qlge_main.c 128 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/if_vlan.h>
  38. #include <linux/delay.h>
  39. #include <linux/mm.h>
  40. #include <linux/vmalloc.h>
  41. #include <net/ip6_checksum.h>
  42. #include "qlge.h"
  43. char qlge_driver_name[] = DRV_NAME;
  44. const char qlge_driver_version[] = DRV_VERSION;
  45. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  46. MODULE_DESCRIPTION(DRV_STRING " ");
  47. MODULE_LICENSE("GPL");
  48. MODULE_VERSION(DRV_VERSION);
  49. static const u32 default_msg =
  50. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  51. /* NETIF_MSG_TIMER | */
  52. NETIF_MSG_IFDOWN |
  53. NETIF_MSG_IFUP |
  54. NETIF_MSG_RX_ERR |
  55. NETIF_MSG_TX_ERR |
  56. /* NETIF_MSG_TX_QUEUED | */
  57. /* NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS | */
  58. /* NETIF_MSG_PKTDATA | */
  59. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  60. static int debug = 0x00007fff; /* defaults above */
  61. module_param(debug, int, 0);
  62. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  63. #define MSIX_IRQ 0
  64. #define MSI_IRQ 1
  65. #define LEG_IRQ 2
  66. static int qlge_irq_type = MSIX_IRQ;
  67. module_param(qlge_irq_type, int, MSIX_IRQ);
  68. MODULE_PARM_DESC(qlge_irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  69. static DEFINE_PCI_DEVICE_TABLE(qlge_pci_tbl) = {
  70. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8012)},
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID_8000)},
  72. /* required last entry */
  73. {0,}
  74. };
  75. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  76. /* This hardware semaphore causes exclusive access to
  77. * resources shared between the NIC driver, MPI firmware,
  78. * FCOE firmware and the FC driver.
  79. */
  80. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  81. {
  82. u32 sem_bits = 0;
  83. switch (sem_mask) {
  84. case SEM_XGMAC0_MASK:
  85. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  86. break;
  87. case SEM_XGMAC1_MASK:
  88. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  89. break;
  90. case SEM_ICB_MASK:
  91. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  92. break;
  93. case SEM_MAC_ADDR_MASK:
  94. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  95. break;
  96. case SEM_FLASH_MASK:
  97. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  98. break;
  99. case SEM_PROBE_MASK:
  100. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  101. break;
  102. case SEM_RT_IDX_MASK:
  103. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  104. break;
  105. case SEM_PROC_REG_MASK:
  106. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  107. break;
  108. default:
  109. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  110. return -EINVAL;
  111. }
  112. ql_write32(qdev, SEM, sem_bits | sem_mask);
  113. return !(ql_read32(qdev, SEM) & sem_bits);
  114. }
  115. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  116. {
  117. unsigned int wait_count = 30;
  118. do {
  119. if (!ql_sem_trylock(qdev, sem_mask))
  120. return 0;
  121. udelay(100);
  122. } while (--wait_count);
  123. return -ETIMEDOUT;
  124. }
  125. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  126. {
  127. ql_write32(qdev, SEM, sem_mask);
  128. ql_read32(qdev, SEM); /* flush */
  129. }
  130. /* This function waits for a specific bit to come ready
  131. * in a given register. It is used mostly by the initialize
  132. * process, but is also used in kernel thread API such as
  133. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  134. */
  135. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  136. {
  137. u32 temp;
  138. int count = UDELAY_COUNT;
  139. while (count) {
  140. temp = ql_read32(qdev, reg);
  141. /* check for errors */
  142. if (temp & err_bit) {
  143. QPRINTK(qdev, PROBE, ALERT,
  144. "register 0x%.08x access error, value = 0x%.08x!.\n",
  145. reg, temp);
  146. return -EIO;
  147. } else if (temp & bit)
  148. return 0;
  149. udelay(UDELAY_DELAY);
  150. count--;
  151. }
  152. QPRINTK(qdev, PROBE, ALERT,
  153. "Timed out waiting for reg %x to come ready.\n", reg);
  154. return -ETIMEDOUT;
  155. }
  156. /* The CFG register is used to download TX and RX control blocks
  157. * to the chip. This function waits for an operation to complete.
  158. */
  159. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  160. {
  161. int count = UDELAY_COUNT;
  162. u32 temp;
  163. while (count) {
  164. temp = ql_read32(qdev, CFG);
  165. if (temp & CFG_LE)
  166. return -EIO;
  167. if (!(temp & bit))
  168. return 0;
  169. udelay(UDELAY_DELAY);
  170. count--;
  171. }
  172. return -ETIMEDOUT;
  173. }
  174. /* Used to issue init control blocks to hw. Maps control block,
  175. * sets address, triggers download, waits for completion.
  176. */
  177. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  178. u16 q_id)
  179. {
  180. u64 map;
  181. int status = 0;
  182. int direction;
  183. u32 mask;
  184. u32 value;
  185. direction =
  186. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  187. PCI_DMA_FROMDEVICE;
  188. map = pci_map_single(qdev->pdev, ptr, size, direction);
  189. if (pci_dma_mapping_error(qdev->pdev, map)) {
  190. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  191. return -ENOMEM;
  192. }
  193. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  194. if (status)
  195. return status;
  196. status = ql_wait_cfg(qdev, bit);
  197. if (status) {
  198. QPRINTK(qdev, IFUP, ERR,
  199. "Timed out waiting for CFG to come ready.\n");
  200. goto exit;
  201. }
  202. ql_write32(qdev, ICB_L, (u32) map);
  203. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  204. mask = CFG_Q_MASK | (bit << 16);
  205. value = bit | (q_id << CFG_Q_SHIFT);
  206. ql_write32(qdev, CFG, (mask | value));
  207. /*
  208. * Wait for the bit to clear after signaling hw.
  209. */
  210. status = ql_wait_cfg(qdev, bit);
  211. exit:
  212. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  213. pci_unmap_single(qdev->pdev, map, size, direction);
  214. return status;
  215. }
  216. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  217. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  218. u32 *value)
  219. {
  220. u32 offset = 0;
  221. int status;
  222. switch (type) {
  223. case MAC_ADDR_TYPE_MULTI_MAC:
  224. case MAC_ADDR_TYPE_CAM_MAC:
  225. {
  226. status =
  227. ql_wait_reg_rdy(qdev,
  228. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  229. if (status)
  230. goto exit;
  231. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  232. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  233. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  234. status =
  235. ql_wait_reg_rdy(qdev,
  236. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  237. if (status)
  238. goto exit;
  239. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  240. status =
  241. ql_wait_reg_rdy(qdev,
  242. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  243. if (status)
  244. goto exit;
  245. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  246. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  247. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  248. status =
  249. ql_wait_reg_rdy(qdev,
  250. MAC_ADDR_IDX, MAC_ADDR_MR, 0);
  251. if (status)
  252. goto exit;
  253. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  254. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  255. status =
  256. ql_wait_reg_rdy(qdev,
  257. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  258. if (status)
  259. goto exit;
  260. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  261. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  262. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  263. status =
  264. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  265. MAC_ADDR_MR, 0);
  266. if (status)
  267. goto exit;
  268. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  269. }
  270. break;
  271. }
  272. case MAC_ADDR_TYPE_VLAN:
  273. case MAC_ADDR_TYPE_MULTI_FLTR:
  274. default:
  275. QPRINTK(qdev, IFUP, CRIT,
  276. "Address type %d not yet supported.\n", type);
  277. status = -EPERM;
  278. }
  279. exit:
  280. return status;
  281. }
  282. /* Set up a MAC, multicast or VLAN address for the
  283. * inbound frame matching.
  284. */
  285. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  286. u16 index)
  287. {
  288. u32 offset = 0;
  289. int status = 0;
  290. switch (type) {
  291. case MAC_ADDR_TYPE_MULTI_MAC:
  292. {
  293. u32 upper = (addr[0] << 8) | addr[1];
  294. u32 lower = (addr[2] << 24) | (addr[3] << 16) |
  295. (addr[4] << 8) | (addr[5]);
  296. status =
  297. ql_wait_reg_rdy(qdev,
  298. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  299. if (status)
  300. goto exit;
  301. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  302. (index << MAC_ADDR_IDX_SHIFT) |
  303. type | MAC_ADDR_E);
  304. ql_write32(qdev, MAC_ADDR_DATA, lower);
  305. status =
  306. ql_wait_reg_rdy(qdev,
  307. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  308. if (status)
  309. goto exit;
  310. ql_write32(qdev, MAC_ADDR_IDX, (offset++) |
  311. (index << MAC_ADDR_IDX_SHIFT) |
  312. type | MAC_ADDR_E);
  313. ql_write32(qdev, MAC_ADDR_DATA, upper);
  314. status =
  315. ql_wait_reg_rdy(qdev,
  316. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  317. if (status)
  318. goto exit;
  319. break;
  320. }
  321. case MAC_ADDR_TYPE_CAM_MAC:
  322. {
  323. u32 cam_output;
  324. u32 upper = (addr[0] << 8) | addr[1];
  325. u32 lower =
  326. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  327. (addr[5]);
  328. QPRINTK(qdev, IFUP, DEBUG,
  329. "Adding %s address %pM"
  330. " at index %d in the CAM.\n",
  331. ((type ==
  332. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  333. "UNICAST"), addr, index);
  334. status =
  335. ql_wait_reg_rdy(qdev,
  336. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  337. if (status)
  338. goto exit;
  339. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  340. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  341. type); /* type */
  342. ql_write32(qdev, MAC_ADDR_DATA, lower);
  343. status =
  344. ql_wait_reg_rdy(qdev,
  345. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  346. if (status)
  347. goto exit;
  348. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  349. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  350. type); /* type */
  351. ql_write32(qdev, MAC_ADDR_DATA, upper);
  352. status =
  353. ql_wait_reg_rdy(qdev,
  354. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  355. if (status)
  356. goto exit;
  357. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  358. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  359. type); /* type */
  360. /* This field should also include the queue id
  361. and possibly the function id. Right now we hardcode
  362. the route field to NIC core.
  363. */
  364. cam_output = (CAM_OUT_ROUTE_NIC |
  365. (qdev->
  366. func << CAM_OUT_FUNC_SHIFT) |
  367. (0 << CAM_OUT_CQ_ID_SHIFT));
  368. if (qdev->vlgrp)
  369. cam_output |= CAM_OUT_RV;
  370. /* route to NIC core */
  371. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  372. break;
  373. }
  374. case MAC_ADDR_TYPE_VLAN:
  375. {
  376. u32 enable_bit = *((u32 *) &addr[0]);
  377. /* For VLAN, the addr actually holds a bit that
  378. * either enables or disables the vlan id we are
  379. * addressing. It's either MAC_ADDR_E on or off.
  380. * That's bit-27 we're talking about.
  381. */
  382. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  383. (enable_bit ? "Adding" : "Removing"),
  384. index, (enable_bit ? "to" : "from"));
  385. status =
  386. ql_wait_reg_rdy(qdev,
  387. MAC_ADDR_IDX, MAC_ADDR_MW, 0);
  388. if (status)
  389. goto exit;
  390. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  391. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  392. type | /* type */
  393. enable_bit); /* enable/disable */
  394. break;
  395. }
  396. case MAC_ADDR_TYPE_MULTI_FLTR:
  397. default:
  398. QPRINTK(qdev, IFUP, CRIT,
  399. "Address type %d not yet supported.\n", type);
  400. status = -EPERM;
  401. }
  402. exit:
  403. return status;
  404. }
  405. /* Set or clear MAC address in hardware. We sometimes
  406. * have to clear it to prevent wrong frame routing
  407. * especially in a bonding environment.
  408. */
  409. static int ql_set_mac_addr(struct ql_adapter *qdev, int set)
  410. {
  411. int status;
  412. char zero_mac_addr[ETH_ALEN];
  413. char *addr;
  414. if (set) {
  415. addr = &qdev->ndev->dev_addr[0];
  416. QPRINTK(qdev, IFUP, DEBUG,
  417. "Set Mac addr %pM\n", addr);
  418. } else {
  419. memset(zero_mac_addr, 0, ETH_ALEN);
  420. addr = &zero_mac_addr[0];
  421. QPRINTK(qdev, IFUP, DEBUG,
  422. "Clearing MAC address on %s\n",
  423. qdev->ndev->name);
  424. }
  425. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  426. if (status)
  427. return status;
  428. status = ql_set_mac_addr_reg(qdev, (u8 *) addr,
  429. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  430. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  431. if (status)
  432. QPRINTK(qdev, IFUP, ERR, "Failed to init mac "
  433. "address.\n");
  434. return status;
  435. }
  436. void ql_link_on(struct ql_adapter *qdev)
  437. {
  438. QPRINTK(qdev, LINK, ERR, "%s: Link is up.\n",
  439. qdev->ndev->name);
  440. netif_carrier_on(qdev->ndev);
  441. ql_set_mac_addr(qdev, 1);
  442. }
  443. void ql_link_off(struct ql_adapter *qdev)
  444. {
  445. QPRINTK(qdev, LINK, ERR, "%s: Link is down.\n",
  446. qdev->ndev->name);
  447. netif_carrier_off(qdev->ndev);
  448. ql_set_mac_addr(qdev, 0);
  449. }
  450. /* Get a specific frame routing value from the CAM.
  451. * Used for debug and reg dump.
  452. */
  453. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  454. {
  455. int status = 0;
  456. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  457. if (status)
  458. goto exit;
  459. ql_write32(qdev, RT_IDX,
  460. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  461. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, 0);
  462. if (status)
  463. goto exit;
  464. *value = ql_read32(qdev, RT_DATA);
  465. exit:
  466. return status;
  467. }
  468. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  469. * to route different frame types to various inbound queues. We send broadcast/
  470. * multicast/error frames to the default queue for slow handling,
  471. * and CAM hit/RSS frames to the fast handling queues.
  472. */
  473. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  474. int enable)
  475. {
  476. int status = -EINVAL; /* Return error if no mask match. */
  477. u32 value = 0;
  478. QPRINTK(qdev, IFUP, DEBUG,
  479. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  480. (enable ? "Adding" : "Removing"),
  481. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  482. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  483. ((index ==
  484. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  485. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  486. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  487. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  488. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  489. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  490. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  491. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  492. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  493. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  494. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  495. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  496. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  497. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  498. (enable ? "to" : "from"));
  499. switch (mask) {
  500. case RT_IDX_CAM_HIT:
  501. {
  502. value = RT_IDX_DST_CAM_Q | /* dest */
  503. RT_IDX_TYPE_NICQ | /* type */
  504. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  505. break;
  506. }
  507. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  508. {
  509. value = RT_IDX_DST_DFLT_Q | /* dest */
  510. RT_IDX_TYPE_NICQ | /* type */
  511. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  512. break;
  513. }
  514. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  515. {
  516. value = RT_IDX_DST_DFLT_Q | /* dest */
  517. RT_IDX_TYPE_NICQ | /* type */
  518. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  519. break;
  520. }
  521. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  522. {
  523. value = RT_IDX_DST_DFLT_Q | /* dest */
  524. RT_IDX_TYPE_NICQ | /* type */
  525. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  526. break;
  527. }
  528. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  529. {
  530. value = RT_IDX_DST_DFLT_Q | /* dest */
  531. RT_IDX_TYPE_NICQ | /* type */
  532. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  533. break;
  534. }
  535. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  536. {
  537. value = RT_IDX_DST_DFLT_Q | /* dest */
  538. RT_IDX_TYPE_NICQ | /* type */
  539. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  540. break;
  541. }
  542. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  543. {
  544. value = RT_IDX_DST_RSS | /* dest */
  545. RT_IDX_TYPE_NICQ | /* type */
  546. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  547. break;
  548. }
  549. case 0: /* Clear the E-bit on an entry. */
  550. {
  551. value = RT_IDX_DST_DFLT_Q | /* dest */
  552. RT_IDX_TYPE_NICQ | /* type */
  553. (index << RT_IDX_IDX_SHIFT);/* index */
  554. break;
  555. }
  556. default:
  557. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  558. mask);
  559. status = -EPERM;
  560. goto exit;
  561. }
  562. if (value) {
  563. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  564. if (status)
  565. goto exit;
  566. value |= (enable ? RT_IDX_E : 0);
  567. ql_write32(qdev, RT_IDX, value);
  568. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  569. }
  570. exit:
  571. return status;
  572. }
  573. static void ql_enable_interrupts(struct ql_adapter *qdev)
  574. {
  575. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  576. }
  577. static void ql_disable_interrupts(struct ql_adapter *qdev)
  578. {
  579. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  580. }
  581. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  582. * Otherwise, we may have multiple outstanding workers and don't want to
  583. * enable until the last one finishes. In this case, the irq_cnt gets
  584. * incremented everytime we queue a worker and decremented everytime
  585. * a worker finishes. Once it hits zero we enable the interrupt.
  586. */
  587. u32 ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  588. {
  589. u32 var = 0;
  590. unsigned long hw_flags = 0;
  591. struct intr_context *ctx = qdev->intr_context + intr;
  592. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr)) {
  593. /* Always enable if we're MSIX multi interrupts and
  594. * it's not the default (zeroeth) interrupt.
  595. */
  596. ql_write32(qdev, INTR_EN,
  597. ctx->intr_en_mask);
  598. var = ql_read32(qdev, STS);
  599. return var;
  600. }
  601. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  602. if (atomic_dec_and_test(&ctx->irq_cnt)) {
  603. ql_write32(qdev, INTR_EN,
  604. ctx->intr_en_mask);
  605. var = ql_read32(qdev, STS);
  606. }
  607. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  608. return var;
  609. }
  610. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  611. {
  612. u32 var = 0;
  613. struct intr_context *ctx;
  614. /* HW disables for us if we're MSIX multi interrupts and
  615. * it's not the default (zeroeth) interrupt.
  616. */
  617. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags) && intr))
  618. return 0;
  619. ctx = qdev->intr_context + intr;
  620. spin_lock(&qdev->hw_lock);
  621. if (!atomic_read(&ctx->irq_cnt)) {
  622. ql_write32(qdev, INTR_EN,
  623. ctx->intr_dis_mask);
  624. var = ql_read32(qdev, STS);
  625. }
  626. atomic_inc(&ctx->irq_cnt);
  627. spin_unlock(&qdev->hw_lock);
  628. return var;
  629. }
  630. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  631. {
  632. int i;
  633. for (i = 0; i < qdev->intr_count; i++) {
  634. /* The enable call does a atomic_dec_and_test
  635. * and enables only if the result is zero.
  636. * So we precharge it here.
  637. */
  638. if (unlikely(!test_bit(QL_MSIX_ENABLED, &qdev->flags) ||
  639. i == 0))
  640. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  641. ql_enable_completion_interrupt(qdev, i);
  642. }
  643. }
  644. static int ql_validate_flash(struct ql_adapter *qdev, u32 size, const char *str)
  645. {
  646. int status, i;
  647. u16 csum = 0;
  648. __le16 *flash = (__le16 *)&qdev->flash;
  649. status = strncmp((char *)&qdev->flash, str, 4);
  650. if (status) {
  651. QPRINTK(qdev, IFUP, ERR, "Invalid flash signature.\n");
  652. return status;
  653. }
  654. for (i = 0; i < size; i++)
  655. csum += le16_to_cpu(*flash++);
  656. if (csum)
  657. QPRINTK(qdev, IFUP, ERR,
  658. "Invalid flash checksum, csum = 0x%.04x.\n", csum);
  659. return csum;
  660. }
  661. static int ql_read_flash_word(struct ql_adapter *qdev, int offset, __le32 *data)
  662. {
  663. int status = 0;
  664. /* wait for reg to come ready */
  665. status = ql_wait_reg_rdy(qdev,
  666. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  667. if (status)
  668. goto exit;
  669. /* set up for reg read */
  670. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  671. /* wait for reg to come ready */
  672. status = ql_wait_reg_rdy(qdev,
  673. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  674. if (status)
  675. goto exit;
  676. /* This data is stored on flash as an array of
  677. * __le32. Since ql_read32() returns cpu endian
  678. * we need to swap it back.
