md.c 145 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/kernel.h>
  28. #include <linux/kthread.h>
  29. #include <linux/linkage.h>
  30. #include <linux/raid/md.h>
  31. #include <linux/raid/bitmap.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/buffer_head.h> /* for invalidate_bdev */
  34. #include <linux/poll.h>
  35. #include <linux/mutex.h>
  36. #include <linux/ctype.h>
  37. #include <linux/freezer.h>
  38. #include <linux/init.h>
  39. #include <linux/file.h>
  40. #ifdef CONFIG_KMOD
  41. #include <linux/kmod.h>
  42. #endif
  43. #include <asm/unaligned.h>
  44. #define MAJOR_NR MD_MAJOR
  45. #define MD_DRIVER
  46. /* 63 partitions with the alternate major number (mdp) */
  47. #define MdpMinorShift 6
  48. #define DEBUG 0
  49. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  50. #ifndef MODULE
  51. static void autostart_arrays (int part);
  52. #endif
  53. static LIST_HEAD(pers_list);
  54. static DEFINE_SPINLOCK(pers_lock);
  55. static void md_print_devices(void);
  56. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  57. /*
  58. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  59. * is 1000 KB/sec, so the extra system load does not show up that much.
  60. * Increase it if you want to have more _guaranteed_ speed. Note that
  61. * the RAID driver will use the maximum available bandwidth if the IO
  62. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  63. * speed limit - in case reconstruction slows down your system despite
  64. * idle IO detection.
  65. *
  66. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  67. * or /sys/block/mdX/md/sync_speed_{min,max}
  68. */
  69. static int sysctl_speed_limit_min = 1000;
  70. static int sysctl_speed_limit_max = 200000;
  71. static inline int speed_min(mddev_t *mddev)
  72. {
  73. return mddev->sync_speed_min ?
  74. mddev->sync_speed_min : sysctl_speed_limit_min;
  75. }
  76. static inline int speed_max(mddev_t *mddev)
  77. {
  78. return mddev->sync_speed_max ?
  79. mddev->sync_speed_max : sysctl_speed_limit_max;
  80. }
  81. static struct ctl_table_header *raid_table_header;
  82. static ctl_table raid_table[] = {
  83. {
  84. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  85. .procname = "speed_limit_min",
  86. .data = &sysctl_speed_limit_min,
  87. .maxlen = sizeof(int),
  88. .mode = S_IRUGO|S_IWUSR,
  89. .proc_handler = &proc_dointvec,
  90. },
  91. {
  92. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  93. .procname = "speed_limit_max",
  94. .data = &sysctl_speed_limit_max,
  95. .maxlen = sizeof(int),
  96. .mode = S_IRUGO|S_IWUSR,
  97. .proc_handler = &proc_dointvec,
  98. },
  99. { .ctl_name = 0 }
  100. };
  101. static ctl_table raid_dir_table[] = {
  102. {
  103. .ctl_name = DEV_RAID,
  104. .procname = "raid",
  105. .maxlen = 0,
  106. .mode = S_IRUGO|S_IXUGO,
  107. .child = raid_table,
  108. },
  109. { .ctl_name = 0 }
  110. };
  111. static ctl_table raid_root_table[] = {
  112. {
  113. .ctl_name = CTL_DEV,
  114. .procname = "dev",
  115. .maxlen = 0,
  116. .mode = 0555,
  117. .child = raid_dir_table,
  118. },
  119. { .ctl_name = 0 }
  120. };
  121. static struct block_device_operations md_fops;
  122. static int start_readonly;
  123. /*
  124. * We have a system wide 'event count' that is incremented
  125. * on any 'interesting' event, and readers of /proc/mdstat
  126. * can use 'poll' or 'select' to find out when the event
  127. * count increases.
  128. *
  129. * Events are:
  130. * start array, stop array, error, add device, remove device,
  131. * start build, activate spare
  132. */
  133. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  134. static atomic_t md_event_count;
  135. void md_new_event(mddev_t *mddev)
  136. {
  137. atomic_inc(&md_event_count);
  138. wake_up(&md_event_waiters);
  139. sysfs_notify(&mddev->kobj, NULL, "sync_action");
  140. }
  141. EXPORT_SYMBOL_GPL(md_new_event);
  142. /* Alternate version that can be called from interrupts
  143. * when calling sysfs_notify isn't needed.
  144. */
  145. static void md_new_event_inintr(mddev_t *mddev)
  146. {
  147. atomic_inc(&md_event_count);
  148. wake_up(&md_event_waiters);
  149. }
  150. /*
  151. * Enables to iterate over all existing md arrays
  152. * all_mddevs_lock protects this list.
  153. */
  154. static LIST_HEAD(all_mddevs);
  155. static DEFINE_SPINLOCK(all_mddevs_lock);
  156. /*
  157. * iterates through all used mddevs in the system.
  158. * We take care to grab the all_mddevs_lock whenever navigating
  159. * the list, and to always hold a refcount when unlocked.
  160. * Any code which breaks out of this loop while own
  161. * a reference to the current mddev and must mddev_put it.
  162. */
  163. #define ITERATE_MDDEV(mddev,tmp) \
  164. \
  165. for (({ spin_lock(&all_mddevs_lock); \
  166. tmp = all_mddevs.next; \
  167. mddev = NULL;}); \
  168. ({ if (tmp != &all_mddevs) \
  169. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  170. spin_unlock(&all_mddevs_lock); \
  171. if (mddev) mddev_put(mddev); \
  172. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  173. tmp != &all_mddevs;}); \
  174. ({ spin_lock(&all_mddevs_lock); \
  175. tmp = tmp->next;}) \
  176. )
  177. static int md_fail_request (struct request_queue *q, struct bio *bio)
  178. {
  179. bio_io_error(bio);
  180. return 0;
  181. }
  182. static inline mddev_t *mddev_get(mddev_t *mddev)
  183. {
  184. atomic_inc(&mddev->active);
  185. return mddev;
  186. }
  187. static void mddev_put(mddev_t *mddev)
  188. {
  189. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  190. return;
  191. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  192. list_del(&mddev->all_mddevs);
  193. spin_unlock(&all_mddevs_lock);
  194. blk_cleanup_queue(mddev->queue);
  195. kobject_unregister(&mddev->kobj);
  196. } else
  197. spin_unlock(&all_mddevs_lock);
  198. }
  199. static mddev_t * mddev_find(dev_t unit)
  200. {
  201. mddev_t *mddev, *new = NULL;
  202. retry:
  203. spin_lock(&all_mddevs_lock);
  204. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  205. if (mddev->unit == unit) {
  206. mddev_get(mddev);
  207. spin_unlock(&all_mddevs_lock);
  208. kfree(new);
  209. return mddev;
  210. }
  211. if (new) {
  212. list_add(&new->all_mddevs, &all_mddevs);
  213. spin_unlock(&all_mddevs_lock);
  214. return new;
  215. }
  216. spin_unlock(&all_mddevs_lock);
  217. new = kzalloc(sizeof(*new), GFP_KERNEL);
  218. if (!new)
  219. return NULL;
  220. new->unit = unit;
  221. if (MAJOR(unit) == MD_MAJOR)
  222. new->md_minor = MINOR(unit);
  223. else
  224. new->md_minor = MINOR(unit) >> MdpMinorShift;
  225. mutex_init(&new->reconfig_mutex);
  226. INIT_LIST_HEAD(&new->disks);
  227. INIT_LIST_HEAD(&new->all_mddevs);
  228. init_timer(&new->safemode_timer);
  229. atomic_set(&new->active, 1);
  230. spin_lock_init(&new->write_lock);
  231. init_waitqueue_head(&new->sb_wait);
  232. new->reshape_position = MaxSector;
  233. new->queue = blk_alloc_queue(GFP_KERNEL);
  234. if (!new->queue) {
  235. kfree(new);
  236. return NULL;
  237. }
  238. set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
  239. blk_queue_make_request(new->queue, md_fail_request);
  240. goto retry;
  241. }
  242. static inline int mddev_lock(mddev_t * mddev)
  243. {
  244. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  245. }
  246. static inline int mddev_trylock(mddev_t * mddev)
  247. {
  248. return mutex_trylock(&mddev->reconfig_mutex);
  249. }
  250. static inline void mddev_unlock(mddev_t * mddev)
  251. {
  252. mutex_unlock(&mddev->reconfig_mutex);
  253. md_wakeup_thread(mddev->thread);
  254. }
  255. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  256. {
  257. mdk_rdev_t * rdev;
  258. struct list_head *tmp;
  259. ITERATE_RDEV(mddev,rdev,tmp) {
  260. if (rdev->desc_nr == nr)
  261. return rdev;
  262. }
  263. return NULL;
  264. }
  265. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  266. {
  267. struct list_head *tmp;
  268. mdk_rdev_t *rdev;
  269. ITERATE_RDEV(mddev,rdev,tmp) {
  270. if (rdev->bdev->bd_dev == dev)
  271. return rdev;
  272. }
  273. return NULL;
  274. }
  275. static struct mdk_personality *find_pers(int level, char *clevel)
  276. {
  277. struct mdk_personality *pers;
  278. list_for_each_entry(pers, &pers_list, list) {
  279. if (level != LEVEL_NONE && pers->level == level)
  280. return pers;
  281. if (strcmp(pers->name, clevel)==0)
  282. return pers;
  283. }
  284. return NULL;
  285. }
  286. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  287. {
  288. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  289. return MD_NEW_SIZE_BLOCKS(size);
  290. }
  291. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  292. {
  293. sector_t size;
  294. size = rdev->sb_offset;
  295. if (chunk_size)
  296. size &= ~((sector_t)chunk_size/1024 - 1);
  297. return size;
  298. }
  299. static int alloc_disk_sb(mdk_rdev_t * rdev)
  300. {
  301. if (rdev->sb_page)
  302. MD_BUG();
  303. rdev->sb_page = alloc_page(GFP_KERNEL);
  304. if (!rdev->sb_page) {
  305. printk(KERN_ALERT "md: out of memory.\n");
  306. return -EINVAL;
  307. }
  308. return 0;
  309. }
  310. static void free_disk_sb(mdk_rdev_t * rdev)
  311. {
  312. if (rdev->sb_page) {
  313. put_page(rdev->sb_page);
  314. rdev->sb_loaded = 0;
  315. rdev->sb_page = NULL;
  316. rdev->sb_offset = 0;
  317. rdev->size = 0;
  318. }
  319. }
  320. static void super_written(struct bio *bio, int error)
  321. {
  322. mdk_rdev_t *rdev = bio->bi_private;
  323. mddev_t *mddev = rdev->mddev;
  324. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  325. printk("md: super_written gets error=%d, uptodate=%d\n",
  326. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  327. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  328. md_error(mddev, rdev);
  329. }
  330. if (atomic_dec_and_test(&mddev->pending_writes))
  331. wake_up(&mddev->sb_wait);
  332. bio_put(bio);
  333. }
  334. static void super_written_barrier(struct bio *bio, int error)
  335. {
  336. struct bio *bio2 = bio->bi_private;
  337. mdk_rdev_t *rdev = bio2->bi_private;
  338. mddev_t *mddev = rdev->mddev;
  339. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  340. error == -EOPNOTSUPP) {
  341. unsigned long flags;
  342. /* barriers don't appear to be supported :-( */
  343. set_bit(BarriersNotsupp, &rdev->flags);
  344. mddev->barriers_work = 0;
  345. spin_lock_irqsave(&mddev->write_lock, flags);
  346. bio2->bi_next = mddev->biolist;
  347. mddev->biolist = bio2;
  348. spin_unlock_irqrestore(&mddev->write_lock, flags);
  349. wake_up(&mddev->sb_wait);
  350. bio_put(bio);
  351. } else {
  352. bio_put(bio2);
  353. bio->bi_private = rdev;
  354. super_written(bio, error);
  355. }
  356. }
  357. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  358. sector_t sector, int size, struct page *page)
  359. {
  360. /* write first size bytes of page to sector of rdev
  361. * Increment mddev->pending_writes before returning
  362. * and decrement it on completion, waking up sb_wait
  363. * if zero is reached.
  364. * If an error occurred, call md_error
  365. *
  366. * As we might need to resubmit the request if BIO_RW_BARRIER
  367. * causes ENOTSUPP, we allocate a spare bio...
  368. */
  369. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  370. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
  371. bio->bi_bdev = rdev->bdev;
  372. bio->bi_sector = sector;
  373. bio_add_page(bio, page, size, 0);
  374. bio->bi_private = rdev;
  375. bio->bi_end_io = super_written;
  376. bio->bi_rw = rw;
  377. atomic_inc(&mddev->pending_writes);
  378. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  379. struct bio *rbio;
  380. rw |= (1<<BIO_RW_BARRIER);
  381. rbio = bio_clone(bio, GFP_NOIO);
  382. rbio->bi_private = bio;
  383. rbio->bi_end_io = super_written_barrier;
  384. submit_bio(rw, rbio);
  385. } else
  386. submit_bio(rw, bio);
  387. }
  388. void md_super_wait(mddev_t *mddev)
  389. {
  390. /* wait for all superblock writes that were scheduled to complete.
  391. * if any had to be retried (due to BARRIER problems), retry them
  392. */
  393. DEFINE_WAIT(wq);
  394. for(;;) {
  395. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  396. if (atomic_read(&mddev->pending_writes)==0)
  397. break;
  398. while (mddev->biolist) {
  399. struct bio *bio;
  400. spin_lock_irq(&mddev->write_lock);
  401. bio = mddev->biolist;
  402. mddev->biolist = bio->bi_next ;
  403. bio->bi_next = NULL;
  404. spin_unlock_irq(&mddev->write_lock);
  405. submit_bio(bio->bi_rw, bio);
  406. }
  407. schedule();
  408. }
  409. finish_wait(&mddev->sb_wait, &wq);
  410. }
  411. static void bi_complete(struct bio *bio, int error)
  412. {
  413. complete((struct completion*)bio->bi_private);
  414. }
  415. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  416. struct page *page, int rw)
  417. {
  418. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  419. struct completion event;
  420. int ret;
  421. rw |= (1 << BIO_RW_SYNC);
  422. bio->bi_bdev = bdev;
  423. bio->bi_sector = sector;
  424. bio_add_page(bio, page, size, 0);
  425. init_completion(&event);
  426. bio->bi_private = &event;
  427. bio->bi_end_io = bi_complete;
  428. submit_bio(rw, bio);
  429. wait_for_completion(&event);
  430. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  431. bio_put(bio);
  432. return ret;
  433. }
  434. EXPORT_SYMBOL_GPL(sync_page_io);
  435. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  436. {
  437. char b[BDEVNAME_SIZE];
  438. if (!rdev->sb_page) {
  439. MD_BUG();
  440. return -EINVAL;
  441. }
  442. if (rdev->sb_loaded)
  443. return 0;
  444. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  445. goto fail;
  446. rdev->sb_loaded = 1;
  447. return 0;
  448. fail:
  449. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  450. bdevname(rdev->bdev,b));
  451. return -EINVAL;
  452. }
  453. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  454. {
  455. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  456. (sb1->set_uuid1 == sb2->set_uuid1) &&
  457. (sb1->set_uuid2 == sb2->set_uuid2) &&
  458. (sb1->set_uuid3 == sb2->set_uuid3))
  459. return 1;
  460. return 0;
  461. }
  462. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  463. {
  464. int ret;
  465. mdp_super_t *tmp1, *tmp2;
  466. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  467. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  468. if (!tmp1 || !tmp2) {
  469. ret = 0;
  470. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  471. goto abort;
  472. }
  473. *tmp1 = *sb1;
  474. *tmp2 = *sb2;
  475. /*
  476. * nr_disks is not constant
  477. */
  478. tmp1->nr_disks = 0;
  479. tmp2->nr_disks = 0;
  480. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  481. ret = 0;
  482. else
  483. ret = 1;
  484. abort:
  485. kfree(tmp1);
  486. kfree(tmp2);
  487. return ret;
  488. }
  489. static u32 md_csum_fold(u32 csum)
  490. {
  491. csum = (csum & 0xffff) + (csum >> 16);
  492. return (csum & 0xffff) + (csum >> 16);
  493. }
  494. static unsigned int calc_sb_csum(mdp_super_t * sb)
  495. {
  496. u64 newcsum = 0;
  497. u32 *sb32 = (u32*)sb;
  498. int i;
  499. unsigned int disk_csum, csum;
  500. disk_csum = sb->sb_csum;
  501. sb->sb_csum = 0;
  502. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  503. newcsum += sb32[i];
  504. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  505. #ifdef CONFIG_ALPHA
  506. /* This used to use csum_partial, which was wrong for several
  507. * reasons including that different results are returned on
  508. * different architectures. It isn't critical that we get exactly
  509. * the same return value as before (we always csum_fold before
  510. * testing, and that removes any differences). However as we
  511. * know that csum_partial always returned a 16bit value on
  512. * alphas, do a fold to maximise conformity to previous behaviour.
  513. */
  514. sb->sb_csum = md_csum_fold(disk_csum);
  515. #else
  516. sb->sb_csum = disk_csum;
  517. #endif
  518. return csum;
  519. }
  520. /*
  521. * Handle superblock details.
  522. * We want to be able to handle multiple superblock formats
  523. * so we have a common interface to them all, and an array of
  524. * different handlers.
  525. * We rely on user-space to write the initial superblock, and support
  526. * reading and updating of superblocks.
  527. * Interface methods are:
  528. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  529. * loads and validates a superblock on dev.
  530. * if refdev != NULL, compare superblocks on both devices
  531. * Return:
  532. * 0 - dev has a superblock that is compatible with refdev
  533. * 1 - dev has a superblock that is compatible and newer than refdev
  534. * so dev should be used as the refdev in future
  535. * -EINVAL superblock incompatible or invalid
  536. * -othererror e.g. -EIO
  537. *
  538. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  539. * Verify that dev is acceptable into mddev.
  540. * The first time, mddev->raid_disks will be 0, and data from
  541. * dev should be merged in. Subsequent calls check that dev
  542. * is new enough. Return 0 or -EINVAL
  543. *
  544. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  545. * Update the superblock for rdev with data in mddev
  546. * This does not write to disc.
  547. *
  548. */
  549. struct super_type {
  550. char *name;
  551. struct module *owner;
  552. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  553. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  554. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  555. };
  556. /*
  557. * load_super for 0.90.0
  558. */
  559. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  560. {
  561. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  562. mdp_super_t *sb;
  563. int ret;
  564. sector_t sb_offset;
  565. /*
  566. * Calculate the position of the superblock,
  567. * it's at the end of the disk.
  568. *
  569. * It also happens to be a multiple of 4Kb.
  570. */
  571. sb_offset = calc_dev_sboffset(rdev->bdev);
  572. rdev->sb_offset = sb_offset;
  573. ret = read_disk_sb(rdev, MD_SB_BYTES);
  574. if (ret) return ret;
  575. ret = -EINVAL;
  576. bdevname(rdev->bdev, b);
  577. sb = (mdp_super_t*)page_address(rdev->sb_page);
  578. if (sb->md_magic != MD_SB_MAGIC) {
  579. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  580. b);
  581. goto abort;
  582. }
  583. if (sb->major_version != 0 ||
  584. sb->minor_version < 90 ||
  585. sb->minor_version > 91) {
  586. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  587. sb->major_version, sb->minor_version,
  588. b);
  589. goto abort;
  590. }
  591. if (sb->raid_disks <= 0)
  592. goto abort;
  593. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  594. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  595. b);
  596. goto abort;
  597. }
  598. rdev->preferred_minor = sb->md_minor;
  599. rdev->data_offset = 0;
  600. rdev->sb_size = MD_SB_BYTES;
  601. if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
  602. if (sb->level != 1 && sb->level != 4
  603. && sb->level != 5 && sb->level != 6
  604. && sb->level != 10) {
  605. /* FIXME use a better test */
  606. printk(KERN_WARNING
  607. "md: bitmaps not supported for this level.\n");
  608. goto abort;
  609. }
  610. }
  611. if (sb->level == LEVEL_MULTIPATH)
  612. rdev->desc_nr = -1;
  613. else
  614. rdev->desc_nr = sb->this_disk.number;
  615. if (refdev == 0)
  616. ret = 1;
  617. else {
  618. __u64 ev1, ev2;
  619. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  620. if (!uuid_equal(refsb, sb)) {
  621. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  622. b, bdevname(refdev->bdev,b2));
  623. goto abort;
  624. }
  625. if (!sb_equal(refsb, sb)) {
  626. printk(KERN_WARNING "md: %s has same UUID"
  627. " but different superblock to %s\n",
  628. b, bdevname(refdev->bdev, b2));
  629. goto abort;
  630. }
  631. ev1 = md_event(sb);
  632. ev2 = md_event(refsb);
  633. if (ev1 > ev2)
  634. ret = 1;
  635. else
  636. ret = 0;
  637. }
  638. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  639. if (rdev->size < sb->size && sb->level > 1)
  640. /* "this cannot possibly happen" ... */
  641. ret = -EINVAL;
  642. abort:
  643. return ret;
  644. }
  645. /*
  646. * validate_super for 0.90.0
  647. */
  648. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  649. {
  650. mdp_disk_t *desc;
  651. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  652. __u64 ev1 = md_event(sb);
  653. rdev->raid_disk = -1;
  654. rdev->flags = 0;
  655. if (mddev->raid_disks == 0) {
  656. mddev->major_version = 0;
  657. mddev->minor_version = sb->minor_version;
  658. mddev->patch_version = sb->patch_version;
  659. mddev->persistent = ! sb->not_persistent;
  660. mddev->chunk_size = sb->chunk_size;
  661. mddev->ctime = sb->ctime;
  662. mddev->utime = sb->utime;
  663. mddev->level = sb->level;
  664. mddev->clevel[0] = 0;
  665. mddev->layout = sb->layout;
  666. mddev->raid_disks = sb->raid_disks;
  667. mddev->size = sb->size;
  668. mddev->events = ev1;
  669. mddev->bitmap_offset = 0;
  670. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  671. if (mddev->minor_version >= 91) {
  672. mddev->reshape_position = sb->reshape_position;
  673. mddev->delta_disks = sb->delta_disks;
  674. mddev->new_level = sb->new_level;
  675. mddev->new_layout = sb->new_layout;
  676. mddev->new_chunk = sb->new_chunk;
  677. } else {
  678. mddev->reshape_position = MaxSector;
  679. mddev->delta_disks = 0;
  680. mddev->new_level = mddev->level;
  681. mddev->new_layout = mddev->layout;
  682. mddev->new_chunk = mddev->chunk_size;
  683. }
  684. if (sb->state & (1<<MD_SB_CLEAN))
  685. mddev->recovery_cp = MaxSector;
  686. else {
  687. if (sb->events_hi == sb->cp_events_hi &&
  688. sb->events_lo == sb->cp_events_lo) {
  689. mddev->recovery_cp = sb->recovery_cp;
  690. } else
  691. mddev->recovery_cp = 0;
  692. }
  693. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  694. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  695. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  696. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  697. mddev->max_disks = MD_SB_DISKS;
  698. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  699. mddev->bitmap_file == NULL)
  700. mddev->bitmap_offset = mddev->default_bitmap_offset;
  701. } else if (mddev->pers == NULL) {
  702. /* Insist on good event counter while assembling */
  703. ++ev1;
  704. if (ev1 < mddev->events)
  705. return -EINVAL;
  706. } else if (mddev->bitmap) {
  707. /* if adding to array with a bitmap, then we can accept an
  708. * older device ... but not too old.
