intel_dp.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Keith Packard <keithp@keithp.com>
  25. *
  26. */
  27. #include <linux/i2c.h>
  28. #include <linux/slab.h>
  29. #include "drmP.h"
  30. #include "drm.h"
  31. #include "drm_crtc.h"
  32. #include "drm_crtc_helper.h"
  33. #include "intel_drv.h"
  34. #include "i915_drm.h"
  35. #include "i915_drv.h"
  36. #include "drm_dp_helper.h"
  37. #define DP_LINK_STATUS_SIZE 6
  38. #define DP_LINK_CHECK_TIMEOUT (10 * 1000)
  39. #define DP_LINK_CONFIGURATION_SIZE 9
  40. #define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)
  41. struct intel_dp_priv {
  42. uint32_t output_reg;
  43. uint32_t DP;
  44. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
  45. bool has_audio;
  46. int dpms_mode;
  47. uint8_t link_bw;
  48. uint8_t lane_count;
  49. uint8_t dpcd[4];
  50. struct intel_encoder *intel_encoder;
  51. struct i2c_adapter adapter;
  52. struct i2c_algo_dp_aux_data algo;
  53. };
  54. static void
  55. intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
  56. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
  57. static void
  58. intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP);
  59. void
  60. intel_edp_link_config (struct intel_encoder *intel_encoder,
  61. int *lane_num, int *link_bw)
  62. {
  63. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  64. *lane_num = dp_priv->lane_count;
  65. if (dp_priv->link_bw == DP_LINK_BW_1_62)
  66. *link_bw = 162000;
  67. else if (dp_priv->link_bw == DP_LINK_BW_2_7)
  68. *link_bw = 270000;
  69. }
  70. static int
  71. intel_dp_max_lane_count(struct intel_encoder *intel_encoder)
  72. {
  73. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  74. int max_lane_count = 4;
  75. if (dp_priv->dpcd[0] >= 0x11) {
  76. max_lane_count = dp_priv->dpcd[2] & 0x1f;
  77. switch (max_lane_count) {
  78. case 1: case 2: case 4:
  79. break;
  80. default:
  81. max_lane_count = 4;
  82. }
  83. }
  84. return max_lane_count;
  85. }
  86. static int
  87. intel_dp_max_link_bw(struct intel_encoder *intel_encoder)
  88. {
  89. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  90. int max_link_bw = dp_priv->dpcd[1];
  91. switch (max_link_bw) {
  92. case DP_LINK_BW_1_62:
  93. case DP_LINK_BW_2_7:
  94. break;
  95. default:
  96. max_link_bw = DP_LINK_BW_1_62;
  97. break;
  98. }
  99. return max_link_bw;
  100. }
  101. static int
  102. intel_dp_link_clock(uint8_t link_bw)
  103. {
  104. if (link_bw == DP_LINK_BW_2_7)
  105. return 270000;
  106. else
  107. return 162000;
  108. }
  109. /* I think this is a fiction */
  110. static int
  111. intel_dp_link_required(struct drm_device *dev,
  112. struct intel_encoder *intel_encoder, int pixel_clock)
  113. {
  114. struct drm_i915_private *dev_priv = dev->dev_private;
  115. if (IS_eDP(intel_encoder))
  116. return (pixel_clock * dev_priv->edp_bpp) / 8;
  117. else
  118. return pixel_clock * 3;
  119. }
  120. static int
  121. intel_dp_max_data_rate(int max_link_clock, int max_lanes)
  122. {
  123. return (max_link_clock * max_lanes * 8) / 10;
  124. }
  125. static int
  126. intel_dp_mode_valid(struct drm_connector *connector,
  127. struct drm_display_mode *mode)
  128. {
  129. struct drm_encoder *encoder = intel_attached_encoder(connector);
  130. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  131. int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_encoder));
  132. int max_lanes = intel_dp_max_lane_count(intel_encoder);
  133. /* only refuse the mode on non eDP since we have seen some wierd eDP panels
  134. which are outside spec tolerances but somehow work by magic */
  135. if (!IS_eDP(intel_encoder) &&
  136. (intel_dp_link_required(connector->dev, intel_encoder, mode->clock)
  137. > intel_dp_max_data_rate(max_link_clock, max_lanes)))
  138. return MODE_CLOCK_HIGH;
  139. if (mode->clock < 10000)
  140. return MODE_CLOCK_LOW;
  141. return MODE_OK;
  142. }
  143. static uint32_t
  144. pack_aux(uint8_t *src, int src_bytes)
  145. {
  146. int i;
  147. uint32_t v = 0;
  148. if (src_bytes > 4)
  149. src_bytes = 4;
  150. for (i = 0; i < src_bytes; i++)
  151. v |= ((uint32_t) src[i]) << ((3-i) * 8);
  152. return v;
  153. }
  154. static void
  155. unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
  156. {
  157. int i;
  158. if (dst_bytes > 4)
  159. dst_bytes = 4;
  160. for (i = 0; i < dst_bytes; i++)
  161. dst[i] = src >> ((3-i) * 8);
  162. }
  163. /* hrawclock is 1/4 the FSB frequency */
  164. static int
  165. intel_hrawclk(struct drm_device *dev)
  166. {
  167. struct drm_i915_private *dev_priv = dev->dev_private;
  168. uint32_t clkcfg;
  169. clkcfg = I915_READ(CLKCFG);
  170. switch (clkcfg & CLKCFG_FSB_MASK) {
  171. case CLKCFG_FSB_400:
  172. return 100;
  173. case CLKCFG_FSB_533:
  174. return 133;
  175. case CLKCFG_FSB_667:
  176. return 166;
  177. case CLKCFG_FSB_800:
  178. return 200;
  179. case CLKCFG_FSB_1067:
  180. return 266;
  181. case CLKCFG_FSB_1333:
  182. return 333;
  183. /* these two are just a guess; one of them might be right */
  184. case CLKCFG_FSB_1600:
  185. case CLKCFG_FSB_1600_ALT:
  186. return 400;
  187. default:
  188. return 133;
  189. }
  190. }
  191. static int
  192. intel_dp_aux_ch(struct intel_encoder *intel_encoder,
  193. uint8_t *send, int send_bytes,
  194. uint8_t *recv, int recv_size)
  195. {
  196. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  197. uint32_t output_reg = dp_priv->output_reg;
  198. struct drm_device *dev = intel_encoder->enc.dev;
  199. struct drm_i915_private *dev_priv = dev->dev_private;
  200. uint32_t ch_ctl = output_reg + 0x10;
  201. uint32_t ch_data = ch_ctl + 4;
  202. int i;
  203. int recv_bytes;
  204. uint32_t ctl;
  205. uint32_t status;
  206. uint32_t aux_clock_divider;