  679. */
  680. *data = cpu_to_le32(ql_read32(qdev, FLASH_DATA));
  681. exit:
  682. return status;
  683. }
  684. static int ql_get_8000_flash_params(struct ql_adapter *qdev)
  685. {
  686. u32 i, size;
  687. int status;
  688. __le32 *p = (__le32 *)&qdev->flash;
  689. u32 offset;
  690. u8 mac_addr[6];
  691. /* Get flash offset for function and adjust
  692. * for dword access.
  693. */
  694. if (!qdev->port)
  695. offset = FUNC0_FLASH_OFFSET / sizeof(u32);
  696. else
  697. offset = FUNC1_FLASH_OFFSET / sizeof(u32);
  698. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  699. return -ETIMEDOUT;
  700. size = sizeof(struct flash_params_8000) / sizeof(u32);
  701. for (i = 0; i < size; i++, p++) {
  702. status = ql_read_flash_word(qdev, i+offset, p);
  703. if (status) {
  704. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  705. goto exit;
  706. }
  707. }
  708. status = ql_validate_flash(qdev,
  709. sizeof(struct flash_params_8000) / sizeof(u16),
  710. "8000");
  711. if (status) {
  712. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  713. status = -EINVAL;
  714. goto exit;
  715. }
  716. /* Extract either manufacturer or BOFM modified
  717. * MAC address.
  718. */
  719. if (qdev->flash.flash_params_8000.data_type1 == 2)
  720. memcpy(mac_addr,
  721. qdev->flash.flash_params_8000.mac_addr1,
  722. qdev->ndev->addr_len);
  723. else
  724. memcpy(mac_addr,
  725. qdev->flash.flash_params_8000.mac_addr,
  726. qdev->ndev->addr_len);
  727. if (!is_valid_ether_addr(mac_addr)) {
  728. QPRINTK(qdev, IFUP, ERR, "Invalid MAC address.\n");
  729. status = -EINVAL;
  730. goto exit;
  731. }
  732. memcpy(qdev->ndev->dev_addr,
  733. mac_addr,
  734. qdev->ndev->addr_len);
  735. exit:
  736. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  737. return status;
  738. }
  739. static int ql_get_8012_flash_params(struct ql_adapter *qdev)
  740. {
  741. int i;
  742. int status;
  743. __le32 *p = (__le32 *)&qdev->flash;
  744. u32 offset = 0;
  745. u32 size = sizeof(struct flash_params_8012) / sizeof(u32);
  746. /* Second function's parameters follow the first
  747. * function's.
  748. */
  749. if (qdev->port)
  750. offset = size;
  751. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  752. return -ETIMEDOUT;
  753. for (i = 0; i < size; i++, p++) {
  754. status = ql_read_flash_word(qdev, i+offset, p);
  755. if (status) {
  756. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  757. goto exit;
  758. }
  759. }
  760. status = ql_validate_flash(qdev,
  761. sizeof(struct flash_params_8012) / sizeof(u16),
  762. "8012");
  763. if (status) {
  764. QPRINTK(qdev, IFUP, ERR, "Invalid flash.\n");
  765. status = -EINVAL;
  766. goto exit;
  767. }
  768. if (!is_valid_ether_addr(qdev->flash.flash_params_8012.mac_addr)) {
  769. status = -EINVAL;
  770. goto exit;
  771. }
  772. memcpy(qdev->ndev->dev_addr,
  773. qdev->flash.flash_params_8012.mac_addr,
  774. qdev->ndev->addr_len);
  775. exit:
  776. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  777. return status;
  778. }
  779. /* xgmac register are located behind the xgmac_addr and xgmac_data
  780. * register pair. Each read/write requires us to wait for the ready
  781. * bit before reading/writing the data.
  782. */
  783. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  784. {
  785. int status;
  786. /* wait for reg to come ready */
  787. status = ql_wait_reg_rdy(qdev,
  788. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  789. if (status)
  790. return status;
  791. /* write the data to the data reg */
  792. ql_write32(qdev, XGMAC_DATA, data);
  793. /* trigger the write */
  794. ql_write32(qdev, XGMAC_ADDR, reg);
  795. return status;
  796. }
  797. /* xgmac register are located behind the xgmac_addr and xgmac_data
  798. * register pair. Each read/write requires us to wait for the ready
  799. * bit before reading/writing the data.
  800. */
  801. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  802. {
  803. int status = 0;
  804. /* wait for reg to come ready */
  805. status = ql_wait_reg_rdy(qdev,
  806. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  807. if (status)
  808. goto exit;
  809. /* set up for reg read */
  810. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  811. /* wait for reg to come ready */
  812. status = ql_wait_reg_rdy(qdev,
  813. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  814. if (status)
  815. goto exit;
  816. /* get the data */
  817. *data = ql_read32(qdev, XGMAC_DATA);
  818. exit:
  819. return status;
  820. }
  821. /* This is used for reading the 64-bit statistics regs. */
  822. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  823. {
  824. int status = 0;
  825. u32 hi = 0;
  826. u32 lo = 0;
  827. status = ql_read_xgmac_reg(qdev, reg, &lo);
  828. if (status)
  829. goto exit;
  830. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  831. if (status)
  832. goto exit;
  833. *data = (u64) lo | ((u64) hi << 32);
  834. exit:
  835. return status;
  836. }
  837. static int ql_8000_port_initialize(struct ql_adapter *qdev)
  838. {
  839. int status;
  840. /*
  841. * Get MPI firmware version for driver banner
  842. * and ethool info.
  843. */
  844. status = ql_mb_about_fw(qdev);
  845. if (status)
  846. goto exit;
  847. status = ql_mb_get_fw_state(qdev);
  848. if (status)
  849. goto exit;
  850. /* Wake up a worker to get/set the TX/RX frame sizes. */
  851. queue_delayed_work(qdev->workqueue, &qdev->mpi_port_cfg_work, 0);
  852. exit:
  853. return status;
  854. }
  855. /* Take the MAC Core out of reset.
  856. * Enable statistics counting.
  857. * Take the transmitter/receiver out of reset.
  858. * This functionality may be done in the MPI firmware at a
  859. * later date.
  860. */
  861. static int ql_8012_port_initialize(struct ql_adapter *qdev)
  862. {
  863. int status = 0;
  864. u32 data;
  865. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  866. /* Another function has the semaphore, so
  867. * wait for the port init bit to come ready.
  868. */
  869. QPRINTK(qdev, LINK, INFO,
  870. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  871. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  872. if (status) {
  873. QPRINTK(qdev, LINK, CRIT,
  874. "Port initialize timed out.\n");
  875. }
  876. return status;
  877. }
  878. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  879. /* Set the core reset. */
  880. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  881. if (status)
  882. goto end;
  883. data |= GLOBAL_CFG_RESET;
  884. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  885. if (status)
  886. goto end;
  887. /* Clear the core reset and turn on jumbo for receiver. */
  888. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  889. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  890. data |= GLOBAL_CFG_TX_STAT_EN;
  891. data |= GLOBAL_CFG_RX_STAT_EN;
  892. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  893. if (status)
  894. goto end;
  895. /* Enable transmitter, and clear it's reset. */
  896. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  897. if (status)
  898. goto end;
  899. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  900. data |= TX_CFG_EN; /* Enable the transmitter. */
  901. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  902. if (status)
  903. goto end;
  904. /* Enable receiver and clear it's reset. */
  905. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  906. if (status)
  907. goto end;
  908. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  909. data |= RX_CFG_EN; /* Enable the receiver. */
  910. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  911. if (status)
  912. goto end;
  913. /* Turn on jumbo. */
  914. status =
  915. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  916. if (status)
  917. goto end;
  918. status =
  919. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  920. if (status)
  921. goto end;
  922. /* Signal to the world that the port is enabled. */
  923. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  924. end:
  925. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  926. return status;
  927. }
  928. static inline unsigned int ql_lbq_block_size(struct ql_adapter *qdev)
  929. {
  930. return PAGE_SIZE << qdev->lbq_buf_order;
  931. }
  932. /* Get the next large buffer. */
  933. static struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  934. {
  935. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  936. rx_ring->lbq_curr_idx++;
  937. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  938. rx_ring->lbq_curr_idx = 0;
  939. rx_ring->lbq_free_cnt++;
  940. return lbq_desc;
  941. }
  942. static struct bq_desc *ql_get_curr_lchunk(struct ql_adapter *qdev,
  943. struct rx_ring *rx_ring)
  944. {
  945. struct bq_desc *lbq_desc = ql_get_curr_lbuf(rx_ring);
  946. pci_dma_sync_single_for_cpu(qdev->pdev,
  947. pci_unmap_addr(lbq_desc, mapaddr),
  948. rx_ring->lbq_buf_size,
  949. PCI_DMA_FROMDEVICE);
  950. /* If it's the last chunk of our master page then
  951. * we unmap it.
  952. */
  953. if ((lbq_desc->p.pg_chunk.offset + rx_ring->lbq_buf_size)
  954. == ql_lbq_block_size(qdev))
  955. pci_unmap_page(qdev->pdev,
  956. lbq_desc->p.pg_chunk.map,
  957. ql_lbq_block_size(qdev),
  958. PCI_DMA_FROMDEVICE);
  959. return lbq_desc;
  960. }
  961. /* Get the next small buffer. */
  962. static struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  963. {
  964. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  965. rx_ring->sbq_curr_idx++;
  966. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  967. rx_ring->sbq_curr_idx = 0;
  968. rx_ring->sbq_free_cnt++;
  969. return sbq_desc;
  970. }
  971. /* Update an rx ring index. */
  972. static void ql_update_cq(struct rx_ring *rx_ring)
  973. {
  974. rx_ring->cnsmr_idx++;
  975. rx_ring->curr_entry++;
  976. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  977. rx_ring->cnsmr_idx = 0;
  978. rx_ring->curr_entry = rx_ring->cq_base;
  979. }
  980. }
  981. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  982. {
  983. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  984. }
  985. static int ql_get_next_chunk(struct ql_adapter *qdev, struct rx_ring *rx_ring,
  986. struct bq_desc *lbq_desc)
  987. {
  988. if (!rx_ring->pg_chunk.page) {
  989. u64 map;
  990. rx_ring->pg_chunk.page = alloc_pages(__GFP_COLD | __GFP_COMP |
  991. GFP_ATOMIC,
  992. qdev->lbq_buf_order);
  993. if (unlikely(!rx_ring->pg_chunk.page)) {
  994. QPRINTK(qdev, DRV, ERR,
  995. "page allocation failed.\n");
  996. return -ENOMEM;
  997. }
  998. rx_ring->pg_chunk.offset = 0;
  999. map = pci_map_page(qdev->pdev, rx_ring->pg_chunk.page,
  1000. 0, ql_lbq_block_size(qdev),
  1001. PCI_DMA_FROMDEVICE);
  1002. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1003. __free_pages(rx_ring->pg_chunk.page,
  1004. qdev->lbq_buf_order);
  1005. QPRINTK(qdev, DRV, ERR,
  1006. "PCI mapping failed.\n");
  1007. return -ENOMEM;
  1008. }
  1009. rx_ring->pg_chunk.map = map;
  1010. rx_ring->pg_chunk.va = page_address(rx_ring->pg_chunk.page);
  1011. }
  1012. /* Copy the current master pg_chunk info
  1013. * to the current descriptor.
  1014. */
  1015. lbq_desc->p.pg_chunk = rx_ring->pg_chunk;
  1016. /* Adjust the master page chunk for next
  1017. * buffer get.
  1018. */
  1019. rx_ring->pg_chunk.offset += rx_ring->lbq_buf_size;
  1020. if (rx_ring->pg_chunk.offset == ql_lbq_block_size(qdev)) {
  1021. rx_ring->pg_chunk.page = NULL;
  1022. lbq_desc->p.pg_chunk.last_flag = 1;
  1023. } else {
  1024. rx_ring->pg_chunk.va += rx_ring->lbq_buf_size;
  1025. get_page(rx_ring->pg_chunk.page);
  1026. lbq_desc->p.pg_chunk.last_flag = 0;
  1027. }
  1028. return 0;
  1029. }
  1030. /* Process (refill) a large buffer queue. */
  1031. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1032. {
  1033. u32 clean_idx = rx_ring->lbq_clean_idx;
  1034. u32 start_idx = clean_idx;
  1035. struct bq_desc *lbq_desc;
  1036. u64 map;
  1037. int i;
  1038. while (rx_ring->lbq_free_cnt > 32) {
  1039. for (i = 0; i < 16; i++) {
  1040. QPRINTK(qdev, RX_STATUS, DEBUG,
  1041. "lbq: try cleaning clean_idx = %d.\n",
  1042. clean_idx);
  1043. lbq_desc = &rx_ring->lbq[clean_idx];
  1044. if (ql_get_next_chunk(qdev, rx_ring, lbq_desc)) {
  1045. QPRINTK(qdev, IFUP, ERR,
  1046. "Could not get a page chunk.\n");
  1047. return;
  1048. }
  1049. map = lbq_desc->p.pg_chunk.map +
  1050. lbq_desc->p.pg_chunk.offset;
  1051. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  1052. pci_unmap_len_set(lbq_desc, maplen,
  1053. rx_ring->lbq_buf_size);
  1054. *lbq_desc->addr = cpu_to_le64(map);
  1055. pci_dma_sync_single_for_device(qdev->pdev, map,
  1056. rx_ring->lbq_buf_size,
  1057. PCI_DMA_FROMDEVICE);
  1058. clean_idx++;
  1059. if (clean_idx == rx_ring->lbq_len)
  1060. clean_idx = 0;
  1061. }
  1062. rx_ring->lbq_clean_idx = clean_idx;
  1063. rx_ring->lbq_prod_idx += 16;
  1064. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  1065. rx_ring->lbq_prod_idx = 0;
  1066. rx_ring->lbq_free_cnt -= 16;
  1067. }
  1068. if (start_idx != clean_idx) {
  1069. QPRINTK(qdev, RX_STATUS, DEBUG,
  1070. "lbq: updating prod idx = %d.\n",
  1071. rx_ring->lbq_prod_idx);
  1072. ql_write_db_reg(rx_ring->lbq_prod_idx,
  1073. rx_ring->lbq_prod_idx_db_reg);
  1074. }
  1075. }
  1076. /* Process (refill) a small buffer queue. */
  1077. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1078. {
  1079. u32 clean_idx = rx_ring->sbq_clean_idx;
  1080. u32 start_idx = clean_idx;
  1081. struct bq_desc *sbq_desc;
  1082. u64 map;
  1083. int i;
  1084. while (rx_ring->sbq_free_cnt > 16) {
  1085. for (i = 0; i < 16; i++) {
  1086. sbq_desc = &rx_ring->sbq[clean_idx];
  1087. QPRINTK(qdev, RX_STATUS, DEBUG,
  1088. "sbq: try cleaning clean_idx = %d.\n",
  1089. clean_idx);
  1090. if (sbq_desc->p.skb == NULL) {
  1091. QPRINTK(qdev, RX_STATUS, DEBUG,
  1092. "sbq: getting new skb for index %d.\n",
  1093. sbq_desc->index);
  1094. sbq_desc->p.skb =
  1095. netdev_alloc_skb(qdev->ndev,
  1096. SMALL_BUFFER_SIZE);
  1097. if (sbq_desc->p.skb == NULL) {
  1098. QPRINTK(qdev, PROBE, ERR,
  1099. "Couldn't get an skb.\n");
  1100. rx_ring->sbq_clean_idx = clean_idx;
  1101. return;
  1102. }
  1103. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  1104. map = pci_map_single(qdev->pdev,
  1105. sbq_desc->p.skb->data,
  1106. rx_ring->sbq_buf_size,
  1107. PCI_DMA_FROMDEVICE);
  1108. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1109. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  1110. rx_ring->sbq_clean_idx = clean_idx;
  1111. dev_kfree_skb_any(sbq_desc->p.skb);
  1112. sbq_desc->p.skb = NULL;
  1113. return;
  1114. }
  1115. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  1116. pci_unmap_len_set(sbq_desc, maplen,
  1117. rx_ring->sbq_buf_size);
  1118. *sbq_desc->addr = cpu_to_le64(map);
  1119. }
  1120. clean_idx++;
  1121. if (clean_idx == rx_ring->sbq_len)
  1122. clean_idx = 0;
  1123. }
  1124. rx_ring->sbq_clean_idx = clean_idx;
  1125. rx_ring->sbq_prod_idx += 16;
  1126. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  1127. rx_ring->sbq_prod_idx = 0;
  1128. rx_ring->sbq_free_cnt -= 16;
  1129. }
  1130. if (start_idx != clean_idx) {
  1131. QPRINTK(qdev, RX_STATUS, DEBUG,
  1132. "sbq: updating prod idx = %d.\n",
  1133. rx_ring->sbq_prod_idx);
  1134. ql_write_db_reg(rx_ring->sbq_prod_idx,
  1135. rx_ring->sbq_prod_idx_db_reg);
  1136. }
  1137. }
  1138. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  1139. struct rx_ring *rx_ring)
  1140. {
  1141. ql_update_sbq(qdev, rx_ring);
  1142. ql_update_lbq(qdev, rx_ring);
  1143. }
  1144. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  1145. * fails at some stage, or from the interrupt when a tx completes.
  1146. */
  1147. static void ql_unmap_send(struct ql_adapter *qdev,
  1148. struct tx_ring_desc *tx_ring_desc, int mapped)
  1149. {
  1150. int i;
  1151. for (i = 0; i < mapped; i++) {
  1152. if (i == 0 || (i == 7 && mapped > 7)) {
  1153. /*
  1154. * Unmap the skb->data area, or the
  1155. * external sglist (AKA the Outbound
  1156. * Address List (OAL)).
  1157. * If its the zeroeth element, then it's
  1158. * the skb->data area. If it's the 7th
  1159. * element and there is more than 6 frags,
  1160. * then its an OAL.
  1161. */
  1162. if (i == 7) {
  1163. QPRINTK(qdev, TX_DONE, DEBUG,
  1164. "unmapping OAL area.\n");
  1165. }
  1166. pci_unmap_single(qdev->pdev,
  1167. pci_unmap_addr(&tx_ring_desc->map[i],
  1168. mapaddr),
  1169. pci_unmap_len(&tx_ring_desc->map[i],
  1170. maplen),
  1171. PCI_DMA_TODEVICE);
  1172. } else {
  1173. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  1174. i);
  1175. pci_unmap_page(qdev->pdev,
  1176. pci_unmap_addr(&tx_ring_desc->map[i],
  1177. mapaddr),
  1178. pci_unmap_len(&tx_ring_desc->map[i],
  1179. maplen), PCI_DMA_TODEVICE);
  1180. }
  1181. }
  1182. }
  1183. /* Map the buffers for this transmit. This will return
  1184. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1185. */
  1186. static int ql_map_send(struct ql_adapter *qdev,
  1187. struct ob_mac_iocb_req *mac_iocb_ptr,
  1188. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  1189. {
  1190. int len = skb_headlen(skb);
  1191. dma_addr_t map;
  1192. int frag_idx, err, map_idx = 0;
  1193. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  1194. int frag_cnt = skb_shinfo(skb)->nr_frags;
  1195. if (frag_cnt) {
  1196. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  1197. }
  1198. /*
  1199. * Map the skb buffer first.
  1200. */
  1201. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1202. err = pci_dma_mapping_error(qdev->pdev, map);
  1203. if (err) {
  1204. QPRINTK(qdev, TX_QUEUED, ERR,
  1205. "PCI mapping failed with error: %d\n", err);
  1206. return NETDEV_TX_BUSY;
  1207. }
  1208. tbd->len = cpu_to_le32(len);
  1209. tbd->addr = cpu_to_le64(map);
  1210. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1211. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  1212. map_idx++;
  1213. /*
  1214. * This loop fills the remainder of the 8 address descriptors
  1215. * in the IOCB. If there are more than 7 fragments, then the
  1216. * eighth address desc will point to an external list (OAL).
  1217. * When this happens, the remainder of the frags will be stored
  1218. * in this list.