  709. */
  710. if (ev1 < mddev->bitmap->events_cleared)
  711. return 0;
  712. } else {
  713. if (ev1 < mddev->events)
  714. /* just a hot-add of a new device, leave raid_disk at -1 */
  715. return 0;
  716. }
  717. if (mddev->level != LEVEL_MULTIPATH) {
  718. desc = sb->disks + rdev->desc_nr;
  719. if (desc->state & (1<<MD_DISK_FAULTY))
  720. set_bit(Faulty, &rdev->flags);
  721. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  722. desc->raid_disk < mddev->raid_disks */) {
  723. set_bit(In_sync, &rdev->flags);
  724. rdev->raid_disk = desc->raid_disk;
  725. }
  726. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  727. set_bit(WriteMostly, &rdev->flags);
  728. } else /* MULTIPATH are always insync */
  729. set_bit(In_sync, &rdev->flags);
  730. return 0;
  731. }
  732. /*
  733. * sync_super for 0.90.0
  734. */
  735. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  736. {
  737. mdp_super_t *sb;
  738. struct list_head *tmp;
  739. mdk_rdev_t *rdev2;
  740. int next_spare = mddev->raid_disks;
  741. /* make rdev->sb match mddev data..
  742. *
  743. * 1/ zero out disks
  744. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  745. * 3/ any empty disks < next_spare become removed
  746. *
  747. * disks[0] gets initialised to REMOVED because
  748. * we cannot be sure from other fields if it has
  749. * been initialised or not.
  750. */
  751. int i;
  752. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  753. rdev->sb_size = MD_SB_BYTES;
  754. sb = (mdp_super_t*)page_address(rdev->sb_page);
  755. memset(sb, 0, sizeof(*sb));
  756. sb->md_magic = MD_SB_MAGIC;
  757. sb->major_version = mddev->major_version;
  758. sb->patch_version = mddev->patch_version;
  759. sb->gvalid_words = 0; /* ignored */
  760. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  761. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  762. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  763. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  764. sb->ctime = mddev->ctime;
  765. sb->level = mddev->level;
  766. sb->size = mddev->size;
  767. sb->raid_disks = mddev->raid_disks;
  768. sb->md_minor = mddev->md_minor;
  769. sb->not_persistent = !mddev->persistent;
  770. sb->utime = mddev->utime;
  771. sb->state = 0;
  772. sb->events_hi = (mddev->events>>32);
  773. sb->events_lo = (u32)mddev->events;
  774. if (mddev->reshape_position == MaxSector)
  775. sb->minor_version = 90;
  776. else {
  777. sb->minor_version = 91;
  778. sb->reshape_position = mddev->reshape_position;
  779. sb->new_level = mddev->new_level;
  780. sb->delta_disks = mddev->delta_disks;
  781. sb->new_layout = mddev->new_layout;
  782. sb->new_chunk = mddev->new_chunk;
  783. }
  784. mddev->minor_version = sb->minor_version;
  785. if (mddev->in_sync)
  786. {
  787. sb->recovery_cp = mddev->recovery_cp;
  788. sb->cp_events_hi = (mddev->events>>32);
  789. sb->cp_events_lo = (u32)mddev->events;
  790. if (mddev->recovery_cp == MaxSector)
  791. sb->state = (1<< MD_SB_CLEAN);
  792. } else
  793. sb->recovery_cp = 0;
  794. sb->layout = mddev->layout;
  795. sb->chunk_size = mddev->chunk_size;
  796. if (mddev->bitmap && mddev->bitmap_file == NULL)
  797. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  798. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  799. ITERATE_RDEV(mddev,rdev2,tmp) {
  800. mdp_disk_t *d;
  801. int desc_nr;
  802. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  803. && !test_bit(Faulty, &rdev2->flags))
  804. desc_nr = rdev2->raid_disk;
  805. else
  806. desc_nr = next_spare++;
  807. rdev2->desc_nr = desc_nr;
  808. d = &sb->disks[rdev2->desc_nr];
  809. nr_disks++;
  810. d->number = rdev2->desc_nr;
  811. d->major = MAJOR(rdev2->bdev->bd_dev);
  812. d->minor = MINOR(rdev2->bdev->bd_dev);
  813. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  814. && !test_bit(Faulty, &rdev2->flags))
  815. d->raid_disk = rdev2->raid_disk;
  816. else
  817. d->raid_disk = rdev2->desc_nr; /* compatibility */
  818. if (test_bit(Faulty, &rdev2->flags))
  819. d->state = (1<<MD_DISK_FAULTY);
  820. else if (test_bit(In_sync, &rdev2->flags)) {
  821. d->state = (1<<MD_DISK_ACTIVE);
  822. d->state |= (1<<MD_DISK_SYNC);
  823. active++;
  824. working++;
  825. } else {
  826. d->state = 0;
  827. spare++;
  828. working++;
  829. }
  830. if (test_bit(WriteMostly, &rdev2->flags))
  831. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  832. }
  833. /* now set the "removed" and "faulty" bits on any missing devices */
  834. for (i=0 ; i < mddev->raid_disks ; i++) {
  835. mdp_disk_t *d = &sb->disks[i];
  836. if (d->state == 0 && d->number == 0) {
  837. d->number = i;
  838. d->raid_disk = i;
  839. d->state = (1<<MD_DISK_REMOVED);
  840. d->state |= (1<<MD_DISK_FAULTY);
  841. failed++;
  842. }
  843. }
  844. sb->nr_disks = nr_disks;
  845. sb->active_disks = active;
  846. sb->working_disks = working;
  847. sb->failed_disks = failed;
  848. sb->spare_disks = spare;
  849. sb->this_disk = sb->disks[rdev->desc_nr];
  850. sb->sb_csum = calc_sb_csum(sb);
  851. }
  852. /*
  853. * version 1 superblock
  854. */
  855. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  856. {
  857. __le32 disk_csum;
  858. u32 csum;
  859. unsigned long long newcsum;
  860. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  861. __le32 *isuper = (__le32*)sb;
  862. int i;
  863. disk_csum = sb->sb_csum;
  864. sb->sb_csum = 0;
  865. newcsum = 0;
  866. for (i=0; size>=4; size -= 4 )
  867. newcsum += le32_to_cpu(*isuper++);
  868. if (size == 2)
  869. newcsum += le16_to_cpu(*(__le16*) isuper);
  870. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  871. sb->sb_csum = disk_csum;
  872. return cpu_to_le32(csum);
  873. }
  874. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  875. {
  876. struct mdp_superblock_1 *sb;
  877. int ret;
  878. sector_t sb_offset;
  879. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  880. int bmask;
  881. /*
  882. * Calculate the position of the superblock.
  883. * It is always aligned to a 4K boundary and
  884. * depeding on minor_version, it can be:
  885. * 0: At least 8K, but less than 12K, from end of device
  886. * 1: At start of device
  887. * 2: 4K from start of device.
  888. */
  889. switch(minor_version) {
  890. case 0:
  891. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  892. sb_offset -= 8*2;
  893. sb_offset &= ~(sector_t)(4*2-1);
  894. /* convert from sectors to K */
  895. sb_offset /= 2;
  896. break;
  897. case 1:
  898. sb_offset = 0;
  899. break;
  900. case 2:
  901. sb_offset = 4;
  902. break;
  903. default:
  904. return -EINVAL;
  905. }
  906. rdev->sb_offset = sb_offset;
  907. /* superblock is rarely larger than 1K, but it can be larger,
  908. * and it is safe to read 4k, so we do that
  909. */
  910. ret = read_disk_sb(rdev, 4096);
  911. if (ret) return ret;
  912. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  913. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  914. sb->major_version != cpu_to_le32(1) ||
  915. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  916. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  917. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  918. return -EINVAL;
  919. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  920. printk("md: invalid superblock checksum on %s\n",
  921. bdevname(rdev->bdev,b));
  922. return -EINVAL;
  923. }
  924. if (le64_to_cpu(sb->data_size) < 10) {
  925. printk("md: data_size too small on %s\n",
  926. bdevname(rdev->bdev,b));
  927. return -EINVAL;
  928. }
  929. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
  930. if (sb->level != cpu_to_le32(1) &&
  931. sb->level != cpu_to_le32(4) &&
  932. sb->level != cpu_to_le32(5) &&
  933. sb->level != cpu_to_le32(6) &&
  934. sb->level != cpu_to_le32(10)) {
  935. printk(KERN_WARNING
  936. "md: bitmaps not supported for this level.\n");
  937. return -EINVAL;
  938. }
  939. }
  940. rdev->preferred_minor = 0xffff;
  941. rdev->data_offset = le64_to_cpu(sb->data_offset);
  942. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  943. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  944. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  945. if (rdev->sb_size & bmask)
  946. rdev-> sb_size = (rdev->sb_size | bmask)+1;
  947. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  948. rdev->desc_nr = -1;
  949. else
  950. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  951. if (refdev == 0)
  952. ret = 1;
  953. else {
  954. __u64 ev1, ev2;
  955. struct mdp_superblock_1 *refsb =
  956. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  957. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  958. sb->level != refsb->level ||
  959. sb->layout != refsb->layout ||
  960. sb->chunksize != refsb->chunksize) {
  961. printk(KERN_WARNING "md: %s has strangely different"
  962. " superblock to %s\n",
  963. bdevname(rdev->bdev,b),
  964. bdevname(refdev->bdev,b2));
  965. return -EINVAL;
  966. }
  967. ev1 = le64_to_cpu(sb->events);
  968. ev2 = le64_to_cpu(refsb->events);
  969. if (ev1 > ev2)
  970. ret = 1;
  971. else
  972. ret = 0;
  973. }
  974. if (minor_version)
  975. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  976. else
  977. rdev->size = rdev->sb_offset;
  978. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  979. return -EINVAL;
  980. rdev->size = le64_to_cpu(sb->data_size)/2;
  981. if (le32_to_cpu(sb->chunksize))
  982. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  983. if (le64_to_cpu(sb->size) > rdev->size*2)
  984. return -EINVAL;
  985. return ret;
  986. }
  987. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  988. {
  989. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  990. __u64 ev1 = le64_to_cpu(sb->events);
  991. rdev->raid_disk = -1;
  992. rdev->flags = 0;
  993. if (mddev->raid_disks == 0) {
  994. mddev->major_version = 1;
  995. mddev->patch_version = 0;
  996. mddev->persistent = 1;
  997. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  998. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  999. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1000. mddev->level = le32_to_cpu(sb->level);
  1001. mddev->clevel[0] = 0;
  1002. mddev->layout = le32_to_cpu(sb->layout);
  1003. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1004. mddev->size = le64_to_cpu(sb->size)/2;
  1005. mddev->events = ev1;
  1006. mddev->bitmap_offset = 0;
  1007. mddev->default_bitmap_offset = 1024 >> 9;
  1008. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1009. memcpy(mddev->uuid, sb->set_uuid, 16);
  1010. mddev->max_disks = (4096-256)/2;
  1011. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1012. mddev->bitmap_file == NULL )
  1013. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  1014. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1015. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1016. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1017. mddev->new_level = le32_to_cpu(sb->new_level);
  1018. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1019. mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
  1020. } else {
  1021. mddev->reshape_position = MaxSector;
  1022. mddev->delta_disks = 0;
  1023. mddev->new_level = mddev->level;
  1024. mddev->new_layout = mddev->layout;
  1025. mddev->new_chunk = mddev->chunk_size;
  1026. }
  1027. } else if (mddev->pers == NULL) {
  1028. /* Insist of good event counter while assembling */
  1029. ++ev1;
  1030. if (ev1 < mddev->events)
  1031. return -EINVAL;
  1032. } else if (mddev->bitmap) {
  1033. /* If adding to array with a bitmap, then we can accept an
  1034. * older device, but not too old.
  1035. */
  1036. if (ev1 < mddev->bitmap->events_cleared)
  1037. return 0;
  1038. } else {
  1039. if (ev1 < mddev->events)
  1040. /* just a hot-add of a new device, leave raid_disk at -1 */
  1041. return 0;
  1042. }
  1043. if (mddev->level != LEVEL_MULTIPATH) {
  1044. int role;
  1045. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1046. switch(role) {
  1047. case 0xffff: /* spare */
  1048. break;
  1049. case 0xfffe: /* faulty */
  1050. set_bit(Faulty, &rdev->flags);
  1051. break;
  1052. default:
  1053. if ((le32_to_cpu(sb->feature_map) &
  1054. MD_FEATURE_RECOVERY_OFFSET))
  1055. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1056. else
  1057. set_bit(In_sync, &rdev->flags);
  1058. rdev->raid_disk = role;
  1059. break;
  1060. }
  1061. if (sb->devflags & WriteMostly1)
  1062. set_bit(WriteMostly, &rdev->flags);
  1063. } else /* MULTIPATH are always insync */
  1064. set_bit(In_sync, &rdev->flags);
  1065. return 0;
  1066. }
  1067. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1068. {
  1069. struct mdp_superblock_1 *sb;
  1070. struct list_head *tmp;
  1071. mdk_rdev_t *rdev2;
  1072. int max_dev, i;
  1073. /* make rdev->sb match mddev and rdev data. */
  1074. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1075. sb->feature_map = 0;
  1076. sb->pad0 = 0;
  1077. sb->recovery_offset = cpu_to_le64(0);
  1078. memset(sb->pad1, 0, sizeof(sb->pad1));
  1079. memset(sb->pad2, 0, sizeof(sb->pad2));
  1080. memset(sb->pad3, 0, sizeof(sb->pad3));
  1081. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1082. sb->events = cpu_to_le64(mddev->events);
  1083. if (mddev->in_sync)
  1084. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1085. else
  1086. sb->resync_offset = cpu_to_le64(0);
  1087. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1088. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1089. sb->size = cpu_to_le64(mddev->size<<1);
  1090. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  1091. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  1092. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1093. }
  1094. if (rdev->raid_disk >= 0 &&
  1095. !test_bit(In_sync, &rdev->flags) &&
  1096. rdev->recovery_offset > 0) {
  1097. sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1098. sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
  1099. }
  1100. if (mddev->reshape_position != MaxSector) {
  1101. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1102. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1103. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1104. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1105. sb->new_level = cpu_to_le32(mddev->new_level);
  1106. sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
  1107. }
  1108. max_dev = 0;
  1109. ITERATE_RDEV(mddev,rdev2,tmp)
  1110. if (rdev2->desc_nr+1 > max_dev)
  1111. max_dev = rdev2->desc_nr+1;
  1112. if (max_dev > le32_to_cpu(sb->max_dev))
  1113. sb->max_dev = cpu_to_le32(max_dev);
  1114. for (i=0; i<max_dev;i++)
  1115. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1116. ITERATE_RDEV(mddev,rdev2,tmp) {
  1117. i = rdev2->desc_nr;
  1118. if (test_bit(Faulty, &rdev2->flags))
  1119. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1120. else if (test_bit(In_sync, &rdev2->flags))
  1121. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1122. else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
  1123. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1124. else
  1125. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1126. }
  1127. sb->sb_csum = calc_sb_1_csum(sb);
  1128. }
  1129. static struct super_type super_types[] = {
  1130. [0] = {
  1131. .name = "0.90.0",
  1132. .owner = THIS_MODULE,
  1133. .load_super = super_90_load,
  1134. .validate_super = super_90_validate,
  1135. .sync_super = super_90_sync,
  1136. },
  1137. [1] = {
  1138. .name = "md-1",
  1139. .owner = THIS_MODULE,
  1140. .load_super = super_1_load,
  1141. .validate_super = super_1_validate,
  1142. .sync_super = super_1_sync,
  1143. },
  1144. };
  1145. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1146. {
  1147. struct list_head *tmp, *tmp2;
  1148. mdk_rdev_t *rdev, *rdev2;
  1149. ITERATE_RDEV(mddev1,rdev,tmp)
  1150. ITERATE_RDEV(mddev2, rdev2, tmp2)
  1151. if (rdev->bdev->bd_contains ==
  1152. rdev2->bdev->bd_contains)
  1153. return 1;
  1154. return 0;
  1155. }
  1156. static LIST_HEAD(pending_raid_disks);
  1157. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1158. {
  1159. char b[BDEVNAME_SIZE];
  1160. struct kobject *ko;
  1161. char *s;
  1162. int err;
  1163. if (rdev->mddev) {
  1164. MD_BUG();
  1165. return -EINVAL;
  1166. }
  1167. /* make sure rdev->size exceeds mddev->size */
  1168. if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
  1169. if (mddev->pers) {
  1170. /* Cannot change size, so fail
  1171. * If mddev->level <= 0, then we don't care
  1172. * about aligning sizes (e.g. linear)
  1173. */
  1174. if (mddev->level > 0)
  1175. return -ENOSPC;
  1176. } else
  1177. mddev->size = rdev->size;
  1178. }
  1179. /* Verify rdev->desc_nr is unique.
  1180. * If it is -1, assign a free number, else
  1181. * check number is not in use
  1182. */
  1183. if (rdev->desc_nr < 0) {
  1184. int choice = 0;
  1185. if (mddev->pers) choice = mddev->raid_disks;
  1186. while (find_rdev_nr(mddev, choice))
  1187. choice++;
  1188. rdev->desc_nr = choice;
  1189. } else {
  1190. if (find_rdev_nr(mddev, rdev->desc_nr))
  1191. return -EBUSY;
  1192. }
  1193. bdevname(rdev->bdev,b);
  1194. if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
  1195. return -ENOMEM;
  1196. while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
  1197. *s = '!';
  1198. rdev->mddev = mddev;
  1199. printk(KERN_INFO "md: bind<%s>\n", b);
  1200. rdev->kobj.parent = &mddev->kobj;
  1201. if ((err = kobject_add(&rdev->kobj)))
  1202. goto fail;
  1203. if (rdev->bdev->bd_part)
  1204. ko = &rdev->bdev->bd_part->kobj;
  1205. else
  1206. ko = &rdev->bdev->bd_disk->kobj;
  1207. if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
  1208. kobject_del(&rdev->kobj);
  1209. goto fail;
  1210. }
  1211. list_add(&rdev->same_set, &mddev->disks);
  1212. bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
  1213. return 0;
  1214. fail:
  1215. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1216. b, mdname(mddev));
  1217. return err;
  1218. }
  1219. static void delayed_delete(struct work_struct *ws)
  1220. {
  1221. mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
  1222. kobject_del(&rdev->kobj);
  1223. }
  1224. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1225. {
  1226. char b[BDEVNAME_SIZE];
  1227. if (!rdev->mddev) {
  1228. MD_BUG();
  1229. return;
  1230. }
  1231. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1232. list_del_init(&rdev->same_set);
  1233. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1234. rdev->mddev = NULL;
  1235. sysfs_remove_link(&rdev->kobj, "block");
  1236. /* We need to delay this, otherwise we can deadlock when
  1237. * writing to 'remove' to "dev/state"
  1238. */
  1239. INIT_WORK(&rdev->del_work, delayed_delete);
  1240. schedule_work(&rdev->del_work);
  1241. }
  1242. /*
  1243. * prevent the device from being mounted, repartitioned or
  1244. * otherwise reused by a RAID array (or any other kernel
  1245. * subsystem), by bd_claiming the device.
  1246. */
  1247. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
  1248. {
  1249. int err = 0;
  1250. struct block_device *bdev;
  1251. char b[BDEVNAME_SIZE];
  1252. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1253. if (IS_ERR(bdev)) {
  1254. printk(KERN_ERR "md: could not open %s.\n",
  1255. __bdevname(dev, b));
  1256. return PTR_ERR(bdev);
  1257. }
  1258. err = bd_claim(bdev, rdev);
  1259. if (err) {
  1260. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1261. bdevname(bdev, b));
  1262. blkdev_put(bdev);
  1263. return err;
  1264. }
  1265. rdev->bdev = bdev;
  1266. return err;
  1267. }
  1268. static void unlock_rdev(mdk_rdev_t *rdev)
  1269. {
  1270. struct block_device *bdev = rdev->bdev;
  1271. rdev->bdev = NULL;
  1272. if (!bdev)
  1273. MD_BUG();
  1274. bd_release(bdev);
  1275. blkdev_put(bdev);
  1276. }
  1277. void md_autodetect_dev(dev_t dev);
  1278. static void export_rdev(mdk_rdev_t * rdev)
  1279. {
  1280. char b[BDEVNAME_SIZE];
  1281. printk(KERN_INFO "md: export_rdev(%s)\n",
  1282. bdevname(rdev->bdev,b));
  1283. if (rdev->mddev)
  1284. MD_BUG();
  1285. free_disk_sb(rdev);
  1286. list_del_init(&rdev->same_set);
  1287. #ifndef MODULE
  1288. md_autodetect_dev(rdev->bdev->bd_dev);
  1289. #endif
  1290. unlock_rdev(rdev);
  1291. kobject_put(&rdev->kobj);
  1292. }
  1293. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1294. {
  1295. unbind_rdev_from_array(rdev);
  1296. export_rdev(rdev);
  1297. }
  1298. static void export_array(mddev_t *mddev)
  1299. {
  1300. struct list_head *tmp;
  1301. mdk_rdev_t *rdev;
  1302. ITERATE_RDEV(mddev,rdev,tmp) {
  1303. if (!rdev->mddev) {
  1304. MD_BUG();
  1305. continue;
  1306. }
  1307. kick_rdev_from_array(rdev);
  1308. }
  1309. if (!list_empty(&mddev->disks))
  1310. MD_BUG();
  1311. mddev->raid_disks = 0;
  1312. mddev->major_version = 0;
  1313. }
  1314. static void print_desc(mdp_disk_t *desc)
  1315. {
  1316. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1317. desc->major,desc->minor,desc->raid_disk,desc->state);
  1318. }
  1319. static void print_sb(mdp_super_t *sb)
  1320. {
  1321. int i;
  1322. printk(KERN_INFO
  1323. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1324. sb->major_version, sb->minor_version, sb->patch_version,
  1325. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1326. sb->ctime);
  1327. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1328. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1329. sb->md_minor, sb->layout, sb->chunk_size);
  1330. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1331. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1332. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1333. sb->failed_disks, sb->spare_disks,
  1334. sb->sb_csum, (unsigned long)sb->events_lo);
  1335. printk(KERN_INFO);
  1336. for (i = 0; i < MD_SB_DISKS; i++) {
  1337. mdp_disk_t *desc;
  1338. desc = sb->disks + i;
  1339. if (desc->number || desc->major || desc->minor ||
  1340. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1341. printk(" D %2d: ", i);
  1342. print_desc(desc);
  1343. }
  1344. }
  1345. printk(KERN_INFO "md: THIS: ");
  1346. print_desc(&sb->this_disk);
  1347. }
  1348. static void print_rdev(mdk_rdev_t *rdev)
  1349. {
  1350. char b[BDEVNAME_SIZE];
  1351. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1352. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1353. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1354. rdev->desc_nr);
  1355. if (rdev->sb_loaded) {
  1356. printk(KERN_INFO "md: rdev superblock:\n");
  1357. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1358. } else
  1359. printk(KERN_INFO "md: no rdev superblock!\n");
  1360. }
  1361. static void md_print_devices(void)
  1362. {
  1363. struct list_head *tmp, *tmp2;
  1364. mdk_rdev_t *rdev;
  1365. mddev_t *mddev;
  1366. char b[BDEVNAME_SIZE];
  1367. printk("\n");
  1368. printk("md: **********************************\n");
  1369. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1370. printk("md: **********************************\n");
  1371. ITERATE_MDDEV(mddev,tmp) {
  1372. if (mddev->bitmap)
  1373. bitmap_print_sb(mddev->bitmap);
  1374. else
  1375. printk("%s: ", mdname(mddev));
  1376. ITERATE_RDEV(mddev,rdev,tmp2)
  1377. printk("<%s>", bdevname(rdev->bdev,b));
  1378. printk("\n");
  1379. ITERATE_RDEV(mddev,rdev,tmp2)
  1380. print_rdev(rdev);
  1381. }
  1382. printk("md: **********************************\n");
  1383. printk("\n");
  1384. }
  1385. static void sync_sbs(mddev_t * mddev, int nospares)
  1386. {
  1387. /* Update each superblock (in-memory image), but
  1388. * if we are allowed to, skip spares which already
  1389. * have the right event counter, or have one earlier
  1390. * (which would mean they aren't being marked as dirty
  1391. * with the rest of the array)
  1392. */
  1393. mdk_rdev_t *rdev;
  1394. struct list_head *tmp;
  1395. ITERATE_RDEV(mddev,rdev,tmp) {
  1396. if (rdev->sb_events == mddev->events ||
  1397. (nospares &&
  1398. rdev->raid_disk < 0 &&
  1399. (rdev->sb_events&1)==0 &&
  1400. rdev->sb_events+1 == mddev->events)) {
  1401. /* Don't update this superblock */
  1402. rdev->sb_loaded = 2;
  1403. } else {
  1404. super_types[mddev->major_version].