  207. int try, precharge;
  208. /* The clock divider is based off the hrawclk,
  209. * and would like to run at 2MHz. So, take the
  210. * hrawclk value and divide by 2 and use that
  211. */
  212. if (IS_eDP(intel_encoder)) {
  213. if (IS_GEN6(dev))
  214. aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
  215. else
  216. aux_clock_divider = 225; /* eDP input clock at 450Mhz */
  217. } else if (HAS_PCH_SPLIT(dev))
  218. aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
  219. else
  220. aux_clock_divider = intel_hrawclk(dev) / 2;
  221. if (IS_GEN6(dev))
  222. precharge = 3;
  223. else
  224. precharge = 5;
  225. /* Must try at least 3 times according to DP spec */
  226. for (try = 0; try < 5; try++) {
  227. /* Load the send data into the aux channel data registers */
  228. for (i = 0; i < send_bytes; i += 4) {
  229. uint32_t d = pack_aux(send + i, send_bytes - i);
  230. I915_WRITE(ch_data + i, d);
  231. }
  232. ctl = (DP_AUX_CH_CTL_SEND_BUSY |
  233. DP_AUX_CH_CTL_TIME_OUT_400us |
  234. (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
  235. (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
  236. (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
  237. DP_AUX_CH_CTL_DONE |
  238. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  239. DP_AUX_CH_CTL_RECEIVE_ERROR);
  240. /* Send the command and wait for it to complete */
  241. I915_WRITE(ch_ctl, ctl);
  242. (void) I915_READ(ch_ctl);
  243. for (;;) {
  244. udelay(100);
  245. status = I915_READ(ch_ctl);
  246. if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
  247. break;
  248. }
  249. /* Clear done status and any errors */
  250. I915_WRITE(ch_ctl, (status |
  251. DP_AUX_CH_CTL_DONE |
  252. DP_AUX_CH_CTL_TIME_OUT_ERROR |
  253. DP_AUX_CH_CTL_RECEIVE_ERROR));
  254. (void) I915_READ(ch_ctl);
  255. if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
  256. break;
  257. }
  258. if ((status & DP_AUX_CH_CTL_DONE) == 0) {
  259. DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
  260. return -EBUSY;
  261. }
  262. /* Check for timeout or receive error.
  263. * Timeouts occur when the sink is not connected
  264. */
  265. if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
  266. DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
  267. return -EIO;
  268. }
  269. /* Timeouts occur when the device isn't connected, so they're
  270. * "normal" -- don't fill the kernel log with these */
  271. if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
  272. DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
  273. return -ETIMEDOUT;
  274. }
  275. /* Unload any bytes sent back from the other side */
  276. recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
  277. DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
  278. if (recv_bytes > recv_size)
  279. recv_bytes = recv_size;
  280. for (i = 0; i < recv_bytes; i += 4) {
  281. uint32_t d = I915_READ(ch_data + i);
  282. unpack_aux(d, recv + i, recv_bytes - i);
  283. }
  284. return recv_bytes;
  285. }
  286. /* Write data to the aux channel in native mode */
  287. static int
  288. intel_dp_aux_native_write(struct intel_encoder *intel_encoder,
  289. uint16_t address, uint8_t *send, int send_bytes)
  290. {
  291. int ret;
  292. uint8_t msg[20];
  293. int msg_bytes;
  294. uint8_t ack;
  295. if (send_bytes > 16)
  296. return -1;
  297. msg[0] = AUX_NATIVE_WRITE << 4;
  298. msg[1] = address >> 8;
  299. msg[2] = address & 0xff;
  300. msg[3] = send_bytes - 1;
  301. memcpy(&msg[4], send, send_bytes);
  302. msg_bytes = send_bytes + 4;
  303. for (;;) {
  304. ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes, &ack, 1);
  305. if (ret < 0)
  306. return ret;
  307. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
  308. break;
  309. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  310. udelay(100);
  311. else
  312. return -EIO;
  313. }
  314. return send_bytes;
  315. }
  316. /* Write a single byte to the aux channel in native mode */
  317. static int
  318. intel_dp_aux_native_write_1(struct intel_encoder *intel_encoder,
  319. uint16_t address, uint8_t byte)
  320. {
  321. return intel_dp_aux_native_write(intel_encoder, address, &byte, 1);
  322. }
  323. /* read bytes from a native aux channel */
  324. static int
  325. intel_dp_aux_native_read(struct intel_encoder *intel_encoder,
  326. uint16_t address, uint8_t *recv, int recv_bytes)
  327. {
  328. uint8_t msg[4];
  329. int msg_bytes;
  330. uint8_t reply[20];
  331. int reply_bytes;
  332. uint8_t ack;
  333. int ret;
  334. msg[0] = AUX_NATIVE_READ << 4;
  335. msg[1] = address >> 8;
  336. msg[2] = address & 0xff;
  337. msg[3] = recv_bytes - 1;
  338. msg_bytes = 4;
  339. reply_bytes = recv_bytes + 1;
  340. for (;;) {
  341. ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes,
  342. reply, reply_bytes);
  343. if (ret == 0)
  344. return -EPROTO;
  345. if (ret < 0)
  346. return ret;
  347. ack = reply[0];
  348. if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
  349. memcpy(recv, reply + 1, ret - 1);
  350. return ret - 1;
  351. }
  352. else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
  353. udelay(100);
  354. else
  355. return -EIO;
  356. }
  357. }
  358. static int
  359. intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
  360. uint8_t write_byte, uint8_t *read_byte)
  361. {
  362. struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
  363. struct intel_dp_priv *dp_priv = container_of(adapter,
  364. struct intel_dp_priv,
  365. adapter);
  366. struct intel_encoder *intel_encoder = dp_priv->intel_encoder;
  367. uint16_t address = algo_data->address;
  368. uint8_t msg[5];
  369. uint8_t reply[2];
  370. int msg_bytes;
  371. int reply_bytes;
  372. int ret;
