xmit.c 67 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/dma-mapping.h>
  17. #include "ath9k.h"
  18. #include "ar9003_mac.h"
  19. #define BITS_PER_BYTE 8
  20. #define OFDM_PLCP_BITS 22
  21. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  22. #define L_STF 8
  23. #define L_LTF 8
  24. #define L_SIG 4
  25. #define HT_SIG 8
  26. #define HT_STF 4
  27. #define HT_LTF(_ns) (4 * (_ns))
  28. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  29. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  30. #define TIME_SYMBOLS(t) ((t) >> 2)
  31. #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18)
  32. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  33. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  34. static u16 bits_per_symbol[][2] = {
  35. /* 20MHz 40MHz */
  36. { 26, 54 }, /* 0: BPSK */
  37. { 52, 108 }, /* 1: QPSK 1/2 */
  38. { 78, 162 }, /* 2: QPSK 3/4 */
  39. { 104, 216 }, /* 3: 16-QAM 1/2 */
  40. { 156, 324 }, /* 4: 16-QAM 3/4 */
  41. { 208, 432 }, /* 5: 64-QAM 2/3 */
  42. { 234, 486 }, /* 6: 64-QAM 3/4 */
  43. { 260, 540 }, /* 7: 64-QAM 5/6 */
  44. };
  45. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  46. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  47. struct ath_atx_tid *tid, struct sk_buff *skb);
  48. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  49. int tx_flags, struct ath_txq *txq);
  50. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  51. struct ath_txq *txq, struct list_head *bf_q,
  52. struct ath_tx_status *ts, int txok);
  53. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  54. struct list_head *head, bool internal);
  55. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  56. struct ath_tx_status *ts, int nframes, int nbad,
  57. int txok);
  58. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  59. int seqno);
  60. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  61. struct ath_txq *txq,
  62. struct ath_atx_tid *tid,
  63. struct sk_buff *skb);
  64. enum {
  65. MCS_HT20,
  66. MCS_HT20_SGI,
  67. MCS_HT40,
  68. MCS_HT40_SGI,
  69. };
  70. /*********************/
  71. /* Aggregation logic */
  72. /*********************/
  73. void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
  74. __acquires(&txq->axq_lock)
  75. {
  76. spin_lock_bh(&txq->axq_lock);
  77. }
  78. void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
  79. __releases(&txq->axq_lock)
  80. {
  81. spin_unlock_bh(&txq->axq_lock);
  82. }
  83. void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
  84. __releases(&txq->axq_lock)
  85. {
  86. struct sk_buff_head q;
  87. struct sk_buff *skb;
  88. __skb_queue_head_init(&q);
  89. skb_queue_splice_init(&txq->complete_q, &q);
  90. spin_unlock_bh(&txq->axq_lock);
  91. while ((skb = __skb_dequeue(&q)))
  92. ieee80211_tx_status(sc->hw, skb);
  93. }
  94. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  95. {
  96. struct ath_atx_ac *ac = tid->ac;
  97. if (tid->paused)
  98. return;
  99. if (tid->sched)
  100. return;
  101. tid->sched = true;
  102. list_add_tail(&tid->list, &ac->tid_q);
  103. if (ac->sched)
  104. return;
  105. ac->sched = true;
  106. list_add_tail(&ac->list, &txq->axq_acq);
  107. }
  108. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  109. {
  110. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  111. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  112. sizeof(tx_info->rate_driver_data));
  113. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  114. }
  115. static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
  116. {
  117. ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
  118. seqno << IEEE80211_SEQ_SEQ_SHIFT);
  119. }
  120. static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
  121. struct ath_buf *bf)
  122. {
  123. ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
  124. ARRAY_SIZE(bf->rates));
  125. }
  126. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  127. {
  128. struct ath_txq *txq = tid->ac->txq;
  129. struct sk_buff *skb;
  130. struct ath_buf *bf;
  131. struct list_head bf_head;
  132. struct ath_tx_status ts;
  133. struct ath_frame_info *fi;
  134. bool sendbar = false;
  135. INIT_LIST_HEAD(&bf_head);
  136. memset(&ts, 0, sizeof(ts));
  137. while ((skb = __skb_dequeue(&tid->buf_q))) {
  138. fi = get_frame_info(skb);
  139. bf = fi->bf;
  140. if (!bf) {
  141. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  142. if (!bf) {
  143. ieee80211_free_txskb(sc->hw, skb);
  144. continue;
  145. }
  146. }
  147. if (fi->retries) {
  148. list_add_tail(&bf->list, &bf_head);
  149. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  150. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  151. sendbar = true;
  152. } else {
  153. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  154. ath_tx_send_normal(sc, txq, NULL, skb);
  155. }
  156. }
  157. if (sendbar) {
  158. ath_txq_unlock(sc, txq);
  159. ath_send_bar(tid, tid->seq_start);
  160. ath_txq_lock(sc, txq);
  161. }
  162. }
  163. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  164. int seqno)
  165. {
  166. int index, cindex;
  167. index = ATH_BA_INDEX(tid->seq_start, seqno);
  168. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  169. __clear_bit(cindex, tid->tx_buf);
  170. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  171. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  172. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  173. if (tid->bar_index >= 0)
  174. tid->bar_index--;
  175. }
  176. }
  177. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  178. u16 seqno)
  179. {
  180. int index, cindex;
  181. index = ATH_BA_INDEX(tid->seq_start, seqno);
  182. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  183. __set_bit(cindex, tid->tx_buf);
  184. if (index >= ((tid->baw_tail - tid->baw_head) &
  185. (ATH_TID_MAX_BUFS - 1))) {
  186. tid->baw_tail = cindex;
  187. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  188. }
  189. }
  190. /*
  191. * TODO: For frame(s) that are in the retry state, we will reuse the
  192. * sequence number(s) without setting the retry bit. The
  193. * alternative is to give up on these and BAR the receiver's window
  194. * forward.
  195. */
  196. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  197. struct ath_atx_tid *tid)
  198. {
  199. struct sk_buff *skb;
  200. struct ath_buf *bf;
  201. struct list_head bf_head;
  202. struct ath_tx_status ts;
  203. struct ath_frame_info *fi;
  204. memset(&ts, 0, sizeof(ts));
  205. INIT_LIST_HEAD(&bf_head);
  206. while ((skb = __skb_dequeue(&tid->buf_q))) {
  207. fi = get_frame_info(skb);
  208. bf = fi->bf;
  209. if (!bf) {
  210. ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
  211. continue;
  212. }
  213. list_add_tail(&bf->list, &bf_head);
  214. ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
  215. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  216. }
  217. tid->seq_next = tid->seq_start;
  218. tid->baw_tail = tid->baw_head;
  219. tid->bar_index = -1;
  220. }
  221. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  222. struct sk_buff *skb, int count)
  223. {
  224. struct ath_frame_info *fi = get_frame_info(skb);
  225. struct ath_buf *bf = fi->bf;
  226. struct ieee80211_hdr *hdr;
  227. int prev = fi->retries;
  228. TX_STAT_INC(txq->axq_qnum, a_retries);
  229. fi->retries += count;
  230. if (prev > 0)
  231. return;
  232. hdr = (struct ieee80211_hdr *)skb->data;
  233. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  234. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  235. sizeof(*hdr), DMA_TO_DEVICE);
  236. }
  237. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  238. {
  239. struct ath_buf *bf = NULL;
  240. spin_lock_bh(&sc->tx.txbuflock);
  241. if (unlikely(list_empty(&sc->tx.txbuf))) {
  242. spin_unlock_bh(&sc->tx.txbuflock);
  243. return NULL;
  244. }
  245. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  246. list_del(&bf->list);
  247. spin_unlock_bh(&sc->tx.txbuflock);
  248. return bf;
  249. }
  250. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  251. {
  252. spin_lock_bh(&sc->tx.txbuflock);
  253. list_add_tail(&bf->list, &sc->tx.txbuf);
  254. spin_unlock_bh(&sc->tx.txbuflock);
  255. }
  256. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  257. {
  258. struct ath_buf *tbf;
  259. tbf = ath_tx_get_buffer(sc);
  260. if (WARN_ON(!tbf))
  261. return NULL;
  262. ATH_TXBUF_RESET(tbf);
  263. tbf->bf_mpdu = bf->bf_mpdu;
  264. tbf->bf_buf_addr = bf->bf_buf_addr;
  265. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  266. tbf->bf_state = bf->bf_state;
  267. return tbf;
  268. }
  269. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  270. struct ath_tx_status *ts, int txok,
  271. int *nframes, int *nbad)
  272. {
  273. struct ath_frame_info *fi;
  274. u16 seq_st = 0;
  275. u32 ba[WME_BA_BMP_SIZE >> 5];
  276. int ba_index;
  277. int isaggr = 0;
  278. *nbad = 0;
  279. *nframes = 0;
  280. isaggr = bf_isaggr(bf);
  281. if (isaggr) {
  282. seq_st = ts->ts_seqnum;