  1219. */
  1220. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  1221. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  1222. tbd++;
  1223. if (frag_idx == 6 && frag_cnt > 7) {
  1224. /* Let's tack on an sglist.
  1225. * Our control block will now
  1226. * look like this:
  1227. * iocb->seg[0] = skb->data
  1228. * iocb->seg[1] = frag[0]
  1229. * iocb->seg[2] = frag[1]
  1230. * iocb->seg[3] = frag[2]
  1231. * iocb->seg[4] = frag[3]
  1232. * iocb->seg[5] = frag[4]
  1233. * iocb->seg[6] = frag[5]
  1234. * iocb->seg[7] = ptr to OAL (external sglist)
  1235. * oal->seg[0] = frag[6]
  1236. * oal->seg[1] = frag[7]
  1237. * oal->seg[2] = frag[8]
  1238. * oal->seg[3] = frag[9]
  1239. * oal->seg[4] = frag[10]
  1240. * etc...
  1241. */
  1242. /* Tack on the OAL in the eighth segment of IOCB. */
  1243. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1244. sizeof(struct oal),
  1245. PCI_DMA_TODEVICE);
  1246. err = pci_dma_mapping_error(qdev->pdev, map);
  1247. if (err) {
  1248. QPRINTK(qdev, TX_QUEUED, ERR,
  1249. "PCI mapping outbound address list with error: %d\n",
  1250. err);
  1251. goto map_error;
  1252. }
  1253. tbd->addr = cpu_to_le64(map);
  1254. /*
  1255. * The length is the number of fragments
  1256. * that remain to be mapped times the length
  1257. * of our sglist (OAL).
  1258. */
  1259. tbd->len =
  1260. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1261. (frag_cnt - frag_idx)) | TX_DESC_C);
  1262. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1263. map);
  1264. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1265. sizeof(struct oal));
  1266. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1267. map_idx++;
  1268. }
  1269. map =
  1270. pci_map_page(qdev->pdev, frag->page,
  1271. frag->page_offset, frag->size,
  1272. PCI_DMA_TODEVICE);
  1273. err = pci_dma_mapping_error(qdev->pdev, map);
  1274. if (err) {
  1275. QPRINTK(qdev, TX_QUEUED, ERR,
  1276. "PCI mapping frags failed with error: %d.\n",
  1277. err);
  1278. goto map_error;
  1279. }
  1280. tbd->addr = cpu_to_le64(map);
  1281. tbd->len = cpu_to_le32(frag->size);
  1282. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1283. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1284. frag->size);
  1285. }
  1286. /* Save the number of segments we've mapped. */
  1287. tx_ring_desc->map_cnt = map_idx;
  1288. /* Terminate the last segment. */
  1289. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1290. return NETDEV_TX_OK;
  1291. map_error:
  1292. /*
  1293. * If the first frag mapping failed, then i will be zero.
  1294. * This causes the unmap of the skb->data area. Otherwise
  1295. * we pass in the number of frags that mapped successfully
  1296. * so they can be umapped.
  1297. */
  1298. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1299. return NETDEV_TX_BUSY;
  1300. }
  1301. /* Process an inbound completion from an rx ring. */
  1302. static void ql_process_mac_rx_gro_page(struct ql_adapter *qdev,
  1303. struct rx_ring *rx_ring,
  1304. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1305. u32 length,
  1306. u16 vlan_id)
  1307. {
  1308. struct sk_buff *skb;
  1309. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1310. struct skb_frag_struct *rx_frag;
  1311. int nr_frags;
  1312. struct napi_struct *napi = &rx_ring->napi;
  1313. napi->dev = qdev->ndev;
  1314. skb = napi_get_frags(napi);
  1315. if (!skb) {
  1316. QPRINTK(qdev, DRV, ERR, "Couldn't get an skb, exiting.\n");
  1317. rx_ring->rx_dropped++;
  1318. put_page(lbq_desc->p.pg_chunk.page);
  1319. return;
  1320. }
  1321. prefetch(lbq_desc->p.pg_chunk.va);
  1322. rx_frag = skb_shinfo(skb)->frags;
  1323. nr_frags = skb_shinfo(skb)->nr_frags;
  1324. rx_frag += nr_frags;
  1325. rx_frag->page = lbq_desc->p.pg_chunk.page;
  1326. rx_frag->page_offset = lbq_desc->p.pg_chunk.offset;
  1327. rx_frag->size = length;
  1328. skb->len += length;
  1329. skb->data_len += length;
  1330. skb->truesize += length;
  1331. skb_shinfo(skb)->nr_frags++;
  1332. rx_ring->rx_packets++;
  1333. rx_ring->rx_bytes += length;
  1334. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1335. skb_record_rx_queue(skb, rx_ring->cq_id);
  1336. if (qdev->vlgrp && (vlan_id != 0xffff))
  1337. vlan_gro_frags(&rx_ring->napi, qdev->vlgrp, vlan_id);
  1338. else
  1339. napi_gro_frags(napi);
  1340. }
  1341. /* Process an inbound completion from an rx ring. */
  1342. static void ql_process_mac_rx_page(struct ql_adapter *qdev,
  1343. struct rx_ring *rx_ring,
  1344. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1345. u32 length,
  1346. u16 vlan_id)
  1347. {
  1348. struct net_device *ndev = qdev->ndev;
  1349. struct sk_buff *skb = NULL;
  1350. void *addr;
  1351. struct bq_desc *lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1352. struct napi_struct *napi = &rx_ring->napi;
  1353. skb = netdev_alloc_skb(ndev, length);
  1354. if (!skb) {
  1355. QPRINTK(qdev, DRV, ERR, "Couldn't get an skb, "
  1356. "need to unwind!.\n");
  1357. rx_ring->rx_dropped++;
  1358. put_page(lbq_desc->p.pg_chunk.page);
  1359. return;
  1360. }
  1361. addr = lbq_desc->p.pg_chunk.va;
  1362. prefetch(addr);
  1363. /* Frame error, so drop the packet. */
  1364. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1365. QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
  1366. ib_mac_rsp->flags2);
  1367. rx_ring->rx_errors++;
  1368. goto err_out;
  1369. }
  1370. /* The max framesize filter on this chip is set higher than
  1371. * MTU since FCoE uses 2k frames.
  1372. */
  1373. if (skb->len > ndev->mtu + ETH_HLEN) {
  1374. QPRINTK(qdev, DRV, ERR, "Segment too small, dropping.\n");
  1375. rx_ring->rx_dropped++;
  1376. goto err_out;
  1377. }
  1378. memcpy(skb_put(skb, ETH_HLEN), addr, ETH_HLEN);
  1379. QPRINTK(qdev, RX_STATUS, DEBUG,
  1380. "%d bytes of headers and data in large. Chain "
  1381. "page to new skb and pull tail.\n", length);
  1382. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1383. lbq_desc->p.pg_chunk.offset+ETH_HLEN,
  1384. length-ETH_HLEN);
  1385. skb->len += length-ETH_HLEN;
  1386. skb->data_len += length-ETH_HLEN;
  1387. skb->truesize += length-ETH_HLEN;
  1388. rx_ring->rx_packets++;
  1389. rx_ring->rx_bytes += skb->len;
  1390. skb->protocol = eth_type_trans(skb, ndev);
  1391. skb->ip_summed = CHECKSUM_NONE;
  1392. if (qdev->rx_csum &&
  1393. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1394. /* TCP frame. */
  1395. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1396. QPRINTK(qdev, RX_STATUS, DEBUG,
  1397. "TCP checksum done!\n");
  1398. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1399. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1400. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1401. /* Unfragmented ipv4 UDP frame. */
  1402. struct iphdr *iph = (struct iphdr *) skb->data;
  1403. if (!(iph->frag_off &
  1404. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1405. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1406. QPRINTK(qdev, RX_STATUS, DEBUG,
  1407. "TCP checksum done!\n");
  1408. }
  1409. }
  1410. }
  1411. skb_record_rx_queue(skb, rx_ring->cq_id);
  1412. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1413. if (qdev->vlgrp && (vlan_id != 0xffff))
  1414. vlan_gro_receive(napi, qdev->vlgrp, vlan_id, skb);
  1415. else
  1416. napi_gro_receive(napi, skb);
  1417. } else {
  1418. if (qdev->vlgrp && (vlan_id != 0xffff))
  1419. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1420. else
  1421. netif_receive_skb(skb);
  1422. }
  1423. return;
  1424. err_out:
  1425. dev_kfree_skb_any(skb);
  1426. put_page(lbq_desc->p.pg_chunk.page);
  1427. }
  1428. /* Process an inbound completion from an rx ring. */
  1429. static void ql_process_mac_rx_skb(struct ql_adapter *qdev,
  1430. struct rx_ring *rx_ring,
  1431. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1432. u32 length,
  1433. u16 vlan_id)
  1434. {
  1435. struct net_device *ndev = qdev->ndev;
  1436. struct sk_buff *skb = NULL;
  1437. struct sk_buff *new_skb = NULL;
  1438. struct bq_desc *sbq_desc = ql_get_curr_sbuf(rx_ring);
  1439. skb = sbq_desc->p.skb;
  1440. /* Allocate new_skb and copy */
  1441. new_skb = netdev_alloc_skb(qdev->ndev, length + NET_IP_ALIGN);
  1442. if (new_skb == NULL) {
  1443. QPRINTK(qdev, PROBE, ERR,
  1444. "No skb available, drop the packet.\n");
  1445. rx_ring->rx_dropped++;
  1446. return;
  1447. }
  1448. skb_reserve(new_skb, NET_IP_ALIGN);
  1449. memcpy(skb_put(new_skb, length), skb->data, length);
  1450. skb = new_skb;
  1451. /* Frame error, so drop the packet. */
  1452. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1453. QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
  1454. ib_mac_rsp->flags2);
  1455. dev_kfree_skb_any(skb);
  1456. rx_ring->rx_errors++;
  1457. return;
  1458. }
  1459. /* loopback self test for ethtool */
  1460. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1461. ql_check_lb_frame(qdev, skb);
  1462. dev_kfree_skb_any(skb);
  1463. return;
  1464. }
  1465. /* The max framesize filter on this chip is set higher than
  1466. * MTU since FCoE uses 2k frames.
  1467. */
  1468. if (skb->len > ndev->mtu + ETH_HLEN) {
  1469. dev_kfree_skb_any(skb);
  1470. rx_ring->rx_dropped++;
  1471. return;
  1472. }
  1473. prefetch(skb->data);
  1474. skb->dev = ndev;
  1475. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1476. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1477. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1478. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1479. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1480. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1481. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1482. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1483. }
  1484. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P)
  1485. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1486. rx_ring->rx_packets++;
  1487. rx_ring->rx_bytes += skb->len;
  1488. skb->protocol = eth_type_trans(skb, ndev);
  1489. skb->ip_summed = CHECKSUM_NONE;
  1490. /* If rx checksum is on, and there are no
  1491. * csum or frame errors.
  1492. */
  1493. if (qdev->rx_csum &&
  1494. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1495. /* TCP frame. */
  1496. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1497. QPRINTK(qdev, RX_STATUS, DEBUG,
  1498. "TCP checksum done!\n");
  1499. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1500. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1501. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1502. /* Unfragmented ipv4 UDP frame. */
  1503. struct iphdr *iph = (struct iphdr *) skb->data;
  1504. if (!(iph->frag_off &
  1505. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1506. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1507. QPRINTK(qdev, RX_STATUS, DEBUG,
  1508. "TCP checksum done!\n");
  1509. }
  1510. }
  1511. }
  1512. skb_record_rx_queue(skb, rx_ring->cq_id);
  1513. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1514. if (qdev->vlgrp && (vlan_id != 0xffff))
  1515. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1516. vlan_id, skb);
  1517. else
  1518. napi_gro_receive(&rx_ring->napi, skb);
  1519. } else {
  1520. if (qdev->vlgrp && (vlan_id != 0xffff))
  1521. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1522. else
  1523. netif_receive_skb(skb);
  1524. }
  1525. }
  1526. static void ql_realign_skb(struct sk_buff *skb, int len)
  1527. {
  1528. void *temp_addr = skb->data;
  1529. /* Undo the skb_reserve(skb,32) we did before
  1530. * giving to hardware, and realign data on
  1531. * a 2-byte boundary.
  1532. */
  1533. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1534. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1535. skb_copy_to_linear_data(skb, temp_addr,
  1536. (unsigned int)len);
  1537. }
  1538. /*
  1539. * This function builds an skb for the given inbound
  1540. * completion. It will be rewritten for readability in the near
  1541. * future, but for not it works well.
  1542. */
  1543. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1544. struct rx_ring *rx_ring,
  1545. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1546. {
  1547. struct bq_desc *lbq_desc;
  1548. struct bq_desc *sbq_desc;
  1549. struct sk_buff *skb = NULL;
  1550. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1551. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1552. /*
  1553. * Handle the header buffer if present.
  1554. */
  1555. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1556. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1557. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1558. /*
  1559. * Headers fit nicely into a small buffer.
  1560. */
  1561. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1562. pci_unmap_single(qdev->pdev,
  1563. pci_unmap_addr(sbq_desc, mapaddr),
  1564. pci_unmap_len(sbq_desc, maplen),
  1565. PCI_DMA_FROMDEVICE);
  1566. skb = sbq_desc->p.skb;
  1567. ql_realign_skb(skb, hdr_len);
  1568. skb_put(skb, hdr_len);
  1569. sbq_desc->p.skb = NULL;
  1570. }
  1571. /*
  1572. * Handle the data buffer(s).
  1573. */
  1574. if (unlikely(!length)) { /* Is there data too? */
  1575. QPRINTK(qdev, RX_STATUS, DEBUG,
  1576. "No Data buffer in this packet.\n");
  1577. return skb;
  1578. }
  1579. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1580. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1581. QPRINTK(qdev, RX_STATUS, DEBUG,
  1582. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1583. /*
  1584. * Data is less than small buffer size so it's
  1585. * stuffed in a small buffer.
  1586. * For this case we append the data
  1587. * from the "data" small buffer to the "header" small
  1588. * buffer.
  1589. */
  1590. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1591. pci_dma_sync_single_for_cpu(qdev->pdev,
  1592. pci_unmap_addr
  1593. (sbq_desc, mapaddr),
  1594. pci_unmap_len
  1595. (sbq_desc, maplen),
  1596. PCI_DMA_FROMDEVICE);
  1597. memcpy(skb_put(skb, length),
  1598. sbq_desc->p.skb->data, length);
  1599. pci_dma_sync_single_for_device(qdev->pdev,
  1600. pci_unmap_addr
  1601. (sbq_desc,
  1602. mapaddr),
  1603. pci_unmap_len
  1604. (sbq_desc,
  1605. maplen),
  1606. PCI_DMA_FROMDEVICE);
  1607. } else {
  1608. QPRINTK(qdev, RX_STATUS, DEBUG,
  1609. "%d bytes in a single small buffer.\n", length);
  1610. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1611. skb = sbq_desc->p.skb;
  1612. ql_realign_skb(skb, length);
  1613. skb_put(skb, length);
  1614. pci_unmap_single(qdev->pdev,
  1615. pci_unmap_addr(sbq_desc,
  1616. mapaddr),
  1617. pci_unmap_len(sbq_desc,
  1618. maplen),
  1619. PCI_DMA_FROMDEVICE);
  1620. sbq_desc->p.skb = NULL;
  1621. }
  1622. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1623. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1624. QPRINTK(qdev, RX_STATUS, DEBUG,
  1625. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1626. /*
  1627. * The data is in a single large buffer. We
  1628. * chain it to the header buffer's skb and let
  1629. * it rip.
  1630. */
  1631. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1632. QPRINTK(qdev, RX_STATUS, DEBUG,
  1633. "Chaining page at offset = %d,"
  1634. "for %d bytes to skb.\n",
  1635. lbq_desc->p.pg_chunk.offset, length);
  1636. skb_fill_page_desc(skb, 0, lbq_desc->p.pg_chunk.page,
  1637. lbq_desc->p.pg_chunk.offset,
  1638. length);
  1639. skb->len += length;
  1640. skb->data_len += length;
  1641. skb->truesize += length;
  1642. } else {
  1643. /*
  1644. * The headers and data are in a single large buffer. We
  1645. * copy it to a new skb and let it go. This can happen with
  1646. * jumbo mtu on a non-TCP/UDP frame.
  1647. */
  1648. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1649. skb = netdev_alloc_skb(qdev->ndev, length);
  1650. if (skb == NULL) {
  1651. QPRINTK(qdev, PROBE, DEBUG,
  1652. "No skb available, drop the packet.\n");
  1653. return NULL;
  1654. }
  1655. pci_unmap_page(qdev->pdev,
  1656. pci_unmap_addr(lbq_desc,
  1657. mapaddr),
  1658. pci_unmap_len(lbq_desc, maplen),
  1659. PCI_DMA_FROMDEVICE);
  1660. skb_reserve(skb, NET_IP_ALIGN);
  1661. QPRINTK(qdev, RX_STATUS, DEBUG,
  1662. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1663. skb_fill_page_desc(skb, 0,
  1664. lbq_desc->p.pg_chunk.page,
  1665. lbq_desc->p.pg_chunk.offset,
  1666. length);
  1667. skb->len += length;
  1668. skb->data_len += length;
  1669. skb->truesize += length;
  1670. length -= length;
  1671. __pskb_pull_tail(skb,
  1672. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1673. VLAN_ETH_HLEN : ETH_HLEN);
  1674. }
  1675. } else {
  1676. /*
  1677. * The data is in a chain of large buffers
  1678. * pointed to by a small buffer. We loop
  1679. * thru and chain them to the our small header
  1680. * buffer's skb.
  1681. * frags: There are 18 max frags and our small
  1682. * buffer will hold 32 of them. The thing is,
  1683. * we'll use 3 max for our 9000 byte jumbo
  1684. * frames. If the MTU goes up we could
  1685. * eventually be in trouble.
  1686. */
  1687. int size, i = 0;
  1688. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1689. pci_unmap_single(qdev->pdev,
  1690. pci_unmap_addr(sbq_desc, mapaddr),
  1691. pci_unmap_len(sbq_desc, maplen),
  1692. PCI_DMA_FROMDEVICE);
  1693. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1694. /*
  1695. * This is an non TCP/UDP IP frame, so
  1696. * the headers aren't split into a small
  1697. * buffer. We have to use the small buffer
  1698. * that contains our sg list as our skb to
  1699. * send upstairs. Copy the sg list here to
  1700. * a local buffer and use it to find the
  1701. * pages to chain.
  1702. */
  1703. QPRINTK(qdev, RX_STATUS, DEBUG,
  1704. "%d bytes of headers & data in chain of large.\n", length);
  1705. skb = sbq_desc->p.skb;
  1706. sbq_desc->p.skb = NULL;
  1707. skb_reserve(skb, NET_IP_ALIGN);
  1708. }
  1709. while (length > 0) {
  1710. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1711. size = (length < rx_ring->lbq_buf_size) ? length :
  1712. rx_ring->lbq_buf_size;
  1713. QPRINTK(qdev, RX_STATUS, DEBUG,
  1714. "Adding page %d to skb for %d bytes.\n",
  1715. i, size);
  1716. skb_fill_page_desc(skb, i,
  1717. lbq_desc->p.pg_chunk.page,
  1718. lbq_desc->p.pg_chunk.offset,
  1719. size);
  1720. skb->len += size;
  1721. skb->data_len += size;
  1722. skb->truesize += size;
  1723. length -= size;
  1724. i++;
  1725. }
  1726. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1727. VLAN_ETH_HLEN : ETH_HLEN);
  1728. }
  1729. return skb;
  1730. }
  1731. /* Process an inbound completion from an rx ring. */
  1732. static void ql_process_mac_split_rx_intr(struct ql_adapter *qdev,
  1733. struct rx_ring *rx_ring,
  1734. struct ib_mac_iocb_rsp *ib_mac_rsp,
  1735. u16 vlan_id)
  1736. {
  1737. struct net_device *ndev = qdev->ndev;
  1738. struct sk_buff *skb = NULL;
  1739. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1740. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1741. if (unlikely(!skb)) {
  1742. QPRINTK(qdev, RX_STATUS, DEBUG,
  1743. "No skb available, drop packet.\n");
  1744. rx_ring->rx_dropped++;
  1745. return;
  1746. }
  1747. /* Frame error, so drop the packet. */
  1748. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_ERR_MASK) {
  1749. QPRINTK(qdev, DRV, ERR, "Receive error, flags2 = 0x%x\n",
  1750. ib_mac_rsp->flags2);
  1751. dev_kfree_skb_any(skb);
  1752. rx_ring->rx_errors++;
  1753. return;
  1754. }
  1755. /* The max framesize filter on this chip is set higher than
  1756. * MTU since FCoE uses 2k frames.
