mmu.c 55 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "mmu.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/compiler.h>
  30. #include <asm/page.h>
  31. #include <asm/cmpxchg.h>
  32. #include <asm/io.h>
  33. /*
  34. * When setting this variable to true it enables Two-Dimensional-Paging
  35. * where the hardware walks 2 page tables:
  36. * 1. the guest-virtual to guest-physical
  37. * 2. while doing 1. it walks guest-physical to host-physical
  38. * If the hardware supports that we don't need to do shadow paging.
  39. */
  40. bool tdp_enabled = false;
  41. #undef MMU_DEBUG
  42. #undef AUDIT
  43. #ifdef AUDIT
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  45. #else
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  47. #endif
  48. #ifdef MMU_DEBUG
  49. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  50. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  51. #else
  52. #define pgprintk(x...) do { } while (0)
  53. #define rmap_printk(x...) do { } while (0)
  54. #endif
  55. #if defined(MMU_DEBUG) || defined(AUDIT)
  56. static int dbg = 1;
  57. #endif
  58. #ifndef MMU_DEBUG
  59. #define ASSERT(x) do { } while (0)
  60. #else
  61. #define ASSERT(x) \
  62. if (!(x)) { \
  63. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  64. __FILE__, __LINE__, #x); \
  65. }
  66. #endif
  67. #define PT64_PT_BITS 9
  68. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  69. #define PT32_PT_BITS 10
  70. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  71. #define PT_WRITABLE_SHIFT 1
  72. #define PT_PRESENT_MASK (1ULL << 0)
  73. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  74. #define PT_USER_MASK (1ULL << 2)
  75. #define PT_PWT_MASK (1ULL << 3)
  76. #define PT_PCD_MASK (1ULL << 4)
  77. #define PT_ACCESSED_MASK (1ULL << 5)
  78. #define PT_DIRTY_MASK (1ULL << 6)
  79. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  80. #define PT_PAT_MASK (1ULL << 7)
  81. #define PT_GLOBAL_MASK (1ULL << 8)
  82. #define PT64_NX_SHIFT 63
  83. #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
  84. #define PT_PAT_SHIFT 7
  85. #define PT_DIR_PAT_SHIFT 12
  86. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  87. #define PT32_DIR_PSE36_SIZE 4
  88. #define PT32_DIR_PSE36_SHIFT 13
  89. #define PT32_DIR_PSE36_MASK \
  90. (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  91. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  92. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  93. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  94. #define PT64_LEVEL_BITS 9
  95. #define PT64_LEVEL_SHIFT(level) \
  96. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  97. #define PT64_LEVEL_MASK(level) \
  98. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  99. #define PT64_INDEX(address, level)\
  100. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  101. #define PT32_LEVEL_BITS 10
  102. #define PT32_LEVEL_SHIFT(level) \
  103. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  104. #define PT32_LEVEL_MASK(level) \
  105. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  106. #define PT32_INDEX(address, level)\
  107. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  108. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  109. #define PT64_DIR_BASE_ADDR_MASK \
  110. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  111. #define PT32_BASE_ADDR_MASK PAGE_MASK
  112. #define PT32_DIR_BASE_ADDR_MASK \
  113. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  114. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  115. | PT64_NX_MASK)
  116. #define PFERR_PRESENT_MASK (1U << 0)
  117. #define PFERR_WRITE_MASK (1U << 1)
  118. #define PFERR_USER_MASK (1U << 2)
  119. #define PFERR_FETCH_MASK (1U << 4)
  120. #define PT64_ROOT_LEVEL 4
  121. #define PT32_ROOT_LEVEL 2
  122. #define PT32E_ROOT_LEVEL 3
  123. #define PT_DIRECTORY_LEVEL 2
  124. #define PT_PAGE_TABLE_LEVEL 1
  125. #define RMAP_EXT 4
  126. #define ACC_EXEC_MASK 1
  127. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  128. #define ACC_USER_MASK PT_USER_MASK
  129. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  130. struct kvm_pv_mmu_op_buffer {
  131. void *ptr;
  132. unsigned len;
  133. unsigned processed;
  134. char buf[512] __aligned(sizeof(long));
  135. };
  136. struct kvm_rmap_desc {
  137. u64 *shadow_ptes[RMAP_EXT];
  138. struct kvm_rmap_desc *more;
  139. };
  140. static struct kmem_cache *pte_chain_cache;
  141. static struct kmem_cache *rmap_desc_cache;
  142. static struct kmem_cache *mmu_page_header_cache;
  143. static u64 __read_mostly shadow_trap_nonpresent_pte;
  144. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  145. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  146. {
  147. shadow_trap_nonpresent_pte = trap_pte;
  148. shadow_notrap_nonpresent_pte = notrap_pte;
  149. }
  150. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  151. static int is_write_protection(struct kvm_vcpu *vcpu)
  152. {
  153. return vcpu->arch.cr0 & X86_CR0_WP;
  154. }
  155. static int is_cpuid_PSE36(void)
  156. {
  157. return 1;
  158. }
  159. static int is_nx(struct kvm_vcpu *vcpu)
  160. {
  161. return vcpu->arch.shadow_efer & EFER_NX;
  162. }
  163. static int is_present_pte(unsigned long pte)
  164. {
  165. return pte & PT_PRESENT_MASK;
  166. }
  167. static int is_shadow_present_pte(u64 pte)
  168. {
  169. return pte != shadow_trap_nonpresent_pte
  170. && pte != shadow_notrap_nonpresent_pte;
  171. }
  172. static int is_large_pte(u64 pte)
  173. {
  174. return pte & PT_PAGE_SIZE_MASK;
  175. }
  176. static int is_writeble_pte(unsigned long pte)
  177. {
  178. return pte & PT_WRITABLE_MASK;
  179. }
  180. static int is_dirty_pte(unsigned long pte)
  181. {
  182. return pte & PT_DIRTY_MASK;
  183. }
  184. static int is_rmap_pte(u64 pte)
  185. {
  186. return is_shadow_present_pte(pte);
  187. }
  188. static pfn_t spte_to_pfn(u64 pte)
  189. {
  190. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  191. }
  192. static gfn_t pse36_gfn_delta(u32 gpte)
  193. {
  194. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  195. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  196. }
  197. static void set_shadow_pte(u64 *sptep, u64 spte)
  198. {
  199. #ifdef CONFIG_X86_64
  200. set_64bit((unsigned long *)sptep, spte);
  201. #else
  202. set_64bit((unsigned long long *)sptep, spte);
  203. #endif
  204. }
  205. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  206. struct kmem_cache *base_cache, int min)
  207. {
  208. void *obj;
  209. if (cache->nobjs >= min)
  210. return 0;
  211. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  212. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  213. if (!obj)
  214. return -ENOMEM;
  215. cache->objects[cache->nobjs++] = obj;
  216. }
  217. return 0;
  218. }
  219. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  220. {
  221. while (mc->nobjs)
  222. kfree(mc->objects[--mc->nobjs]);
  223. }
  224. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  225. int min)
  226. {
  227. struct page *page;
  228. if (cache->nobjs >= min)
  229. return 0;
  230. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  231. page = alloc_page(GFP_KERNEL);
  232. if (!page)
  233. return -ENOMEM;
  234. set_page_private(page, 0);
  235. cache->objects[cache->nobjs++] = page_address(page);
  236. }
  237. return 0;
  238. }
  239. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  240. {
  241. while (mc->nobjs)
  242. free_page((unsigned long)mc->objects[--mc->nobjs]);
  243. }
  244. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  245. {
  246. int r;
  247. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  248. pte_chain_cache, 4);
  249. if (r)
  250. goto out;
  251. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  252. rmap_desc_cache, 1);
  253. if (r)
  254. goto out;
  255. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  256. if (r)
  257. goto out;
  258. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  259. mmu_page_header_cache, 4);
  260. out:
  261. return r;
  262. }
  263. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  264. {
  265. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  266. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  267. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  268. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  269. }
  270. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  271. size_t size)
  272. {
  273. void *p;
  274. BUG_ON(!mc->nobjs);
  275. p = mc->objects[--mc->nobjs];
  276. memset(p, 0, size);
  277. return p;
  278. }
  279. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  280. {
  281. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  282. sizeof(struct kvm_pte_chain));
  283. }
  284. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  285. {
  286. kfree(pc);
  287. }
  288. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  289. {
  290. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  291. sizeof(struct kvm_rmap_desc));
  292. }
  293. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  294. {
  295. kfree(rd);
  296. }
  297. /*
  298. * Return the pointer to the largepage write count for a given
  299. * gfn, handling slots that are not large page aligned.