  1405. sync_super(mddev, rdev);
  1406. rdev->sb_loaded = 1;
  1407. }
  1408. }
  1409. }
  1410. static void md_update_sb(mddev_t * mddev, int force_change)
  1411. {
  1412. struct list_head *tmp;
  1413. mdk_rdev_t *rdev;
  1414. int sync_req;
  1415. int nospares = 0;
  1416. repeat:
  1417. spin_lock_irq(&mddev->write_lock);
  1418. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  1419. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1420. force_change = 1;
  1421. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1422. /* just a clean<-> dirty transition, possibly leave spares alone,
  1423. * though if events isn't the right even/odd, we will have to do
  1424. * spares after all
  1425. */
  1426. nospares = 1;
  1427. if (force_change)
  1428. nospares = 0;
  1429. if (mddev->degraded)
  1430. /* If the array is degraded, then skipping spares is both
  1431. * dangerous and fairly pointless.
  1432. * Dangerous because a device that was removed from the array
  1433. * might have a event_count that still looks up-to-date,
  1434. * so it can be re-added without a resync.
  1435. * Pointless because if there are any spares to skip,
  1436. * then a recovery will happen and soon that array won't
  1437. * be degraded any more and the spare can go back to sleep then.
  1438. */
  1439. nospares = 0;
  1440. sync_req = mddev->in_sync;
  1441. mddev->utime = get_seconds();
  1442. /* If this is just a dirty<->clean transition, and the array is clean
  1443. * and 'events' is odd, we can roll back to the previous clean state */
  1444. if (nospares
  1445. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1446. && (mddev->events & 1)
  1447. && mddev->events != 1)
  1448. mddev->events--;
  1449. else {
  1450. /* otherwise we have to go forward and ... */
  1451. mddev->events ++;
  1452. if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
  1453. /* .. if the array isn't clean, insist on an odd 'events' */
  1454. if ((mddev->events&1)==0) {
  1455. mddev->events++;
  1456. nospares = 0;
  1457. }
  1458. } else {
  1459. /* otherwise insist on an even 'events' (for clean states) */
  1460. if ((mddev->events&1)) {
  1461. mddev->events++;
  1462. nospares = 0;
  1463. }
  1464. }
  1465. }
  1466. if (!mddev->events) {
  1467. /*
  1468. * oops, this 64-bit counter should never wrap.
  1469. * Either we are in around ~1 trillion A.C., assuming
  1470. * 1 reboot per second, or we have a bug:
  1471. */
  1472. MD_BUG();
  1473. mddev->events --;
  1474. }
  1475. sync_sbs(mddev, nospares);
  1476. /*
  1477. * do not write anything to disk if using
  1478. * nonpersistent superblocks
  1479. */
  1480. if (!mddev->persistent) {
  1481. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1482. spin_unlock_irq(&mddev->write_lock);
  1483. wake_up(&mddev->sb_wait);
  1484. return;
  1485. }
  1486. spin_unlock_irq(&mddev->write_lock);
  1487. dprintk(KERN_INFO
  1488. "md: updating %s RAID superblock on device (in sync %d)\n",
  1489. mdname(mddev),mddev->in_sync);
  1490. bitmap_update_sb(mddev->bitmap);
  1491. ITERATE_RDEV(mddev,rdev,tmp) {
  1492. char b[BDEVNAME_SIZE];
  1493. dprintk(KERN_INFO "md: ");
  1494. if (rdev->sb_loaded != 1)
  1495. continue; /* no noise on spare devices */
  1496. if (test_bit(Faulty, &rdev->flags))
  1497. dprintk("(skipping faulty ");
  1498. dprintk("%s ", bdevname(rdev->bdev,b));
  1499. if (!test_bit(Faulty, &rdev->flags)) {
  1500. md_super_write(mddev,rdev,
  1501. rdev->sb_offset<<1, rdev->sb_size,
  1502. rdev->sb_page);
  1503. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1504. bdevname(rdev->bdev,b),
  1505. (unsigned long long)rdev->sb_offset);
  1506. rdev->sb_events = mddev->events;
  1507. } else
  1508. dprintk(")\n");
  1509. if (mddev->level == LEVEL_MULTIPATH)
  1510. /* only need to write one superblock... */
  1511. break;
  1512. }
  1513. md_super_wait(mddev);
  1514. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  1515. spin_lock_irq(&mddev->write_lock);
  1516. if (mddev->in_sync != sync_req ||
  1517. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  1518. /* have to write it out again */
  1519. spin_unlock_irq(&mddev->write_lock);
  1520. goto repeat;
  1521. }
  1522. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1523. spin_unlock_irq(&mddev->write_lock);
  1524. wake_up(&mddev->sb_wait);
  1525. }
  1526. /* words written to sysfs files may, or my not, be \n terminated.
  1527. * We want to accept with case. For this we use cmd_match.
  1528. */
  1529. static int cmd_match(const char *cmd, const char *str)
  1530. {
  1531. /* See if cmd, written into a sysfs file, matches
  1532. * str. They must either be the same, or cmd can
  1533. * have a trailing newline
  1534. */
  1535. while (*cmd && *str && *cmd == *str) {
  1536. cmd++;
  1537. str++;
  1538. }
  1539. if (*cmd == '\n')
  1540. cmd++;
  1541. if (*str || *cmd)
  1542. return 0;
  1543. return 1;
  1544. }
  1545. struct rdev_sysfs_entry {
  1546. struct attribute attr;
  1547. ssize_t (*show)(mdk_rdev_t *, char *);
  1548. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1549. };
  1550. static ssize_t
  1551. state_show(mdk_rdev_t *rdev, char *page)
  1552. {
  1553. char *sep = "";
  1554. int len=0;
  1555. if (test_bit(Faulty, &rdev->flags)) {
  1556. len+= sprintf(page+len, "%sfaulty",sep);
  1557. sep = ",";
  1558. }
  1559. if (test_bit(In_sync, &rdev->flags)) {
  1560. len += sprintf(page+len, "%sin_sync",sep);
  1561. sep = ",";
  1562. }
  1563. if (test_bit(WriteMostly, &rdev->flags)) {
  1564. len += sprintf(page+len, "%swrite_mostly",sep);
  1565. sep = ",";
  1566. }
  1567. if (!test_bit(Faulty, &rdev->flags) &&
  1568. !test_bit(In_sync, &rdev->flags)) {
  1569. len += sprintf(page+len, "%sspare", sep);
  1570. sep = ",";
  1571. }
  1572. return len+sprintf(page+len, "\n");
  1573. }
  1574. static ssize_t
  1575. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1576. {
  1577. /* can write
  1578. * faulty - simulates and error
  1579. * remove - disconnects the device
  1580. * writemostly - sets write_mostly
  1581. * -writemostly - clears write_mostly
  1582. */
  1583. int err = -EINVAL;
  1584. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  1585. md_error(rdev->mddev, rdev);
  1586. err = 0;
  1587. } else if (cmd_match(buf, "remove")) {
  1588. if (rdev->raid_disk >= 0)
  1589. err = -EBUSY;
  1590. else {
  1591. mddev_t *mddev = rdev->mddev;
  1592. kick_rdev_from_array(rdev);
  1593. if (mddev->pers)
  1594. md_update_sb(mddev, 1);
  1595. md_new_event(mddev);
  1596. err = 0;
  1597. }
  1598. } else if (cmd_match(buf, "writemostly")) {
  1599. set_bit(WriteMostly, &rdev->flags);
  1600. err = 0;
  1601. } else if (cmd_match(buf, "-writemostly")) {
  1602. clear_bit(WriteMostly, &rdev->flags);
  1603. err = 0;
  1604. }
  1605. return err ? err : len;
  1606. }
  1607. static struct rdev_sysfs_entry rdev_state =
  1608. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  1609. static ssize_t
  1610. super_show(mdk_rdev_t *rdev, char *page)
  1611. {
  1612. if (rdev->sb_loaded && rdev->sb_size) {
  1613. memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
  1614. return rdev->sb_size;
  1615. } else
  1616. return 0;
  1617. }
  1618. static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
  1619. static ssize_t
  1620. errors_show(mdk_rdev_t *rdev, char *page)
  1621. {
  1622. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  1623. }
  1624. static ssize_t
  1625. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1626. {
  1627. char *e;
  1628. unsigned long n = simple_strtoul(buf, &e, 10);
  1629. if (*buf && (*e == 0 || *e == '\n')) {
  1630. atomic_set(&rdev->corrected_errors, n);
  1631. return len;
  1632. }
  1633. return -EINVAL;
  1634. }
  1635. static struct rdev_sysfs_entry rdev_errors =
  1636. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  1637. static ssize_t
  1638. slot_show(mdk_rdev_t *rdev, char *page)
  1639. {
  1640. if (rdev->raid_disk < 0)
  1641. return sprintf(page, "none\n");
  1642. else
  1643. return sprintf(page, "%d\n", rdev->raid_disk);
  1644. }
  1645. static ssize_t
  1646. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1647. {
  1648. char *e;
  1649. int slot = simple_strtoul(buf, &e, 10);
  1650. if (strncmp(buf, "none", 4)==0)
  1651. slot = -1;
  1652. else if (e==buf || (*e && *e!= '\n'))
  1653. return -EINVAL;
  1654. if (rdev->mddev->pers)
  1655. /* Cannot set slot in active array (yet) */
  1656. return -EBUSY;
  1657. if (slot >= rdev->mddev->raid_disks)
  1658. return -ENOSPC;
  1659. rdev->raid_disk = slot;
  1660. /* assume it is working */
  1661. rdev->flags = 0;
  1662. set_bit(In_sync, &rdev->flags);
  1663. return len;
  1664. }
  1665. static struct rdev_sysfs_entry rdev_slot =
  1666. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  1667. static ssize_t
  1668. offset_show(mdk_rdev_t *rdev, char *page)
  1669. {
  1670. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  1671. }
  1672. static ssize_t
  1673. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1674. {
  1675. char *e;
  1676. unsigned long long offset = simple_strtoull(buf, &e, 10);
  1677. if (e==buf || (*e && *e != '\n'))
  1678. return -EINVAL;
  1679. if (rdev->mddev->pers)
  1680. return -EBUSY;
  1681. rdev->data_offset = offset;
  1682. return len;
  1683. }
  1684. static struct rdev_sysfs_entry rdev_offset =
  1685. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  1686. static ssize_t
  1687. rdev_size_show(mdk_rdev_t *rdev, char *page)
  1688. {
  1689. return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
  1690. }
  1691. static ssize_t
  1692. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1693. {
  1694. char *e;
  1695. unsigned long long size = simple_strtoull(buf, &e, 10);
  1696. if (e==buf || (*e && *e != '\n'))
  1697. return -EINVAL;
  1698. if (rdev->mddev->pers)
  1699. return -EBUSY;
  1700. rdev->size = size;
  1701. if (size < rdev->mddev->size || rdev->mddev->size == 0)
  1702. rdev->mddev->size = size;
  1703. return len;
  1704. }
  1705. static struct rdev_sysfs_entry rdev_size =
  1706. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  1707. static struct attribute *rdev_default_attrs[] = {
  1708. &rdev_state.attr,
  1709. &rdev_super.attr,
  1710. &rdev_errors.attr,
  1711. &rdev_slot.attr,
  1712. &rdev_offset.attr,
  1713. &rdev_size.attr,
  1714. NULL,
  1715. };
  1716. static ssize_t
  1717. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1718. {
  1719. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1720. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1721. if (!entry->show)
  1722. return -EIO;
  1723. return entry->show(rdev, page);
  1724. }
  1725. static ssize_t
  1726. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1727. const char *page, size_t length)
  1728. {
  1729. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1730. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1731. if (!entry->store)
  1732. return -EIO;
  1733. if (!capable(CAP_SYS_ADMIN))
  1734. return -EACCES;
  1735. return entry->store(rdev, page, length);
  1736. }
  1737. static void rdev_free(struct kobject *ko)
  1738. {
  1739. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1740. kfree(rdev);
  1741. }
  1742. static struct sysfs_ops rdev_sysfs_ops = {
  1743. .show = rdev_attr_show,
  1744. .store = rdev_attr_store,
  1745. };
  1746. static struct kobj_type rdev_ktype = {
  1747. .release = rdev_free,
  1748. .sysfs_ops = &rdev_sysfs_ops,
  1749. .default_attrs = rdev_default_attrs,
  1750. };
  1751. /*
  1752. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1753. *
  1754. * mark the device faulty if:
  1755. *
  1756. * - the device is nonexistent (zero size)
  1757. * - the device has no valid superblock
  1758. *
  1759. * a faulty rdev _never_ has rdev->sb set.
  1760. */
  1761. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1762. {
  1763. char b[BDEVNAME_SIZE];
  1764. int err;
  1765. mdk_rdev_t *rdev;
  1766. sector_t size;
  1767. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  1768. if (!rdev) {
  1769. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1770. return ERR_PTR(-ENOMEM);
  1771. }
  1772. if ((err = alloc_disk_sb(rdev)))
  1773. goto abort_free;
  1774. err = lock_rdev(rdev, newdev);
  1775. if (err)
  1776. goto abort_free;
  1777. rdev->kobj.parent = NULL;
  1778. rdev->kobj.ktype = &rdev_ktype;
  1779. kobject_init(&rdev->kobj);
  1780. rdev->desc_nr = -1;
  1781. rdev->saved_raid_disk = -1;
  1782. rdev->raid_disk = -1;
  1783. rdev->flags = 0;
  1784. rdev->data_offset = 0;
  1785. rdev->sb_events = 0;
  1786. atomic_set(&rdev->nr_pending, 0);
  1787. atomic_set(&rdev->read_errors, 0);
  1788. atomic_set(&rdev->corrected_errors, 0);
  1789. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1790. if (!size) {
  1791. printk(KERN_WARNING
  1792. "md: %s has zero or unknown size, marking faulty!\n",
  1793. bdevname(rdev->bdev,b));
  1794. err = -EINVAL;
  1795. goto abort_free;
  1796. }
  1797. if (super_format >= 0) {
  1798. err = super_types[super_format].
  1799. load_super(rdev, NULL, super_minor);
  1800. if (err == -EINVAL) {
  1801. printk(KERN_WARNING
  1802. "md: %s does not have a valid v%d.%d "
  1803. "superblock, not importing!\n",
  1804. bdevname(rdev->bdev,b),
  1805. super_format, super_minor);
  1806. goto abort_free;
  1807. }
  1808. if (err < 0) {
  1809. printk(KERN_WARNING
  1810. "md: could not read %s's sb, not importing!\n",
  1811. bdevname(rdev->bdev,b));
  1812. goto abort_free;
  1813. }
  1814. }
  1815. INIT_LIST_HEAD(&rdev->same_set);
  1816. return rdev;
  1817. abort_free:
  1818. if (rdev->sb_page) {
  1819. if (rdev->bdev)
  1820. unlock_rdev(rdev);
  1821. free_disk_sb(rdev);
  1822. }
  1823. kfree(rdev);
  1824. return ERR_PTR(err);
  1825. }
  1826. /*
  1827. * Check a full RAID array for plausibility
  1828. */
  1829. static void analyze_sbs(mddev_t * mddev)
  1830. {
  1831. int i;
  1832. struct list_head *tmp;
  1833. mdk_rdev_t *rdev, *freshest;
  1834. char b[BDEVNAME_SIZE];
  1835. freshest = NULL;
  1836. ITERATE_RDEV(mddev,rdev,tmp)
  1837. switch (super_types[mddev->major_version].
  1838. load_super(rdev, freshest, mddev->minor_version)) {
  1839. case 1:
  1840. freshest = rdev;
  1841. break;
  1842. case 0:
  1843. break;
  1844. default:
  1845. printk( KERN_ERR \
  1846. "md: fatal superblock inconsistency in %s"
  1847. " -- removing from array\n",
  1848. bdevname(rdev->bdev,b));
  1849. kick_rdev_from_array(rdev);
  1850. }
  1851. super_types[mddev->major_version].
  1852. validate_super(mddev, freshest);
  1853. i = 0;
  1854. ITERATE_RDEV(mddev,rdev,tmp) {
  1855. if (rdev != freshest)
  1856. if (super_types[mddev->major_version].
  1857. validate_super(mddev, rdev)) {
  1858. printk(KERN_WARNING "md: kicking non-fresh %s"
  1859. " from array!\n",
  1860. bdevname(rdev->bdev,b));
  1861. kick_rdev_from_array(rdev);
  1862. continue;
  1863. }
  1864. if (mddev->level == LEVEL_MULTIPATH) {
  1865. rdev->desc_nr = i++;
  1866. rdev->raid_disk = rdev->desc_nr;
  1867. set_bit(In_sync, &rdev->flags);
  1868. } else if (rdev->raid_disk >= mddev->raid_disks) {
  1869. rdev->raid_disk = -1;
  1870. clear_bit(In_sync, &rdev->flags);
  1871. }
  1872. }
  1873. if (mddev->recovery_cp != MaxSector &&
  1874. mddev->level >= 1)
  1875. printk(KERN_ERR "md: %s: raid array is not clean"
  1876. " -- starting background reconstruction\n",
  1877. mdname(mddev));
  1878. }
  1879. static ssize_t
  1880. safe_delay_show(mddev_t *mddev, char *page)
  1881. {
  1882. int msec = (mddev->safemode_delay*1000)/HZ;
  1883. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  1884. }
  1885. static ssize_t
  1886. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  1887. {
  1888. int scale=1;
  1889. int dot=0;
  1890. int i;
  1891. unsigned long msec;
  1892. char buf[30];
  1893. char *e;
  1894. /* remove a period, and count digits after it */
  1895. if (len >= sizeof(buf))
  1896. return -EINVAL;
  1897. strlcpy(buf, cbuf, len);
  1898. buf[len] = 0;
  1899. for (i=0; i<len; i++) {
  1900. if (dot) {
  1901. if (isdigit(buf[i])) {
  1902. buf[i-1] = buf[i];
  1903. scale *= 10;
  1904. }
  1905. buf[i] = 0;
  1906. } else if (buf[i] == '.') {
  1907. dot=1;
  1908. buf[i] = 0;
  1909. }
  1910. }
  1911. msec = simple_strtoul(buf, &e, 10);
  1912. if (e == buf || (*e && *e != '\n'))
  1913. return -EINVAL;
  1914. msec = (msec * 1000) / scale;
  1915. if (msec == 0)
  1916. mddev->safemode_delay = 0;
  1917. else {
  1918. mddev->safemode_delay = (msec*HZ)/1000;
  1919. if (mddev->safemode_delay == 0)
  1920. mddev->safemode_delay = 1;
  1921. }
  1922. return len;
  1923. }
  1924. static struct md_sysfs_entry md_safe_delay =
  1925. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  1926. static ssize_t
  1927. level_show(mddev_t *mddev, char *page)
  1928. {
  1929. struct mdk_personality *p = mddev->pers;
  1930. if (p)
  1931. return sprintf(page, "%s\n", p->name);
  1932. else if (mddev->clevel[0])
  1933. return sprintf(page, "%s\n", mddev->clevel);
  1934. else if (mddev->level != LEVEL_NONE)
  1935. return sprintf(page, "%d\n", mddev->level);
  1936. else
  1937. return 0;
  1938. }
  1939. static ssize_t
  1940. level_store(mddev_t *mddev, const char *buf, size_t len)
  1941. {
  1942. int rv = len;
  1943. if (mddev->pers)
  1944. return -EBUSY;
  1945. if (len == 0)
  1946. return 0;
  1947. if (len >= sizeof(mddev->clevel))
  1948. return -ENOSPC;
  1949. strncpy(mddev->clevel, buf, len);
  1950. if (mddev->clevel[len-1] == '\n')
  1951. len--;
  1952. mddev->clevel[len] = 0;
  1953. mddev->level = LEVEL_NONE;
  1954. return rv;
  1955. }
  1956. static struct md_sysfs_entry md_level =
  1957. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  1958. static ssize_t
  1959. layout_show(mddev_t *mddev, char *page)
  1960. {
  1961. /* just a number, not meaningful for all levels */
  1962. if (mddev->reshape_position != MaxSector &&
  1963. mddev->layout != mddev->new_layout)
  1964. return sprintf(page, "%d (%d)\n",
  1965. mddev->new_layout, mddev->layout);
  1966. return sprintf(page, "%d\n", mddev->layout);
  1967. }
  1968. static ssize_t
  1969. layout_store(mddev_t *mddev, const char *buf, size_t len)
  1970. {
  1971. char *e;
  1972. unsigned long n = simple_strtoul(buf, &e, 10);
  1973. if (!*buf || (*e && *e != '\n'))
  1974. return -EINVAL;
  1975. if (mddev->pers)
  1976. return -EBUSY;
  1977. if (mddev->reshape_position != MaxSector)
  1978. mddev->new_layout = n;
  1979. else
  1980. mddev->layout = n;
  1981. return len;
  1982. }
  1983. static struct md_sysfs_entry md_layout =
  1984. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  1985. static ssize_t
  1986. raid_disks_show(mddev_t *mddev, char *page)
  1987. {
  1988. if (mddev->raid_disks == 0)
  1989. return 0;
  1990. if (mddev->reshape_position != MaxSector &&
  1991. mddev->delta_disks != 0)
  1992. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  1993. mddev->raid_disks - mddev->delta_disks);
  1994. return sprintf(page, "%d\n", mddev->raid_disks);
  1995. }
  1996. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  1997. static ssize_t
  1998. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  1999. {
  2000. char *e;
  2001. int rv = 0;
  2002. unsigned long n = simple_strtoul(buf, &e, 10);
  2003. if (!*buf || (*e && *e != '\n'))
  2004. return -EINVAL;
  2005. if (mddev->pers)
  2006. rv = update_raid_disks(mddev, n);
  2007. else if (mddev->reshape_position != MaxSector) {
  2008. int olddisks = mddev->raid_disks - mddev->delta_disks;
  2009. mddev->delta_disks = n - olddisks;
  2010. mddev->raid_disks = n;
  2011. } else
  2012. mddev->raid_disks = n;
  2013. return rv ? rv : len;
  2014. }
  2015. static struct md_sysfs_entry md_raid_disks =
  2016. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  2017. static ssize_t
  2018. chunk_size_show(mddev_t *mddev, char *page)
  2019. {
  2020. if (mddev->reshape_position != MaxSector &&
  2021. mddev->chunk_size != mddev->new_chunk)
  2022. return sprintf(page, "%d (%d)\n", mddev->new_chunk,
  2023. mddev->chunk_size);
  2024. return sprintf(page, "%d\n", mddev->chunk_size);
  2025. }
  2026. static ssize_t
  2027. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  2028. {
  2029. /* can only set chunk_size if array is not yet active */
  2030. char *e;
  2031. unsigned long n = simple_strtoul(buf, &e, 10);
  2032. if (!*buf || (*e && *e != '\n'))
  2033. return -EINVAL;
  2034. if (mddev->pers)
  2035. return -EBUSY;
  2036. else if (mddev->reshape_position != MaxSector)
  2037. mddev->new_chunk = n;
  2038. else
  2039. mddev->chunk_size = n;
  2040. return len;
  2041. }
  2042. static struct md_sysfs_entry md_chunk_size =
  2043. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  2044. static ssize_t
  2045. resync_start_show(mddev_t *mddev, char *page)
  2046. {
  2047. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  2048. }
  2049. static ssize_t
  2050. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  2051. {
  2052. /* can only set chunk_size if array is not yet active */
  2053. char *e;
  2054. unsigned long long n = simple_strtoull(buf, &e, 10);
  2055. if (mddev->pers)
  2056. return -EBUSY;
  2057. if (!*buf || (*e && *e != '\n'))
  2058. return -EINVAL;
  2059. mddev->recovery_cp = n;
  2060. return len;
  2061. }
  2062. static struct md_sysfs_entry md_resync_start =
  2063. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  2064. /*
  2065. * The array state can be:
  2066. *
  2067. * clear
  2068. * No devices, no size, no level
  2069. * Equivalent to STOP_ARRAY ioctl
  2070. * inactive
  2071. * May have some settings, but array is not active
  2072. * all IO results in error
  2073. * When written, doesn't tear down array, but just stops it
  2074. * suspended (not supported yet)
  2075. * All IO requests will block. The array can be reconfigured.
