perf_counter.c 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157
  1. /*
  2. * Performance counter core code
  3. *
  4. * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
  6. *
  7. *
  8. * For licensing details see kernel-base/COPYING
  9. */
  10. #include <linux/fs.h>
  11. #include <linux/mm.h>
  12. #include <linux/cpu.h>
  13. #include <linux/smp.h>
  14. #include <linux/file.h>
  15. #include <linux/poll.h>
  16. #include <linux/sysfs.h>
  17. #include <linux/ptrace.h>
  18. #include <linux/percpu.h>
  19. #include <linux/vmstat.h>
  20. #include <linux/hardirq.h>
  21. #include <linux/rculist.h>
  22. #include <linux/uaccess.h>
  23. #include <linux/syscalls.h>
  24. #include <linux/anon_inodes.h>
  25. #include <linux/kernel_stat.h>
  26. #include <linux/perf_counter.h>
  27. #include <linux/dcache.h>
  28. #include <asm/irq_regs.h>
  29. /*
  30. * Each CPU has a list of per CPU counters:
  31. */
  32. DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
  33. int perf_max_counters __read_mostly = 1;
  34. static int perf_reserved_percpu __read_mostly;
  35. static int perf_overcommit __read_mostly = 1;
  36. /*
  37. * Mutex for (sysadmin-configurable) counter reservations:
  38. */
  39. static DEFINE_MUTEX(perf_resource_mutex);
  40. /*
  41. * Architecture provided APIs - weak aliases:
  42. */
  43. extern __weak const struct hw_perf_counter_ops *
  44. hw_perf_counter_init(struct perf_counter *counter)
  45. {
  46. return NULL;
  47. }
  48. u64 __weak hw_perf_save_disable(void) { return 0; }
  49. void __weak hw_perf_restore(u64 ctrl) { barrier(); }
  50. void __weak hw_perf_counter_setup(int cpu) { barrier(); }
  51. int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
  52. struct perf_cpu_context *cpuctx,
  53. struct perf_counter_context *ctx, int cpu)
  54. {
  55. return 0;
  56. }
  57. void __weak perf_counter_print_debug(void) { }
  58. static void
  59. list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
  60. {
  61. struct perf_counter *group_leader = counter->group_leader;
  62. /*
  63. * Depending on whether it is a standalone or sibling counter,
  64. * add it straight to the context's counter list, or to the group
  65. * leader's sibling list:
  66. */
  67. if (counter->group_leader == counter)
  68. list_add_tail(&counter->list_entry, &ctx->counter_list);
  69. else {
  70. list_add_tail(&counter->list_entry, &group_leader->sibling_list);
  71. group_leader->nr_siblings++;
  72. }
  73. list_add_rcu(&counter->event_entry, &ctx->event_list);
  74. }
  75. static void
  76. list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
  77. {
  78. struct perf_counter *sibling, *tmp;
  79. list_del_init(&counter->list_entry);
  80. list_del_rcu(&counter->event_entry);
  81. if (counter->group_leader != counter)
  82. counter->group_leader->nr_siblings--;
  83. /*
  84. * If this was a group counter with sibling counters then
  85. * upgrade the siblings to singleton counters by adding them
  86. * to the context list directly:
  87. */
  88. list_for_each_entry_safe(sibling, tmp,
  89. &counter->sibling_list, list_entry) {
  90. list_move_tail(&sibling->list_entry, &ctx->counter_list);
  91. sibling->group_leader = sibling;
  92. }
  93. }
  94. static void
  95. counter_sched_out(struct perf_counter *counter,
  96. struct perf_cpu_context *cpuctx,
  97. struct perf_counter_context *ctx)
  98. {
  99. if (counter->state != PERF_COUNTER_STATE_ACTIVE)
  100. return;
  101. counter->state = PERF_COUNTER_STATE_INACTIVE;
  102. counter->tstamp_stopped = ctx->time;
  103. counter->hw_ops->disable(counter);
  104. counter->oncpu = -1;
  105. if (!is_software_counter(counter))
  106. cpuctx->active_oncpu--;
  107. ctx->nr_active--;
  108. if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
  109. cpuctx->exclusive = 0;
  110. }
  111. static void
  112. group_sched_out(struct perf_counter *group_counter,
  113. struct perf_cpu_context *cpuctx,
  114. struct perf_counter_context *ctx)
  115. {
  116. struct perf_counter *counter;
  117. if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
  118. return;
  119. counter_sched_out(group_counter, cpuctx, ctx);
  120. /*
  121. * Schedule out siblings (if any):
  122. */
  123. list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
  124. counter_sched_out(counter, cpuctx, ctx);
  125. if (group_counter->hw_event.exclusive)
  126. cpuctx->exclusive = 0;
  127. }
  128. /*
  129. * Cross CPU call to remove a performance counter
  130. *
  131. * We disable the counter on the hardware level first. After that we
  132. * remove it from the context list.
  133. */
  134. static void __perf_counter_remove_from_context(void *info)
  135. {
  136. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  137. struct perf_counter *counter = info;
  138. struct perf_counter_context *ctx = counter->ctx;
  139. unsigned long flags;
  140. u64 perf_flags;
  141. /*
  142. * If this is a task context, we need to check whether it is
  143. * the current task context of this cpu. If not it has been
  144. * scheduled out before the smp call arrived.
  145. */
  146. if (ctx->task && cpuctx->task_ctx != ctx)
  147. return;
  148. curr_rq_lock_irq_save(&flags);
  149. spin_lock(&ctx->lock);
  150. counter_sched_out(counter, cpuctx, ctx);
  151. counter->task = NULL;
  152. ctx->nr_counters--;
  153. /*
  154. * Protect the list operation against NMI by disabling the
  155. * counters on a global level. NOP for non NMI based counters.
  156. */
  157. perf_flags = hw_perf_save_disable();
  158. list_del_counter(counter, ctx);
  159. hw_perf_restore(perf_flags);
  160. if (!ctx->task) {
  161. /*
  162. * Allow more per task counters with respect to the
  163. * reservation:
  164. */
  165. cpuctx->max_pertask =
  166. min(perf_max_counters - ctx->nr_counters,
  167. perf_max_counters - perf_reserved_percpu);
  168. }
  169. spin_unlock(&ctx->lock);
  170. curr_rq_unlock_irq_restore(&flags);
  171. }
  172. /*
  173. * Remove the counter from a task's (or a CPU's) list of counters.
  174. *
  175. * Must be called with counter->mutex and ctx->mutex held.
  176. *
  177. * CPU counters are removed with a smp call. For task counters we only
  178. * call when the task is on a CPU.
  179. */
  180. static void perf_counter_remove_from_context(struct perf_counter *counter)
  181. {
  182. struct perf_counter_context *ctx = counter->ctx;
  183. struct task_struct *task = ctx->task;
  184. if (!task) {
  185. /*
  186. * Per cpu counters are removed via an smp call and
  187. * the removal is always sucessful.
  188. */
  189. smp_call_function_single(counter->cpu,
  190. __perf_counter_remove_from_context,
  191. counter, 1);
  192. return;
  193. }
  194. retry:
  195. task_oncpu_function_call(task, __perf_counter_remove_from_context,
  196. counter);
  197. spin_lock_irq(&ctx->lock);
  198. /*
  199. * If the context is active we need to retry the smp call.
  200. */
  201. if (ctx->nr_active && !list_empty(&counter->list_entry)) {
  202. spin_unlock_irq(&ctx->lock);
  203. goto retry;
  204. }
  205. /*
  206. * The lock prevents that this context is scheduled in so we
  207. * can remove the counter safely, if the call above did not
  208. * succeed.
  209. */
  210. if (!list_empty(&counter->list_entry)) {
  211. ctx->nr_counters--;
  212. list_del_counter(counter, ctx);
  213. counter->task = NULL;
  214. }
  215. spin_unlock_irq(&ctx->lock);
  216. }
  217. static inline u64 perf_clock(void)
  218. {
  219. return cpu_clock(smp_processor_id());
  220. }
  221. /*
  222. * Update the record of the current time in a context.
  223. */
  224. static void update_context_time(struct perf_counter_context *ctx)
  225. {
  226. u64 now = perf_clock();
  227. ctx->time += now - ctx->timestamp;
  228. ctx->timestamp = now;
  229. }
  230. /*
  231. * Update the total_time_enabled and total_time_running fields for a counter.
  232. */
  233. static void update_counter_times(struct perf_counter *counter)
  234. {
  235. struct perf_counter_context *ctx = counter->ctx;
  236. u64 run_end;
  237. if (counter->state < PERF_COUNTER_STATE_INACTIVE)
  238. return;
  239. counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
  240. if (counter->state == PERF_COUNTER_STATE_INACTIVE)
  241. run_end = counter->tstamp_stopped;
  242. else
  243. run_end = ctx->time;
  244. counter->total_time_running = run_end - counter->tstamp_running;
  245. }
  246. /*
  247. * Update total_time_enabled and total_time_running for all counters in a group.
  248. */
  249. static void update_group_times(struct perf_counter *leader)
  250. {
  251. struct perf_counter *counter;
  252. update_counter_times(leader);
  253. list_for_each_entry(counter, &leader->sibling_list, list_entry)
  254. update_counter_times(counter);
  255. }
  256. /*
  257. * Cross CPU call to disable a performance counter
  258. */
  259. static void __perf_counter_disable(void *info)
  260. {
  261. struct perf_counter *counter = info;
  262. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  263. struct perf_counter_context *ctx = counter->ctx;
  264. unsigned long flags;
  265. /*
  266. * If this is a per-task counter, need to check whether this
  267. * counter's task is the current task on this cpu.
  268. */
  269. if (ctx->task && cpuctx->task_ctx != ctx)
  270. return;
  271. curr_rq_lock_irq_save(&flags);
  272. spin_lock(&ctx->lock);
  273. /*
  274. * If the counter is on, turn it off.
  275. * If it is in error state, leave it in error state.
  276. */
  277. if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
  278. update_context_time(ctx);
  279. update_counter_times(counter);
  280. if (counter == counter->group_leader)
  281. group_sched_out(counter, cpuctx, ctx);
  282. else
  283. counter_sched_out(counter, cpuctx, ctx);
  284. counter->state = PERF_COUNTER_STATE_OFF;
  285. }
  286. spin_unlock(&ctx->lock);
  287. curr_rq_unlock_irq_restore(&flags);
  288. }
  289. /*
  290. * Disable a counter.
  291. */
  292. static void perf_counter_disable(struct perf_counter *counter)
  293. {
  294. struct perf_counter_context *ctx = counter->ctx;
  295. struct task_struct *task = ctx->task;
  296. if (!task) {
  297. /*
  298. * Disable the counter on the cpu that it's on
  299. */
  300. smp_call_function_single(counter->cpu, __perf_counter_disable,
  301. counter, 1);
  302. return;
  303. }
  304. retry:
  305. task_oncpu_function_call(task, __perf_counter_disable, counter);
  306. spin_lock_irq(&ctx->lock);
  307. /*
  308. * If the counter is still active, we need to retry the cross-call.
  309. */
  310. if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
  311. spin_unlock_irq(&ctx->lock);
  312. goto retry;
  313. }
  314. /*
  315. * Since we have the lock this context can't be scheduled
  316. * in, so we can change the state safely.
  317. */
  318. if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
  319. update_counter_times(counter);
  320. counter->state = PERF_COUNTER_STATE_OFF;
  321. }
  322. spin_unlock_irq(&ctx->lock);
  323. }
  324. /*
  325. * Disable a counter and all its children.