  300. */
  301. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  302. {
  303. unsigned long idx;
  304. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  305. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  306. return &slot->lpage_info[idx].write_count;
  307. }
  308. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  309. {
  310. int *write_count;
  311. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  312. *write_count += 1;
  313. WARN_ON(*write_count > KVM_PAGES_PER_HPAGE);
  314. }
  315. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  316. {
  317. int *write_count;
  318. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  319. *write_count -= 1;
  320. WARN_ON(*write_count < 0);
  321. }
  322. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  323. {
  324. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  325. int *largepage_idx;
  326. if (slot) {
  327. largepage_idx = slot_largepage_idx(gfn, slot);
  328. return *largepage_idx;
  329. }
  330. return 1;
  331. }
  332. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  333. {
  334. struct vm_area_struct *vma;
  335. unsigned long addr;
  336. addr = gfn_to_hva(kvm, gfn);
  337. if (kvm_is_error_hva(addr))
  338. return 0;
  339. vma = find_vma(current->mm, addr);
  340. if (vma && is_vm_hugetlb_page(vma))
  341. return 1;
  342. return 0;
  343. }
  344. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  345. {
  346. struct kvm_memory_slot *slot;
  347. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  348. return 0;
  349. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  350. return 0;
  351. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  352. if (slot && slot->dirty_bitmap)
  353. return 0;
  354. return 1;
  355. }
  356. /*
  357. * Take gfn and return the reverse mapping to it.
  358. * Note: gfn must be unaliased before this function get called
  359. */
  360. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  361. {
  362. struct kvm_memory_slot *slot;
  363. unsigned long idx;
  364. slot = gfn_to_memslot(kvm, gfn);
  365. if (!lpage)
  366. return &slot->rmap[gfn - slot->base_gfn];
  367. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  368. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  369. return &slot->lpage_info[idx].rmap_pde;
  370. }
  371. /*
  372. * Reverse mapping data structures:
  373. *
  374. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  375. * that points to page_address(page).
  376. *
  377. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  378. * containing more mappings.
  379. */
  380. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  381. {
  382. struct kvm_mmu_page *sp;
  383. struct kvm_rmap_desc *desc;
  384. unsigned long *rmapp;
  385. int i;
  386. if (!is_rmap_pte(*spte))
  387. return;
  388. gfn = unalias_gfn(vcpu->kvm, gfn);
  389. sp = page_header(__pa(spte));
  390. sp->gfns[spte - sp->spt] = gfn;
  391. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  392. if (!*rmapp) {
  393. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  394. *rmapp = (unsigned long)spte;
  395. } else if (!(*rmapp & 1)) {
  396. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  397. desc = mmu_alloc_rmap_desc(vcpu);
  398. desc->shadow_ptes[0] = (u64 *)*rmapp;
  399. desc->shadow_ptes[1] = spte;
  400. *rmapp = (unsigned long)desc | 1;
  401. } else {
  402. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  403. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  404. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  405. desc = desc->more;
  406. if (desc->shadow_ptes[RMAP_EXT-1]) {
  407. desc->more = mmu_alloc_rmap_desc(vcpu);
  408. desc = desc->more;
  409. }
  410. for (i = 0; desc->shadow_ptes[i]; ++i)
  411. ;
  412. desc->shadow_ptes[i] = spte;
  413. }
  414. }
  415. static void rmap_desc_remove_entry(unsigned long *rmapp,
  416. struct kvm_rmap_desc *desc,
  417. int i,
  418. struct kvm_rmap_desc *prev_desc)
  419. {
  420. int j;
  421. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  422. ;
  423. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  424. desc->shadow_ptes[j] = NULL;
  425. if (j != 0)
  426. return;
  427. if (!prev_desc && !desc->more)
  428. *rmapp = (unsigned long)desc->shadow_ptes[0];
  429. else
  430. if (prev_desc)
  431. prev_desc->more = desc->more;
  432. else
  433. *rmapp = (unsigned long)desc->more | 1;
  434. mmu_free_rmap_desc(desc);
  435. }
  436. static void rmap_remove(struct kvm *kvm, u64 *spte)
  437. {
  438. struct kvm_rmap_desc *desc;
  439. struct kvm_rmap_desc *prev_desc;
  440. struct kvm_mmu_page *sp;
  441. pfn_t pfn;
  442. unsigned long *rmapp;
  443. int i;
  444. if (!is_rmap_pte(*spte))
  445. return;
  446. sp = page_header(__pa(spte));
  447. pfn = spte_to_pfn(*spte);
  448. if (*spte & PT_ACCESSED_MASK)
  449. kvm_set_pfn_accessed(pfn);
  450. if (is_writeble_pte(*spte))
  451. kvm_release_pfn_dirty(pfn);
  452. else
  453. kvm_release_pfn_clean(pfn);
  454. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  455. if (!*rmapp) {
  456. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  457. BUG();
  458. } else if (!(*rmapp & 1)) {
  459. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  460. if ((u64 *)*rmapp != spte) {
  461. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  462. spte, *spte);
  463. BUG();
  464. }
  465. *rmapp = 0;
  466. } else {
  467. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  468. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  469. prev_desc = NULL;
  470. while (desc) {
  471. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  472. if (desc->shadow_ptes[i] == spte) {
  473. rmap_desc_remove_entry(rmapp,
  474. desc, i,
  475. prev_desc);
  476. return;
  477. }
  478. prev_desc = desc;
  479. desc = desc->more;
  480. }
  481. BUG();
  482. }
  483. }
  484. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  485. {
  486. struct kvm_rmap_desc *desc;
  487. struct kvm_rmap_desc *prev_desc;
  488. u64 *prev_spte;
  489. int i;
  490. if (!*rmapp)
  491. return NULL;
  492. else if (!(*rmapp & 1)) {
  493. if (!spte)
  494. return (u64 *)*rmapp;
  495. return NULL;
  496. }
  497. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  498. prev_desc = NULL;
  499. prev_spte = NULL;
  500. while (desc) {
  501. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  502. if (prev_spte == spte)
  503. return desc->shadow_ptes[i];
  504. prev_spte = desc->shadow_ptes[i];
  505. }
  506. desc = desc->more;
  507. }
  508. return NULL;
  509. }
  510. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  511. {
  512. unsigned long *rmapp;
  513. u64 *spte;
  514. int write_protected = 0;
  515. gfn = unalias_gfn(kvm, gfn);
  516. rmapp = gfn_to_rmap(kvm, gfn, 0);
  517. spte = rmap_next(kvm, rmapp, NULL);
  518. while (spte) {
  519. BUG_ON(!spte);
  520. BUG_ON(!(*spte & PT_PRESENT_MASK));
  521. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  522. if (is_writeble_pte(*spte)) {
  523. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  524. write_protected = 1;
  525. }
  526. spte = rmap_next(kvm, rmapp, spte);
  527. }
  528. if (write_protected) {
  529. pfn_t pfn;
  530. spte = rmap_next(kvm, rmapp, NULL);
  531. pfn = spte_to_pfn(*spte);
  532. kvm_set_pfn_dirty(pfn);
  533. }
  534. /* check for huge page mappings */
  535. rmapp = gfn_to_rmap(kvm, gfn, 1);
  536. spte = rmap_next(kvm, rmapp, NULL);
  537. while (spte) {
  538. BUG_ON(!spte);
  539. BUG_ON(!(*spte & PT_PRESENT_MASK));
  540. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  541. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  542. if (is_writeble_pte(*spte)) {
  543. rmap_remove(kvm, spte);
  544. --kvm->stat.lpages;
  545. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  546. write_protected = 1;
  547. }
  548. spte = rmap_next(kvm, rmapp, spte);
  549. }
  550. if (write_protected)
  551. kvm_flush_remote_tlbs(kvm);
  552. account_shadowed(kvm, gfn);
  553. }
  554. #ifdef MMU_DEBUG
  555. static int is_empty_shadow_page(u64 *spt)
  556. {
  557. u64 *pos;
  558. u64 *end;
  559. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  560. if (*pos != shadow_trap_nonpresent_pte) {
  561. printk(KERN_ERR "%s: %p %llx\n", __func__,
  562. pos, *pos);
  563. return 0;
  564. }
  565. return 1;
  566. }
  567. #endif
  568. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  569. {
  570. ASSERT(is_empty_shadow_page(sp->spt));
  571. list_del(&sp->link);
  572. __free_page(virt_to_page(sp->spt));
  573. __free_page(virt_to_page(sp->gfns));
  574. kfree(sp);
  575. ++kvm->arch.n_free_mmu_pages;
  576. }
  577. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  578. {
  579. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  580. }
  581. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  582. u64 *parent_pte)
  583. {
  584. struct kvm_mmu_page *sp;
  585. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  586. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  587. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  588. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  589. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  590. ASSERT(is_empty_shadow_page(sp->spt));
  591. sp->slot_bitmap = 0;
  592. sp->multimapped = 0;
  593. sp->parent_pte = parent_pte;
  594. --vcpu->kvm->arch.n_free_mmu_pages;
  595. return sp;
  596. }
  597. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  598. struct kvm_mmu_page *sp, u64 *parent_pte)
  599. {
  600. struct kvm_pte_chain *pte_chain;
  601. struct hlist_node *node;
  602. int i;
  603. if (!parent_pte)
  604. return;
  605. if (!sp->multimapped) {