  1757. */
  1758. if (skb->len > ndev->mtu + ETH_HLEN) {
  1759. dev_kfree_skb_any(skb);
  1760. rx_ring->rx_dropped++;
  1761. return;
  1762. }
  1763. /* loopback self test for ethtool */
  1764. if (test_bit(QL_SELFTEST, &qdev->flags)) {
  1765. ql_check_lb_frame(qdev, skb);
  1766. dev_kfree_skb_any(skb);
  1767. return;
  1768. }
  1769. prefetch(skb->data);
  1770. skb->dev = ndev;
  1771. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1772. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1773. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1774. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1775. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1776. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1777. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1778. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1779. rx_ring->rx_multicast++;
  1780. }
  1781. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1782. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1783. }
  1784. skb->protocol = eth_type_trans(skb, ndev);
  1785. skb->ip_summed = CHECKSUM_NONE;
  1786. /* If rx checksum is on, and there are no
  1787. * csum or frame errors.
  1788. */
  1789. if (qdev->rx_csum &&
  1790. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK)) {
  1791. /* TCP frame. */
  1792. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) {
  1793. QPRINTK(qdev, RX_STATUS, DEBUG,
  1794. "TCP checksum done!\n");
  1795. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1796. } else if ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1797. (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_V4)) {
  1798. /* Unfragmented ipv4 UDP frame. */
  1799. struct iphdr *iph = (struct iphdr *) skb->data;
  1800. if (!(iph->frag_off &
  1801. cpu_to_be16(IP_MF|IP_OFFSET))) {
  1802. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1803. QPRINTK(qdev, RX_STATUS, DEBUG,
  1804. "TCP checksum done!\n");
  1805. }
  1806. }
  1807. }
  1808. rx_ring->rx_packets++;
  1809. rx_ring->rx_bytes += skb->len;
  1810. skb_record_rx_queue(skb, rx_ring->cq_id);
  1811. if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
  1812. if (qdev->vlgrp &&
  1813. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1814. (vlan_id != 0))
  1815. vlan_gro_receive(&rx_ring->napi, qdev->vlgrp,
  1816. vlan_id, skb);
  1817. else
  1818. napi_gro_receive(&rx_ring->napi, skb);
  1819. } else {
  1820. if (qdev->vlgrp &&
  1821. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) &&
  1822. (vlan_id != 0))
  1823. vlan_hwaccel_receive_skb(skb, qdev->vlgrp, vlan_id);
  1824. else
  1825. netif_receive_skb(skb);
  1826. }
  1827. }
  1828. /* Process an inbound completion from an rx ring. */
  1829. static unsigned long ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1830. struct rx_ring *rx_ring,
  1831. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1832. {
  1833. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1834. u16 vlan_id = (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1835. ((le16_to_cpu(ib_mac_rsp->vlan_id) &
  1836. IB_MAC_IOCB_RSP_VLAN_MASK)) : 0xffff;
  1837. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1838. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV) {
  1839. /* The data and headers are split into
  1840. * separate buffers.
  1841. */
  1842. ql_process_mac_split_rx_intr(qdev, rx_ring, ib_mac_rsp,
  1843. vlan_id);
  1844. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1845. /* The data fit in a single small buffer.
  1846. * Allocate a new skb, copy the data and
  1847. * return the buffer to the free pool.
  1848. */
  1849. ql_process_mac_rx_skb(qdev, rx_ring, ib_mac_rsp,
  1850. length, vlan_id);
  1851. } else if ((ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) &&
  1852. !(ib_mac_rsp->flags1 & IB_MAC_CSUM_ERR_MASK) &&
  1853. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T)) {
  1854. /* TCP packet in a page chunk that's been checksummed.
  1855. * Tack it on to our GRO skb and let it go.
  1856. */
  1857. ql_process_mac_rx_gro_page(qdev, rx_ring, ib_mac_rsp,
  1858. length, vlan_id);
  1859. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1860. /* Non-TCP packet in a page chunk. Allocate an
  1861. * skb, tack it on frags, and send it up.
  1862. */
  1863. ql_process_mac_rx_page(qdev, rx_ring, ib_mac_rsp,
  1864. length, vlan_id);
  1865. } else {
  1866. struct bq_desc *lbq_desc;
  1867. /* Free small buffer that holds the IAL */
  1868. lbq_desc = ql_get_curr_sbuf(rx_ring);
  1869. QPRINTK(qdev, RX_ERR, ERR, "Dropping frame, len %d > mtu %d\n",
  1870. length, qdev->ndev->mtu);
  1871. /* Unwind the large buffers for this frame. */
  1872. while (length > 0) {
  1873. lbq_desc = ql_get_curr_lchunk(qdev, rx_ring);
  1874. length -= (length < rx_ring->lbq_buf_size) ?
  1875. length : rx_ring->lbq_buf_size;
  1876. put_page(lbq_desc->p.pg_chunk.page);
  1877. }
  1878. }
  1879. return (unsigned long)length;
  1880. }
  1881. /* Process an outbound completion from an rx ring. */
  1882. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1883. struct ob_mac_iocb_rsp *mac_rsp)
  1884. {
  1885. struct tx_ring *tx_ring;
  1886. struct tx_ring_desc *tx_ring_desc;
  1887. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1888. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1889. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1890. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1891. tx_ring->tx_bytes += (tx_ring_desc->skb)->len;
  1892. tx_ring->tx_packets++;
  1893. dev_kfree_skb(tx_ring_desc->skb);
  1894. tx_ring_desc->skb = NULL;
  1895. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1896. OB_MAC_IOCB_RSP_S |
  1897. OB_MAC_IOCB_RSP_L |
  1898. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1899. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1900. QPRINTK(qdev, TX_DONE, WARNING,
  1901. "Total descriptor length did not match transfer length.\n");
  1902. }
  1903. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1904. QPRINTK(qdev, TX_DONE, WARNING,
  1905. "Frame too short to be legal, not sent.\n");
  1906. }
  1907. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1908. QPRINTK(qdev, TX_DONE, WARNING,
  1909. "Frame too long, but sent anyway.\n");
  1910. }
  1911. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1912. QPRINTK(qdev, TX_DONE, WARNING,
  1913. "PCI backplane error. Frame not sent.\n");
  1914. }
  1915. }
  1916. atomic_inc(&tx_ring->tx_count);
  1917. }
  1918. /* Fire up a handler to reset the MPI processor. */
  1919. void ql_queue_fw_error(struct ql_adapter *qdev)
  1920. {
  1921. ql_link_off(qdev);
  1922. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1923. }
  1924. void ql_queue_asic_error(struct ql_adapter *qdev)
  1925. {
  1926. ql_link_off(qdev);
  1927. ql_disable_interrupts(qdev);
  1928. /* Clear adapter up bit to signal the recovery
  1929. * process that it shouldn't kill the reset worker
  1930. * thread
  1931. */
  1932. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  1933. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1934. }
  1935. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1936. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1937. {
  1938. switch (ib_ae_rsp->event) {
  1939. case MGMT_ERR_EVENT:
  1940. QPRINTK(qdev, RX_ERR, ERR,
  1941. "Management Processor Fatal Error.\n");
  1942. ql_queue_fw_error(qdev);
  1943. return;
  1944. case CAM_LOOKUP_ERR_EVENT:
  1945. QPRINTK(qdev, LINK, ERR,
  1946. "Multiple CAM hits lookup occurred.\n");
  1947. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1948. ql_queue_asic_error(qdev);
  1949. return;
  1950. case SOFT_ECC_ERROR_EVENT:
  1951. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1952. ql_queue_asic_error(qdev);
  1953. break;
  1954. case PCI_ERR_ANON_BUF_RD:
  1955. QPRINTK(qdev, RX_ERR, ERR,
  1956. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1957. ib_ae_rsp->q_id);
  1958. ql_queue_asic_error(qdev);
  1959. break;
  1960. default:
  1961. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1962. ib_ae_rsp->event);
  1963. ql_queue_asic_error(qdev);
  1964. break;
  1965. }
  1966. }
  1967. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1968. {
  1969. struct ql_adapter *qdev = rx_ring->qdev;
  1970. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1971. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1972. int count = 0;
  1973. struct tx_ring *tx_ring;
  1974. /* While there are entries in the completion queue. */
  1975. while (prod != rx_ring->cnsmr_idx) {
  1976. QPRINTK(qdev, RX_STATUS, DEBUG,
  1977. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1978. prod, rx_ring->cnsmr_idx);
  1979. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1980. rmb();
  1981. switch (net_rsp->opcode) {
  1982. case OPCODE_OB_MAC_TSO_IOCB:
  1983. case OPCODE_OB_MAC_IOCB:
  1984. ql_process_mac_tx_intr(qdev, net_rsp);
  1985. break;
  1986. default:
  1987. QPRINTK(qdev, RX_STATUS, DEBUG,
  1988. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1989. net_rsp->opcode);
  1990. }
  1991. count++;
  1992. ql_update_cq(rx_ring);
  1993. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1994. }
  1995. ql_write_cq_idx(rx_ring);
  1996. tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1997. if (__netif_subqueue_stopped(qdev->ndev, tx_ring->wq_id) &&
  1998. net_rsp != NULL) {
  1999. if (atomic_read(&tx_ring->queue_stopped) &&
  2000. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  2001. /*
  2002. * The queue got stopped because the tx_ring was full.
  2003. * Wake it up, because it's now at least 25% empty.
  2004. */
  2005. netif_wake_subqueue(qdev->ndev, tx_ring->wq_id);
  2006. }
  2007. return count;
  2008. }
  2009. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  2010. {
  2011. struct ql_adapter *qdev = rx_ring->qdev;
  2012. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2013. struct ql_net_rsp_iocb *net_rsp;
  2014. int count = 0;
  2015. /* While there are entries in the completion queue. */
  2016. while (prod != rx_ring->cnsmr_idx) {
  2017. QPRINTK(qdev, RX_STATUS, DEBUG,
  2018. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  2019. prod, rx_ring->cnsmr_idx);
  2020. net_rsp = rx_ring->curr_entry;
  2021. rmb();
  2022. switch (net_rsp->opcode) {
  2023. case OPCODE_IB_MAC_IOCB:
  2024. ql_process_mac_rx_intr(qdev, rx_ring,
  2025. (struct ib_mac_iocb_rsp *)
  2026. net_rsp);
  2027. break;
  2028. case OPCODE_IB_AE_IOCB:
  2029. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  2030. net_rsp);
  2031. break;
  2032. default:
  2033. {
  2034. QPRINTK(qdev, RX_STATUS, DEBUG,
  2035. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  2036. net_rsp->opcode);
  2037. }
  2038. }
  2039. count++;
  2040. ql_update_cq(rx_ring);
  2041. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  2042. if (count == budget)
  2043. break;
  2044. }
  2045. ql_update_buffer_queues(qdev, rx_ring);
  2046. ql_write_cq_idx(rx_ring);
  2047. return count;
  2048. }
  2049. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  2050. {
  2051. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  2052. struct ql_adapter *qdev = rx_ring->qdev;
  2053. struct rx_ring *trx_ring;
  2054. int i, work_done = 0;
  2055. struct intr_context *ctx = &qdev->intr_context[rx_ring->cq_id];
  2056. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  2057. rx_ring->cq_id);
  2058. /* Service the TX rings first. They start
  2059. * right after the RSS rings. */
  2060. for (i = qdev->rss_ring_count; i < qdev->rx_ring_count; i++) {
  2061. trx_ring = &qdev->rx_ring[i];
  2062. /* If this TX completion ring belongs to this vector and
  2063. * it's not empty then service it.
  2064. */
  2065. if ((ctx->irq_mask & (1 << trx_ring->cq_id)) &&
  2066. (ql_read_sh_reg(trx_ring->prod_idx_sh_reg) !=
  2067. trx_ring->cnsmr_idx)) {
  2068. QPRINTK(qdev, INTR, DEBUG,
  2069. "%s: Servicing TX completion ring %d.\n",
  2070. __func__, trx_ring->cq_id);
  2071. ql_clean_outbound_rx_ring(trx_ring);
  2072. }
  2073. }
  2074. /*
  2075. * Now service the RSS ring if it's active.
  2076. */
  2077. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  2078. rx_ring->cnsmr_idx) {
  2079. QPRINTK(qdev, INTR, DEBUG,
  2080. "%s: Servicing RX completion ring %d.\n",
  2081. __func__, rx_ring->cq_id);
  2082. work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  2083. }
  2084. if (work_done < budget) {
  2085. napi_complete(napi);
  2086. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  2087. }
  2088. return work_done;
  2089. }
  2090. static void qlge_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  2091. {
  2092. struct ql_adapter *qdev = netdev_priv(ndev);
  2093. qdev->vlgrp = grp;
  2094. if (grp) {
  2095. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  2096. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  2097. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  2098. } else {
  2099. QPRINTK(qdev, IFUP, DEBUG,
  2100. "Turning off VLAN in NIC_RCV_CFG.\n");
  2101. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  2102. }
  2103. }
  2104. static void qlge_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  2105. {
  2106. struct ql_adapter *qdev = netdev_priv(ndev);
  2107. u32 enable_bit = MAC_ADDR_E;
  2108. int status;
  2109. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2110. if (status)
  2111. return;
  2112. if (ql_set_mac_addr_reg
  2113. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  2114. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  2115. }
  2116. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2117. }
  2118. static void qlge_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  2119. {
  2120. struct ql_adapter *qdev = netdev_priv(ndev);
  2121. u32 enable_bit = 0;
  2122. int status;
  2123. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  2124. if (status)
  2125. return;
  2126. if (ql_set_mac_addr_reg
  2127. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  2128. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  2129. }
  2130. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  2131. }
  2132. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  2133. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  2134. {
  2135. struct rx_ring *rx_ring = dev_id;
  2136. napi_schedule(&rx_ring->napi);
  2137. return IRQ_HANDLED;
  2138. }
  2139. /* This handles a fatal error, MPI activity, and the default
  2140. * rx_ring in an MSI-X multiple vector environment.
  2141. * In MSI/Legacy environment it also process the rest of
  2142. * the rx_rings.
  2143. */
  2144. static irqreturn_t qlge_isr(int irq, void *dev_id)
  2145. {
  2146. struct rx_ring *rx_ring = dev_id;
  2147. struct ql_adapter *qdev = rx_ring->qdev;
  2148. struct intr_context *intr_context = &qdev->intr_context[0];
  2149. u32 var;
  2150. int work_done = 0;
  2151. spin_lock(&qdev->hw_lock);
  2152. if (atomic_read(&qdev->intr_context[0].irq_cnt)) {
  2153. QPRINTK(qdev, INTR, DEBUG, "Shared Interrupt, Not ours!\n");
  2154. spin_unlock(&qdev->hw_lock);
  2155. return IRQ_NONE;
  2156. }
  2157. spin_unlock(&qdev->hw_lock);
  2158. var = ql_disable_completion_interrupt(qdev, intr_context->intr);
  2159. /*
  2160. * Check for fatal error.
  2161. */
  2162. if (var & STS_FE) {
  2163. ql_queue_asic_error(qdev);
  2164. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  2165. var = ql_read32(qdev, ERR_STS);
  2166. QPRINTK(qdev, INTR, ERR,
  2167. "Resetting chip. Error Status Register = 0x%x\n", var);
  2168. return IRQ_HANDLED;
  2169. }
  2170. /*
  2171. * Check MPI processor activity.
  2172. */
  2173. if ((var & STS_PI) &&
  2174. (ql_read32(qdev, INTR_MASK) & INTR_MASK_PI)) {
  2175. /*
  2176. * We've got an async event or mailbox completion.
  2177. * Handle it and clear the source of the interrupt.
  2178. */
  2179. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  2180. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2181. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16));
  2182. queue_delayed_work_on(smp_processor_id(),
  2183. qdev->workqueue, &qdev->mpi_work, 0);
  2184. work_done++;
  2185. }
  2186. /*
  2187. * Get the bit-mask that shows the active queues for this
  2188. * pass. Compare it to the queues that this irq services
  2189. * and call napi if there's a match.
  2190. */
  2191. var = ql_read32(qdev, ISR1);
  2192. if (var & intr_context->irq_mask) {
  2193. QPRINTK(qdev, INTR, INFO,
  2194. "Waking handler for rx_ring[0].\n");
  2195. ql_disable_completion_interrupt(qdev, intr_context->intr);
  2196. napi_schedule(&rx_ring->napi);
  2197. work_done++;
  2198. }
  2199. ql_enable_completion_interrupt(qdev, intr_context->intr);
  2200. return work_done ? IRQ_HANDLED : IRQ_NONE;
  2201. }
  2202. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2203. {
  2204. if (skb_is_gso(skb)) {
  2205. int err;
  2206. if (skb_header_cloned(skb)) {
  2207. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  2208. if (err)
  2209. return err;
  2210. }
  2211. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2212. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  2213. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2214. mac_iocb_ptr->total_hdrs_len =
  2215. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  2216. mac_iocb_ptr->net_trans_offset =
  2217. cpu_to_le16(skb_network_offset(skb) |
  2218. skb_transport_offset(skb)
  2219. << OB_MAC_TRANSPORT_HDR_SHIFT);
  2220. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  2221. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  2222. if (likely(skb->protocol == htons(ETH_P_IP))) {
  2223. struct iphdr *iph = ip_hdr(skb);
  2224. iph->check = 0;
  2225. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2226. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  2227. iph->daddr, 0,
  2228. IPPROTO_TCP,
  2229. 0);
  2230. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  2231. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  2232. tcp_hdr(skb)->check =
  2233. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  2234. &ipv6_hdr(skb)->daddr,
  2235. 0, IPPROTO_TCP, 0);
  2236. }
  2237. return 1;
  2238. }
  2239. return 0;
  2240. }
  2241. static void ql_hw_csum_setup(struct sk_buff *skb,
  2242. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  2243. {
  2244. int len;
  2245. struct iphdr *iph = ip_hdr(skb);
  2246. __sum16 *check;
  2247. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  2248. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  2249. mac_iocb_ptr->net_trans_offset =
  2250. cpu_to_le16(skb_network_offset(skb) |
  2251. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  2252. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  2253. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  2254. if (likely(iph->protocol == IPPROTO_TCP)) {
  2255. check = &(tcp_hdr(skb)->check);
  2256. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  2257. mac_iocb_ptr->total_hdrs_len =
  2258. cpu_to_le16(skb_transport_offset(skb) +
  2259. (tcp_hdr(skb)->doff << 2));
  2260. } else {
  2261. check = &(udp_hdr(skb)->check);
  2262. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  2263. mac_iocb_ptr->total_hdrs_len =
  2264. cpu_to_le16(skb_transport_offset(skb) +
  2265. sizeof(struct udphdr));
  2266. }
  2267. *check = ~csum_tcpudp_magic(iph->saddr,
  2268. iph->daddr, len, iph->protocol, 0);
  2269. }
  2270. static netdev_tx_t qlge_send(struct sk_buff *skb, struct net_device *ndev)
  2271. {
  2272. struct tx_ring_desc *tx_ring_desc;
  2273. struct ob_mac_iocb_req *mac_iocb_ptr;
  2274. struct ql_adapter *qdev = netdev_priv(ndev);
  2275. int tso;
  2276. struct tx_ring *tx_ring;
  2277. u32 tx_ring_idx = (u32) skb->queue_mapping;
  2278. tx_ring = &qdev->tx_ring[tx_ring_idx];
  2279. if (skb_padto(skb, ETH_ZLEN))
  2280. return NETDEV_TX_OK;
  2281. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  2282. QPRINTK(qdev, TX_QUEUED, INFO,
  2283. "%s: shutting down tx queue %d du to lack of resources.\n",
  2284. __func__, tx_ring_idx);
  2285. netif_stop_subqueue(ndev, tx_ring->wq_id);
  2286. atomic_inc(&tx_ring->queue_stopped);
  2287. tx_ring->tx_errors++;
  2288. return NETDEV_TX_BUSY;
  2289. }
  2290. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  2291. mac_iocb_ptr = tx_ring_desc->queue_entry;
  2292. memset((void *)mac_iocb_ptr, 0, sizeof(*mac_iocb_ptr));
  2293. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  2294. mac_iocb_ptr->tid = tx_ring_desc->index;
  2295. /* We use the upper 32-bits to store the tx queue for this IO.