  283. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  284. }
  285. while (bf) {
  286. fi = get_frame_info(bf->bf_mpdu);
  287. ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
  288. (*nframes)++;
  289. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  290. (*nbad)++;
  291. bf = bf->bf_next;
  292. }
  293. }
  294. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  295. struct ath_buf *bf, struct list_head *bf_q,
  296. struct ath_tx_status *ts, int txok)
  297. {
  298. struct ath_node *an = NULL;
  299. struct sk_buff *skb;
  300. struct ieee80211_sta *sta;
  301. struct ieee80211_hw *hw = sc->hw;
  302. struct ieee80211_hdr *hdr;
  303. struct ieee80211_tx_info *tx_info;
  304. struct ath_atx_tid *tid = NULL;
  305. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  306. struct list_head bf_head;
  307. struct sk_buff_head bf_pending;
  308. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
  309. u32 ba[WME_BA_BMP_SIZE >> 5];
  310. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  311. bool rc_update = true, isba;
  312. struct ieee80211_tx_rate rates[4];
  313. struct ath_frame_info *fi;
  314. int nframes;
  315. u8 tidno;
  316. bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  317. int i, retries;
  318. int bar_index = -1;
  319. skb = bf->bf_mpdu;
  320. hdr = (struct ieee80211_hdr *)skb->data;
  321. tx_info = IEEE80211_SKB_CB(skb);
  322. memcpy(rates, bf->rates, sizeof(rates));
  323. retries = ts->ts_longretry + 1;
  324. for (i = 0; i < ts->ts_rateindex; i++)
  325. retries += rates[i].count;
  326. rcu_read_lock();
  327. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  328. if (!sta) {
  329. rcu_read_unlock();
  330. INIT_LIST_HEAD(&bf_head);
  331. while (bf) {
  332. bf_next = bf->bf_next;
  333. if (!bf->bf_stale || bf_next != NULL)
  334. list_move_tail(&bf->list, &bf_head);
  335. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
  336. bf = bf_next;
  337. }
  338. return;
  339. }
  340. an = (struct ath_node *)sta->drv_priv;
  341. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  342. tid = ATH_AN_2_TID(an, tidno);
  343. seq_first = tid->seq_start;
  344. isba = ts->ts_flags & ATH9K_TX_BA;
  345. /*
  346. * The hardware occasionally sends a tx status for the wrong TID.
  347. * In this case, the BA status cannot be considered valid and all
  348. * subframes need to be retransmitted
  349. *
  350. * Only BlockAcks have a TID and therefore normal Acks cannot be
  351. * checked
  352. */
  353. if (isba && tidno != ts->tid)
  354. txok = false;
  355. isaggr = bf_isaggr(bf);
  356. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  357. if (isaggr && txok) {
  358. if (ts->ts_flags & ATH9K_TX_BA) {
  359. seq_st = ts->ts_seqnum;
  360. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  361. } else {
  362. /*
  363. * AR5416 can become deaf/mute when BA
  364. * issue happens. Chip needs to be reset.
  365. * But AP code may have sychronization issues
  366. * when perform internal reset in this routine.
  367. * Only enable reset in STA mode for now.
  368. */
  369. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  370. needreset = 1;
  371. }
  372. }
  373. __skb_queue_head_init(&bf_pending);
  374. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  375. while (bf) {
  376. u16 seqno = bf->bf_state.seqno;
  377. txfail = txpending = sendbar = 0;
  378. bf_next = bf->bf_next;
  379. skb = bf->bf_mpdu;
  380. tx_info = IEEE80211_SKB_CB(skb);
  381. fi = get_frame_info(skb);
  382. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
  383. /*
  384. * Outside of the current BlockAck window,
  385. * maybe part of a previous session
  386. */
  387. txfail = 1;
  388. } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
  389. /* transmit completion, subframe is
  390. * acked by block ack */
  391. acked_cnt++;
  392. } else if (!isaggr && txok) {
  393. /* transmit completion */
  394. acked_cnt++;
  395. } else if (flush) {
  396. txpending = 1;
  397. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  398. if (txok || !an->sleeping)
  399. ath_tx_set_retry(sc, txq, bf->bf_mpdu,
  400. retries);
  401. txpending = 1;
  402. } else {
  403. txfail = 1;
  404. txfail_cnt++;
  405. bar_index = max_t(int, bar_index,
  406. ATH_BA_INDEX(seq_first, seqno));
  407. }
  408. /*
  409. * Make sure the last desc is reclaimed if it
  410. * not a holding desc.
  411. */
  412. INIT_LIST_HEAD(&bf_head);
  413. if (bf_next != NULL || !bf_last->bf_stale)
  414. list_move_tail(&bf->list, &bf_head);
  415. if (!txpending) {
  416. /*
  417. * complete the acked-ones/xretried ones; update
  418. * block-ack window
  419. */
  420. ath_tx_update_baw(sc, tid, seqno);
  421. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  422. memcpy(tx_info->control.rates, rates, sizeof(rates));
  423. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
  424. rc_update = false;
  425. }
  426. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  427. !txfail);
  428. } else {
  429. if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
  430. tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
  431. ieee80211_sta_eosp(sta);
  432. }
  433. /* retry the un-acked ones */
  434. if (bf->bf_next == NULL && bf_last->bf_stale) {
  435. struct ath_buf *tbf;
  436. tbf = ath_clone_txbuf(sc, bf_last);
  437. /*
  438. * Update tx baw and complete the
  439. * frame with failed status if we
  440. * run out of tx buf.
  441. */
  442. if (!tbf) {
  443. ath_tx_update_baw(sc, tid, seqno);
  444. ath_tx_complete_buf(sc, bf, txq,
  445. &bf_head, ts, 0);
  446. bar_index = max_t(int, bar_index,
  447. ATH_BA_INDEX(seq_first, seqno));
  448. break;
  449. }
  450. fi->bf = tbf;
  451. }
  452. /*
  453. * Put this buffer to the temporary pending
  454. * queue to retain ordering
  455. */
  456. __skb_queue_tail(&bf_pending, skb);
  457. }
  458. bf = bf_next;
  459. }
  460. /* prepend un-acked frames to the beginning of the pending frame queue */
  461. if (!skb_queue_empty(&bf_pending)) {
  462. if (an->sleeping)
  463. ieee80211_sta_set_buffered(sta, tid->tidno, true);
  464. skb_queue_splice(&bf_pending, &tid->buf_q);
  465. if (!an->sleeping) {
  466. ath_tx_queue_tid(txq, tid);
  467. if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
  468. tid->ac->clear_ps_filter = true;
  469. }
  470. }
  471. if (bar_index >= 0) {
  472. u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
  473. if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
  474. tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
  475. ath_txq_unlock(sc, txq);
  476. ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
  477. ath_txq_lock(sc, txq);
  478. }
  479. rcu_read_unlock();
  480. if (needreset)
  481. ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
  482. }
  483. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  484. {
  485. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  486. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  487. }
  488. static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
  489. struct ath_tx_status *ts, struct ath_buf *bf,
  490. struct list_head *bf_head)
  491. {
  492. struct ieee80211_tx_info *info;
  493. bool txok, flush;
  494. txok = !(ts->ts_status & ATH9K_TXERR_MASK);
  495. flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
  496. txq->axq_tx_inprogress = false;
  497. txq->axq_depth--;
  498. if (bf_is_ampdu_not_probing(bf))
  499. txq->axq_ampdu_depth--;
  500. if (!bf_isampdu(bf)) {
  501. if (!flush) {
  502. info = IEEE80211_SKB_CB(bf->bf_mpdu);
  503. memcpy(info->control.rates, bf->rates,
  504. sizeof(info->control.rates));
  505. ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
  506. }
  507. ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
  508. } else
  509. ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok);
  510. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !flush)
  511. ath_txq_schedule(sc, txq);
  512. }
  513. static bool ath_lookup_legacy(struct ath_buf *bf)
  514. {
  515. struct sk_buff *skb;
  516. struct ieee80211_tx_info *tx_info;
  517. struct ieee80211_tx_rate *rates;
  518. int i;
  519. skb = bf->bf_mpdu;
  520. tx_info = IEEE80211_SKB_CB(skb);
  521. rates = tx_info->control.rates;
  522. for (i = 0; i < 4; i++) {
  523. if (!rates[i].count || rates[i].idx < 0)
  524. break;
  525. if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
  526. return true;
  527. }
  528. return false;
  529. }
  530. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  531. struct ath_atx_tid *tid)
  532. {
  533. struct sk_buff *skb;
  534. struct ieee80211_tx_info *tx_info;
  535. struct ieee80211_tx_rate *rates;
  536. u32 max_4ms_framelen, frmlen;
  537. u16 aggr_limit, bt_aggr_limit, legacy = 0;
  538. int q = tid->ac->txq->mac80211_qnum;
  539. int i;
  540. skb = bf->bf_mpdu;
  541. tx_info = IEEE80211_SKB_CB(skb);
  542. rates = bf->rates;
  543. /*
  544. * Find the lowest frame length among the rate series that will have a
  545. * 4ms (or TXOP limited) transmit duration.