  606. u64 *old = sp->parent_pte;
  607. if (!old) {
  608. sp->parent_pte = parent_pte;
  609. return;
  610. }
  611. sp->multimapped = 1;
  612. pte_chain = mmu_alloc_pte_chain(vcpu);
  613. INIT_HLIST_HEAD(&sp->parent_ptes);
  614. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  615. pte_chain->parent_ptes[0] = old;
  616. }
  617. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  618. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  619. continue;
  620. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  621. if (!pte_chain->parent_ptes[i]) {
  622. pte_chain->parent_ptes[i] = parent_pte;
  623. return;
  624. }
  625. }
  626. pte_chain = mmu_alloc_pte_chain(vcpu);
  627. BUG_ON(!pte_chain);
  628. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  629. pte_chain->parent_ptes[0] = parent_pte;
  630. }
  631. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  632. u64 *parent_pte)
  633. {
  634. struct kvm_pte_chain *pte_chain;
  635. struct hlist_node *node;
  636. int i;
  637. if (!sp->multimapped) {
  638. BUG_ON(sp->parent_pte != parent_pte);
  639. sp->parent_pte = NULL;
  640. return;
  641. }
  642. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  643. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  644. if (!pte_chain->parent_ptes[i])
  645. break;
  646. if (pte_chain->parent_ptes[i] != parent_pte)
  647. continue;
  648. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  649. && pte_chain->parent_ptes[i + 1]) {
  650. pte_chain->parent_ptes[i]
  651. = pte_chain->parent_ptes[i + 1];
  652. ++i;
  653. }
  654. pte_chain->parent_ptes[i] = NULL;
  655. if (i == 0) {
  656. hlist_del(&pte_chain->link);
  657. mmu_free_pte_chain(pte_chain);
  658. if (hlist_empty(&sp->parent_ptes)) {
  659. sp->multimapped = 0;
  660. sp->parent_pte = NULL;
  661. }
  662. }
  663. return;
  664. }
  665. BUG();
  666. }
  667. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  668. {
  669. unsigned index;
  670. struct hlist_head *bucket;
  671. struct kvm_mmu_page *sp;
  672. struct hlist_node *node;
  673. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  674. index = kvm_page_table_hashfn(gfn);
  675. bucket = &kvm->arch.mmu_page_hash[index];
  676. hlist_for_each_entry(sp, node, bucket, hash_link)
  677. if (sp->gfn == gfn && !sp->role.metaphysical
  678. && !sp->role.invalid) {
  679. pgprintk("%s: found role %x\n",
  680. __func__, sp->role.word);
  681. return sp;
  682. }
  683. return NULL;
  684. }
  685. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  686. gfn_t gfn,
  687. gva_t gaddr,
  688. unsigned level,
  689. int metaphysical,
  690. unsigned access,
  691. u64 *parent_pte)
  692. {
  693. union kvm_mmu_page_role role;
  694. unsigned index;
  695. unsigned quadrant;
  696. struct hlist_head *bucket;
  697. struct kvm_mmu_page *sp;
  698. struct hlist_node *node;
  699. role.word = 0;
  700. role.glevels = vcpu->arch.mmu.root_level;
  701. role.level = level;
  702. role.metaphysical = metaphysical;
  703. role.access = access;
  704. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  705. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  706. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  707. role.quadrant = quadrant;
  708. }
  709. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  710. gfn, role.word);
  711. index = kvm_page_table_hashfn(gfn);
  712. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  713. hlist_for_each_entry(sp, node, bucket, hash_link)
  714. if (sp->gfn == gfn && sp->role.word == role.word) {
  715. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  716. pgprintk("%s: found\n", __func__);
  717. return sp;
  718. }
  719. ++vcpu->kvm->stat.mmu_cache_miss;
  720. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  721. if (!sp)
  722. return sp;
  723. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  724. sp->gfn = gfn;
  725. sp->role = role;
  726. hlist_add_head(&sp->hash_link, bucket);
  727. if (!metaphysical)
  728. rmap_write_protect(vcpu->kvm, gfn);
  729. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  730. return sp;
  731. }
  732. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  733. struct kvm_mmu_page *sp)
  734. {
  735. unsigned i;
  736. u64 *pt;
  737. u64 ent;
  738. pt = sp->spt;
  739. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  740. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  741. if (is_shadow_present_pte(pt[i]))
  742. rmap_remove(kvm, &pt[i]);
  743. pt[i] = shadow_trap_nonpresent_pte;
  744. }
  745. kvm_flush_remote_tlbs(kvm);
  746. return;
  747. }
  748. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  749. ent = pt[i];
  750. if (is_shadow_present_pte(ent)) {
  751. if (!is_large_pte(ent)) {
  752. ent &= PT64_BASE_ADDR_MASK;
  753. mmu_page_remove_parent_pte(page_header(ent),
  754. &pt[i]);
  755. } else {
  756. --kvm->stat.lpages;
  757. rmap_remove(kvm, &pt[i]);
  758. }
  759. }
  760. pt[i] = shadow_trap_nonpresent_pte;
  761. }
  762. kvm_flush_remote_tlbs(kvm);
  763. }
  764. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  765. {
  766. mmu_page_remove_parent_pte(sp, parent_pte);
  767. }
  768. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  769. {
  770. int i;
  771. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  772. if (kvm->vcpus[i])
  773. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  774. }
  775. static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  776. {
  777. u64 *parent_pte;
  778. ++kvm->stat.mmu_shadow_zapped;
  779. while (sp->multimapped || sp->parent_pte) {
  780. if (!sp->multimapped)
  781. parent_pte = sp->parent_pte;
  782. else {
  783. struct kvm_pte_chain *chain;
  784. chain = container_of(sp->parent_ptes.first,
  785. struct kvm_pte_chain, link);
  786. parent_pte = chain->parent_ptes[0];
  787. }
  788. BUG_ON(!parent_pte);
  789. kvm_mmu_put_page(sp, parent_pte);
  790. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  791. }
  792. kvm_mmu_page_unlink_children(kvm, sp);
  793. if (!sp->root_count) {
  794. if (!sp->role.metaphysical)
  795. unaccount_shadowed(kvm, sp->gfn);
  796. hlist_del(&sp->hash_link);
  797. kvm_mmu_free_page(kvm, sp);
  798. } else {
  799. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  800. sp->role.invalid = 1;
  801. kvm_reload_remote_mmus(kvm);
  802. }
  803. kvm_mmu_reset_last_pte_updated(kvm);
  804. }
  805. /*
  806. * Changing the number of mmu pages allocated to the vm
  807. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  808. */
  809. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  810. {
  811. /*
  812. * If we set the number of mmu pages to be smaller be than the
  813. * number of actived pages , we must to free some mmu pages before we
  814. * change the value
  815. */
  816. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  817. kvm_nr_mmu_pages) {
  818. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  819. - kvm->arch.n_free_mmu_pages;
  820. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  821. struct kvm_mmu_page *page;
  822. page = container_of(kvm->arch.active_mmu_pages.prev,
  823. struct kvm_mmu_page, link);
  824. kvm_mmu_zap_page(kvm, page);
  825. n_used_mmu_pages--;
  826. }
  827. kvm->arch.n_free_mmu_pages = 0;
  828. }
  829. else
  830. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  831. - kvm->arch.n_alloc_mmu_pages;
  832. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  833. }
  834. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  835. {
  836. unsigned index;
  837. struct hlist_head *bucket;
  838. struct kvm_mmu_page *sp;
  839. struct hlist_node *node, *n;
  840. int r;
  841. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  842. r = 0;
  843. index = kvm_page_table_hashfn(gfn);
  844. bucket = &kvm->arch.mmu_page_hash[index];
  845. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  846. if (sp->gfn == gfn && !sp->role.metaphysical) {
  847. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  848. sp->role.word);
  849. kvm_mmu_zap_page(kvm, sp);
  850. r = 1;
  851. }
  852. return r;
  853. }
  854. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  855. {
  856. struct kvm_mmu_page *sp;
  857. while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  858. pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
  859. kvm_mmu_zap_page(kvm, sp);
  860. }
  861. }
  862. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  863. {
  864. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  865. struct kvm_mmu_page *sp = page_header(__pa(pte));
  866. __set_bit(slot, &sp->slot_bitmap);
  867. }
  868. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  869. {
  870. struct page *page;
  871. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  872. if (gpa == UNMAPPED_GVA)
  873. return NULL;
  874. down_read(&current->mm->mmap_sem);
  875. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  876. up_read(&current->mm->mmap_sem);
  877. return page;
  878. }
  879. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  880. unsigned pt_access, unsigned pte_access,
  881. int user_fault, int write_fault, int dirty,
  882. int *ptwrite, int largepage, gfn_t gfn,
  883. pfn_t pfn, bool speculative)
  884. {
  885. u64 spte;
  886. int was_rmapped = 0;
  887. int was_writeble = is_writeble_pte(*shadow_pte);
  888. pgprintk("%s: spte %llx access %x write_fault %d"
  889. " user_fault %d gfn %lx\n",
  890. __func__, *shadow_pte, pt_access,
  891. write_fault, user_fault, gfn);
  892. if (is_rmap_pte(*shadow_pte)) {
  893. /*
  894. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  895. * the parent of the now unreachable PTE.