  373. /* Set up the command byte */
  374. if (mode & MODE_I2C_READ)
  375. msg[0] = AUX_I2C_READ << 4;
  376. else
  377. msg[0] = AUX_I2C_WRITE << 4;
  378. if (!(mode & MODE_I2C_STOP))
  379. msg[0] |= AUX_I2C_MOT << 4;
  380. msg[1] = address >> 8;
  381. msg[2] = address;
  382. switch (mode) {
  383. case MODE_I2C_WRITE:
  384. msg[3] = 0;
  385. msg[4] = write_byte;
  386. msg_bytes = 5;
  387. reply_bytes = 1;
  388. break;
  389. case MODE_I2C_READ:
  390. msg[3] = 0;
  391. msg_bytes = 4;
  392. reply_bytes = 2;
  393. break;
  394. default:
  395. msg_bytes = 3;
  396. reply_bytes = 1;
  397. break;
  398. }
  399. for (;;) {
  400. ret = intel_dp_aux_ch(intel_encoder,
  401. msg, msg_bytes,
  402. reply, reply_bytes);
  403. if (ret < 0) {
  404. DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
  405. return ret;
  406. }
  407. switch (reply[0] & AUX_I2C_REPLY_MASK) {
  408. case AUX_I2C_REPLY_ACK:
  409. if (mode == MODE_I2C_READ) {
  410. *read_byte = reply[1];
  411. }
  412. return reply_bytes - 1;
  413. case AUX_I2C_REPLY_NACK:
  414. DRM_DEBUG_KMS("aux_ch nack\n");
  415. return -EREMOTEIO;
  416. case AUX_I2C_REPLY_DEFER:
  417. DRM_DEBUG_KMS("aux_ch defer\n");
  418. udelay(100);
  419. break;
  420. default:
  421. DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
  422. return -EREMOTEIO;
  423. }
  424. }
  425. }
  426. static int
  427. intel_dp_i2c_init(struct intel_encoder *intel_encoder,
  428. struct intel_connector *intel_connector, const char *name)
  429. {
  430. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  431. DRM_DEBUG_KMS("i2c_init %s\n", name);
  432. dp_priv->algo.running = false;
  433. dp_priv->algo.address = 0;
  434. dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
  435. memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
  436. dp_priv->adapter.owner = THIS_MODULE;
  437. dp_priv->adapter.class = I2C_CLASS_DDC;
  438. strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
  439. dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
  440. dp_priv->adapter.algo_data = &dp_priv->algo;
  441. dp_priv->adapter.dev.parent = &intel_connector->base.kdev;
  442. return i2c_dp_aux_add_bus(&dp_priv->adapter);
  443. }
  444. static bool
  445. intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
  446. struct drm_display_mode *adjusted_mode)
  447. {
  448. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  449. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  450. int lane_count, clock;
  451. int max_lane_count = intel_dp_max_lane_count(intel_encoder);
  452. int max_clock = intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
  453. static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
  454. for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
  455. for (clock = 0; clock <= max_clock; clock++) {
  456. int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
  457. if (intel_dp_link_required(encoder->dev, intel_encoder, mode->clock)
  458. <= link_avail) {
  459. dp_priv->link_bw = bws[clock];
  460. dp_priv->lane_count = lane_count;
  461. adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
  462. DRM_DEBUG_KMS("Display port link bw %02x lane "
  463. "count %d clock %d\n",
  464. dp_priv->link_bw, dp_priv->lane_count,
  465. adjusted_mode->clock);
  466. return true;
  467. }
  468. }
  469. }
  470. if (IS_eDP(intel_encoder)) {
  471. /* okay we failed just pick the highest */
  472. dp_priv->lane_count = max_lane_count;
  473. dp_priv->link_bw = bws[max_clock];
  474. adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
  475. DRM_DEBUG_KMS("Force picking display port link bw %02x lane "
  476. "count %d clock %d\n",
  477. dp_priv->link_bw, dp_priv->lane_count,
  478. adjusted_mode->clock);
  479. return true;
  480. }
  481. return false;
  482. }
  483. struct intel_dp_m_n {
  484. uint32_t tu;
  485. uint32_t gmch_m;
  486. uint32_t gmch_n;
  487. uint32_t link_m;
  488. uint32_t link_n;
  489. };
  490. static void
  491. intel_reduce_ratio(uint32_t *num, uint32_t *den)
  492. {
  493. while (*num > 0xffffff || *den > 0xffffff) {
  494. *num >>= 1;
  495. *den >>= 1;
  496. }
  497. }
  498. static void
  499. intel_dp_compute_m_n(int bytes_per_pixel,
  500. int nlanes,
  501. int pixel_clock,
  502. int link_clock,
  503. struct intel_dp_m_n *m_n)
  504. {
  505. m_n->tu = 64;
  506. m_n->gmch_m = pixel_clock * bytes_per_pixel;
  507. m_n->gmch_n = link_clock * nlanes;
  508. intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  509. m_n->link_m = pixel_clock;
  510. m_n->link_n = link_clock;
  511. intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
  512. }
  513. void
  514. intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
  515. struct drm_display_mode *adjusted_mode)
  516. {
  517. struct drm_device *dev = crtc->dev;
  518. struct drm_mode_config *mode_config = &dev->mode_config;
  519. struct drm_encoder *encoder;
  520. struct drm_i915_private *dev_priv = dev->dev_private;
  521. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  522. int lane_count = 4;
  523. struct intel_dp_m_n m_n;
  524. /*
  525. * Find the lane count in the intel_encoder private
  526. */
  527. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  528. struct intel_encoder *intel_encoder;
  529. struct intel_dp_priv *dp_priv;
  530. if (encoder->crtc != crtc)
  531. continue;
  532. intel_encoder = enc_to_intel_encoder(encoder);
  533. dp_priv = intel_encoder->dev_priv;
  534. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
  535. lane_count = dp_priv->lane_count;
  536. break;
  537. }
  538. }
  539. /*
  540. * Compute the GMCH and Link ratios. The '3' here is
  541. * the number of bytes_per_pixel post-LUT, which we always
  542. * set up for 8-bits of R/G/B, or 3 bytes total.