  546. */
  547. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  548. for (i = 0; i < 4; i++) {
  549. int modeidx;
  550. if (!rates[i].count)
  551. continue;
  552. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  553. legacy = 1;
  554. break;
  555. }
  556. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  557. modeidx = MCS_HT40;
  558. else
  559. modeidx = MCS_HT20;
  560. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  561. modeidx++;
  562. frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
  563. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  564. }
  565. /*
  566. * limit aggregate size by the minimum rate if rate selected is
  567. * not a probe rate, if rate selected is a probe rate then
  568. * avoid aggregation of this packet.
  569. */
  570. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  571. return 0;
  572. aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
  573. /*
  574. * Override the default aggregation limit for BTCOEX.
  575. */
  576. bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
  577. if (bt_aggr_limit)
  578. aggr_limit = bt_aggr_limit;
  579. /*
  580. * h/w can accept aggregates up to 16 bit lengths (65535).
  581. * The IE, however can hold up to 65536, which shows up here
  582. * as zero. Ignore 65536 since we are constrained by hw.
  583. */
  584. if (tid->an->maxampdu)
  585. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  586. return aggr_limit;
  587. }
  588. /*
  589. * Returns the number of delimiters to be added to
  590. * meet the minimum required mpdudensity.
  591. */
  592. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  593. struct ath_buf *bf, u16 frmlen,
  594. bool first_subfrm)
  595. {
  596. #define FIRST_DESC_NDELIMS 60
  597. u32 nsymbits, nsymbols;
  598. u16 minlen;
  599. u8 flags, rix;
  600. int width, streams, half_gi, ndelim, mindelim;
  601. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  602. /* Select standard number of delimiters based on frame length alone */
  603. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  604. /*
  605. * If encryption enabled, hardware requires some more padding between
  606. * subframes.
  607. * TODO - this could be improved to be dependent on the rate.
  608. * The hardware can keep up at lower rates, but not higher rates
  609. */
  610. if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
  611. !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
  612. ndelim += ATH_AGGR_ENCRYPTDELIM;
  613. /*
  614. * Add delimiter when using RTS/CTS with aggregation
  615. * and non enterprise AR9003 card
  616. */
  617. if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
  618. (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
  619. ndelim = max(ndelim, FIRST_DESC_NDELIMS);
  620. /*
  621. * Convert desired mpdu density from microeconds to bytes based
  622. * on highest rate in rate series (i.e. first rate) to determine
  623. * required minimum length for subframe. Take into account
  624. * whether high rate is 20 or 40Mhz and half or full GI.
  625. *
  626. * If there is no mpdu density restriction, no further calculation
  627. * is needed.
  628. */
  629. if (tid->an->mpdudensity == 0)
  630. return ndelim;
  631. rix = bf->rates[0].idx;
  632. flags = bf->rates[0].flags;
  633. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  634. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  635. if (half_gi)
  636. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  637. else
  638. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  639. if (nsymbols == 0)
  640. nsymbols = 1;
  641. streams = HT_RC_2_STREAMS(rix);
  642. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  643. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  644. if (frmlen < minlen) {
  645. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  646. ndelim = max(mindelim, ndelim);
  647. }
  648. return ndelim;
  649. }
  650. static struct ath_buf *
  651. ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
  652. struct ath_atx_tid *tid)
  653. {
  654. struct ath_frame_info *fi;
  655. struct sk_buff *skb;
  656. struct ath_buf *bf;
  657. u16 seqno;
  658. while (1) {
  659. skb = skb_peek(&tid->buf_q);
  660. if (!skb)
  661. break;
  662. fi = get_frame_info(skb);
  663. bf = fi->bf;
  664. if (!fi->bf)
  665. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  666. if (!bf) {
  667. __skb_unlink(skb, &tid->buf_q);
  668. ieee80211_free_txskb(sc->hw, skb);
  669. continue;
  670. }
  671. bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
  672. seqno = bf->bf_state.seqno;
  673. /* do not step over block-ack window */
  674. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno))
  675. break;
  676. if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
  677. struct ath_tx_status ts = {};
  678. struct list_head bf_head;
  679. INIT_LIST_HEAD(&bf_head);
  680. list_add(&bf->list, &bf_head);
  681. __skb_unlink(skb, &tid->buf_q);
  682. ath_tx_update_baw(sc, tid, seqno);
  683. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
  684. continue;
  685. }
  686. bf->bf_next = NULL;
  687. bf->bf_lastbf = bf;
  688. return bf;
  689. }
  690. return NULL;
  691. }
  692. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  693. struct ath_txq *txq,
  694. struct ath_atx_tid *tid,
  695. struct list_head *bf_q,
  696. int *aggr_len)
  697. {
  698. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  699. struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
  700. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  701. u16 aggr_limit = 0, al = 0, bpad = 0,
  702. al_delta, h_baw = tid->baw_size / 2;
  703. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  704. struct ieee80211_tx_info *tx_info;
  705. struct ath_frame_info *fi;
  706. struct sk_buff *skb;
  707. do {
  708. bf = ath_tx_get_tid_subframe(sc, txq, tid);
  709. if (!bf) {
  710. status = ATH_AGGR_BAW_CLOSED;
  711. break;
  712. }
  713. skb = bf->bf_mpdu;
  714. fi = get_frame_info(skb);
  715. if (!bf_first)
  716. bf_first = bf;
  717. if (!rl) {
  718. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  719. aggr_limit = ath_lookup_rate(sc, bf, tid);
  720. rl = 1;
  721. }
  722. /* do not exceed aggregation limit */
  723. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  724. if (nframes &&
  725. ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
  726. ath_lookup_legacy(bf))) {
  727. status = ATH_AGGR_LIMITED;
  728. break;
  729. }
  730. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  731. if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
  732. break;
  733. /* do not exceed subframe limit */
  734. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  735. status = ATH_AGGR_LIMITED;
  736. break;
  737. }
  738. /* add padding for previous frame to aggregation length */
  739. al += bpad + al_delta;
  740. /*
  741. * Get the delimiters needed to meet the MPDU
  742. * density for this node.
