mmu.c 85 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "mmu.h"
  21. #include "x86.h"
  22. #include "kvm_cache_regs.h"
  23. #include <linux/kvm_host.h>
  24. #include <linux/types.h>
  25. #include <linux/string.h>
  26. #include <linux/mm.h>
  27. #include <linux/highmem.h>
  28. #include <linux/module.h>
  29. #include <linux/swap.h>
  30. #include <linux/hugetlb.h>
  31. #include <linux/compiler.h>
  32. #include <linux/srcu.h>
  33. #include <linux/slab.h>
  34. #include <linux/uaccess.h>
  35. #include <asm/page.h>
  36. #include <asm/cmpxchg.h>
  37. #include <asm/io.h>
  38. #include <asm/vmx.h>
  39. /*
  40. * When setting this variable to true it enables Two-Dimensional-Paging
  41. * where the hardware walks 2 page tables:
  42. * 1. the guest-virtual to guest-physical
  43. * 2. while doing 1. it walks guest-physical to host-physical
  44. * If the hardware supports that we don't need to do shadow paging.
  45. */
  46. bool tdp_enabled = false;
  47. #undef MMU_DEBUG
  48. #undef AUDIT
  49. #ifdef AUDIT
  50. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  51. #else
  52. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  53. #endif
  54. #ifdef MMU_DEBUG
  55. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  56. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  57. #else
  58. #define pgprintk(x...) do { } while (0)
  59. #define rmap_printk(x...) do { } while (0)
  60. #endif
  61. #if defined(MMU_DEBUG) || defined(AUDIT)
  62. static int dbg = 0;
  63. module_param(dbg, bool, 0644);
  64. #endif
  65. static int oos_shadow = 1;
  66. module_param(oos_shadow, bool, 0644);
  67. #ifndef MMU_DEBUG
  68. #define ASSERT(x) do { } while (0)
  69. #else
  70. #define ASSERT(x) \
  71. if (!(x)) { \
  72. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  73. __FILE__, __LINE__, #x); \
  74. }
  75. #endif
  76. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  77. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  78. #define PT64_LEVEL_BITS 9
  79. #define PT64_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  81. #define PT64_LEVEL_MASK(level) \
  82. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LEVEL_MASK(level) \
  89. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  90. #define PT32_LVL_OFFSET_MASK(level) \
  91. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  92. * PT32_LEVEL_BITS))) - 1))
  93. #define PT32_INDEX(address, level)\
  94. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  95. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  96. #define PT64_DIR_BASE_ADDR_MASK \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  98. #define PT64_LVL_ADDR_MASK(level) \
  99. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  100. * PT64_LEVEL_BITS))) - 1))
  101. #define PT64_LVL_OFFSET_MASK(level) \
  102. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  103. * PT64_LEVEL_BITS))) - 1))
  104. #define PT32_BASE_ADDR_MASK PAGE_MASK
  105. #define PT32_DIR_BASE_ADDR_MASK \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  107. #define PT32_LVL_ADDR_MASK(level) \
  108. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  109. * PT32_LEVEL_BITS))) - 1))
  110. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  111. | PT64_NX_MASK)
  112. #define RMAP_EXT 4
  113. #define ACC_EXEC_MASK 1
  114. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  115. #define ACC_USER_MASK PT_USER_MASK
  116. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  117. #include <trace/events/kvm.h>
  118. #define CREATE_TRACE_POINTS
  119. #include "mmutrace.h"
  120. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  121. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  122. struct kvm_rmap_desc {
  123. u64 *sptes[RMAP_EXT];
  124. struct kvm_rmap_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. int level;
  130. u64 *sptep;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
  138. static struct kmem_cache *pte_chain_cache;
  139. static struct kmem_cache *rmap_desc_cache;
  140. static struct kmem_cache *mmu_page_header_cache;
  141. static u64 __read_mostly shadow_trap_nonpresent_pte;
  142. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  143. static u64 __read_mostly shadow_base_present_pte;
  144. static u64 __read_mostly shadow_nx_mask;
  145. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  146. static u64 __read_mostly shadow_user_mask;
  147. static u64 __read_mostly shadow_accessed_mask;
  148. static u64 __read_mostly shadow_dirty_mask;
  149. static inline u64 rsvd_bits(int s, int e)
  150. {
  151. return ((1ULL << (e - s + 1)) - 1) << s;
  152. }
  153. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  154. {
  155. shadow_trap_nonpresent_pte = trap_pte;
  156. shadow_notrap_nonpresent_pte = notrap_pte;
  157. }
  158. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  159. void kvm_mmu_set_base_ptes(u64 base_pte)
  160. {
  161. shadow_base_present_pte = base_pte;
  162. }
  163. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  164. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  165. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  166. {
  167. shadow_user_mask = user_mask;
  168. shadow_accessed_mask = accessed_mask;
  169. shadow_dirty_mask = dirty_mask;
  170. shadow_nx_mask = nx_mask;
  171. shadow_x_mask = x_mask;
  172. }
  173. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  174. static bool is_write_protection(struct kvm_vcpu *vcpu)
  175. {
  176. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  177. }
  178. static int is_cpuid_PSE36(void)
  179. {
  180. return 1;
  181. }
  182. static int is_nx(struct kvm_vcpu *vcpu)
  183. {
  184. return vcpu->arch.efer & EFER_NX;
  185. }
  186. static int is_shadow_present_pte(u64 pte)
  187. {
  188. return pte != shadow_trap_nonpresent_pte
  189. && pte != shadow_notrap_nonpresent_pte;
  190. }
  191. static int is_large_pte(u64 pte)
  192. {
  193. return pte & PT_PAGE_SIZE_MASK;
  194. }
  195. static int is_writable_pte(unsigned long pte)
  196. {
  197. return pte & PT_WRITABLE_MASK;
  198. }
  199. static int is_dirty_gpte(unsigned long pte)
  200. {
  201. return pte & PT_DIRTY_MASK;
  202. }
  203. static int is_rmap_spte(u64 pte)
  204. {
  205. return is_shadow_present_pte(pte);
  206. }
  207. static int is_last_spte(u64 pte, int level)
  208. {
  209. if (level == PT_PAGE_TABLE_LEVEL)
  210. return 1;
  211. if (is_large_pte(pte))
  212. return 1;
  213. return 0;
  214. }
  215. static pfn_t spte_to_pfn(u64 pte)
  216. {
  217. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  218. }
  219. static gfn_t pse36_gfn_delta(u32 gpte)
  220. {
  221. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  222. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  223. }
  224. static void __set_spte(u64 *sptep, u64 spte)
  225. {
  226. #ifdef CONFIG_X86_64
  227. set_64bit((unsigned long *)sptep, spte);
  228. #else
  229. set_64bit((unsigned long long *)sptep, spte);
  230. #endif
  231. }
  232. static u64 __xchg_spte(u64 *sptep, u64 new_spte)
  233. {
  234. #ifdef CONFIG_X86_64
  235. return xchg(sptep, new_spte);
  236. #else
  237. u64 old_spte;
  238. do {
  239. old_spte = *sptep;
  240. } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
  241. return old_spte;
  242. #endif
  243. }
  244. static void update_spte(u64 *sptep, u64 new_spte)
  245. {
  246. u64 old_spte;
  247. if (!shadow_accessed_mask || (new_spte & shadow_accessed_mask)) {
  248. __set_spte(sptep, new_spte);
  249. } else {
  250. old_spte = __xchg_spte(sptep, new_spte);
  251. if (old_spte & shadow_accessed_mask)
  252. mark_page_accessed(pfn_to_page(spte_to_pfn(old_spte)));
  253. }
  254. }
  255. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  256. struct kmem_cache *base_cache, int min)
  257. {
  258. void *obj;
  259. if (cache->nobjs >= min)
  260. return 0;
  261. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  262. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  263. if (!obj)
  264. return -ENOMEM;
  265. cache->objects[cache->nobjs++] = obj;
  266. }
  267. return 0;
  268. }
  269. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  270. struct kmem_cache *cache)
  271. {
  272. while (mc->nobjs)
  273. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  274. }
  275. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  276. int min)
  277. {
  278. struct page *page;
  279. if (cache->nobjs >= min)
  280. return 0;
  281. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  282. page = alloc_page(GFP_KERNEL);
  283. if (!page)
  284. return -ENOMEM;
  285. cache->objects[cache->nobjs++] = page_address(page);
  286. }
  287. return 0;
  288. }
  289. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  290. {
  291. while (mc->nobjs)
  292. free_page((unsigned long)mc->objects[--mc->nobjs]);
  293. }
  294. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  295. {
  296. int r;
  297. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  298. pte_chain_cache, 4);
  299. if (r)
  300. goto out;
  301. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  302. rmap_desc_cache, 4);
  303. if (r)
  304. goto out;
  305. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  306. if (r)
  307. goto out;
  308. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  309. mmu_page_header_cache, 4);
  310. out:
  311. return r;
  312. }
  313. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  314. {
  315. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
  316. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
  317. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  318. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  319. mmu_page_header_cache);
  320. }
  321. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  322. size_t size)
  323. {
  324. void *p;
  325. BUG_ON(!mc->nobjs);
  326. p = mc->objects[--mc->nobjs];
  327. return p;
  328. }
  329. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  330. {
  331. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  332. sizeof(struct kvm_pte_chain));
  333. }
  334. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  335. {
  336. kmem_cache_free(pte_chain_cache, pc);
  337. }
  338. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  339. {
  340. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  341. sizeof(struct kvm_rmap_desc));
  342. }
  343. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  344. {
  345. kmem_cache_free(rmap_desc_cache, rd);
  346. }
  347. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  348. {
  349. if (!sp->role.direct)
  350. return sp->gfns[index];
  351. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  352. }
  353. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  354. {
  355. if (sp->role.direct)
  356. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  357. else
  358. sp->gfns[index] = gfn;
  359. }
  360. /*
  361. * Return the pointer to the largepage write count for a given
  362. * gfn, handling slots that are not large page aligned.
  363. */
  364. static int *slot_largepage_idx(gfn_t gfn,
  365. struct kvm_memory_slot *slot,
  366. int level)
  367. {
  368. unsigned long idx;
  369. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  370. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  371. return &slot->lpage_info[level - 2][idx].write_count;
  372. }
  373. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  374. {
  375. struct kvm_memory_slot *slot;
  376. int *write_count;
  377. int i;
  378. slot = gfn_to_memslot(kvm, gfn);
  379. for (i = PT_DIRECTORY_LEVEL;
  380. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  381. write_count = slot_largepage_idx(gfn, slot, i);
  382. *write_count += 1;
  383. }
  384. }
  385. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  386. {
  387. struct kvm_memory_slot *slot;
  388. int *write_count;
  389. int i;
  390. slot = gfn_to_memslot(kvm, gfn);
  391. for (i = PT_DIRECTORY_LEVEL;
  392. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  393. write_count = slot_largepage_idx(gfn, slot, i);
  394. *write_count -= 1;
  395. WARN_ON(*write_count < 0);
  396. }
  397. }
  398. static int has_wrprotected_page(struct kvm *kvm,
  399. gfn_t gfn,
  400. int level)
  401. {
  402. struct kvm_memory_slot *slot;
  403. int *largepage_idx;
  404. slot = gfn_to_memslot(kvm, gfn);
  405. if (slot) {
  406. largepage_idx = slot_largepage_idx(gfn, slot, level);
  407. return *largepage_idx;
  408. }
  409. return 1;
  410. }
  411. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  412. {
  413. unsigned long page_size;
  414. int i, ret = 0;
  415. page_size = kvm_host_page_size(kvm, gfn);
  416. for (i = PT_PAGE_TABLE_LEVEL;
  417. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  418. if (page_size >= KVM_HPAGE_SIZE(i))
  419. ret = i;
  420. else
  421. break;
  422. }
  423. return ret;
  424. }
  425. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  426. {
  427. struct kvm_memory_slot *slot;
  428. int host_level, level, max_level;
  429. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  430. if (slot && slot->dirty_bitmap)
  431. return PT_PAGE_TABLE_LEVEL;
  432. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  433. if (host_level == PT_PAGE_TABLE_LEVEL)
  434. return host_level;
  435. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  436. kvm_x86_ops->get_lpage_level() : host_level;
  437. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  438. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  439. break;
  440. return level - 1;
  441. }
  442. /*
  443. * Take gfn and return the reverse mapping to it.