  326. */
  327. static void perf_counter_disable_family(struct perf_counter *counter)
  328. {
  329. struct perf_counter *child;
  330. perf_counter_disable(counter);
  331. /*
  332. * Lock the mutex to protect the list of children
  333. */
  334. mutex_lock(&counter->mutex);
  335. list_for_each_entry(child, &counter->child_list, child_list)
  336. perf_counter_disable(child);
  337. mutex_unlock(&counter->mutex);
  338. }
  339. static int
  340. counter_sched_in(struct perf_counter *counter,
  341. struct perf_cpu_context *cpuctx,
  342. struct perf_counter_context *ctx,
  343. int cpu)
  344. {
  345. if (counter->state <= PERF_COUNTER_STATE_OFF)
  346. return 0;
  347. counter->state = PERF_COUNTER_STATE_ACTIVE;
  348. counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
  349. /*
  350. * The new state must be visible before we turn it on in the hardware:
  351. */
  352. smp_wmb();
  353. if (counter->hw_ops->enable(counter)) {
  354. counter->state = PERF_COUNTER_STATE_INACTIVE;
  355. counter->oncpu = -1;
  356. return -EAGAIN;
  357. }
  358. counter->tstamp_running += ctx->time - counter->tstamp_stopped;
  359. if (!is_software_counter(counter))
  360. cpuctx->active_oncpu++;
  361. ctx->nr_active++;
  362. if (counter->hw_event.exclusive)
  363. cpuctx->exclusive = 1;
  364. return 0;
  365. }
  366. /*
  367. * Return 1 for a group consisting entirely of software counters,
  368. * 0 if the group contains any hardware counters.
  369. */
  370. static int is_software_only_group(struct perf_counter *leader)
  371. {
  372. struct perf_counter *counter;
  373. if (!is_software_counter(leader))
  374. return 0;
  375. list_for_each_entry(counter, &leader->sibling_list, list_entry)
  376. if (!is_software_counter(counter))
  377. return 0;
  378. return 1;
  379. }
  380. /*
  381. * Work out whether we can put this counter group on the CPU now.
  382. */
  383. static int group_can_go_on(struct perf_counter *counter,
  384. struct perf_cpu_context *cpuctx,
  385. int can_add_hw)
  386. {
  387. /*
  388. * Groups consisting entirely of software counters can always go on.
  389. */
  390. if (is_software_only_group(counter))
  391. return 1;
  392. /*
  393. * If an exclusive group is already on, no other hardware
  394. * counters can go on.
  395. */
  396. if (cpuctx->exclusive)
  397. return 0;
  398. /*
  399. * If this group is exclusive and there are already
  400. * counters on the CPU, it can't go on.
  401. */
  402. if (counter->hw_event.exclusive && cpuctx->active_oncpu)
  403. return 0;
  404. /*
  405. * Otherwise, try to add it if all previous groups were able
  406. * to go on.
  407. */
  408. return can_add_hw;
  409. }
  410. static void add_counter_to_ctx(struct perf_counter *counter,
  411. struct perf_counter_context *ctx)
  412. {
  413. list_add_counter(counter, ctx);
  414. ctx->nr_counters++;
  415. counter->prev_state = PERF_COUNTER_STATE_OFF;
  416. counter->tstamp_enabled = ctx->time;
  417. counter->tstamp_running = ctx->time;
  418. counter->tstamp_stopped = ctx->time;
  419. }
  420. /*
  421. * Cross CPU call to install and enable a performance counter
  422. */
  423. static void __perf_install_in_context(void *info)
  424. {
  425. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  426. struct perf_counter *counter = info;
  427. struct perf_counter_context *ctx = counter->ctx;
  428. struct perf_counter *leader = counter->group_leader;
  429. int cpu = smp_processor_id();
  430. unsigned long flags;
  431. u64 perf_flags;
  432. int err;
  433. /*
  434. * If this is a task context, we need to check whether it is
  435. * the current task context of this cpu. If not it has been
  436. * scheduled out before the smp call arrived.
  437. */
  438. if (ctx->task && cpuctx->task_ctx != ctx)
  439. return;
  440. curr_rq_lock_irq_save(&flags);
  441. spin_lock(&ctx->lock);
  442. update_context_time(ctx);
  443. /*
  444. * Protect the list operation against NMI by disabling the
  445. * counters on a global level. NOP for non NMI based counters.
  446. */
  447. perf_flags = hw_perf_save_disable();
  448. add_counter_to_ctx(counter, ctx);
  449. /*
  450. * Don't put the counter on if it is disabled or if
  451. * it is in a group and the group isn't on.
  452. */
  453. if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
  454. (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
  455. goto unlock;
  456. /*
  457. * An exclusive counter can't go on if there are already active
  458. * hardware counters, and no hardware counter can go on if there
  459. * is already an exclusive counter on.
  460. */
  461. if (!group_can_go_on(counter, cpuctx, 1))
  462. err = -EEXIST;
  463. else
  464. err = counter_sched_in(counter, cpuctx, ctx, cpu);
  465. if (err) {
  466. /*
  467. * This counter couldn't go on. If it is in a group
  468. * then we have to pull the whole group off.
  469. * If the counter group is pinned then put it in error state.
  470. */
  471. if (leader != counter)
  472. group_sched_out(leader, cpuctx, ctx);
  473. if (leader->hw_event.pinned) {
  474. update_group_times(leader);
  475. leader->state = PERF_COUNTER_STATE_ERROR;
  476. }
  477. }
  478. if (!err && !ctx->task && cpuctx->max_pertask)
  479. cpuctx->max_pertask--;
  480. unlock:
  481. hw_perf_restore(perf_flags);
  482. spin_unlock(&ctx->lock);
  483. curr_rq_unlock_irq_restore(&flags);
  484. }
  485. /*
  486. * Attach a performance counter to a context
  487. *
  488. * First we add the counter to the list with the hardware enable bit
  489. * in counter->hw_config cleared.
  490. *
  491. * If the counter is attached to a task which is on a CPU we use a smp
  492. * call to enable it in the task context. The task might have been
  493. * scheduled away, but we check this in the smp call again.
  494. *
  495. * Must be called with ctx->mutex held.
  496. */
  497. static void
  498. perf_install_in_context(struct perf_counter_context *ctx,
  499. struct perf_counter *counter,
  500. int cpu)
  501. {
  502. struct task_struct *task = ctx->task;
  503. if (!task) {
  504. /*
  505. * Per cpu counters are installed via an smp call and
  506. * the install is always sucessful.
  507. */
  508. smp_call_function_single(cpu, __perf_install_in_context,
  509. counter, 1);
  510. return;
  511. }
  512. counter->task = task;
  513. retry:
  514. task_oncpu_function_call(task, __perf_install_in_context,
  515. counter);
  516. spin_lock_irq(&ctx->lock);
  517. /*
  518. * we need to retry the smp call.
  519. */
  520. if (ctx->is_active && list_empty(&counter->list_entry)) {
  521. spin_unlock_irq(&ctx->lock);
  522. goto retry;
  523. }
  524. /*
  525. * The lock prevents that this context is scheduled in so we
  526. * can add the counter safely, if it the call above did not
  527. * succeed.
  528. */
  529. if (list_empty(&counter->list_entry))
  530. add_counter_to_ctx(counter, ctx);
  531. spin_unlock_irq(&ctx->lock);
  532. }
  533. /*
  534. * Cross CPU call to enable a performance counter
  535. */
  536. static void __perf_counter_enable(void *info)
  537. {
  538. struct perf_counter *counter = info;
  539. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  540. struct perf_counter_context *ctx = counter->ctx;
  541. struct perf_counter *leader = counter->group_leader;
  542. unsigned long flags;
  543. int err;
  544. /*
  545. * If this is a per-task counter, need to check whether this
  546. * counter's task is the current task on this cpu.
  547. */
  548. if (ctx->task && cpuctx->task_ctx != ctx)
  549. return;
  550. curr_rq_lock_irq_save(&flags);
  551. spin_lock(&ctx->lock);
  552. update_context_time(ctx);
  553. counter->prev_state = counter->state;
  554. if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
  555. goto unlock;
  556. counter->state = PERF_COUNTER_STATE_INACTIVE;
  557. counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
  558. /*
  559. * If the counter is in a group and isn't the group leader,
  560. * then don't put it on unless the group is on.
  561. */
  562. if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
  563. goto unlock;
  564. if (!group_can_go_on(counter, cpuctx, 1))
  565. err = -EEXIST;
  566. else
  567. err = counter_sched_in(counter, cpuctx, ctx,
  568. smp_processor_id());
  569. if (err) {
  570. /*
  571. * If this counter can't go on and it's part of a
  572. * group, then the whole group has to come off.
  573. */
  574. if (leader != counter)
  575. group_sched_out(leader, cpuctx, ctx);
  576. if (leader->hw_event.pinned) {
  577. update_group_times(leader);
  578. leader->state = PERF_COUNTER_STATE_ERROR;
  579. }
  580. }
  581. unlock:
  582. spin_unlock(&ctx->lock);
  583. curr_rq_unlock_irq_restore(&flags);
  584. }
  585. /*
  586. * Enable a counter.
  587. */
  588. static void perf_counter_enable(struct perf_counter *counter)
  589. {
  590. struct perf_counter_context *ctx = counter->ctx;
  591. struct task_struct *task = ctx->task;
  592. if (!task) {
  593. /*
  594. * Enable the counter on the cpu that it's on
  595. */
  596. smp_call_function_single(counter->cpu, __perf_counter_enable,
  597. counter, 1);
  598. return;
  599. }
  600. spin_lock_irq(&ctx->lock);
  601. if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
  602. goto out;
  603. /*
  604. * If the counter is in error state, clear that first.
  605. * That way, if we see the counter in error state below, we
  606. * know that it has gone back into error state, as distinct
  607. * from the task having been scheduled away before the
  608. * cross-call arrived.
  609. */
  610. if (counter->state == PERF_COUNTER_STATE_ERROR)
  611. counter->state = PERF_COUNTER_STATE_OFF;
  612. retry:
  613. spin_unlock_irq(&ctx->lock);
  614. task_oncpu_function_call(task, __perf_counter_enable, counter);
  615. spin_lock_irq(&ctx->lock);
  616. /*
  617. * If the context is active and the counter is still off,
  618. * we need to retry the cross-call.
  619. */
  620. if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
  621. goto retry;
  622. /*
  623. * Since we have the lock this context can't be scheduled
  624. * in, so we can change the state safely.
  625. */
  626. if (counter->state == PERF_COUNTER_STATE_OFF) {
  627. counter->state = PERF_COUNTER_STATE_INACTIVE;
  628. counter->tstamp_enabled =
  629. ctx->time - counter->total_time_enabled;
  630. }
  631. out:
  632. spin_unlock_irq(&ctx->lock);
  633. }
  634. static void perf_counter_refresh(struct perf_counter *counter, int refresh)
  635. {
  636. atomic_add(refresh, &counter->event_limit);
  637. perf_counter_enable(counter);
  638. }
  639. /*
  640. * Enable a counter and all its children.
  641. */
  642. static void perf_counter_enable_family(struct perf_counter *counter)
  643. {
  644. struct perf_counter *child;
  645. perf_counter_enable(counter);
  646. /*
  647. * Lock the mutex to protect the list of children
  648. */
  649. mutex_lock(&counter->mutex);
  650. list_for_each_entry(child, &counter->child_list, child_list)
  651. perf_counter_enable(child);
  652. mutex_unlock(&counter->mutex);
  653. }
  654. void __perf_counter_sched_out(struct perf_counter_context *ctx,
  655. struct perf_cpu_context *cpuctx)
  656. {
  657. struct perf_counter *counter;
  658. u64 flags;
  659. spin_lock(&ctx->lock);
  660. ctx->is_active = 0;
  661. if (likely(!ctx->nr_counters))
  662. goto out;
  663. update_context_time(ctx);
  664. flags = hw_perf_save_disable();
  665. if (ctx->nr_active) {
  666. list_for_each_entry(counter, &ctx->counter_list, list_entry)
  667. group_sched_out(counter, cpuctx, ctx);
  668. }
  669. hw_perf_restore(flags);
  670. out:
  671. spin_unlock(&ctx->lock);
  672. }
  673. /*
  674. * Called from scheduler to remove the counters of the current task,
  675. * with interrupts disabled.
  676. *
  677. * We stop each counter and update the counter value in counter->count.
  678. *
  679. * This does not protect us against NMI, but disable()
  680. * sets the disabled bit in the control field of counter _before_
  681. * accessing the counter control register. If a NMI hits, then it will
  682. * not restart the counter.