  743. */
  744. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
  745. !nframes);
  746. bpad = PADBYTES(al_delta) + (ndelim << 2);
  747. nframes++;
  748. bf->bf_next = NULL;
  749. /* link buffers of this frame to the aggregate */
  750. if (!fi->retries)
  751. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  752. bf->bf_state.ndelim = ndelim;
  753. __skb_unlink(skb, &tid->buf_q);
  754. list_add_tail(&bf->list, bf_q);
  755. if (bf_prev)
  756. bf_prev->bf_next = bf;
  757. bf_prev = bf;
  758. } while (!skb_queue_empty(&tid->buf_q));
  759. *aggr_len = al;
  760. return status;
  761. #undef PADBYTES
  762. }
  763. /*
  764. * rix - rate index
  765. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  766. * width - 0 for 20 MHz, 1 for 40 MHz
  767. * half_gi - to use 4us v/s 3.6 us for symbol time
  768. */
  769. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  770. int width, int half_gi, bool shortPreamble)
  771. {
  772. u32 nbits, nsymbits, duration, nsymbols;
  773. int streams;
  774. /* find number of symbols: PLCP + data */
  775. streams = HT_RC_2_STREAMS(rix);
  776. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  777. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  778. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  779. if (!half_gi)
  780. duration = SYMBOL_TIME(nsymbols);
  781. else
  782. duration = SYMBOL_TIME_HALFGI(nsymbols);
  783. /* addup duration for legacy/ht training and signal fields */
  784. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  785. return duration;
  786. }
  787. static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
  788. {
  789. int streams = HT_RC_2_STREAMS(mcs);
  790. int symbols, bits;
  791. int bytes = 0;
  792. symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
  793. bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
  794. bits -= OFDM_PLCP_BITS;
  795. bytes = bits / 8;
  796. bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  797. if (bytes > 65532)
  798. bytes = 65532;
  799. return bytes;
  800. }
  801. void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
  802. {
  803. u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
  804. int mcs;
  805. /* 4ms is the default (and maximum) duration */
  806. if (!txop || txop > 4096)
  807. txop = 4096;
  808. cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
  809. cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
  810. cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
  811. cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
  812. for (mcs = 0; mcs < 32; mcs++) {
  813. cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
  814. cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
  815. cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
  816. cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
  817. }
  818. }
  819. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
  820. struct ath_tx_info *info, int len, bool rts)
  821. {
  822. struct ath_hw *ah = sc->sc_ah;
  823. struct sk_buff *skb;
  824. struct ieee80211_tx_info *tx_info;
  825. struct ieee80211_tx_rate *rates;
  826. const struct ieee80211_rate *rate;
  827. struct ieee80211_hdr *hdr;
  828. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  829. u32 rts_thresh = sc->hw->wiphy->rts_threshold;
  830. int i;
  831. u8 rix = 0;
  832. skb = bf->bf_mpdu;
  833. tx_info = IEEE80211_SKB_CB(skb);
  834. rates = bf->rates;
  835. hdr = (struct ieee80211_hdr *)skb->data;
  836. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  837. info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
  838. info->rtscts_rate = fi->rtscts_rate;
  839. for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
  840. bool is_40, is_sgi, is_sp;
  841. int phy;
  842. if (!rates[i].count || (rates[i].idx < 0))
  843. continue;
  844. rix = rates[i].idx;
  845. info->rates[i].Tries = rates[i].count;
  846. /*
  847. * Handle RTS threshold for unaggregated HT frames.
  848. */
  849. if (bf_isampdu(bf) && !bf_isaggr(bf) &&
  850. (rates[i].flags & IEEE80211_TX_RC_MCS) &&
  851. unlikely(rts_thresh != (u32) -1)) {
  852. if (!rts_thresh || (len > rts_thresh))
  853. rts = true;
  854. }
  855. if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  856. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  857. info->flags |= ATH9K_TXDESC_RTSENA;
  858. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  859. info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  860. info->flags |= ATH9K_TXDESC_CTSENA;
  861. }
  862. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  863. info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
  864. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  865. info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  866. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  867. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  868. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  869. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  870. /* MCS rates */
  871. info->rates[i].Rate = rix | 0x80;
  872. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  873. ah->txchainmask, info->rates[i].Rate);
  874. info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
  875. is_40, is_sgi, is_sp);
  876. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  877. info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
  878. continue;
  879. }
  880. /* legacy rates */
  881. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  882. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  883. !(rate->flags & IEEE80211_RATE_ERP_G))
  884. phy = WLAN_RC_PHY_CCK;
  885. else
  886. phy = WLAN_RC_PHY_OFDM;
  887. info->rates[i].Rate = rate->hw_value;
  888. if (rate->hw_value_short) {
  889. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  890. info->rates[i].Rate |= rate->hw_value_short;
  891. } else {
  892. is_sp = false;
  893. }
  894. if (bf->bf_state.bfs_paprd)
  895. info->rates[i].ChSel = ah->txchainmask;
  896. else
  897. info->rates[i].ChSel = ath_txchainmask_reduction(sc,
  898. ah->txchainmask, info->rates[i].Rate);
  899. info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  900. phy, rate->bitrate * 100, len, rix, is_sp);
  901. }
  902. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  903. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  904. info->flags &= ~ATH9K_TXDESC_RTSENA;
  905. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  906. if (info->flags & ATH9K_TXDESC_RTSENA)
  907. info->flags &= ~ATH9K_TXDESC_CTSENA;
  908. }
  909. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  910. {
  911. struct ieee80211_hdr *hdr;
  912. enum ath9k_pkt_type htype;
  913. __le16 fc;
  914. hdr = (struct ieee80211_hdr *)skb->data;
  915. fc = hdr->frame_control;
  916. if (ieee80211_is_beacon(fc))
  917. htype = ATH9K_PKT_TYPE_BEACON;
  918. else if (ieee80211_is_probe_resp(fc))
  919. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  920. else if (ieee80211_is_atim(fc))
  921. htype = ATH9K_PKT_TYPE_ATIM;
  922. else if (ieee80211_is_pspoll(fc))
  923. htype = ATH9K_PKT_TYPE_PSPOLL;
  924. else
  925. htype = ATH9K_PKT_TYPE_NORMAL;
  926. return htype;
  927. }
  928. static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
  929. struct ath_txq *txq, int len)
  930. {
  931. struct ath_hw *ah = sc->sc_ah;
  932. struct ath_buf *bf_first = NULL;
  933. struct ath_tx_info info;
  934. u32 rts_thresh = sc->hw->wiphy->rts_threshold;
  935. bool rts = false;
  936. memset(&info, 0, sizeof(info));
  937. info.is_first = true;
  938. info.is_last = true;
  939. info.txpower = MAX_RATE_POWER;
  940. info.qcu = txq->axq_qnum;
  941. while (bf) {
  942. struct sk_buff *skb = bf->bf_mpdu;
  943. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  944. struct ath_frame_info *fi = get_frame_info(skb);
  945. bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
  946. info.type = get_hw_packet_type(skb);
  947. if (bf->bf_next)
  948. info.link = bf->bf_next->bf_daddr;
  949. else
  950. info.link = 0;
  951. if (!bf_first) {
  952. bf_first = bf;
  953. info.flags = ATH9K_TXDESC_INTREQ;
  954. if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
  955. txq == sc->tx.uapsdq)
  956. info.flags |= ATH9K_TXDESC_CLRDMASK;
  957. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  958. info.flags |= ATH9K_TXDESC_NOACK;
  959. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  960. info.flags |= ATH9K_TXDESC_LDPC;
  961. if (bf->bf_state.bfs_paprd)
  962. info.flags |= (u32) bf->bf_state.bfs_paprd <<
  963. ATH9K_TXDESC_PAPRD_S;
  964. /*
  965. * mac80211 doesn't handle RTS threshold for HT because
  966. * the decision has to be taken based on AMPDU length
  967. * and aggregation is done entirely inside ath9k.
  968. * Set the RTS/CTS flag for the first subframe based
  969. * on the threshold.
  970. */
  971. if (aggr && (bf == bf_first) &&
  972. unlikely(rts_thresh != (u32) -1)) {
  973. /*
  974. * "len" is the size of the entire AMPDU.
  975. */
  976. if (!rts_thresh || (len > rts_thresh))
  977. rts = true;
  978. }
  979. ath_buf_set_rate(sc, bf, &info, len, rts);
  980. }
  981. info.buf_addr[0] = bf->bf_buf_addr;
  982. info.buf_len[0] = skb->len;
  983. info.pkt_len = fi->framelen;
  984. info.keyix = fi->keyix;
  985. info.keytype = fi->keytype;
  986. if (aggr) {
  987. if (bf == bf_first)
  988. info.aggr = AGGR_BUF_FIRST;
  989. else if (bf == bf_first->bf_lastbf)
  990. info.aggr = AGGR_BUF_LAST;
  991. else
  992. info.aggr = AGGR_BUF_MIDDLE;
  993. info.ndelim = bf->bf_state.ndelim;
  994. info.aggr_len = len;
  995. }
  996. if (bf == bf_first->bf_lastbf)
  997. bf_first = NULL;
  998. ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
  999. bf = bf->bf_next;
  1000. }
  1001. }
  1002. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  1003. struct ath_atx_tid *tid)
  1004. {
  1005. struct ath_buf *bf;
  1006. enum ATH_AGGR_STATUS status;
  1007. struct ieee80211_tx_info *tx_info;
  1008. struct list_head bf_q;
  1009. int aggr_len;
  1010. do {
  1011. if (skb_queue_empty(&tid->buf_q))
  1012. return;
  1013. INIT_LIST_HEAD(&bf_q);
  1014. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  1015. /*
  1016. * no frames picked up to be aggregated;
  1017. * block-ack window is not open.