  444. */
  445. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  446. {
  447. struct kvm_memory_slot *slot;
  448. unsigned long idx;
  449. slot = gfn_to_memslot(kvm, gfn);
  450. if (likely(level == PT_PAGE_TABLE_LEVEL))
  451. return &slot->rmap[gfn - slot->base_gfn];
  452. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  453. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  454. return &slot->lpage_info[level - 2][idx].rmap_pde;
  455. }
  456. /*
  457. * Reverse mapping data structures:
  458. *
  459. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  460. * that points to page_address(page).
  461. *
  462. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  463. * containing more mappings.
  464. *
  465. * Returns the number of rmap entries before the spte was added or zero if
  466. * the spte was not added.
  467. *
  468. */
  469. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  470. {
  471. struct kvm_mmu_page *sp;
  472. struct kvm_rmap_desc *desc;
  473. unsigned long *rmapp;
  474. int i, count = 0;
  475. if (!is_rmap_spte(*spte))
  476. return count;
  477. sp = page_header(__pa(spte));
  478. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  479. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  480. if (!*rmapp) {
  481. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  482. *rmapp = (unsigned long)spte;
  483. } else if (!(*rmapp & 1)) {
  484. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  485. desc = mmu_alloc_rmap_desc(vcpu);
  486. desc->sptes[0] = (u64 *)*rmapp;
  487. desc->sptes[1] = spte;
  488. *rmapp = (unsigned long)desc | 1;
  489. } else {
  490. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  491. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  492. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  493. desc = desc->more;
  494. count += RMAP_EXT;
  495. }
  496. if (desc->sptes[RMAP_EXT-1]) {
  497. desc->more = mmu_alloc_rmap_desc(vcpu);
  498. desc = desc->more;
  499. }
  500. for (i = 0; desc->sptes[i]; ++i)
  501. ;
  502. desc->sptes[i] = spte;
  503. }
  504. return count;
  505. }
  506. static void rmap_desc_remove_entry(unsigned long *rmapp,
  507. struct kvm_rmap_desc *desc,
  508. int i,
  509. struct kvm_rmap_desc *prev_desc)
  510. {
  511. int j;
  512. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  513. ;
  514. desc->sptes[i] = desc->sptes[j];
  515. desc->sptes[j] = NULL;
  516. if (j != 0)
  517. return;
  518. if (!prev_desc && !desc->more)
  519. *rmapp = (unsigned long)desc->sptes[0];
  520. else
  521. if (prev_desc)
  522. prev_desc->more = desc->more;
  523. else
  524. *rmapp = (unsigned long)desc->more | 1;
  525. mmu_free_rmap_desc(desc);
  526. }
  527. static void rmap_remove(struct kvm *kvm, u64 *spte)
  528. {
  529. struct kvm_rmap_desc *desc;
  530. struct kvm_rmap_desc *prev_desc;
  531. struct kvm_mmu_page *sp;
  532. gfn_t gfn;
  533. unsigned long *rmapp;
  534. int i;
  535. sp = page_header(__pa(spte));
  536. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  537. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  538. if (!*rmapp) {
  539. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  540. BUG();
  541. } else if (!(*rmapp & 1)) {
  542. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  543. if ((u64 *)*rmapp != spte) {
  544. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  545. spte, *spte);
  546. BUG();
  547. }
  548. *rmapp = 0;
  549. } else {
  550. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  551. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  552. prev_desc = NULL;
  553. while (desc) {
  554. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  555. if (desc->sptes[i] == spte) {
  556. rmap_desc_remove_entry(rmapp,
  557. desc, i,
  558. prev_desc);
  559. return;
  560. }
  561. prev_desc = desc;
  562. desc = desc->more;
  563. }
  564. pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
  565. BUG();
  566. }
  567. }
  568. static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
  569. {
  570. pfn_t pfn;
  571. u64 old_spte;
  572. old_spte = __xchg_spte(sptep, new_spte);
  573. if (!is_rmap_spte(old_spte))
  574. return;
  575. pfn = spte_to_pfn(old_spte);
  576. if (old_spte & shadow_accessed_mask)
  577. kvm_set_pfn_accessed(pfn);
  578. if (is_writable_pte(old_spte))
  579. kvm_set_pfn_dirty(pfn);
  580. rmap_remove(kvm, sptep);
  581. }
  582. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  583. {
  584. struct kvm_rmap_desc *desc;
  585. u64 *prev_spte;
  586. int i;
  587. if (!*rmapp)
  588. return NULL;
  589. else if (!(*rmapp & 1)) {
  590. if (!spte)
  591. return (u64 *)*rmapp;
  592. return NULL;
  593. }
  594. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  595. prev_spte = NULL;
  596. while (desc) {
  597. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  598. if (prev_spte == spte)
  599. return desc->sptes[i];
  600. prev_spte = desc->sptes[i];
  601. }
  602. desc = desc->more;
  603. }
  604. return NULL;
  605. }
  606. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  607. {
  608. unsigned long *rmapp;
  609. u64 *spte;
  610. int i, write_protected = 0;
  611. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  612. spte = rmap_next(kvm, rmapp, NULL);
  613. while (spte) {
  614. BUG_ON(!spte);
  615. BUG_ON(!(*spte & PT_PRESENT_MASK));
  616. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  617. if (is_writable_pte(*spte)) {
  618. update_spte(spte, *spte & ~PT_WRITABLE_MASK);
  619. write_protected = 1;
  620. }
  621. spte = rmap_next(kvm, rmapp, spte);
  622. }
  623. if (write_protected) {
  624. pfn_t pfn;
  625. spte = rmap_next(kvm, rmapp, NULL);
  626. pfn = spte_to_pfn(*spte);
  627. kvm_set_pfn_dirty(pfn);
  628. }
  629. /* check for huge page mappings */
  630. for (i = PT_DIRECTORY_LEVEL;
  631. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  632. rmapp = gfn_to_rmap(kvm, gfn, i);
  633. spte = rmap_next(kvm, rmapp, NULL);
  634. while (spte) {
  635. BUG_ON(!spte);
  636. BUG_ON(!(*spte & PT_PRESENT_MASK));
  637. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  638. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  639. if (is_writable_pte(*spte)) {
  640. drop_spte(kvm, spte,
  641. shadow_trap_nonpresent_pte);
  642. --kvm->stat.lpages;
  643. spte = NULL;
  644. write_protected = 1;
  645. }
  646. spte = rmap_next(kvm, rmapp, spte);
  647. }
  648. }
  649. return write_protected;
  650. }
  651. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  652. unsigned long data)
  653. {
  654. u64 *spte;
  655. int need_tlb_flush = 0;
  656. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  657. BUG_ON(!(*spte & PT_PRESENT_MASK));
  658. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  659. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  660. need_tlb_flush = 1;
  661. }
  662. return need_tlb_flush;
  663. }
  664. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  665. unsigned long data)
  666. {
  667. int need_flush = 0;
  668. u64 *spte, new_spte, old_spte;
  669. pte_t *ptep = (pte_t *)data;
  670. pfn_t new_pfn;
  671. WARN_ON(pte_huge(*ptep));
  672. new_pfn = pte_pfn(*ptep);
  673. spte = rmap_next(kvm, rmapp, NULL);
  674. while (spte) {
  675. BUG_ON(!is_shadow_present_pte(*spte));
  676. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  677. need_flush = 1;
  678. if (pte_write(*ptep)) {
  679. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  680. spte = rmap_next(kvm, rmapp, NULL);
  681. } else {
  682. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  683. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  684. new_spte &= ~PT_WRITABLE_MASK;
  685. new_spte &= ~SPTE_HOST_WRITEABLE;
  686. new_spte &= ~shadow_accessed_mask;
  687. if (is_writable_pte(*spte))
  688. kvm_set_pfn_dirty(spte_to_pfn(*spte));
  689. old_spte = __xchg_spte(spte, new_spte);
  690. if (is_shadow_present_pte(old_spte)
  691. && (old_spte & shadow_accessed_mask))
  692. mark_page_accessed(pfn_to_page(spte_to_pfn(old_spte)));
  693. spte = rmap_next(kvm, rmapp, spte);
  694. }
  695. }
  696. if (need_flush)
  697. kvm_flush_remote_tlbs(kvm);
  698. return 0;
  699. }
  700. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  701. unsigned long data,
  702. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  703. unsigned long data))
  704. {
  705. int i, j;
  706. int ret;
  707. int retval = 0;
  708. struct kvm_memslots *slots;
  709. slots = kvm_memslots(kvm);
  710. for (i = 0; i < slots->nmemslots; i++) {
  711. struct kvm_memory_slot *memslot = &slots->memslots[i];
  712. unsigned long start = memslot->userspace_addr;
  713. unsigned long end;
  714. end = start + (memslot->npages << PAGE_SHIFT);
  715. if (hva >= start && hva < end) {
  716. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  717. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  718. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  719. int idx = gfn_offset;
  720. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  721. ret |= handler(kvm,
  722. &memslot->lpage_info[j][idx].rmap_pde,
  723. data);
  724. }
  725. trace_kvm_age_page(hva, memslot, ret);
  726. retval |= ret;
  727. }
  728. }
  729. return retval;
  730. }
  731. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  732. {
  733. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  734. }
  735. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  736. {
  737. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  738. }
  739. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  740. unsigned long data)
  741. {
  742. u64 *spte;
  743. int young = 0;
  744. /*
  745. * Emulate the accessed bit for EPT, by checking if this page has
  746. * an EPT mapping, and clearing it if it does. On the next access,
  747. * a new EPT mapping will be established.
  748. * This has some overhead, but not as much as the cost of swapping
  749. * out actively used pages or breaking up actively used hugepages.