  2076. * Writing this, if accepted, will block until array is quiessent
  2077. * readonly
  2078. * no resync can happen. no superblocks get written.
  2079. * write requests fail
  2080. * read-auto
  2081. * like readonly, but behaves like 'clean' on a write request.
  2082. *
  2083. * clean - no pending writes, but otherwise active.
  2084. * When written to inactive array, starts without resync
  2085. * If a write request arrives then
  2086. * if metadata is known, mark 'dirty' and switch to 'active'.
  2087. * if not known, block and switch to write-pending
  2088. * If written to an active array that has pending writes, then fails.
  2089. * active
  2090. * fully active: IO and resync can be happening.
  2091. * When written to inactive array, starts with resync
  2092. *
  2093. * write-pending
  2094. * clean, but writes are blocked waiting for 'active' to be written.
  2095. *
  2096. * active-idle
  2097. * like active, but no writes have been seen for a while (100msec).
  2098. *
  2099. */
  2100. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  2101. write_pending, active_idle, bad_word};
  2102. static char *array_states[] = {
  2103. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  2104. "write-pending", "active-idle", NULL };
  2105. static int match_word(const char *word, char **list)
  2106. {
  2107. int n;
  2108. for (n=0; list[n]; n++)
  2109. if (cmd_match(word, list[n]))
  2110. break;
  2111. return n;
  2112. }
  2113. static ssize_t
  2114. array_state_show(mddev_t *mddev, char *page)
  2115. {
  2116. enum array_state st = inactive;
  2117. if (mddev->pers)
  2118. switch(mddev->ro) {
  2119. case 1:
  2120. st = readonly;
  2121. break;
  2122. case 2:
  2123. st = read_auto;
  2124. break;
  2125. case 0:
  2126. if (mddev->in_sync)
  2127. st = clean;
  2128. else if (mddev->safemode)
  2129. st = active_idle;
  2130. else
  2131. st = active;
  2132. }
  2133. else {
  2134. if (list_empty(&mddev->disks) &&
  2135. mddev->raid_disks == 0 &&
  2136. mddev->size == 0)
  2137. st = clear;
  2138. else
  2139. st = inactive;
  2140. }
  2141. return sprintf(page, "%s\n", array_states[st]);
  2142. }
  2143. static int do_md_stop(mddev_t * mddev, int ro);
  2144. static int do_md_run(mddev_t * mddev);
  2145. static int restart_array(mddev_t *mddev);
  2146. static ssize_t
  2147. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  2148. {
  2149. int err = -EINVAL;
  2150. enum array_state st = match_word(buf, array_states);
  2151. switch(st) {
  2152. case bad_word:
  2153. break;
  2154. case clear:
  2155. /* stopping an active array */
  2156. if (mddev->pers) {
  2157. if (atomic_read(&mddev->active) > 1)
  2158. return -EBUSY;
  2159. err = do_md_stop(mddev, 0);
  2160. }
  2161. break;
  2162. case inactive:
  2163. /* stopping an active array */
  2164. if (mddev->pers) {
  2165. if (atomic_read(&mddev->active) > 1)
  2166. return -EBUSY;
  2167. err = do_md_stop(mddev, 2);
  2168. }
  2169. break;
  2170. case suspended:
  2171. break; /* not supported yet */
  2172. case readonly:
  2173. if (mddev->pers)
  2174. err = do_md_stop(mddev, 1);
  2175. else {
  2176. mddev->ro = 1;
  2177. err = do_md_run(mddev);
  2178. }
  2179. break;
  2180. case read_auto:
  2181. /* stopping an active array */
  2182. if (mddev->pers) {
  2183. err = do_md_stop(mddev, 1);
  2184. if (err == 0)
  2185. mddev->ro = 2; /* FIXME mark devices writable */
  2186. } else {
  2187. mddev->ro = 2;
  2188. err = do_md_run(mddev);
  2189. }
  2190. break;
  2191. case clean:
  2192. if (mddev->pers) {
  2193. restart_array(mddev);
  2194. spin_lock_irq(&mddev->write_lock);
  2195. if (atomic_read(&mddev->writes_pending) == 0) {
  2196. mddev->in_sync = 1;
  2197. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2198. }
  2199. spin_unlock_irq(&mddev->write_lock);
  2200. } else {
  2201. mddev->ro = 0;
  2202. mddev->recovery_cp = MaxSector;
  2203. err = do_md_run(mddev);
  2204. }
  2205. break;
  2206. case active:
  2207. if (mddev->pers) {
  2208. restart_array(mddev);
  2209. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2210. wake_up(&mddev->sb_wait);
  2211. err = 0;
  2212. } else {
  2213. mddev->ro = 0;
  2214. err = do_md_run(mddev);
  2215. }
  2216. break;
  2217. case write_pending:
  2218. case active_idle:
  2219. /* these cannot be set */
  2220. break;
  2221. }
  2222. if (err)
  2223. return err;
  2224. else
  2225. return len;
  2226. }
  2227. static struct md_sysfs_entry md_array_state =
  2228. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  2229. static ssize_t
  2230. null_show(mddev_t *mddev, char *page)
  2231. {
  2232. return -EINVAL;
  2233. }
  2234. static ssize_t
  2235. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  2236. {
  2237. /* buf must be %d:%d\n? giving major and minor numbers */
  2238. /* The new device is added to the array.
  2239. * If the array has a persistent superblock, we read the
  2240. * superblock to initialise info and check validity.
  2241. * Otherwise, only checking done is that in bind_rdev_to_array,
  2242. * which mainly checks size.
  2243. */
  2244. char *e;
  2245. int major = simple_strtoul(buf, &e, 10);
  2246. int minor;
  2247. dev_t dev;
  2248. mdk_rdev_t *rdev;
  2249. int err;
  2250. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  2251. return -EINVAL;
  2252. minor = simple_strtoul(e+1, &e, 10);
  2253. if (*e && *e != '\n')
  2254. return -EINVAL;
  2255. dev = MKDEV(major, minor);
  2256. if (major != MAJOR(dev) ||
  2257. minor != MINOR(dev))
  2258. return -EOVERFLOW;
  2259. if (mddev->persistent) {
  2260. rdev = md_import_device(dev, mddev->major_version,
  2261. mddev->minor_version);
  2262. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  2263. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2264. mdk_rdev_t, same_set);
  2265. err = super_types[mddev->major_version]
  2266. .load_super(rdev, rdev0, mddev->minor_version);
  2267. if (err < 0)
  2268. goto out;
  2269. }
  2270. } else
  2271. rdev = md_import_device(dev, -1, -1);
  2272. if (IS_ERR(rdev))
  2273. return PTR_ERR(rdev);
  2274. err = bind_rdev_to_array(rdev, mddev);
  2275. out:
  2276. if (err)
  2277. export_rdev(rdev);
  2278. return err ? err : len;
  2279. }
  2280. static struct md_sysfs_entry md_new_device =
  2281. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  2282. static ssize_t
  2283. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  2284. {
  2285. char *end;
  2286. unsigned long chunk, end_chunk;
  2287. if (!mddev->bitmap)
  2288. goto out;
  2289. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  2290. while (*buf) {
  2291. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  2292. if (buf == end) break;
  2293. if (*end == '-') { /* range */
  2294. buf = end + 1;
  2295. end_chunk = simple_strtoul(buf, &end, 0);
  2296. if (buf == end) break;
  2297. }
  2298. if (*end && !isspace(*end)) break;
  2299. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  2300. buf = end;
  2301. while (isspace(*buf)) buf++;
  2302. }
  2303. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  2304. out:
  2305. return len;
  2306. }
  2307. static struct md_sysfs_entry md_bitmap =
  2308. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  2309. static ssize_t
  2310. size_show(mddev_t *mddev, char *page)
  2311. {
  2312. return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
  2313. }
  2314. static int update_size(mddev_t *mddev, unsigned long size);
  2315. static ssize_t
  2316. size_store(mddev_t *mddev, const char *buf, size_t len)
  2317. {
  2318. /* If array is inactive, we can reduce the component size, but
  2319. * not increase it (except from 0).
  2320. * If array is active, we can try an on-line resize
  2321. */
  2322. char *e;
  2323. int err = 0;
  2324. unsigned long long size = simple_strtoull(buf, &e, 10);
  2325. if (!*buf || *buf == '\n' ||
  2326. (*e && *e != '\n'))
  2327. return -EINVAL;
  2328. if (mddev->pers) {
  2329. err = update_size(mddev, size);
  2330. md_update_sb(mddev, 1);
  2331. } else {
  2332. if (mddev->size == 0 ||
  2333. mddev->size > size)
  2334. mddev->size = size;
  2335. else
  2336. err = -ENOSPC;
  2337. }
  2338. return err ? err : len;
  2339. }
  2340. static struct md_sysfs_entry md_size =
  2341. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  2342. /* Metdata version.
  2343. * This is either 'none' for arrays with externally managed metadata,
  2344. * or N.M for internally known formats
  2345. */
  2346. static ssize_t
  2347. metadata_show(mddev_t *mddev, char *page)
  2348. {
  2349. if (mddev->persistent)
  2350. return sprintf(page, "%d.%d\n",
  2351. mddev->major_version, mddev->minor_version);
  2352. else
  2353. return sprintf(page, "none\n");
  2354. }
  2355. static ssize_t
  2356. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  2357. {
  2358. int major, minor;
  2359. char *e;
  2360. if (!list_empty(&mddev->disks))
  2361. return -EBUSY;
  2362. if (cmd_match(buf, "none")) {
  2363. mddev->persistent = 0;
  2364. mddev->major_version = 0;
  2365. mddev->minor_version = 90;
  2366. return len;
  2367. }
  2368. major = simple_strtoul(buf, &e, 10);
  2369. if (e==buf || *e != '.')
  2370. return -EINVAL;
  2371. buf = e+1;
  2372. minor = simple_strtoul(buf, &e, 10);
  2373. if (e==buf || (*e && *e != '\n') )
  2374. return -EINVAL;
  2375. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  2376. return -ENOENT;
  2377. mddev->major_version = major;
  2378. mddev->minor_version = minor;
  2379. mddev->persistent = 1;
  2380. return len;
  2381. }
  2382. static struct md_sysfs_entry md_metadata =
  2383. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  2384. static ssize_t
  2385. action_show(mddev_t *mddev, char *page)
  2386. {
  2387. char *type = "idle";
  2388. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2389. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
  2390. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2391. type = "reshape";
  2392. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2393. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2394. type = "resync";
  2395. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  2396. type = "check";
  2397. else
  2398. type = "repair";
  2399. } else
  2400. type = "recover";
  2401. }
  2402. return sprintf(page, "%s\n", type);
  2403. }
  2404. static ssize_t
  2405. action_store(mddev_t *mddev, const char *page, size_t len)
  2406. {
  2407. if (!mddev->pers || !mddev->pers->sync_request)
  2408. return -EINVAL;
  2409. if (cmd_match(page, "idle")) {
  2410. if (mddev->sync_thread) {
  2411. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2412. md_unregister_thread(mddev->sync_thread);
  2413. mddev->sync_thread = NULL;
  2414. mddev->recovery = 0;
  2415. }
  2416. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2417. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  2418. return -EBUSY;
  2419. else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
  2420. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2421. else if (cmd_match(page, "reshape")) {
  2422. int err;
  2423. if (mddev->pers->start_reshape == NULL)
  2424. return -EINVAL;
  2425. err = mddev->pers->start_reshape(mddev);
  2426. if (err)
  2427. return err;
  2428. } else {
  2429. if (cmd_match(page, "check"))
  2430. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  2431. else if (!cmd_match(page, "repair"))
  2432. return -EINVAL;
  2433. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  2434. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  2435. }
  2436. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2437. md_wakeup_thread(mddev->thread);
  2438. return len;
  2439. }
  2440. static ssize_t
  2441. mismatch_cnt_show(mddev_t *mddev, char *page)
  2442. {
  2443. return sprintf(page, "%llu\n",
  2444. (unsigned long long) mddev->resync_mismatches);
  2445. }
  2446. static struct md_sysfs_entry md_scan_mode =
  2447. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  2448. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  2449. static ssize_t
  2450. sync_min_show(mddev_t *mddev, char *page)
  2451. {
  2452. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  2453. mddev->sync_speed_min ? "local": "system");
  2454. }
  2455. static ssize_t
  2456. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  2457. {
  2458. int min;
  2459. char *e;
  2460. if (strncmp(buf, "system", 6)==0) {
  2461. mddev->sync_speed_min = 0;
  2462. return len;
  2463. }
  2464. min = simple_strtoul(buf, &e, 10);
  2465. if (buf == e || (*e && *e != '\n') || min <= 0)
  2466. return -EINVAL;
  2467. mddev->sync_speed_min = min;
  2468. return len;
  2469. }
  2470. static struct md_sysfs_entry md_sync_min =
  2471. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  2472. static ssize_t
  2473. sync_max_show(mddev_t *mddev, char *page)
  2474. {
  2475. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  2476. mddev->sync_speed_max ? "local": "system");
  2477. }
  2478. static ssize_t
  2479. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  2480. {
  2481. int max;
  2482. char *e;
  2483. if (strncmp(buf, "system", 6)==0) {
  2484. mddev->sync_speed_max = 0;
  2485. return len;
  2486. }
  2487. max = simple_strtoul(buf, &e, 10);
  2488. if (buf == e || (*e && *e != '\n') || max <= 0)
  2489. return -EINVAL;
  2490. mddev->sync_speed_max = max;
  2491. return len;
  2492. }
  2493. static struct md_sysfs_entry md_sync_max =
  2494. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  2495. static ssize_t
  2496. sync_speed_show(mddev_t *mddev, char *page)
  2497. {
  2498. unsigned long resync, dt, db;
  2499. resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
  2500. dt = ((jiffies - mddev->resync_mark) / HZ);
  2501. if (!dt) dt++;
  2502. db = resync - (mddev->resync_mark_cnt);
  2503. return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
  2504. }
  2505. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  2506. static ssize_t
  2507. sync_completed_show(mddev_t *mddev, char *page)
  2508. {
  2509. unsigned long max_blocks, resync;
  2510. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2511. max_blocks = mddev->resync_max_sectors;
  2512. else
  2513. max_blocks = mddev->size << 1;
  2514. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
  2515. return sprintf(page, "%lu / %lu\n", resync, max_blocks);
  2516. }
  2517. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  2518. static ssize_t
  2519. suspend_lo_show(mddev_t *mddev, char *page)
  2520. {
  2521. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  2522. }
  2523. static ssize_t
  2524. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  2525. {
  2526. char *e;
  2527. unsigned long long new = simple_strtoull(buf, &e, 10);
  2528. if (mddev->pers->quiesce == NULL)
  2529. return -EINVAL;
  2530. if (buf == e || (*e && *e != '\n'))
  2531. return -EINVAL;
  2532. if (new >= mddev->suspend_hi ||
  2533. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  2534. mddev->suspend_lo = new;
  2535. mddev->pers->quiesce(mddev, 2);
  2536. return len;
  2537. } else
  2538. return -EINVAL;
  2539. }
  2540. static struct md_sysfs_entry md_suspend_lo =
  2541. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  2542. static ssize_t
  2543. suspend_hi_show(mddev_t *mddev, char *page)
  2544. {
  2545. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  2546. }
  2547. static ssize_t
  2548. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  2549. {
  2550. char *e;
  2551. unsigned long long new = simple_strtoull(buf, &e, 10);
  2552. if (mddev->pers->quiesce == NULL)
  2553. return -EINVAL;
  2554. if (buf == e || (*e && *e != '\n'))
  2555. return -EINVAL;
  2556. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  2557. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  2558. mddev->suspend_hi = new;
  2559. mddev->pers->quiesce(mddev, 1);
  2560. mddev->pers->quiesce(mddev, 0);
  2561. return len;
  2562. } else
  2563. return -EINVAL;
  2564. }
  2565. static struct md_sysfs_entry md_suspend_hi =
  2566. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  2567. static ssize_t
  2568. reshape_position_show(mddev_t *mddev, char *page)
  2569. {
  2570. if (mddev->reshape_position != MaxSector)
  2571. return sprintf(page, "%llu\n",
  2572. (unsigned long long)mddev->reshape_position);
  2573. strcpy(page, "none\n");
  2574. return 5;
  2575. }
  2576. static ssize_t
  2577. reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
  2578. {
  2579. char *e;
  2580. unsigned long long new = simple_strtoull(buf, &e, 10);
  2581. if (mddev->pers)
  2582. return -EBUSY;
  2583. if (buf == e || (*e && *e != '\n'))
  2584. return -EINVAL;
  2585. mddev->reshape_position = new;
  2586. mddev->delta_disks = 0;
  2587. mddev->new_level = mddev->level;
  2588. mddev->new_layout = mddev->layout;
  2589. mddev->new_chunk = mddev->chunk_size;
  2590. return len;
  2591. }
  2592. static struct md_sysfs_entry md_reshape_position =
  2593. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  2594. reshape_position_store);
  2595. static struct attribute *md_default_attrs[] = {
  2596. &md_level.attr,
  2597. &md_layout.attr,
  2598. &md_raid_disks.attr,
  2599. &md_chunk_size.attr,
  2600. &md_size.attr,
  2601. &md_resync_start.attr,
  2602. &md_metadata.attr,
  2603. &md_new_device.attr,
  2604. &md_safe_delay.attr,
  2605. &md_array_state.attr,
  2606. &md_reshape_position.attr,
  2607. NULL,
  2608. };
  2609. static struct attribute *md_redundancy_attrs[] = {
  2610. &md_scan_mode.attr,
  2611. &md_mismatches.attr,
  2612. &md_sync_min.attr,
  2613. &md_sync_max.attr,
  2614. &md_sync_speed.attr,
  2615. &md_sync_completed.attr,
  2616. &md_suspend_lo.attr,
  2617. &md_suspend_hi.attr,
  2618. &md_bitmap.attr,
  2619. NULL,
  2620. };
  2621. static struct attribute_group md_redundancy_group = {
  2622. .name = NULL,
  2623. .attrs = md_redundancy_attrs,
  2624. };
  2625. static ssize_t
  2626. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2627. {
  2628. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2629. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2630. ssize_t rv;
  2631. if (!entry->show)
  2632. return -EIO;
  2633. rv = mddev_lock(mddev);
  2634. if (!rv) {
  2635. rv = entry->show(mddev, page);
  2636. mddev_unlock(mddev);
  2637. }
  2638. return rv;
  2639. }
  2640. static ssize_t
  2641. md_attr_store(struct kobject *kobj, struct attribute *attr,
  2642. const char *page, size_t length)
  2643. {
  2644. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2645. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2646. ssize_t rv;
  2647. if (!entry->store)
  2648. return -EIO;
  2649. if (!capable(CAP_SYS_ADMIN))
  2650. return -EACCES;
  2651. rv = mddev_lock(mddev);
  2652. if (!rv) {
  2653. rv = entry->store(mddev, page, length);
  2654. mddev_unlock(mddev);
  2655. }
  2656. return rv;
  2657. }
  2658. static void md_free(struct kobject *ko)
  2659. {
  2660. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  2661. kfree(mddev);
  2662. }
  2663. static struct sysfs_ops md_sysfs_ops = {
  2664. .show = md_attr_show,
  2665. .store = md_attr_store,
  2666. };
  2667. static struct kobj_type md_ktype = {
  2668. .release = md_free,
  2669. .sysfs_ops = &md_sysfs_ops,
  2670. .default_attrs = md_default_attrs,
  2671. };
  2672. int mdp_major = 0;
  2673. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  2674. {
  2675. static DEFINE_MUTEX(disks_mutex);
  2676. mddev_t *mddev = mddev_find(dev);
  2677. struct gendisk *disk;
  2678. int partitioned = (MAJOR(dev) != MD_MAJOR);
  2679. int shift = partitioned ? MdpMinorShift : 0;
  2680. int unit = MINOR(dev) >> shift;
  2681. if (!mddev)
  2682. return NULL;
  2683. mutex_lock(&disks_mutex);
  2684. if (mddev->gendisk) {
  2685. mutex_unlock(&disks_mutex);
  2686. mddev_put(mddev);
  2687. return NULL;
  2688. }
  2689. disk = alloc_disk(1 << shift);
  2690. if (!disk) {
  2691. mutex_unlock(&disks_mutex);
  2692. mddev_put(mddev);
  2693. return NULL;
  2694. }
  2695. disk->major = MAJOR(dev);
  2696. disk->first_minor = unit << shift;
  2697. if (partitioned)
  2698. sprintf(disk->disk_name, "md_d%d", unit);
  2699. else
  2700. sprintf(disk->disk_name, "md%d", unit);
  2701. disk->fops = &md_fops;
  2702. disk->private_data = mddev;
  2703. disk->queue = mddev->queue;
  2704. add_disk(disk);
  2705. mddev->gendisk = disk;
  2706. mutex_unlock(&disks_mutex);
  2707. mddev->kobj.parent = &disk->kobj;
  2708. kobject_set_name(&mddev->kobj, "%s", "md");
  2709. mddev->kobj.ktype = &md_ktype;
  2710. if (kobject_register(&mddev->kobj))
  2711. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  2712. disk->disk_name);
  2713. return NULL;
  2714. }
  2715. static void md_safemode_timeout(unsigned long data)
  2716. {
  2717. mddev_t *mddev = (mddev_t *) data;
  2718. mddev->safemode = 1;
  2719. md_wakeup_thread(mddev->thread);
  2720. }
  2721. static int start_dirty_degraded;
  2722. static int do_md_run(mddev_t * mddev)
  2723. {
  2724. int err;
  2725. int chunk_size;
  2726. struct list_head *tmp;
  2727. mdk_rdev_t *rdev;
  2728. struct gendisk *disk;
  2729. struct mdk_personality *pers;
  2730. char b[BDEVNAME_SIZE];
  2731. if (list_empty(&mddev->disks))
  2732. /* cannot run an array with no devices.. */
  2733. return -EINVAL;
  2734. if (mddev->pers)
  2735. return -EBUSY;
  2736. /*
  2737. * Analyze all RAID superblock(s)
  2738. */
  2739. if (!mddev->raid_disks)
  2740. analyze_sbs(mddev);
  2741. chunk_size = mddev->chunk_size;
  2742. if (chunk_size) {
  2743. if (chunk_size > MAX_CHUNK_SIZE) {
  2744. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  2745. chunk_size, MAX_CHUNK_SIZE);
  2746. return -EINVAL;
  2747. }
  2748. /*
  2749. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  2750. */
  2751. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  2752. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  2753. return -EINVAL;
  2754. }
  2755. if (chunk_size < PAGE_SIZE) {
  2756. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  2757. chunk_size, PAGE_SIZE);
  2758. return -EINVAL;
  2759. }
  2760. /* devices must have minimum size of one chunk */
  2761. ITERATE_RDEV(mddev,rdev,tmp) {
  2762. if (test_bit(Faulty, &rdev->flags))
  2763. continue;
  2764. if (rdev->size < chunk_size / 1024) {
  2765. printk(KERN_WARNING
  2766. "md: Dev %s smaller than chunk_size:"
  2767. " %lluk < %dk\n",
  2768. bdevname(rdev->bdev,b),
  2769. (unsigned long long)rdev->size,
  2770. chunk_size / 1024);
  2771. return -EINVAL;
  2772. }
  2773. }
  2774. }
  2775. #ifdef CONFIG_KMOD
  2776. if (mddev->level != LEVEL_NONE)
  2777. request_module("md-level-%d", mddev->level);
  2778. else if (mddev->clevel[0])
  2779. request_module("md-%s", mddev->clevel);
  2780. #endif
  2781. /*
  2782. * Drop all container device buffers, from now on
  2783. * the only valid external interface is through the md
  2784. * device.