  2296. * When we get the completion we can use it to establish the context.
  2297. */
  2298. mac_iocb_ptr->txq_idx = tx_ring_idx;
  2299. tx_ring_desc->skb = skb;
  2300. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  2301. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  2302. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  2303. vlan_tx_tag_get(skb));
  2304. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  2305. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  2306. }
  2307. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2308. if (tso < 0) {
  2309. dev_kfree_skb_any(skb);
  2310. return NETDEV_TX_OK;
  2311. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  2312. ql_hw_csum_setup(skb,
  2313. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  2314. }
  2315. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) !=
  2316. NETDEV_TX_OK) {
  2317. QPRINTK(qdev, TX_QUEUED, ERR,
  2318. "Could not map the segments.\n");
  2319. tx_ring->tx_errors++;
  2320. return NETDEV_TX_BUSY;
  2321. }
  2322. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  2323. tx_ring->prod_idx++;
  2324. if (tx_ring->prod_idx == tx_ring->wq_len)
  2325. tx_ring->prod_idx = 0;
  2326. wmb();
  2327. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  2328. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  2329. tx_ring->prod_idx, skb->len);
  2330. atomic_dec(&tx_ring->tx_count);
  2331. return NETDEV_TX_OK;
  2332. }
  2333. static void ql_free_shadow_space(struct ql_adapter *qdev)
  2334. {
  2335. if (qdev->rx_ring_shadow_reg_area) {
  2336. pci_free_consistent(qdev->pdev,
  2337. PAGE_SIZE,
  2338. qdev->rx_ring_shadow_reg_area,
  2339. qdev->rx_ring_shadow_reg_dma);
  2340. qdev->rx_ring_shadow_reg_area = NULL;
  2341. }
  2342. if (qdev->tx_ring_shadow_reg_area) {
  2343. pci_free_consistent(qdev->pdev,
  2344. PAGE_SIZE,
  2345. qdev->tx_ring_shadow_reg_area,
  2346. qdev->tx_ring_shadow_reg_dma);
  2347. qdev->tx_ring_shadow_reg_area = NULL;
  2348. }
  2349. }
  2350. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  2351. {
  2352. qdev->rx_ring_shadow_reg_area =
  2353. pci_alloc_consistent(qdev->pdev,
  2354. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  2355. if (qdev->rx_ring_shadow_reg_area == NULL) {
  2356. QPRINTK(qdev, IFUP, ERR,
  2357. "Allocation of RX shadow space failed.\n");
  2358. return -ENOMEM;
  2359. }
  2360. memset(qdev->rx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2361. qdev->tx_ring_shadow_reg_area =
  2362. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  2363. &qdev->tx_ring_shadow_reg_dma);
  2364. if (qdev->tx_ring_shadow_reg_area == NULL) {
  2365. QPRINTK(qdev, IFUP, ERR,
  2366. "Allocation of TX shadow space failed.\n");
  2367. goto err_wqp_sh_area;
  2368. }
  2369. memset(qdev->tx_ring_shadow_reg_area, 0, PAGE_SIZE);
  2370. return 0;
  2371. err_wqp_sh_area:
  2372. pci_free_consistent(qdev->pdev,
  2373. PAGE_SIZE,
  2374. qdev->rx_ring_shadow_reg_area,
  2375. qdev->rx_ring_shadow_reg_dma);
  2376. return -ENOMEM;
  2377. }
  2378. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2379. {
  2380. struct tx_ring_desc *tx_ring_desc;
  2381. int i;
  2382. struct ob_mac_iocb_req *mac_iocb_ptr;
  2383. mac_iocb_ptr = tx_ring->wq_base;
  2384. tx_ring_desc = tx_ring->q;
  2385. for (i = 0; i < tx_ring->wq_len; i++) {
  2386. tx_ring_desc->index = i;
  2387. tx_ring_desc->skb = NULL;
  2388. tx_ring_desc->queue_entry = mac_iocb_ptr;
  2389. mac_iocb_ptr++;
  2390. tx_ring_desc++;
  2391. }
  2392. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  2393. atomic_set(&tx_ring->queue_stopped, 0);
  2394. }
  2395. static void ql_free_tx_resources(struct ql_adapter *qdev,
  2396. struct tx_ring *tx_ring)
  2397. {
  2398. if (tx_ring->wq_base) {
  2399. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2400. tx_ring->wq_base, tx_ring->wq_base_dma);
  2401. tx_ring->wq_base = NULL;
  2402. }
  2403. kfree(tx_ring->q);
  2404. tx_ring->q = NULL;
  2405. }
  2406. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  2407. struct tx_ring *tx_ring)
  2408. {
  2409. tx_ring->wq_base =
  2410. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  2411. &tx_ring->wq_base_dma);
  2412. if ((tx_ring->wq_base == NULL) ||
  2413. tx_ring->wq_base_dma & WQ_ADDR_ALIGN) {
  2414. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  2415. return -ENOMEM;
  2416. }
  2417. tx_ring->q =
  2418. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  2419. if (tx_ring->q == NULL)
  2420. goto err;
  2421. return 0;
  2422. err:
  2423. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  2424. tx_ring->wq_base, tx_ring->wq_base_dma);
  2425. return -ENOMEM;
  2426. }
  2427. static void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2428. {
  2429. struct bq_desc *lbq_desc;
  2430. uint32_t curr_idx, clean_idx;
  2431. curr_idx = rx_ring->lbq_curr_idx;
  2432. clean_idx = rx_ring->lbq_clean_idx;
  2433. while (curr_idx != clean_idx) {
  2434. lbq_desc = &rx_ring->lbq[curr_idx];
  2435. if (lbq_desc->p.pg_chunk.last_flag) {
  2436. pci_unmap_page(qdev->pdev,
  2437. lbq_desc->p.pg_chunk.map,
  2438. ql_lbq_block_size(qdev),
  2439. PCI_DMA_FROMDEVICE);
  2440. lbq_desc->p.pg_chunk.last_flag = 0;
  2441. }
  2442. put_page(lbq_desc->p.pg_chunk.page);
  2443. lbq_desc->p.pg_chunk.page = NULL;
  2444. if (++curr_idx == rx_ring->lbq_len)
  2445. curr_idx = 0;
  2446. }
  2447. }
  2448. static void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2449. {
  2450. int i;
  2451. struct bq_desc *sbq_desc;
  2452. for (i = 0; i < rx_ring->sbq_len; i++) {
  2453. sbq_desc = &rx_ring->sbq[i];
  2454. if (sbq_desc == NULL) {
  2455. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  2456. return;
  2457. }
  2458. if (sbq_desc->p.skb) {
  2459. pci_unmap_single(qdev->pdev,
  2460. pci_unmap_addr(sbq_desc, mapaddr),
  2461. pci_unmap_len(sbq_desc, maplen),
  2462. PCI_DMA_FROMDEVICE);
  2463. dev_kfree_skb(sbq_desc->p.skb);
  2464. sbq_desc->p.skb = NULL;
  2465. }
  2466. }
  2467. }
  2468. /* Free all large and small rx buffers associated
  2469. * with the completion queues for this device.
  2470. */
  2471. static void ql_free_rx_buffers(struct ql_adapter *qdev)
  2472. {
  2473. int i;
  2474. struct rx_ring *rx_ring;
  2475. for (i = 0; i < qdev->rx_ring_count; i++) {
  2476. rx_ring = &qdev->rx_ring[i];
  2477. if (rx_ring->lbq)
  2478. ql_free_lbq_buffers(qdev, rx_ring);
  2479. if (rx_ring->sbq)
  2480. ql_free_sbq_buffers(qdev, rx_ring);
  2481. }
  2482. }
  2483. static void ql_alloc_rx_buffers(struct ql_adapter *qdev)
  2484. {
  2485. struct rx_ring *rx_ring;
  2486. int i;
  2487. for (i = 0; i < qdev->rx_ring_count; i++) {
  2488. rx_ring = &qdev->rx_ring[i];
  2489. if (rx_ring->type != TX_Q)
  2490. ql_update_buffer_queues(qdev, rx_ring);
  2491. }
  2492. }
  2493. static void ql_init_lbq_ring(struct ql_adapter *qdev,
  2494. struct rx_ring *rx_ring)
  2495. {
  2496. int i;
  2497. struct bq_desc *lbq_desc;
  2498. __le64 *bq = rx_ring->lbq_base;
  2499. memset(rx_ring->lbq, 0, rx_ring->lbq_len * sizeof(struct bq_desc));
  2500. for (i = 0; i < rx_ring->lbq_len; i++) {
  2501. lbq_desc = &rx_ring->lbq[i];
  2502. memset(lbq_desc, 0, sizeof(*lbq_desc));
  2503. lbq_desc->index = i;
  2504. lbq_desc->addr = bq;
  2505. bq++;
  2506. }
  2507. }
  2508. static void ql_init_sbq_ring(struct ql_adapter *qdev,
  2509. struct rx_ring *rx_ring)
  2510. {
  2511. int i;
  2512. struct bq_desc *sbq_desc;
  2513. __le64 *bq = rx_ring->sbq_base;
  2514. memset(rx_ring->sbq, 0, rx_ring->sbq_len * sizeof(struct bq_desc));
  2515. for (i = 0; i < rx_ring->sbq_len; i++) {
  2516. sbq_desc = &rx_ring->sbq[i];
  2517. memset(sbq_desc, 0, sizeof(*sbq_desc));
  2518. sbq_desc->index = i;
  2519. sbq_desc->addr = bq;
  2520. bq++;
  2521. }
  2522. }
  2523. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2524. struct rx_ring *rx_ring)
  2525. {
  2526. /* Free the small buffer queue. */
  2527. if (rx_ring->sbq_base) {
  2528. pci_free_consistent(qdev->pdev,
  2529. rx_ring->sbq_size,
  2530. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2531. rx_ring->sbq_base = NULL;
  2532. }
  2533. /* Free the small buffer queue control blocks. */
  2534. kfree(rx_ring->sbq);
  2535. rx_ring->sbq = NULL;
  2536. /* Free the large buffer queue. */
  2537. if (rx_ring->lbq_base) {
  2538. pci_free_consistent(qdev->pdev,
  2539. rx_ring->lbq_size,
  2540. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2541. rx_ring->lbq_base = NULL;
  2542. }
  2543. /* Free the large buffer queue control blocks. */
  2544. kfree(rx_ring->lbq);
  2545. rx_ring->lbq = NULL;
  2546. /* Free the rx queue. */
  2547. if (rx_ring->cq_base) {
  2548. pci_free_consistent(qdev->pdev,
  2549. rx_ring->cq_size,
  2550. rx_ring->cq_base, rx_ring->cq_base_dma);
  2551. rx_ring->cq_base = NULL;
  2552. }
  2553. }
  2554. /* Allocate queues and buffers for this completions queue based
  2555. * on the values in the parameter structure. */
  2556. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2557. struct rx_ring *rx_ring)
  2558. {
  2559. /*
  2560. * Allocate the completion queue for this rx_ring.
  2561. */
  2562. rx_ring->cq_base =
  2563. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2564. &rx_ring->cq_base_dma);
  2565. if (rx_ring->cq_base == NULL) {
  2566. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2567. return -ENOMEM;
  2568. }
  2569. if (rx_ring->sbq_len) {
  2570. /*
  2571. * Allocate small buffer queue.
  2572. */
  2573. rx_ring->sbq_base =
  2574. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2575. &rx_ring->sbq_base_dma);
  2576. if (rx_ring->sbq_base == NULL) {
  2577. QPRINTK(qdev, IFUP, ERR,
  2578. "Small buffer queue allocation failed.\n");
  2579. goto err_mem;
  2580. }
  2581. /*
  2582. * Allocate small buffer queue control blocks.
  2583. */
  2584. rx_ring->sbq =
  2585. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2586. GFP_KERNEL);
  2587. if (rx_ring->sbq == NULL) {
  2588. QPRINTK(qdev, IFUP, ERR,
  2589. "Small buffer queue control block allocation failed.\n");
  2590. goto err_mem;
  2591. }
  2592. ql_init_sbq_ring(qdev, rx_ring);
  2593. }
  2594. if (rx_ring->lbq_len) {
  2595. /*
  2596. * Allocate large buffer queue.
  2597. */
  2598. rx_ring->lbq_base =
  2599. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2600. &rx_ring->lbq_base_dma);
  2601. if (rx_ring->lbq_base == NULL) {
  2602. QPRINTK(qdev, IFUP, ERR,
  2603. "Large buffer queue allocation failed.\n");
  2604. goto err_mem;
  2605. }
  2606. /*
  2607. * Allocate large buffer queue control blocks.
  2608. */
  2609. rx_ring->lbq =
  2610. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2611. GFP_KERNEL);
  2612. if (rx_ring->lbq == NULL) {
  2613. QPRINTK(qdev, IFUP, ERR,
  2614. "Large buffer queue control block allocation failed.\n");
  2615. goto err_mem;
  2616. }
  2617. ql_init_lbq_ring(qdev, rx_ring);
  2618. }
  2619. return 0;
  2620. err_mem:
  2621. ql_free_rx_resources(qdev, rx_ring);
  2622. return -ENOMEM;
  2623. }
  2624. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2625. {
  2626. struct tx_ring *tx_ring;
  2627. struct tx_ring_desc *tx_ring_desc;
  2628. int i, j;
  2629. /*
  2630. * Loop through all queues and free
  2631. * any resources.
  2632. */
  2633. for (j = 0; j < qdev->tx_ring_count; j++) {
  2634. tx_ring = &qdev->tx_ring[j];
  2635. for (i = 0; i < tx_ring->wq_len; i++) {
  2636. tx_ring_desc = &tx_ring->q[i];
  2637. if (tx_ring_desc && tx_ring_desc->skb) {
  2638. QPRINTK(qdev, IFDOWN, ERR,
  2639. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2640. tx_ring_desc->skb, j,
  2641. tx_ring_desc->index);
  2642. ql_unmap_send(qdev, tx_ring_desc,
  2643. tx_ring_desc->map_cnt);
  2644. dev_kfree_skb(tx_ring_desc->skb);
  2645. tx_ring_desc->skb = NULL;
  2646. }
  2647. }
  2648. }
  2649. }
  2650. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2651. {
  2652. int i;
  2653. for (i = 0; i < qdev->tx_ring_count; i++)
  2654. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2655. for (i = 0; i < qdev->rx_ring_count; i++)
  2656. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2657. ql_free_shadow_space(qdev);
  2658. }
  2659. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2660. {
  2661. int i;
  2662. /* Allocate space for our shadow registers and such. */
  2663. if (ql_alloc_shadow_space(qdev))
  2664. return -ENOMEM;
  2665. for (i = 0; i < qdev->rx_ring_count; i++) {
  2666. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2667. QPRINTK(qdev, IFUP, ERR,
  2668. "RX resource allocation failed.\n");
  2669. goto err_mem;
  2670. }
  2671. }
  2672. /* Allocate tx queue resources */
  2673. for (i = 0; i < qdev->tx_ring_count; i++) {
  2674. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2675. QPRINTK(qdev, IFUP, ERR,
  2676. "TX resource allocation failed.\n");
  2677. goto err_mem;
  2678. }
  2679. }
  2680. return 0;
  2681. err_mem:
  2682. ql_free_mem_resources(qdev);
  2683. return -ENOMEM;
  2684. }
  2685. /* Set up the rx ring control block and pass it to the chip.
  2686. * The control block is defined as
  2687. * "Completion Queue Initialization Control Block", or cqicb.
  2688. */
  2689. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2690. {
  2691. struct cqicb *cqicb = &rx_ring->cqicb;
  2692. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2693. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2694. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2695. (rx_ring->cq_id * RX_RING_SHADOW_SPACE);
  2696. void __iomem *doorbell_area =
  2697. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2698. int err = 0;
  2699. u16 bq_len;
  2700. u64 tmp;
  2701. __le64 *base_indirect_ptr;
  2702. int page_entries;
  2703. /* Set up the shadow registers for this ring. */
  2704. rx_ring->prod_idx_sh_reg = shadow_reg;
  2705. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2706. *rx_ring->prod_idx_sh_reg = 0;
  2707. shadow_reg += sizeof(u64);
  2708. shadow_reg_dma += sizeof(u64);
  2709. rx_ring->lbq_base_indirect = shadow_reg;
  2710. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2711. shadow_reg += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2712. shadow_reg_dma += (sizeof(u64) * MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2713. rx_ring->sbq_base_indirect = shadow_reg;
  2714. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2715. /* PCI doorbell mem area + 0x00 for consumer index register */
  2716. rx_ring->cnsmr_idx_db_reg = (u32 __iomem *) doorbell_area;
  2717. rx_ring->cnsmr_idx = 0;
  2718. rx_ring->curr_entry = rx_ring->cq_base;
  2719. /* PCI doorbell mem area + 0x04 for valid register */
  2720. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2721. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2722. rx_ring->lbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x18);
  2723. /* PCI doorbell mem area + 0x1c */
  2724. rx_ring->sbq_prod_idx_db_reg = (u32 __iomem *) (doorbell_area + 0x1c);
  2725. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2726. cqicb->msix_vect = rx_ring->irq;
  2727. bq_len = (rx_ring->cq_len == 65536) ? 0 : (u16) rx_ring->cq_len;
  2728. cqicb->len = cpu_to_le16(bq_len | LEN_V | LEN_CPP_CONT);
  2729. cqicb->addr = cpu_to_le64(rx_ring->cq_base_dma);
  2730. cqicb->prod_idx_addr = cpu_to_le64(rx_ring->prod_idx_sh_reg_dma);
  2731. /*
  2732. * Set up the control block load flags.
  2733. */
  2734. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2735. FLAGS_LV | /* Load MSI-X vector */
  2736. FLAGS_LI; /* Load irq delay values */
  2737. if (rx_ring->lbq_len) {
  2738. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2739. tmp = (u64)rx_ring->lbq_base_dma;
  2740. base_indirect_ptr = (__le64 *) rx_ring->lbq_base_indirect;
  2741. page_entries = 0;
  2742. do {
  2743. *base_indirect_ptr = cpu_to_le64(tmp);
  2744. tmp += DB_PAGE_SIZE;
  2745. base_indirect_ptr++;
  2746. page_entries++;
  2747. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->lbq_len));
  2748. cqicb->lbq_addr =
  2749. cpu_to_le64(rx_ring->lbq_base_indirect_dma);
  2750. bq_len = (rx_ring->lbq_buf_size == 65536) ? 0 :
  2751. (u16) rx_ring->lbq_buf_size;
  2752. cqicb->lbq_buf_size = cpu_to_le16(bq_len);
  2753. bq_len = (rx_ring->lbq_len == 65536) ? 0 :
  2754. (u16) rx_ring->lbq_len;
  2755. cqicb->lbq_len = cpu_to_le16(bq_len);
  2756. rx_ring->lbq_prod_idx = 0;
  2757. rx_ring->lbq_curr_idx = 0;
  2758. rx_ring->lbq_clean_idx = 0;
  2759. rx_ring->lbq_free_cnt = rx_ring->lbq_len;
  2760. }
  2761. if (rx_ring->sbq_len) {
  2762. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2763. tmp = (u64)rx_ring->sbq_base_dma;
  2764. base_indirect_ptr = (__le64 *) rx_ring->sbq_base_indirect;
  2765. page_entries = 0;
  2766. do {
  2767. *base_indirect_ptr = cpu_to_le64(tmp);
  2768. tmp += DB_PAGE_SIZE;
  2769. base_indirect_ptr++;
  2770. page_entries++;
  2771. } while (page_entries < MAX_DB_PAGES_PER_BQ(rx_ring->sbq_len));
  2772. cqicb->sbq_addr =
  2773. cpu_to_le64(rx_ring->sbq_base_indirect_dma);
  2774. cqicb->sbq_buf_size =
  2775. cpu_to_le16((u16)(rx_ring->sbq_buf_size));
  2776. bq_len = (rx_ring->sbq_len == 65536) ? 0 :
  2777. (u16) rx_ring->sbq_len;
  2778. cqicb->sbq_len = cpu_to_le16(bq_len);
  2779. rx_ring->sbq_prod_idx = 0;
  2780. rx_ring->sbq_curr_idx = 0;
  2781. rx_ring->sbq_clean_idx = 0;
  2782. rx_ring->sbq_free_cnt = rx_ring->sbq_len;
  2783. }
  2784. switch (rx_ring->type) {
  2785. case TX_Q:
  2786. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2787. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2788. break;
  2789. case RX_Q:
  2790. /* Inbound completion handling rx_rings run in
  2791. * separate NAPI contexts.