  683. */
  684. void perf_counter_task_sched_out(struct task_struct *task, int cpu)
  685. {
  686. struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
  687. struct perf_counter_context *ctx = &task->perf_counter_ctx;
  688. struct pt_regs *regs;
  689. if (likely(!cpuctx->task_ctx))
  690. return;
  691. regs = task_pt_regs(task);
  692. perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs);
  693. __perf_counter_sched_out(ctx, cpuctx);
  694. cpuctx->task_ctx = NULL;
  695. }
  696. static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
  697. {
  698. __perf_counter_sched_out(&cpuctx->ctx, cpuctx);
  699. }
  700. static int
  701. group_sched_in(struct perf_counter *group_counter,
  702. struct perf_cpu_context *cpuctx,
  703. struct perf_counter_context *ctx,
  704. int cpu)
  705. {
  706. struct perf_counter *counter, *partial_group;
  707. int ret;
  708. if (group_counter->state == PERF_COUNTER_STATE_OFF)
  709. return 0;
  710. ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
  711. if (ret)
  712. return ret < 0 ? ret : 0;
  713. group_counter->prev_state = group_counter->state;
  714. if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
  715. return -EAGAIN;
  716. /*
  717. * Schedule in siblings as one group (if any):
  718. */
  719. list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
  720. counter->prev_state = counter->state;
  721. if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
  722. partial_group = counter;
  723. goto group_error;
  724. }
  725. }
  726. return 0;
  727. group_error:
  728. /*
  729. * Groups can be scheduled in as one unit only, so undo any
  730. * partial group before returning:
  731. */
  732. list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
  733. if (counter == partial_group)
  734. break;
  735. counter_sched_out(counter, cpuctx, ctx);
  736. }
  737. counter_sched_out(group_counter, cpuctx, ctx);
  738. return -EAGAIN;
  739. }
  740. static void
  741. __perf_counter_sched_in(struct perf_counter_context *ctx,
  742. struct perf_cpu_context *cpuctx, int cpu)
  743. {
  744. struct perf_counter *counter;
  745. u64 flags;
  746. int can_add_hw = 1;
  747. spin_lock(&ctx->lock);
  748. ctx->is_active = 1;
  749. if (likely(!ctx->nr_counters))
  750. goto out;
  751. ctx->timestamp = perf_clock();
  752. flags = hw_perf_save_disable();
  753. /*
  754. * First go through the list and put on any pinned groups
  755. * in order to give them the best chance of going on.
  756. */
  757. list_for_each_entry(counter, &ctx->counter_list, list_entry) {
  758. if (counter->state <= PERF_COUNTER_STATE_OFF ||
  759. !counter->hw_event.pinned)
  760. continue;
  761. if (counter->cpu != -1 && counter->cpu != cpu)
  762. continue;
  763. if (group_can_go_on(counter, cpuctx, 1))
  764. group_sched_in(counter, cpuctx, ctx, cpu);
  765. /*
  766. * If this pinned group hasn't been scheduled,
  767. * put it in error state.
  768. */
  769. if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
  770. update_group_times(counter);
  771. counter->state = PERF_COUNTER_STATE_ERROR;
  772. }
  773. }
  774. list_for_each_entry(counter, &ctx->counter_list, list_entry) {
  775. /*
  776. * Ignore counters in OFF or ERROR state, and
  777. * ignore pinned counters since we did them already.
  778. */
  779. if (counter->state <= PERF_COUNTER_STATE_OFF ||
  780. counter->hw_event.pinned)
  781. continue;
  782. /*
  783. * Listen to the 'cpu' scheduling filter constraint
  784. * of counters:
  785. */
  786. if (counter->cpu != -1 && counter->cpu != cpu)
  787. continue;
  788. if (group_can_go_on(counter, cpuctx, can_add_hw)) {
  789. if (group_sched_in(counter, cpuctx, ctx, cpu))
  790. can_add_hw = 0;
  791. }
  792. }
  793. hw_perf_restore(flags);
  794. out:
  795. spin_unlock(&ctx->lock);
  796. }
  797. /*
  798. * Called from scheduler to add the counters of the current task
  799. * with interrupts disabled.
  800. *
  801. * We restore the counter value and then enable it.
  802. *
  803. * This does not protect us against NMI, but enable()
  804. * sets the enabled bit in the control field of counter _before_
  805. * accessing the counter control register. If a NMI hits, then it will
  806. * keep the counter running.
  807. */
  808. void perf_counter_task_sched_in(struct task_struct *task, int cpu)
  809. {
  810. struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
  811. struct perf_counter_context *ctx = &task->perf_counter_ctx;
  812. __perf_counter_sched_in(ctx, cpuctx, cpu);
  813. cpuctx->task_ctx = ctx;
  814. }
  815. static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
  816. {
  817. struct perf_counter_context *ctx = &cpuctx->ctx;
  818. __perf_counter_sched_in(ctx, cpuctx, cpu);
  819. }
  820. int perf_counter_task_disable(void)
  821. {
  822. struct task_struct *curr = current;
  823. struct perf_counter_context *ctx = &curr->perf_counter_ctx;
  824. struct perf_counter *counter;
  825. unsigned long flags;
  826. u64 perf_flags;
  827. int cpu;
  828. if (likely(!ctx->nr_counters))
  829. return 0;
  830. curr_rq_lock_irq_save(&flags);
  831. cpu = smp_processor_id();
  832. perf_counter_task_sched_out(curr, cpu);
  833. spin_lock(&ctx->lock);
  834. /*
  835. * Disable all the counters:
  836. */
  837. perf_flags = hw_perf_save_disable();
  838. list_for_each_entry(counter, &ctx->counter_list, list_entry) {
  839. if (counter->state != PERF_COUNTER_STATE_ERROR) {
  840. update_group_times(counter);
  841. counter->state = PERF_COUNTER_STATE_OFF;
  842. }
  843. }
  844. hw_perf_restore(perf_flags);
  845. spin_unlock(&ctx->lock);
  846. curr_rq_unlock_irq_restore(&flags);
  847. return 0;
  848. }
  849. int perf_counter_task_enable(void)
  850. {
  851. struct task_struct *curr = current;
  852. struct perf_counter_context *ctx = &curr->perf_counter_ctx;
  853. struct perf_counter *counter;
  854. unsigned long flags;
  855. u64 perf_flags;
  856. int cpu;
  857. if (likely(!ctx->nr_counters))
  858. return 0;
  859. curr_rq_lock_irq_save(&flags);
  860. cpu = smp_processor_id();
  861. perf_counter_task_sched_out(curr, cpu);
  862. spin_lock(&ctx->lock);
  863. /*
  864. * Disable all the counters:
  865. */
  866. perf_flags = hw_perf_save_disable();
  867. list_for_each_entry(counter, &ctx->counter_list, list_entry) {
  868. if (counter->state > PERF_COUNTER_STATE_OFF)
  869. continue;
  870. counter->state = PERF_COUNTER_STATE_INACTIVE;
  871. counter->tstamp_enabled =
  872. ctx->time - counter->total_time_enabled;
  873. counter->hw_event.disabled = 0;
  874. }
  875. hw_perf_restore(perf_flags);
  876. spin_unlock(&ctx->lock);
  877. perf_counter_task_sched_in(curr, cpu);
  878. curr_rq_unlock_irq_restore(&flags);
  879. return 0;
  880. }
  881. /*
  882. * Round-robin a context's counters:
  883. */
  884. static void rotate_ctx(struct perf_counter_context *ctx)
  885. {
  886. struct perf_counter *counter;
  887. u64 perf_flags;
  888. if (!ctx->nr_counters)
  889. return;
  890. spin_lock(&ctx->lock);
  891. /*
  892. * Rotate the first entry last (works just fine for group counters too):
  893. */
  894. perf_flags = hw_perf_save_disable();
  895. list_for_each_entry(counter, &ctx->counter_list, list_entry) {
  896. list_move_tail(&counter->list_entry, &ctx->counter_list);
  897. break;
  898. }
  899. hw_perf_restore(perf_flags);
  900. spin_unlock(&ctx->lock);
  901. }
  902. void perf_counter_task_tick(struct task_struct *curr, int cpu)
  903. {
  904. struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
  905. struct perf_counter_context *ctx = &curr->perf_counter_ctx;
  906. const int rotate_percpu = 0;
  907. if (rotate_percpu)
  908. perf_counter_cpu_sched_out(cpuctx);
  909. perf_counter_task_sched_out(curr, cpu);
  910. if (rotate_percpu)
  911. rotate_ctx(&cpuctx->ctx);
  912. rotate_ctx(ctx);
  913. if (rotate_percpu)
  914. perf_counter_cpu_sched_in(cpuctx, cpu);
  915. perf_counter_task_sched_in(curr, cpu);
  916. }
  917. /*
  918. * Cross CPU call to read the hardware counter
  919. */
  920. static void __read(void *info)
  921. {
  922. struct perf_counter *counter = info;
  923. struct perf_counter_context *ctx = counter->ctx;
  924. unsigned long flags;
  925. curr_rq_lock_irq_save(&flags);
  926. if (ctx->is_active)
  927. update_context_time(ctx);
  928. counter->hw_ops->read(counter);
  929. update_counter_times(counter);
  930. curr_rq_unlock_irq_restore(&flags);
  931. }
  932. static u64 perf_counter_read(struct perf_counter *counter)
  933. {
  934. /*
  935. * If counter is enabled and currently active on a CPU, update the
  936. * value in the counter structure:
  937. */
  938. if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
  939. smp_call_function_single(counter->oncpu,
  940. __read, counter, 1);
  941. } else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
  942. update_counter_times(counter);
  943. }
  944. return atomic64_read(&counter->count);
  945. }
  946. static void put_context(struct perf_counter_context *ctx)
  947. {
  948. if (ctx->task)
  949. put_task_struct(ctx->task);
  950. }
  951. static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
  952. {
  953. struct perf_cpu_context *cpuctx;
  954. struct perf_counter_context *ctx;
  955. struct task_struct *task;
  956. /*
  957. * If cpu is not a wildcard then this is a percpu counter:
  958. */
  959. if (cpu != -1) {
  960. /* Must be root to operate on a CPU counter: */
  961. if (!capable(CAP_SYS_ADMIN))
  962. return ERR_PTR(-EACCES);
  963. if (cpu < 0 || cpu > num_possible_cpus())
  964. return ERR_PTR(-EINVAL);
  965. /*
  966. * We could be clever and allow to attach a counter to an
  967. * offline CPU and activate it when the CPU comes up, but
  968. * that's for later.
  969. */
  970. if (!cpu_isset(cpu, cpu_online_map))
  971. return ERR_PTR(-ENODEV);
  972. cpuctx = &per_cpu(perf_cpu_context, cpu);
  973. ctx = &cpuctx->ctx;
  974. return ctx;
  975. }
  976. rcu_read_lock();
  977. if (!pid)
  978. task = current;
  979. else
  980. task = find_task_by_vpid(pid);
  981. if (task)
  982. get_task_struct(task);
  983. rcu_read_unlock();
  984. if (!task)
  985. return ERR_PTR(-ESRCH);
  986. ctx = &task->perf_counter_ctx;
  987. ctx->task = task;
  988. /* Reuse ptrace permission checks for now. */
  989. if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
  990. put_context(ctx);
  991. return ERR_PTR(-EACCES);
  992. }
  993. return ctx;
  994. }
  995. static void free_counter_rcu(struct rcu_head *head)
  996. {
  997. struct perf_counter *counter;
  998. counter = container_of(head, struct perf_counter, rcu_head);
  999. kfree(counter);
  1000. }
  1001. static void perf_pending_sync(struct perf_counter *counter);
  1002. static void free_counter(struct perf_counter *counter)
  1003. {
  1004. perf_pending_sync(counter);
  1005. if (counter->destroy)
  1006. counter->destroy(counter);
  1007. call_rcu(&counter->rcu_head, free_counter_rcu);
  1008. }
  1009. /*
  1010. * Called when the last reference to the file is gone.