  543. */
  544. intel_dp_compute_m_n(3, lane_count,
  545. mode->clock, adjusted_mode->clock, &m_n);
  546. if (HAS_PCH_SPLIT(dev)) {
  547. if (intel_crtc->pipe == 0) {
  548. I915_WRITE(TRANSA_DATA_M1,
  549. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  550. m_n.gmch_m);
  551. I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
  552. I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
  553. I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
  554. } else {
  555. I915_WRITE(TRANSB_DATA_M1,
  556. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  557. m_n.gmch_m);
  558. I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
  559. I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
  560. I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
  561. }
  562. } else {
  563. if (intel_crtc->pipe == 0) {
  564. I915_WRITE(PIPEA_GMCH_DATA_M,
  565. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  566. m_n.gmch_m);
  567. I915_WRITE(PIPEA_GMCH_DATA_N,
  568. m_n.gmch_n);
  569. I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
  570. I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
  571. } else {
  572. I915_WRITE(PIPEB_GMCH_DATA_M,
  573. ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
  574. m_n.gmch_m);
  575. I915_WRITE(PIPEB_GMCH_DATA_N,
  576. m_n.gmch_n);
  577. I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
  578. I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
  579. }
  580. }
  581. }
  582. static void
  583. intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
  584. struct drm_display_mode *adjusted_mode)
  585. {
  586. struct drm_device *dev = encoder->dev;
  587. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  588. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  589. struct drm_crtc *crtc = intel_encoder->enc.crtc;
  590. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  591. dp_priv->DP = (DP_VOLTAGE_0_4 |
  592. DP_PRE_EMPHASIS_0);
  593. if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
  594. dp_priv->DP |= DP_SYNC_HS_HIGH;
  595. if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
  596. dp_priv->DP |= DP_SYNC_VS_HIGH;
  597. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  598. dp_priv->DP |= DP_LINK_TRAIN_OFF_CPT;
  599. else
  600. dp_priv->DP |= DP_LINK_TRAIN_OFF;
  601. switch (dp_priv->lane_count) {
  602. case 1:
  603. dp_priv->DP |= DP_PORT_WIDTH_1;
  604. break;
  605. case 2:
  606. dp_priv->DP |= DP_PORT_WIDTH_2;
  607. break;
  608. case 4:
  609. dp_priv->DP |= DP_PORT_WIDTH_4;
  610. break;
  611. }
  612. if (dp_priv->has_audio)
  613. dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
  614. memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
  615. dp_priv->link_configuration[0] = dp_priv->link_bw;
  616. dp_priv->link_configuration[1] = dp_priv->lane_count;
  617. /*
  618. * Check for DPCD version > 1.1 and enhanced framing support
  619. */
  620. if (dp_priv->dpcd[0] >= 0x11 && (dp_priv->dpcd[2] & DP_ENHANCED_FRAME_CAP)) {
  621. dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
  622. dp_priv->DP |= DP_ENHANCED_FRAMING;
  623. }
  624. /* CPT DP's pipe select is decided in TRANS_DP_CTL */
  625. if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
  626. dp_priv->DP |= DP_PIPEB_SELECT;
  627. if (IS_eDP(intel_encoder)) {
  628. /* don't miss out required setting for eDP */
  629. dp_priv->DP |= DP_PLL_ENABLE;
  630. if (adjusted_mode->clock < 200000)
  631. dp_priv->DP |= DP_PLL_FREQ_160MHZ;
  632. else
  633. dp_priv->DP |= DP_PLL_FREQ_270MHZ;
  634. }
  635. }
  636. static void ironlake_edp_backlight_on (struct drm_device *dev)
  637. {
  638. struct drm_i915_private *dev_priv = dev->dev_private;
  639. u32 pp;
  640. DRM_DEBUG_KMS("\n");
  641. pp = I915_READ(PCH_PP_CONTROL);
  642. pp |= EDP_BLC_ENABLE;
  643. I915_WRITE(PCH_PP_CONTROL, pp);
  644. }
  645. static void ironlake_edp_backlight_off (struct drm_device *dev)
  646. {
  647. struct drm_i915_private *dev_priv = dev->dev_private;
  648. u32 pp;
  649. DRM_DEBUG_KMS("\n");
  650. pp = I915_READ(PCH_PP_CONTROL);
  651. pp &= ~EDP_BLC_ENABLE;
  652. I915_WRITE(PCH_PP_CONTROL, pp);
  653. }
  654. static void
  655. intel_dp_dpms(struct drm_encoder *encoder, int mode)
  656. {
  657. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  658. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  659. struct drm_device *dev = encoder->dev;
  660. struct drm_i915_private *dev_priv = dev->dev_private;
  661. uint32_t dp_reg = I915_READ(dp_priv->output_reg);
  662. if (mode != DRM_MODE_DPMS_ON) {
  663. if (dp_reg & DP_PORT_EN) {
  664. intel_dp_link_down(intel_encoder, dp_priv->DP);
  665. if (IS_eDP(intel_encoder))
  666. ironlake_edp_backlight_off(dev);
  667. }
  668. } else {
  669. if (!(dp_reg & DP_PORT_EN)) {
  670. intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
  671. if (IS_eDP(intel_encoder))
  672. ironlake_edp_backlight_on(dev);
  673. }
  674. }
  675. dp_priv->dpms_mode = mode;
  676. }
  677. /*
  678. * Fetch AUX CH registers 0x202 - 0x207 which contain
  679. * link status information
  680. */
  681. static bool
  682. intel_dp_get_link_status(struct intel_encoder *intel_encoder,
  683. uint8_t link_status[DP_LINK_STATUS_SIZE])
  684. {
  685. int ret;
  686. ret = intel_dp_aux_native_read(intel_encoder,
  687. DP_LANE0_1_STATUS,
  688. link_status, DP_LINK_STATUS_SIZE);
  689. if (ret != DP_LINK_STATUS_SIZE)
  690. return false;
  691. return true;
  692. }
  693. static uint8_t
  694. intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  695. int r)
  696. {
  697. return link_status[r - DP_LANE0_1_STATUS];
  698. }
  699. static uint8_t
  700. intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
  701. int lane)
  702. {
  703. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  704. int s = ((lane & 1) ?
