTION_NMI)
  2013. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  2014. "exit reason is 0x%x\n", __func__, exit_reason);
  2015. if (exit_reason < kvm_vmx_max_exit_handlers
  2016. && kvm_vmx_exit_handlers[exit_reason])
  2017. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2018. else {
  2019. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2020. kvm_run->hw.hardware_exit_reason = exit_reason;
  2021. }
  2022. return 0;
  2023. }
  2024. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2025. {
  2026. int max_irr, tpr;
  2027. if (!vm_need_tpr_shadow(vcpu->kvm))
  2028. return;
  2029. if (!kvm_lapic_enabled(vcpu) ||
  2030. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2031. vmcs_write32(TPR_THRESHOLD, 0);
  2032. return;
  2033. }
  2034. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2035. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2036. }
  2037. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2038. {
  2039. u32 cpu_based_vm_exec_control;
  2040. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2041. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2042. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2043. }
  2044. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2045. {
  2046. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2047. u32 idtv_info_field, intr_info_field;
  2048. int has_ext_irq, interrupt_window_open;
  2049. int vector;
  2050. update_tpr_threshold(vcpu);
  2051. has_ext_irq = kvm_cpu_has_interrupt(vcpu);
  2052. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  2053. idtv_info_field = vmx->idt_vectoring_info;
  2054. if (intr_info_field & INTR_INFO_VALID_MASK) {
  2055. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  2056. /* TODO: fault when IDT_Vectoring */
  2057. if (printk_ratelimit())
  2058. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  2059. }
  2060. if (has_ext_irq)
  2061. enable_irq_window(vcpu);
  2062. return;
  2063. }
  2064. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  2065. if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
  2066. == INTR_TYPE_EXT_INTR
  2067. && vcpu->arch.rmode.active) {
  2068. u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  2069. vmx_inject_irq(vcpu, vect);
  2070. if (unlikely(has_ext_irq))
  2071. enable_irq_window(vcpu);
  2072. return;
  2073. }
  2074. KVMTRACE_1D(REDELIVER_EVT, vcpu, idtv_info_field, handler);
  2075. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
  2076. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2077. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  2078. if (unlikely(idtv_info_field & INTR_INFO_DELIVER_CODE_MASK))
  2079. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  2080. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  2081. if (unlikely(has_ext_irq))
  2082. enable_irq_window(vcpu);
  2083. return;
  2084. }
  2085. if (!has_ext_irq)
  2086. return;
  2087. interrupt_window_open =
  2088. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2089. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  2090. if (interrupt_window_open) {
  2091. vector = kvm_cpu_get_interrupt(vcpu);
  2092. vmx_inject_irq(vcpu, vector);
  2093. kvm_timer_intr_post(vcpu, vector);
  2094. } else
  2095. enable_irq_window(vcpu);
  2096. }
  2097. /*
  2098. * Failure to inject an interrupt should give us the information
  2099. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2100. * when fetching the interrupt redirection bitmap in the real-mode
  2101. * tss, this doesn't happen. So we do it ourselves.