  1011. */
  1012. static int perf_release(struct inode *inode, struct file *file)
  1013. {
  1014. struct perf_counter *counter = file->private_data;
  1015. struct perf_counter_context *ctx = counter->ctx;
  1016. file->private_data = NULL;
  1017. mutex_lock(&ctx->mutex);
  1018. mutex_lock(&counter->mutex);
  1019. perf_counter_remove_from_context(counter);
  1020. mutex_unlock(&counter->mutex);
  1021. mutex_unlock(&ctx->mutex);
  1022. free_counter(counter);
  1023. put_context(ctx);
  1024. return 0;
  1025. }
  1026. /*
  1027. * Read the performance counter - simple non blocking version for now
  1028. */
  1029. static ssize_t
  1030. perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
  1031. {
  1032. u64 values[3];
  1033. int n;
  1034. /*
  1035. * Return end-of-file for a read on a counter that is in
  1036. * error state (i.e. because it was pinned but it couldn't be
  1037. * scheduled on to the CPU at some point).
  1038. */
  1039. if (counter->state == PERF_COUNTER_STATE_ERROR)
  1040. return 0;
  1041. mutex_lock(&counter->mutex);
  1042. values[0] = perf_counter_read(counter);
  1043. n = 1;
  1044. if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
  1045. values[n++] = counter->total_time_enabled +
  1046. atomic64_read(&counter->child_total_time_enabled);
  1047. if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
  1048. values[n++] = counter->total_time_running +
  1049. atomic64_read(&counter->child_total_time_running);
  1050. mutex_unlock(&counter->mutex);
  1051. if (count < n * sizeof(u64))
  1052. return -EINVAL;
  1053. count = n * sizeof(u64);
  1054. if (copy_to_user(buf, values, count))
  1055. return -EFAULT;
  1056. return count;
  1057. }
  1058. static ssize_t
  1059. perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
  1060. {
  1061. struct perf_counter *counter = file->private_data;
  1062. return perf_read_hw(counter, buf, count);
  1063. }
  1064. static unsigned int perf_poll(struct file *file, poll_table *wait)
  1065. {
  1066. struct perf_counter *counter = file->private_data;
  1067. struct perf_mmap_data *data;
  1068. unsigned int events;
  1069. rcu_read_lock();
  1070. data = rcu_dereference(counter->data);
  1071. if (data)
  1072. events = atomic_xchg(&data->wakeup, 0);
  1073. else
  1074. events = POLL_HUP;
  1075. rcu_read_unlock();
  1076. poll_wait(file, &counter->waitq, wait);
  1077. return events;
  1078. }
  1079. static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  1080. {
  1081. struct perf_counter *counter = file->private_data;
  1082. int err = 0;
  1083. switch (cmd) {
  1084. case PERF_COUNTER_IOC_ENABLE:
  1085. perf_counter_enable_family(counter);
  1086. break;
  1087. case PERF_COUNTER_IOC_DISABLE:
  1088. perf_counter_disable_family(counter);
  1089. break;
  1090. case PERF_COUNTER_IOC_REFRESH:
  1091. perf_counter_refresh(counter, arg);
  1092. break;
  1093. default:
  1094. err = -ENOTTY;
  1095. }
  1096. return err;
  1097. }
  1098. /*
  1099. * Callers need to ensure there can be no nesting of this function, otherwise
  1100. * the seqlock logic goes bad. We can not serialize this because the arch
  1101. * code calls this from NMI context.
  1102. */
  1103. void perf_counter_update_userpage(struct perf_counter *counter)
  1104. {
  1105. struct perf_mmap_data *data;
  1106. struct perf_counter_mmap_page *userpg;
  1107. rcu_read_lock();
  1108. data = rcu_dereference(counter->data);
  1109. if (!data)
  1110. goto unlock;
  1111. userpg = data->user_page;
  1112. /*
  1113. * Disable preemption so as to not let the corresponding user-space
  1114. * spin too long if we get preempted.
  1115. */
  1116. preempt_disable();
  1117. ++userpg->lock;
  1118. barrier();
  1119. userpg->index = counter->hw.idx;
  1120. userpg->offset = atomic64_read(&counter->count);
  1121. if (counter->state == PERF_COUNTER_STATE_ACTIVE)
  1122. userpg->offset -= atomic64_read(&counter->hw.prev_count);
  1123. barrier();
  1124. ++userpg->lock;
  1125. preempt_enable();
  1126. unlock:
  1127. rcu_read_unlock();
  1128. }
  1129. static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1130. {
  1131. struct perf_counter *counter = vma->vm_file->private_data;
  1132. struct perf_mmap_data *data;
  1133. int ret = VM_FAULT_SIGBUS;
  1134. rcu_read_lock();
  1135. data = rcu_dereference(counter->data);
  1136. if (!data)
  1137. goto unlock;
  1138. if (vmf->pgoff == 0) {
  1139. vmf->page = virt_to_page(data->user_page);
  1140. } else {
  1141. int nr = vmf->pgoff - 1;
  1142. if ((unsigned)nr > data->nr_pages)
  1143. goto unlock;
  1144. vmf->page = virt_to_page(data->data_pages[nr]);
  1145. }
  1146. get_page(vmf->page);
  1147. ret = 0;
  1148. unlock:
  1149. rcu_read_unlock();
  1150. return ret;
  1151. }
  1152. static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
  1153. {
  1154. struct perf_mmap_data *data;
  1155. unsigned long size;
  1156. int i;
  1157. WARN_ON(atomic_read(&counter->mmap_count));
  1158. size = sizeof(struct perf_mmap_data);
  1159. size += nr_pages * sizeof(void *);
  1160. data = kzalloc(size, GFP_KERNEL);
  1161. if (!data)
  1162. goto fail;
  1163. data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
  1164. if (!data->user_page)
  1165. goto fail_user_page;
  1166. for (i = 0; i < nr_pages; i++) {
  1167. data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
  1168. if (!data->data_pages[i])
  1169. goto fail_data_pages;
  1170. }
  1171. data->nr_pages = nr_pages;
  1172. rcu_assign_pointer(counter->data, data);
  1173. return 0;
  1174. fail_data_pages:
  1175. for (i--; i >= 0; i--)
  1176. free_page((unsigned long)data->data_pages[i]);
  1177. free_page((unsigned long)data->user_page);
  1178. fail_user_page:
  1179. kfree(data);
  1180. fail:
  1181. return -ENOMEM;
  1182. }
  1183. static void __perf_mmap_data_free(struct rcu_head *rcu_head)
  1184. {
  1185. struct perf_mmap_data *data = container_of(rcu_head,
  1186. struct perf_mmap_data, rcu_head);
  1187. int i;
  1188. free_page((unsigned long)data->user_page);
  1189. for (i = 0; i < data->nr_pages; i++)
  1190. free_page((unsigned long)data->data_pages[i]);
  1191. kfree(data);
  1192. }
  1193. static void perf_mmap_data_free(struct perf_counter *counter)
  1194. {
  1195. struct perf_mmap_data *data = counter->data;
  1196. WARN_ON(atomic_read(&counter->mmap_count));
  1197. rcu_assign_pointer(counter->data, NULL);
  1198. call_rcu(&data->rcu_head, __perf_mmap_data_free);
  1199. }
  1200. static void perf_mmap_open(struct vm_area_struct *vma)
  1201. {
  1202. struct perf_counter *counter = vma->vm_file->private_data;
  1203. atomic_inc(&counter->mmap_count);
  1204. }
  1205. static void perf_mmap_close(struct vm_area_struct *vma)
  1206. {
  1207. struct perf_counter *counter = vma->vm_file->private_data;
  1208. if (atomic_dec_and_mutex_lock(&counter->mmap_count,
  1209. &counter->mmap_mutex)) {
  1210. vma->vm_mm->locked_vm -= counter->data->nr_pages + 1;
  1211. perf_mmap_data_free(counter);
  1212. mutex_unlock(&counter->mmap_mutex);
  1213. }
  1214. }
  1215. static struct vm_operations_struct perf_mmap_vmops = {
  1216. .open = perf_mmap_open,
  1217. .close = perf_mmap_close,
  1218. .fault = perf_mmap_fault,
  1219. };
  1220. static int perf_mmap(struct file *file, struct vm_area_struct *vma)
  1221. {
  1222. struct perf_counter *counter = file->private_data;
  1223. unsigned long vma_size;
  1224. unsigned long nr_pages;
  1225. unsigned long locked, lock_limit;
  1226. int ret = 0;
  1227. if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
  1228. return -EINVAL;
  1229. vma_size = vma->vm_end - vma->vm_start;
  1230. nr_pages = (vma_size / PAGE_SIZE) - 1;
  1231. /*
  1232. * If we have data pages ensure they're a power-of-two number, so we
  1233. * can do bitmasks instead of modulo.
  1234. */
  1235. if (nr_pages != 0 && !is_power_of_2(nr_pages))
  1236. return -EINVAL;
  1237. if (vma_size != PAGE_SIZE * (1 + nr_pages))
  1238. return -EINVAL;
  1239. if (vma->vm_pgoff != 0)
  1240. return -EINVAL;
  1241. mutex_lock(&counter->mmap_mutex);
  1242. if (atomic_inc_not_zero(&counter->mmap_count)) {
  1243. if (nr_pages != counter->data->nr_pages)
  1244. ret = -EINVAL;
  1245. goto unlock;
  1246. }
  1247. locked = vma->vm_mm->locked_vm;
  1248. locked += nr_pages + 1;
  1249. lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
  1250. lock_limit >>= PAGE_SHIFT;
  1251. if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
  1252. ret = -EPERM;
  1253. goto unlock;
  1254. }
  1255. WARN_ON(counter->data);
  1256. ret = perf_mmap_data_alloc(counter, nr_pages);
  1257. if (ret)
  1258. goto unlock;
  1259. atomic_set(&counter->mmap_count, 1);
  1260. vma->vm_mm->locked_vm += nr_pages + 1;
  1261. unlock:
  1262. mutex_unlock(&counter->mmap_mutex);
  1263. vma->vm_flags &= ~VM_MAYWRITE;
  1264. vma->vm_flags |= VM_RESERVED;
  1265. vma->vm_ops = &perf_mmap_vmops;
  1266. return ret;
  1267. }
  1268. static int perf_fasync(int fd, struct file *filp, int on)
  1269. {
  1270. struct perf_counter *counter = filp->private_data;
  1271. struct inode *inode = filp->f_path.dentry->d_inode;
  1272. int retval;
  1273. mutex_lock(&inode->i_mutex);
  1274. retval = fasync_helper(fd, filp, on, &counter->fasync);
  1275. mutex_unlock(&inode->i_mutex);
  1276. if (retval < 0)
  1277. return retval;
  1278. return 0;
  1279. }
  1280. static const struct file_operations perf_fops = {
  1281. .release = perf_release,
  1282. .read = perf_read,
  1283. .poll = perf_poll,
  1284. .unlocked_ioctl = perf_ioctl,
  1285. .compat_ioctl = perf_ioctl,
  1286. .mmap = perf_mmap,
  1287. .fasync = perf_fasync,
  1288. };
  1289. /*
  1290. * Perf counter wakeup
  1291. *
  1292. * If there's data, ensure we set the poll() state and publish everything
  1293. * to user-space before waking everybody up.
  1294. */
  1295. void perf_counter_wakeup(struct perf_counter *counter)
  1296. {
  1297. struct perf_mmap_data *data;
  1298. rcu_read_lock();
  1299. data = rcu_dereference(counter->data);
  1300. if (data) {
  1301. atomic_set(&data->wakeup, POLL_IN);
  1302. /*
  1303. * Ensure all data writes are issued before updating the
  1304. * user-space data head information. The matching rmb()
  1305. * will be in userspace after reading this value.
  1306. */
  1307. smp_wmb();
  1308. data->user_page->data_head = atomic_read(&data->head);
  1309. }
  1310. rcu_read_unlock();
  1311. wake_up_all(&counter->waitq);
  1312. if (counter->pending_kill) {
  1313. kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
  1314. counter->pending_kill = 0;
  1315. }
  1316. }
  1317. /*
  1318. * Pending wakeups
  1319. *
  1320. * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
  1321. *
  1322. * The NMI bit means we cannot possibly take locks. Therefore, maintain a
  1323. * single linked list and use cmpxchg() to add entries lockless.