  750. */
  751. if (!shadow_accessed_mask)
  752. return kvm_unmap_rmapp(kvm, rmapp, data);
  753. spte = rmap_next(kvm, rmapp, NULL);
  754. while (spte) {
  755. int _young;
  756. u64 _spte = *spte;
  757. BUG_ON(!(_spte & PT_PRESENT_MASK));
  758. _young = _spte & PT_ACCESSED_MASK;
  759. if (_young) {
  760. young = 1;
  761. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  762. }
  763. spte = rmap_next(kvm, rmapp, spte);
  764. }
  765. return young;
  766. }
  767. #define RMAP_RECYCLE_THRESHOLD 1000
  768. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  769. {
  770. unsigned long *rmapp;
  771. struct kvm_mmu_page *sp;
  772. sp = page_header(__pa(spte));
  773. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  774. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  775. kvm_flush_remote_tlbs(vcpu->kvm);
  776. }
  777. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  778. {
  779. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  780. }
  781. #ifdef MMU_DEBUG
  782. static int is_empty_shadow_page(u64 *spt)
  783. {
  784. u64 *pos;
  785. u64 *end;
  786. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  787. if (is_shadow_present_pte(*pos)) {
  788. printk(KERN_ERR "%s: %p %llx\n", __func__,
  789. pos, *pos);
  790. return 0;
  791. }
  792. return 1;
  793. }
  794. #endif
  795. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  796. {
  797. ASSERT(is_empty_shadow_page(sp->spt));
  798. hlist_del(&sp->hash_link);
  799. list_del(&sp->link);
  800. __free_page(virt_to_page(sp->spt));
  801. if (!sp->role.direct)
  802. __free_page(virt_to_page(sp->gfns));
  803. kmem_cache_free(mmu_page_header_cache, sp);
  804. ++kvm->arch.n_free_mmu_pages;
  805. }
  806. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  807. {
  808. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  809. }
  810. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  811. u64 *parent_pte, int direct)
  812. {
  813. struct kvm_mmu_page *sp;
  814. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  815. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  816. if (!direct)
  817. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  818. PAGE_SIZE);
  819. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  820. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  821. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  822. sp->multimapped = 0;
  823. sp->parent_pte = parent_pte;
  824. --vcpu->kvm->arch.n_free_mmu_pages;
  825. return sp;
  826. }
  827. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  828. struct kvm_mmu_page *sp, u64 *parent_pte)
  829. {
  830. struct kvm_pte_chain *pte_chain;
  831. struct hlist_node *node;
  832. int i;
  833. if (!parent_pte)
  834. return;
  835. if (!sp->multimapped) {
  836. u64 *old = sp->parent_pte;
  837. if (!old) {
  838. sp->parent_pte = parent_pte;
  839. return;
  840. }
  841. sp->multimapped = 1;
  842. pte_chain = mmu_alloc_pte_chain(vcpu);
  843. INIT_HLIST_HEAD(&sp->parent_ptes);
  844. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  845. pte_chain->parent_ptes[0] = old;
  846. }
  847. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  848. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  849. continue;
  850. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  851. if (!pte_chain->parent_ptes[i]) {
  852. pte_chain->parent_ptes[i] = parent_pte;
  853. return;
  854. }
  855. }
  856. pte_chain = mmu_alloc_pte_chain(vcpu);
  857. BUG_ON(!pte_chain);
  858. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  859. pte_chain->parent_ptes[0] = parent_pte;
  860. }
  861. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  862. u64 *parent_pte)
  863. {
  864. struct kvm_pte_chain *pte_chain;
  865. struct hlist_node *node;
  866. int i;
  867. if (!sp->multimapped) {
  868. BUG_ON(sp->parent_pte != parent_pte);
  869. sp->parent_pte = NULL;
  870. return;
  871. }
  872. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  873. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  874. if (!pte_chain->parent_ptes[i])
  875. break;
  876. if (pte_chain->parent_ptes[i] != parent_pte)
  877. continue;
  878. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  879. && pte_chain->parent_ptes[i + 1]) {
  880. pte_chain->parent_ptes[i]
  881. = pte_chain->parent_ptes[i + 1];
  882. ++i;
  883. }
  884. pte_chain->parent_ptes[i] = NULL;
  885. if (i == 0) {
  886. hlist_del(&pte_chain->link);
  887. mmu_free_pte_chain(pte_chain);
  888. if (hlist_empty(&sp->parent_ptes)) {
  889. sp->multimapped = 0;
  890. sp->parent_pte = NULL;
  891. }
  892. }
  893. return;
  894. }
  895. BUG();
  896. }
  897. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  898. {
  899. struct kvm_pte_chain *pte_chain;
  900. struct hlist_node *node;
  901. struct kvm_mmu_page *parent_sp;
  902. int i;
  903. if (!sp->multimapped && sp->parent_pte) {
  904. parent_sp = page_header(__pa(sp->parent_pte));
  905. fn(parent_sp, sp->parent_pte);
  906. return;
  907. }
  908. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  909. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  910. u64 *spte = pte_chain->parent_ptes[i];
  911. if (!spte)
  912. break;
  913. parent_sp = page_header(__pa(spte));
  914. fn(parent_sp, spte);
  915. }
  916. }
  917. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
  918. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  919. {
  920. mmu_parent_walk(sp, mark_unsync);
  921. }
  922. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
  923. {
  924. unsigned int index;
  925. index = spte - sp->spt;
  926. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  927. return;
  928. if (sp->unsync_children++)
  929. return;
  930. kvm_mmu_mark_parents_unsync(sp);
  931. }
  932. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  933. struct kvm_mmu_page *sp)
  934. {
  935. int i;
  936. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  937. sp->spt[i] = shadow_trap_nonpresent_pte;
  938. }
  939. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  940. struct kvm_mmu_page *sp, bool clear_unsync)
  941. {
  942. return 1;
  943. }
  944. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  945. {
  946. }
  947. #define KVM_PAGE_ARRAY_NR 16
  948. struct kvm_mmu_pages {
  949. struct mmu_page_and_offset {
  950. struct kvm_mmu_page *sp;
  951. unsigned int idx;
  952. } page[KVM_PAGE_ARRAY_NR];
  953. unsigned int nr;
  954. };
  955. #define for_each_unsync_children(bitmap, idx) \
  956. for (idx = find_first_bit(bitmap, 512); \
  957. idx < 512; \
  958. idx = find_next_bit(bitmap, 512, idx+1))
  959. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  960. int idx)
  961. {
  962. int i;
  963. if (sp->unsync)
  964. for (i=0; i < pvec->nr; i++)
  965. if (pvec->page[i].sp == sp)
  966. return 0;
  967. pvec->page[pvec->nr].sp = sp;
  968. pvec->page[pvec->nr].idx = idx;
  969. pvec->nr++;
  970. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  971. }
  972. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  973. struct kvm_mmu_pages *pvec)
  974. {
  975. int i, ret, nr_unsync_leaf = 0;
  976. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  977. struct kvm_mmu_page *child;
  978. u64 ent = sp->spt[i];
  979. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  980. goto clear_child_bitmap;
  981. child = page_header(ent & PT64_BASE_ADDR_MASK);
  982. if (child->unsync_children) {
  983. if (mmu_pages_add(pvec, child, i))
  984. return -ENOSPC;
  985. ret = __mmu_unsync_walk(child, pvec);
  986. if (!ret)
  987. goto clear_child_bitmap;
  988. else if (ret > 0)
  989. nr_unsync_leaf += ret;
  990. else
  991. return ret;
  992. } else if (child->unsync) {
  993. nr_unsync_leaf++;
  994. if (mmu_pages_add(pvec, child, i))
  995. return -ENOSPC;
  996. } else
  997. goto clear_child_bitmap;
  998. continue;
  999. clear_child_bitmap:
  1000. __clear_bit(i, sp->unsync_child_bitmap);
  1001. sp->unsync_children--;
  1002. WARN_ON((int)sp->unsync_children < 0);
  1003. }
  1004. return nr_unsync_leaf;
  1005. }
  1006. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1007. struct kvm_mmu_pages *pvec)
  1008. {
  1009. if (!sp->unsync_children)
  1010. return 0;
  1011. mmu_pages_add(pvec, sp, 0);
  1012. return __mmu_unsync_walk(sp, pvec);
  1013. }
  1014. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1015. {
  1016. WARN_ON(!sp->unsync);
  1017. trace_kvm_mmu_sync_page(sp);
  1018. sp->unsync = 0;
  1019. --kvm->stat.mmu_unsync;
  1020. }
  1021. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1022. struct list_head *invalid_list);
  1023. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1024. struct list_head *invalid_list);
  1025. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1026. hlist_for_each_entry(sp, pos, \
  1027. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1028. if ((sp)->gfn != (gfn)) {} else
  1029. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1030. hlist_for_each_entry(sp, pos, \
  1031. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1032. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1033. (sp)->role.invalid) {} else
  1034. /* @sp->gfn should be write-protected at the call site */
  1035. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1036. struct list_head *invalid_list, bool clear_unsync)
  1037. {
  1038. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1039. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1040. return 1;
  1041. }
  1042. if (clear_unsync)
  1043. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1044. if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
  1045. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1046. return 1;
  1047. }
  1048. kvm_mmu_flush_tlb(vcpu);
  1049. return 0;
  1050. }
  1051. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1052. struct kvm_mmu_page *sp)
  1053. {
  1054. LIST_HEAD(invalid_list);
  1055. int ret;
  1056. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1057. if (ret)
  1058. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1059. return ret;
  1060. }
  1061. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1062. struct list_head *invalid_list)
  1063. {
  1064. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1065. }
  1066. /* @gfn should be write-protected at the call site */
  1067. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1068. {
  1069. struct kvm_mmu_page *s;
  1070. struct hlist_node *node;
  1071. LIST_HEAD(invalid_list);
  1072. bool flush = false;
  1073. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1074. if (!s->unsync)
  1075. continue;
  1076. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1077. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1078. (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
  1079. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1080. continue;
  1081. }
  1082. kvm_unlink_unsync_page(vcpu->kvm, s);
  1083. flush = true;
  1084. }
  1085. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1086. if (flush)
  1087. kvm_mmu_flush_tlb(vcpu);
  1088. }
  1089. struct mmu_page_path {
  1090. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1091. unsigned int idx[PT64_ROOT_LEVEL-1];
  1092. };
  1093. #define for_each_sp(pvec, sp, parents, i) \
  1094. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1095. sp = pvec.page[i].sp; \
  1096. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1097. i = mmu_pages_next(&pvec, &parents, i))
  1098. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1099. struct mmu_page_path *parents,
  1100. int i)
  1101. {
  1102. int n;
  1103. for (n = i+1; n < pvec->nr; n++) {
  1104. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1105. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1106. parents->idx[0] = pvec->page[n].idx;
  1107. return n;
  1108. }
  1109. parents->parent[sp->role.level-2] = sp;
  1110. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1111. }
  1112. return n;
  1113. }
  1114. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1115. {
  1116. struct kvm_mmu_page *sp;
  1117. unsigned int level = 0;
  1118. do {
  1119. unsigned int idx = parents->idx[level];
  1120. sp = parents->parent[level];
  1121. if (!sp)
  1122. return;
  1123. --sp->unsync_children;
  1124. WARN_ON((int)sp->unsync_children < 0);
  1125. __clear_bit(idx, sp->unsync_child_bitmap);
  1126. level++;
  1127. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1128. }
  1129. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1130. struct mmu_page_path *parents,
  1131. struct kvm_mmu_pages *pvec)
  1132. {
  1133. parents->parent[parent->role.level-1] = NULL;
  1134. pvec->nr = 0;
  1135. }
  1136. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1137. struct kvm_mmu_page *parent)
  1138. {
  1139. int i;
  1140. struct kvm_mmu_page *sp;
  1141. struct mmu_page_path parents;
  1142. struct kvm_mmu_pages pages;
  1143. LIST_HEAD(invalid_list);
  1144. kvm_mmu_pages_init(parent, &parents, &pages);
  1145. while (mmu_unsync_walk(parent, &pages)) {
  1146. int protected = 0;
  1147. for_each_sp(pages, sp, parents, i)
  1148. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1149. if (protected)
  1150. kvm_flush_remote_tlbs(vcpu->kvm);
  1151. for_each_sp(pages, sp, parents, i) {
  1152. kvm_sync_page(vcpu, sp, &invalid_list);
  1153. mmu_pages_clear_parents(&parents);
  1154. }
  1155. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1156. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1157. kvm_mmu_pages_init(parent, &parents, &pages);
  1158. }
  1159. }
  1160. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1161. gfn_t gfn,
  1162. gva_t gaddr,
  1163. unsigned level,
  1164. int direct,
  1165. unsigned access,
  1166. u64 *parent_pte)
  1167. {
  1168. union kvm_mmu_page_role role;
  1169. unsigned quadrant;
  1170. struct kvm_mmu_page *sp;
  1171. struct hlist_node *node;
  1172. bool need_sync = false;
  1173. role = vcpu->arch.mmu.base_role;
  1174. role.level = level;
  1175. role.direct = direct;
  1176. if (role.direct)
  1177. role.cr4_pae = 0;
  1178. role.access = access;
  1179. if (!tdp_enabled && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1180. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1181. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1182. role.quadrant = quadrant;