  2785. */
  2786. ITERATE_RDEV(mddev,rdev,tmp) {
  2787. if (test_bit(Faulty, &rdev->flags))
  2788. continue;
  2789. sync_blockdev(rdev->bdev);
  2790. invalidate_bdev(rdev->bdev);
  2791. /* perform some consistency tests on the device.
  2792. * We don't want the data to overlap the metadata,
  2793. * Internal Bitmap issues has handled elsewhere.
  2794. */
  2795. if (rdev->data_offset < rdev->sb_offset) {
  2796. if (mddev->size &&
  2797. rdev->data_offset + mddev->size*2
  2798. > rdev->sb_offset*2) {
  2799. printk("md: %s: data overlaps metadata\n",
  2800. mdname(mddev));
  2801. return -EINVAL;
  2802. }
  2803. } else {
  2804. if (rdev->sb_offset*2 + rdev->sb_size/512
  2805. > rdev->data_offset) {
  2806. printk("md: %s: metadata overlaps data\n",
  2807. mdname(mddev));
  2808. return -EINVAL;
  2809. }
  2810. }
  2811. }
  2812. md_probe(mddev->unit, NULL, NULL);
  2813. disk = mddev->gendisk;
  2814. if (!disk)
  2815. return -ENOMEM;
  2816. spin_lock(&pers_lock);
  2817. pers = find_pers(mddev->level, mddev->clevel);
  2818. if (!pers || !try_module_get(pers->owner)) {
  2819. spin_unlock(&pers_lock);
  2820. if (mddev->level != LEVEL_NONE)
  2821. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  2822. mddev->level);
  2823. else
  2824. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  2825. mddev->clevel);
  2826. return -EINVAL;
  2827. }
  2828. mddev->pers = pers;
  2829. spin_unlock(&pers_lock);
  2830. mddev->level = pers->level;
  2831. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2832. if (mddev->reshape_position != MaxSector &&
  2833. pers->start_reshape == NULL) {
  2834. /* This personality cannot handle reshaping... */
  2835. mddev->pers = NULL;
  2836. module_put(pers->owner);
  2837. return -EINVAL;
  2838. }
  2839. if (pers->sync_request) {
  2840. /* Warn if this is a potentially silly
  2841. * configuration.
  2842. */
  2843. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  2844. mdk_rdev_t *rdev2;
  2845. struct list_head *tmp2;
  2846. int warned = 0;
  2847. ITERATE_RDEV(mddev, rdev, tmp) {
  2848. ITERATE_RDEV(mddev, rdev2, tmp2) {
  2849. if (rdev < rdev2 &&
  2850. rdev->bdev->bd_contains ==
  2851. rdev2->bdev->bd_contains) {
  2852. printk(KERN_WARNING
  2853. "%s: WARNING: %s appears to be"
  2854. " on the same physical disk as"
  2855. " %s.\n",
  2856. mdname(mddev),
  2857. bdevname(rdev->bdev,b),
  2858. bdevname(rdev2->bdev,b2));
  2859. warned = 1;
  2860. }
  2861. }
  2862. }
  2863. if (warned)
  2864. printk(KERN_WARNING
  2865. "True protection against single-disk"
  2866. " failure might be compromised.\n");
  2867. }
  2868. mddev->recovery = 0;
  2869. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  2870. mddev->barriers_work = 1;
  2871. mddev->ok_start_degraded = start_dirty_degraded;
  2872. if (start_readonly)
  2873. mddev->ro = 2; /* read-only, but switch on first write */
  2874. err = mddev->pers->run(mddev);
  2875. if (!err && mddev->pers->sync_request) {
  2876. err = bitmap_create(mddev);
  2877. if (err) {
  2878. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  2879. mdname(mddev), err);
  2880. mddev->pers->stop(mddev);
  2881. }
  2882. }
  2883. if (err) {
  2884. printk(KERN_ERR "md: pers->run() failed ...\n");
  2885. module_put(mddev->pers->owner);
  2886. mddev->pers = NULL;
  2887. bitmap_destroy(mddev);
  2888. return err;
  2889. }
  2890. if (mddev->pers->sync_request) {
  2891. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  2892. printk(KERN_WARNING
  2893. "md: cannot register extra attributes for %s\n",
  2894. mdname(mddev));
  2895. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  2896. mddev->ro = 0;
  2897. atomic_set(&mddev->writes_pending,0);
  2898. mddev->safemode = 0;
  2899. mddev->safemode_timer.function = md_safemode_timeout;
  2900. mddev->safemode_timer.data = (unsigned long) mddev;
  2901. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  2902. mddev->in_sync = 1;
  2903. ITERATE_RDEV(mddev,rdev,tmp)
  2904. if (rdev->raid_disk >= 0) {
  2905. char nm[20];
  2906. sprintf(nm, "rd%d", rdev->raid_disk);
  2907. if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
  2908. printk("md: cannot register %s for %s\n",
  2909. nm, mdname(mddev));
  2910. }
  2911. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2912. if (mddev->flags)
  2913. md_update_sb(mddev, 0);
  2914. set_capacity(disk, mddev->array_size<<1);
  2915. /* If we call blk_queue_make_request here, it will
  2916. * re-initialise max_sectors etc which may have been
  2917. * refined inside -> run. So just set the bits we need to set.
  2918. * Most initialisation happended when we called
  2919. * blk_queue_make_request(..., md_fail_request)
  2920. * earlier.
  2921. */
  2922. mddev->queue->queuedata = mddev;
  2923. mddev->queue->make_request_fn = mddev->pers->make_request;
  2924. /* If there is a partially-recovered drive we need to
  2925. * start recovery here. If we leave it to md_check_recovery,
  2926. * it will remove the drives and not do the right thing
  2927. */
  2928. if (mddev->degraded && !mddev->sync_thread) {
  2929. struct list_head *rtmp;
  2930. int spares = 0;
  2931. ITERATE_RDEV(mddev,rdev,rtmp)
  2932. if (rdev->raid_disk >= 0 &&
  2933. !test_bit(In_sync, &rdev->flags) &&
  2934. !test_bit(Faulty, &rdev->flags))
  2935. /* complete an interrupted recovery */
  2936. spares++;
  2937. if (spares && mddev->pers->sync_request) {
  2938. mddev->recovery = 0;
  2939. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  2940. mddev->sync_thread = md_register_thread(md_do_sync,
  2941. mddev,
  2942. "%s_resync");
  2943. if (!mddev->sync_thread) {
  2944. printk(KERN_ERR "%s: could not start resync"
  2945. " thread...\n",
  2946. mdname(mddev));
  2947. /* leave the spares where they are, it shouldn't hurt */
  2948. mddev->recovery = 0;
  2949. }
  2950. }
  2951. }
  2952. md_wakeup_thread(mddev->thread);
  2953. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  2954. mddev->changed = 1;
  2955. md_new_event(mddev);
  2956. kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE);
  2957. return 0;
  2958. }
  2959. static int restart_array(mddev_t *mddev)
  2960. {
  2961. struct gendisk *disk = mddev->gendisk;
  2962. int err;
  2963. /*
  2964. * Complain if it has no devices
  2965. */
  2966. err = -ENXIO;
  2967. if (list_empty(&mddev->disks))
  2968. goto out;
  2969. if (mddev->pers) {
  2970. err = -EBUSY;
  2971. if (!mddev->ro)
  2972. goto out;
  2973. mddev->safemode = 0;
  2974. mddev->ro = 0;
  2975. set_disk_ro(disk, 0);
  2976. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  2977. mdname(mddev));
  2978. /*
  2979. * Kick recovery or resync if necessary
  2980. */
  2981. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2982. md_wakeup_thread(mddev->thread);
  2983. md_wakeup_thread(mddev->sync_thread);
  2984. err = 0;
  2985. } else
  2986. err = -EINVAL;
  2987. out:
  2988. return err;
  2989. }
  2990. /* similar to deny_write_access, but accounts for our holding a reference
  2991. * to the file ourselves */
  2992. static int deny_bitmap_write_access(struct file * file)
  2993. {
  2994. struct inode *inode = file->f_mapping->host;
  2995. spin_lock(&inode->i_lock);
  2996. if (atomic_read(&inode->i_writecount) > 1) {
  2997. spin_unlock(&inode->i_lock);
  2998. return -ETXTBSY;
  2999. }
  3000. atomic_set(&inode->i_writecount, -1);
  3001. spin_unlock(&inode->i_lock);
  3002. return 0;
  3003. }
  3004. static void restore_bitmap_write_access(struct file *file)
  3005. {
  3006. struct inode *inode = file->f_mapping->host;
  3007. spin_lock(&inode->i_lock);
  3008. atomic_set(&inode->i_writecount, 1);
  3009. spin_unlock(&inode->i_lock);
  3010. }
  3011. /* mode:
  3012. * 0 - completely stop and dis-assemble array
  3013. * 1 - switch to readonly
  3014. * 2 - stop but do not disassemble array
  3015. */
  3016. static int do_md_stop(mddev_t * mddev, int mode)
  3017. {
  3018. int err = 0;
  3019. struct gendisk *disk = mddev->gendisk;
  3020. if (mddev->pers) {
  3021. if (atomic_read(&mddev->active)>2) {
  3022. printk("md: %s still in use.\n",mdname(mddev));
  3023. return -EBUSY;
  3024. }
  3025. if (mddev->sync_thread) {
  3026. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3027. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3028. md_unregister_thread(mddev->sync_thread);
  3029. mddev->sync_thread = NULL;
  3030. }
  3031. del_timer_sync(&mddev->safemode_timer);
  3032. invalidate_partition(disk, 0);
  3033. switch(mode) {
  3034. case 1: /* readonly */
  3035. err = -ENXIO;
  3036. if (mddev->ro==1)
  3037. goto out;
  3038. mddev->ro = 1;
  3039. break;
  3040. case 0: /* disassemble */
  3041. case 2: /* stop */
  3042. bitmap_flush(mddev);
  3043. md_super_wait(mddev);
  3044. if (mddev->ro)
  3045. set_disk_ro(disk, 0);
  3046. blk_queue_make_request(mddev->queue, md_fail_request);
  3047. mddev->pers->stop(mddev);
  3048. mddev->queue->merge_bvec_fn = NULL;
  3049. mddev->queue->unplug_fn = NULL;
  3050. mddev->queue->backing_dev_info.congested_fn = NULL;
  3051. if (mddev->pers->sync_request)
  3052. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  3053. module_put(mddev->pers->owner);
  3054. mddev->pers = NULL;
  3055. set_capacity(disk, 0);
  3056. mddev->changed = 1;
  3057. if (mddev->ro)
  3058. mddev->ro = 0;
  3059. }
  3060. if (!mddev->in_sync || mddev->flags) {
  3061. /* mark array as shutdown cleanly */
  3062. mddev->in_sync = 1;
  3063. md_update_sb(mddev, 1);
  3064. }
  3065. if (mode == 1)
  3066. set_disk_ro(disk, 1);
  3067. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3068. }
  3069. /*
  3070. * Free resources if final stop
  3071. */
  3072. if (mode == 0) {
  3073. mdk_rdev_t *rdev;
  3074. struct list_head *tmp;
  3075. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  3076. bitmap_destroy(mddev);
  3077. if (mddev->bitmap_file) {
  3078. restore_bitmap_write_access(mddev->bitmap_file);
  3079. fput(mddev->bitmap_file);
  3080. mddev->bitmap_file = NULL;
  3081. }
  3082. mddev->bitmap_offset = 0;
  3083. ITERATE_RDEV(mddev,rdev,tmp)
  3084. if (rdev->raid_disk >= 0) {
  3085. char nm[20];
  3086. sprintf(nm, "rd%d", rdev->raid_disk);
  3087. sysfs_remove_link(&mddev->kobj, nm);
  3088. }
  3089. /* make sure all delayed_delete calls have finished */
  3090. flush_scheduled_work();
  3091. export_array(mddev);
  3092. mddev->array_size = 0;
  3093. mddev->size = 0;
  3094. mddev->raid_disks = 0;
  3095. mddev->recovery_cp = 0;
  3096. mddev->reshape_position = MaxSector;
  3097. } else if (mddev->pers)
  3098. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  3099. mdname(mddev));
  3100. err = 0;
  3101. md_new_event(mddev);
  3102. out:
  3103. return err;
  3104. }
  3105. #ifndef MODULE
  3106. static void autorun_array(mddev_t *mddev)
  3107. {
  3108. mdk_rdev_t *rdev;
  3109. struct list_head *tmp;
  3110. int err;
  3111. if (list_empty(&mddev->disks))
  3112. return;
  3113. printk(KERN_INFO "md: running: ");
  3114. ITERATE_RDEV(mddev,rdev,tmp) {
  3115. char b[BDEVNAME_SIZE];
  3116. printk("<%s>", bdevname(rdev->bdev,b));
  3117. }
  3118. printk("\n");
  3119. err = do_md_run (mddev);
  3120. if (err) {
  3121. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  3122. do_md_stop (mddev, 0);
  3123. }
  3124. }
  3125. /*
  3126. * lets try to run arrays based on all disks that have arrived
  3127. * until now. (those are in pending_raid_disks)
  3128. *
  3129. * the method: pick the first pending disk, collect all disks with
  3130. * the same UUID, remove all from the pending list and put them into
  3131. * the 'same_array' list. Then order this list based on superblock
  3132. * update time (freshest comes first), kick out 'old' disks and
  3133. * compare superblocks. If everything's fine then run it.
  3134. *
  3135. * If "unit" is allocated, then bump its reference count
  3136. */
  3137. static void autorun_devices(int part)
  3138. {
  3139. struct list_head *tmp;
  3140. mdk_rdev_t *rdev0, *rdev;
  3141. mddev_t *mddev;
  3142. char b[BDEVNAME_SIZE];
  3143. printk(KERN_INFO "md: autorun ...\n");
  3144. while (!list_empty(&pending_raid_disks)) {
  3145. int unit;
  3146. dev_t dev;
  3147. LIST_HEAD(candidates);
  3148. rdev0 = list_entry(pending_raid_disks.next,
  3149. mdk_rdev_t, same_set);
  3150. printk(KERN_INFO "md: considering %s ...\n",
  3151. bdevname(rdev0->bdev,b));
  3152. INIT_LIST_HEAD(&candidates);
  3153. ITERATE_RDEV_PENDING(rdev,tmp)
  3154. if (super_90_load(rdev, rdev0, 0) >= 0) {
  3155. printk(KERN_INFO "md: adding %s ...\n",
  3156. bdevname(rdev->bdev,b));
  3157. list_move(&rdev->same_set, &candidates);
  3158. }
  3159. /*
  3160. * now we have a set of devices, with all of them having
  3161. * mostly sane superblocks. It's time to allocate the
  3162. * mddev.
  3163. */
  3164. if (part) {
  3165. dev = MKDEV(mdp_major,
  3166. rdev0->preferred_minor << MdpMinorShift);
  3167. unit = MINOR(dev) >> MdpMinorShift;
  3168. } else {
  3169. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  3170. unit = MINOR(dev);
  3171. }
  3172. if (rdev0->preferred_minor != unit) {
  3173. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  3174. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  3175. break;
  3176. }
  3177. md_probe(dev, NULL, NULL);
  3178. mddev = mddev_find(dev);
  3179. if (!mddev) {
  3180. printk(KERN_ERR
  3181. "md: cannot allocate memory for md drive.\n");
  3182. break;
  3183. }
  3184. if (mddev_lock(mddev))
  3185. printk(KERN_WARNING "md: %s locked, cannot run\n",
  3186. mdname(mddev));
  3187. else if (mddev->raid_disks || mddev->major_version
  3188. || !list_empty(&mddev->disks)) {
  3189. printk(KERN_WARNING
  3190. "md: %s already running, cannot run %s\n",
  3191. mdname(mddev), bdevname(rdev0->bdev,b));
  3192. mddev_unlock(mddev);
  3193. } else {
  3194. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  3195. ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
  3196. list_del_init(&rdev->same_set);
  3197. if (bind_rdev_to_array(rdev, mddev))
  3198. export_rdev(rdev);
  3199. }
  3200. autorun_array(mddev);
  3201. mddev_unlock(mddev);
  3202. }
  3203. /* on success, candidates will be empty, on error
  3204. * it won't...