  1018. */
  1019. if (list_empty(&bf_q))
  1020. break;
  1021. bf = list_first_entry(&bf_q, struct ath_buf, list);
  1022. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  1023. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  1024. if (tid->ac->clear_ps_filter) {
  1025. tid->ac->clear_ps_filter = false;
  1026. tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1027. } else {
  1028. tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1029. }
  1030. /* if only one frame, send as non-aggregate */
  1031. if (bf == bf->bf_lastbf) {
  1032. aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
  1033. bf->bf_state.bf_type = BUF_AMPDU;
  1034. } else {
  1035. TX_STAT_INC(txq->axq_qnum, a_aggr);
  1036. }
  1037. ath_tx_fill_desc(sc, bf, txq, aggr_len);
  1038. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  1039. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  1040. status != ATH_AGGR_BAW_CLOSED);
  1041. }
  1042. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  1043. u16 tid, u16 *ssn)
  1044. {
  1045. struct ath_atx_tid *txtid;
  1046. struct ath_node *an;
  1047. u8 density;
  1048. an = (struct ath_node *)sta->drv_priv;
  1049. txtid = ATH_AN_2_TID(an, tid);
  1050. /* update ampdu factor/density, they may have changed. This may happen
  1051. * in HT IBSS when a beacon with HT-info is received after the station
  1052. * has already been added.
  1053. */
  1054. if (sta->ht_cap.ht_supported) {
  1055. an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
  1056. sta->ht_cap.ampdu_factor);
  1057. density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
  1058. an->mpdudensity = density;
  1059. }
  1060. txtid->active = true;
  1061. txtid->paused = true;
  1062. *ssn = txtid->seq_start = txtid->seq_next;
  1063. txtid->bar_index = -1;
  1064. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  1065. txtid->baw_head = txtid->baw_tail = 0;
  1066. return 0;
  1067. }
  1068. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  1069. {
  1070. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1071. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  1072. struct ath_txq *txq = txtid->ac->txq;
  1073. ath_txq_lock(sc, txq);
  1074. txtid->active = false;
  1075. txtid->paused = true;
  1076. ath_tx_flush_tid(sc, txtid);
  1077. ath_txq_unlock_complete(sc, txq);
  1078. }
  1079. void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
  1080. struct ath_node *an)
  1081. {
  1082. struct ath_atx_tid *tid;
  1083. struct ath_atx_ac *ac;
  1084. struct ath_txq *txq;
  1085. bool buffered;
  1086. int tidno;
  1087. for (tidno = 0, tid = &an->tid[tidno];
  1088. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1089. if (!tid->sched)
  1090. continue;
  1091. ac = tid->ac;
  1092. txq = ac->txq;
  1093. ath_txq_lock(sc, txq);
  1094. buffered = !skb_queue_empty(&tid->buf_q);
  1095. tid->sched = false;
  1096. list_del(&tid->list);
  1097. if (ac->sched) {
  1098. ac->sched = false;
  1099. list_del(&ac->list);
  1100. }
  1101. ath_txq_unlock(sc, txq);
  1102. ieee80211_sta_set_buffered(sta, tidno, buffered);
  1103. }
  1104. }
  1105. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  1106. {
  1107. struct ath_atx_tid *tid;
  1108. struct ath_atx_ac *ac;
  1109. struct ath_txq *txq;
  1110. int tidno;
  1111. for (tidno = 0, tid = &an->tid[tidno];
  1112. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  1113. ac = tid->ac;
  1114. txq = ac->txq;
  1115. ath_txq_lock(sc, txq);
  1116. ac->clear_ps_filter = true;
  1117. if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
  1118. ath_tx_queue_tid(txq, tid);
  1119. ath_txq_schedule(sc, txq);
  1120. }
  1121. ath_txq_unlock_complete(sc, txq);
  1122. }
  1123. }
  1124. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta,
  1125. u16 tidno)
  1126. {
  1127. struct ath_atx_tid *tid;
  1128. struct ath_node *an;
  1129. struct ath_txq *txq;
  1130. an = (struct ath_node *)sta->drv_priv;
  1131. tid = ATH_AN_2_TID(an, tidno);
  1132. txq = tid->ac->txq;
  1133. ath_txq_lock(sc, txq);
  1134. tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  1135. tid->paused = false;
  1136. if (!skb_queue_empty(&tid->buf_q)) {
  1137. ath_tx_queue_tid(txq, tid);
  1138. ath_txq_schedule(sc, txq);
  1139. }
  1140. ath_txq_unlock_complete(sc, txq);
  1141. }
  1142. void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
  1143. struct ieee80211_sta *sta,
  1144. u16 tids, int nframes,
  1145. enum ieee80211_frame_release_type reason,
  1146. bool more_data)
  1147. {
  1148. struct ath_softc *sc = hw->priv;
  1149. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  1150. struct ath_txq *txq = sc->tx.uapsdq;
  1151. struct ieee80211_tx_info *info;
  1152. struct list_head bf_q;
  1153. struct ath_buf *bf_tail = NULL, *bf;
  1154. int sent = 0;
  1155. int i;
  1156. INIT_LIST_HEAD(&bf_q);
  1157. for (i = 0; tids && nframes; i++, tids >>= 1) {
  1158. struct ath_atx_tid *tid;
  1159. if (!(tids & 1))
  1160. continue;
  1161. tid = ATH_AN_2_TID(an, i);
  1162. if (tid->paused)
  1163. continue;
  1164. ath_txq_lock(sc, tid->ac->txq);
  1165. while (!skb_queue_empty(&tid->buf_q) && nframes > 0) {
  1166. bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid);
  1167. if (!bf)
  1168. break;
  1169. __skb_unlink(bf->bf_mpdu, &tid->buf_q);
  1170. list_add_tail(&bf->list, &bf_q);
  1171. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1172. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1173. bf->bf_state.bf_type &= ~BUF_AGGR;
  1174. if (bf_tail)
  1175. bf_tail->bf_next = bf;
  1176. bf_tail = bf;
  1177. nframes--;
  1178. sent++;
  1179. TX_STAT_INC(txq->axq_qnum, a_queued_hw);
  1180. if (skb_queue_empty(&tid->buf_q))
  1181. ieee80211_sta_set_buffered(an->sta, i, false);
  1182. }
  1183. ath_txq_unlock_complete(sc, tid->ac->txq);
  1184. }
  1185. if (list_empty(&bf_q))
  1186. return;
  1187. info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
  1188. info->flags |= IEEE80211_TX_STATUS_EOSP;
  1189. bf = list_first_entry(&bf_q, struct ath_buf, list);
  1190. ath_txq_lock(sc, txq);
  1191. ath_tx_fill_desc(sc, bf, txq, 0);
  1192. ath_tx_txqaddbuf(sc, txq, &bf_q, false);
  1193. ath_txq_unlock(sc, txq);
  1194. }
  1195. /********************/
  1196. /* Queue Management */
  1197. /********************/
  1198. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  1199. {
  1200. struct ath_hw *ah = sc->sc_ah;
  1201. struct ath9k_tx_queue_info qi;
  1202. static const int subtype_txq_to_hwq[] = {
  1203. [IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
  1204. [IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
  1205. [IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
  1206. [IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
  1207. };
  1208. int axq_qnum, i;
  1209. memset(&qi, 0, sizeof(qi));
  1210. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  1211. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  1212. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  1213. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  1214. qi.tqi_physCompBuf = 0;
  1215. /*
  1216. * Enable interrupts only for EOL and DESC conditions.
  1217. * We mark tx descriptors to receive a DESC interrupt
  1218. * when a tx queue gets deep; otherwise waiting for the
  1219. * EOL to reap descriptors. Note that this is done to
  1220. * reduce interrupt load and this only defers reaping
  1221. * descriptors, never transmitting frames. Aside from
  1222. * reducing interrupts this also permits more concurrency.
  1223. * The only potential downside is if the tx queue backs
  1224. * up in which case the top half of the kernel may backup
  1225. * due to a lack of tx descriptors.