  1183. }
  1184. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1185. if (!need_sync && sp->unsync)
  1186. need_sync = true;
  1187. if (sp->role.word != role.word)
  1188. continue;
  1189. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1190. break;
  1191. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1192. if (sp->unsync_children) {
  1193. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1194. kvm_mmu_mark_parents_unsync(sp);
  1195. } else if (sp->unsync)
  1196. kvm_mmu_mark_parents_unsync(sp);
  1197. trace_kvm_mmu_get_page(sp, false);
  1198. return sp;
  1199. }
  1200. ++vcpu->kvm->stat.mmu_cache_miss;
  1201. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1202. if (!sp)
  1203. return sp;
  1204. sp->gfn = gfn;
  1205. sp->role = role;
  1206. hlist_add_head(&sp->hash_link,
  1207. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1208. if (!direct) {
  1209. if (rmap_write_protect(vcpu->kvm, gfn))
  1210. kvm_flush_remote_tlbs(vcpu->kvm);
  1211. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1212. kvm_sync_pages(vcpu, gfn);
  1213. account_shadowed(vcpu->kvm, gfn);
  1214. }
  1215. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1216. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1217. else
  1218. nonpaging_prefetch_page(vcpu, sp);
  1219. trace_kvm_mmu_get_page(sp, true);
  1220. return sp;
  1221. }
  1222. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1223. struct kvm_vcpu *vcpu, u64 addr)
  1224. {
  1225. iterator->addr = addr;
  1226. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1227. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1228. if (iterator->level == PT32E_ROOT_LEVEL) {
  1229. iterator->shadow_addr
  1230. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1231. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1232. --iterator->level;
  1233. if (!iterator->shadow_addr)
  1234. iterator->level = 0;
  1235. }
  1236. }
  1237. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1238. {
  1239. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1240. return false;
  1241. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1242. if (is_large_pte(*iterator->sptep))
  1243. return false;
  1244. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1245. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1246. return true;
  1247. }
  1248. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1249. {
  1250. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1251. --iterator->level;
  1252. }
  1253. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1254. {
  1255. u64 spte;
  1256. spte = __pa(sp->spt)
  1257. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1258. | PT_WRITABLE_MASK | PT_USER_MASK;
  1259. __set_spte(sptep, spte);
  1260. }
  1261. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  1262. {
  1263. if (is_large_pte(*sptep)) {
  1264. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1265. kvm_flush_remote_tlbs(vcpu->kvm);
  1266. }
  1267. }
  1268. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1269. struct kvm_mmu_page *sp)
  1270. {
  1271. unsigned i;
  1272. u64 *pt;
  1273. u64 ent;
  1274. pt = sp->spt;
  1275. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1276. ent = pt[i];
  1277. if (is_shadow_present_pte(ent)) {
  1278. if (!is_last_spte(ent, sp->role.level)) {
  1279. ent &= PT64_BASE_ADDR_MASK;
  1280. mmu_page_remove_parent_pte(page_header(ent),
  1281. &pt[i]);
  1282. } else {
  1283. if (is_large_pte(ent))
  1284. --kvm->stat.lpages;
  1285. drop_spte(kvm, &pt[i],
  1286. shadow_trap_nonpresent_pte);
  1287. }
  1288. }
  1289. pt[i] = shadow_trap_nonpresent_pte;
  1290. }
  1291. }
  1292. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1293. {
  1294. mmu_page_remove_parent_pte(sp, parent_pte);
  1295. }
  1296. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1297. {
  1298. int i;
  1299. struct kvm_vcpu *vcpu;
  1300. kvm_for_each_vcpu(i, vcpu, kvm)
  1301. vcpu->arch.last_pte_updated = NULL;
  1302. }
  1303. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1304. {
  1305. u64 *parent_pte;
  1306. while (sp->multimapped || sp->parent_pte) {
  1307. if (!sp->multimapped)
  1308. parent_pte = sp->parent_pte;
  1309. else {
  1310. struct kvm_pte_chain *chain;
  1311. chain = container_of(sp->parent_ptes.first,
  1312. struct kvm_pte_chain, link);
  1313. parent_pte = chain->parent_ptes[0];
  1314. }
  1315. BUG_ON(!parent_pte);
  1316. kvm_mmu_put_page(sp, parent_pte);
  1317. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1318. }
  1319. }
  1320. static int mmu_zap_unsync_children(struct kvm *kvm,
  1321. struct kvm_mmu_page *parent,
  1322. struct list_head *invalid_list)
  1323. {
  1324. int i, zapped = 0;
  1325. struct mmu_page_path parents;
  1326. struct kvm_mmu_pages pages;
  1327. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1328. return 0;
  1329. kvm_mmu_pages_init(parent, &parents, &pages);
  1330. while (mmu_unsync_walk(parent, &pages)) {
  1331. struct kvm_mmu_page *sp;
  1332. for_each_sp(pages, sp, parents, i) {
  1333. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1334. mmu_pages_clear_parents(&parents);
  1335. zapped++;
  1336. }
  1337. kvm_mmu_pages_init(parent, &parents, &pages);
  1338. }
  1339. return zapped;
  1340. }
  1341. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1342. struct list_head *invalid_list)
  1343. {
  1344. int ret;
  1345. trace_kvm_mmu_prepare_zap_page(sp);
  1346. ++kvm->stat.mmu_shadow_zapped;
  1347. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1348. kvm_mmu_page_unlink_children(kvm, sp);
  1349. kvm_mmu_unlink_parents(kvm, sp);
  1350. if (!sp->role.invalid && !sp->role.direct)
  1351. unaccount_shadowed(kvm, sp->gfn);
  1352. if (sp->unsync)
  1353. kvm_unlink_unsync_page(kvm, sp);
  1354. if (!sp->root_count) {
  1355. /* Count self */
  1356. ret++;
  1357. list_move(&sp->link, invalid_list);
  1358. } else {
  1359. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1360. kvm_reload_remote_mmus(kvm);
  1361. }
  1362. sp->role.invalid = 1;
  1363. kvm_mmu_reset_last_pte_updated(kvm);
  1364. return ret;
  1365. }
  1366. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1367. struct list_head *invalid_list)
  1368. {
  1369. struct kvm_mmu_page *sp;
  1370. if (list_empty(invalid_list))
  1371. return;
  1372. kvm_flush_remote_tlbs(kvm);
  1373. do {
  1374. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1375. WARN_ON(!sp->role.invalid || sp->root_count);
  1376. kvm_mmu_free_page(kvm, sp);
  1377. } while (!list_empty(invalid_list));
  1378. }
  1379. /*
  1380. * Changing the number of mmu pages allocated to the vm
  1381. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1382. */
  1383. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1384. {
  1385. int used_pages;
  1386. LIST_HEAD(invalid_list);
  1387. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1388. used_pages = max(0, used_pages);
  1389. /*
  1390. * If we set the number of mmu pages to be smaller be than the
  1391. * number of actived pages , we must to free some mmu pages before we
  1392. * change the value
  1393. */
  1394. if (used_pages > kvm_nr_mmu_pages) {
  1395. while (used_pages > kvm_nr_mmu_pages &&
  1396. !list_empty(&kvm->arch.active_mmu_pages)) {
  1397. struct kvm_mmu_page *page;
  1398. page = container_of(kvm->arch.active_mmu_pages.prev,
  1399. struct kvm_mmu_page, link);
  1400. used_pages -= kvm_mmu_prepare_zap_page(kvm, page,
  1401. &invalid_list);
  1402. }
  1403. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1404. kvm_nr_mmu_pages = used_pages;
  1405. kvm->arch.n_free_mmu_pages = 0;
  1406. }
  1407. else
  1408. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1409. - kvm->arch.n_alloc_mmu_pages;
  1410. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1411. }
  1412. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1413. {
  1414. struct kvm_mmu_page *sp;
  1415. struct hlist_node *node;
  1416. LIST_HEAD(invalid_list);
  1417. int r;
  1418. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1419. r = 0;
  1420. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1421. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1422. sp->role.word);
  1423. r = 1;
  1424. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1425. }
  1426. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1427. return r;
  1428. }
  1429. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1430. {
  1431. struct kvm_mmu_page *sp;
  1432. struct hlist_node *node;
  1433. LIST_HEAD(invalid_list);
  1434. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1435. pgprintk("%s: zap %lx %x\n",
  1436. __func__, gfn, sp->role.word);
  1437. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1438. }
  1439. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1440. }
  1441. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1442. {
  1443. int slot = memslot_id(kvm, gfn);
  1444. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1445. __set_bit(slot, sp->slot_bitmap);
  1446. }
  1447. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1448. {
  1449. int i;
  1450. u64 *pt = sp->spt;
  1451. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1452. return;
  1453. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1454. if (pt[i] == shadow_notrap_nonpresent_pte)
  1455. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1456. }
  1457. }
  1458. /*
  1459. * The function is based on mtrr_type_lookup() in
  1460. * arch/x86/kernel/cpu/mtrr/generic.c
  1461. */
  1462. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1463. u64 start, u64 end)
  1464. {
  1465. int i;
  1466. u64 base, mask;
  1467. u8 prev_match, curr_match;
  1468. int num_var_ranges = KVM_NR_VAR_MTRR;
  1469. if (!mtrr_state->enabled)
  1470. return 0xFF;
  1471. /* Make end inclusive end, instead of exclusive */
  1472. end--;
  1473. /* Look in fixed ranges. Just return the type as per start */
  1474. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1475. int idx;
  1476. if (start < 0x80000) {
  1477. idx = 0;
  1478. idx += (start >> 16);
  1479. return mtrr_state->fixed_ranges[idx];
  1480. } else if (start < 0xC0000) {
  1481. idx = 1 * 8;
  1482. idx += ((start - 0x80000) >> 14);
  1483. return mtrr_state->fixed_ranges[idx];
  1484. } else if (start < 0x1000000) {
  1485. idx = 3 * 8;
  1486. idx += ((start - 0xC0000) >> 12);
  1487. return mtrr_state->fixed_ranges[idx];
  1488. }
  1489. }
  1490. /*
  1491. * Look in variable ranges
  1492. * Look of multiple ranges matching this address and pick type
  1493. * as per MTRR precedence
  1494. */
  1495. if (!(mtrr_state->enabled & 2))
  1496. return mtrr_state->def_type;
  1497. prev_match = 0xFF;
  1498. for (i = 0; i < num_var_ranges; ++i) {
  1499. unsigned short start_state, end_state;
  1500. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1501. continue;
  1502. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1503. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1504. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1505. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1506. start_state = ((start & mask) == (base & mask));
  1507. end_state = ((end & mask) == (base & mask));
  1508. if (start_state != end_state)
  1509. return 0xFE;
  1510. if ((start & mask) != (base & mask))
  1511. continue;
  1512. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1513. if (prev_match == 0xFF) {
  1514. prev_match = curr_match;
  1515. continue;
  1516. }
  1517. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1518. curr_match == MTRR_TYPE_UNCACHABLE)
  1519. return MTRR_TYPE_UNCACHABLE;
  1520. if ((prev_match == MTRR_TYPE_WRBACK &&
  1521. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1522. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1523. curr_match == MTRR_TYPE_WRBACK)) {
  1524. prev_match = MTRR_TYPE_WRTHROUGH;
  1525. curr_match = MTRR_TYPE_WRTHROUGH;
  1526. }
  1527. if (prev_match != curr_match)
  1528. return MTRR_TYPE_UNCACHABLE;
  1529. }
  1530. if (prev_match != 0xFF)
  1531. return prev_match;
  1532. return mtrr_state->def_type;
  1533. }
  1534. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1535. {
  1536. u8 mtrr;
  1537. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1538. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1539. if (mtrr == 0xfe || mtrr == 0xff)
  1540. mtrr = MTRR_TYPE_WRBACK;
  1541. return mtrr;
  1542. }
  1543. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1544. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1545. {
  1546. trace_kvm_mmu_unsync_page(sp);
  1547. ++vcpu->kvm->stat.mmu_unsync;
  1548. sp->unsync = 1;
  1549. kvm_mmu_mark_parents_unsync(sp);
  1550. mmu_convert_notrap(sp);
  1551. }
  1552. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1553. {
  1554. struct kvm_mmu_page *s;
  1555. struct hlist_node *node;
  1556. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1557. if (s->unsync)
  1558. continue;
  1559. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1560. __kvm_unsync_page(vcpu, s);
  1561. }
  1562. }
  1563. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1564. bool can_unsync)
  1565. {
  1566. struct kvm_mmu_page *s;
  1567. struct hlist_node *node;
  1568. bool need_unsync = false;
  1569. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1570. if (!can_unsync)
  1571. return 1;
  1572. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1573. return 1;
  1574. if (!need_unsync && !s->unsync) {
  1575. if (!oos_shadow)
  1576. return 1;
  1577. need_unsync = true;
  1578. }
  1579. }
  1580. if (need_unsync)
  1581. kvm_unsync_pages(vcpu, gfn);
  1582. return 0;
  1583. }
  1584. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1585. unsigned pte_access, int user_fault,
  1586. int write_fault, int dirty, int level,
  1587. gfn_t gfn, pfn_t pfn, bool speculative,
  1588. bool can_unsync, bool reset_host_protection)
  1589. {
  1590. u64 spte;
  1591. int ret = 0;
  1592. /*
  1593. * We don't set the accessed bit, since we sometimes want to see
  1594. * whether the guest actually used the pte (in order to detect
  1595. * demand paging).