  2792. */
  2793. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2794. 64);
  2795. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2796. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2797. break;
  2798. default:
  2799. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2800. rx_ring->type);
  2801. }
  2802. QPRINTK(qdev, IFUP, DEBUG, "Initializing rx work queue.\n");
  2803. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2804. CFG_LCQ, rx_ring->cq_id);
  2805. if (err) {
  2806. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2807. return err;
  2808. }
  2809. return err;
  2810. }
  2811. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2812. {
  2813. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2814. void __iomem *doorbell_area =
  2815. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2816. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2817. (tx_ring->wq_id * sizeof(u64));
  2818. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2819. (tx_ring->wq_id * sizeof(u64));
  2820. int err = 0;
  2821. /*
  2822. * Assign doorbell registers for this tx_ring.
  2823. */
  2824. /* TX PCI doorbell mem area for tx producer index */
  2825. tx_ring->prod_idx_db_reg = (u32 __iomem *) doorbell_area;
  2826. tx_ring->prod_idx = 0;
  2827. /* TX PCI doorbell mem area + 0x04 */
  2828. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2829. /*
  2830. * Assign shadow registers for this tx_ring.
  2831. */
  2832. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2833. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2834. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2835. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2836. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2837. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2838. wqicb->rid = 0;
  2839. wqicb->addr = cpu_to_le64(tx_ring->wq_base_dma);
  2840. wqicb->cnsmr_idx_addr = cpu_to_le64(tx_ring->cnsmr_idx_sh_reg_dma);
  2841. ql_init_tx_ring(qdev, tx_ring);
  2842. err = ql_write_cfg(qdev, wqicb, sizeof(*wqicb), CFG_LRQ,
  2843. (u16) tx_ring->wq_id);
  2844. if (err) {
  2845. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2846. return err;
  2847. }
  2848. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded WQICB.\n");
  2849. return err;
  2850. }
  2851. static void ql_disable_msix(struct ql_adapter *qdev)
  2852. {
  2853. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2854. pci_disable_msix(qdev->pdev);
  2855. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2856. kfree(qdev->msi_x_entry);
  2857. qdev->msi_x_entry = NULL;
  2858. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2859. pci_disable_msi(qdev->pdev);
  2860. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2861. }
  2862. }
  2863. /* We start by trying to get the number of vectors
  2864. * stored in qdev->intr_count. If we don't get that
  2865. * many then we reduce the count and try again.
  2866. */
  2867. static void ql_enable_msix(struct ql_adapter *qdev)
  2868. {
  2869. int i, err;
  2870. /* Get the MSIX vectors. */
  2871. if (qlge_irq_type == MSIX_IRQ) {
  2872. /* Try to alloc space for the msix struct,
  2873. * if it fails then go to MSI/legacy.
  2874. */
  2875. qdev->msi_x_entry = kcalloc(qdev->intr_count,
  2876. sizeof(struct msix_entry),
  2877. GFP_KERNEL);
  2878. if (!qdev->msi_x_entry) {
  2879. qlge_irq_type = MSI_IRQ;
  2880. goto msi;
  2881. }
  2882. for (i = 0; i < qdev->intr_count; i++)
  2883. qdev->msi_x_entry[i].entry = i;
  2884. /* Loop to get our vectors. We start with
  2885. * what we want and settle for what we get.
  2886. */
  2887. do {
  2888. err = pci_enable_msix(qdev->pdev,
  2889. qdev->msi_x_entry, qdev->intr_count);
  2890. if (err > 0)
  2891. qdev->intr_count = err;
  2892. } while (err > 0);
  2893. if (err < 0) {
  2894. kfree(qdev->msi_x_entry);
  2895. qdev->msi_x_entry = NULL;
  2896. QPRINTK(qdev, IFUP, WARNING,
  2897. "MSI-X Enable failed, trying MSI.\n");
  2898. qdev->intr_count = 1;
  2899. qlge_irq_type = MSI_IRQ;
  2900. } else if (err == 0) {
  2901. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2902. QPRINTK(qdev, IFUP, INFO,
  2903. "MSI-X Enabled, got %d vectors.\n",
  2904. qdev->intr_count);
  2905. return;
  2906. }
  2907. }
  2908. msi:
  2909. qdev->intr_count = 1;
  2910. if (qlge_irq_type == MSI_IRQ) {
  2911. if (!pci_enable_msi(qdev->pdev)) {
  2912. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2913. QPRINTK(qdev, IFUP, INFO,
  2914. "Running with MSI interrupts.\n");
  2915. return;
  2916. }
  2917. }
  2918. qlge_irq_type = LEG_IRQ;
  2919. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2920. }
  2921. /* Each vector services 1 RSS ring and and 1 or more
  2922. * TX completion rings. This function loops through
  2923. * the TX completion rings and assigns the vector that
  2924. * will service it. An example would be if there are
  2925. * 2 vectors (so 2 RSS rings) and 8 TX completion rings.
  2926. * This would mean that vector 0 would service RSS ring 0
  2927. * and TX competion rings 0,1,2 and 3. Vector 1 would
  2928. * service RSS ring 1 and TX completion rings 4,5,6 and 7.
  2929. */
  2930. static void ql_set_tx_vect(struct ql_adapter *qdev)
  2931. {
  2932. int i, j, vect;
  2933. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2934. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2935. /* Assign irq vectors to TX rx_rings.*/
  2936. for (vect = 0, j = 0, i = qdev->rss_ring_count;
  2937. i < qdev->rx_ring_count; i++) {
  2938. if (j == tx_rings_per_vector) {
  2939. vect++;
  2940. j = 0;
  2941. }
  2942. qdev->rx_ring[i].irq = vect;
  2943. j++;
  2944. }
  2945. } else {
  2946. /* For single vector all rings have an irq
  2947. * of zero.
  2948. */
  2949. for (i = 0; i < qdev->rx_ring_count; i++)
  2950. qdev->rx_ring[i].irq = 0;
  2951. }
  2952. }
  2953. /* Set the interrupt mask for this vector. Each vector
  2954. * will service 1 RSS ring and 1 or more TX completion
  2955. * rings. This function sets up a bit mask per vector
  2956. * that indicates which rings it services.
  2957. */
  2958. static void ql_set_irq_mask(struct ql_adapter *qdev, struct intr_context *ctx)
  2959. {
  2960. int j, vect = ctx->intr;
  2961. u32 tx_rings_per_vector = qdev->tx_ring_count / qdev->intr_count;
  2962. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2963. /* Add the RSS ring serviced by this vector
  2964. * to the mask.
  2965. */
  2966. ctx->irq_mask = (1 << qdev->rx_ring[vect].cq_id);
  2967. /* Add the TX ring(s) serviced by this vector
  2968. * to the mask. */
  2969. for (j = 0; j < tx_rings_per_vector; j++) {
  2970. ctx->irq_mask |=
  2971. (1 << qdev->rx_ring[qdev->rss_ring_count +
  2972. (vect * tx_rings_per_vector) + j].cq_id);
  2973. }
  2974. } else {
  2975. /* For single vector we just shift each queue's
  2976. * ID into the mask.
  2977. */
  2978. for (j = 0; j < qdev->rx_ring_count; j++)
  2979. ctx->irq_mask |= (1 << qdev->rx_ring[j].cq_id);
  2980. }
  2981. }
  2982. /*
  2983. * Here we build the intr_context structures based on
  2984. * our rx_ring count and intr vector count.
  2985. * The intr_context structure is used to hook each vector
  2986. * to possibly different handlers.
  2987. */
  2988. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2989. {
  2990. int i = 0;
  2991. struct intr_context *intr_context = &qdev->intr_context[0];
  2992. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2993. /* Each rx_ring has it's
  2994. * own intr_context since we have separate
  2995. * vectors for each queue.
  2996. */
  2997. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2998. qdev->rx_ring[i].irq = i;
  2999. intr_context->intr = i;
  3000. intr_context->qdev = qdev;
  3001. /* Set up this vector's bit-mask that indicates
  3002. * which queues it services.
  3003. */
  3004. ql_set_irq_mask(qdev, intr_context);
  3005. /*
  3006. * We set up each vectors enable/disable/read bits so
  3007. * there's no bit/mask calculations in the critical path.
  3008. */
  3009. intr_context->intr_en_mask =
  3010. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3011. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  3012. | i;
  3013. intr_context->intr_dis_mask =
  3014. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3015. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  3016. INTR_EN_IHD | i;
  3017. intr_context->intr_read_mask =
  3018. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3019. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  3020. i;
  3021. if (i == 0) {
  3022. /* The first vector/queue handles
  3023. * broadcast/multicast, fatal errors,
  3024. * and firmware events. This in addition
  3025. * to normal inbound NAPI processing.
  3026. */
  3027. intr_context->handler = qlge_isr;
  3028. sprintf(intr_context->name, "%s-rx-%d",
  3029. qdev->ndev->name, i);
  3030. } else {
  3031. /*
  3032. * Inbound queues handle unicast frames only.
  3033. */
  3034. intr_context->handler = qlge_msix_rx_isr;
  3035. sprintf(intr_context->name, "%s-rx-%d",
  3036. qdev->ndev->name, i);
  3037. }
  3038. }
  3039. } else {
  3040. /*
  3041. * All rx_rings use the same intr_context since
  3042. * there is only one vector.
  3043. */
  3044. intr_context->intr = 0;
  3045. intr_context->qdev = qdev;
  3046. /*
  3047. * We set up each vectors enable/disable/read bits so
  3048. * there's no bit/mask calculations in the critical path.
  3049. */
  3050. intr_context->intr_en_mask =
  3051. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  3052. intr_context->intr_dis_mask =
  3053. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  3054. INTR_EN_TYPE_DISABLE;
  3055. intr_context->intr_read_mask =
  3056. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  3057. /*
  3058. * Single interrupt means one handler for all rings.
  3059. */
  3060. intr_context->handler = qlge_isr;
  3061. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  3062. /* Set up this vector's bit-mask that indicates
  3063. * which queues it services. In this case there is
  3064. * a single vector so it will service all RSS and
  3065. * TX completion rings.
  3066. */
  3067. ql_set_irq_mask(qdev, intr_context);
  3068. }
  3069. /* Tell the TX completion rings which MSIx vector
  3070. * they will be using.
  3071. */
  3072. ql_set_tx_vect(qdev);
  3073. }
  3074. static void ql_free_irq(struct ql_adapter *qdev)
  3075. {
  3076. int i;
  3077. struct intr_context *intr_context = &qdev->intr_context[0];
  3078. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3079. if (intr_context->hooked) {
  3080. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3081. free_irq(qdev->msi_x_entry[i].vector,
  3082. &qdev->rx_ring[i]);
  3083. QPRINTK(qdev, IFDOWN, DEBUG,
  3084. "freeing msix interrupt %d.\n", i);
  3085. } else {
  3086. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  3087. QPRINTK(qdev, IFDOWN, DEBUG,
  3088. "freeing msi interrupt %d.\n", i);
  3089. }
  3090. }
  3091. }
  3092. ql_disable_msix(qdev);
  3093. }
  3094. static int ql_request_irq(struct ql_adapter *qdev)
  3095. {
  3096. int i;
  3097. int status = 0;
  3098. struct pci_dev *pdev = qdev->pdev;
  3099. struct intr_context *intr_context = &qdev->intr_context[0];
  3100. ql_resolve_queues_to_irqs(qdev);
  3101. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  3102. atomic_set(&intr_context->irq_cnt, 0);
  3103. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  3104. status = request_irq(qdev->msi_x_entry[i].vector,
  3105. intr_context->handler,
  3106. 0,
  3107. intr_context->name,
  3108. &qdev->rx_ring[i]);
  3109. if (status) {
  3110. QPRINTK(qdev, IFUP, ERR,
  3111. "Failed request for MSIX interrupt %d.\n",
  3112. i);
  3113. goto err_irq;
  3114. } else {
  3115. QPRINTK(qdev, IFUP, DEBUG,
  3116. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  3117. i,
  3118. qdev->rx_ring[i].type ==
  3119. DEFAULT_Q ? "DEFAULT_Q" : "",
  3120. qdev->rx_ring[i].type ==
  3121. TX_Q ? "TX_Q" : "",
  3122. qdev->rx_ring[i].type ==
  3123. RX_Q ? "RX_Q" : "", intr_context->name);
  3124. }
  3125. } else {
  3126. QPRINTK(qdev, IFUP, DEBUG,
  3127. "trying msi or legacy interrupts.\n");
  3128. QPRINTK(qdev, IFUP, DEBUG,
  3129. "%s: irq = %d.\n", __func__, pdev->irq);
  3130. QPRINTK(qdev, IFUP, DEBUG,
  3131. "%s: context->name = %s.\n", __func__,
  3132. intr_context->name);
  3133. QPRINTK(qdev, IFUP, DEBUG,
  3134. "%s: dev_id = 0x%p.\n", __func__,
  3135. &qdev->rx_ring[0]);
  3136. status =
  3137. request_irq(pdev->irq, qlge_isr,
  3138. test_bit(QL_MSI_ENABLED,
  3139. &qdev->
  3140. flags) ? 0 : IRQF_SHARED,
  3141. intr_context->name, &qdev->rx_ring[0]);
  3142. if (status)
  3143. goto err_irq;
  3144. QPRINTK(qdev, IFUP, ERR,
  3145. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  3146. i,
  3147. qdev->rx_ring[0].type ==
  3148. DEFAULT_Q ? "DEFAULT_Q" : "",
  3149. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  3150. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  3151. intr_context->name);
  3152. }
  3153. intr_context->hooked = 1;
  3154. }
  3155. return status;
  3156. err_irq:
  3157. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  3158. ql_free_irq(qdev);
  3159. return status;
  3160. }
  3161. static int ql_start_rss(struct ql_adapter *qdev)
  3162. {
  3163. u8 init_hash_seed[] = {0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
  3164. 0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f,
  3165. 0xb0, 0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b,
  3166. 0x30, 0xb4, 0x77, 0xcb, 0x2d, 0xa3, 0x80,
  3167. 0x30, 0xf2, 0x0c, 0x6a, 0x42, 0xb7, 0x3b,
  3168. 0xbe, 0xac, 0x01, 0xfa};
  3169. struct ricb *ricb = &qdev->ricb;
  3170. int status = 0;
  3171. int i;
  3172. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  3173. memset((void *)ricb, 0, sizeof(*ricb));
  3174. ricb->base_cq = RSS_L4K;
  3175. ricb->flags =
  3176. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RT4 | RSS_RT6);
  3177. ricb->mask = cpu_to_le16((u16)(0x3ff));
  3178. /*
  3179. * Fill out the Indirection Table.
  3180. */
  3181. for (i = 0; i < 1024; i++)
  3182. hash_id[i] = (i & (qdev->rss_ring_count - 1));
  3183. memcpy((void *)&ricb->ipv6_hash_key[0], init_hash_seed, 40);
  3184. memcpy((void *)&ricb->ipv4_hash_key[0], init_hash_seed, 16);
  3185. QPRINTK(qdev, IFUP, DEBUG, "Initializing RSS.\n");
  3186. status = ql_write_cfg(qdev, ricb, sizeof(*ricb), CFG_LR, 0);
  3187. if (status) {
  3188. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  3189. return status;
  3190. }
  3191. QPRINTK(qdev, IFUP, DEBUG, "Successfully loaded RICB.\n");
  3192. return status;
  3193. }
  3194. static int ql_clear_routing_entries(struct ql_adapter *qdev)
  3195. {
  3196. int i, status = 0;
  3197. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3198. if (status)
  3199. return status;
  3200. /* Clear all the entries in the routing table. */
  3201. for (i = 0; i < 16; i++) {
  3202. status = ql_set_routing_reg(qdev, i, 0, 0);
  3203. if (status) {
  3204. QPRINTK(qdev, IFUP, ERR,
  3205. "Failed to init routing register for CAM "
  3206. "packets.\n");
  3207. break;
  3208. }
  3209. }
  3210. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3211. return status;
  3212. }
  3213. /* Initialize the frame-to-queue routing. */
  3214. static int ql_route_initialize(struct ql_adapter *qdev)
  3215. {
  3216. int status = 0;
  3217. /* Clear all the entries in the routing table. */
  3218. status = ql_clear_routing_entries(qdev);
  3219. if (status)
  3220. return status;
  3221. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3222. if (status)
  3223. return status;
  3224. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  3225. if (status) {
  3226. QPRINTK(qdev, IFUP, ERR,
  3227. "Failed to init routing register for error packets.\n");
  3228. goto exit;
  3229. }
  3230. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  3231. if (status) {
  3232. QPRINTK(qdev, IFUP, ERR,
  3233. "Failed to init routing register for broadcast packets.\n");
  3234. goto exit;
  3235. }
  3236. /* If we have more than one inbound queue, then turn on RSS in the
  3237. * routing block.
  3238. */
  3239. if (qdev->rss_ring_count > 1) {
  3240. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  3241. RT_IDX_RSS_MATCH, 1);
  3242. if (status) {
  3243. QPRINTK(qdev, IFUP, ERR,
  3244. "Failed to init routing register for MATCH RSS packets.\n");
  3245. goto exit;
  3246. }
  3247. }
  3248. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  3249. RT_IDX_CAM_HIT, 1);
  3250. if (status)
  3251. QPRINTK(qdev, IFUP, ERR,
  3252. "Failed to init routing register for CAM packets.\n");
  3253. exit:
  3254. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3255. return status;
  3256. }
  3257. int ql_cam_route_initialize(struct ql_adapter *qdev)
  3258. {
  3259. int status, set;
  3260. /* If check if the link is up and use to
  3261. * determine if we are setting or clearing
  3262. * the MAC address in the CAM.
  3263. */
  3264. set = ql_read32(qdev, STS);
  3265. set &= qdev->port_link_up;
  3266. status = ql_set_mac_addr(qdev, set);
  3267. if (status) {
  3268. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  3269. return status;
  3270. }
  3271. status = ql_route_initialize(qdev);
  3272. if (status)
  3273. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  3274. return status;
  3275. }
  3276. static int ql_adapter_initialize(struct ql_adapter *qdev)
  3277. {
  3278. u32 value, mask;
  3279. int i;
  3280. int status = 0;
  3281. /*
  3282. * Set up the System register to halt on errors.
  3283. */
  3284. value = SYS_EFE | SYS_FAE;
  3285. mask = value << 16;
  3286. ql_write32(qdev, SYS, mask | value);
  3287. /* Set the default queue, and VLAN behavior. */
  3288. value = NIC_RCV_CFG_DFQ | NIC_RCV_CFG_RV;
  3289. mask = NIC_RCV_CFG_DFQ_MASK | (NIC_RCV_CFG_RV << 16);
  3290. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  3291. /* Set the MPI interrupt to enabled. */
  3292. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  3293. /* Enable the function, set pagesize, enable error checking. */
  3294. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  3295. FSC_EC | FSC_VM_PAGE_4K;
  3296. value |= SPLT_SETTING;
  3297. /* Set/clear header splitting. */
  3298. mask = FSC_VM_PAGESIZE_MASK |
  3299. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  3300. ql_write32(qdev, FSC, mask | value);
  3301. ql_write32(qdev, SPLT_HDR, SPLT_LEN);
  3302. /* Set RX packet routing to use port/pci function on which the
  3303. * packet arrived on in addition to usual frame routing.