  2102. */
  2103. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2104. {
  2105. vmx->rmode.irq.pending = 0;
  2106. if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
  2107. return;
  2108. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
  2109. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2110. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2111. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2112. return;
  2113. }
  2114. vmx->idt_vectoring_info =
  2115. VECTORING_INFO_VALID_MASK
  2116. | INTR_TYPE_EXT_INTR
  2117. | vmx->rmode.irq.vector;
  2118. }
  2119. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2120. {
  2121. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2122. u32 intr_info;
  2123. /*
  2124. * Loading guest fpu may have cleared host cr0.ts
  2125. */
  2126. vmcs_writel(HOST_CR0, read_cr0());
  2127. asm(
  2128. /* Store host registers */
  2129. #ifdef CONFIG_X86_64
  2130. "push %%rdx; push %%rbp;"
  2131. "push %%rcx \n\t"
  2132. #else
  2133. "push %%edx; push %%ebp;"
  2134. "push %%ecx \n\t"
  2135. #endif
  2136. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  2137. /* Check if vmlaunch of vmresume is needed */
  2138. "cmpl $0, %c[launched](%0) \n\t"
  2139. /* Load guest registers. Don't clobber flags. */
  2140. #ifdef CONFIG_X86_64
  2141. "mov %c[cr2](%0), %%rax \n\t"
  2142. "mov %%rax, %%cr2 \n\t"
  2143. "mov %c[rax](%0), %%rax \n\t"
  2144. "mov %c[rbx](%0), %%rbx \n\t"
  2145. "mov %c[rdx](%0), %%rdx \n\t"
  2146. "mov %c[rsi](%0), %%rsi \n\t"
  2147. "mov %c[rdi](%0), %%rdi \n\t"
  2148. "mov %c[rbp](%0), %%rbp \n\t"
  2149. "mov %c[r8](%0), %%r8 \n\t"
  2150. "mov %c[r9](%0), %%r9 \n\t"
  2151. "mov %c[r10](%0), %%r10 \n\t"
  2152. "mov %c[r11](%0), %%r11 \n\t"
  2153. "mov %c[r12](%0), %%r12 \n\t"
  2154. "mov %c[r13](%0), %%r13 \n\t"
  2155. "mov %c[r14](%0), %%r14 \n\t"
  2156. "mov %c[r15](%0), %%r15 \n\t"
  2157. "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
  2158. #else
  2159. "mov %c[cr2](%0), %%eax \n\t"
  2160. "mov %%eax, %%cr2 \n\t"
  2161. "mov %c[rax](%0), %%eax \n\t"
  2162. "mov %c[rbx](%0), %%ebx \n\t"
  2163. "mov %c[rdx](%0), %%edx \n\t"
  2164. "mov %c[rsi](%0), %%esi \n\t"
  2165. "mov %c[rdi](%0), %%edi \n\t"
  2166. "mov %c[rbp](%0), %%ebp \n\t"
  2167. "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
  2168. #endif
  2169. /* Enter guest mode */
  2170. "jne .Llaunched \n\t"
  2171. ASM_VMX_VMLAUNCH "\n\t"
  2172. "jmp .Lkvm_vmx_return \n\t"
  2173. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  2174. ".Lkvm_vmx_return: "
  2175. /* Save guest registers, load host registers, keep flags */
  2176. #ifdef CONFIG_X86_64
  2177. "xchg %0, (%%rsp) \n\t"
  2178. "mov %%rax, %c[rax](%0) \n\t"
  2179. "mov %%rbx, %c[rbx](%0) \n\t"
  2180. "pushq (%%rsp); popq %c[rcx](%0) \n\t"
  2181. "mov %%rdx, %c[rdx](%0) \n\t"
  2182. "mov %%rsi, %c[rsi](%0) \n\t"
  2183. "mov %%rdi, %c[rdi](%0) \n\t"
  2184. "mov %%rbp, %c[rbp](%0) \n\t"
  2185. "mov %%r8, %c[r8](%0) \n\t"
  2186. "mov %%r9, %c[r9](%0) \n\t"
  2187. "mov %%r10, %c[r10](%0) \n\t"
  2188. "mov %%r11, %c[r11](%0) \n\t"
  2189. "mov %%r12, %c[r12](%0) \n\t"
  2190. "mov %%r13, %c[r13](%0) \n\t"
  2191. "mov %%r14, %c[r14](%0) \n\t"
  2192. "mov %%r15, %c[r15](%0) \n\t"
  2193. "mov %%cr2, %%rax \n\t"
  2194. "mov %%rax, %c[cr2](%0) \n\t"
  2195. "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
  2196. #else
  2197. "xchg %0, (%%esp) \n\t"
  2198. "mov %%eax, %c[rax](%0) \n\t"
  2199. "mov %%ebx, %c[rbx](%0) \n\t"
  2200. "pushl (%%esp); popl %c[rcx](%0) \n\t"
  2201. "mov %%edx, %c[rdx](%0) \n\t"
  2202. "mov %%esi, %c[rsi](%0) \n\t"
  2203. "mov %%edi, %c[rdi](%0) \n\t"
  2204. "mov %%ebp, %c[rbp](%0) \n\t"
  2205. "mov %%cr2, %%eax \n\t"
  2206. "mov %%eax, %c[cr2](%0) \n\t"
  2207. "pop %%ebp; pop %%ebp; pop %%edx \n\t"
  2208. #endif
  2209. "setbe %c[fail](%0) \n\t"