  1596. */
  1597. spte = shadow_base_present_pte | shadow_dirty_mask;
  1598. if (!speculative)
  1599. spte |= shadow_accessed_mask;
  1600. if (!dirty)
  1601. pte_access &= ~ACC_WRITE_MASK;
  1602. if (pte_access & ACC_EXEC_MASK)
  1603. spte |= shadow_x_mask;
  1604. else
  1605. spte |= shadow_nx_mask;
  1606. if (pte_access & ACC_USER_MASK)
  1607. spte |= shadow_user_mask;
  1608. if (level > PT_PAGE_TABLE_LEVEL)
  1609. spte |= PT_PAGE_SIZE_MASK;
  1610. if (tdp_enabled)
  1611. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1612. kvm_is_mmio_pfn(pfn));
  1613. if (reset_host_protection)
  1614. spte |= SPTE_HOST_WRITEABLE;
  1615. spte |= (u64)pfn << PAGE_SHIFT;
  1616. if ((pte_access & ACC_WRITE_MASK)
  1617. || (!tdp_enabled && write_fault && !is_write_protection(vcpu)
  1618. && !user_fault)) {
  1619. if (level > PT_PAGE_TABLE_LEVEL &&
  1620. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1621. ret = 1;
  1622. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1623. goto done;
  1624. }
  1625. spte |= PT_WRITABLE_MASK;
  1626. if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
  1627. spte &= ~PT_USER_MASK;
  1628. /*
  1629. * Optimization: for pte sync, if spte was writable the hash
  1630. * lookup is unnecessary (and expensive). Write protection
  1631. * is responsibility of mmu_get_page / kvm_sync_page.
  1632. * Same reasoning can be applied to dirty page accounting.
  1633. */
  1634. if (!can_unsync && is_writable_pte(*sptep))
  1635. goto set_pte;
  1636. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1637. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1638. __func__, gfn);
  1639. ret = 1;
  1640. pte_access &= ~ACC_WRITE_MASK;
  1641. if (is_writable_pte(spte))
  1642. spte &= ~PT_WRITABLE_MASK;
  1643. }
  1644. }
  1645. if (pte_access & ACC_WRITE_MASK)
  1646. mark_page_dirty(vcpu->kvm, gfn);
  1647. set_pte:
  1648. update_spte(sptep, spte);
  1649. done:
  1650. return ret;
  1651. }
  1652. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1653. unsigned pt_access, unsigned pte_access,
  1654. int user_fault, int write_fault, int dirty,
  1655. int *ptwrite, int level, gfn_t gfn,
  1656. pfn_t pfn, bool speculative,
  1657. bool reset_host_protection)
  1658. {
  1659. int was_rmapped = 0;
  1660. int was_writable = is_writable_pte(*sptep);
  1661. int rmap_count;
  1662. pgprintk("%s: spte %llx access %x write_fault %d"
  1663. " user_fault %d gfn %lx\n",
  1664. __func__, *sptep, pt_access,
  1665. write_fault, user_fault, gfn);
  1666. if (is_rmap_spte(*sptep)) {
  1667. /*
  1668. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1669. * the parent of the now unreachable PTE.
  1670. */
  1671. if (level > PT_PAGE_TABLE_LEVEL &&
  1672. !is_large_pte(*sptep)) {
  1673. struct kvm_mmu_page *child;
  1674. u64 pte = *sptep;
  1675. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1676. mmu_page_remove_parent_pte(child, sptep);
  1677. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1678. kvm_flush_remote_tlbs(vcpu->kvm);
  1679. } else if (pfn != spte_to_pfn(*sptep)) {
  1680. pgprintk("hfn old %lx new %lx\n",
  1681. spte_to_pfn(*sptep), pfn);
  1682. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1683. kvm_flush_remote_tlbs(vcpu->kvm);
  1684. } else
  1685. was_rmapped = 1;
  1686. }
  1687. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1688. dirty, level, gfn, pfn, speculative, true,
  1689. reset_host_protection)) {
  1690. if (write_fault)
  1691. *ptwrite = 1;
  1692. kvm_mmu_flush_tlb(vcpu);
  1693. }
  1694. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1695. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1696. is_large_pte(*sptep)? "2MB" : "4kB",
  1697. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1698. *sptep, sptep);
  1699. if (!was_rmapped && is_large_pte(*sptep))
  1700. ++vcpu->kvm->stat.lpages;
  1701. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1702. if (!was_rmapped) {
  1703. rmap_count = rmap_add(vcpu, sptep, gfn);
  1704. kvm_release_pfn_clean(pfn);
  1705. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1706. rmap_recycle(vcpu, sptep, gfn);
  1707. } else {
  1708. if (was_writable)
  1709. kvm_release_pfn_dirty(pfn);
  1710. else
  1711. kvm_release_pfn_clean(pfn);
  1712. }
  1713. if (speculative) {
  1714. vcpu->arch.last_pte_updated = sptep;
  1715. vcpu->arch.last_pte_gfn = gfn;
  1716. }
  1717. }
  1718. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1719. {
  1720. }
  1721. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1722. int level, gfn_t gfn, pfn_t pfn)
  1723. {
  1724. struct kvm_shadow_walk_iterator iterator;
  1725. struct kvm_mmu_page *sp;
  1726. int pt_write = 0;
  1727. gfn_t pseudo_gfn;
  1728. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1729. if (iterator.level == level) {
  1730. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1731. 0, write, 1, &pt_write,
  1732. level, gfn, pfn, false, true);
  1733. ++vcpu->stat.pf_fixed;
  1734. break;
  1735. }
  1736. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1737. u64 base_addr = iterator.addr;
  1738. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  1739. pseudo_gfn = base_addr >> PAGE_SHIFT;
  1740. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1741. iterator.level - 1,
  1742. 1, ACC_ALL, iterator.sptep);
  1743. if (!sp) {
  1744. pgprintk("nonpaging_map: ENOMEM\n");
  1745. kvm_release_pfn_clean(pfn);
  1746. return -ENOMEM;
  1747. }
  1748. __set_spte(iterator.sptep,
  1749. __pa(sp->spt)
  1750. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1751. | shadow_user_mask | shadow_x_mask);
  1752. }
  1753. }
  1754. return pt_write;
  1755. }
  1756. static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
  1757. {
  1758. char buf[1];
  1759. void __user *hva;
  1760. int r;
  1761. /* Touch the page, so send SIGBUS */
  1762. hva = (void __user *)gfn_to_hva(kvm, gfn);
  1763. r = copy_from_user(buf, hva, 1);
  1764. }
  1765. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1766. {
  1767. kvm_release_pfn_clean(pfn);
  1768. if (is_hwpoison_pfn(pfn)) {
  1769. kvm_send_hwpoison_signal(kvm, gfn);
  1770. return 0;
  1771. } else if (is_fault_pfn(pfn))
  1772. return -EFAULT;
  1773. return 1;
  1774. }
  1775. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1776. {
  1777. int r;
  1778. int level;
  1779. pfn_t pfn;
  1780. unsigned long mmu_seq;
  1781. level = mapping_level(vcpu, gfn);
  1782. /*
  1783. * This path builds a PAE pagetable - so we can map 2mb pages at
  1784. * maximum. Therefore check if the level is larger than that.
  1785. */
  1786. if (level > PT_DIRECTORY_LEVEL)
  1787. level = PT_DIRECTORY_LEVEL;
  1788. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1789. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1790. smp_rmb();
  1791. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1792. /* mmio */
  1793. if (is_error_pfn(pfn))
  1794. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1795. spin_lock(&vcpu->kvm->mmu_lock);
  1796. if (mmu_notifier_retry(vcpu, mmu_seq))
  1797. goto out_unlock;
  1798. kvm_mmu_free_some_pages(vcpu);
  1799. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1800. spin_unlock(&vcpu->kvm->mmu_lock);
  1801. return r;
  1802. out_unlock:
  1803. spin_unlock(&vcpu->kvm->mmu_lock);
  1804. kvm_release_pfn_clean(pfn);
  1805. return 0;
  1806. }
  1807. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1808. {
  1809. int i;
  1810. struct kvm_mmu_page *sp;
  1811. LIST_HEAD(invalid_list);
  1812. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1813. return;
  1814. spin_lock(&vcpu->kvm->mmu_lock);
  1815. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1816. hpa_t root = vcpu->arch.mmu.root_hpa;
  1817. sp = page_header(root);
  1818. --sp->root_count;
  1819. if (!sp->root_count && sp->role.invalid) {
  1820. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  1821. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1822. }
  1823. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1824. spin_unlock(&vcpu->kvm->mmu_lock);
  1825. return;
  1826. }
  1827. for (i = 0; i < 4; ++i) {
  1828. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1829. if (root) {
  1830. root &= PT64_BASE_ADDR_MASK;
  1831. sp = page_header(root);
  1832. --sp->root_count;
  1833. if (!sp->root_count && sp->role.invalid)
  1834. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  1835. &invalid_list);
  1836. }
  1837. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1838. }
  1839. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1840. spin_unlock(&vcpu->kvm->mmu_lock);
  1841. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1842. }
  1843. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1844. {
  1845. int ret = 0;
  1846. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1847. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1848. ret = 1;
  1849. }
  1850. return ret;
  1851. }
  1852. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1853. {
  1854. int i;
  1855. gfn_t root_gfn;
  1856. struct kvm_mmu_page *sp;
  1857. int direct = 0;
  1858. u64 pdptr;
  1859. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1860. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1861. hpa_t root = vcpu->arch.mmu.root_hpa;
  1862. ASSERT(!VALID_PAGE(root));
  1863. if (mmu_check_root(vcpu, root_gfn))
  1864. return 1;
  1865. if (tdp_enabled) {
  1866. direct = 1;
  1867. root_gfn = 0;
  1868. }
  1869. spin_lock(&vcpu->kvm->mmu_lock);
  1870. kvm_mmu_free_some_pages(vcpu);
  1871. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1872. PT64_ROOT_LEVEL, direct,
  1873. ACC_ALL, NULL);
  1874. root = __pa(sp->spt);
  1875. ++sp->root_count;
  1876. spin_unlock(&vcpu->kvm->mmu_lock);
  1877. vcpu->arch.mmu.root_hpa = root;
  1878. return 0;
  1879. }
  1880. direct = !is_paging(vcpu);
  1881. for (i = 0; i < 4; ++i) {
  1882. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1883. ASSERT(!VALID_PAGE(root));
  1884. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1885. pdptr = kvm_pdptr_read(vcpu, i);
  1886. if (!is_present_gpte(pdptr)) {
  1887. vcpu->arch.mmu.pae_root[i] = 0;
  1888. continue;
  1889. }
  1890. root_gfn = pdptr >> PAGE_SHIFT;
  1891. } else if (vcpu->arch.mmu.root_level == 0)
  1892. root_gfn = 0;
  1893. if (mmu_check_root(vcpu, root_gfn))
  1894. return 1;
  1895. if (tdp_enabled) {
  1896. direct = 1;
  1897. root_gfn = i << 30;
  1898. }
  1899. spin_lock(&vcpu->kvm->mmu_lock);
  1900. kvm_mmu_free_some_pages(vcpu);
  1901. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1902. PT32_ROOT_LEVEL, direct,
  1903. ACC_ALL, NULL);
  1904. root = __pa(sp->spt);
  1905. ++sp->root_count;
  1906. spin_unlock(&vcpu->kvm->mmu_lock);
  1907. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1908. }
  1909. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1910. return 0;
  1911. }
  1912. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1913. {
  1914. int i;
  1915. struct kvm_mmu_page *sp;
  1916. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1917. return;
  1918. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1919. hpa_t root = vcpu->arch.mmu.root_hpa;
  1920. sp = page_header(root);
  1921. mmu_sync_children(vcpu, sp);
  1922. return;
  1923. }
  1924. for (i = 0; i < 4; ++i) {
  1925. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1926. if (root && VALID_PAGE(root)) {
  1927. root &= PT64_BASE_ADDR_MASK;
  1928. sp = page_header(root);
  1929. mmu_sync_children(vcpu, sp);
  1930. }
  1931. }
  1932. }
  1933. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1934. {
  1935. spin_lock(&vcpu->kvm->mmu_lock);
  1936. mmu_sync_roots(vcpu);
  1937. spin_unlock(&vcpu->kvm->mmu_lock);
  1938. }
  1939. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1940. u32 access, u32 *error)
  1941. {
  1942. if (error)
  1943. *error = 0;
  1944. return vaddr;
  1945. }
  1946. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1947. u32 error_code)
  1948. {
  1949. gfn_t gfn;
  1950. int r;
  1951. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1952. r = mmu_topup_memory_caches(vcpu);
  1953. if (r)
  1954. return r;
  1955. ASSERT(vcpu);
  1956. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1957. gfn = gva >> PAGE_SHIFT;
  1958. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1959. error_code & PFERR_WRITE_MASK, gfn);
  1960. }
  1961. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1962. u32 error_code)
  1963. {
  1964. pfn_t pfn;
  1965. int r;
  1966. int level;
  1967. gfn_t gfn = gpa >> PAGE_SHIFT;
  1968. unsigned long mmu_seq;
  1969. ASSERT(vcpu);
  1970. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1971. r = mmu_topup_memory_caches(vcpu);
  1972. if (r)
  1973. return r;
  1974. level = mapping_level(vcpu, gfn);
  1975. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1976. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1977. smp_rmb();
  1978. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1979. if (is_error_pfn(pfn))
  1980. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1981. spin_lock(&vcpu->kvm->mmu_lock);