  705. DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
  706. DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
  707. uint8_t l = intel_dp_link_status(link_status, i);
  708. return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
  709. }
  710. static uint8_t
  711. intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
  712. int lane)
  713. {
  714. int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
  715. int s = ((lane & 1) ?
  716. DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
  717. DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
  718. uint8_t l = intel_dp_link_status(link_status, i);
  719. return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
  720. }
  721. #if 0
  722. static char *voltage_names[] = {
  723. "0.4V", "0.6V", "0.8V", "1.2V"
  724. };
  725. static char *pre_emph_names[] = {
  726. "0dB", "3.5dB", "6dB", "9.5dB"
  727. };
  728. static char *link_train_names[] = {
  729. "pattern 1", "pattern 2", "idle", "off"
  730. };
  731. #endif
  732. /*
  733. * These are source-specific values; current Intel hardware supports
  734. * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
  735. */
  736. #define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
  737. static uint8_t
  738. intel_dp_pre_emphasis_max(uint8_t voltage_swing)
  739. {
  740. switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
  741. case DP_TRAIN_VOLTAGE_SWING_400:
  742. return DP_TRAIN_PRE_EMPHASIS_6;
  743. case DP_TRAIN_VOLTAGE_SWING_600:
  744. return DP_TRAIN_PRE_EMPHASIS_6;
  745. case DP_TRAIN_VOLTAGE_SWING_800:
  746. return DP_TRAIN_PRE_EMPHASIS_3_5;
  747. case DP_TRAIN_VOLTAGE_SWING_1200:
  748. default:
  749. return DP_TRAIN_PRE_EMPHASIS_0;
  750. }
  751. }
  752. static void
  753. intel_get_adjust_train(struct intel_encoder *intel_encoder,
  754. uint8_t link_status[DP_LINK_STATUS_SIZE],
  755. int lane_count,
  756. uint8_t train_set[4])
  757. {
  758. uint8_t v = 0;
  759. uint8_t p = 0;
  760. int lane;
  761. for (lane = 0; lane < lane_count; lane++) {
  762. uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
  763. uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
  764. if (this_v > v)
  765. v = this_v;
  766. if (this_p > p)
  767. p = this_p;
  768. }
  769. if (v >= I830_DP_VOLTAGE_MAX)
  770. v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
  771. if (p >= intel_dp_pre_emphasis_max(v))
  772. p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
  773. for (lane = 0; lane < 4; lane++)
  774. train_set[lane] = v | p;
  775. }
  776. static uint32_t
  777. intel_dp_signal_levels(uint8_t train_set, int lane_count)
  778. {
  779. uint32_t signal_levels = 0;
  780. switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
  781. case DP_TRAIN_VOLTAGE_SWING_400:
  782. default:
  783. signal_levels |= DP_VOLTAGE_0_4;
  784. break;
  785. case DP_TRAIN_VOLTAGE_SWING_600:
  786. signal_levels |= DP_VOLTAGE_0_6;
  787. break;
  788. case DP_TRAIN_VOLTAGE_SWING_800:
  789. signal_levels |= DP_VOLTAGE_0_8;
  790. break;
  791. case DP_TRAIN_VOLTAGE_SWING_1200:
  792. signal_levels |= DP_VOLTAGE_1_2;
  793. break;
  794. }
  795. switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
  796. case DP_TRAIN_PRE_EMPHASIS_0:
  797. default:
  798. signal_levels |= DP_PRE_EMPHASIS_0;
  799. break;
  800. case DP_TRAIN_PRE_EMPHASIS_3_5:
  801. signal_levels |= DP_PRE_EMPHASIS_3_5;
  802. break;
  803. case DP_TRAIN_PRE_EMPHASIS_6:
  804. signal_levels |= DP_PRE_EMPHASIS_6;
  805. break;
  806. case DP_TRAIN_PRE_EMPHASIS_9_5:
  807. signal_levels |= DP_PRE_EMPHASIS_9_5;
  808. break;
  809. }
  810. return signal_levels;
  811. }
  812. /* Gen6's DP voltage swing and pre-emphasis control */
  813. static uint32_t
  814. intel_gen6_edp_signal_levels(uint8_t train_set)
  815. {
  816. switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
  817. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
  818. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  819. case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
  820. return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
  821. case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
  822. return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
  823. case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
  824. return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
  825. default:
  826. DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
  827. return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
  828. }
  829. }
  830. static uint8_t
  831. intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
  832. int lane)
  833. {
  834. int i = DP_LANE0_1_STATUS + (lane >> 1);
  835. int s = (lane & 1) * 4;
  836. uint8_t l = intel_dp_link_status(link_status, i);
  837. return (l >> s) & 0xf;
  838. }
  839. /* Check for clock recovery is done on all channels */
  840. static bool
  841. intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  842. {
  843. int lane;
  844. uint8_t lane_status;
  845. for (lane = 0; lane < lane_count; lane++) {
  846. lane_status = intel_get_lane_status(link_status, lane);
  847. if ((lane_status & DP_LANE_CR_DONE) == 0)
  848. return false;
  849. }
  850. return true;
  851. }
  852. /* Check to see if channel eq is done on all channels */
  853. #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
  854. DP_LANE_CHANNEL_EQ_DONE|\
  855. DP_LANE_SYMBOL_LOCKED)
  856. static bool
  857. intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
  858. {
  859. uint8_t lane_align;
  860. uint8_t lane_status;
  861. int lane;
  862. lane_align = intel_dp_link_status(link_status,