  3304. * This is helpful on bonding where both interfaces can have
  3305. * the same MAC address.
  3306. */
  3307. ql_write32(qdev, RST_FO, RST_FO_RR_MASK | RST_FO_RR_RCV_FUNC_CQ);
  3308. /* Reroute all packets to our Interface.
  3309. * They may have been routed to MPI firmware
  3310. * due to WOL.
  3311. */
  3312. value = ql_read32(qdev, MGMT_RCV_CFG);
  3313. value &= ~MGMT_RCV_CFG_RM;
  3314. mask = 0xffff0000;
  3315. /* Sticky reg needs clearing due to WOL. */
  3316. ql_write32(qdev, MGMT_RCV_CFG, mask);
  3317. ql_write32(qdev, MGMT_RCV_CFG, mask | value);
  3318. /* Default WOL is enable on Mezz cards */
  3319. if (qdev->pdev->subsystem_device == 0x0068 ||
  3320. qdev->pdev->subsystem_device == 0x0180)
  3321. qdev->wol = WAKE_MAGIC;
  3322. /* Start up the rx queues. */
  3323. for (i = 0; i < qdev->rx_ring_count; i++) {
  3324. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  3325. if (status) {
  3326. QPRINTK(qdev, IFUP, ERR,
  3327. "Failed to start rx ring[%d].\n", i);
  3328. return status;
  3329. }
  3330. }
  3331. /* If there is more than one inbound completion queue
  3332. * then download a RICB to configure RSS.
  3333. */
  3334. if (qdev->rss_ring_count > 1) {
  3335. status = ql_start_rss(qdev);
  3336. if (status) {
  3337. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  3338. return status;
  3339. }
  3340. }
  3341. /* Start up the tx queues. */
  3342. for (i = 0; i < qdev->tx_ring_count; i++) {
  3343. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  3344. if (status) {
  3345. QPRINTK(qdev, IFUP, ERR,
  3346. "Failed to start tx ring[%d].\n", i);
  3347. return status;
  3348. }
  3349. }
  3350. /* Initialize the port and set the max framesize. */
  3351. status = qdev->nic_ops->port_initialize(qdev);
  3352. if (status)
  3353. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  3354. /* Set up the MAC address and frame routing filter. */
  3355. status = ql_cam_route_initialize(qdev);
  3356. if (status) {
  3357. QPRINTK(qdev, IFUP, ERR,
  3358. "Failed to init CAM/Routing tables.\n");
  3359. return status;
  3360. }
  3361. /* Start NAPI for the RSS queues. */
  3362. for (i = 0; i < qdev->rss_ring_count; i++) {
  3363. QPRINTK(qdev, IFUP, DEBUG, "Enabling NAPI for rx_ring[%d].\n",
  3364. i);
  3365. napi_enable(&qdev->rx_ring[i].napi);
  3366. }
  3367. return status;
  3368. }
  3369. /* Issue soft reset to chip. */
  3370. static int ql_adapter_reset(struct ql_adapter *qdev)
  3371. {
  3372. u32 value;
  3373. int status = 0;
  3374. unsigned long end_jiffies;
  3375. /* Clear all the entries in the routing table. */
  3376. status = ql_clear_routing_entries(qdev);
  3377. if (status) {
  3378. QPRINTK(qdev, IFUP, ERR, "Failed to clear routing bits.\n");
  3379. return status;
  3380. }
  3381. end_jiffies = jiffies +
  3382. max((unsigned long)1, usecs_to_jiffies(30));
  3383. /* Stop management traffic. */
  3384. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_STOP);
  3385. /* Wait for the NIC and MGMNT FIFOs to empty. */
  3386. ql_wait_fifo_empty(qdev);
  3387. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  3388. do {
  3389. value = ql_read32(qdev, RST_FO);
  3390. if ((value & RST_FO_FR) == 0)
  3391. break;
  3392. cpu_relax();
  3393. } while (time_before(jiffies, end_jiffies));
  3394. if (value & RST_FO_FR) {
  3395. QPRINTK(qdev, IFDOWN, ERR,
  3396. "ETIMEDOUT!!! errored out of resetting the chip!\n");
  3397. status = -ETIMEDOUT;
  3398. }
  3399. /* Resume management traffic. */
  3400. ql_mb_set_mgmnt_traffic_ctl(qdev, MB_SET_MPI_TFK_RESUME);
  3401. return status;
  3402. }
  3403. static void ql_display_dev_info(struct net_device *ndev)
  3404. {
  3405. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3406. QPRINTK(qdev, PROBE, INFO,
  3407. "Function #%d, Port %d, NIC Roll %d, NIC Rev = %d, "
  3408. "XG Roll = %d, XG Rev = %d.\n",
  3409. qdev->func,
  3410. qdev->port,
  3411. qdev->chip_rev_id & 0x0000000f,
  3412. qdev->chip_rev_id >> 4 & 0x0000000f,
  3413. qdev->chip_rev_id >> 8 & 0x0000000f,
  3414. qdev->chip_rev_id >> 12 & 0x0000000f);
  3415. QPRINTK(qdev, PROBE, INFO, "MAC address %pM\n", ndev->dev_addr);
  3416. }
  3417. int ql_wol(struct ql_adapter *qdev)
  3418. {
  3419. int status = 0;
  3420. u32 wol = MB_WOL_DISABLE;
  3421. /* The CAM is still intact after a reset, but if we
  3422. * are doing WOL, then we may need to program the
  3423. * routing regs. We would also need to issue the mailbox
  3424. * commands to instruct the MPI what to do per the ethtool
  3425. * settings.
  3426. */
  3427. if (qdev->wol & (WAKE_ARP | WAKE_MAGICSECURE | WAKE_PHY | WAKE_UCAST |
  3428. WAKE_MCAST | WAKE_BCAST)) {
  3429. QPRINTK(qdev, IFDOWN, ERR,
  3430. "Unsupported WOL paramter. qdev->wol = 0x%x.\n",
  3431. qdev->wol);
  3432. return -EINVAL;
  3433. }
  3434. if (qdev->wol & WAKE_MAGIC) {
  3435. status = ql_mb_wol_set_magic(qdev, 1);
  3436. if (status) {
  3437. QPRINTK(qdev, IFDOWN, ERR,
  3438. "Failed to set magic packet on %s.\n",
  3439. qdev->ndev->name);
  3440. return status;
  3441. } else
  3442. QPRINTK(qdev, DRV, INFO,
  3443. "Enabled magic packet successfully on %s.\n",
  3444. qdev->ndev->name);
  3445. wol |= MB_WOL_MAGIC_PKT;
  3446. }
  3447. if (qdev->wol) {
  3448. wol |= MB_WOL_MODE_ON;
  3449. status = ql_mb_wol_mode(qdev, wol);
  3450. QPRINTK(qdev, DRV, ERR, "WOL %s (wol code 0x%x) on %s\n",
  3451. (status == 0) ? "Sucessfully set" : "Failed", wol,
  3452. qdev->ndev->name);
  3453. }
  3454. return status;
  3455. }
  3456. static int ql_adapter_down(struct ql_adapter *qdev)
  3457. {
  3458. int i, status = 0;
  3459. ql_link_off(qdev);
  3460. /* Don't kill the reset worker thread if we
  3461. * are in the process of recovery.
  3462. */
  3463. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  3464. cancel_delayed_work_sync(&qdev->asic_reset_work);
  3465. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  3466. cancel_delayed_work_sync(&qdev->mpi_work);
  3467. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  3468. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  3469. for (i = 0; i < qdev->rss_ring_count; i++)
  3470. napi_disable(&qdev->rx_ring[i].napi);
  3471. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  3472. ql_disable_interrupts(qdev);
  3473. ql_tx_ring_clean(qdev);
  3474. /* Call netif_napi_del() from common point.
  3475. */
  3476. for (i = 0; i < qdev->rss_ring_count; i++)
  3477. netif_napi_del(&qdev->rx_ring[i].napi);
  3478. ql_free_rx_buffers(qdev);
  3479. status = ql_adapter_reset(qdev);
  3480. if (status)
  3481. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  3482. qdev->func);
  3483. return status;
  3484. }
  3485. static int ql_adapter_up(struct ql_adapter *qdev)
  3486. {
  3487. int err = 0;
  3488. err = ql_adapter_initialize(qdev);
  3489. if (err) {
  3490. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  3491. goto err_init;
  3492. }
  3493. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3494. ql_alloc_rx_buffers(qdev);
  3495. /* If the port is initialized and the
  3496. * link is up the turn on the carrier.
  3497. */
  3498. if ((ql_read32(qdev, STS) & qdev->port_init) &&
  3499. (ql_read32(qdev, STS) & qdev->port_link_up))
  3500. ql_link_on(qdev);
  3501. ql_enable_interrupts(qdev);
  3502. ql_enable_all_completion_interrupts(qdev);
  3503. netif_tx_start_all_queues(qdev->ndev);
  3504. return 0;
  3505. err_init:
  3506. ql_adapter_reset(qdev);
  3507. return err;
  3508. }
  3509. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  3510. {
  3511. ql_free_mem_resources(qdev);
  3512. ql_free_irq(qdev);
  3513. }
  3514. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  3515. {
  3516. int status = 0;
  3517. if (ql_alloc_mem_resources(qdev)) {
  3518. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  3519. return -ENOMEM;
  3520. }
  3521. status = ql_request_irq(qdev);
  3522. return status;
  3523. }
  3524. static int qlge_close(struct net_device *ndev)
  3525. {
  3526. struct ql_adapter *qdev = netdev_priv(ndev);
  3527. /*
  3528. * Wait for device to recover from a reset.
  3529. * (Rarely happens, but possible.)
  3530. */
  3531. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3532. msleep(1);
  3533. ql_adapter_down(qdev);
  3534. ql_release_adapter_resources(qdev);
  3535. return 0;
  3536. }
  3537. static int ql_configure_rings(struct ql_adapter *qdev)
  3538. {
  3539. int i;
  3540. struct rx_ring *rx_ring;
  3541. struct tx_ring *tx_ring;
  3542. int cpu_cnt = min(MAX_CPUS, (int)num_online_cpus());
  3543. unsigned int lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3544. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3545. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3546. /* In a perfect world we have one RSS ring for each CPU
  3547. * and each has it's own vector. To do that we ask for
  3548. * cpu_cnt vectors. ql_enable_msix() will adjust the
  3549. * vector count to what we actually get. We then
  3550. * allocate an RSS ring for each.
  3551. * Essentially, we are doing min(cpu_count, msix_vector_count).
  3552. */
  3553. qdev->intr_count = cpu_cnt;
  3554. ql_enable_msix(qdev);
  3555. /* Adjust the RSS ring count to the actual vector count. */
  3556. qdev->rss_ring_count = qdev->intr_count;
  3557. qdev->tx_ring_count = cpu_cnt;
  3558. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count;
  3559. for (i = 0; i < qdev->tx_ring_count; i++) {
  3560. tx_ring = &qdev->tx_ring[i];
  3561. memset((void *)tx_ring, 0, sizeof(*tx_ring));
  3562. tx_ring->qdev = qdev;
  3563. tx_ring->wq_id = i;
  3564. tx_ring->wq_len = qdev->tx_ring_size;
  3565. tx_ring->wq_size =
  3566. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3567. /*
  3568. * The completion queue ID for the tx rings start
  3569. * immediately after the rss rings.
  3570. */
  3571. tx_ring->cq_id = qdev->rss_ring_count + i;
  3572. }
  3573. for (i = 0; i < qdev->rx_ring_count; i++) {
  3574. rx_ring = &qdev->rx_ring[i];
  3575. memset((void *)rx_ring, 0, sizeof(*rx_ring));
  3576. rx_ring->qdev = qdev;
  3577. rx_ring->cq_id = i;
  3578. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3579. if (i < qdev->rss_ring_count) {
  3580. /*
  3581. * Inbound (RSS) queues.
  3582. */
  3583. rx_ring->cq_len = qdev->rx_ring_size;
  3584. rx_ring->cq_size =
  3585. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3586. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3587. rx_ring->lbq_size =
  3588. rx_ring->lbq_len * sizeof(__le64);
  3589. rx_ring->lbq_buf_size = (u16)lbq_buf_len;
  3590. QPRINTK(qdev, IFUP, DEBUG,
  3591. "lbq_buf_size %d, order = %d\n",
  3592. rx_ring->lbq_buf_size, qdev->lbq_buf_order);
  3593. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3594. rx_ring->sbq_size =
  3595. rx_ring->sbq_len * sizeof(__le64);
  3596. rx_ring->sbq_buf_size = SMALL_BUF_MAP_SIZE;
  3597. rx_ring->type = RX_Q;
  3598. } else {
  3599. /*
  3600. * Outbound queue handles outbound completions only.
  3601. */
  3602. /* outbound cq is same size as tx_ring it services. */
  3603. rx_ring->cq_len = qdev->tx_ring_size;
  3604. rx_ring->cq_size =
  3605. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3606. rx_ring->lbq_len = 0;
  3607. rx_ring->lbq_size = 0;
  3608. rx_ring->lbq_buf_size = 0;
  3609. rx_ring->sbq_len = 0;
  3610. rx_ring->sbq_size = 0;
  3611. rx_ring->sbq_buf_size = 0;
  3612. rx_ring->type = TX_Q;
  3613. }
  3614. }
  3615. return 0;
  3616. }
  3617. static int qlge_open(struct net_device *ndev)
  3618. {
  3619. int err = 0;
  3620. struct ql_adapter *qdev = netdev_priv(ndev);
  3621. err = ql_adapter_reset(qdev);
  3622. if (err)
  3623. return err;
  3624. err = ql_configure_rings(qdev);
  3625. if (err)
  3626. return err;
  3627. err = ql_get_adapter_resources(qdev);
  3628. if (err)
  3629. goto error_up;
  3630. err = ql_adapter_up(qdev);
  3631. if (err)
  3632. goto error_up;
  3633. return err;
  3634. error_up:
  3635. ql_release_adapter_resources(qdev);
  3636. return err;
  3637. }
  3638. static int ql_change_rx_buffers(struct ql_adapter *qdev)
  3639. {
  3640. struct rx_ring *rx_ring;
  3641. int i, status;
  3642. u32 lbq_buf_len;
  3643. /* Wait for an oustanding reset to complete. */
  3644. if (!test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3645. int i = 3;
  3646. while (i-- && !test_bit(QL_ADAPTER_UP, &qdev->flags)) {
  3647. QPRINTK(qdev, IFUP, ERR,
  3648. "Waiting for adapter UP...\n");
  3649. ssleep(1);
  3650. }
  3651. if (!i) {
  3652. QPRINTK(qdev, IFUP, ERR,
  3653. "Timed out waiting for adapter UP\n");
  3654. return -ETIMEDOUT;
  3655. }
  3656. }
  3657. status = ql_adapter_down(qdev);
  3658. if (status)
  3659. goto error;
  3660. /* Get the new rx buffer size. */
  3661. lbq_buf_len = (qdev->ndev->mtu > 1500) ?
  3662. LARGE_BUFFER_MAX_SIZE : LARGE_BUFFER_MIN_SIZE;
  3663. qdev->lbq_buf_order = get_order(lbq_buf_len);
  3664. for (i = 0; i < qdev->rss_ring_count; i++) {
  3665. rx_ring = &qdev->rx_ring[i];
  3666. /* Set the new size. */
  3667. rx_ring->lbq_buf_size = lbq_buf_len;
  3668. }
  3669. status = ql_adapter_up(qdev);
  3670. if (status)
  3671. goto error;
  3672. return status;
  3673. error:
  3674. QPRINTK(qdev, IFUP, ALERT,
  3675. "Driver up/down cycle failed, closing device.\n");
  3676. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3677. dev_close(qdev->ndev);
  3678. return status;
  3679. }
  3680. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3681. {
  3682. struct ql_adapter *qdev = netdev_priv(ndev);
  3683. int status;
  3684. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3685. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3686. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3687. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3688. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3689. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3690. return 0;
  3691. } else
  3692. return -EINVAL;
  3693. queue_delayed_work(qdev->workqueue,
  3694. &qdev->mpi_port_cfg_work, 3*HZ);
  3695. if (!netif_running(qdev->ndev)) {
  3696. ndev->mtu = new_mtu;
  3697. return 0;
  3698. }
  3699. ndev->mtu = new_mtu;
  3700. status = ql_change_rx_buffers(qdev);
  3701. if (status) {
  3702. QPRINTK(qdev, IFUP, ERR,
  3703. "Changing MTU failed.\n");
  3704. }
  3705. return status;
  3706. }
  3707. static struct net_device_stats *qlge_get_stats(struct net_device
  3708. *ndev)
  3709. {
  3710. struct ql_adapter *qdev = netdev_priv(ndev);
  3711. struct rx_ring *rx_ring = &qdev->rx_ring[0];
  3712. struct tx_ring *tx_ring = &qdev->tx_ring[0];
  3713. unsigned long pkts, mcast, dropped, errors, bytes;
  3714. int i;
  3715. /* Get RX stats. */
  3716. pkts = mcast = dropped = errors = bytes = 0;
  3717. for (i = 0; i < qdev->rss_ring_count; i++, rx_ring++) {
  3718. pkts += rx_ring->rx_packets;
  3719. bytes += rx_ring->rx_bytes;
  3720. dropped += rx_ring->rx_dropped;
  3721. errors += rx_ring->rx_errors;
  3722. mcast += rx_ring->rx_multicast;
  3723. }
  3724. ndev->stats.rx_packets = pkts;
  3725. ndev->stats.rx_bytes = bytes;
  3726. ndev->stats.rx_dropped = dropped;
  3727. ndev->stats.rx_errors = errors;
  3728. ndev->stats.multicast = mcast;
  3729. /* Get TX stats. */
  3730. pkts = errors = bytes = 0;
  3731. for (i = 0; i < qdev->tx_ring_count; i++, tx_ring++) {
  3732. pkts += tx_ring->tx_packets;
  3733. bytes += tx_ring->tx_bytes;
  3734. errors += tx_ring->tx_errors;
  3735. }
  3736. ndev->stats.tx_packets = pkts;
  3737. ndev->stats.tx_bytes = bytes;
  3738. ndev->stats.tx_errors = errors;
  3739. return &ndev->stats;
  3740. }
  3741. static void qlge_set_multicast_list(struct net_device *ndev)
  3742. {
  3743. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3744. struct dev_mc_list *mc_ptr;
  3745. int i, status;
  3746. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  3747. if (status)
  3748. return;
  3749. /*
  3750. * Set or clear promiscuous mode if a
  3751. * transition is taking place.
  3752. */
  3753. if (ndev->flags & IFF_PROMISC) {
  3754. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3755. if (ql_set_routing_reg
  3756. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3757. QPRINTK(qdev, HW, ERR,
  3758. "Failed to set promiscous mode.\n");
  3759. } else {
  3760. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3761. }
  3762. }
  3763. } else {
  3764. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3765. if (ql_set_routing_reg
  3766. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3767. QPRINTK(qdev, HW, ERR,
  3768. "Failed to clear promiscous mode.\n");
  3769. } else {
  3770. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3771. }
  3772. }
  3773. }
  3774. /*
  3775. * Set or clear all multicast mode if a
  3776. * transition is taking place.