  1982. if (mmu_notifier_retry(vcpu, mmu_seq))
  1983. goto out_unlock;
  1984. kvm_mmu_free_some_pages(vcpu);
  1985. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1986. level, gfn, pfn);
  1987. spin_unlock(&vcpu->kvm->mmu_lock);
  1988. return r;
  1989. out_unlock:
  1990. spin_unlock(&vcpu->kvm->mmu_lock);
  1991. kvm_release_pfn_clean(pfn);
  1992. return 0;
  1993. }
  1994. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1995. {
  1996. mmu_free_roots(vcpu);
  1997. }
  1998. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1999. {
  2000. struct kvm_mmu *context = &vcpu->arch.mmu;
  2001. context->new_cr3 = nonpaging_new_cr3;
  2002. context->page_fault = nonpaging_page_fault;
  2003. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2004. context->free = nonpaging_free;
  2005. context->prefetch_page = nonpaging_prefetch_page;
  2006. context->sync_page = nonpaging_sync_page;
  2007. context->invlpg = nonpaging_invlpg;
  2008. context->root_level = 0;
  2009. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2010. context->root_hpa = INVALID_PAGE;
  2011. return 0;
  2012. }
  2013. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2014. {
  2015. ++vcpu->stat.tlb_flush;
  2016. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2017. }
  2018. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2019. {
  2020. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  2021. mmu_free_roots(vcpu);
  2022. }
  2023. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2024. u64 addr,
  2025. u32 err_code)
  2026. {
  2027. kvm_inject_page_fault(vcpu, addr, err_code);
  2028. }
  2029. static void paging_free(struct kvm_vcpu *vcpu)
  2030. {
  2031. nonpaging_free(vcpu);
  2032. }
  2033. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  2034. {
  2035. int bit7;
  2036. bit7 = (gpte >> 7) & 1;
  2037. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  2038. }
  2039. #define PTTYPE 64
  2040. #include "paging_tmpl.h"
  2041. #undef PTTYPE
  2042. #define PTTYPE 32
  2043. #include "paging_tmpl.h"
  2044. #undef PTTYPE
  2045. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  2046. {
  2047. struct kvm_mmu *context = &vcpu->arch.mmu;
  2048. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2049. u64 exb_bit_rsvd = 0;
  2050. if (!is_nx(vcpu))
  2051. exb_bit_rsvd = rsvd_bits(63, 63);
  2052. switch (level) {
  2053. case PT32_ROOT_LEVEL:
  2054. /* no rsvd bits for 2 level 4K page table entries */
  2055. context->rsvd_bits_mask[0][1] = 0;
  2056. context->rsvd_bits_mask[0][0] = 0;
  2057. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2058. if (!is_pse(vcpu)) {
  2059. context->rsvd_bits_mask[1][1] = 0;
  2060. break;
  2061. }
  2062. if (is_cpuid_PSE36())
  2063. /* 36bits PSE 4MB page */
  2064. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2065. else
  2066. /* 32 bits PSE 4MB page */
  2067. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2068. break;
  2069. case PT32E_ROOT_LEVEL:
  2070. context->rsvd_bits_mask[0][2] =
  2071. rsvd_bits(maxphyaddr, 63) |
  2072. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2073. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2074. rsvd_bits(maxphyaddr, 62); /* PDE */
  2075. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2076. rsvd_bits(maxphyaddr, 62); /* PTE */
  2077. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2078. rsvd_bits(maxphyaddr, 62) |
  2079. rsvd_bits(13, 20); /* large page */
  2080. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2081. break;
  2082. case PT64_ROOT_LEVEL:
  2083. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2084. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2085. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2086. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2087. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2088. rsvd_bits(maxphyaddr, 51);
  2089. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2090. rsvd_bits(maxphyaddr, 51);
  2091. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2092. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2093. rsvd_bits(maxphyaddr, 51) |
  2094. rsvd_bits(13, 29);
  2095. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2096. rsvd_bits(maxphyaddr, 51) |
  2097. rsvd_bits(13, 20); /* large page */
  2098. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2099. break;
  2100. }
  2101. }
  2102. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  2103. {
  2104. struct kvm_mmu *context = &vcpu->arch.mmu;
  2105. ASSERT(is_pae(vcpu));
  2106. context->new_cr3 = paging_new_cr3;
  2107. context->page_fault = paging64_page_fault;
  2108. context->gva_to_gpa = paging64_gva_to_gpa;
  2109. context->prefetch_page = paging64_prefetch_page;
  2110. context->sync_page = paging64_sync_page;
  2111. context->invlpg = paging64_invlpg;
  2112. context->free = paging_free;
  2113. context->root_level = level;
  2114. context->shadow_root_level = level;
  2115. context->root_hpa = INVALID_PAGE;
  2116. return 0;
  2117. }
  2118. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2119. {
  2120. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2121. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2122. }
  2123. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2124. {
  2125. struct kvm_mmu *context = &vcpu->arch.mmu;
  2126. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2127. context->new_cr3 = paging_new_cr3;
  2128. context->page_fault = paging32_page_fault;
  2129. context->gva_to_gpa = paging32_gva_to_gpa;
  2130. context->free = paging_free;
  2131. context->prefetch_page = paging32_prefetch_page;
  2132. context->sync_page = paging32_sync_page;
  2133. context->invlpg = paging32_invlpg;
  2134. context->root_level = PT32_ROOT_LEVEL;
  2135. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2136. context->root_hpa = INVALID_PAGE;
  2137. return 0;
  2138. }
  2139. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2140. {
  2141. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2142. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2143. }
  2144. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2145. {
  2146. struct kvm_mmu *context = &vcpu->arch.mmu;
  2147. context->new_cr3 = nonpaging_new_cr3;
  2148. context->page_fault = tdp_page_fault;
  2149. context->free = nonpaging_free;
  2150. context->prefetch_page = nonpaging_prefetch_page;
  2151. context->sync_page = nonpaging_sync_page;
  2152. context->invlpg = nonpaging_invlpg;
  2153. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2154. context->root_hpa = INVALID_PAGE;
  2155. if (!is_paging(vcpu)) {
  2156. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2157. context->root_level = 0;
  2158. } else if (is_long_mode(vcpu)) {
  2159. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2160. context->gva_to_gpa = paging64_gva_to_gpa;
  2161. context->root_level = PT64_ROOT_LEVEL;
  2162. } else if (is_pae(vcpu)) {
  2163. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2164. context->gva_to_gpa = paging64_gva_to_gpa;
  2165. context->root_level = PT32E_ROOT_LEVEL;
  2166. } else {
  2167. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2168. context->gva_to_gpa = paging32_gva_to_gpa;
  2169. context->root_level = PT32_ROOT_LEVEL;
  2170. }
  2171. return 0;
  2172. }
  2173. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2174. {
  2175. int r;
  2176. ASSERT(vcpu);
  2177. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2178. if (!is_paging(vcpu))
  2179. r = nonpaging_init_context(vcpu);
  2180. else if (is_long_mode(vcpu))
  2181. r = paging64_init_context(vcpu);
  2182. else if (is_pae(vcpu))
  2183. r = paging32E_init_context(vcpu);
  2184. else
  2185. r = paging32_init_context(vcpu);
  2186. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2187. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2188. return r;
  2189. }
  2190. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2191. {
  2192. vcpu->arch.update_pte.pfn = bad_pfn;
  2193. if (tdp_enabled)
  2194. return init_kvm_tdp_mmu(vcpu);
  2195. else
  2196. return init_kvm_softmmu(vcpu);
  2197. }
  2198. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2199. {
  2200. ASSERT(vcpu);
  2201. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2202. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2203. vcpu->arch.mmu.free(vcpu);
  2204. }
  2205. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2206. {
  2207. destroy_kvm_mmu(vcpu);
  2208. return init_kvm_mmu(vcpu);
  2209. }
  2210. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2211. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2212. {
  2213. int r;
  2214. r = mmu_topup_memory_caches(vcpu);
  2215. if (r)
  2216. goto out;
  2217. r = mmu_alloc_roots(vcpu);
  2218. spin_lock(&vcpu->kvm->mmu_lock);
  2219. mmu_sync_roots(vcpu);
  2220. spin_unlock(&vcpu->kvm->mmu_lock);
  2221. if (r)
  2222. goto out;
  2223. /* set_cr3() should ensure TLB has been flushed */
  2224. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2225. out:
  2226. return r;
  2227. }
  2228. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2229. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2230. {
  2231. mmu_free_roots(vcpu);
  2232. }
  2233. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2234. struct kvm_mmu_page *sp,
  2235. u64 *spte)
  2236. {
  2237. u64 pte;
  2238. struct kvm_mmu_page *child;
  2239. pte = *spte;
  2240. if (is_shadow_present_pte(pte)) {
  2241. if (is_last_spte(pte, sp->role.level))
  2242. drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
  2243. else {
  2244. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2245. mmu_page_remove_parent_pte(child, spte);
  2246. }
  2247. }
  2248. __set_spte(spte, shadow_trap_nonpresent_pte);
  2249. if (is_large_pte(pte))
  2250. --vcpu->kvm->stat.lpages;
  2251. }
  2252. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2253. struct kvm_mmu_page *sp,
  2254. u64 *spte,
  2255. const void *new)
  2256. {
  2257. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2258. ++vcpu->kvm->stat.mmu_pde_zapped;
  2259. return;
  2260. }
  2261. ++vcpu->kvm->stat.mmu_pte_updated;
  2262. if (!sp->role.cr4_pae)
  2263. paging32_update_pte(vcpu, sp, spte, new);
  2264. else
  2265. paging64_update_pte(vcpu, sp, spte, new);
  2266. }
  2267. static bool need_remote_flush(u64 old, u64 new)
  2268. {
  2269. if (!is_shadow_present_pte(old))
  2270. return false;
  2271. if (!is_shadow_present_pte(new))
  2272. return true;
  2273. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2274. return true;
  2275. old ^= PT64_NX_MASK;
  2276. new ^= PT64_NX_MASK;
  2277. return (old & ~new & PT64_PERM_MASK) != 0;
  2278. }
  2279. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2280. bool remote_flush, bool local_flush)
  2281. {
  2282. if (zap_page)
  2283. return;
  2284. if (remote_flush)
  2285. kvm_flush_remote_tlbs(vcpu->kvm);
  2286. else if (local_flush)
  2287. kvm_mmu_flush_tlb(vcpu);
  2288. }
  2289. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2290. {
  2291. u64 *spte = vcpu->arch.last_pte_updated;
  2292. return !!(spte && (*spte & shadow_accessed_mask));
  2293. }
  2294. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2295. u64 gpte)
  2296. {
  2297. gfn_t gfn;
  2298. pfn_t pfn;
  2299. if (!is_present_gpte(gpte))
  2300. return;
  2301. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2302. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2303. smp_rmb();
  2304. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2305. if (is_error_pfn(pfn)) {
  2306. kvm_release_pfn_clean(pfn);
  2307. return;
  2308. }
  2309. vcpu->arch.update_pte.gfn = gfn;
  2310. vcpu->arch.update_pte.pfn = pfn;
  2311. }
  2312. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2313. {
  2314. u64 *spte = vcpu->arch.last_pte_updated;
  2315. if (spte
  2316. && vcpu->arch.last_pte_gfn == gfn
  2317. && shadow_accessed_mask
  2318. && !(*spte & shadow_accessed_mask)
  2319. && is_shadow_present_pte(*spte))
  2320. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2321. }
  2322. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2323. const u8 *new, int bytes,
  2324. bool guest_initiated)
  2325. {
  2326. gfn_t gfn = gpa >> PAGE_SHIFT;
  2327. struct kvm_mmu_page *sp;
  2328. struct hlist_node *node;
  2329. LIST_HEAD(invalid_list);
  2330. u64 entry, gentry;
  2331. u64 *spte;
  2332. unsigned offset = offset_in_page(gpa);
  2333. unsigned pte_size;
  2334. unsigned page_offset;
  2335. unsigned misaligned;
  2336. unsigned quadrant;
  2337. int level;
  2338. int flooded = 0;
  2339. int npte;
  2340. int r;
  2341. int invlpg_counter;
  2342. bool remote_flush, local_flush, zap_page;
  2343. zap_page = remote_flush = local_flush = false;
  2344. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2345. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2346. /*
  2347. * Assume that the pte write on a page table of the same type
  2348. * as the current vcpu paging mode. This is nearly always true
  2349. * (might be false while changing modes). Note it is verified later
  2350. * by update_pte().