  863. DP_LANE_ALIGN_STATUS_UPDATED);
  864. if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
  865. return false;
  866. for (lane = 0; lane < lane_count; lane++) {
  867. lane_status = intel_get_lane_status(link_status, lane);
  868. if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
  869. return false;
  870. }
  871. return true;
  872. }
  873. static bool
  874. intel_dp_set_link_train(struct intel_encoder *intel_encoder,
  875. uint32_t dp_reg_value,
  876. uint8_t dp_train_pat,
  877. uint8_t train_set[4],
  878. bool first)
  879. {
  880. struct drm_device *dev = intel_encoder->enc.dev;
  881. struct drm_i915_private *dev_priv = dev->dev_private;
  882. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  883. int ret;
  884. I915_WRITE(dp_priv->output_reg, dp_reg_value);
  885. POSTING_READ(dp_priv->output_reg);
  886. if (first)
  887. intel_wait_for_vblank(dev);
  888. intel_dp_aux_native_write_1(intel_encoder,
  889. DP_TRAINING_PATTERN_SET,
  890. dp_train_pat);
  891. ret = intel_dp_aux_native_write(intel_encoder,
  892. DP_TRAINING_LANE0_SET, train_set, 4);
  893. if (ret != 4)
  894. return false;
  895. return true;
  896. }
  897. static void
  898. intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
  899. uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
  900. {
  901. struct drm_device *dev = intel_encoder->enc.dev;
  902. struct drm_i915_private *dev_priv = dev->dev_private;
  903. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  904. uint8_t train_set[4];
  905. uint8_t link_status[DP_LINK_STATUS_SIZE];
  906. int i;
  907. uint8_t voltage;
  908. bool clock_recovery = false;
  909. bool channel_eq = false;
  910. bool first = true;
  911. int tries;
  912. u32 reg;
  913. /* Write the link configuration data */
  914. intel_dp_aux_native_write(intel_encoder, DP_LINK_BW_SET,
  915. link_configuration, DP_LINK_CONFIGURATION_SIZE);
  916. DP |= DP_PORT_EN;
  917. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  918. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  919. else
  920. DP &= ~DP_LINK_TRAIN_MASK;
  921. memset(train_set, 0, 4);
  922. voltage = 0xff;
  923. tries = 0;
  924. clock_recovery = false;
  925. for (;;) {
  926. /* Use train_set[0] to set the voltage and pre emphasis values */
  927. uint32_t signal_levels;
  928. if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
  929. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  930. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  931. } else {
  932. signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
  933. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  934. }
  935. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  936. reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
  937. else
  938. reg = DP | DP_LINK_TRAIN_PAT_1;
  939. if (!intel_dp_set_link_train(intel_encoder, reg,
  940. DP_TRAINING_PATTERN_1, train_set, first))
  941. break;
  942. first = false;
  943. /* Set training pattern 1 */
  944. udelay(100);
  945. if (!intel_dp_get_link_status(intel_encoder, link_status))
  946. break;
  947. if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
  948. clock_recovery = true;
  949. break;
  950. }
  951. /* Check to see if we've tried the max voltage */
  952. for (i = 0; i < dp_priv->lane_count; i++)
  953. if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
  954. break;
  955. if (i == dp_priv->lane_count)
  956. break;
  957. /* Check to see if we've tried the same voltage 5 times */
  958. if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
  959. ++tries;
  960. if (tries == 5)
  961. break;
  962. } else
  963. tries = 0;
  964. voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
  965. /* Compute new train_set as requested by target */
  966. intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
  967. }
  968. /* channel equalization */
  969. tries = 0;
  970. channel_eq = false;
  971. for (;;) {
  972. /* Use train_set[0] to set the voltage and pre emphasis values */
  973. uint32_t signal_levels;
  974. if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
  975. signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
  976. DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
  977. } else {
  978. signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
  979. DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
  980. }
  981. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  982. reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
  983. else
  984. reg = DP | DP_LINK_TRAIN_PAT_2;
  985. /* channel eq pattern */
  986. if (!intel_dp_set_link_train(intel_encoder, reg,
  987. DP_TRAINING_PATTERN_2, train_set,
  988. false))
  989. break;
  990. udelay(400);
  991. if (!intel_dp_get_link_status(intel_encoder, link_status))
  992. break;
  993. if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
  994. channel_eq = true;
  995. break;
  996. }
  997. /* Try 5 times */
  998. if (tries > 5)
  999. break;
  1000. /* Compute new train_set as requested by target */
  1001. intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
  1002. ++tries;
  1003. }
  1004. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
  1005. reg = DP | DP_LINK_TRAIN_OFF_CPT;
  1006. else
  1007. reg = DP | DP_LINK_TRAIN_OFF;
  1008. I915_WRITE(dp_priv->output_reg, reg);
  1009. POSTING_READ(dp_priv->output_reg);
  1010. intel_dp_aux_native_write_1(intel_encoder,
  1011. DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
  1012. }
  1013. static void
  1014. intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP)
  1015. {
  1016. struct drm_device *dev = intel_encoder->enc.dev;