  896. */
  897. if (largepage && !is_large_pte(*shadow_pte)) {
  898. struct kvm_mmu_page *child;
  899. u64 pte = *shadow_pte;
  900. child = page_header(pte & PT64_BASE_ADDR_MASK);
  901. mmu_page_remove_parent_pte(child, shadow_pte);
  902. } else if (pfn != spte_to_pfn(*shadow_pte)) {
  903. pgprintk("hfn old %lx new %lx\n",
  904. spte_to_pfn(*shadow_pte), pfn);
  905. rmap_remove(vcpu->kvm, shadow_pte);
  906. } else {
  907. if (largepage)
  908. was_rmapped = is_large_pte(*shadow_pte);
  909. else
  910. was_rmapped = 1;
  911. }
  912. }
  913. /*
  914. * We don't set the accessed bit, since we sometimes want to see
  915. * whether the guest actually used the pte (in order to detect
  916. * demand paging).
  917. */
  918. spte = PT_PRESENT_MASK | PT_DIRTY_MASK;
  919. if (!speculative)
  920. pte_access |= PT_ACCESSED_MASK;
  921. if (!dirty)
  922. pte_access &= ~ACC_WRITE_MASK;
  923. if (!(pte_access & ACC_EXEC_MASK))
  924. spte |= PT64_NX_MASK;
  925. spte |= PT_PRESENT_MASK;
  926. if (pte_access & ACC_USER_MASK)
  927. spte |= PT_USER_MASK;
  928. if (largepage)
  929. spte |= PT_PAGE_SIZE_MASK;
  930. spte |= (u64)pfn << PAGE_SHIFT;
  931. if ((pte_access & ACC_WRITE_MASK)
  932. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  933. struct kvm_mmu_page *shadow;
  934. spte |= PT_WRITABLE_MASK;
  935. if (user_fault) {
  936. mmu_unshadow(vcpu->kvm, gfn);
  937. goto unshadowed;
  938. }
  939. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  940. if (shadow ||
  941. (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
  942. pgprintk("%s: found shadow page for %lx, marking ro\n",
  943. __func__, gfn);
  944. pte_access &= ~ACC_WRITE_MASK;
  945. if (is_writeble_pte(spte)) {
  946. spte &= ~PT_WRITABLE_MASK;
  947. kvm_x86_ops->tlb_flush(vcpu);
  948. }
  949. if (write_fault)
  950. *ptwrite = 1;
  951. }
  952. }
  953. unshadowed:
  954. if (pte_access & ACC_WRITE_MASK)
  955. mark_page_dirty(vcpu->kvm, gfn);
  956. pgprintk("%s: setting spte %llx\n", __func__, spte);
  957. pgprintk("instantiating %s PTE (%s) at %d (%llx) addr %llx\n",
  958. (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
  959. (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
  960. set_shadow_pte(shadow_pte, spte);
  961. if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
  962. && (spte & PT_PRESENT_MASK))
  963. ++vcpu->kvm->stat.lpages;
  964. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  965. if (!was_rmapped) {
  966. rmap_add(vcpu, shadow_pte, gfn, largepage);
  967. if (!is_rmap_pte(*shadow_pte))
  968. kvm_release_pfn_clean(pfn);
  969. } else {
  970. if (was_writeble)
  971. kvm_release_pfn_dirty(pfn);
  972. else
  973. kvm_release_pfn_clean(pfn);
  974. }
  975. if (!ptwrite || !*ptwrite)
  976. vcpu->arch.last_pte_updated = shadow_pte;
  977. }
  978. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  979. {
  980. }
  981. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  982. int largepage, gfn_t gfn, pfn_t pfn,
  983. int level)
  984. {
  985. hpa_t table_addr = vcpu->arch.mmu.root_hpa;
  986. int pt_write = 0;
  987. for (; ; level--) {
  988. u32 index = PT64_INDEX(v, level);
  989. u64 *table;
  990. ASSERT(VALID_PAGE(table_addr));
  991. table = __va(table_addr);
  992. if (level == 1) {
  993. mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
  994. 0, write, 1, &pt_write, 0, gfn, pfn, false);
  995. return pt_write;
  996. }
  997. if (largepage && level == 2) {
  998. mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
  999. 0, write, 1, &pt_write, 1, gfn, pfn, false);
  1000. return pt_write;
  1001. }
  1002. if (table[index] == shadow_trap_nonpresent_pte) {
  1003. struct kvm_mmu_page *new_table;
  1004. gfn_t pseudo_gfn;
  1005. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  1006. >> PAGE_SHIFT;
  1007. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  1008. v, level - 1,
  1009. 1, ACC_ALL, &table[index]);
  1010. if (!new_table) {
  1011. pgprintk("nonpaging_map: ENOMEM\n");
  1012. kvm_release_pfn_clean(pfn);
  1013. return -ENOMEM;
  1014. }
  1015. table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
  1016. | PT_WRITABLE_MASK | PT_USER_MASK;
  1017. }
  1018. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  1019. }
  1020. }
  1021. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1022. {
  1023. int r;
  1024. int largepage = 0;
  1025. pfn_t pfn;
  1026. down_read(&current->mm->mmap_sem);
  1027. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1028. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1029. largepage = 1;
  1030. }
  1031. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1032. up_read(&current->mm->mmap_sem);
  1033. /* mmio */
  1034. if (is_error_pfn(pfn)) {
  1035. kvm_release_pfn_clean(pfn);
  1036. return 1;
  1037. }
  1038. spin_lock(&vcpu->kvm->mmu_lock);
  1039. kvm_mmu_free_some_pages(vcpu);
  1040. r = __direct_map(vcpu, v, write, largepage, gfn, pfn,
  1041. PT32E_ROOT_LEVEL);
  1042. spin_unlock(&vcpu->kvm->mmu_lock);
  1043. return r;
  1044. }
  1045. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  1046. struct kvm_mmu_page *sp)
  1047. {
  1048. int i;
  1049. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1050. sp->spt[i] = shadow_trap_nonpresent_pte;
  1051. }
  1052. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1053. {
  1054. int i;
  1055. struct kvm_mmu_page *sp;
  1056. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1057. return;
  1058. spin_lock(&vcpu->kvm->mmu_lock);
  1059. #ifdef CONFIG_X86_64
  1060. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1061. hpa_t root = vcpu->arch.mmu.root_hpa;
  1062. sp = page_header(root);
  1063. --sp->root_count;
  1064. if (!sp->root_count && sp->role.invalid)
  1065. kvm_mmu_zap_page(vcpu->kvm, sp);
  1066. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1067. spin_unlock(&vcpu->kvm->mmu_lock);
  1068. return;
  1069. }
  1070. #endif
  1071. for (i = 0; i < 4; ++i) {
  1072. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1073. if (root) {
  1074. root &= PT64_BASE_ADDR_MASK;
  1075. sp = page_header(root);
  1076. --sp->root_count;
  1077. if (!sp->root_count && sp->role.invalid)
  1078. kvm_mmu_zap_page(vcpu->kvm, sp);
  1079. }
  1080. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1081. }
  1082. spin_unlock(&vcpu->kvm->mmu_lock);
  1083. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1084. }
  1085. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1086. {
  1087. int i;
  1088. gfn_t root_gfn;
  1089. struct kvm_mmu_page *sp;
  1090. int metaphysical = 0;
  1091. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1092. #ifdef CONFIG_X86_64
  1093. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1094. hpa_t root = vcpu->arch.mmu.root_hpa;
  1095. ASSERT(!VALID_PAGE(root));
  1096. if (tdp_enabled)
  1097. metaphysical = 1;
  1098. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1099. PT64_ROOT_LEVEL, metaphysical,
  1100. ACC_ALL, NULL);
  1101. root = __pa(sp->spt);