  2351. */
  2352. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2353. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2354. if (is_pae(vcpu)) {
  2355. gpa &= ~(gpa_t)7;
  2356. bytes = 8;
  2357. }
  2358. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2359. if (r)
  2360. gentry = 0;
  2361. new = (const u8 *)&gentry;
  2362. }
  2363. switch (bytes) {
  2364. case 4:
  2365. gentry = *(const u32 *)new;
  2366. break;
  2367. case 8:
  2368. gentry = *(const u64 *)new;
  2369. break;
  2370. default:
  2371. gentry = 0;
  2372. break;
  2373. }
  2374. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2375. spin_lock(&vcpu->kvm->mmu_lock);
  2376. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2377. gentry = 0;
  2378. kvm_mmu_access_page(vcpu, gfn);
  2379. kvm_mmu_free_some_pages(vcpu);
  2380. ++vcpu->kvm->stat.mmu_pte_write;
  2381. kvm_mmu_audit(vcpu, "pre pte write");
  2382. if (guest_initiated) {
  2383. if (gfn == vcpu->arch.last_pt_write_gfn
  2384. && !last_updated_pte_accessed(vcpu)) {
  2385. ++vcpu->arch.last_pt_write_count;
  2386. if (vcpu->arch.last_pt_write_count >= 3)
  2387. flooded = 1;
  2388. } else {
  2389. vcpu->arch.last_pt_write_gfn = gfn;
  2390. vcpu->arch.last_pt_write_count = 1;
  2391. vcpu->arch.last_pte_updated = NULL;
  2392. }
  2393. }
  2394. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  2395. pte_size = sp->role.cr4_pae ? 8 : 4;
  2396. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2397. misaligned |= bytes < 4;
  2398. if (misaligned || flooded) {
  2399. /*
  2400. * Misaligned accesses are too much trouble to fix
  2401. * up; also, they usually indicate a page is not used
  2402. * as a page table.
  2403. *
  2404. * If we're seeing too many writes to a page,
  2405. * it may no longer be a page table, or we may be
  2406. * forking, in which case it is better to unmap the
  2407. * page.
  2408. */
  2409. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2410. gpa, bytes, sp->role.word);
  2411. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2412. &invalid_list);
  2413. ++vcpu->kvm->stat.mmu_flooded;
  2414. continue;
  2415. }
  2416. page_offset = offset;
  2417. level = sp->role.level;
  2418. npte = 1;
  2419. if (!sp->role.cr4_pae) {
  2420. page_offset <<= 1; /* 32->64 */
  2421. /*
  2422. * A 32-bit pde maps 4MB while the shadow pdes map
  2423. * only 2MB. So we need to double the offset again
  2424. * and zap two pdes instead of one.
  2425. */
  2426. if (level == PT32_ROOT_LEVEL) {
  2427. page_offset &= ~7; /* kill rounding error */
  2428. page_offset <<= 1;
  2429. npte = 2;
  2430. }
  2431. quadrant = page_offset >> PAGE_SHIFT;
  2432. page_offset &= ~PAGE_MASK;
  2433. if (quadrant != sp->role.quadrant)
  2434. continue;
  2435. }
  2436. local_flush = true;
  2437. spte = &sp->spt[page_offset / sizeof(*spte)];
  2438. while (npte--) {
  2439. entry = *spte;
  2440. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2441. if (gentry)
  2442. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2443. if (!remote_flush && need_remote_flush(entry, *spte))
  2444. remote_flush = true;
  2445. ++spte;
  2446. }
  2447. }
  2448. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  2449. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2450. kvm_mmu_audit(vcpu, "post pte write");
  2451. spin_unlock(&vcpu->kvm->mmu_lock);
  2452. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2453. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2454. vcpu->arch.update_pte.pfn = bad_pfn;
  2455. }
  2456. }
  2457. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2458. {
  2459. gpa_t gpa;
  2460. int r;
  2461. if (tdp_enabled)
  2462. return 0;
  2463. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2464. spin_lock(&vcpu->kvm->mmu_lock);
  2465. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2466. spin_unlock(&vcpu->kvm->mmu_lock);
  2467. return r;
  2468. }
  2469. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2470. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2471. {
  2472. int free_pages;
  2473. LIST_HEAD(invalid_list);
  2474. free_pages = vcpu->kvm->arch.n_free_mmu_pages;
  2475. while (free_pages < KVM_REFILL_PAGES &&
  2476. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2477. struct kvm_mmu_page *sp;
  2478. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2479. struct kvm_mmu_page, link);
  2480. free_pages += kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2481. &invalid_list);
  2482. ++vcpu->kvm->stat.mmu_recycled;
  2483. }
  2484. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2485. }
  2486. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2487. {
  2488. int r;
  2489. enum emulation_result er;
  2490. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2491. if (r < 0)
  2492. goto out;
  2493. if (!r) {
  2494. r = 1;
  2495. goto out;
  2496. }
  2497. r = mmu_topup_memory_caches(vcpu);
  2498. if (r)
  2499. goto out;
  2500. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2501. switch (er) {
  2502. case EMULATE_DONE:
  2503. return 1;
  2504. case EMULATE_DO_MMIO:
  2505. ++vcpu->stat.mmio_exits;
  2506. /* fall through */
  2507. case EMULATE_FAIL:
  2508. return 0;
  2509. default:
  2510. BUG();
  2511. }
  2512. out:
  2513. return r;
  2514. }
  2515. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2516. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2517. {
  2518. vcpu->arch.mmu.invlpg(vcpu, gva);
  2519. kvm_mmu_flush_tlb(vcpu);
  2520. ++vcpu->stat.invlpg;
  2521. }
  2522. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2523. void kvm_enable_tdp(void)
  2524. {
  2525. tdp_enabled = true;
  2526. }
  2527. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2528. void kvm_disable_tdp(void)
  2529. {
  2530. tdp_enabled = false;
  2531. }
  2532. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2533. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2534. {
  2535. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2536. }
  2537. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2538. {
  2539. struct page *page;
  2540. int i;
  2541. ASSERT(vcpu);
  2542. /*
  2543. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2544. * Therefore we need to allocate shadow page tables in the first
  2545. * 4GB of memory, which happens to fit the DMA32 zone.
  2546. */
  2547. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2548. if (!page)
  2549. return -ENOMEM;
  2550. vcpu->arch.mmu.pae_root = page_address(page);
  2551. for (i = 0; i < 4; ++i)
  2552. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2553. return 0;
  2554. }
  2555. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2556. {
  2557. ASSERT(vcpu);
  2558. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2559. return alloc_mmu_pages(vcpu);
  2560. }
  2561. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2562. {
  2563. ASSERT(vcpu);
  2564. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2565. return init_kvm_mmu(vcpu);
  2566. }
  2567. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2568. {
  2569. ASSERT(vcpu);
  2570. destroy_kvm_mmu(vcpu);
  2571. free_mmu_pages(vcpu);
  2572. mmu_free_memory_caches(vcpu);
  2573. }
  2574. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2575. {
  2576. struct kvm_mmu_page *sp;
  2577. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2578. int i;
  2579. u64 *pt;
  2580. if (!test_bit(slot, sp->slot_bitmap))
  2581. continue;
  2582. pt = sp->spt;
  2583. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2584. /* avoid RMW */
  2585. if (is_writable_pte(pt[i]))
  2586. pt[i] &= ~PT_WRITABLE_MASK;
  2587. }
  2588. kvm_flush_remote_tlbs(kvm);
  2589. }
  2590. void kvm_mmu_zap_all(struct kvm *kvm)
  2591. {
  2592. struct kvm_mmu_page *sp, *node;
  2593. LIST_HEAD(invalid_list);
  2594. spin_lock(&kvm->mmu_lock);
  2595. restart:
  2596. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2597. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  2598. goto restart;
  2599. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2600. spin_unlock(&kvm->mmu_lock);
  2601. }
  2602. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  2603. struct list_head *invalid_list)
  2604. {
  2605. struct kvm_mmu_page *page;
  2606. page = container_of(kvm->arch.active_mmu_pages.prev,
  2607. struct kvm_mmu_page, link);
  2608. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  2609. }
  2610. static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  2611. {
  2612. struct kvm *kvm;
  2613. struct kvm *kvm_freed = NULL;
  2614. int cache_count = 0;
  2615. spin_lock(&kvm_lock);
  2616. list_for_each_entry(kvm, &vm_list, vm_list) {
  2617. int npages, idx, freed_pages;
  2618. LIST_HEAD(invalid_list);
  2619. idx = srcu_read_lock(&kvm->srcu);
  2620. spin_lock(&kvm->mmu_lock);
  2621. npages = kvm->arch.n_alloc_mmu_pages -
  2622. kvm->arch.n_free_mmu_pages;
  2623. cache_count += npages;
  2624. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2625. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  2626. &invalid_list);
  2627. cache_count -= freed_pages;
  2628. kvm_freed = kvm;
  2629. }
  2630. nr_to_scan--;
  2631. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2632. spin_unlock(&kvm->mmu_lock);
  2633. srcu_read_unlock(&kvm->srcu, idx);
  2634. }
  2635. if (kvm_freed)
  2636. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2637. spin_unlock(&kvm_lock);
  2638. return cache_count;
  2639. }
  2640. static struct shrinker mmu_shrinker = {
  2641. .shrink = mmu_shrink,
  2642. .seeks = DEFAULT_SEEKS * 10,
  2643. };
  2644. static void mmu_destroy_caches(void)
  2645. {
  2646. if (pte_chain_cache)
  2647. kmem_cache_destroy(pte_chain_cache);
  2648. if (rmap_desc_cache)
  2649. kmem_cache_destroy(rmap_desc_cache);
  2650. if (mmu_page_header_cache)
  2651. kmem_cache_destroy(mmu_page_header_cache);
  2652. }
  2653. void kvm_mmu_module_exit(void)
  2654. {
  2655. mmu_destroy_caches();
  2656. unregister_shrinker(&mmu_shrinker);
  2657. }
  2658. int kvm_mmu_module_init(void)
  2659. {
  2660. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2661. sizeof(struct kvm_pte_chain),
  2662. 0, 0, NULL);
  2663. if (!pte_chain_cache)
  2664. goto nomem;
  2665. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2666. sizeof(struct kvm_rmap_desc),
  2667. 0, 0, NULL);
  2668. if (!rmap_desc_cache)
  2669. goto nomem;
  2670. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2671. sizeof(struct kvm_mmu_page),
  2672. 0, 0, NULL);
  2673. if (!mmu_page_header_cache)
  2674. goto nomem;
  2675. register_shrinker(&mmu_shrinker);
  2676. return 0;
  2677. nomem:
  2678. mmu_destroy_caches();
  2679. return -ENOMEM;
  2680. }
  2681. /*
  2682. * Caculate mmu pages needed for kvm.