  1324. */
  1325. static void perf_pending_counter(struct perf_pending_entry *entry)
  1326. {
  1327. struct perf_counter *counter = container_of(entry,
  1328. struct perf_counter, pending);
  1329. if (counter->pending_disable) {
  1330. counter->pending_disable = 0;
  1331. perf_counter_disable(counter);
  1332. }
  1333. if (counter->pending_wakeup) {
  1334. counter->pending_wakeup = 0;
  1335. perf_counter_wakeup(counter);
  1336. }
  1337. }
  1338. #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
  1339. static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
  1340. PENDING_TAIL,
  1341. };
  1342. static void perf_pending_queue(struct perf_pending_entry *entry,
  1343. void (*func)(struct perf_pending_entry *))
  1344. {
  1345. struct perf_pending_entry **head;
  1346. if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
  1347. return;
  1348. entry->func = func;
  1349. head = &get_cpu_var(perf_pending_head);
  1350. do {
  1351. entry->next = *head;
  1352. } while (cmpxchg(head, entry->next, entry) != entry->next);
  1353. set_perf_counter_pending();
  1354. put_cpu_var(perf_pending_head);
  1355. }
  1356. static int __perf_pending_run(void)
  1357. {
  1358. struct perf_pending_entry *list;
  1359. int nr = 0;
  1360. list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
  1361. while (list != PENDING_TAIL) {
  1362. void (*func)(struct perf_pending_entry *);
  1363. struct perf_pending_entry *entry = list;
  1364. list = list->next;
  1365. func = entry->func;
  1366. entry->next = NULL;
  1367. /*
  1368. * Ensure we observe the unqueue before we issue the wakeup,
  1369. * so that we won't be waiting forever.
  1370. * -- see perf_not_pending().
  1371. */
  1372. smp_wmb();
  1373. func(entry);
  1374. nr++;
  1375. }
  1376. return nr;
  1377. }
  1378. static inline int perf_not_pending(struct perf_counter *counter)
  1379. {
  1380. /*
  1381. * If we flush on whatever cpu we run, there is a chance we don't
  1382. * need to wait.
  1383. */
  1384. get_cpu();
  1385. __perf_pending_run();
  1386. put_cpu();
  1387. /*
  1388. * Ensure we see the proper queue state before going to sleep
  1389. * so that we do not miss the wakeup. -- see perf_pending_handle()
  1390. */
  1391. smp_rmb();
  1392. return counter->pending.next == NULL;
  1393. }
  1394. static void perf_pending_sync(struct perf_counter *counter)
  1395. {
  1396. wait_event(counter->waitq, perf_not_pending(counter));
  1397. }
  1398. void perf_counter_do_pending(void)
  1399. {
  1400. __perf_pending_run();
  1401. }
  1402. /*
  1403. * Callchain support -- arch specific
  1404. */
  1405. __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  1406. {
  1407. return NULL;
  1408. }
  1409. /*
  1410. * Output
  1411. */
  1412. struct perf_output_handle {
  1413. struct perf_counter *counter;
  1414. struct perf_mmap_data *data;
  1415. unsigned int offset;
  1416. unsigned int head;
  1417. int wakeup;
  1418. int nmi;
  1419. int overflow;
  1420. };
  1421. static inline void __perf_output_wakeup(struct perf_output_handle *handle)
  1422. {
  1423. if (handle->nmi) {
  1424. handle->counter->pending_wakeup = 1;
  1425. perf_pending_queue(&handle->counter->pending,
  1426. perf_pending_counter);
  1427. } else
  1428. perf_counter_wakeup(handle->counter);
  1429. }
  1430. static int perf_output_begin(struct perf_output_handle *handle,
  1431. struct perf_counter *counter, unsigned int size,
  1432. int nmi, int overflow)
  1433. {
  1434. struct perf_mmap_data *data;
  1435. unsigned int offset, head;
  1436. rcu_read_lock();
  1437. data = rcu_dereference(counter->data);
  1438. if (!data)
  1439. goto out;
  1440. handle->counter = counter;
  1441. handle->nmi = nmi;
  1442. handle->overflow = overflow;
  1443. if (!data->nr_pages)
  1444. goto fail;
  1445. do {
  1446. offset = head = atomic_read(&data->head);
  1447. head += size;
  1448. } while (atomic_cmpxchg(&data->head, offset, head) != offset);
  1449. handle->data = data;
  1450. handle->offset = offset;
  1451. handle->head = head;
  1452. handle->wakeup = (offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT);
  1453. return 0;
  1454. fail:
  1455. __perf_output_wakeup(handle);
  1456. out:
  1457. rcu_read_unlock();
  1458. return -ENOSPC;
  1459. }
  1460. static void perf_output_copy(struct perf_output_handle *handle,
  1461. void *buf, unsigned int len)
  1462. {
  1463. unsigned int pages_mask;
  1464. unsigned int offset;
  1465. unsigned int size;
  1466. void **pages;
  1467. offset = handle->offset;
  1468. pages_mask = handle->data->nr_pages - 1;
  1469. pages = handle->data->data_pages;
  1470. do {
  1471. unsigned int page_offset;
  1472. int nr;
  1473. nr = (offset >> PAGE_SHIFT) & pages_mask;
  1474. page_offset = offset & (PAGE_SIZE - 1);
  1475. size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
  1476. memcpy(pages[nr] + page_offset, buf, size);
  1477. len -= size;
  1478. buf += size;
  1479. offset += size;
  1480. } while (len);
  1481. handle->offset = offset;
  1482. WARN_ON_ONCE(handle->offset > handle->head);
  1483. }
  1484. #define perf_output_put(handle, x) \
  1485. perf_output_copy((handle), &(x), sizeof(x))
  1486. static void perf_output_end(struct perf_output_handle *handle)
  1487. {
  1488. int wakeup_events = handle->counter->hw_event.wakeup_events;
  1489. if (handle->overflow && wakeup_events) {
  1490. int events = atomic_inc_return(&handle->data->events);
  1491. if (events >= wakeup_events) {
  1492. atomic_sub(wakeup_events, &handle->data->events);
  1493. __perf_output_wakeup(handle);
  1494. }
  1495. } else if (handle->wakeup)
  1496. __perf_output_wakeup(handle);
  1497. rcu_read_unlock();
  1498. }
  1499. static void perf_counter_output(struct perf_counter *counter,
  1500. int nmi, struct pt_regs *regs)
  1501. {
  1502. int ret;
  1503. u64 record_type = counter->hw_event.record_type;
  1504. struct perf_output_handle handle;
  1505. struct perf_event_header header;
  1506. u64 ip;
  1507. struct {
  1508. u32 pid, tid;
  1509. } tid_entry;
  1510. struct {
  1511. u64 event;
  1512. u64 counter;
  1513. } group_entry;
  1514. struct perf_callchain_entry *callchain = NULL;
  1515. int callchain_size = 0;
  1516. u64 time;
  1517. header.type = PERF_EVENT_COUNTER_OVERFLOW;
  1518. header.size = sizeof(header);
  1519. if (record_type & PERF_RECORD_IP) {
  1520. ip = instruction_pointer(regs);
  1521. header.type |= __PERF_EVENT_IP;
  1522. header.size += sizeof(ip);
  1523. }
  1524. if (record_type & PERF_RECORD_TID) {
  1525. /* namespace issues */
  1526. tid_entry.pid = current->group_leader->pid;
  1527. tid_entry.tid = current->pid;
  1528. header.type |= __PERF_EVENT_TID;
  1529. header.size += sizeof(tid_entry);
  1530. }
  1531. if (record_type & PERF_RECORD_GROUP) {
  1532. header.type |= __PERF_EVENT_GROUP;
  1533. header.size += sizeof(u64) +
  1534. counter->nr_siblings * sizeof(group_entry);
  1535. }
  1536. if (record_type & PERF_RECORD_CALLCHAIN) {
  1537. callchain = perf_callchain(regs);
  1538. if (callchain) {
  1539. callchain_size = (1 + callchain->nr) * sizeof(u64);
  1540. header.type |= __PERF_EVENT_CALLCHAIN;
  1541. header.size += callchain_size;
  1542. }
  1543. }
  1544. if (record_type & PERF_RECORD_TIME) {
  1545. /*
  1546. * Maybe do better on x86 and provide cpu_clock_nmi()
  1547. */
  1548. time = sched_clock();
  1549. header.type |= __PERF_EVENT_TIME;
  1550. header.size += sizeof(u64);
  1551. }
  1552. ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
  1553. if (ret)
  1554. return;
  1555. perf_output_put(&handle, header);
  1556. if (record_type & PERF_RECORD_IP)
  1557. perf_output_put(&handle, ip);
  1558. if (record_type & PERF_RECORD_TID)
  1559. perf_output_put(&handle, tid_entry);
  1560. if (record_type & PERF_RECORD_GROUP) {
  1561. struct perf_counter *leader, *sub;
  1562. u64 nr = counter->nr_siblings;
  1563. perf_output_put(&handle, nr);
  1564. leader = counter->group_leader;
  1565. list_for_each_entry(sub, &leader->sibling_list, list_entry) {
  1566. if (sub != counter)
  1567. sub->hw_ops->read(sub);
  1568. group_entry.event = sub->hw_event.config;
  1569. group_entry.counter = atomic64_read(&sub->count);
  1570. perf_output_put(&handle, group_entry);
  1571. }
  1572. }
  1573. if (callchain)
  1574. perf_output_copy(&handle, callchain, callchain_size);
  1575. if (record_type & PERF_RECORD_TIME)
  1576. perf_output_put(&handle, time);
  1577. perf_output_end(&handle);
  1578. }
  1579. /*
  1580. * mmap tracking
  1581. */
  1582. struct perf_mmap_event {
  1583. struct file *file;
  1584. char *file_name;
  1585. int file_size;
  1586. struct {
  1587. struct perf_event_header header;
  1588. u32 pid;
  1589. u32 tid;
  1590. u64 start;
  1591. u64 len;
  1592. u64 pgoff;
  1593. } event;
  1594. };
  1595. static void perf_counter_mmap_output(struct perf_counter *counter,
  1596. struct perf_mmap_event *mmap_event)
  1597. {
  1598. struct perf_output_handle handle;
  1599. int size = mmap_event->event.header.size;
  1600. int ret = perf_output_begin(&handle, counter, size, 0, 0);
  1601. if (ret)
  1602. return;
  1603. perf_output_put(&handle, mmap_event->event);
  1604. perf_output_copy(&handle, mmap_event->file_name,
  1605. mmap_event->file_size);
  1606. perf_output_end(&handle);
  1607. }
  1608. static int perf_counter_mmap_match(struct perf_counter *counter,
  1609. struct perf_mmap_event *mmap_event)
  1610. {
  1611. if (counter->hw_event.mmap &&
  1612. mmap_event->event.header.type == PERF_EVENT_MMAP)
  1613. return 1;
  1614. if (counter->hw_event.munmap &&
  1615. mmap_event->event.header.type == PERF_EVENT_MUNMAP)
  1616. return 1;
  1617. return 0;
  1618. }
  1619. static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
  1620. struct perf_mmap_event *mmap_event)
  1621. {
  1622. struct perf_counter *counter;
  1623. if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
  1624. return;
  1625. rcu_read_lock();
  1626. list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
  1627. if (perf_counter_mmap_match(counter, mmap_event))
  1628. perf_counter_mmap_output(counter, mmap_event);
  1629. }
  1630. rcu_read_unlock();
  1631. }
  1632. static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
  1633. {
  1634. struct perf_cpu_context *cpuctx;
  1635. struct file *file = mmap_event->file;
  1636. unsigned int size;
  1637. char tmp[16];
  1638. char *buf = NULL;
  1639. char *name;
  1640. if (file) {
  1641. buf = kzalloc(PATH_MAX, GFP_KERNEL);
  1642. if (!buf) {
  1643. name = strncpy(tmp, "//enomem", sizeof(tmp));
  1644. goto got_name;
  1645. }
  1646. name = dentry_path(file->f_dentry, buf, PATH_MAX);
  1647. if (IS_ERR(name)) {
  1648. name = strncpy(tmp, "//toolong", sizeof(tmp));
  1649. goto got_name;
  1650. }
  1651. } else {
  1652. name = strncpy(tmp, "//anon", sizeof(tmp));
  1653. goto got_name;
  1654. }
  1655. got_name:
  1656. size = ALIGN(strlen(name), sizeof(u64));
  1657. mmap_event->file_name = name;
  1658. mmap_event->file_size = size;
  1659. mmap_event->event.header.size = sizeof(mmap_event->event) + size;
  1660. cpuctx = &get_cpu_var(perf_cpu_context);
  1661. perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
  1662. put_cpu_var(perf_cpu_context);
  1663. perf_counter_mmap_ctx(&current->perf_counter_ctx, mmap_event);
  1664. kfree(buf);
  1665. }
  1666. void perf_counter_mmap(unsigned long addr, unsigned long len,
  1667. unsigned long pgoff, struct file *file)
  1668. {
  1669. struct perf_mmap_event mmap_event = {
  1670. .file = file,
  1671. .event = {
  1672. .header = { .type = PERF_EVENT_MMAP, },
  1673. .pid = current->group_leader->pid,
  1674. .tid = current->pid,
  1675. .start = addr,
  1676. .len = len,
  1677. .pgoff = pgoff,
  1678. },
  1679. };
  1680. perf_counter_mmap_event(&mmap_event);
  1681. }
  1682. void perf_counter_munmap(unsigned long addr, unsigned long len,
  1683. unsigned long pgoff, struct file *file)
  1684. {
  1685. struct perf_mmap_event mmap_event = {
  1686. .file = file,
  1687. .event = {
  1688. .header = { .type = PERF_EVENT_MUNMAP, },
  1689. .pid = current->group_leader->pid,
  1690. .tid = current->pid,
  1691. .start = addr,
  1692. .len = len,
  1693. .pgoff = pgoff,
  1694. },
  1695. };
  1696. perf_counter_mmap_event(&mmap_event);
  1697. }
  1698. /*
  1699. * Generic counter overflow handling.