  1102. ++sp->root_count;
  1103. vcpu->arch.mmu.root_hpa = root;
  1104. return;
  1105. }
  1106. #endif
  1107. metaphysical = !is_paging(vcpu);
  1108. if (tdp_enabled)
  1109. metaphysical = 1;
  1110. for (i = 0; i < 4; ++i) {
  1111. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1112. ASSERT(!VALID_PAGE(root));
  1113. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1114. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1115. vcpu->arch.mmu.pae_root[i] = 0;
  1116. continue;
  1117. }
  1118. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1119. } else if (vcpu->arch.mmu.root_level == 0)
  1120. root_gfn = 0;
  1121. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1122. PT32_ROOT_LEVEL, metaphysical,
  1123. ACC_ALL, NULL);
  1124. root = __pa(sp->spt);
  1125. ++sp->root_count;
  1126. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1127. }
  1128. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1129. }
  1130. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1131. {
  1132. return vaddr;
  1133. }
  1134. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1135. u32 error_code)
  1136. {
  1137. gfn_t gfn;
  1138. int r;
  1139. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1140. r = mmu_topup_memory_caches(vcpu);
  1141. if (r)
  1142. return r;
  1143. ASSERT(vcpu);
  1144. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1145. gfn = gva >> PAGE_SHIFT;
  1146. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1147. error_code & PFERR_WRITE_MASK, gfn);
  1148. }
  1149. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1150. u32 error_code)
  1151. {
  1152. pfn_t pfn;
  1153. int r;
  1154. int largepage = 0;
  1155. gfn_t gfn = gpa >> PAGE_SHIFT;
  1156. ASSERT(vcpu);
  1157. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1158. r = mmu_topup_memory_caches(vcpu);
  1159. if (r)
  1160. return r;
  1161. down_read(&current->mm->mmap_sem);
  1162. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1163. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1164. largepage = 1;
  1165. }
  1166. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1167. up_read(&current->mm->mmap_sem);
  1168. if (is_error_pfn(pfn)) {
  1169. kvm_release_pfn_clean(pfn);
  1170. return 1;
  1171. }
  1172. spin_lock(&vcpu->kvm->mmu_lock);
  1173. kvm_mmu_free_some_pages(vcpu);
  1174. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1175. largepage, gfn, pfn, TDP_ROOT_LEVEL);
  1176. spin_unlock(&vcpu->kvm->mmu_lock);
  1177. return r;
  1178. }
  1179. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1180. {
  1181. mmu_free_roots(vcpu);
  1182. }
  1183. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1184. {
  1185. struct kvm_mmu *context = &vcpu->arch.mmu;
  1186. context->new_cr3 = nonpaging_new_cr3;
  1187. context->page_fault = nonpaging_page_fault;
  1188. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1189. context->free = nonpaging_free;
  1190. context->prefetch_page = nonpaging_prefetch_page;
  1191. context->root_level = 0;
  1192. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1193. context->root_hpa = INVALID_PAGE;
  1194. return 0;
  1195. }
  1196. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1197. {
  1198. ++vcpu->stat.tlb_flush;
  1199. kvm_x86_ops->tlb_flush(vcpu);
  1200. }
  1201. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1202. {
  1203. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1204. mmu_free_roots(vcpu);
  1205. }
  1206. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1207. u64 addr,
  1208. u32 err_code)
  1209. {
  1210. kvm_inject_page_fault(vcpu, addr, err_code);
  1211. }
  1212. static void paging_free(struct kvm_vcpu *vcpu)
  1213. {
  1214. nonpaging_free(vcpu);
  1215. }
  1216. #define PTTYPE 64
  1217. #include "paging_tmpl.h"
  1218. #undef PTTYPE
  1219. #define PTTYPE 32
  1220. #include "paging_tmpl.h"
  1221. #undef PTTYPE
  1222. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1223. {
  1224. struct kvm_mmu *context = &vcpu->arch.mmu;
  1225. ASSERT(is_pae(vcpu));
  1226. context->new_cr3 = paging_new_cr3;
  1227. context->page_fault = paging64_page_fault;
  1228. context->gva_to_gpa = paging64_gva_to_gpa;
  1229. context->prefetch_page = paging64_prefetch_page;
  1230. context->free = paging_free;
  1231. context->root_level = level;
  1232. context->shadow_root_level = level;
  1233. context->root_hpa = INVALID_PAGE;
  1234. return 0;
  1235. }
  1236. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1237. {
  1238. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1239. }
  1240. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1241. {
  1242. struct kvm_mmu *context = &vcpu->arch.mmu;
  1243. context->new_cr3 = paging_new_cr3;
  1244. context->page_fault = paging32_page_fault;
  1245. context->gva_to_gpa = paging32_gva_to_gpa;
  1246. context->free = paging_free;
  1247. context->prefetch_page = paging32_prefetch_page;
  1248. context->root_level = PT32_ROOT_LEVEL;
  1249. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1250. context->root_hpa = INVALID_PAGE;
  1251. return 0;
  1252. }
  1253. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1254. {
  1255. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1256. }
  1257. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1258. {
  1259. struct kvm_mmu *context = &vcpu->arch.mmu;
  1260. context->new_cr3 = nonpaging_new_cr3;
  1261. context->page_fault = tdp_page_fault;
  1262. context->free = nonpaging_free;
  1263. context->prefetch_page = nonpaging_prefetch_page;
  1264. context->shadow_root_level = TDP_ROOT_LEVEL;
  1265. context->root_hpa = INVALID_PAGE;
  1266. if (!is_paging(vcpu)) {
  1267. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1268. context->root_level = 0;
  1269. } else if (is_long_mode(vcpu)) {
  1270. context->gva_to_gpa = paging64_gva_to_gpa;
  1271. context->root_level = PT64_ROOT_LEVEL;
  1272. } else if (is_pae(vcpu)) {
  1273. context->gva_to_gpa = paging64_gva_to_gpa;
  1274. context->root_level = PT32E_ROOT_LEVEL;
  1275. } else {
  1276. context->gva_to_gpa = paging32_gva_to_gpa;
  1277. context->root_level = PT32_ROOT_LEVEL;
  1278. }
  1279. return 0;
  1280. }
  1281. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1282. {
  1283. ASSERT(vcpu);
  1284. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1285. if (!is_paging(vcpu))
  1286. return nonpaging_init_context(vcpu);
  1287. else if (is_long_mode(vcpu))
  1288. return paging64_init_context(vcpu);
  1289. else if (is_pae(vcpu))
  1290. return paging32E_init_context(vcpu);
  1291. else
  1292. return paging32_init_context(vcpu);
  1293. }
  1294. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1295. {
  1296. vcpu->arch.update_pte.pfn = bad_pfn;
  1297. if (tdp_enabled)
  1298. return init_kvm_tdp_mmu(vcpu);
  1299. else
  1300. return init_kvm_softmmu(vcpu);
  1301. }
  1302. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1303. {
  1304. ASSERT(vcpu);
  1305. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1306. vcpu->arch.mmu.free(vcpu);