  1017. struct drm_i915_private *dev_priv = dev->dev_private;
  1018. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1019. DRM_DEBUG_KMS("\n");
  1020. if (IS_eDP(intel_encoder)) {
  1021. DP &= ~DP_PLL_ENABLE;
  1022. I915_WRITE(dp_priv->output_reg, DP);
  1023. POSTING_READ(dp_priv->output_reg);
  1024. udelay(100);
  1025. }
  1026. if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder)) {
  1027. DP &= ~DP_LINK_TRAIN_MASK_CPT;
  1028. I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
  1029. POSTING_READ(dp_priv->output_reg);
  1030. } else {
  1031. DP &= ~DP_LINK_TRAIN_MASK;
  1032. I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
  1033. POSTING_READ(dp_priv->output_reg);
  1034. }
  1035. udelay(17000);
  1036. if (IS_eDP(intel_encoder))
  1037. DP |= DP_LINK_TRAIN_OFF;
  1038. I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
  1039. POSTING_READ(dp_priv->output_reg);
  1040. }
  1041. /*
  1042. * According to DP spec
  1043. * 5.1.2:
  1044. * 1. Read DPCD
  1045. * 2. Configure link according to Receiver Capabilities
  1046. * 3. Use Link Training from 2.5.3.3 and 3.5.1.3
  1047. * 4. Check link status on receipt of hot-plug interrupt
  1048. */
  1049. static void
  1050. intel_dp_check_link_status(struct intel_encoder *intel_encoder)
  1051. {
  1052. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1053. uint8_t link_status[DP_LINK_STATUS_SIZE];
  1054. if (!intel_encoder->enc.crtc)
  1055. return;
  1056. if (!intel_dp_get_link_status(intel_encoder, link_status)) {
  1057. intel_dp_link_down(intel_encoder, dp_priv->DP);
  1058. return;
  1059. }
  1060. if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
  1061. intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
  1062. }
  1063. static enum drm_connector_status
  1064. ironlake_dp_detect(struct drm_connector *connector)
  1065. {
  1066. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1067. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1068. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1069. enum drm_connector_status status;
  1070. status = connector_status_disconnected;
  1071. if (intel_dp_aux_native_read(intel_encoder,
  1072. 0x000, dp_priv->dpcd,
  1073. sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
  1074. {
  1075. if (dp_priv->dpcd[0] != 0)
  1076. status = connector_status_connected;
  1077. }
  1078. DRM_DEBUG_KMS("DPCD: %hx%hx%hx%hx\n", dp_priv->dpcd[0],
  1079. dp_priv->dpcd[1], dp_priv->dpcd[2], dp_priv->dpcd[3]);
  1080. return status;
  1081. }
  1082. /**
  1083. * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
  1084. *
  1085. * \return true if DP port is connected.
  1086. * \return false if DP port is disconnected.
  1087. */
  1088. static enum drm_connector_status
  1089. intel_dp_detect(struct drm_connector *connector)
  1090. {
  1091. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1092. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1093. struct drm_device *dev = intel_encoder->enc.dev;
  1094. struct drm_i915_private *dev_priv = dev->dev_private;
  1095. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1096. uint32_t temp, bit;
  1097. enum drm_connector_status status;
  1098. dp_priv->has_audio = false;
  1099. if (HAS_PCH_SPLIT(dev))
  1100. return ironlake_dp_detect(connector);
  1101. switch (dp_priv->output_reg) {
  1102. case DP_B:
  1103. bit = DPB_HOTPLUG_INT_STATUS;
  1104. break;
  1105. case DP_C:
  1106. bit = DPC_HOTPLUG_INT_STATUS;
  1107. break;
  1108. case DP_D:
  1109. bit = DPD_HOTPLUG_INT_STATUS;
  1110. break;
  1111. default:
  1112. return connector_status_unknown;
  1113. }
  1114. temp = I915_READ(PORT_HOTPLUG_STAT);
  1115. if ((temp & bit) == 0)
  1116. return connector_status_disconnected;
  1117. status = connector_status_disconnected;
  1118. if (intel_dp_aux_native_read(intel_encoder,
  1119. 0x000, dp_priv->dpcd,
  1120. sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
  1121. {
  1122. if (dp_priv->dpcd[0] != 0)
  1123. status = connector_status_connected;
  1124. }
  1125. return status;
  1126. }
  1127. static int intel_dp_get_modes(struct drm_connector *connector)
  1128. {
  1129. struct drm_encoder *encoder = intel_attached_encoder(connector);
  1130. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1131. struct drm_device *dev = intel_encoder->enc.dev;
  1132. struct drm_i915_private *dev_priv = dev->dev_private;
  1133. int ret;
  1134. /* We should parse the EDID data and find out if it has an audio sink
  1135. */
  1136. ret = intel_ddc_get_modes(connector, intel_encoder->ddc_bus);
  1137. if (ret)
  1138. return ret;
  1139. /* if eDP has no EDID, try to use fixed panel mode from VBT */
  1140. if (IS_eDP(intel_encoder)) {
  1141. if (dev_priv->panel_fixed_mode != NULL) {
  1142. struct drm_display_mode *mode;
  1143. mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
  1144. drm_mode_probed_add(connector, mode);
  1145. return 1;
  1146. }
  1147. }
  1148. return 0;
  1149. }
  1150. static void
  1151. intel_dp_destroy (struct drm_connector *connector)
  1152. {
  1153. drm_sysfs_connector_remove(connector);
  1154. drm_connector_cleanup(connector);
  1155. kfree(connector);
  1156. }
  1157. static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
  1158. .dpms = intel_dp_dpms,
  1159. .mode_fixup = intel_dp_mode_fixup,
  1160. .prepare = intel_encoder_prepare,
  1161. .mode_set = intel_dp_mode_set,
  1162. .commit = intel_encoder_commit,
  1163. };
  1164. static const struct drm_connector_funcs intel_dp_connector_funcs = {
  1165. .dpms = drm_helper_connector_dpms,
  1166. .detect = intel_dp_detect,