  1700. */
  1701. int perf_counter_overflow(struct perf_counter *counter,
  1702. int nmi, struct pt_regs *regs)
  1703. {
  1704. int events = atomic_read(&counter->event_limit);
  1705. int ret = 0;
  1706. counter->pending_kill = POLL_IN;
  1707. if (events && atomic_dec_and_test(&counter->event_limit)) {
  1708. ret = 1;
  1709. counter->pending_kill = POLL_HUP;
  1710. if (nmi) {
  1711. counter->pending_disable = 1;
  1712. perf_pending_queue(&counter->pending,
  1713. perf_pending_counter);
  1714. } else
  1715. perf_counter_disable(counter);
  1716. }
  1717. perf_counter_output(counter, nmi, regs);
  1718. return ret;
  1719. }
  1720. /*
  1721. * Generic software counter infrastructure
  1722. */
  1723. static void perf_swcounter_update(struct perf_counter *counter)
  1724. {
  1725. struct hw_perf_counter *hwc = &counter->hw;
  1726. u64 prev, now;
  1727. s64 delta;
  1728. again:
  1729. prev = atomic64_read(&hwc->prev_count);
  1730. now = atomic64_read(&hwc->count);
  1731. if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
  1732. goto again;
  1733. delta = now - prev;
  1734. atomic64_add(delta, &counter->count);
  1735. atomic64_sub(delta, &hwc->period_left);
  1736. }
  1737. static void perf_swcounter_set_period(struct perf_counter *counter)
  1738. {
  1739. struct hw_perf_counter *hwc = &counter->hw;
  1740. s64 left = atomic64_read(&hwc->period_left);
  1741. s64 period = hwc->irq_period;
  1742. if (unlikely(left <= -period)) {
  1743. left = period;
  1744. atomic64_set(&hwc->period_left, left);
  1745. }
  1746. if (unlikely(left <= 0)) {
  1747. left += period;
  1748. atomic64_add(period, &hwc->period_left);
  1749. }
  1750. atomic64_set(&hwc->prev_count, -left);
  1751. atomic64_set(&hwc->count, -left);
  1752. }
  1753. static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
  1754. {
  1755. enum hrtimer_restart ret = HRTIMER_RESTART;
  1756. struct perf_counter *counter;
  1757. struct pt_regs *regs;
  1758. counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
  1759. counter->hw_ops->read(counter);
  1760. regs = get_irq_regs();
  1761. /*
  1762. * In case we exclude kernel IPs or are somehow not in interrupt
  1763. * context, provide the next best thing, the user IP.
  1764. */
  1765. if ((counter->hw_event.exclude_kernel || !regs) &&
  1766. !counter->hw_event.exclude_user)
  1767. regs = task_pt_regs(current);
  1768. if (regs) {
  1769. if (perf_counter_overflow(counter, 0, regs))
  1770. ret = HRTIMER_NORESTART;
  1771. }
  1772. hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
  1773. return ret;
  1774. }
  1775. static void perf_swcounter_overflow(struct perf_counter *counter,
  1776. int nmi, struct pt_regs *regs)
  1777. {
  1778. perf_swcounter_update(counter);
  1779. perf_swcounter_set_period(counter);
  1780. if (perf_counter_overflow(counter, nmi, regs))
  1781. /* soft-disable the counter */
  1782. ;
  1783. }
  1784. static int perf_swcounter_match(struct perf_counter *counter,
  1785. enum perf_event_types type,
  1786. u32 event, struct pt_regs *regs)
  1787. {
  1788. if (counter->state != PERF_COUNTER_STATE_ACTIVE)
  1789. return 0;
  1790. if (perf_event_raw(&counter->hw_event))
  1791. return 0;
  1792. if (perf_event_type(&counter->hw_event) != type)
  1793. return 0;
  1794. if (perf_event_id(&counter->hw_event) != event)
  1795. return 0;
  1796. if (counter->hw_event.exclude_user && user_mode(regs))
  1797. return 0;
  1798. if (counter->hw_event.exclude_kernel && !user_mode(regs))
  1799. return 0;
  1800. return 1;
  1801. }
  1802. static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
  1803. int nmi, struct pt_regs *regs)
  1804. {
  1805. int neg = atomic64_add_negative(nr, &counter->hw.count);
  1806. if (counter->hw.irq_period && !neg)
  1807. perf_swcounter_overflow(counter, nmi, regs);
  1808. }
  1809. static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
  1810. enum perf_event_types type, u32 event,
  1811. u64 nr, int nmi, struct pt_regs *regs)
  1812. {
  1813. struct perf_counter *counter;
  1814. if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
  1815. return;
  1816. rcu_read_lock();
  1817. list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
  1818. if (perf_swcounter_match(counter, type, event, regs))
  1819. perf_swcounter_add(counter, nr, nmi, regs);
  1820. }
  1821. rcu_read_unlock();
  1822. }
  1823. static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
  1824. {
  1825. if (in_nmi())
  1826. return &cpuctx->recursion[3];
  1827. if (in_irq())
  1828. return &cpuctx->recursion[2];
  1829. if (in_softirq())
  1830. return &cpuctx->recursion[1];
  1831. return &cpuctx->recursion[0];
  1832. }
  1833. static void __perf_swcounter_event(enum perf_event_types type, u32 event,
  1834. u64 nr, int nmi, struct pt_regs *regs)
  1835. {
  1836. struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
  1837. int *recursion = perf_swcounter_recursion_context(cpuctx);
  1838. if (*recursion)
  1839. goto out;
  1840. (*recursion)++;
  1841. barrier();
  1842. perf_swcounter_ctx_event(&cpuctx->ctx, type, event, nr, nmi, regs);
  1843. if (cpuctx->task_ctx) {
  1844. perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
  1845. nr, nmi, regs);
  1846. }
  1847. barrier();
  1848. (*recursion)--;
  1849. out:
  1850. put_cpu_var(perf_cpu_context);
  1851. }
  1852. void perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs)
  1853. {
  1854. __perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs);
  1855. }
  1856. static void perf_swcounter_read(struct perf_counter *counter)
  1857. {
  1858. perf_swcounter_update(counter);
  1859. }
  1860. static int perf_swcounter_enable(struct perf_counter *counter)
  1861. {
  1862. perf_swcounter_set_period(counter);
  1863. return 0;
  1864. }
  1865. static void perf_swcounter_disable(struct perf_counter *counter)
  1866. {
  1867. perf_swcounter_update(counter);
  1868. }
  1869. static const struct hw_perf_counter_ops perf_ops_generic = {
  1870. .enable = perf_swcounter_enable,
  1871. .disable = perf_swcounter_disable,
  1872. .read = perf_swcounter_read,
  1873. };
  1874. /*
  1875. * Software counter: cpu wall time clock
  1876. */
  1877. static void cpu_clock_perf_counter_update(struct perf_counter *counter)
  1878. {
  1879. int cpu = raw_smp_processor_id();
  1880. s64 prev;
  1881. u64 now;
  1882. now = cpu_clock(cpu);
  1883. prev = atomic64_read(&counter->hw.prev_count);
  1884. atomic64_set(&counter->hw.prev_count, now);
  1885. atomic64_add(now - prev, &counter->count);
  1886. }
  1887. static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
  1888. {
  1889. struct hw_perf_counter *hwc = &counter->hw;
  1890. int cpu = raw_smp_processor_id();
  1891. atomic64_set(&hwc->prev_count, cpu_clock(cpu));
  1892. hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1893. hwc->hrtimer.function = perf_swcounter_hrtimer;
  1894. if (hwc->irq_period) {
  1895. __hrtimer_start_range_ns(&hwc->hrtimer,
  1896. ns_to_ktime(hwc->irq_period), 0,
  1897. HRTIMER_MODE_REL, 0);
  1898. }
  1899. return 0;
  1900. }
  1901. static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
  1902. {
  1903. hrtimer_cancel(&counter->hw.hrtimer);
  1904. cpu_clock_perf_counter_update(counter);
  1905. }
  1906. static void cpu_clock_perf_counter_read(struct perf_counter *counter)
  1907. {
  1908. cpu_clock_perf_counter_update(counter);
  1909. }
  1910. static const struct hw_perf_counter_ops perf_ops_cpu_clock = {
  1911. .enable = cpu_clock_perf_counter_enable,
  1912. .disable = cpu_clock_perf_counter_disable,
  1913. .read = cpu_clock_perf_counter_read,
  1914. };
  1915. /*
  1916. * Software counter: task time clock
  1917. */
  1918. static void task_clock_perf_counter_update(struct perf_counter *counter)
  1919. {
  1920. u64 prev, now;
  1921. s64 delta;
  1922. update_context_time(counter->ctx);
  1923. now = counter->ctx->time;
  1924. prev = atomic64_xchg(&counter->hw.prev_count, now);
  1925. delta = now - prev;
  1926. atomic64_add(delta, &counter->count);
  1927. }
  1928. static int task_clock_perf_counter_enable(struct perf_counter *counter)
  1929. {
  1930. struct hw_perf_counter *hwc = &counter->hw;
  1931. u64 now;
  1932. update_context_time(counter->ctx);
  1933. now = counter->ctx->time;
  1934. atomic64_set(&hwc->prev_count, now);
  1935. hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1936. hwc->hrtimer.function = perf_swcounter_hrtimer;
  1937. if (hwc->irq_period) {
  1938. __hrtimer_start_range_ns(&hwc->hrtimer,
  1939. ns_to_ktime(hwc->irq_period), 0,
  1940. HRTIMER_MODE_REL, 0);
  1941. }
  1942. return 0;
  1943. }
  1944. static void task_clock_perf_counter_disable(struct perf_counter *counter)
  1945. {
  1946. hrtimer_cancel(&counter->hw.hrtimer);
  1947. task_clock_perf_counter_update(counter);
  1948. }
  1949. static void task_clock_perf_counter_read(struct perf_counter *counter)
  1950. {
  1951. task_clock_perf_counter_update(counter);
  1952. }
  1953. static const struct hw_perf_counter_ops perf_ops_task_clock = {
  1954. .enable = task_clock_perf_counter_enable,
  1955. .disable = task_clock_perf_counter_disable,
  1956. .read = task_clock_perf_counter_read,
  1957. };
  1958. /*
  1959. * Software counter: cpu migrations
  1960. */
  1961. static inline u64 get_cpu_migrations(struct perf_counter *counter)
  1962. {
  1963. struct task_struct *curr = counter->ctx->task;
  1964. if (curr)
  1965. return curr->se.nr_migrations;
  1966. return cpu_nr_migrations(smp_processor_id());
  1967. }
  1968. static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
  1969. {
  1970. u64 prev, now;
  1971. s64 delta;
  1972. prev = atomic64_read(&counter->hw.prev_count);
  1973. now = get_cpu_migrations(counter);
  1974. atomic64_set(&counter->hw.prev_count, now);
  1975. delta = now - prev;
  1976. atomic64_add(delta, &counter->count);
  1977. }
  1978. static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
  1979. {
  1980. cpu_migrations_perf_counter_update(counter);
  1981. }
  1982. static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
  1983. {
  1984. if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
  1985. atomic64_set(&counter->hw.prev_count,
  1986. get_cpu_migrations(counter));
  1987. return 0;
  1988. }
  1989. static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
  1990. {
  1991. cpu_migrations_perf_counter_update(counter);
  1992. }
  1993. static const struct hw_perf_counter_ops perf_ops_cpu_migrations = {
  1994. .enable = cpu_migrations_perf_counter_enable,
  1995. .disable = cpu_migrations_perf_counter_disable,
  1996. .read = cpu_migrations_perf_counter_read,
  1997. };
  1998. #ifdef CONFIG_EVENT_PROFILE
  1999. void perf_tpcounter_event(int event_id)
  2000. {
  2001. struct pt_regs *regs = get_irq_regs();
  2002. if (!regs)
  2003. regs = task_pt_regs(current);
  2004. __perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs);
  2005. }
  2006. extern int ftrace_profile_enable(int);
  2007. extern void ftrace_profile_disable(int);
  2008. static void tp_perf_counter_destroy(struct perf_counter *counter)
  2009. {
  2010. ftrace_profile_disable(perf_event_id(&counter->hw_event));
  2011. }
  2012. static const struct hw_perf_counter_ops *
  2013. tp_perf_counter_init(struct perf_counter *counter)
  2014. {
  2015. int event_id = perf_event_id(&counter->hw_event);
  2016. int ret;
  2017. ret = ftrace_profile_enable(event_id);
  2018. if (ret)
  2019. return NULL;
  2020. counter->destroy = tp_perf_counter_destroy;
  2021. counter->hw.irq_period = counter->hw_event.irq_period;
  2022. return &perf_ops_generic;
  2023. }
  2024. #else
  2025. static const struct hw_perf_counter_ops *
  2026. tp_perf_counter_init(struct perf_counter *counter)
  2027. {
  2028. return NULL;
  2029. }
  2030. #endif
  2031. static const struct hw_perf_counter_ops *
  2032. sw_perf_counter_init(struct perf_counter *counter)
  2033. {
  2034. struct perf_counter_hw_event *hw_event = &counter->hw_event;
  2035. const struct hw_perf_counter_ops *hw_ops = NULL;
  2036. struct hw_perf_counter *hwc = &counter->hw;
  2037. /*
  2038. * Software counters (currently) can't in general distinguish
  2039. * between user, kernel and hypervisor events.