  1226. *
  1227. * The UAPSD queue is an exception, since we take a desc-
  1228. * based intr on the EOSP frames.
  1229. */
  1230. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1231. qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
  1232. } else {
  1233. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  1234. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  1235. else
  1236. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  1237. TXQ_FLAG_TXDESCINT_ENABLE;
  1238. }
  1239. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  1240. if (axq_qnum == -1) {
  1241. /*
  1242. * NB: don't print a message, this happens
  1243. * normally on parts with too few tx queues
  1244. */
  1245. return NULL;
  1246. }
  1247. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  1248. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  1249. txq->axq_qnum = axq_qnum;
  1250. txq->mac80211_qnum = -1;
  1251. txq->axq_link = NULL;
  1252. __skb_queue_head_init(&txq->complete_q);
  1253. INIT_LIST_HEAD(&txq->axq_q);
  1254. INIT_LIST_HEAD(&txq->axq_acq);
  1255. spin_lock_init(&txq->axq_lock);
  1256. txq->axq_depth = 0;
  1257. txq->axq_ampdu_depth = 0;
  1258. txq->axq_tx_inprogress = false;
  1259. sc->tx.txqsetup |= 1<<axq_qnum;
  1260. txq->txq_headidx = txq->txq_tailidx = 0;
  1261. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  1262. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  1263. }
  1264. return &sc->tx.txq[axq_qnum];
  1265. }
  1266. int ath_txq_update(struct ath_softc *sc, int qnum,
  1267. struct ath9k_tx_queue_info *qinfo)
  1268. {
  1269. struct ath_hw *ah = sc->sc_ah;
  1270. int error = 0;
  1271. struct ath9k_tx_queue_info qi;
  1272. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  1273. ath9k_hw_get_txq_props(ah, qnum, &qi);
  1274. qi.tqi_aifs = qinfo->tqi_aifs;
  1275. qi.tqi_cwmin = qinfo->tqi_cwmin;
  1276. qi.tqi_cwmax = qinfo->tqi_cwmax;
  1277. qi.tqi_burstTime = qinfo->tqi_burstTime;
  1278. qi.tqi_readyTime = qinfo->tqi_readyTime;
  1279. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  1280. ath_err(ath9k_hw_common(sc->sc_ah),
  1281. "Unable to update hardware queue %u!\n", qnum);
  1282. error = -EIO;
  1283. } else {
  1284. ath9k_hw_resettxqueue(ah, qnum);
  1285. }
  1286. return error;
  1287. }
  1288. int ath_cabq_update(struct ath_softc *sc)
  1289. {
  1290. struct ath9k_tx_queue_info qi;
  1291. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  1292. int qnum = sc->beacon.cabq->axq_qnum;
  1293. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  1294. /*
  1295. * Ensure the readytime % is within the bounds.
  1296. */
  1297. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  1298. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  1299. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  1300. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  1301. qi.tqi_readyTime = (cur_conf->beacon_interval *
  1302. sc->config.cabqReadytime) / 100;
  1303. ath_txq_update(sc, qnum, &qi);
  1304. return 0;
  1305. }
  1306. static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
  1307. struct list_head *list)
  1308. {
  1309. struct ath_buf *bf, *lastbf;
  1310. struct list_head bf_head;
  1311. struct ath_tx_status ts;
  1312. memset(&ts, 0, sizeof(ts));
  1313. ts.ts_status = ATH9K_TX_FLUSH;
  1314. INIT_LIST_HEAD(&bf_head);
  1315. while (!list_empty(list)) {
  1316. bf = list_first_entry(list, struct ath_buf, list);
  1317. if (bf->bf_stale) {
  1318. list_del(&bf->list);
  1319. ath_tx_return_buffer(sc, bf);
  1320. continue;
  1321. }
  1322. lastbf = bf->bf_lastbf;
  1323. list_cut_position(&bf_head, list, &lastbf->list);
  1324. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  1325. }
  1326. }
  1327. /*
  1328. * Drain a given TX queue (could be Beacon or Data)
  1329. *
  1330. * This assumes output has been stopped and
  1331. * we do not need to block ath_tx_tasklet.
  1332. */
  1333. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
  1334. {
  1335. ath_txq_lock(sc, txq);
  1336. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1337. int idx = txq->txq_tailidx;
  1338. while (!list_empty(&txq->txq_fifo[idx])) {
  1339. ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
  1340. INCR(idx, ATH_TXFIFO_DEPTH);
  1341. }
  1342. txq->txq_tailidx = idx;
  1343. }
  1344. txq->axq_link = NULL;
  1345. txq->axq_tx_inprogress = false;
  1346. ath_drain_txq_list(sc, txq, &txq->axq_q);
  1347. ath_txq_unlock_complete(sc, txq);
  1348. }
  1349. bool ath_drain_all_txq(struct ath_softc *sc)
  1350. {
  1351. struct ath_hw *ah = sc->sc_ah;
  1352. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1353. struct ath_txq *txq;
  1354. int i;
  1355. u32 npend = 0;
  1356. if (test_bit(SC_OP_INVALID, &sc->sc_flags))
  1357. return true;
  1358. ath9k_hw_abort_tx_dma(ah);
  1359. /* Check if any queue remains active */
  1360. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1361. if (!ATH_TXQ_SETUP(sc, i))
  1362. continue;
  1363. if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
  1364. npend |= BIT(i);
  1365. }
  1366. if (npend)
  1367. ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
  1368. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1369. if (!ATH_TXQ_SETUP(sc, i))
  1370. continue;
  1371. /*
  1372. * The caller will resume queues with ieee80211_wake_queues.
  1373. * Mark the queue as not stopped to prevent ath_tx_complete
  1374. * from waking the queue too early.
  1375. */
  1376. txq = &sc->tx.txq[i];
  1377. txq->stopped = false;
  1378. ath_draintxq(sc, txq);
  1379. }
  1380. return !npend;
  1381. }
  1382. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1383. {
  1384. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1385. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1386. }
  1387. /* For each axq_acq entry, for each tid, try to schedule packets
  1388. * for transmit until ampdu_depth has reached min Q depth.
  1389. */
  1390. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1391. {
  1392. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1393. struct ath_atx_tid *tid, *last_tid;
  1394. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
  1395. list_empty(&txq->axq_acq) ||
  1396. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1397. return;
  1398. rcu_read_lock();
  1399. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1400. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1401. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1402. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1403. list_del(&ac->list);
  1404. ac->sched = false;
  1405. while (!list_empty(&ac->tid_q)) {
  1406. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1407. list);
  1408. list_del(&tid->list);
  1409. tid->sched = false;
  1410. if (tid->paused)
  1411. continue;
  1412. ath_tx_sched_aggr(sc, txq, tid);
  1413. /*
  1414. * add tid to round-robin queue if more frames
  1415. * are pending for the tid
  1416. */
  1417. if (!skb_queue_empty(&tid->buf_q))
  1418. ath_tx_queue_tid(txq, tid);
  1419. if (tid == last_tid ||
  1420. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1421. break;
  1422. }
  1423. if (!list_empty(&ac->tid_q) && !ac->sched) {
  1424. ac->sched = true;
  1425. list_add_tail(&ac->list, &txq->axq_acq);
  1426. }
  1427. if (ac == last_ac ||
  1428. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1429. break;
  1430. }
  1431. rcu_read_unlock();
  1432. }
  1433. /***********/
  1434. /* TX, DMA */
  1435. /***********/
  1436. /*
  1437. * Insert a chain of ath_buf (descriptors) on a txq and
  1438. * assume the descriptors are already chained together by caller.
  1439. */
  1440. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1441. struct list_head *head, bool internal)
  1442. {
  1443. struct ath_hw *ah = sc->sc_ah;
  1444. struct ath_common *common = ath9k_hw_common(ah);
  1445. struct ath_buf *bf, *bf_last;
  1446. bool puttxbuf = false;
  1447. bool edma;
  1448. /*
  1449. * Insert the frame on the outbound list and
  1450. * pass it on to the hardware.