  2210. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2211. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2212. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2213. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2214. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2215. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2216. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2217. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2218. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2219. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2220. #ifdef CONFIG_X86_64
  2221. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2222. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2223. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2224. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2225. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2226. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2227. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2228. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2229. #endif
  2230. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2231. : "cc", "memory"
  2232. #ifdef CONFIG_X86_64
  2233. , "rbx", "rdi", "rsi"
  2234. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2235. #else
  2236. , "ebx", "edi", "rsi"
  2237. #endif
  2238. );
  2239. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2240. if (vmx->rmode.irq.pending)
  2241. fixup_rmode_irq(vmx);
  2242. vcpu->arch.interrupt_window_open =
  2243. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  2244. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2245. vmx->launched = 1;
  2246. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2247. /* We need to handle NMIs before interrupts are enabled */
  2248. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  2249. KVMTRACE_0D(NMI, vcpu, handler);
  2250. asm("int $2");
  2251. }
  2252. }
  2253. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2254. {
  2255. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2256. if (vmx->vmcs) {
  2257. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  2258. free_vmcs(vmx->vmcs);
  2259. vmx->vmcs = NULL;
  2260. }
  2261. }
  2262. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2263. {
  2264. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2265. spin_lock(&vmx_vpid_lock);
  2266. if (vmx->vpid != 0)
  2267. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2268. spin_unlock(&vmx_vpid_lock);
  2269. vmx_free_vmcs(vcpu);
  2270. kfree(vmx->host_msrs);
  2271. kfree(vmx->guest_msrs);
  2272. kvm_vcpu_uninit(vcpu);
  2273. kmem_cache_free(kvm_vcpu_cache, vmx);
  2274. }
  2275. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2276. {
  2277. int err;
  2278. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2279. int cpu;
  2280. if (!vmx)
  2281. return ERR_PTR(-ENOMEM);
  2282. allocate_vpid(vmx);
  2283. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2284. if (err)
  2285. goto free_vcpu;
  2286. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2287. if (!vmx->guest_msrs) {
  2288. err = -ENOMEM;
  2289. goto uninit_vcpu;
  2290. }
  2291. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2292. if (!vmx->host_msrs)
  2293. goto free_guest_msrs;
  2294. vmx->vmcs = alloc_vmcs();
  2295. if (!vmx->vmcs)
  2296. goto free_msrs;
  2297. vmcs_clear(vmx->vmcs);
  2298. cpu = get_cpu();
  2299. vmx_vcpu_load(&vmx->vcpu, cpu);
  2300. err = vmx_vcpu_setup(vmx);
  2301. vmx_vcpu_put(&vmx->vcpu);
  2302. put_cpu();
  2303. if (err)
  2304. goto free_vmcs;
  2305. if (vm_need_virtualize_apic_accesses(kvm))
  2306. if (alloc_apic_access_page(kvm) != 0)
  2307. goto free_vmcs;
  2308. return &vmx->vcpu;
  2309. free_vmcs:
  2310. free_vmcs(vmx->vmcs);
  2311. free_msrs:
  2312. kfree(vmx->host_msrs);
  2313. free_guest_msrs:
  2314. kfree(vmx->guest_msrs);
  2315. uninit_vcpu:
  2316. kvm_vcpu_uninit(&vmx->vcpu);
  2317. free_vcpu:
  2318. kmem_cache_free(kvm_vcpu_cache, vmx);
  2319. return ERR_PTR(err);
  2320. }
  2321. static void __init vmx_check_processor_compat(void *rtn)
  2322. {
  2323. struct vmcs_config vmcs_conf;
  2324. *(int *)rtn = 0;
  2325. if (setup_vmcs_config(&vmcs_conf) < 0)
  2326. *(int *)rtn = -EIO;
  2327. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2328. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2329. smp_processor_id());