  2040. * However, context switches and cpu migrations are considered
  2041. * to be kernel events, and page faults are never hypervisor
  2042. * events.
  2043. */
  2044. switch (perf_event_id(&counter->hw_event)) {
  2045. case PERF_COUNT_CPU_CLOCK:
  2046. hw_ops = &perf_ops_cpu_clock;
  2047. if (hw_event->irq_period && hw_event->irq_period < 10000)
  2048. hw_event->irq_period = 10000;
  2049. break;
  2050. case PERF_COUNT_TASK_CLOCK:
  2051. /*
  2052. * If the user instantiates this as a per-cpu counter,
  2053. * use the cpu_clock counter instead.
  2054. */
  2055. if (counter->ctx->task)
  2056. hw_ops = &perf_ops_task_clock;
  2057. else
  2058. hw_ops = &perf_ops_cpu_clock;
  2059. if (hw_event->irq_period && hw_event->irq_period < 10000)
  2060. hw_event->irq_period = 10000;
  2061. break;
  2062. case PERF_COUNT_PAGE_FAULTS:
  2063. case PERF_COUNT_PAGE_FAULTS_MIN:
  2064. case PERF_COUNT_PAGE_FAULTS_MAJ:
  2065. case PERF_COUNT_CONTEXT_SWITCHES:
  2066. hw_ops = &perf_ops_generic;
  2067. break;
  2068. case PERF_COUNT_CPU_MIGRATIONS:
  2069. if (!counter->hw_event.exclude_kernel)
  2070. hw_ops = &perf_ops_cpu_migrations;
  2071. break;
  2072. }
  2073. if (hw_ops)
  2074. hwc->irq_period = hw_event->irq_period;
  2075. return hw_ops;
  2076. }
  2077. /*
  2078. * Allocate and initialize a counter structure
  2079. */
  2080. static struct perf_counter *
  2081. perf_counter_alloc(struct perf_counter_hw_event *hw_event,
  2082. int cpu,
  2083. struct perf_counter_context *ctx,
  2084. struct perf_counter *group_leader,
  2085. gfp_t gfpflags)
  2086. {
  2087. const struct hw_perf_counter_ops *hw_ops;
  2088. struct perf_counter *counter;
  2089. long err;
  2090. counter = kzalloc(sizeof(*counter), gfpflags);
  2091. if (!counter)
  2092. return ERR_PTR(-ENOMEM);
  2093. /*
  2094. * Single counters are their own group leaders, with an
  2095. * empty sibling list:
  2096. */
  2097. if (!group_leader)
  2098. group_leader = counter;
  2099. mutex_init(&counter->mutex);
  2100. INIT_LIST_HEAD(&counter->list_entry);
  2101. INIT_LIST_HEAD(&counter->event_entry);
  2102. INIT_LIST_HEAD(&counter->sibling_list);
  2103. init_waitqueue_head(&counter->waitq);
  2104. mutex_init(&counter->mmap_mutex);
  2105. INIT_LIST_HEAD(&counter->child_list);
  2106. counter->cpu = cpu;
  2107. counter->hw_event = *hw_event;
  2108. counter->group_leader = group_leader;
  2109. counter->hw_ops = NULL;
  2110. counter->ctx = ctx;
  2111. counter->state = PERF_COUNTER_STATE_INACTIVE;
  2112. if (hw_event->disabled)
  2113. counter->state = PERF_COUNTER_STATE_OFF;
  2114. hw_ops = NULL;
  2115. if (perf_event_raw(hw_event)) {
  2116. hw_ops = hw_perf_counter_init(counter);
  2117. goto done;
  2118. }
  2119. switch (perf_event_type(hw_event)) {
  2120. case PERF_TYPE_HARDWARE:
  2121. hw_ops = hw_perf_counter_init(counter);
  2122. break;
  2123. case PERF_TYPE_SOFTWARE:
  2124. hw_ops = sw_perf_counter_init(counter);
  2125. break;
  2126. case PERF_TYPE_TRACEPOINT:
  2127. hw_ops = tp_perf_counter_init(counter);
  2128. break;
  2129. }
  2130. done:
  2131. err = 0;
  2132. if (!hw_ops)
  2133. err = -EINVAL;
  2134. else if (IS_ERR(hw_ops))
  2135. err = PTR_ERR(hw_ops);
  2136. if (err) {
  2137. kfree(counter);
  2138. return ERR_PTR(err);
  2139. }
  2140. counter->hw_ops = hw_ops;
  2141. return counter;
  2142. }
  2143. /**
  2144. * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
  2145. *
  2146. * @hw_event_uptr: event type attributes for monitoring/sampling
  2147. * @pid: target pid
  2148. * @cpu: target cpu
  2149. * @group_fd: group leader counter fd
  2150. */
  2151. SYSCALL_DEFINE5(perf_counter_open,
  2152. const struct perf_counter_hw_event __user *, hw_event_uptr,
  2153. pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
  2154. {
  2155. struct perf_counter *counter, *group_leader;
  2156. struct perf_counter_hw_event hw_event;
  2157. struct perf_counter_context *ctx;
  2158. struct file *counter_file = NULL;
  2159. struct file *group_file = NULL;
  2160. int fput_needed = 0;
  2161. int fput_needed2 = 0;
  2162. int ret;
  2163. /* for future expandability... */
  2164. if (flags)
  2165. return -EINVAL;
  2166. if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
  2167. return -EFAULT;
  2168. /*
  2169. * Get the target context (task or percpu):
  2170. */
  2171. ctx = find_get_context(pid, cpu);
  2172. if (IS_ERR(ctx))
  2173. return PTR_ERR(ctx);
  2174. /*
  2175. * Look up the group leader (we will attach this counter to it):
  2176. */
  2177. group_leader = NULL;
  2178. if (group_fd != -1) {
  2179. ret = -EINVAL;
  2180. group_file = fget_light(group_fd, &fput_needed);
  2181. if (!group_file)
  2182. goto err_put_context;
  2183. if (group_file->f_op != &perf_fops)
  2184. goto err_put_context;
  2185. group_leader = group_file->private_data;
  2186. /*
  2187. * Do not allow a recursive hierarchy (this new sibling
  2188. * becoming part of another group-sibling):
  2189. */
  2190. if (group_leader->group_leader != group_leader)
  2191. goto err_put_context;
  2192. /*
  2193. * Do not allow to attach to a group in a different
  2194. * task or CPU context:
  2195. */
  2196. if (group_leader->ctx != ctx)
  2197. goto err_put_context;
  2198. /*
  2199. * Only a group leader can be exclusive or pinned
  2200. */
  2201. if (hw_event.exclusive || hw_event.pinned)
  2202. goto err_put_context;
  2203. }
  2204. counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
  2205. GFP_KERNEL);
  2206. ret = PTR_ERR(counter);
  2207. if (IS_ERR(counter))
  2208. goto err_put_context;
  2209. ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
  2210. if (ret < 0)
  2211. goto err_free_put_context;
  2212. counter_file = fget_light(ret, &fput_needed2);
  2213. if (!counter_file)
  2214. goto err_free_put_context;
  2215. counter->filp = counter_file;
  2216. mutex_lock(&ctx->mutex);
  2217. perf_install_in_context(ctx, counter, cpu);
  2218. mutex_unlock(&ctx->mutex);
  2219. fput_light(counter_file, fput_needed2);
  2220. out_fput:
  2221. fput_light(group_file, fput_needed);
  2222. return ret;
  2223. err_free_put_context:
  2224. kfree(counter);
  2225. err_put_context:
  2226. put_context(ctx);
  2227. goto out_fput;
  2228. }
  2229. /*
  2230. * Initialize the perf_counter context in a task_struct:
  2231. */
  2232. static void
  2233. __perf_counter_init_context(struct perf_counter_context *ctx,
  2234. struct task_struct *task)
  2235. {
  2236. memset(ctx, 0, sizeof(*ctx));
  2237. spin_lock_init(&ctx->lock);
  2238. mutex_init(&ctx->mutex);
  2239. INIT_LIST_HEAD(&ctx->counter_list);
  2240. INIT_LIST_HEAD(&ctx->event_list);
  2241. ctx->task = task;
  2242. }
  2243. /*
  2244. * inherit a counter from parent task to child task:
  2245. */
  2246. static struct perf_counter *
  2247. inherit_counter(struct perf_counter *parent_counter,
  2248. struct task_struct *parent,
  2249. struct perf_counter_context *parent_ctx,
  2250. struct task_struct *child,
  2251. struct perf_counter *group_leader,
  2252. struct perf_counter_context *child_ctx)
  2253. {
  2254. struct perf_counter *child_counter;
  2255. /*
  2256. * Instead of creating recursive hierarchies of counters,
  2257. * we link inherited counters back to the original parent,
  2258. * which has a filp for sure, which we use as the reference
  2259. * count:
  2260. */
  2261. if (parent_counter->parent)
  2262. parent_counter = parent_counter->parent;
  2263. child_counter = perf_counter_alloc(&parent_counter->hw_event,
  2264. parent_counter->cpu, child_ctx,
  2265. group_leader, GFP_KERNEL);
  2266. if (IS_ERR(child_counter))
  2267. return child_counter;
  2268. /*
  2269. * Link it up in the child's context:
  2270. */
  2271. child_counter->task = child;
  2272. add_counter_to_ctx(child_counter, child_ctx);
  2273. child_counter->parent = parent_counter;
  2274. /*
  2275. * inherit into child's child as well:
  2276. */
  2277. child_counter->hw_event.inherit = 1;
  2278. /*
  2279. * Get a reference to the parent filp - we will fput it
  2280. * when the child counter exits. This is safe to do because
  2281. * we are in the parent and we know that the filp still
  2282. * exists and has a nonzero count:
  2283. */
  2284. atomic_long_inc(&parent_counter->filp->f_count);
  2285. /*
  2286. * Link this into the parent counter's child list
  2287. */
  2288. mutex_lock(&parent_counter->mutex);
  2289. list_add_tail(&child_counter->child_list, &parent_counter->child_list);
  2290. /*
  2291. * Make the child state follow the state of the parent counter,
  2292. * not its hw_event.disabled bit. We hold the parent's mutex,
  2293. * so we won't race with perf_counter_{en,dis}able_family.