  3205. */
  3206. ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
  3207. export_rdev(rdev);
  3208. mddev_put(mddev);
  3209. }
  3210. printk(KERN_INFO "md: ... autorun DONE.\n");
  3211. }
  3212. #endif /* !MODULE */
  3213. static int get_version(void __user * arg)
  3214. {
  3215. mdu_version_t ver;
  3216. ver.major = MD_MAJOR_VERSION;
  3217. ver.minor = MD_MINOR_VERSION;
  3218. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  3219. if (copy_to_user(arg, &ver, sizeof(ver)))
  3220. return -EFAULT;
  3221. return 0;
  3222. }
  3223. static int get_array_info(mddev_t * mddev, void __user * arg)
  3224. {
  3225. mdu_array_info_t info;
  3226. int nr,working,active,failed,spare;
  3227. mdk_rdev_t *rdev;
  3228. struct list_head *tmp;
  3229. nr=working=active=failed=spare=0;
  3230. ITERATE_RDEV(mddev,rdev,tmp) {
  3231. nr++;
  3232. if (test_bit(Faulty, &rdev->flags))
  3233. failed++;
  3234. else {
  3235. working++;
  3236. if (test_bit(In_sync, &rdev->flags))
  3237. active++;
  3238. else
  3239. spare++;
  3240. }
  3241. }
  3242. info.major_version = mddev->major_version;
  3243. info.minor_version = mddev->minor_version;
  3244. info.patch_version = MD_PATCHLEVEL_VERSION;
  3245. info.ctime = mddev->ctime;
  3246. info.level = mddev->level;
  3247. info.size = mddev->size;
  3248. if (info.size != mddev->size) /* overflow */
  3249. info.size = -1;
  3250. info.nr_disks = nr;
  3251. info.raid_disks = mddev->raid_disks;
  3252. info.md_minor = mddev->md_minor;
  3253. info.not_persistent= !mddev->persistent;
  3254. info.utime = mddev->utime;
  3255. info.state = 0;
  3256. if (mddev->in_sync)
  3257. info.state = (1<<MD_SB_CLEAN);
  3258. if (mddev->bitmap && mddev->bitmap_offset)
  3259. info.state = (1<<MD_SB_BITMAP_PRESENT);
  3260. info.active_disks = active;
  3261. info.working_disks = working;
  3262. info.failed_disks = failed;
  3263. info.spare_disks = spare;
  3264. info.layout = mddev->layout;
  3265. info.chunk_size = mddev->chunk_size;
  3266. if (copy_to_user(arg, &info, sizeof(info)))
  3267. return -EFAULT;
  3268. return 0;
  3269. }
  3270. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  3271. {
  3272. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  3273. char *ptr, *buf = NULL;
  3274. int err = -ENOMEM;
  3275. md_allow_write(mddev);
  3276. file = kmalloc(sizeof(*file), GFP_KERNEL);
  3277. if (!file)
  3278. goto out;
  3279. /* bitmap disabled, zero the first byte and copy out */
  3280. if (!mddev->bitmap || !mddev->bitmap->file) {
  3281. file->pathname[0] = '\0';
  3282. goto copy_out;
  3283. }
  3284. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  3285. if (!buf)
  3286. goto out;
  3287. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  3288. if (!ptr)
  3289. goto out;
  3290. strcpy(file->pathname, ptr);
  3291. copy_out:
  3292. err = 0;
  3293. if (copy_to_user(arg, file, sizeof(*file)))
  3294. err = -EFAULT;
  3295. out:
  3296. kfree(buf);
  3297. kfree(file);
  3298. return err;
  3299. }
  3300. static int get_disk_info(mddev_t * mddev, void __user * arg)
  3301. {
  3302. mdu_disk_info_t info;
  3303. unsigned int nr;
  3304. mdk_rdev_t *rdev;
  3305. if (copy_from_user(&info, arg, sizeof(info)))
  3306. return -EFAULT;
  3307. nr = info.number;
  3308. rdev = find_rdev_nr(mddev, nr);
  3309. if (rdev) {
  3310. info.major = MAJOR(rdev->bdev->bd_dev);
  3311. info.minor = MINOR(rdev->bdev->bd_dev);
  3312. info.raid_disk = rdev->raid_disk;
  3313. info.state = 0;
  3314. if (test_bit(Faulty, &rdev->flags))
  3315. info.state |= (1<<MD_DISK_FAULTY);
  3316. else if (test_bit(In_sync, &rdev->flags)) {
  3317. info.state |= (1<<MD_DISK_ACTIVE);
  3318. info.state |= (1<<MD_DISK_SYNC);
  3319. }
  3320. if (test_bit(WriteMostly, &rdev->flags))
  3321. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  3322. } else {
  3323. info.major = info.minor = 0;
  3324. info.raid_disk = -1;
  3325. info.state = (1<<MD_DISK_REMOVED);
  3326. }
  3327. if (copy_to_user(arg, &info, sizeof(info)))
  3328. return -EFAULT;
  3329. return 0;
  3330. }
  3331. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  3332. {
  3333. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3334. mdk_rdev_t *rdev;
  3335. dev_t dev = MKDEV(info->major,info->minor);
  3336. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  3337. return -EOVERFLOW;
  3338. if (!mddev->raid_disks) {
  3339. int err;
  3340. /* expecting a device which has a superblock */
  3341. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  3342. if (IS_ERR(rdev)) {
  3343. printk(KERN_WARNING
  3344. "md: md_import_device returned %ld\n",
  3345. PTR_ERR(rdev));
  3346. return PTR_ERR(rdev);
  3347. }
  3348. if (!list_empty(&mddev->disks)) {
  3349. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3350. mdk_rdev_t, same_set);
  3351. int err = super_types[mddev->major_version]
  3352. .load_super(rdev, rdev0, mddev->minor_version);
  3353. if (err < 0) {
  3354. printk(KERN_WARNING
  3355. "md: %s has different UUID to %s\n",
  3356. bdevname(rdev->bdev,b),
  3357. bdevname(rdev0->bdev,b2));
  3358. export_rdev(rdev);
  3359. return -EINVAL;
  3360. }
  3361. }
  3362. err = bind_rdev_to_array(rdev, mddev);
  3363. if (err)
  3364. export_rdev(rdev);
  3365. return err;
  3366. }
  3367. /*
  3368. * add_new_disk can be used once the array is assembled
  3369. * to add "hot spares". They must already have a superblock
  3370. * written
  3371. */
  3372. if (mddev->pers) {
  3373. int err;
  3374. if (!mddev->pers->hot_add_disk) {
  3375. printk(KERN_WARNING
  3376. "%s: personality does not support diskops!\n",
  3377. mdname(mddev));
  3378. return -EINVAL;
  3379. }
  3380. if (mddev->persistent)
  3381. rdev = md_import_device(dev, mddev->major_version,
  3382. mddev->minor_version);
  3383. else
  3384. rdev = md_import_device(dev, -1, -1);
  3385. if (IS_ERR(rdev)) {
  3386. printk(KERN_WARNING
  3387. "md: md_import_device returned %ld\n",
  3388. PTR_ERR(rdev));
  3389. return PTR_ERR(rdev);
  3390. }
  3391. /* set save_raid_disk if appropriate */
  3392. if (!mddev->persistent) {
  3393. if (info->state & (1<<MD_DISK_SYNC) &&
  3394. info->raid_disk < mddev->raid_disks)
  3395. rdev->raid_disk = info->raid_disk;
  3396. else
  3397. rdev->raid_disk = -1;
  3398. } else
  3399. super_types[mddev->major_version].
  3400. validate_super(mddev, rdev);
  3401. rdev->saved_raid_disk = rdev->raid_disk;
  3402. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  3403. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3404. set_bit(WriteMostly, &rdev->flags);
  3405. rdev->raid_disk = -1;
  3406. err = bind_rdev_to_array(rdev, mddev);
  3407. if (!err && !mddev->pers->hot_remove_disk) {
  3408. /* If there is hot_add_disk but no hot_remove_disk
  3409. * then added disks for geometry changes,
  3410. * and should be added immediately.
  3411. */
  3412. super_types[mddev->major_version].
  3413. validate_super(mddev, rdev);
  3414. err = mddev->pers->hot_add_disk(mddev, rdev);
  3415. if (err)
  3416. unbind_rdev_from_array(rdev);
  3417. }
  3418. if (err)
  3419. export_rdev(rdev);
  3420. md_update_sb(mddev, 1);
  3421. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3422. md_wakeup_thread(mddev->thread);
  3423. return err;
  3424. }
  3425. /* otherwise, add_new_disk is only allowed
  3426. * for major_version==0 superblocks
  3427. */
  3428. if (mddev->major_version != 0) {
  3429. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  3430. mdname(mddev));
  3431. return -EINVAL;
  3432. }
  3433. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  3434. int err;
  3435. rdev = md_import_device (dev, -1, 0);
  3436. if (IS_ERR(rdev)) {
  3437. printk(KERN_WARNING
  3438. "md: error, md_import_device() returned %ld\n",
  3439. PTR_ERR(rdev));
  3440. return PTR_ERR(rdev);
  3441. }
  3442. rdev->desc_nr = info->number;
  3443. if (info->raid_disk < mddev->raid_disks)
  3444. rdev->raid_disk = info->raid_disk;
  3445. else
  3446. rdev->raid_disk = -1;
  3447. rdev->flags = 0;
  3448. if (rdev->raid_disk < mddev->raid_disks)
  3449. if (info->state & (1<<MD_DISK_SYNC))
  3450. set_bit(In_sync, &rdev->flags);
  3451. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3452. set_bit(WriteMostly, &rdev->flags);
  3453. if (!mddev->persistent) {
  3454. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  3455. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3456. } else
  3457. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3458. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  3459. err = bind_rdev_to_array(rdev, mddev);
  3460. if (err) {
  3461. export_rdev(rdev);
  3462. return err;
  3463. }
  3464. }
  3465. return 0;
  3466. }
  3467. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  3468. {
  3469. char b[BDEVNAME_SIZE];
  3470. mdk_rdev_t *rdev;
  3471. if (!mddev->pers)
  3472. return -ENODEV;
  3473. rdev = find_rdev(mddev, dev);
  3474. if (!rdev)
  3475. return -ENXIO;
  3476. if (rdev->raid_disk >= 0)
  3477. goto busy;
  3478. kick_rdev_from_array(rdev);
  3479. md_update_sb(mddev, 1);
  3480. md_new_event(mddev);
  3481. return 0;
  3482. busy:
  3483. printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
  3484. bdevname(rdev->bdev,b), mdname(mddev));
  3485. return -EBUSY;
  3486. }
  3487. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  3488. {
  3489. char b[BDEVNAME_SIZE];
  3490. int err;
  3491. unsigned int size;
  3492. mdk_rdev_t *rdev;
  3493. if (!mddev->pers)
  3494. return -ENODEV;
  3495. if (mddev->major_version != 0) {
  3496. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  3497. " version-0 superblocks.\n",
  3498. mdname(mddev));
  3499. return -EINVAL;
  3500. }
  3501. if (!mddev->pers->hot_add_disk) {
  3502. printk(KERN_WARNING
  3503. "%s: personality does not support diskops!\n",
  3504. mdname(mddev));
  3505. return -EINVAL;
  3506. }
  3507. rdev = md_import_device (dev, -1, 0);
  3508. if (IS_ERR(rdev)) {
  3509. printk(KERN_WARNING
  3510. "md: error, md_import_device() returned %ld\n",
  3511. PTR_ERR(rdev));
  3512. return -EINVAL;
  3513. }
  3514. if (mddev->persistent)
  3515. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3516. else
  3517. rdev->sb_offset =
  3518. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3519. size = calc_dev_size(rdev, mddev->chunk_size);
  3520. rdev->size = size;
  3521. if (test_bit(Faulty, &rdev->flags)) {
  3522. printk(KERN_WARNING
  3523. "md: can not hot-add faulty %s disk to %s!\n",
  3524. bdevname(rdev->bdev,b), mdname(mddev));
  3525. err = -EINVAL;
  3526. goto abort_export;
  3527. }
  3528. clear_bit(In_sync, &rdev->flags);
  3529. rdev->desc_nr = -1;
  3530. rdev->saved_raid_disk = -1;
  3531. err = bind_rdev_to_array(rdev, mddev);
  3532. if (err)
  3533. goto abort_export;
  3534. /*
  3535. * The rest should better be atomic, we can have disk failures
  3536. * noticed in interrupt contexts ...
  3537. */
  3538. if (rdev->desc_nr == mddev->max_disks) {
  3539. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  3540. mdname(mddev));
  3541. err = -EBUSY;
  3542. goto abort_unbind_export;
  3543. }
  3544. rdev->raid_disk = -1;
  3545. md_update_sb(mddev, 1);
  3546. /*
  3547. * Kick recovery, maybe this spare has to be added to the
  3548. * array immediately.
  3549. */
  3550. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3551. md_wakeup_thread(mddev->thread);
  3552. md_new_event(mddev);
  3553. return 0;
  3554. abort_unbind_export:
  3555. unbind_rdev_from_array(rdev);
  3556. abort_export:
  3557. export_rdev(rdev);
  3558. return err;
  3559. }
  3560. static int set_bitmap_file(mddev_t *mddev, int fd)
  3561. {
  3562. int err;
  3563. if (mddev->pers) {
  3564. if (!mddev->pers->quiesce)
  3565. return -EBUSY;
  3566. if (mddev->recovery || mddev->sync_thread)
  3567. return -EBUSY;
  3568. /* we should be able to change the bitmap.. */
  3569. }
  3570. if (fd >= 0) {
  3571. if (mddev->bitmap)
  3572. return -EEXIST; /* cannot add when bitmap is present */
  3573. mddev->bitmap_file = fget(fd);
  3574. if (mddev->bitmap_file == NULL) {
  3575. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  3576. mdname(mddev));
  3577. return -EBADF;
  3578. }
  3579. err = deny_bitmap_write_access(mddev->bitmap_file);
  3580. if (err) {
  3581. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  3582. mdname(mddev));
  3583. fput(mddev->bitmap_file);
  3584. mddev->bitmap_file = NULL;
  3585. return err;
  3586. }
  3587. mddev->bitmap_offset = 0; /* file overrides offset */
  3588. } else if (mddev->bitmap == NULL)
  3589. return -ENOENT; /* cannot remove what isn't there */
  3590. err = 0;
  3591. if (mddev->pers) {
  3592. mddev->pers->quiesce(mddev, 1);
  3593. if (fd >= 0)
  3594. err = bitmap_create(mddev);
  3595. if (fd < 0 || err) {
  3596. bitmap_destroy(mddev);
  3597. fd = -1; /* make sure to put the file */
  3598. }
  3599. mddev->pers->quiesce(mddev, 0);
  3600. }
  3601. if (fd < 0) {
  3602. if (mddev->bitmap_file) {
  3603. restore_bitmap_write_access(mddev->bitmap_file);
  3604. fput(mddev->bitmap_file);
  3605. }
  3606. mddev->bitmap_file = NULL;
  3607. }
  3608. return err;
  3609. }
  3610. /*
  3611. * set_array_info is used two different ways
  3612. * The original usage is when creating a new array.
  3613. * In this usage, raid_disks is > 0 and it together with
  3614. * level, size, not_persistent,layout,chunksize determine the
  3615. * shape of the array.
  3616. * This will always create an array with a type-0.90.0 superblock.
  3617. * The newer usage is when assembling an array.
  3618. * In this case raid_disks will be 0, and the major_version field is
  3619. * use to determine which style super-blocks are to be found on the devices.
  3620. * The minor and patch _version numbers are also kept incase the
  3621. * super_block handler wishes to interpret them.
  3622. */
  3623. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  3624. {
  3625. if (info->raid_disks == 0) {
  3626. /* just setting version number for superblock loading */
  3627. if (info->major_version < 0 ||
  3628. info->major_version >= ARRAY_SIZE(super_types) ||
  3629. super_types[info->major_version].name == NULL) {
  3630. /* maybe try to auto-load a module? */
  3631. printk(KERN_INFO
  3632. "md: superblock version %d not known\n",
  3633. info->major_version);
  3634. return -EINVAL;
  3635. }
  3636. mddev->major_version = info->major_version;
  3637. mddev->minor_version = info->minor_version;
  3638. mddev->patch_version = info->patch_version;
  3639. mddev->persistent = !info->not_persistent;
  3640. return 0;
  3641. }
  3642. mddev->major_version = MD_MAJOR_VERSION;
  3643. mddev->minor_version = MD_MINOR_VERSION;
  3644. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  3645. mddev->ctime = get_seconds();
  3646. mddev->level = info->level;
  3647. mddev->clevel[0] = 0;
  3648. mddev->size = info->size;
  3649. mddev->raid_disks = info->raid_disks;
  3650. /* don't set md_minor, it is determined by which /dev/md* was
  3651. * openned
  3652. */
  3653. if (info->state & (1<<MD_SB_CLEAN))
  3654. mddev->recovery_cp = MaxSector;
  3655. else
  3656. mddev->recovery_cp = 0;
  3657. mddev->persistent = ! info->not_persistent;
  3658. mddev->layout = info->layout;
  3659. mddev->chunk_size = info->chunk_size;
  3660. mddev->max_disks = MD_SB_DISKS;
  3661. mddev->flags = 0;
  3662. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3663. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  3664. mddev->bitmap_offset = 0;
  3665. mddev->reshape_position = MaxSector;
  3666. /*
  3667. * Generate a 128 bit UUID
  3668. */
  3669. get_random_bytes(mddev->uuid, 16);
  3670. mddev->new_level = mddev->level;
  3671. mddev->new_chunk = mddev->chunk_size;
  3672. mddev->new_layout = mddev->layout;
  3673. mddev->delta_disks = 0;
  3674. return 0;
  3675. }
  3676. static int update_size(mddev_t *mddev, unsigned long size)
  3677. {
  3678. mdk_rdev_t * rdev;
  3679. int rv;
  3680. struct list_head *tmp;
  3681. int fit = (size == 0);
  3682. if (mddev->pers->resize == NULL)
  3683. return -EINVAL;
  3684. /* The "size" is the amount of each device that is used.
  3685. * This can only make sense for arrays with redundancy.
  3686. * linear and raid0 always use whatever space is available
  3687. * We can only consider changing the size if no resync
  3688. * or reconstruction is happening, and if the new size
  3689. * is acceptable. It must fit before the sb_offset or,
  3690. * if that is <data_offset, it must fit before the
  3691. * size of each device.
  3692. * If size is zero, we find the largest size that fits.
  3693. */
  3694. if (mddev->sync_thread)
  3695. return -EBUSY;
  3696. ITERATE_RDEV(mddev,rdev,tmp) {
  3697. sector_t avail;
  3698. avail = rdev->size * 2;
  3699. if (fit && (size == 0 || size > avail/2))
  3700. size = avail/2;
  3701. if (avail < ((sector_t)size << 1))
  3702. return -ENOSPC;
  3703. }
  3704. rv = mddev->pers->resize(mddev, (sector_t)size *2);
  3705. if (!rv) {
  3706. struct block_device *bdev;
  3707. bdev = bdget_disk(mddev->gendisk, 0);
  3708. if (bdev) {
  3709. mutex_lock(&bdev->bd_inode->i_mutex);
  3710. i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
  3711. mutex_unlock(&bdev->bd_inode->i_mutex);
  3712. bdput(bdev);
  3713. }
  3714. }
  3715. return rv;
  3716. }
  3717. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  3718. {
  3719. int rv;
  3720. /* change the number of raid disks */
  3721. if (mddev->pers->check_reshape == NULL)
  3722. return -EINVAL;
  3723. if (raid_disks <= 0 ||
  3724. raid_disks >= mddev->max_disks)
  3725. return -EINVAL;
  3726. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  3727. return -EBUSY;
  3728. mddev->delta_disks = raid_disks - mddev->raid_disks;
  3729. rv = mddev->pers->check_reshape(mddev);
  3730. return rv;
  3731. }
  3732. /*
  3733. * update_array_info is used to change the configuration of an
  3734. * on-line array.
  3735. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  3736. * fields in the info are checked against the array.
  3737. * Any differences that cannot be handled will cause an error.
  3738. * Normally, only one change can be managed at a time.
  3739. */
  3740. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  3741. {
  3742. int rv = 0;
  3743. int cnt = 0;
  3744. int state = 0;
  3745. /* calculate expected state,ignoring low bits */
  3746. if (mddev->bitmap && mddev->bitmap_offset)
  3747. state |= (1 << MD_SB_BITMAP_PRESENT);
  3748. if (mddev->major_version != info->major_version ||
  3749. mddev->minor_version != info->minor_version ||
  3750. /* mddev->patch_version != info->patch_version || */
  3751. mddev->ctime != info->ctime ||
  3752. mddev->level != info->level ||
  3753. /* mddev->layout != info->layout || */
  3754. !mddev->persistent != info->not_persistent||
  3755. mddev->chunk_size != info->chunk_size ||
  3756. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  3757. ((state^info->state) & 0xfffffe00)
  3758. )
  3759. return -EINVAL;
  3760. /* Check there is only one change */
  3761. if (info->size >= 0 && mddev->size != info->size) cnt++;
  3762. if (mddev->raid_disks != info->raid_disks) cnt++;
  3763. if (mddev->layout != info->layout) cnt++;
  3764. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  3765. if (cnt == 0) return 0;
  3766. if (cnt > 1) return -EINVAL;
  3767. if (mddev->layout != info->layout) {
  3768. /* Change layout
  3769. * we don't need to do anything at the md level, the
  3770. * personality will take care of it all.
  3771. */
  3772. if (mddev->pers->reconfig == NULL)
  3773. return -EINVAL;
  3774. else
  3775. return mddev->pers->reconfig(mddev, info->layout, -1);
  3776. }
  3777. if (info->size >= 0 && mddev->size != info->size)
  3778. rv = update_size(mddev, info->size);
  3779. if (mddev->raid_disks != info->raid_disks)
  3780. rv = update_raid_disks(mddev, info->raid_disks);
  3781. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  3782. if (mddev->pers->quiesce == NULL)
  3783. return -EINVAL;
  3784. if (mddev->recovery || mddev->sync_thread)
  3785. return -EBUSY;
  3786. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  3787. /* add the bitmap */
  3788. if (mddev->bitmap)
  3789. return -EEXIST;
  3790. if (mddev->default_bitmap_offset == 0)
  3791. return -EINVAL;
  3792. mddev->bitmap_offset = mddev->default_bitmap_offset;
  3793. mddev->pers->quiesce(mddev, 1);
  3794. rv = bitmap_create(mddev);
  3795. if (rv)
  3796. bitmap_destroy(mddev);
  3797. mddev->pers->quiesce(mddev, 0);
  3798. } else {
  3799. /* remove the bitmap */
  3800. if (!mddev->bitmap)
  3801. return -ENOENT;
  3802. if (mddev->bitmap->file)
  3803. return -EINVAL;
  3804. mddev->pers->quiesce(mddev, 1);
  3805. bitmap_destroy(mddev);
  3806. mddev->pers->quiesce(mddev, 0);
  3807. mddev->bitmap_offset = 0;
  3808. }
  3809. }
  3810. md_update_sb(mddev, 1);
  3811. return rv;
  3812. }
  3813. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  3814. {
  3815. mdk_rdev_t *rdev;
  3816. if (mddev->pers == NULL)
  3817. return -ENODEV;
  3818. rdev = find_rdev(mddev, dev);
  3819. if (!rdev)
  3820. return -ENODEV;
  3821. md_error(mddev, rdev);
  3822. return 0;
  3823. }
  3824. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  3825. {
  3826. mddev_t *mddev = bdev->bd_disk->private_data;
  3827. geo->heads = 2;
  3828. geo->sectors = 4;
  3829. geo->cylinders = get_capacity(mddev->gendisk) / 8;
  3830. return 0;
  3831. }
  3832. static int md_ioctl(struct inode *inode, struct file *file,
  3833. unsigned int cmd, unsigned long arg)
  3834. {
  3835. int err = 0;
  3836. void __user *argp = (void __user *)arg;
  3837. mddev_t *mddev = NULL;
  3838. if (!capable(CAP_SYS_ADMIN))
  3839. return -EACCES;
  3840. /*
  3841. * Commands dealing with the RAID driver but not any
  3842. * particular array:
  3843. */
  3844. switch (cmd)
  3845. {
  3846. case RAID_VERSION:
  3847. err = get_version(argp);
  3848. goto done;
  3849. case PRINT_RAID_DEBUG:
  3850. err = 0;
  3851. md_print_devices();
  3852. goto done;
  3853. #ifndef MODULE
  3854. case RAID_AUTORUN:
  3855. err = 0;
  3856. autostart_arrays(arg);
  3857. goto done;
  3858. #endif
  3859. default:;
  3860. }
  3861. /*
  3862. * Commands creating/starting a new array:
  3863. */
  3864. mddev = inode->i_bdev->bd_disk->private_data;
  3865. if (!mddev) {
  3866. BUG();
  3867. goto abort;
  3868. }
  3869. err = mddev_lock(mddev);
  3870. if (err) {
  3871. printk(KERN_INFO
  3872. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  3873. err, cmd);
  3874. goto abort;
  3875. }
  3876. switch (cmd)
  3877. {
  3878. case SET_ARRAY_INFO:
  3879. {
  3880. mdu_array_info_t info;
  3881. if (!arg)
  3882. memset(&info, 0, sizeof(info));
  3883. else if (copy_from_user(&info, argp, sizeof(info))) {
  3884. err = -EFAULT;
  3885. goto abort_unlock;
  3886. }
  3887. if (mddev->pers) {
  3888. err = update_array_info(mddev, &info);
  3889. if (err) {
  3890. printk(KERN_WARNING "md: couldn't update"
  3891. " array info. %d\n", err);
  3892. goto abort_unlock;
  3893. }
  3894. goto done_unlock;
  3895. }
  3896. if (!list_empty(&mddev->disks)) {
  3897. printk(KERN_WARNING
  3898. "md: array %s already has disks!\n",
  3899. mdname(mddev));
  3900. err = -EBUSY;
  3901. goto abort_unlock;
  3902. }
  3903. if (mddev->raid_disks) {
  3904. printk(KERN_WARNING
  3905. "md: array %s already initialised!\n",
  3906. mdname(mddev));
  3907. err = -EBUSY;
  3908. goto abort_unlock;
  3909. }
  3910. err = set_array_info(mddev, &info);
  3911. if (err) {
  3912. printk(KERN_WARNING "md: couldn't set"
  3913. " array info. %d\n", err);
  3914. goto abort_unlock;
  3915. }
  3916. }
  3917. goto done_unlock;
  3918. default:;
  3919. }
  3920. /*
  3921. * Commands querying/configuring an existing array:
  3922. */
  3923. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  3924. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  3925. if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  3926. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  3927. && cmd != GET_BITMAP_FILE) {
  3928. err = -ENODEV;
  3929. goto abort_unlock;
  3930. }
  3931. /*
  3932. * Commands even a read-only array can execute:
  3933. */
  3934. switch (cmd)
  3935. {
  3936. case GET_ARRAY_INFO:
  3937. err = get_array_info(mddev, argp);
  3938. goto done_unlock;
  3939. case GET_BITMAP_FILE:
  3940. err = get_bitmap_file(mddev, argp);
  3941. goto done_unlock;
  3942. case GET_DISK_INFO:
  3943. err = get_disk_info(mddev, argp);
  3944. goto done_unlock;
  3945. case RESTART_ARRAY_RW:
  3946. err = restart_array(mddev);
  3947. goto done_unlock;
  3948. case STOP_ARRAY:
  3949. err = do_md_stop (mddev, 0);
  3950. goto done_unlock;
  3951. case STOP_ARRAY_RO:
  3952. err = do_md_stop (mddev, 1);
  3953. goto done_unlock;
  3954. /*
  3955. * We have a problem here : there is no easy way to give a CHS
  3956. * virtual geometry. We currently pretend that we have a 2 heads
  3957. * 4 sectors (with a BIG number of cylinders...). This drives
  3958. * dosfs just mad... ;-)
  3959. */
  3960. }
  3961. /*
  3962. * The remaining ioctls are changing the state of the
  3963. * superblock, so we do not allow them on read-only arrays.