  3777. */
  3778. if ((ndev->flags & IFF_ALLMULTI) ||
  3779. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3780. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3781. if (ql_set_routing_reg
  3782. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3783. QPRINTK(qdev, HW, ERR,
  3784. "Failed to set all-multi mode.\n");
  3785. } else {
  3786. set_bit(QL_ALLMULTI, &qdev->flags);
  3787. }
  3788. }
  3789. } else {
  3790. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3791. if (ql_set_routing_reg
  3792. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3793. QPRINTK(qdev, HW, ERR,
  3794. "Failed to clear all-multi mode.\n");
  3795. } else {
  3796. clear_bit(QL_ALLMULTI, &qdev->flags);
  3797. }
  3798. }
  3799. }
  3800. if (ndev->mc_count) {
  3801. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3802. if (status)
  3803. goto exit;
  3804. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3805. i++, mc_ptr = mc_ptr->next)
  3806. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3807. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3808. QPRINTK(qdev, HW, ERR,
  3809. "Failed to loadmulticast address.\n");
  3810. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3811. goto exit;
  3812. }
  3813. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3814. if (ql_set_routing_reg
  3815. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3816. QPRINTK(qdev, HW, ERR,
  3817. "Failed to set multicast match mode.\n");
  3818. } else {
  3819. set_bit(QL_ALLMULTI, &qdev->flags);
  3820. }
  3821. }
  3822. exit:
  3823. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  3824. }
  3825. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3826. {
  3827. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3828. struct sockaddr *addr = p;
  3829. int status;
  3830. if (!is_valid_ether_addr(addr->sa_data))
  3831. return -EADDRNOTAVAIL;
  3832. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3833. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  3834. if (status)
  3835. return status;
  3836. status = ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3837. MAC_ADDR_TYPE_CAM_MAC, qdev->func * MAX_CQ);
  3838. if (status)
  3839. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3840. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  3841. return status;
  3842. }
  3843. static void qlge_tx_timeout(struct net_device *ndev)
  3844. {
  3845. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3846. ql_queue_asic_error(qdev);
  3847. }
  3848. static void ql_asic_reset_work(struct work_struct *work)
  3849. {
  3850. struct ql_adapter *qdev =
  3851. container_of(work, struct ql_adapter, asic_reset_work.work);
  3852. int status;
  3853. rtnl_lock();
  3854. status = ql_adapter_down(qdev);
  3855. if (status)
  3856. goto error;
  3857. status = ql_adapter_up(qdev);
  3858. if (status)
  3859. goto error;
  3860. /* Restore rx mode. */
  3861. clear_bit(QL_ALLMULTI, &qdev->flags);
  3862. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3863. qlge_set_multicast_list(qdev->ndev);
  3864. rtnl_unlock();
  3865. return;
  3866. error:
  3867. QPRINTK(qdev, IFUP, ALERT,
  3868. "Driver up/down cycle failed, closing device\n");
  3869. set_bit(QL_ADAPTER_UP, &qdev->flags);
  3870. dev_close(qdev->ndev);
  3871. rtnl_unlock();
  3872. }
  3873. static struct nic_operations qla8012_nic_ops = {
  3874. .get_flash = ql_get_8012_flash_params,
  3875. .port_initialize = ql_8012_port_initialize,
  3876. };
  3877. static struct nic_operations qla8000_nic_ops = {
  3878. .get_flash = ql_get_8000_flash_params,
  3879. .port_initialize = ql_8000_port_initialize,
  3880. };
  3881. /* Find the pcie function number for the other NIC
  3882. * on this chip. Since both NIC functions share a
  3883. * common firmware we have the lowest enabled function
  3884. * do any common work. Examples would be resetting
  3885. * after a fatal firmware error, or doing a firmware
  3886. * coredump.
  3887. */
  3888. static int ql_get_alt_pcie_func(struct ql_adapter *qdev)
  3889. {
  3890. int status = 0;
  3891. u32 temp;
  3892. u32 nic_func1, nic_func2;
  3893. status = ql_read_mpi_reg(qdev, MPI_TEST_FUNC_PORT_CFG,
  3894. &temp);
  3895. if (status)
  3896. return status;
  3897. nic_func1 = ((temp >> MPI_TEST_NIC1_FUNC_SHIFT) &
  3898. MPI_TEST_NIC_FUNC_MASK);
  3899. nic_func2 = ((temp >> MPI_TEST_NIC2_FUNC_SHIFT) &
  3900. MPI_TEST_NIC_FUNC_MASK);
  3901. if (qdev->func == nic_func1)
  3902. qdev->alt_func = nic_func2;
  3903. else if (qdev->func == nic_func2)
  3904. qdev->alt_func = nic_func1;
  3905. else
  3906. status = -EIO;
  3907. return status;
  3908. }
  3909. static int ql_get_board_info(struct ql_adapter *qdev)
  3910. {
  3911. int status;
  3912. qdev->func =
  3913. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3914. if (qdev->func > 3)
  3915. return -EIO;
  3916. status = ql_get_alt_pcie_func(qdev);
  3917. if (status)
  3918. return status;
  3919. qdev->port = (qdev->func < qdev->alt_func) ? 0 : 1;
  3920. if (qdev->port) {
  3921. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3922. qdev->port_link_up = STS_PL1;
  3923. qdev->port_init = STS_PI1;
  3924. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3925. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3926. } else {
  3927. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3928. qdev->port_link_up = STS_PL0;
  3929. qdev->port_init = STS_PI0;
  3930. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3931. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3932. }
  3933. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3934. qdev->device_id = qdev->pdev->device;
  3935. if (qdev->device_id == QLGE_DEVICE_ID_8012)
  3936. qdev->nic_ops = &qla8012_nic_ops;
  3937. else if (qdev->device_id == QLGE_DEVICE_ID_8000)
  3938. qdev->nic_ops = &qla8000_nic_ops;
  3939. return status;
  3940. }
  3941. static void ql_release_all(struct pci_dev *pdev)
  3942. {
  3943. struct net_device *ndev = pci_get_drvdata(pdev);
  3944. struct ql_adapter *qdev = netdev_priv(ndev);
  3945. if (qdev->workqueue) {
  3946. destroy_workqueue(qdev->workqueue);
  3947. qdev->workqueue = NULL;
  3948. }
  3949. if (qdev->reg_base)
  3950. iounmap(qdev->reg_base);
  3951. if (qdev->doorbell_area)
  3952. iounmap(qdev->doorbell_area);
  3953. pci_release_regions(pdev);
  3954. pci_set_drvdata(pdev, NULL);
  3955. }
  3956. static int __devinit ql_init_device(struct pci_dev *pdev,
  3957. struct net_device *ndev, int cards_found)
  3958. {
  3959. struct ql_adapter *qdev = netdev_priv(ndev);
  3960. int err = 0;
  3961. memset((void *)qdev, 0, sizeof(*qdev));
  3962. err = pci_enable_device(pdev);
  3963. if (err) {
  3964. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3965. return err;
  3966. }
  3967. qdev->ndev = ndev;
  3968. qdev->pdev = pdev;
  3969. pci_set_drvdata(pdev, ndev);
  3970. /* Set PCIe read request size */
  3971. err = pcie_set_readrq(pdev, 4096);
  3972. if (err) {
  3973. dev_err(&pdev->dev, "Set readrq failed.\n");
  3974. goto err_out;
  3975. }
  3976. err = pci_request_regions(pdev, DRV_NAME);
  3977. if (err) {
  3978. dev_err(&pdev->dev, "PCI region request failed.\n");
  3979. return err;
  3980. }
  3981. pci_set_master(pdev);
  3982. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3983. set_bit(QL_DMA64, &qdev->flags);
  3984. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3985. } else {
  3986. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  3987. if (!err)
  3988. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3989. }
  3990. if (err) {
  3991. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3992. goto err_out;
  3993. }
  3994. /* Set PCIe reset type for EEH to fundamental. */
  3995. pdev->needs_freset = 1;
  3996. pci_save_state(pdev);
  3997. qdev->reg_base =
  3998. ioremap_nocache(pci_resource_start(pdev, 1),
  3999. pci_resource_len(pdev, 1));
  4000. if (!qdev->reg_base) {
  4001. dev_err(&pdev->dev, "Register mapping failed.\n");
  4002. err = -ENOMEM;
  4003. goto err_out;
  4004. }
  4005. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  4006. qdev->doorbell_area =
  4007. ioremap_nocache(pci_resource_start(pdev, 3),
  4008. pci_resource_len(pdev, 3));
  4009. if (!qdev->doorbell_area) {
  4010. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  4011. err = -ENOMEM;
  4012. goto err_out;
  4013. }
  4014. err = ql_get_board_info(qdev);
  4015. if (err) {
  4016. dev_err(&pdev->dev, "Register access failed.\n");
  4017. err = -EIO;
  4018. goto err_out;
  4019. }
  4020. qdev->msg_enable = netif_msg_init(debug, default_msg);
  4021. spin_lock_init(&qdev->hw_lock);
  4022. spin_lock_init(&qdev->stats_lock);
  4023. /* make sure the EEPROM is good */
  4024. err = qdev->nic_ops->get_flash(qdev);
  4025. if (err) {
  4026. dev_err(&pdev->dev, "Invalid FLASH.\n");
  4027. goto err_out;
  4028. }
  4029. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  4030. /* Set up the default ring sizes. */
  4031. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  4032. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  4033. /* Set up the coalescing parameters. */
  4034. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4035. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  4036. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4037. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  4038. /*
  4039. * Set up the operating parameters.
  4040. */
  4041. qdev->rx_csum = 1;
  4042. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  4043. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  4044. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  4045. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  4046. INIT_DELAYED_WORK(&qdev->mpi_port_cfg_work, ql_mpi_port_cfg_work);
  4047. INIT_DELAYED_WORK(&qdev->mpi_idc_work, ql_mpi_idc_work);
  4048. init_completion(&qdev->ide_completion);
  4049. if (!cards_found) {
  4050. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  4051. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  4052. DRV_NAME, DRV_VERSION);
  4053. }
  4054. return 0;
  4055. err_out:
  4056. ql_release_all(pdev);
  4057. pci_disable_device(pdev);
  4058. return err;
  4059. }
  4060. static const struct net_device_ops qlge_netdev_ops = {
  4061. .ndo_open = qlge_open,
  4062. .ndo_stop = qlge_close,
  4063. .ndo_start_xmit = qlge_send,
  4064. .ndo_change_mtu = qlge_change_mtu,
  4065. .ndo_get_stats = qlge_get_stats,
  4066. .ndo_set_multicast_list = qlge_set_multicast_list,
  4067. .ndo_set_mac_address = qlge_set_mac_address,
  4068. .ndo_validate_addr = eth_validate_addr,
  4069. .ndo_tx_timeout = qlge_tx_timeout,
  4070. .ndo_vlan_rx_register = qlge_vlan_rx_register,
  4071. .ndo_vlan_rx_add_vid = qlge_vlan_rx_add_vid,
  4072. .ndo_vlan_rx_kill_vid = qlge_vlan_rx_kill_vid,
  4073. };
  4074. static int __devinit qlge_probe(struct pci_dev *pdev,
  4075. const struct pci_device_id *pci_entry)
  4076. {
  4077. struct net_device *ndev = NULL;
  4078. struct ql_adapter *qdev = NULL;
  4079. static int cards_found = 0;
  4080. int err = 0;
  4081. ndev = alloc_etherdev_mq(sizeof(struct ql_adapter),
  4082. min(MAX_CPUS, (int)num_online_cpus()));
  4083. if (!ndev)
  4084. return -ENOMEM;
  4085. err = ql_init_device(pdev, ndev, cards_found);
  4086. if (err < 0) {
  4087. free_netdev(ndev);
  4088. return err;
  4089. }
  4090. qdev = netdev_priv(ndev);
  4091. SET_NETDEV_DEV(ndev, &pdev->dev);
  4092. ndev->features = (0
  4093. | NETIF_F_IP_CSUM
  4094. | NETIF_F_SG
  4095. | NETIF_F_TSO
  4096. | NETIF_F_TSO6
  4097. | NETIF_F_TSO_ECN
  4098. | NETIF_F_HW_VLAN_TX
  4099. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  4100. ndev->features |= NETIF_F_GRO;
  4101. if (test_bit(QL_DMA64, &qdev->flags))
  4102. ndev->features |= NETIF_F_HIGHDMA;
  4103. /*
  4104. * Set up net_device structure.
  4105. */
  4106. ndev->tx_queue_len = qdev->tx_ring_size;
  4107. ndev->irq = pdev->irq;
  4108. ndev->netdev_ops = &qlge_netdev_ops;
  4109. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  4110. ndev->watchdog_timeo = 10 * HZ;
  4111. err = register_netdev(ndev);
  4112. if (err) {
  4113. dev_err(&pdev->dev, "net device registration failed.\n");
  4114. ql_release_all(pdev);
  4115. pci_disable_device(pdev);
  4116. return err;
  4117. }
  4118. ql_link_off(qdev);
  4119. ql_display_dev_info(ndev);
  4120. atomic_set(&qdev->lb_count, 0);
  4121. cards_found++;
  4122. return 0;
  4123. }
  4124. netdev_tx_t ql_lb_send(struct sk_buff *skb, struct net_device *ndev)
  4125. {
  4126. return qlge_send(skb, ndev);
  4127. }
  4128. int ql_clean_lb_rx_ring(struct rx_ring *rx_ring, int budget)
  4129. {
  4130. return ql_clean_inbound_rx_ring(rx_ring, budget);
  4131. }
  4132. static void __devexit qlge_remove(struct pci_dev *pdev)
  4133. {
  4134. struct net_device *ndev = pci_get_drvdata(pdev);
  4135. unregister_netdev(ndev);
  4136. ql_release_all(pdev);
  4137. pci_disable_device(pdev);
  4138. free_netdev(ndev);
  4139. }
  4140. /* Clean up resources without touching hardware. */
  4141. static void ql_eeh_close(struct net_device *ndev)
  4142. {
  4143. int i;
  4144. struct ql_adapter *qdev = netdev_priv(ndev);
  4145. if (netif_carrier_ok(ndev)) {
  4146. netif_carrier_off(ndev);
  4147. netif_stop_queue(ndev);
  4148. }
  4149. if (test_bit(QL_ADAPTER_UP, &qdev->flags))
  4150. cancel_delayed_work_sync(&qdev->asic_reset_work);
  4151. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  4152. cancel_delayed_work_sync(&qdev->mpi_work);
  4153. cancel_delayed_work_sync(&qdev->mpi_idc_work);
  4154. cancel_delayed_work_sync(&qdev->mpi_port_cfg_work);
  4155. for (i = 0; i < qdev->rss_ring_count; i++)
  4156. netif_napi_del(&qdev->rx_ring[i].napi);
  4157. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  4158. ql_tx_ring_clean(qdev);
  4159. ql_free_rx_buffers(qdev);
  4160. ql_release_adapter_resources(qdev);
  4161. }
  4162. /*
  4163. * This callback is called by the PCI subsystem whenever
  4164. * a PCI bus error is detected.
  4165. */
  4166. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  4167. enum pci_channel_state state)
  4168. {
  4169. struct net_device *ndev = pci_get_drvdata(pdev);
  4170. switch (state) {
  4171. case pci_channel_io_normal:
  4172. return PCI_ERS_RESULT_CAN_RECOVER;
  4173. case pci_channel_io_frozen:
  4174. netif_device_detach(ndev);
  4175. if (netif_running(ndev))
  4176. ql_eeh_close(ndev);
  4177. pci_disable_device(pdev);
  4178. return PCI_ERS_RESULT_NEED_RESET;
  4179. case pci_channel_io_perm_failure:
  4180. dev_err(&pdev->dev,
  4181. "%s: pci_channel_io_perm_failure.\n", __func__);
  4182. return PCI_ERS_RESULT_DISCONNECT;
  4183. }
  4184. /* Request a slot reset. */
  4185. return PCI_ERS_RESULT_NEED_RESET;
  4186. }
  4187. /*
  4188. * This callback is called after the PCI buss has been reset.
  4189. * Basically, this tries to restart the card from scratch.
  4190. * This is a shortened version of the device probe/discovery code,
  4191. * it resembles the first-half of the () routine.
  4192. */
  4193. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  4194. {
  4195. struct net_device *ndev = pci_get_drvdata(pdev);
  4196. struct ql_adapter *qdev = netdev_priv(ndev);
  4197. pdev->error_state = pci_channel_io_normal;
  4198. pci_restore_state(pdev);
  4199. if (pci_enable_device(pdev)) {
  4200. QPRINTK(qdev, IFUP, ERR,
  4201. "Cannot re-enable PCI device after reset.\n");
  4202. return PCI_ERS_RESULT_DISCONNECT;
  4203. }
  4204. pci_set_master(pdev);
  4205. return PCI_ERS_RESULT_RECOVERED;
  4206. }
  4207. static void qlge_io_resume(struct pci_dev *pdev)
  4208. {
  4209. struct net_device *ndev = pci_get_drvdata(pdev);
  4210. struct ql_adapter *qdev = netdev_priv(ndev);
  4211. int err = 0;
  4212. if (ql_adapter_reset(qdev))
  4213. QPRINTK(qdev, DRV, ERR, "reset FAILED!\n");
  4214. if (netif_running(ndev)) {
  4215. err = qlge_open(ndev);
  4216. if (err) {
  4217. QPRINTK(qdev, IFUP, ERR,
  4218. "Device initialization failed after reset.\n");
  4219. return;
  4220. }
  4221. } else {
  4222. QPRINTK(qdev, IFUP, ERR,
  4223. "Device was not running prior to EEH.\n");
  4224. }
  4225. netif_device_attach(ndev);
  4226. }
  4227. static struct pci_error_handlers qlge_err_handler = {
  4228. .error_detected = qlge_io_error_detected,
  4229. .slot_reset = qlge_io_slot_reset,
  4230. .resume = qlge_io_resume,
  4231. };
  4232. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  4233. {
  4234. struct net_device *ndev = pci_get_drvdata(pdev);
  4235. struct ql_adapter *qdev = netdev_priv(ndev);
  4236. int err;
  4237. netif_device_detach(ndev);
  4238. if (netif_running(ndev)) {
  4239. err = ql_adapter_down(qdev);
  4240. if (!err)
  4241. return err;
  4242. }
  4243. ql_wol(qdev);
  4244. err = pci_save_state(pdev);
  4245. if (err)
  4246. return err;
  4247. pci_disable_device(pdev);
  4248. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4249. return 0;
  4250. }
  4251. #ifdef CONFIG_PM
  4252. static int qlge_resume(struct pci_dev *pdev)
  4253. {
  4254. struct net_device *ndev = pci_get_drvdata(pdev);
  4255. struct ql_adapter *qdev = netdev_priv(ndev);
  4256. int err;
  4257. pci_set_power_state(pdev, PCI_D0);
  4258. pci_restore_state(pdev);
  4259. err = pci_enable_device(pdev);
  4260. if (err) {
  4261. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  4262. return err;
  4263. }
  4264. pci_set_master(pdev);
  4265. pci_enable_wake(pdev, PCI_D3hot, 0);
  4266. pci_enable_wake(pdev, PCI_D3cold, 0);
  4267. if (netif_running(ndev)) {
  4268. err = ql_adapter_up(qdev);
  4269. if (err)
  4270. return err;
  4271. }
  4272. netif_device_attach(ndev);
  4273. return 0;
  4274. }
  4275. #endif /* CONFIG_PM */
  4276. static void qlge_shutdown(struct pci_dev *pdev)
  4277. {
  4278. qlge_suspend(pdev, PMSG_SUSPEND);
  4279. }
  4280. static struct pci_driver qlge_driver = {
  4281. .name = DRV_NAME,
  4282. .id_table = qlge_pci_tbl,
  4283. .probe = qlge_probe,
  4284. .remove = __devexit_p(qlge_remove),
  4285. #ifdef CONFIG_PM
  4286. .suspend = qlge_suspend,
  4287. .resume = qlge_resume,
  4288. #endif
  4289. .shutdown = qlge_shutdown,
  4290. .err_handler = &qlge_err_handler
  4291. };
  4292. static int __init qlge_init_module(void)
  4293. {
  4294. return pci_register_driver(&qlge_driver);
  4295. }
  4296. static void __exit qlge_exit(void)
  4297. {
  4298. pci_unregister_driver(&qlge_driver);
  4299. }
  4300. module_init(qlge_init_module);
  4301. module_exit(qlge_exit);