  2294. */
  2295. if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
  2296. child_counter->state = PERF_COUNTER_STATE_INACTIVE;
  2297. else
  2298. child_counter->state = PERF_COUNTER_STATE_OFF;
  2299. mutex_unlock(&parent_counter->mutex);
  2300. return child_counter;
  2301. }
  2302. static int inherit_group(struct perf_counter *parent_counter,
  2303. struct task_struct *parent,
  2304. struct perf_counter_context *parent_ctx,
  2305. struct task_struct *child,
  2306. struct perf_counter_context *child_ctx)
  2307. {
  2308. struct perf_counter *leader;
  2309. struct perf_counter *sub;
  2310. struct perf_counter *child_ctr;
  2311. leader = inherit_counter(parent_counter, parent, parent_ctx,
  2312. child, NULL, child_ctx);
  2313. if (IS_ERR(leader))
  2314. return PTR_ERR(leader);
  2315. list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
  2316. child_ctr = inherit_counter(sub, parent, parent_ctx,
  2317. child, leader, child_ctx);
  2318. if (IS_ERR(child_ctr))
  2319. return PTR_ERR(child_ctr);
  2320. }
  2321. return 0;
  2322. }
  2323. static void sync_child_counter(struct perf_counter *child_counter,
  2324. struct perf_counter *parent_counter)
  2325. {
  2326. u64 parent_val, child_val;
  2327. parent_val = atomic64_read(&parent_counter->count);
  2328. child_val = atomic64_read(&child_counter->count);
  2329. /*
  2330. * Add back the child's count to the parent's count:
  2331. */
  2332. atomic64_add(child_val, &parent_counter->count);
  2333. atomic64_add(child_counter->total_time_enabled,
  2334. &parent_counter->child_total_time_enabled);
  2335. atomic64_add(child_counter->total_time_running,
  2336. &parent_counter->child_total_time_running);
  2337. /*
  2338. * Remove this counter from the parent's list
  2339. */
  2340. mutex_lock(&parent_counter->mutex);
  2341. list_del_init(&child_counter->child_list);
  2342. mutex_unlock(&parent_counter->mutex);
  2343. /*
  2344. * Release the parent counter, if this was the last
  2345. * reference to it.
  2346. */
  2347. fput(parent_counter->filp);
  2348. }
  2349. static void
  2350. __perf_counter_exit_task(struct task_struct *child,
  2351. struct perf_counter *child_counter,
  2352. struct perf_counter_context *child_ctx)
  2353. {
  2354. struct perf_counter *parent_counter;
  2355. struct perf_counter *sub, *tmp;
  2356. /*
  2357. * If we do not self-reap then we have to wait for the
  2358. * child task to unschedule (it will happen for sure),
  2359. * so that its counter is at its final count. (This
  2360. * condition triggers rarely - child tasks usually get
  2361. * off their CPU before the parent has a chance to
  2362. * get this far into the reaping action)
  2363. */
  2364. if (child != current) {
  2365. wait_task_inactive(child, 0);
  2366. list_del_init(&child_counter->list_entry);
  2367. update_counter_times(child_counter);
  2368. } else {
  2369. struct perf_cpu_context *cpuctx;
  2370. unsigned long flags;
  2371. u64 perf_flags;
  2372. /*
  2373. * Disable and unlink this counter.
  2374. *
  2375. * Be careful about zapping the list - IRQ/NMI context
  2376. * could still be processing it:
  2377. */
  2378. curr_rq_lock_irq_save(&flags);
  2379. perf_flags = hw_perf_save_disable();
  2380. cpuctx = &__get_cpu_var(perf_cpu_context);
  2381. group_sched_out(child_counter, cpuctx, child_ctx);
  2382. update_counter_times(child_counter);
  2383. list_del_init(&child_counter->list_entry);
  2384. child_ctx->nr_counters--;
  2385. hw_perf_restore(perf_flags);
  2386. curr_rq_unlock_irq_restore(&flags);
  2387. }
  2388. parent_counter = child_counter->parent;
  2389. /*
  2390. * It can happen that parent exits first, and has counters
  2391. * that are still around due to the child reference. These
  2392. * counters need to be zapped - but otherwise linger.
  2393. */
  2394. if (parent_counter) {
  2395. sync_child_counter(child_counter, parent_counter);
  2396. list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
  2397. list_entry) {
  2398. if (sub->parent) {
  2399. sync_child_counter(sub, sub->parent);
  2400. free_counter(sub);
  2401. }
  2402. }
  2403. free_counter(child_counter);
  2404. }
  2405. }
  2406. /*
  2407. * When a child task exits, feed back counter values to parent counters.
  2408. *
  2409. * Note: we may be running in child context, but the PID is not hashed
  2410. * anymore so new counters will not be added.
  2411. */
  2412. void perf_counter_exit_task(struct task_struct *child)
  2413. {
  2414. struct perf_counter *child_counter, *tmp;
  2415. struct perf_counter_context *child_ctx;
  2416. child_ctx = &child->perf_counter_ctx;
  2417. if (likely(!child_ctx->nr_counters))
  2418. return;
  2419. list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
  2420. list_entry)
  2421. __perf_counter_exit_task(child, child_counter, child_ctx);
  2422. }
  2423. /*
  2424. * Initialize the perf_counter context in task_struct
  2425. */
  2426. void perf_counter_init_task(struct task_struct *child)
  2427. {
  2428. struct perf_counter_context *child_ctx, *parent_ctx;
  2429. struct perf_counter *counter;
  2430. struct task_struct *parent = current;
  2431. child_ctx = &child->perf_counter_ctx;
  2432. parent_ctx = &parent->perf_counter_ctx;
  2433. __perf_counter_init_context(child_ctx, child);
  2434. /*
  2435. * This is executed from the parent task context, so inherit
  2436. * counters that have been marked for cloning:
  2437. */
  2438. if (likely(!parent_ctx->nr_counters))
  2439. return;
  2440. /*
  2441. * Lock the parent list. No need to lock the child - not PID
  2442. * hashed yet and not running, so nobody can access it.
  2443. */
  2444. mutex_lock(&parent_ctx->mutex);
  2445. /*
  2446. * We dont have to disable NMIs - we are only looking at
  2447. * the list, not manipulating it:
  2448. */
  2449. list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
  2450. if (!counter->hw_event.inherit)
  2451. continue;
  2452. if (inherit_group(counter, parent,
  2453. parent_ctx, child, child_ctx))
  2454. break;
  2455. }
  2456. mutex_unlock(&parent_ctx->mutex);
  2457. }
  2458. static void __cpuinit perf_counter_init_cpu(int cpu)
  2459. {
  2460. struct perf_cpu_context *cpuctx;
  2461. cpuctx = &per_cpu(perf_cpu_context, cpu);
  2462. __perf_counter_init_context(&cpuctx->ctx, NULL);
  2463. mutex_lock(&perf_resource_mutex);
  2464. cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
  2465. mutex_unlock(&perf_resource_mutex);
  2466. hw_perf_counter_setup(cpu);
  2467. }
  2468. #ifdef CONFIG_HOTPLUG_CPU
  2469. static void __perf_counter_exit_cpu(void *info)
  2470. {
  2471. struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
  2472. struct perf_counter_context *ctx = &cpuctx->ctx;
  2473. struct perf_counter *counter, *tmp;
  2474. list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
  2475. __perf_counter_remove_from_context(counter);
  2476. }
  2477. static void perf_counter_exit_cpu(int cpu)
  2478. {
  2479. struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
  2480. struct perf_counter_context *ctx = &cpuctx->ctx;
  2481. mutex_lock(&ctx->mutex);
  2482. smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
  2483. mutex_unlock(&ctx->mutex);
  2484. }
  2485. #else
  2486. static inline void perf_counter_exit_cpu(int cpu) { }
  2487. #endif
  2488. static int __cpuinit
  2489. perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
  2490. {
  2491. unsigned int cpu = (long)hcpu;
  2492. switch (action) {
  2493. case CPU_UP_PREPARE:
  2494. case CPU_UP_PREPARE_FROZEN:
  2495. perf_counter_init_cpu(cpu);
  2496. break;
  2497. case CPU_DOWN_PREPARE:
  2498. case CPU_DOWN_PREPARE_FROZEN:
  2499. perf_counter_exit_cpu(cpu);
  2500. break;
  2501. default:
  2502. break;
  2503. }
  2504. return NOTIFY_OK;
  2505. }
  2506. static struct notifier_block __cpuinitdata perf_cpu_nb = {
  2507. .notifier_call = perf_cpu_notify,
  2508. };
  2509. static int __init perf_counter_init(void)
  2510. {
  2511. perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
  2512. (void *)(long)smp_processor_id());
  2513. register_cpu_notifier(&perf_cpu_nb);
  2514. return 0;
  2515. }
  2516. early_initcall(perf_counter_init);
  2517. static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
  2518. {
  2519. return sprintf(buf, "%d\n", perf_reserved_percpu);
  2520. }
  2521. static ssize_t
  2522. perf_set_reserve_percpu(struct sysdev_class *class,
  2523. const char *buf,
  2524. size_t count)
  2525. {
  2526. struct perf_cpu_context *cpuctx;
  2527. unsigned long val;
  2528. int err, cpu, mpt;
  2529. err = strict_strtoul(buf, 10, &val);
  2530. if (err)
  2531. return err;
  2532. if (val > perf_max_counters)
  2533. return -EINVAL;
  2534. mutex_lock(&perf_resource_mutex);
  2535. perf_reserved_percpu = val;
  2536. for_each_online_cpu(cpu) {
  2537. cpuctx = &per_cpu(perf_cpu_context, cpu);
  2538. spin_lock_irq(&cpuctx->ctx.lock);
  2539. mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
  2540. perf_max_counters - perf_reserved_percpu);
  2541. cpuctx->max_pertask = mpt;
  2542. spin_unlock_irq(&cpuctx->ctx.lock);
  2543. }
  2544. mutex_unlock(&perf_resource_mutex);
  2545. return count;
  2546. }
  2547. static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
  2548. {
  2549. return sprintf(buf, "%d\n", perf_overcommit);
  2550. }
  2551. static ssize_t
  2552. perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
  2553. {
  2554. unsigned long val;
  2555. int err;
  2556. err = strict_strtoul(buf, 10, &val);
  2557. if (err)
  2558. return err;
  2559. if (val > 1)
  2560. return -EINVAL;
  2561. mutex_lock(&perf_resource_mutex);
  2562. perf_overcommit = val;
  2563. mutex_unlock(&perf_resource_mutex);
  2564. return count;
  2565. }
  2566. static SYSDEV_CLASS_ATTR(
  2567. reserve_percpu,
  2568. 0644,
  2569. perf_show_reserve_percpu,
  2570. perf_set_reserve_percpu
  2571. );
  2572. static SYSDEV_CLASS_ATTR(
  2573. overcommit,
  2574. 0644,
  2575. perf_show_overcommit,
  2576. perf_set_overcommit
  2577. );
  2578. static struct attribute *perfclass_attrs[] = {
  2579. &attr_reserve_percpu.attr,
  2580. &attr_overcommit.attr,
  2581. NULL
  2582. };
  2583. static struct attribute_group perfclass_attr_group = {
  2584. .attrs = perfclass_attrs,
  2585. .name = "perf_counters",
  2586. };
  2587. static int __init perf_counter_sysfs_init(void)
  2588. {
  2589. return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
  2590. &perfclass_attr_group);
  2591. }
  2592. device_initcall(perf_counter_sysfs_init);