  1307. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1308. }
  1309. }
  1310. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1311. {
  1312. destroy_kvm_mmu(vcpu);
  1313. return init_kvm_mmu(vcpu);
  1314. }
  1315. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1316. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1317. {
  1318. int r;
  1319. r = mmu_topup_memory_caches(vcpu);
  1320. if (r)
  1321. goto out;
  1322. spin_lock(&vcpu->kvm->mmu_lock);
  1323. kvm_mmu_free_some_pages(vcpu);
  1324. mmu_alloc_roots(vcpu);
  1325. spin_unlock(&vcpu->kvm->mmu_lock);
  1326. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1327. kvm_mmu_flush_tlb(vcpu);
  1328. out:
  1329. return r;
  1330. }
  1331. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1332. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1333. {
  1334. mmu_free_roots(vcpu);
  1335. }
  1336. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1337. struct kvm_mmu_page *sp,
  1338. u64 *spte)
  1339. {
  1340. u64 pte;
  1341. struct kvm_mmu_page *child;
  1342. pte = *spte;
  1343. if (is_shadow_present_pte(pte)) {
  1344. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  1345. is_large_pte(pte))
  1346. rmap_remove(vcpu->kvm, spte);
  1347. else {
  1348. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1349. mmu_page_remove_parent_pte(child, spte);
  1350. }
  1351. }
  1352. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1353. if (is_large_pte(pte))
  1354. --vcpu->kvm->stat.lpages;
  1355. }
  1356. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1357. struct kvm_mmu_page *sp,
  1358. u64 *spte,
  1359. const void *new)
  1360. {
  1361. if ((sp->role.level != PT_PAGE_TABLE_LEVEL)
  1362. && !vcpu->arch.update_pte.largepage) {
  1363. ++vcpu->kvm->stat.mmu_pde_zapped;
  1364. return;
  1365. }
  1366. ++vcpu->kvm->stat.mmu_pte_updated;
  1367. if (sp->role.glevels == PT32_ROOT_LEVEL)
  1368. paging32_update_pte(vcpu, sp, spte, new);
  1369. else
  1370. paging64_update_pte(vcpu, sp, spte, new);
  1371. }
  1372. static bool need_remote_flush(u64 old, u64 new)
  1373. {
  1374. if (!is_shadow_present_pte(old))
  1375. return false;
  1376. if (!is_shadow_present_pte(new))
  1377. return true;
  1378. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  1379. return true;
  1380. old ^= PT64_NX_MASK;
  1381. new ^= PT64_NX_MASK;
  1382. return (old & ~new & PT64_PERM_MASK) != 0;
  1383. }
  1384. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  1385. {
  1386. if (need_remote_flush(old, new))
  1387. kvm_flush_remote_tlbs(vcpu->kvm);
  1388. else
  1389. kvm_mmu_flush_tlb(vcpu);
  1390. }
  1391. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  1392. {
  1393. u64 *spte = vcpu->arch.last_pte_updated;
  1394. return !!(spte && (*spte & PT_ACCESSED_MASK));
  1395. }
  1396. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1397. const u8 *new, int bytes)
  1398. {
  1399. gfn_t gfn;
  1400. int r;
  1401. u64 gpte = 0;
  1402. pfn_t pfn;
  1403. vcpu->arch.update_pte.largepage = 0;
  1404. if (bytes != 4 && bytes != 8)
  1405. return;
  1406. /*
  1407. * Assume that the pte write on a page table of the same type
  1408. * as the current vcpu paging mode. This is nearly always true
  1409. * (might be false while changing modes). Note it is verified later
  1410. * by update_pte().
  1411. */
  1412. if (is_pae(vcpu)) {
  1413. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  1414. if ((bytes == 4) && (gpa % 4 == 0)) {
  1415. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  1416. if (r)
  1417. return;
  1418. memcpy((void *)&gpte + (gpa % 8), new, 4);
  1419. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  1420. memcpy((void *)&gpte, new, 8);
  1421. }
  1422. } else {
  1423. if ((bytes == 4) && (gpa % 4 == 0))
  1424. memcpy((void *)&gpte, new, 4);
  1425. }
  1426. if (!is_present_pte(gpte))
  1427. return;
  1428. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1429. down_read(&current->mm->mmap_sem);
  1430. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  1431. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1432. vcpu->arch.update_pte.largepage = 1;
  1433. }
  1434. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1435. up_read(&current->mm->mmap_sem);
  1436. if (is_error_pfn(pfn)) {
  1437. kvm_release_pfn_clean(pfn);
  1438. return;
  1439. }
  1440. vcpu->arch.update_pte.gfn = gfn;
  1441. vcpu->arch.update_pte.pfn = pfn;
  1442. }
  1443. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1444. const u8 *new, int bytes)
  1445. {
  1446. gfn_t gfn = gpa >> PAGE_SHIFT;
  1447. struct kvm_mmu_page *sp;
  1448. struct hlist_node *node, *n;
  1449. struct hlist_head *bucket;
  1450. unsigned index;
  1451. u64 entry, gentry;
  1452. u64 *spte;
  1453. unsigned offset = offset_in_page(gpa);
  1454. unsigned pte_size;
  1455. unsigned page_offset;
  1456. unsigned misaligned;
  1457. unsigned quadrant;
  1458. int level;
  1459. int flooded = 0;
  1460. int npte;
  1461. int r;
  1462. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  1463. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  1464. spin_lock(&vcpu->kvm->mmu_lock);
  1465. kvm_mmu_free_some_pages(vcpu);
  1466. ++vcpu->kvm->stat.mmu_pte_write;
  1467. kvm_mmu_audit(vcpu, "pre pte write");
  1468. if (gfn == vcpu->arch.last_pt_write_gfn
  1469. && !last_updated_pte_accessed(vcpu)) {
  1470. ++vcpu->arch.last_pt_write_count;
  1471. if (vcpu->arch.last_pt_write_count >= 3)
  1472. flooded = 1;
  1473. } else {
  1474. vcpu->arch.last_pt_write_gfn = gfn;
  1475. vcpu->arch.last_pt_write_count = 1;
  1476. vcpu->arch.last_pte_updated = NULL;
  1477. }
  1478. index = kvm_page_table_hashfn(gfn);
  1479. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1480. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  1481. if (sp->gfn != gfn || sp->role.metaphysical)
  1482. continue;
  1483. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  1484. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  1485. misaligned |= bytes < 4;
  1486. if (misaligned || flooded) {
  1487. /*
  1488. * Misaligned accesses are too much trouble to fix
  1489. * up; also, they usually indicate a page is not used
  1490. * as a page table.
  1491. *
  1492. * If we're seeing too many writes to a page,
  1493. * it may no longer be a page table, or we may be
  1494. * forking, in which case it is better to unmap the
  1495. * page.
  1496. */
  1497. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1498. gpa, bytes, sp->role.word);
  1499. kvm_mmu_zap_page(vcpu->kvm, sp);
  1500. ++vcpu->kvm->stat.mmu_flooded;
  1501. continue;
  1502. }
  1503. page_offset = offset;
  1504. level = sp->role.level;
  1505. npte = 1;
  1506. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  1507. page_offset <<= 1; /* 32->64 */
  1508. /*
  1509. * A 32-bit pde maps 4MB while the shadow pdes map
  1510. * only 2MB. So we need to double the offset again
  1511. * and zap two pdes instead of one.