  2330. *(int *)rtn = -EIO;
  2331. }
  2332. }
  2333. static struct kvm_x86_ops vmx_x86_ops = {
  2334. .cpu_has_kvm_support = cpu_has_kvm_support,
  2335. .disabled_by_bios = vmx_disabled_by_bios,
  2336. .hardware_setup = hardware_setup,
  2337. .hardware_unsetup = hardware_unsetup,
  2338. .check_processor_compatibility = vmx_check_processor_compat,
  2339. .hardware_enable = hardware_enable,
  2340. .hardware_disable = hardware_disable,
  2341. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  2342. .vcpu_create = vmx_create_vcpu,
  2343. .vcpu_free = vmx_free_vcpu,
  2344. .vcpu_reset = vmx_vcpu_reset,
  2345. .prepare_guest_switch = vmx_save_host_state,
  2346. .vcpu_load = vmx_vcpu_load,
  2347. .vcpu_put = vmx_vcpu_put,
  2348. .vcpu_decache = vmx_vcpu_decache,
  2349. .set_guest_debug = set_guest_debug,
  2350. .guest_debug_pre = kvm_guest_debug_pre,
  2351. .get_msr = vmx_get_msr,
  2352. .set_msr = vmx_set_msr,
  2353. .get_segment_base = vmx_get_segment_base,
  2354. .get_segment = vmx_get_segment,
  2355. .set_segment = vmx_set_segment,
  2356. .get_cpl = vmx_get_cpl,
  2357. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2358. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2359. .set_cr0 = vmx_set_cr0,
  2360. .set_cr3 = vmx_set_cr3,
  2361. .set_cr4 = vmx_set_cr4,
  2362. .set_efer = vmx_set_efer,
  2363. .get_idt = vmx_get_idt,
  2364. .set_idt = vmx_set_idt,
  2365. .get_gdt = vmx_get_gdt,
  2366. .set_gdt = vmx_set_gdt,
  2367. .cache_regs = vcpu_load_rsp_rip,
  2368. .decache_regs = vcpu_put_rsp_rip,
  2369. .get_rflags = vmx_get_rflags,
  2370. .set_rflags = vmx_set_rflags,
  2371. .tlb_flush = vmx_flush_tlb,
  2372. .run = vmx_vcpu_run,
  2373. .handle_exit = kvm_handle_exit,
  2374. .skip_emulated_instruction = skip_emulated_instruction,
  2375. .patch_hypercall = vmx_patch_hypercall,
  2376. .get_irq = vmx_get_irq,
  2377. .set_irq = vmx_inject_irq,
  2378. .queue_exception = vmx_queue_exception,
  2379. .exception_injected = vmx_exception_injected,
  2380. .inject_pending_irq = vmx_intr_assist,
  2381. .inject_pending_vectors = do_interrupt_requests,
  2382. .set_tss_addr = vmx_set_tss_addr,
  2383. };
  2384. static int __init vmx_init(void)
  2385. {
  2386. void *va;
  2387. int r;
  2388. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2389. if (!vmx_io_bitmap_a)
  2390. return -ENOMEM;
  2391. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2392. if (!vmx_io_bitmap_b) {
  2393. r = -ENOMEM;
  2394. goto out;
  2395. }
  2396. vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2397. if (!vmx_msr_bitmap) {
  2398. r = -ENOMEM;
  2399. goto out1;
  2400. }
  2401. /*
  2402. * Allow direct access to the PC debug port (it is often used for I/O
  2403. * delays, but the vmexits simply slow things down).
  2404. */
  2405. va = kmap(vmx_io_bitmap_a);
  2406. memset(va, 0xff, PAGE_SIZE);
  2407. clear_bit(0x80, va);
  2408. kunmap(vmx_io_bitmap_a);
  2409. va = kmap(vmx_io_bitmap_b);
  2410. memset(va, 0xff, PAGE_SIZE);
  2411. kunmap(vmx_io_bitmap_b);
  2412. va = kmap(vmx_msr_bitmap);
  2413. memset(va, 0xff, PAGE_SIZE);
  2414. kunmap(vmx_msr_bitmap);
  2415. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  2416. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2417. if (r)
  2418. goto out2;
  2419. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
  2420. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
  2421. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
  2422. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
  2423. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
  2424. if (bypass_guest_pf)
  2425. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2426. return 0;
  2427. out2:
  2428. __free_page(vmx_msr_bitmap);
  2429. out1:
  2430. __free_page(vmx_io_bitmap_b);
  2431. out:
  2432. __free_page(vmx_io_bitmap_a);
  2433. return r;
  2434. }
  2435. static void __exit vmx_exit(void)
  2436. {
  2437. __free_page(vmx_msr_bitmap);
  2438. __free_page(vmx_io_bitmap_b);
  2439. __free_page(vmx_io_bitmap_a);
  2440. kvm_exit();
  2441. }
  2442. module_init(vmx_init)
  2443. module_exit(vmx_exit)