  1167. .fill_modes = drm_helper_probe_single_connector_modes,
  1168. .destroy = intel_dp_destroy,
  1169. };
  1170. static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
  1171. .get_modes = intel_dp_get_modes,
  1172. .mode_valid = intel_dp_mode_valid,
  1173. .best_encoder = intel_attached_encoder,
  1174. };
  1175. static void intel_dp_enc_destroy(struct drm_encoder *encoder)
  1176. {
  1177. struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
  1178. if (intel_encoder->i2c_bus)
  1179. intel_i2c_destroy(intel_encoder->i2c_bus);
  1180. drm_encoder_cleanup(encoder);
  1181. kfree(intel_encoder);
  1182. }
  1183. static const struct drm_encoder_funcs intel_dp_enc_funcs = {
  1184. .destroy = intel_dp_enc_destroy,
  1185. };
  1186. void
  1187. intel_dp_hot_plug(struct intel_encoder *intel_encoder)
  1188. {
  1189. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1190. if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
  1191. intel_dp_check_link_status(intel_encoder);
  1192. }
  1193. /* Return which DP Port should be selected for Transcoder DP control */
  1194. int
  1195. intel_trans_dp_port_sel (struct drm_crtc *crtc)
  1196. {
  1197. struct drm_device *dev = crtc->dev;
  1198. struct drm_mode_config *mode_config = &dev->mode_config;
  1199. struct drm_encoder *encoder;
  1200. struct intel_encoder *intel_encoder = NULL;
  1201. list_for_each_entry(encoder, &mode_config->encoder_list, head) {
  1202. if (encoder->crtc != crtc)
  1203. continue;
  1204. intel_encoder = enc_to_intel_encoder(encoder);
  1205. if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
  1206. struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
  1207. return dp_priv->output_reg;
  1208. }
  1209. }
  1210. return -1;
  1211. }
  1212. void
  1213. intel_dp_init(struct drm_device *dev, int output_reg)
  1214. {
  1215. struct drm_i915_private *dev_priv = dev->dev_private;
  1216. struct drm_connector *connector;
  1217. struct intel_encoder *intel_encoder;
  1218. struct intel_connector *intel_connector;
  1219. struct intel_dp_priv *dp_priv;
  1220. const char *name = NULL;
  1221. intel_encoder = kcalloc(sizeof(struct intel_encoder) +
  1222. sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
  1223. if (!intel_encoder)
  1224. return;
  1225. intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
  1226. if (!intel_connector) {
  1227. kfree(intel_encoder);
  1228. return;
  1229. }
  1230. dp_priv = (struct intel_dp_priv *)(intel_encoder + 1);
  1231. connector = &intel_connector->base;
  1232. drm_connector_init(dev, connector, &intel_dp_connector_funcs,
  1233. DRM_MODE_CONNECTOR_DisplayPort);
  1234. drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
  1235. connector->polled = DRM_CONNECTOR_POLL_HPD;
  1236. if (output_reg == DP_A)
  1237. intel_encoder->type = INTEL_OUTPUT_EDP;
  1238. else
  1239. intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
  1240. if (output_reg == DP_B || output_reg == PCH_DP_B)
  1241. intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
  1242. else if (output_reg == DP_C || output_reg == PCH_DP_C)
  1243. intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
  1244. else if (output_reg == DP_D || output_reg == PCH_DP_D)
  1245. intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
  1246. if (IS_eDP(intel_encoder))
  1247. intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
  1248. intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
  1249. connector->interlace_allowed = true;
  1250. connector->doublescan_allowed = 0;
  1251. dp_priv->intel_encoder = intel_encoder;
  1252. dp_priv->output_reg = output_reg;
  1253. dp_priv->has_audio = false;
  1254. dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
  1255. intel_encoder->dev_priv = dp_priv;
  1256. drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
  1257. DRM_MODE_ENCODER_TMDS);
  1258. drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
  1259. drm_mode_connector_attach_encoder(&intel_connector->base,
  1260. &intel_encoder->enc);
  1261. drm_sysfs_connector_add(connector);
  1262. /* Set up the DDC bus. */
  1263. switch (output_reg) {
  1264. case DP_A:
  1265. name = "DPDDC-A";
  1266. break;
  1267. case DP_B:
  1268. case PCH_DP_B:
  1269. dev_priv->hotplug_supported_mask |=
  1270. HDMIB_HOTPLUG_INT_STATUS;
  1271. name = "DPDDC-B";
  1272. break;
  1273. case DP_C:
  1274. case PCH_DP_C:
  1275. dev_priv->hotplug_supported_mask |=
  1276. HDMIC_HOTPLUG_INT_STATUS;
  1277. name = "DPDDC-C";
  1278. break;
  1279. case DP_D:
  1280. case PCH_DP_D:
  1281. dev_priv->hotplug_supported_mask |=
  1282. HDMID_HOTPLUG_INT_STATUS;
  1283. name = "DPDDC-D";
  1284. break;
  1285. }
  1286. intel_dp_i2c_init(intel_encoder, intel_connector, name);
  1287. intel_encoder->ddc_bus = &dp_priv->adapter;
  1288. intel_encoder->hot_plug = intel_dp_hot_plug;
  1289. if (output_reg == DP_A) {
  1290. /* initialize panel mode from VBT if available for eDP */
  1291. if (dev_priv->lfp_lvds_vbt_mode) {
  1292. dev_priv->panel_fixed_mode =
  1293. drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
  1294. if (dev_priv->panel_fixed_mode) {
  1295. dev_priv->panel_fixed_mode->type |=
  1296. DRM_MODE_TYPE_PREFERRED;
  1297. }
  1298. }
  1299. }
  1300. /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
  1301. * 0xd. Failure to do so will result in spurious interrupts being
  1302. * generated on the port when a cable is not attached.
  1303. */
  1304. if (IS_G4X(dev) && !IS_GM45(dev)) {
  1305. u32 temp = I915_READ(PEG_BAND_GAP_DATA);
  1306. I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
  1307. }
  1308. }