  3964. * However non-MD ioctls (e.g. get-size) will still come through
  3965. * here and hit the 'default' below, so only disallow
  3966. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  3967. */
  3968. if (_IOC_TYPE(cmd) == MD_MAJOR &&
  3969. mddev->ro && mddev->pers) {
  3970. if (mddev->ro == 2) {
  3971. mddev->ro = 0;
  3972. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3973. md_wakeup_thread(mddev->thread);
  3974. } else {
  3975. err = -EROFS;
  3976. goto abort_unlock;
  3977. }
  3978. }
  3979. switch (cmd)
  3980. {
  3981. case ADD_NEW_DISK:
  3982. {
  3983. mdu_disk_info_t info;
  3984. if (copy_from_user(&info, argp, sizeof(info)))
  3985. err = -EFAULT;
  3986. else
  3987. err = add_new_disk(mddev, &info);
  3988. goto done_unlock;
  3989. }
  3990. case HOT_REMOVE_DISK:
  3991. err = hot_remove_disk(mddev, new_decode_dev(arg));
  3992. goto done_unlock;
  3993. case HOT_ADD_DISK:
  3994. err = hot_add_disk(mddev, new_decode_dev(arg));
  3995. goto done_unlock;
  3996. case SET_DISK_FAULTY:
  3997. err = set_disk_faulty(mddev, new_decode_dev(arg));
  3998. goto done_unlock;
  3999. case RUN_ARRAY:
  4000. err = do_md_run (mddev);
  4001. goto done_unlock;
  4002. case SET_BITMAP_FILE:
  4003. err = set_bitmap_file(mddev, (int)arg);
  4004. goto done_unlock;
  4005. default:
  4006. err = -EINVAL;
  4007. goto abort_unlock;
  4008. }
  4009. done_unlock:
  4010. abort_unlock:
  4011. mddev_unlock(mddev);
  4012. return err;
  4013. done:
  4014. if (err)
  4015. MD_BUG();
  4016. abort:
  4017. return err;
  4018. }
  4019. static int md_open(struct inode *inode, struct file *file)
  4020. {
  4021. /*
  4022. * Succeed if we can lock the mddev, which confirms that
  4023. * it isn't being stopped right now.
  4024. */
  4025. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  4026. int err;
  4027. if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
  4028. goto out;
  4029. err = 0;
  4030. mddev_get(mddev);
  4031. mddev_unlock(mddev);
  4032. check_disk_change(inode->i_bdev);
  4033. out:
  4034. return err;
  4035. }
  4036. static int md_release(struct inode *inode, struct file * file)
  4037. {
  4038. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  4039. BUG_ON(!mddev);
  4040. mddev_put(mddev);
  4041. return 0;
  4042. }
  4043. static int md_media_changed(struct gendisk *disk)
  4044. {
  4045. mddev_t *mddev = disk->private_data;
  4046. return mddev->changed;
  4047. }
  4048. static int md_revalidate(struct gendisk *disk)
  4049. {
  4050. mddev_t *mddev = disk->private_data;
  4051. mddev->changed = 0;
  4052. return 0;
  4053. }
  4054. static struct block_device_operations md_fops =
  4055. {
  4056. .owner = THIS_MODULE,
  4057. .open = md_open,
  4058. .release = md_release,
  4059. .ioctl = md_ioctl,
  4060. .getgeo = md_getgeo,
  4061. .media_changed = md_media_changed,
  4062. .revalidate_disk= md_revalidate,
  4063. };
  4064. static int md_thread(void * arg)
  4065. {
  4066. mdk_thread_t *thread = arg;
  4067. /*
  4068. * md_thread is a 'system-thread', it's priority should be very
  4069. * high. We avoid resource deadlocks individually in each
  4070. * raid personality. (RAID5 does preallocation) We also use RR and
  4071. * the very same RT priority as kswapd, thus we will never get
  4072. * into a priority inversion deadlock.
  4073. *
  4074. * we definitely have to have equal or higher priority than
  4075. * bdflush, otherwise bdflush will deadlock if there are too
  4076. * many dirty RAID5 blocks.
  4077. */
  4078. allow_signal(SIGKILL);
  4079. while (!kthread_should_stop()) {
  4080. /* We need to wait INTERRUPTIBLE so that
  4081. * we don't add to the load-average.
  4082. * That means we need to be sure no signals are
  4083. * pending
  4084. */
  4085. if (signal_pending(current))
  4086. flush_signals(current);
  4087. wait_event_interruptible_timeout
  4088. (thread->wqueue,
  4089. test_bit(THREAD_WAKEUP, &thread->flags)
  4090. || kthread_should_stop(),
  4091. thread->timeout);
  4092. clear_bit(THREAD_WAKEUP, &thread->flags);
  4093. thread->run(thread->mddev);
  4094. }
  4095. return 0;
  4096. }
  4097. void md_wakeup_thread(mdk_thread_t *thread)
  4098. {
  4099. if (thread) {
  4100. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  4101. set_bit(THREAD_WAKEUP, &thread->flags);
  4102. wake_up(&thread->wqueue);
  4103. }
  4104. }
  4105. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  4106. const char *name)
  4107. {
  4108. mdk_thread_t *thread;
  4109. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  4110. if (!thread)
  4111. return NULL;
  4112. init_waitqueue_head(&thread->wqueue);
  4113. thread->run = run;
  4114. thread->mddev = mddev;
  4115. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  4116. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  4117. if (IS_ERR(thread->tsk)) {
  4118. kfree(thread);
  4119. return NULL;
  4120. }
  4121. return thread;
  4122. }
  4123. void md_unregister_thread(mdk_thread_t *thread)
  4124. {
  4125. dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
  4126. kthread_stop(thread->tsk);
  4127. kfree(thread);
  4128. }
  4129. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  4130. {
  4131. if (!mddev) {
  4132. MD_BUG();
  4133. return;
  4134. }
  4135. if (!rdev || test_bit(Faulty, &rdev->flags))
  4136. return;
  4137. /*
  4138. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  4139. mdname(mddev),
  4140. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  4141. __builtin_return_address(0),__builtin_return_address(1),
  4142. __builtin_return_address(2),__builtin_return_address(3));
  4143. */
  4144. if (!mddev->pers)
  4145. return;
  4146. if (!mddev->pers->error_handler)
  4147. return;
  4148. mddev->pers->error_handler(mddev,rdev);
  4149. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4150. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4151. md_wakeup_thread(mddev->thread);
  4152. md_new_event_inintr(mddev);
  4153. }
  4154. /* seq_file implementation /proc/mdstat */
  4155. static void status_unused(struct seq_file *seq)
  4156. {
  4157. int i = 0;
  4158. mdk_rdev_t *rdev;
  4159. struct list_head *tmp;
  4160. seq_printf(seq, "unused devices: ");
  4161. ITERATE_RDEV_PENDING(rdev,tmp) {
  4162. char b[BDEVNAME_SIZE];
  4163. i++;
  4164. seq_printf(seq, "%s ",
  4165. bdevname(rdev->bdev,b));
  4166. }
  4167. if (!i)
  4168. seq_printf(seq, "<none>");
  4169. seq_printf(seq, "\n");
  4170. }
  4171. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  4172. {
  4173. sector_t max_blocks, resync, res;
  4174. unsigned long dt, db, rt;
  4175. int scale;
  4176. unsigned int per_milli;
  4177. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  4178. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4179. max_blocks = mddev->resync_max_sectors >> 1;
  4180. else
  4181. max_blocks = mddev->size;
  4182. /*
  4183. * Should not happen.
  4184. */
  4185. if (!max_blocks) {
  4186. MD_BUG();
  4187. return;
  4188. }
  4189. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  4190. * in a sector_t, and (max_blocks>>scale) will fit in a
  4191. * u32, as those are the requirements for sector_div.
  4192. * Thus 'scale' must be at least 10
  4193. */
  4194. scale = 10;
  4195. if (sizeof(sector_t) > sizeof(unsigned long)) {
  4196. while ( max_blocks/2 > (1ULL<<(scale+32)))
  4197. scale++;
  4198. }
  4199. res = (resync>>scale)*1000;
  4200. sector_div(res, (u32)((max_blocks>>scale)+1));
  4201. per_milli = res;
  4202. {
  4203. int i, x = per_milli/50, y = 20-x;
  4204. seq_printf(seq, "[");
  4205. for (i = 0; i < x; i++)
  4206. seq_printf(seq, "=");
  4207. seq_printf(seq, ">");
  4208. for (i = 0; i < y; i++)
  4209. seq_printf(seq, ".");
  4210. seq_printf(seq, "] ");
  4211. }
  4212. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  4213. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  4214. "reshape" :
  4215. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  4216. "check" :
  4217. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  4218. "resync" : "recovery"))),
  4219. per_milli/10, per_milli % 10,
  4220. (unsigned long long) resync,
  4221. (unsigned long long) max_blocks);
  4222. /*
  4223. * We do not want to overflow, so the order of operands and
  4224. * the * 100 / 100 trick are important. We do a +1 to be
  4225. * safe against division by zero. We only estimate anyway.
  4226. *
  4227. * dt: time from mark until now
  4228. * db: blocks written from mark until now
  4229. * rt: remaining time
  4230. */
  4231. dt = ((jiffies - mddev->resync_mark) / HZ);
  4232. if (!dt) dt++;
  4233. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  4234. - mddev->resync_mark_cnt;
  4235. rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
  4236. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  4237. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  4238. }
  4239. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  4240. {
  4241. struct list_head *tmp;
  4242. loff_t l = *pos;
  4243. mddev_t *mddev;
  4244. if (l >= 0x10000)
  4245. return NULL;
  4246. if (!l--)
  4247. /* header */
  4248. return (void*)1;
  4249. spin_lock(&all_mddevs_lock);
  4250. list_for_each(tmp,&all_mddevs)
  4251. if (!l--) {
  4252. mddev = list_entry(tmp, mddev_t, all_mddevs);
  4253. mddev_get(mddev);
  4254. spin_unlock(&all_mddevs_lock);
  4255. return mddev;
  4256. }
  4257. spin_unlock(&all_mddevs_lock);
  4258. if (!l--)
  4259. return (void*)2;/* tail */
  4260. return NULL;
  4261. }
  4262. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  4263. {
  4264. struct list_head *tmp;
  4265. mddev_t *next_mddev, *mddev = v;
  4266. ++*pos;
  4267. if (v == (void*)2)
  4268. return NULL;
  4269. spin_lock(&all_mddevs_lock);
  4270. if (v == (void*)1)
  4271. tmp = all_mddevs.next;
  4272. else
  4273. tmp = mddev->all_mddevs.next;
  4274. if (tmp != &all_mddevs)
  4275. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  4276. else {
  4277. next_mddev = (void*)2;
  4278. *pos = 0x10000;
  4279. }
  4280. spin_unlock(&all_mddevs_lock);
  4281. if (v != (void*)1)
  4282. mddev_put(mddev);
  4283. return next_mddev;
  4284. }
  4285. static void md_seq_stop(struct seq_file *seq, void *v)
  4286. {
  4287. mddev_t *mddev = v;
  4288. if (mddev && v != (void*)1 && v != (void*)2)
  4289. mddev_put(mddev);
  4290. }
  4291. struct mdstat_info {
  4292. int event;
  4293. };
  4294. static int md_seq_show(struct seq_file *seq, void *v)
  4295. {
  4296. mddev_t *mddev = v;
  4297. sector_t size;
  4298. struct list_head *tmp2;
  4299. mdk_rdev_t *rdev;
  4300. struct mdstat_info *mi = seq->private;
  4301. struct bitmap *bitmap;
  4302. if (v == (void*)1) {
  4303. struct mdk_personality *pers;
  4304. seq_printf(seq, "Personalities : ");
  4305. spin_lock(&pers_lock);
  4306. list_for_each_entry(pers, &pers_list, list)
  4307. seq_printf(seq, "[%s] ", pers->name);
  4308. spin_unlock(&pers_lock);
  4309. seq_printf(seq, "\n");
  4310. mi->event = atomic_read(&md_event_count);
  4311. return 0;
  4312. }
  4313. if (v == (void*)2) {
  4314. status_unused(seq);
  4315. return 0;
  4316. }
  4317. if (mddev_lock(mddev) < 0)
  4318. return -EINTR;
  4319. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  4320. seq_printf(seq, "%s : %sactive", mdname(mddev),
  4321. mddev->pers ? "" : "in");
  4322. if (mddev->pers) {
  4323. if (mddev->ro==1)
  4324. seq_printf(seq, " (read-only)");
  4325. if (mddev->ro==2)
  4326. seq_printf(seq, "(auto-read-only)");
  4327. seq_printf(seq, " %s", mddev->pers->name);
  4328. }
  4329. size = 0;
  4330. ITERATE_RDEV(mddev,rdev,tmp2) {
  4331. char b[BDEVNAME_SIZE];
  4332. seq_printf(seq, " %s[%d]",
  4333. bdevname(rdev->bdev,b), rdev->desc_nr);
  4334. if (test_bit(WriteMostly, &rdev->flags))
  4335. seq_printf(seq, "(W)");
  4336. if (test_bit(Faulty, &rdev->flags)) {
  4337. seq_printf(seq, "(F)");
  4338. continue;
  4339. } else if (rdev->raid_disk < 0)
  4340. seq_printf(seq, "(S)"); /* spare */
  4341. size += rdev->size;
  4342. }
  4343. if (!list_empty(&mddev->disks)) {
  4344. if (mddev->pers)
  4345. seq_printf(seq, "\n %llu blocks",
  4346. (unsigned long long)mddev->array_size);
  4347. else
  4348. seq_printf(seq, "\n %llu blocks",
  4349. (unsigned long long)size);
  4350. }
  4351. if (mddev->persistent) {
  4352. if (mddev->major_version != 0 ||
  4353. mddev->minor_version != 90) {
  4354. seq_printf(seq," super %d.%d",
  4355. mddev->major_version,
  4356. mddev->minor_version);
  4357. }
  4358. } else
  4359. seq_printf(seq, " super non-persistent");
  4360. if (mddev->pers) {
  4361. mddev->pers->status (seq, mddev);
  4362. seq_printf(seq, "\n ");
  4363. if (mddev->pers->sync_request) {
  4364. if (mddev->curr_resync > 2) {
  4365. status_resync (seq, mddev);
  4366. seq_printf(seq, "\n ");
  4367. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  4368. seq_printf(seq, "\tresync=DELAYED\n ");
  4369. else if (mddev->recovery_cp < MaxSector)
  4370. seq_printf(seq, "\tresync=PENDING\n ");
  4371. }
  4372. } else
  4373. seq_printf(seq, "\n ");
  4374. if ((bitmap = mddev->bitmap)) {
  4375. unsigned long chunk_kb;
  4376. unsigned long flags;
  4377. spin_lock_irqsave(&bitmap->lock, flags);
  4378. chunk_kb = bitmap->chunksize >> 10;
  4379. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  4380. "%lu%s chunk",
  4381. bitmap->pages - bitmap->missing_pages,
  4382. bitmap->pages,
  4383. (bitmap->pages - bitmap->missing_pages)
  4384. << (PAGE_SHIFT - 10),
  4385. chunk_kb ? chunk_kb : bitmap->chunksize,
  4386. chunk_kb ? "KB" : "B");
  4387. if (bitmap->file) {
  4388. seq_printf(seq, ", file: ");
  4389. seq_path(seq, bitmap->file->f_path.mnt,
  4390. bitmap->file->f_path.dentry," \t\n");
  4391. }
  4392. seq_printf(seq, "\n");
  4393. spin_unlock_irqrestore(&bitmap->lock, flags);
  4394. }
  4395. seq_printf(seq, "\n");
  4396. }
  4397. mddev_unlock(mddev);
  4398. return 0;
  4399. }
  4400. static struct seq_operations md_seq_ops = {
  4401. .start = md_seq_start,
  4402. .next = md_seq_next,
  4403. .stop = md_seq_stop,
  4404. .show = md_seq_show,
  4405. };
  4406. static int md_seq_open(struct inode *inode, struct file *file)
  4407. {
  4408. int error;
  4409. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  4410. if (mi == NULL)
  4411. return -ENOMEM;
  4412. error = seq_open(file, &md_seq_ops);
  4413. if (error)
  4414. kfree(mi);
  4415. else {
  4416. struct seq_file *p = file->private_data;
  4417. p->private = mi;
  4418. mi->event = atomic_read(&md_event_count);
  4419. }
  4420. return error;
  4421. }
  4422. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  4423. {
  4424. struct seq_file *m = filp->private_data;
  4425. struct mdstat_info *mi = m->private;
  4426. int mask;
  4427. poll_wait(filp, &md_event_waiters, wait);
  4428. /* always allow read */
  4429. mask = POLLIN | POLLRDNORM;
  4430. if (mi->event != atomic_read(&md_event_count))
  4431. mask |= POLLERR | POLLPRI;
  4432. return mask;
  4433. }
  4434. static const struct file_operations md_seq_fops = {
  4435. .owner = THIS_MODULE,
  4436. .open = md_seq_open,
  4437. .read = seq_read,
  4438. .llseek = seq_lseek,
  4439. .release = seq_release_private,
  4440. .poll = mdstat_poll,
  4441. };
  4442. int register_md_personality(struct mdk_personality *p)
  4443. {
  4444. spin_lock(&pers_lock);
  4445. list_add_tail(&p->list, &pers_list);
  4446. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  4447. spin_unlock(&pers_lock);
  4448. return 0;
  4449. }
  4450. int unregister_md_personality(struct mdk_personality *p)
  4451. {
  4452. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  4453. spin_lock(&pers_lock);
  4454. list_del_init(&p->list);
  4455. spin_unlock(&pers_lock);
  4456. return 0;
  4457. }
  4458. static int is_mddev_idle(mddev_t *mddev)
  4459. {
  4460. mdk_rdev_t * rdev;
  4461. struct list_head *tmp;
  4462. int idle;
  4463. long curr_events;
  4464. idle = 1;
  4465. ITERATE_RDEV(mddev,rdev,tmp) {
  4466. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  4467. curr_events = disk_stat_read(disk, sectors[0]) +
  4468. disk_stat_read(disk, sectors[1]) -
  4469. atomic_read(&disk->sync_io);
  4470. /* sync IO will cause sync_io to increase before the disk_stats
  4471. * as sync_io is counted when a request starts, and
  4472. * disk_stats is counted when it completes.
  4473. * So resync activity will cause curr_events to be smaller than
  4474. * when there was no such activity.
  4475. * non-sync IO will cause disk_stat to increase without
  4476. * increasing sync_io so curr_events will (eventually)
  4477. * be larger than it was before. Once it becomes
  4478. * substantially larger, the test below will cause
  4479. * the array to appear non-idle, and resync will slow
  4480. * down.
  4481. * If there is a lot of outstanding resync activity when
  4482. * we set last_event to curr_events, then all that activity
  4483. * completing might cause the array to appear non-idle
  4484. * and resync will be slowed down even though there might
  4485. * not have been non-resync activity. This will only
  4486. * happen once though. 'last_events' will soon reflect
  4487. * the state where there is little or no outstanding
  4488. * resync requests, and further resync activity will
  4489. * always make curr_events less than last_events.
  4490. *
  4491. */
  4492. if (curr_events - rdev->last_events > 4096) {
  4493. rdev->last_events = curr_events;
  4494. idle = 0;
  4495. }
  4496. }
  4497. return idle;
  4498. }
  4499. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  4500. {
  4501. /* another "blocks" (512byte) blocks have been synced */
  4502. atomic_sub(blocks, &mddev->recovery_active);
  4503. wake_up(&mddev->recovery_wait);
  4504. if (!ok) {
  4505. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4506. md_wakeup_thread(mddev->thread);
  4507. // stop recovery, signal do_sync ....
  4508. }
  4509. }
  4510. /* md_write_start(mddev, bi)
  4511. * If we need to update some array metadata (e.g. 'active' flag
  4512. * in superblock) before writing, schedule a superblock update
  4513. * and wait for it to complete.