  1512. */
  1513. if (level == PT32_ROOT_LEVEL) {
  1514. page_offset &= ~7; /* kill rounding error */
  1515. page_offset <<= 1;
  1516. npte = 2;
  1517. }
  1518. quadrant = page_offset >> PAGE_SHIFT;
  1519. page_offset &= ~PAGE_MASK;
  1520. if (quadrant != sp->role.quadrant)
  1521. continue;
  1522. }
  1523. spte = &sp->spt[page_offset / sizeof(*spte)];
  1524. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  1525. gentry = 0;
  1526. r = kvm_read_guest_atomic(vcpu->kvm,
  1527. gpa & ~(u64)(pte_size - 1),
  1528. &gentry, pte_size);
  1529. new = (const void *)&gentry;
  1530. if (r < 0)
  1531. new = NULL;
  1532. }
  1533. while (npte--) {
  1534. entry = *spte;
  1535. mmu_pte_write_zap_pte(vcpu, sp, spte);
  1536. if (new)
  1537. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  1538. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  1539. ++spte;
  1540. }
  1541. }
  1542. kvm_mmu_audit(vcpu, "post pte write");
  1543. spin_unlock(&vcpu->kvm->mmu_lock);
  1544. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  1545. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  1546. vcpu->arch.update_pte.pfn = bad_pfn;
  1547. }
  1548. }
  1549. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1550. {
  1551. gpa_t gpa;
  1552. int r;
  1553. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1554. spin_lock(&vcpu->kvm->mmu_lock);
  1555. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1556. spin_unlock(&vcpu->kvm->mmu_lock);
  1557. return r;
  1558. }
  1559. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1560. {
  1561. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  1562. struct kvm_mmu_page *sp;
  1563. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  1564. struct kvm_mmu_page, link);
  1565. kvm_mmu_zap_page(vcpu->kvm, sp);
  1566. ++vcpu->kvm->stat.mmu_recycled;
  1567. }
  1568. }
  1569. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  1570. {
  1571. int r;
  1572. enum emulation_result er;
  1573. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  1574. if (r < 0)
  1575. goto out;
  1576. if (!r) {
  1577. r = 1;
  1578. goto out;
  1579. }
  1580. r = mmu_topup_memory_caches(vcpu);
  1581. if (r)
  1582. goto out;
  1583. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  1584. switch (er) {
  1585. case EMULATE_DONE:
  1586. return 1;
  1587. case EMULATE_DO_MMIO:
  1588. ++vcpu->stat.mmio_exits;
  1589. return 0;
  1590. case EMULATE_FAIL:
  1591. kvm_report_emulation_failure(vcpu, "pagetable");
  1592. return 1;
  1593. default:
  1594. BUG();
  1595. }
  1596. out:
  1597. return r;
  1598. }
  1599. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  1600. void kvm_enable_tdp(void)
  1601. {
  1602. tdp_enabled = true;
  1603. }
  1604. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  1605. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1606. {
  1607. struct kvm_mmu_page *sp;
  1608. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  1609. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  1610. struct kvm_mmu_page, link);
  1611. kvm_mmu_zap_page(vcpu->kvm, sp);
  1612. }
  1613. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  1614. }
  1615. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1616. {
  1617. struct page *page;
  1618. int i;
  1619. ASSERT(vcpu);
  1620. if (vcpu->kvm->arch.n_requested_mmu_pages)
  1621. vcpu->kvm->arch.n_free_mmu_pages =
  1622. vcpu->kvm->arch.n_requested_mmu_pages;
  1623. else
  1624. vcpu->kvm->arch.n_free_mmu_pages =
  1625. vcpu->kvm->arch.n_alloc_mmu_pages;
  1626. /*
  1627. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1628. * Therefore we need to allocate shadow page tables in the first
  1629. * 4GB of memory, which happens to fit the DMA32 zone.
  1630. */
  1631. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1632. if (!page)
  1633. goto error_1;
  1634. vcpu->arch.mmu.pae_root = page_address(page);
  1635. for (i = 0; i < 4; ++i)
  1636. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1637. return 0;
  1638. error_1:
  1639. free_mmu_pages(vcpu);
  1640. return -ENOMEM;
  1641. }
  1642. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1643. {
  1644. ASSERT(vcpu);
  1645. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1646. return alloc_mmu_pages(vcpu);
  1647. }
  1648. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1649. {
  1650. ASSERT(vcpu);
  1651. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1652. return init_kvm_mmu(vcpu);
  1653. }
  1654. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1655. {
  1656. ASSERT(vcpu);
  1657. destroy_kvm_mmu(vcpu);
  1658. free_mmu_pages(vcpu);
  1659. mmu_free_memory_caches(vcpu);
  1660. }
  1661. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1662. {
  1663. struct kvm_mmu_page *sp;
  1664. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  1665. int i;
  1666. u64 *pt;
  1667. if (!test_bit(slot, &sp->slot_bitmap))
  1668. continue;
  1669. pt = sp->spt;
  1670. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1671. /* avoid RMW */
  1672. if (pt[i] & PT_WRITABLE_MASK)
  1673. pt[i] &= ~PT_WRITABLE_MASK;
  1674. }
  1675. }
  1676. void kvm_mmu_zap_all(struct kvm *kvm)
  1677. {
  1678. struct kvm_mmu_page *sp, *node;
  1679. spin_lock(&kvm->mmu_lock);
  1680. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  1681. kvm_mmu_zap_page(kvm, sp);
  1682. spin_unlock(&kvm->mmu_lock);
  1683. kvm_flush_remote_tlbs(kvm);
  1684. }
  1685. void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  1686. {
  1687. struct kvm_mmu_page *page;
  1688. page = container_of(kvm->arch.active_mmu_pages.prev,
  1689. struct kvm_mmu_page, link);
  1690. kvm_mmu_zap_page(kvm, page);
  1691. }
  1692. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  1693. {
  1694. struct kvm *kvm;
  1695. struct kvm *kvm_freed = NULL;
  1696. int cache_count = 0;
  1697. spin_lock(&kvm_lock);
  1698. list_for_each_entry(kvm, &vm_list, vm_list) {
  1699. int npages;
  1700. spin_lock(&kvm->mmu_lock);
  1701. npages = kvm->arch.n_alloc_mmu_pages -
  1702. kvm->arch.n_free_mmu_pages;
  1703. cache_count += npages;
  1704. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  1705. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  1706. cache_count--;
  1707. kvm_freed = kvm;
  1708. }
  1709. nr_to_scan--;
  1710. spin_unlock(&kvm->mmu_lock);
  1711. }
  1712. if (kvm_freed)
  1713. list_move_tail(&kvm_freed->vm_list, &vm_list);
  1714. spin_unlock(&kvm_lock);
  1715. return cache_count;
  1716. }
  1717. static struct shrinker mmu_shrinker = {
  1718. .shrink = mmu_shrink,
  1719. .seeks = DEFAULT_SEEKS * 10,
  1720. };
  1721. void mmu_destroy_caches(void)
  1722. {
  1723. if (pte_chain_cache)
  1724. kmem_cache_destroy(pte_chain_cache);
  1725. if (rmap_desc_cache)
  1726. kmem_cache_destroy(rmap_desc_cache);
  1727. if (mmu_page_header_cache)
  1728. kmem_cache_destroy(mmu_page_header_cache);
  1729. }
  1730. void kvm_mmu_module_exit(void)
  1731. {
  1732. mmu_destroy_caches();
  1733. unregister_shrinker(&mmu_shrinker);
  1734. }
  1735. int kvm_mmu_module_init(void)
  1736. {
  1737. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1738. sizeof(struct kvm_pte_chain),
  1739. 0, 0, NULL);
  1740. if (!pte_chain_cache)
  1741. goto nomem;
  1742. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1743. sizeof(struct kvm_rmap_desc),
  1744. 0, 0, NULL);
  1745. if (!rmap_desc_cache)
  1746. goto nomem;
  1747. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1748. sizeof(struct kvm_mmu_page),
  1749. 0, 0, NULL);
  1750. if (!mmu_page_header_cache)
  1751. goto nomem;
  1752. register_shrinker(&mmu_shrinker);
  1753. return 0;
  1754. nomem:
  1755. mmu_destroy_caches();
  1756. return -ENOMEM;
  1757. }
  1758. /*
  1759. * Caculate mmu pages needed for kvm.