  1451. */
  1452. if (list_empty(head))
  1453. return;
  1454. edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
  1455. bf = list_first_entry(head, struct ath_buf, list);
  1456. bf_last = list_entry(head->prev, struct ath_buf, list);
  1457. ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
  1458. txq->axq_qnum, txq->axq_depth);
  1459. if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
  1460. list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1461. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1462. puttxbuf = true;
  1463. } else {
  1464. list_splice_tail_init(head, &txq->axq_q);
  1465. if (txq->axq_link) {
  1466. ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
  1467. ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
  1468. txq->axq_qnum, txq->axq_link,
  1469. ito64(bf->bf_daddr), bf->bf_desc);
  1470. } else if (!edma)
  1471. puttxbuf = true;
  1472. txq->axq_link = bf_last->bf_desc;
  1473. }
  1474. if (puttxbuf) {
  1475. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1476. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1477. ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
  1478. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1479. }
  1480. if (!edma) {
  1481. TX_STAT_INC(txq->axq_qnum, txstart);
  1482. ath9k_hw_txstart(ah, txq->axq_qnum);
  1483. }
  1484. if (!internal) {
  1485. while (bf) {
  1486. txq->axq_depth++;
  1487. if (bf_is_ampdu_not_probing(bf))
  1488. txq->axq_ampdu_depth++;
  1489. bf = bf->bf_lastbf->bf_next;
  1490. }
  1491. }
  1492. }
  1493. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_txq *txq,
  1494. struct ath_atx_tid *tid, struct sk_buff *skb,
  1495. struct ath_tx_control *txctl)
  1496. {
  1497. struct ath_frame_info *fi = get_frame_info(skb);
  1498. struct list_head bf_head;
  1499. struct ath_buf *bf;
  1500. /*
  1501. * Do not queue to h/w when any of the following conditions is true:
  1502. * - there are pending frames in software queue
  1503. * - the TID is currently paused for ADDBA/BAR request
  1504. * - seqno is not within block-ack window
  1505. * - h/w queue depth exceeds low water mark
  1506. */
  1507. if ((!skb_queue_empty(&tid->buf_q) || tid->paused ||
  1508. !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
  1509. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) &&
  1510. txq != sc->tx.uapsdq) {
  1511. /*
  1512. * Add this frame to software queue for scheduling later
  1513. * for aggregation.
  1514. */
  1515. TX_STAT_INC(txq->axq_qnum, a_queued_sw);
  1516. __skb_queue_tail(&tid->buf_q, skb);
  1517. if (!txctl->an || !txctl->an->sleeping)
  1518. ath_tx_queue_tid(txq, tid);
  1519. return;
  1520. }
  1521. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1522. if (!bf) {
  1523. ieee80211_free_txskb(sc->hw, skb);
  1524. return;
  1525. }
  1526. ath_set_rates(tid->an->vif, tid->an->sta, bf);
  1527. bf->bf_state.bf_type = BUF_AMPDU;
  1528. INIT_LIST_HEAD(&bf_head);
  1529. list_add(&bf->list, &bf_head);
  1530. /* Add sub-frame to BAW */
  1531. ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
  1532. /* Queue to h/w without aggregation */
  1533. TX_STAT_INC(txq->axq_qnum, a_queued_hw);
  1534. bf->bf_lastbf = bf;
  1535. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1536. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1537. }
  1538. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1539. struct ath_atx_tid *tid, struct sk_buff *skb)
  1540. {
  1541. struct ath_frame_info *fi = get_frame_info(skb);
  1542. struct list_head bf_head;
  1543. struct ath_buf *bf;
  1544. bf = fi->bf;
  1545. INIT_LIST_HEAD(&bf_head);
  1546. list_add_tail(&bf->list, &bf_head);
  1547. bf->bf_state.bf_type = 0;
  1548. bf->bf_next = NULL;
  1549. bf->bf_lastbf = bf;
  1550. ath_tx_fill_desc(sc, bf, txq, fi->framelen);
  1551. ath_tx_txqaddbuf(sc, txq, &bf_head, false);
  1552. TX_STAT_INC(txq->axq_qnum, queued);
  1553. }
  1554. static void setup_frame_info(struct ieee80211_hw *hw,
  1555. struct ieee80211_sta *sta,
  1556. struct sk_buff *skb,
  1557. int framelen)
  1558. {
  1559. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1560. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1561. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1562. const struct ieee80211_rate *rate;
  1563. struct ath_frame_info *fi = get_frame_info(skb);
  1564. struct ath_node *an = NULL;
  1565. enum ath9k_key_type keytype;
  1566. bool short_preamble = false;
  1567. /*
  1568. * We check if Short Preamble is needed for the CTS rate by
  1569. * checking the BSS's global flag.
  1570. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1571. */
  1572. if (tx_info->control.vif &&
  1573. tx_info->control.vif->bss_conf.use_short_preamble)
  1574. short_preamble = true;
  1575. rate = ieee80211_get_rts_cts_rate(hw, tx_info);
  1576. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1577. if (sta)
  1578. an = (struct ath_node *) sta->drv_priv;
  1579. memset(fi, 0, sizeof(*fi));
  1580. if (hw_key)
  1581. fi->keyix = hw_key->hw_key_idx;
  1582. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1583. fi->keyix = an->ps_key;
  1584. else
  1585. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1586. fi->keytype = keytype;
  1587. fi->framelen = framelen;
  1588. fi->rtscts_rate = rate->hw_value;
  1589. if (short_preamble)
  1590. fi->rtscts_rate |= rate->hw_value_short;
  1591. }
  1592. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1593. {
  1594. struct ath_hw *ah = sc->sc_ah;
  1595. struct ath9k_channel *curchan = ah->curchan;
  1596. if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
  1597. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1598. (chainmask == 0x7) && (rate < 0x90))
  1599. return 0x3;
  1600. else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
  1601. IS_CCK_RATE(rate))
  1602. return 0x2;
  1603. else
  1604. return chainmask;
  1605. }
  1606. /*
  1607. * Assign a descriptor (and sequence number if necessary,
  1608. * and map buffer for DMA. Frees skb on error
  1609. */
  1610. static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
  1611. struct ath_txq *txq,
  1612. struct ath_atx_tid *tid,
  1613. struct sk_buff *skb)
  1614. {
  1615. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1616. struct ath_frame_info *fi = get_frame_info(skb);
  1617. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1618. struct ath_buf *bf;
  1619. int fragno;
  1620. u16 seqno;
  1621. bf = ath_tx_get_buffer(sc);
  1622. if (!bf) {
  1623. ath_dbg(common, XMIT, "TX buffers are full\n");
  1624. return NULL;
  1625. }
  1626. ATH_TXBUF_RESET(bf);
  1627. if (tid) {
  1628. fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
  1629. seqno = tid->seq_next;
  1630. hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
  1631. if (fragno)
  1632. hdr->seq_ctrl |= cpu_to_le16(fragno);
  1633. if (!ieee80211_has_morefrags(hdr->frame_control))
  1634. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1635. bf->bf_state.seqno = seqno;
  1636. }
  1637. bf->bf_mpdu = skb;
  1638. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1639. skb->len, DMA_TO_DEVICE);
  1640. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1641. bf->bf_mpdu = NULL;
  1642. bf->bf_buf_addr = 0;
  1643. ath_err(ath9k_hw_common(sc->sc_ah),
  1644. "dma_mapping_error() on TX\n");
  1645. ath_tx_return_buffer(sc, bf);
  1646. return NULL;
  1647. }
  1648. fi->bf = bf;
  1649. return bf;
  1650. }
  1651. static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
  1652. struct ath_tx_control *txctl)
  1653. {
  1654. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1655. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1656. struct ieee80211_sta *sta = txctl->sta;
  1657. struct ieee80211_vif *vif = info->control.vif;
  1658. struct ath_softc *sc = hw->priv;
  1659. int frmlen = skb->len + FCS_LEN;
  1660. int padpos, padsize;
  1661. /* NOTE: sta can be NULL according to net/mac80211.h */
  1662. if (sta)
  1663. txctl->an = (struct ath_node *)sta->drv_priv;
  1664. if (info->control.hw_key)
  1665. frmlen += info->control.hw_key->icv_len;
  1666. /*
  1667. * As a temporary workaround, assign seq# here; this will likely need
  1668. * to be cleaned up to work better with Beacon transmission and virtual
  1669. * BSSes.