  4514. */
  4515. void md_write_start(mddev_t *mddev, struct bio *bi)
  4516. {
  4517. if (bio_data_dir(bi) != WRITE)
  4518. return;
  4519. BUG_ON(mddev->ro == 1);
  4520. if (mddev->ro == 2) {
  4521. /* need to switch to read/write */
  4522. mddev->ro = 0;
  4523. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4524. md_wakeup_thread(mddev->thread);
  4525. }
  4526. atomic_inc(&mddev->writes_pending);
  4527. if (mddev->in_sync) {
  4528. spin_lock_irq(&mddev->write_lock);
  4529. if (mddev->in_sync) {
  4530. mddev->in_sync = 0;
  4531. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4532. md_wakeup_thread(mddev->thread);
  4533. }
  4534. spin_unlock_irq(&mddev->write_lock);
  4535. }
  4536. wait_event(mddev->sb_wait, mddev->flags==0);
  4537. }
  4538. void md_write_end(mddev_t *mddev)
  4539. {
  4540. if (atomic_dec_and_test(&mddev->writes_pending)) {
  4541. if (mddev->safemode == 2)
  4542. md_wakeup_thread(mddev->thread);
  4543. else if (mddev->safemode_delay)
  4544. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  4545. }
  4546. }
  4547. /* md_allow_write(mddev)
  4548. * Calling this ensures that the array is marked 'active' so that writes
  4549. * may proceed without blocking. It is important to call this before
  4550. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  4551. * Must be called with mddev_lock held.
  4552. */
  4553. void md_allow_write(mddev_t *mddev)
  4554. {
  4555. if (!mddev->pers)
  4556. return;
  4557. if (mddev->ro)
  4558. return;
  4559. spin_lock_irq(&mddev->write_lock);
  4560. if (mddev->in_sync) {
  4561. mddev->in_sync = 0;
  4562. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4563. if (mddev->safemode_delay &&
  4564. mddev->safemode == 0)
  4565. mddev->safemode = 1;
  4566. spin_unlock_irq(&mddev->write_lock);
  4567. md_update_sb(mddev, 0);
  4568. } else
  4569. spin_unlock_irq(&mddev->write_lock);
  4570. }
  4571. EXPORT_SYMBOL_GPL(md_allow_write);
  4572. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  4573. #define SYNC_MARKS 10
  4574. #define SYNC_MARK_STEP (3*HZ)
  4575. void md_do_sync(mddev_t *mddev)
  4576. {
  4577. mddev_t *mddev2;
  4578. unsigned int currspeed = 0,
  4579. window;
  4580. sector_t max_sectors,j, io_sectors;
  4581. unsigned long mark[SYNC_MARKS];
  4582. sector_t mark_cnt[SYNC_MARKS];
  4583. int last_mark,m;
  4584. struct list_head *tmp;
  4585. sector_t last_check;
  4586. int skipped = 0;
  4587. struct list_head *rtmp;
  4588. mdk_rdev_t *rdev;
  4589. char *desc;
  4590. /* just incase thread restarts... */
  4591. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  4592. return;
  4593. if (mddev->ro) /* never try to sync a read-only array */
  4594. return;
  4595. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4596. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  4597. desc = "data-check";
  4598. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4599. desc = "requested-resync";
  4600. else
  4601. desc = "resync";
  4602. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4603. desc = "reshape";
  4604. else
  4605. desc = "recovery";
  4606. /* we overload curr_resync somewhat here.
  4607. * 0 == not engaged in resync at all
  4608. * 2 == checking that there is no conflict with another sync
  4609. * 1 == like 2, but have yielded to allow conflicting resync to
  4610. * commense
  4611. * other == active in resync - this many blocks
  4612. *
  4613. * Before starting a resync we must have set curr_resync to
  4614. * 2, and then checked that every "conflicting" array has curr_resync
  4615. * less than ours. When we find one that is the same or higher
  4616. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  4617. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  4618. * This will mean we have to start checking from the beginning again.
  4619. *
  4620. */
  4621. do {
  4622. mddev->curr_resync = 2;
  4623. try_again:
  4624. if (kthread_should_stop()) {
  4625. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4626. goto skip;
  4627. }
  4628. ITERATE_MDDEV(mddev2,tmp) {
  4629. if (mddev2 == mddev)
  4630. continue;
  4631. if (mddev2->curr_resync &&
  4632. match_mddev_units(mddev,mddev2)) {
  4633. DEFINE_WAIT(wq);
  4634. if (mddev < mddev2 && mddev->curr_resync == 2) {
  4635. /* arbitrarily yield */
  4636. mddev->curr_resync = 1;
  4637. wake_up(&resync_wait);
  4638. }
  4639. if (mddev > mddev2 && mddev->curr_resync == 1)
  4640. /* no need to wait here, we can wait the next
  4641. * time 'round when curr_resync == 2
  4642. */
  4643. continue;
  4644. prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
  4645. if (!kthread_should_stop() &&
  4646. mddev2->curr_resync >= mddev->curr_resync) {
  4647. printk(KERN_INFO "md: delaying %s of %s"
  4648. " until %s has finished (they"
  4649. " share one or more physical units)\n",
  4650. desc, mdname(mddev), mdname(mddev2));
  4651. mddev_put(mddev2);
  4652. schedule();
  4653. finish_wait(&resync_wait, &wq);
  4654. goto try_again;
  4655. }
  4656. finish_wait(&resync_wait, &wq);
  4657. }
  4658. }
  4659. } while (mddev->curr_resync < 2);
  4660. j = 0;
  4661. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4662. /* resync follows the size requested by the personality,
  4663. * which defaults to physical size, but can be virtual size
  4664. */
  4665. max_sectors = mddev->resync_max_sectors;
  4666. mddev->resync_mismatches = 0;
  4667. /* we don't use the checkpoint if there's a bitmap */
  4668. if (!mddev->bitmap &&
  4669. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4670. j = mddev->recovery_cp;
  4671. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4672. max_sectors = mddev->size << 1;
  4673. else {
  4674. /* recovery follows the physical size of devices */
  4675. max_sectors = mddev->size << 1;
  4676. j = MaxSector;
  4677. ITERATE_RDEV(mddev,rdev,rtmp)
  4678. if (rdev->raid_disk >= 0 &&
  4679. !test_bit(Faulty, &rdev->flags) &&
  4680. !test_bit(In_sync, &rdev->flags) &&
  4681. rdev->recovery_offset < j)
  4682. j = rdev->recovery_offset;
  4683. }
  4684. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  4685. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  4686. " %d KB/sec/disk.\n", speed_min(mddev));
  4687. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  4688. "(but not more than %d KB/sec) for %s.\n",
  4689. speed_max(mddev), desc);
  4690. is_mddev_idle(mddev); /* this also initializes IO event counters */
  4691. io_sectors = 0;
  4692. for (m = 0; m < SYNC_MARKS; m++) {
  4693. mark[m] = jiffies;
  4694. mark_cnt[m] = io_sectors;
  4695. }
  4696. last_mark = 0;
  4697. mddev->resync_mark = mark[last_mark];
  4698. mddev->resync_mark_cnt = mark_cnt[last_mark];
  4699. /*
  4700. * Tune reconstruction:
  4701. */
  4702. window = 32*(PAGE_SIZE/512);
  4703. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  4704. window/2,(unsigned long long) max_sectors/2);
  4705. atomic_set(&mddev->recovery_active, 0);
  4706. init_waitqueue_head(&mddev->recovery_wait);
  4707. last_check = 0;
  4708. if (j>2) {
  4709. printk(KERN_INFO
  4710. "md: resuming %s of %s from checkpoint.\n",
  4711. desc, mdname(mddev));
  4712. mddev->curr_resync = j;
  4713. }
  4714. while (j < max_sectors) {
  4715. sector_t sectors;
  4716. skipped = 0;
  4717. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  4718. currspeed < speed_min(mddev));
  4719. if (sectors == 0) {
  4720. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4721. goto out;
  4722. }
  4723. if (!skipped) { /* actual IO requested */
  4724. io_sectors += sectors;
  4725. atomic_add(sectors, &mddev->recovery_active);
  4726. }
  4727. j += sectors;
  4728. if (j>1) mddev->curr_resync = j;
  4729. mddev->curr_mark_cnt = io_sectors;
  4730. if (last_check == 0)
  4731. /* this is the earliers that rebuilt will be
  4732. * visible in /proc/mdstat
  4733. */
  4734. md_new_event(mddev);
  4735. if (last_check + window > io_sectors || j == max_sectors)
  4736. continue;
  4737. last_check = io_sectors;
  4738. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  4739. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  4740. break;
  4741. repeat:
  4742. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  4743. /* step marks */
  4744. int next = (last_mark+1) % SYNC_MARKS;
  4745. mddev->resync_mark = mark[next];
  4746. mddev->resync_mark_cnt = mark_cnt[next];
  4747. mark[next] = jiffies;
  4748. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  4749. last_mark = next;
  4750. }
  4751. if (kthread_should_stop()) {
  4752. /*
  4753. * got a signal, exit.
  4754. */
  4755. printk(KERN_INFO
  4756. "md: md_do_sync() got signal ... exiting\n");
  4757. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4758. goto out;
  4759. }
  4760. /*
  4761. * this loop exits only if either when we are slower than
  4762. * the 'hard' speed limit, or the system was IO-idle for
  4763. * a jiffy.
  4764. * the system might be non-idle CPU-wise, but we only care
  4765. * about not overloading the IO subsystem. (things like an
  4766. * e2fsck being done on the RAID array should execute fast)
  4767. */
  4768. mddev->queue->unplug_fn(mddev->queue);
  4769. cond_resched();
  4770. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  4771. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  4772. if (currspeed > speed_min(mddev)) {
  4773. if ((currspeed > speed_max(mddev)) ||
  4774. !is_mddev_idle(mddev)) {
  4775. msleep(500);
  4776. goto repeat;
  4777. }
  4778. }
  4779. }
  4780. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  4781. /*
  4782. * this also signals 'finished resyncing' to md_stop
  4783. */
  4784. out:
  4785. mddev->queue->unplug_fn(mddev->queue);
  4786. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  4787. /* tell personality that we are finished */
  4788. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  4789. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4790. !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  4791. mddev->curr_resync > 2) {
  4792. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4793. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4794. if (mddev->curr_resync >= mddev->recovery_cp) {
  4795. printk(KERN_INFO
  4796. "md: checkpointing %s of %s.\n",
  4797. desc, mdname(mddev));
  4798. mddev->recovery_cp = mddev->curr_resync;
  4799. }
  4800. } else
  4801. mddev->recovery_cp = MaxSector;
  4802. } else {
  4803. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  4804. mddev->curr_resync = MaxSector;
  4805. ITERATE_RDEV(mddev,rdev,rtmp)
  4806. if (rdev->raid_disk >= 0 &&
  4807. !test_bit(Faulty, &rdev->flags) &&
  4808. !test_bit(In_sync, &rdev->flags) &&
  4809. rdev->recovery_offset < mddev->curr_resync)
  4810. rdev->recovery_offset = mddev->curr_resync;
  4811. }
  4812. }
  4813. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  4814. skip:
  4815. mddev->curr_resync = 0;
  4816. wake_up(&resync_wait);
  4817. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4818. md_wakeup_thread(mddev->thread);
  4819. }
  4820. EXPORT_SYMBOL_GPL(md_do_sync);
  4821. static int remove_and_add_spares(mddev_t *mddev)
  4822. {
  4823. mdk_rdev_t *rdev;
  4824. struct list_head *rtmp;
  4825. int spares = 0;
  4826. ITERATE_RDEV(mddev,rdev,rtmp)
  4827. if (rdev->raid_disk >= 0 &&
  4828. (test_bit(Faulty, &rdev->flags) ||
  4829. ! test_bit(In_sync, &rdev->flags)) &&
  4830. atomic_read(&rdev->nr_pending)==0) {
  4831. if (mddev->pers->hot_remove_disk(
  4832. mddev, rdev->raid_disk)==0) {
  4833. char nm[20];
  4834. sprintf(nm,"rd%d", rdev->raid_disk);
  4835. sysfs_remove_link(&mddev->kobj, nm);
  4836. rdev->raid_disk = -1;
  4837. }
  4838. }
  4839. if (mddev->degraded) {
  4840. ITERATE_RDEV(mddev,rdev,rtmp)
  4841. if (rdev->raid_disk < 0
  4842. && !test_bit(Faulty, &rdev->flags)) {
  4843. rdev->recovery_offset = 0;
  4844. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  4845. char nm[20];
  4846. sprintf(nm, "rd%d", rdev->raid_disk);
  4847. if (sysfs_create_link(&mddev->kobj,
  4848. &rdev->kobj, nm))
  4849. printk(KERN_WARNING
  4850. "md: cannot register "
  4851. "%s for %s\n",
  4852. nm, mdname(mddev));
  4853. spares++;
  4854. md_new_event(mddev);
  4855. } else
  4856. break;
  4857. }
  4858. }
  4859. return spares;
  4860. }
  4861. /*
  4862. * This routine is regularly called by all per-raid-array threads to
  4863. * deal with generic issues like resync and super-block update.
  4864. * Raid personalities that don't have a thread (linear/raid0) do not
  4865. * need this as they never do any recovery or update the superblock.
  4866. *
  4867. * It does not do any resync itself, but rather "forks" off other threads
  4868. * to do that as needed.
  4869. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  4870. * "->recovery" and create a thread at ->sync_thread.
  4871. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  4872. * and wakeups up this thread which will reap the thread and finish up.
  4873. * This thread also removes any faulty devices (with nr_pending == 0).
  4874. *
  4875. * The overall approach is:
  4876. * 1/ if the superblock needs updating, update it.
  4877. * 2/ If a recovery thread is running, don't do anything else.
  4878. * 3/ If recovery has finished, clean up, possibly marking spares active.
  4879. * 4/ If there are any faulty devices, remove them.
  4880. * 5/ If array is degraded, try to add spares devices
  4881. * 6/ If array has spares or is not in-sync, start a resync thread.
  4882. */
  4883. void md_check_recovery(mddev_t *mddev)
  4884. {
  4885. mdk_rdev_t *rdev;
  4886. struct list_head *rtmp;
  4887. if (mddev->bitmap)
  4888. bitmap_daemon_work(mddev->bitmap);
  4889. if (mddev->ro)
  4890. return;
  4891. if (signal_pending(current)) {
  4892. if (mddev->pers->sync_request) {
  4893. printk(KERN_INFO "md: %s in immediate safe mode\n",
  4894. mdname(mddev));
  4895. mddev->safemode = 2;
  4896. }
  4897. flush_signals(current);
  4898. }
  4899. if ( ! (
  4900. mddev->flags ||
  4901. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  4902. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  4903. (mddev->safemode == 1) ||
  4904. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  4905. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  4906. ))
  4907. return;
  4908. if (mddev_trylock(mddev)) {
  4909. int spares = 0;
  4910. spin_lock_irq(&mddev->write_lock);
  4911. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  4912. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  4913. mddev->in_sync = 1;
  4914. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4915. }
  4916. if (mddev->safemode == 1)
  4917. mddev->safemode = 0;
  4918. spin_unlock_irq(&mddev->write_lock);
  4919. if (mddev->flags)
  4920. md_update_sb(mddev, 0);
  4921. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  4922. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  4923. /* resync/recovery still happening */
  4924. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4925. goto unlock;
  4926. }
  4927. if (mddev->sync_thread) {
  4928. /* resync has finished, collect result */
  4929. md_unregister_thread(mddev->sync_thread);
  4930. mddev->sync_thread = NULL;
  4931. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4932. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4933. /* success...*/
  4934. /* activate any spares */
  4935. mddev->pers->spare_active(mddev);
  4936. }
  4937. md_update_sb(mddev, 1);
  4938. /* if array is no-longer degraded, then any saved_raid_disk
  4939. * information must be scrapped
  4940. */
  4941. if (!mddev->degraded)
  4942. ITERATE_RDEV(mddev,rdev,rtmp)
  4943. rdev->saved_raid_disk = -1;
  4944. mddev->recovery = 0;
  4945. /* flag recovery needed just to double check */
  4946. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4947. md_new_event(mddev);
  4948. goto unlock;
  4949. }
  4950. /* Clear some bits that don't mean anything, but
  4951. * might be left set
  4952. */
  4953. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4954. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4955. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4956. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  4957. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  4958. goto unlock;
  4959. /* no recovery is running.
  4960. * remove any failed drives, then
  4961. * add spares if possible.
  4962. * Spare are also removed and re-added, to allow
  4963. * the personality to fail the re-add.
  4964. */
  4965. if (mddev->reshape_position != MaxSector) {
  4966. if (mddev->pers->check_reshape(mddev) != 0)
  4967. /* Cannot proceed */
  4968. goto unlock;
  4969. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  4970. } else if ((spares = remove_and_add_spares(mddev))) {
  4971. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4972. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  4973. } else if (mddev->recovery_cp < MaxSector) {
  4974. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  4975. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4976. /* nothing to be done ... */
  4977. goto unlock;
  4978. if (mddev->pers->sync_request) {
  4979. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  4980. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  4981. /* We are adding a device or devices to an array
  4982. * which has the bitmap stored on all devices.
  4983. * So make sure all bitmap pages get written
  4984. */
  4985. bitmap_write_all(mddev->bitmap);
  4986. }
  4987. mddev->sync_thread = md_register_thread(md_do_sync,
  4988. mddev,
  4989. "%s_resync");
  4990. if (!mddev->sync_thread) {
  4991. printk(KERN_ERR "%s: could not start resync"
  4992. " thread...\n",
  4993. mdname(mddev));
  4994. /* leave the spares where they are, it shouldn't hurt */
  4995. mddev->recovery = 0;
  4996. } else
  4997. md_wakeup_thread(mddev->sync_thread);
  4998. md_new_event(mddev);
  4999. }
  5000. unlock:
  5001. mddev_unlock(mddev);
  5002. }
  5003. }
  5004. static int md_notify_reboot(struct notifier_block *this,
  5005. unsigned long code, void *x)
  5006. {
  5007. struct list_head *tmp;
  5008. mddev_t *mddev;
  5009. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  5010. printk(KERN_INFO "md: stopping all md devices.\n");
  5011. ITERATE_MDDEV(mddev,tmp)
  5012. if (mddev_trylock(mddev)) {
  5013. do_md_stop (mddev, 1);
  5014. mddev_unlock(mddev);
  5015. }
  5016. /*
  5017. * certain more exotic SCSI devices are known to be
  5018. * volatile wrt too early system reboots. While the
  5019. * right place to handle this issue is the given
  5020. * driver, we do want to have a safe RAID driver ...
  5021. */
  5022. mdelay(1000*1);
  5023. }
  5024. return NOTIFY_DONE;
  5025. }
  5026. static struct notifier_block md_notifier = {
  5027. .notifier_call = md_notify_reboot,
  5028. .next = NULL,
  5029. .priority = INT_MAX, /* before any real devices */
  5030. };
  5031. static void md_geninit(void)
  5032. {
  5033. struct proc_dir_entry *p;
  5034. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  5035. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  5036. if (p)
  5037. p->proc_fops = &md_seq_fops;
  5038. }
  5039. static int __init md_init(void)
  5040. {
  5041. if (register_blkdev(MAJOR_NR, "md"))
  5042. return -1;
  5043. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  5044. unregister_blkdev(MAJOR_NR, "md");
  5045. return -1;
  5046. }
  5047. blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
  5048. md_probe, NULL, NULL);
  5049. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  5050. md_probe, NULL, NULL);
  5051. register_reboot_notifier(&md_notifier);
  5052. raid_table_header = register_sysctl_table(raid_root_table);
  5053. md_geninit();
  5054. return (0);
  5055. }
  5056. #ifndef MODULE
  5057. /*
  5058. * Searches all registered partitions for autorun RAID arrays
  5059. * at boot time.
  5060. */
  5061. static dev_t detected_devices[128];
  5062. static int dev_cnt;
  5063. void md_autodetect_dev(dev_t dev)
  5064. {
  5065. if (dev_cnt >= 0 && dev_cnt < 127)
  5066. detected_devices[dev_cnt++] = dev;
  5067. }
  5068. static void autostart_arrays(int part)
  5069. {
  5070. mdk_rdev_t *rdev;
  5071. int i;
  5072. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  5073. for (i = 0; i < dev_cnt; i++) {
  5074. dev_t dev = detected_devices[i];
  5075. rdev = md_import_device(dev,0, 90);
  5076. if (IS_ERR(rdev))
  5077. continue;
  5078. if (test_bit(Faulty, &rdev->flags)) {
  5079. MD_BUG();
  5080. continue;
  5081. }
  5082. list_add(&rdev->same_set, &pending_raid_disks);
  5083. }
  5084. dev_cnt = 0;
  5085. autorun_devices(part);
  5086. }
  5087. #endif /* !MODULE */
  5088. static __exit void md_exit(void)
  5089. {
  5090. mddev_t *mddev;
  5091. struct list_head *tmp;
  5092. blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
  5093. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  5094. unregister_blkdev(MAJOR_NR,"md");
  5095. unregister_blkdev(mdp_major, "mdp");
  5096. unregister_reboot_notifier(&md_notifier);
  5097. unregister_sysctl_table(raid_table_header);
  5098. remove_proc_entry("mdstat", NULL);
  5099. ITERATE_MDDEV(mddev,tmp) {
  5100. struct gendisk *disk = mddev->gendisk;
  5101. if (!disk)
  5102. continue;
  5103. export_array(mddev);
  5104. del_gendisk(disk);
  5105. put_disk(disk);
  5106. mddev->gendisk = NULL;
  5107. mddev_put(mddev);
  5108. }
  5109. }
  5110. subsys_initcall(md_init);
  5111. module_exit(md_exit)
  5112. static int get_ro(char *buffer, struct kernel_param *kp)
  5113. {
  5114. return sprintf(buffer, "%d", start_readonly);
  5115. }
  5116. static int set_ro(const char *val, struct kernel_param *kp)
  5117. {
  5118. char *e;
  5119. int num = simple_strtoul(val, &e, 10);
  5120. if (*val && (*e == '\0' || *e == '\n')) {
  5121. start_readonly = num;
  5122. return 0;
  5123. }
  5124. return -EINVAL;
  5125. }
  5126. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  5127. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  5128. EXPORT_SYMBOL(register_md_personality);
  5129. EXPORT_SYMBOL(unregister_md_personality);
  5130. EXPORT_SYMBOL(md_error);
  5131. EXPORT_SYMBOL(md_done_sync);
  5132. EXPORT_SYMBOL(md_write_start);
  5133. EXPORT_SYMBOL(md_write_end);
  5134. EXPORT_SYMBOL(md_register_thread);
  5135. EXPORT_SYMBOL(md_unregister_thread);
  5136. EXPORT_SYMBOL(md_wakeup_thread);
  5137. EXPORT_SYMBOL(md_check_recovery);
  5138. MODULE_LICENSE("GPL");
  5139. MODULE_ALIAS("md");
  5140. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);