  1760. */
  1761. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  1762. {
  1763. int i;
  1764. unsigned int nr_mmu_pages;
  1765. unsigned int nr_pages = 0;
  1766. for (i = 0; i < kvm->nmemslots; i++)
  1767. nr_pages += kvm->memslots[i].npages;
  1768. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  1769. nr_mmu_pages = max(nr_mmu_pages,
  1770. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  1771. return nr_mmu_pages;
  1772. }
  1773. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  1774. unsigned len)
  1775. {
  1776. if (len > buffer->len)
  1777. return NULL;
  1778. return buffer->ptr;
  1779. }
  1780. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  1781. unsigned len)
  1782. {
  1783. void *ret;
  1784. ret = pv_mmu_peek_buffer(buffer, len);
  1785. if (!ret)
  1786. return ret;
  1787. buffer->ptr += len;
  1788. buffer->len -= len;
  1789. buffer->processed += len;
  1790. return ret;
  1791. }
  1792. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  1793. gpa_t addr, gpa_t value)
  1794. {
  1795. int bytes = 8;
  1796. int r;
  1797. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  1798. bytes = 4;
  1799. r = mmu_topup_memory_caches(vcpu);
  1800. if (r)
  1801. return r;
  1802. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  1803. return -EFAULT;
  1804. return 1;
  1805. }
  1806. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1807. {
  1808. kvm_x86_ops->tlb_flush(vcpu);
  1809. return 1;
  1810. }
  1811. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  1812. {
  1813. spin_lock(&vcpu->kvm->mmu_lock);
  1814. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  1815. spin_unlock(&vcpu->kvm->mmu_lock);
  1816. return 1;
  1817. }
  1818. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  1819. struct kvm_pv_mmu_op_buffer *buffer)
  1820. {
  1821. struct kvm_mmu_op_header *header;
  1822. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  1823. if (!header)
  1824. return 0;
  1825. switch (header->op) {
  1826. case KVM_MMU_OP_WRITE_PTE: {
  1827. struct kvm_mmu_op_write_pte *wpte;
  1828. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  1829. if (!wpte)
  1830. return 0;
  1831. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  1832. wpte->pte_val);
  1833. }
  1834. case KVM_MMU_OP_FLUSH_TLB: {
  1835. struct kvm_mmu_op_flush_tlb *ftlb;
  1836. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  1837. if (!ftlb)
  1838. return 0;
  1839. return kvm_pv_mmu_flush_tlb(vcpu);
  1840. }
  1841. case KVM_MMU_OP_RELEASE_PT: {
  1842. struct kvm_mmu_op_release_pt *rpt;
  1843. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  1844. if (!rpt)
  1845. return 0;
  1846. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  1847. }
  1848. default: return 0;
  1849. }
  1850. }
  1851. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  1852. gpa_t addr, unsigned long *ret)
  1853. {
  1854. int r;
  1855. struct kvm_pv_mmu_op_buffer buffer;
  1856. buffer.ptr = buffer.buf;
  1857. buffer.len = min_t(unsigned long, bytes, sizeof buffer.buf);
  1858. buffer.processed = 0;
  1859. r = kvm_read_guest(vcpu->kvm, addr, buffer.buf, buffer.len);
  1860. if (r)
  1861. goto out;
  1862. while (buffer.len) {
  1863. r = kvm_pv_mmu_op_one(vcpu, &buffer);
  1864. if (r < 0)
  1865. goto out;
  1866. if (r == 0)
  1867. break;
  1868. }
  1869. r = 1;
  1870. out:
  1871. *ret = buffer.processed;
  1872. return r;
  1873. }
  1874. #ifdef AUDIT
  1875. static const char *audit_msg;
  1876. static gva_t canonicalize(gva_t gva)
  1877. {
  1878. #ifdef CONFIG_X86_64
  1879. gva = (long long)(gva << 16) >> 16;
  1880. #endif
  1881. return gva;
  1882. }
  1883. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1884. gva_t va, int level)
  1885. {
  1886. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1887. int i;
  1888. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1889. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1890. u64 ent = pt[i];
  1891. if (ent == shadow_trap_nonpresent_pte)
  1892. continue;
  1893. va = canonicalize(va);
  1894. if (level > 1) {
  1895. if (ent == shadow_notrap_nonpresent_pte)
  1896. printk(KERN_ERR "audit: (%s) nontrapping pte"
  1897. " in nonleaf level: levels %d gva %lx"
  1898. " level %d pte %llx\n", audit_msg,
  1899. vcpu->arch.mmu.root_level, va, level, ent);
  1900. audit_mappings_page(vcpu, ent, va, level - 1);
  1901. } else {
  1902. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  1903. hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
  1904. if (is_shadow_present_pte(ent)
  1905. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1906. printk(KERN_ERR "xx audit error: (%s) levels %d"
  1907. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  1908. audit_msg, vcpu->arch.mmu.root_level,
  1909. va, gpa, hpa, ent,
  1910. is_shadow_present_pte(ent));
  1911. else if (ent == shadow_notrap_nonpresent_pte
  1912. && !is_error_hpa(hpa))
  1913. printk(KERN_ERR "audit: (%s) notrap shadow,"
  1914. " valid guest gva %lx\n", audit_msg, va);
  1915. kvm_release_pfn_clean(pfn);
  1916. }
  1917. }
  1918. }
  1919. static void audit_mappings(struct kvm_vcpu *vcpu)
  1920. {
  1921. unsigned i;
  1922. if (vcpu->arch.mmu.root_level == 4)
  1923. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  1924. else
  1925. for (i = 0; i < 4; ++i)
  1926. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  1927. audit_mappings_page(vcpu,
  1928. vcpu->arch.mmu.pae_root[i],
  1929. i << 30,
  1930. 2);
  1931. }
  1932. static int count_rmaps(struct kvm_vcpu *vcpu)
  1933. {
  1934. int nmaps = 0;
  1935. int i, j, k;
  1936. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1937. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1938. struct kvm_rmap_desc *d;
  1939. for (j = 0; j < m->npages; ++j) {
  1940. unsigned long *rmapp = &m->rmap[j];
  1941. if (!*rmapp)
  1942. continue;
  1943. if (!(*rmapp & 1)) {
  1944. ++nmaps;
  1945. continue;
  1946. }
  1947. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  1948. while (d) {
  1949. for (k = 0; k < RMAP_EXT; ++k)
  1950. if (d->shadow_ptes[k])
  1951. ++nmaps;
  1952. else
  1953. break;
  1954. d = d->more;
  1955. }
  1956. }
  1957. }
  1958. return nmaps;
  1959. }
  1960. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1961. {
  1962. int nmaps = 0;
  1963. struct kvm_mmu_page *sp;
  1964. int i;
  1965. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  1966. u64 *pt = sp->spt;
  1967. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  1968. continue;
  1969. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1970. u64 ent = pt[i];
  1971. if (!(ent & PT_PRESENT_MASK))
  1972. continue;
  1973. if (!(ent & PT_WRITABLE_MASK))
  1974. continue;
  1975. ++nmaps;
  1976. }
  1977. }
  1978. return nmaps;
  1979. }
  1980. static void audit_rmap(struct kvm_vcpu *vcpu)
  1981. {
  1982. int n_rmap = count_rmaps(vcpu);
  1983. int n_actual = count_writable_mappings(vcpu);
  1984. if (n_rmap != n_actual)
  1985. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1986. __func__, audit_msg, n_rmap, n_actual);
  1987. }
  1988. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1989. {
  1990. struct kvm_mmu_page *sp;
  1991. struct kvm_memory_slot *slot;
  1992. unsigned long *rmapp;
  1993. gfn_t gfn;
  1994. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  1995. if (sp->role.metaphysical)
  1996. continue;
  1997. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  1998. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  1999. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2000. if (*rmapp)
  2001. printk(KERN_ERR "%s: (%s) shadow page has writable"
  2002. " mappings: gfn %lx role %x\n",
  2003. __func__, audit_msg, sp->gfn,
  2004. sp->role.word);
  2005. }
  2006. }
  2007. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2008. {
  2009. int olddbg = dbg;
  2010. dbg = 0;
  2011. audit_msg = msg;
  2012. audit_rmap(vcpu);
  2013. audit_write_protection(vcpu);
  2014. audit_mappings(vcpu);
  2015. dbg = olddbg;
  2016. }
  2017. #endif