  2683. */
  2684. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2685. {
  2686. int i;
  2687. unsigned int nr_mmu_pages;
  2688. unsigned int nr_pages = 0;
  2689. struct kvm_memslots *slots;
  2690. slots = kvm_memslots(kvm);
  2691. for (i = 0; i < slots->nmemslots; i++)
  2692. nr_pages += slots->memslots[i].npages;
  2693. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2694. nr_mmu_pages = max(nr_mmu_pages,
  2695. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2696. return nr_mmu_pages;
  2697. }
  2698. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2699. unsigned len)
  2700. {
  2701. if (len > buffer->len)
  2702. return NULL;
  2703. return buffer->ptr;
  2704. }
  2705. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2706. unsigned len)
  2707. {
  2708. void *ret;
  2709. ret = pv_mmu_peek_buffer(buffer, len);
  2710. if (!ret)
  2711. return ret;
  2712. buffer->ptr += len;
  2713. buffer->len -= len;
  2714. buffer->processed += len;
  2715. return ret;
  2716. }
  2717. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2718. gpa_t addr, gpa_t value)
  2719. {
  2720. int bytes = 8;
  2721. int r;
  2722. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2723. bytes = 4;
  2724. r = mmu_topup_memory_caches(vcpu);
  2725. if (r)
  2726. return r;
  2727. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2728. return -EFAULT;
  2729. return 1;
  2730. }
  2731. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2732. {
  2733. (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2734. return 1;
  2735. }
  2736. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2737. {
  2738. spin_lock(&vcpu->kvm->mmu_lock);
  2739. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2740. spin_unlock(&vcpu->kvm->mmu_lock);
  2741. return 1;
  2742. }
  2743. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2744. struct kvm_pv_mmu_op_buffer *buffer)
  2745. {
  2746. struct kvm_mmu_op_header *header;
  2747. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2748. if (!header)
  2749. return 0;
  2750. switch (header->op) {
  2751. case KVM_MMU_OP_WRITE_PTE: {
  2752. struct kvm_mmu_op_write_pte *wpte;
  2753. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2754. if (!wpte)
  2755. return 0;
  2756. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2757. wpte->pte_val);
  2758. }
  2759. case KVM_MMU_OP_FLUSH_TLB: {
  2760. struct kvm_mmu_op_flush_tlb *ftlb;
  2761. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2762. if (!ftlb)
  2763. return 0;
  2764. return kvm_pv_mmu_flush_tlb(vcpu);
  2765. }
  2766. case KVM_MMU_OP_RELEASE_PT: {
  2767. struct kvm_mmu_op_release_pt *rpt;
  2768. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2769. if (!rpt)
  2770. return 0;
  2771. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2772. }
  2773. default: return 0;
  2774. }
  2775. }
  2776. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2777. gpa_t addr, unsigned long *ret)
  2778. {
  2779. int r;
  2780. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2781. buffer->ptr = buffer->buf;
  2782. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2783. buffer->processed = 0;
  2784. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2785. if (r)
  2786. goto out;
  2787. while (buffer->len) {
  2788. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2789. if (r < 0)
  2790. goto out;
  2791. if (r == 0)
  2792. break;
  2793. }
  2794. r = 1;
  2795. out:
  2796. *ret = buffer->processed;
  2797. return r;
  2798. }
  2799. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2800. {
  2801. struct kvm_shadow_walk_iterator iterator;
  2802. int nr_sptes = 0;
  2803. spin_lock(&vcpu->kvm->mmu_lock);
  2804. for_each_shadow_entry(vcpu, addr, iterator) {
  2805. sptes[iterator.level-1] = *iterator.sptep;
  2806. nr_sptes++;
  2807. if (!is_shadow_present_pte(*iterator.sptep))
  2808. break;
  2809. }
  2810. spin_unlock(&vcpu->kvm->mmu_lock);
  2811. return nr_sptes;
  2812. }
  2813. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2814. #ifdef AUDIT
  2815. static const char *audit_msg;
  2816. static gva_t canonicalize(gva_t gva)
  2817. {
  2818. #ifdef CONFIG_X86_64
  2819. gva = (long long)(gva << 16) >> 16;
  2820. #endif
  2821. return gva;
  2822. }
  2823. typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
  2824. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2825. inspect_spte_fn fn)
  2826. {
  2827. int i;
  2828. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2829. u64 ent = sp->spt[i];
  2830. if (is_shadow_present_pte(ent)) {
  2831. if (!is_last_spte(ent, sp->role.level)) {
  2832. struct kvm_mmu_page *child;
  2833. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2834. __mmu_spte_walk(kvm, child, fn);
  2835. } else
  2836. fn(kvm, &sp->spt[i]);
  2837. }
  2838. }
  2839. }
  2840. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2841. {
  2842. int i;
  2843. struct kvm_mmu_page *sp;
  2844. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2845. return;
  2846. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2847. hpa_t root = vcpu->arch.mmu.root_hpa;
  2848. sp = page_header(root);
  2849. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2850. return;
  2851. }
  2852. for (i = 0; i < 4; ++i) {
  2853. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2854. if (root && VALID_PAGE(root)) {
  2855. root &= PT64_BASE_ADDR_MASK;
  2856. sp = page_header(root);
  2857. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2858. }
  2859. }
  2860. return;
  2861. }
  2862. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2863. gva_t va, int level)
  2864. {
  2865. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2866. int i;
  2867. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2868. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2869. u64 ent = pt[i];
  2870. if (ent == shadow_trap_nonpresent_pte)
  2871. continue;
  2872. va = canonicalize(va);
  2873. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2874. audit_mappings_page(vcpu, ent, va, level - 1);
  2875. else {
  2876. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2877. gfn_t gfn = gpa >> PAGE_SHIFT;
  2878. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2879. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2880. if (is_error_pfn(pfn)) {
  2881. kvm_release_pfn_clean(pfn);
  2882. continue;
  2883. }
  2884. if (is_shadow_present_pte(ent)
  2885. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2886. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2887. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2888. audit_msg, vcpu->arch.mmu.root_level,
  2889. va, gpa, hpa, ent,
  2890. is_shadow_present_pte(ent));
  2891. else if (ent == shadow_notrap_nonpresent_pte
  2892. && !is_error_hpa(hpa))
  2893. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2894. " valid guest gva %lx\n", audit_msg, va);
  2895. kvm_release_pfn_clean(pfn);
  2896. }
  2897. }
  2898. }
  2899. static void audit_mappings(struct kvm_vcpu *vcpu)
  2900. {
  2901. unsigned i;
  2902. if (vcpu->arch.mmu.root_level == 4)
  2903. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2904. else
  2905. for (i = 0; i < 4; ++i)
  2906. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2907. audit_mappings_page(vcpu,
  2908. vcpu->arch.mmu.pae_root[i],
  2909. i << 30,
  2910. 2);
  2911. }
  2912. static int count_rmaps(struct kvm_vcpu *vcpu)
  2913. {
  2914. struct kvm *kvm = vcpu->kvm;
  2915. struct kvm_memslots *slots;
  2916. int nmaps = 0;
  2917. int i, j, k, idx;
  2918. idx = srcu_read_lock(&kvm->srcu);
  2919. slots = kvm_memslots(kvm);
  2920. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2921. struct kvm_memory_slot *m = &slots->memslots[i];
  2922. struct kvm_rmap_desc *d;
  2923. for (j = 0; j < m->npages; ++j) {
  2924. unsigned long *rmapp = &m->rmap[j];
  2925. if (!*rmapp)
  2926. continue;
  2927. if (!(*rmapp & 1)) {
  2928. ++nmaps;
  2929. continue;
  2930. }
  2931. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2932. while (d) {
  2933. for (k = 0; k < RMAP_EXT; ++k)
  2934. if (d->sptes[k])
  2935. ++nmaps;
  2936. else
  2937. break;
  2938. d = d->more;
  2939. }
  2940. }
  2941. }
  2942. srcu_read_unlock(&kvm->srcu, idx);
  2943. return nmaps;
  2944. }
  2945. void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
  2946. {
  2947. unsigned long *rmapp;
  2948. struct kvm_mmu_page *rev_sp;
  2949. gfn_t gfn;
  2950. if (is_writable_pte(*sptep)) {
  2951. rev_sp = page_header(__pa(sptep));
  2952. gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);
  2953. if (!gfn_to_memslot(kvm, gfn)) {
  2954. if (!printk_ratelimit())
  2955. return;
  2956. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2957. audit_msg, gfn);
  2958. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2959. audit_msg, (long int)(sptep - rev_sp->spt),
  2960. rev_sp->gfn);
  2961. dump_stack();
  2962. return;
  2963. }
  2964. rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level);
  2965. if (!*rmapp) {
  2966. if (!printk_ratelimit())
  2967. return;
  2968. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2969. audit_msg, *sptep);
  2970. dump_stack();
  2971. }
  2972. }
  2973. }
  2974. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2975. {
  2976. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2977. }
  2978. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2979. {
  2980. struct kvm_mmu_page *sp;
  2981. int i;
  2982. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2983. u64 *pt = sp->spt;
  2984. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2985. continue;
  2986. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2987. u64 ent = pt[i];
  2988. if (!(ent & PT_PRESENT_MASK))
  2989. continue;
  2990. if (!is_writable_pte(ent))
  2991. continue;
  2992. inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
  2993. }
  2994. }
  2995. return;
  2996. }
  2997. static void audit_rmap(struct kvm_vcpu *vcpu)
  2998. {
  2999. check_writable_mappings_rmap(vcpu);
  3000. count_rmaps(vcpu);
  3001. }
  3002. static void audit_write_protection(struct kvm_vcpu *vcpu)
  3003. {
  3004. struct kvm_mmu_page *sp;
  3005. struct kvm_memory_slot *slot;
  3006. unsigned long *rmapp;
  3007. u64 *spte;
  3008. gfn_t gfn;
  3009. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  3010. if (sp->role.direct)
  3011. continue;
  3012. if (sp->unsync)
  3013. continue;
  3014. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  3015. rmapp = &slot->rmap[gfn - slot->base_gfn];
  3016. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  3017. while (spte) {
  3018. if (is_writable_pte(*spte))
  3019. printk(KERN_ERR "%s: (%s) shadow page has "
  3020. "writable mappings: gfn %lx role %x\n",
  3021. __func__, audit_msg, sp->gfn,
  3022. sp->role.word);
  3023. spte = rmap_next(vcpu->kvm, rmapp, spte);
  3024. }
  3025. }
  3026. }
  3027. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  3028. {
  3029. int olddbg = dbg;
  3030. dbg = 0;
  3031. audit_msg = msg;
  3032. audit_rmap(vcpu);
  3033. audit_write_protection(vcpu);
  3034. if (strcmp("pre pte write", audit_msg) != 0)
  3035. audit_mappings(vcpu);
  3036. audit_writable_sptes_have_rmaps(vcpu);
  3037. dbg = olddbg;
  3038. }
  3039. #endif