  1670. */
  1671. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1672. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1673. sc->tx.seq_no += 0x10;
  1674. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1675. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1676. }
  1677. if ((vif && vif->type != NL80211_IFTYPE_AP &&
  1678. vif->type != NL80211_IFTYPE_AP_VLAN) ||
  1679. !ieee80211_is_data(hdr->frame_control))
  1680. info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
  1681. /* Add the padding after the header if this is not already done */
  1682. padpos = ieee80211_hdrlen(hdr->frame_control);
  1683. padsize = padpos & 3;
  1684. if (padsize && skb->len > padpos) {
  1685. if (skb_headroom(skb) < padsize)
  1686. return -ENOMEM;
  1687. skb_push(skb, padsize);
  1688. memmove(skb->data, skb->data + padsize, padpos);
  1689. }
  1690. setup_frame_info(hw, sta, skb, frmlen);
  1691. return 0;
  1692. }
  1693. /* Upon failure caller should free skb */
  1694. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1695. struct ath_tx_control *txctl)
  1696. {
  1697. struct ieee80211_hdr *hdr;
  1698. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1699. struct ieee80211_sta *sta = txctl->sta;
  1700. struct ieee80211_vif *vif = info->control.vif;
  1701. struct ath_softc *sc = hw->priv;
  1702. struct ath_txq *txq = txctl->txq;
  1703. struct ath_atx_tid *tid = NULL;
  1704. struct ath_buf *bf;
  1705. u8 tidno;
  1706. int q;
  1707. int ret;
  1708. ret = ath_tx_prepare(hw, skb, txctl);
  1709. if (ret)
  1710. return ret;
  1711. hdr = (struct ieee80211_hdr *) skb->data;
  1712. /*
  1713. * At this point, the vif, hw_key and sta pointers in the tx control
  1714. * info are no longer valid (overwritten by the ath_frame_info data.
  1715. */
  1716. q = skb_get_queue_mapping(skb);
  1717. ath_txq_lock(sc, txq);
  1718. if (txq == sc->tx.txq_map[q] &&
  1719. ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
  1720. !txq->stopped) {
  1721. ieee80211_stop_queue(sc->hw, q);
  1722. txq->stopped = true;
  1723. }
  1724. if (info->flags & IEEE80211_TX_CTL_PS_RESPONSE) {
  1725. ath_txq_unlock(sc, txq);
  1726. txq = sc->tx.uapsdq;
  1727. ath_txq_lock(sc, txq);
  1728. }
  1729. if (txctl->an && ieee80211_is_data_qos(hdr->frame_control)) {
  1730. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1731. IEEE80211_QOS_CTL_TID_MASK;
  1732. tid = ATH_AN_2_TID(txctl->an, tidno);
  1733. WARN_ON(tid->ac->txq != txctl->txq);
  1734. }
  1735. if ((info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1736. /*
  1737. * Try aggregation if it's a unicast data frame
  1738. * and the destination is HT capable.
  1739. */
  1740. ath_tx_send_ampdu(sc, txq, tid, skb, txctl);
  1741. goto out;
  1742. }
  1743. bf = ath_tx_setup_buffer(sc, txq, tid, skb);
  1744. if (!bf) {
  1745. if (txctl->paprd)
  1746. dev_kfree_skb_any(skb);
  1747. else
  1748. ieee80211_free_txskb(sc->hw, skb);
  1749. goto out;
  1750. }
  1751. bf->bf_state.bfs_paprd = txctl->paprd;
  1752. if (txctl->paprd)
  1753. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1754. ath_set_rates(vif, sta, bf);
  1755. ath_tx_send_normal(sc, txq, tid, skb);
  1756. out:
  1757. ath_txq_unlock(sc, txq);
  1758. return 0;
  1759. }
  1760. void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
  1761. struct sk_buff *skb)
  1762. {
  1763. struct ath_softc *sc = hw->priv;
  1764. struct ath_tx_control txctl = {
  1765. .txq = sc->beacon.cabq
  1766. };
  1767. struct ath_tx_info info = {};
  1768. struct ieee80211_hdr *hdr;
  1769. struct ath_buf *bf_tail = NULL;
  1770. struct ath_buf *bf;
  1771. LIST_HEAD(bf_q);
  1772. int duration = 0;
  1773. int max_duration;
  1774. max_duration =
  1775. sc->cur_beacon_conf.beacon_interval * 1000 *
  1776. sc->cur_beacon_conf.dtim_period / ATH_BCBUF;
  1777. do {
  1778. struct ath_frame_info *fi = get_frame_info(skb);
  1779. if (ath_tx_prepare(hw, skb, &txctl))
  1780. break;
  1781. bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
  1782. if (!bf)
  1783. break;
  1784. bf->bf_lastbf = bf;
  1785. ath_set_rates(vif, NULL, bf);
  1786. ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
  1787. duration += info.rates[0].PktDuration;
  1788. if (bf_tail)
  1789. bf_tail->bf_next = bf;
  1790. list_add_tail(&bf->list, &bf_q);
  1791. bf_tail = bf;
  1792. skb = NULL;
  1793. if (duration > max_duration)
  1794. break;
  1795. skb = ieee80211_get_buffered_bc(hw, vif);
  1796. } while(skb);
  1797. if (skb)
  1798. ieee80211_free_txskb(hw, skb);
  1799. if (list_empty(&bf_q))
  1800. return;
  1801. bf = list_first_entry(&bf_q, struct ath_buf, list);
  1802. hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
  1803. if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) {
  1804. hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA;
  1805. dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
  1806. sizeof(*hdr), DMA_TO_DEVICE);
  1807. }
  1808. ath_txq_lock(sc, txctl.txq);
  1809. ath_tx_fill_desc(sc, bf, txctl.txq, 0);
  1810. ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
  1811. TX_STAT_INC(txctl.txq->axq_qnum, queued);
  1812. ath_txq_unlock(sc, txctl.txq);
  1813. }
  1814. /*****************/
  1815. /* TX Completion */
  1816. /*****************/
  1817. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1818. int tx_flags, struct ath_txq *txq)
  1819. {
  1820. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1821. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1822. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1823. int q, padpos, padsize;
  1824. unsigned long flags;
  1825. ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
  1826. if (sc->sc_ah->caldata)
  1827. sc->sc_ah->caldata->paprd_packet_sent = true;
  1828. if (!(tx_flags & ATH_TX_ERROR))
  1829. /* Frame was ACKed */
  1830. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1831. padpos = ieee80211_hdrlen(hdr->frame_control);
  1832. padsize = padpos & 3;
  1833. if (padsize && skb->len>padpos+padsize) {
  1834. /*
  1835. * Remove MAC header padding before giving the frame back to
  1836. * mac80211.
  1837. */
  1838. memmove(skb->data + padsize, skb->data, padpos);
  1839. skb_pull(skb, padsize);
  1840. }
  1841. spin_lock_irqsave(&sc->sc_pm_lock, flags);
  1842. if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
  1843. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1844. ath_dbg(common, PS,
  1845. "Going back to sleep after having received TX status (0x%lx)\n",
  1846. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1847. PS_WAIT_FOR_CAB |
  1848. PS_WAIT_FOR_PSPOLL_DATA |
  1849. PS_WAIT_FOR_TX_ACK));
  1850. }
  1851. spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
  1852. __skb_queue_tail(&txq->complete_q, skb);
  1853. q = skb_get_queue_mapping(skb);
  1854. if (txq == sc->tx.uapsdq)
  1855. txq = sc->tx.txq_map[q];
  1856. if (txq == sc->tx.txq_map[q]) {
  1857. if (WARN_ON(--txq->pending_frames < 0))
  1858. txq->pending_frames = 0;
  1859. if (txq->stopped &&
  1860. txq->pending_frames < sc->tx.txq_max_pending[q]) {
  1861. ieee80211_wake_queue(sc->hw, q);
  1862. txq->stopped = false;
  1863. }
  1864. }
  1865. }
  1866. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1867. struct ath_txq *txq, struct list_head *bf_q,
  1868. struct ath_tx_status *ts, int txok)
  1869. {
  1870. struct sk_buff *skb = bf->bf_mpdu;
  1871. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1872. unsigned long flags;
  1873. int tx_flags = 0;
  1874. if (!txok)
  1875. tx_flags |= ATH_TX_ERROR;
  1876. if (ts->ts_status & ATH9K_TXERR_FILT)
  1877. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1878. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1879. bf->bf_buf_addr = 0;
  1880. if (bf->bf_state.bfs_paprd) {
  1881. if (time_after(jiffies,
  1882. bf->bf_state.bfs_paprd_timestamp +
  1883. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1884. dev_kfree_skb_any(skb);
  1885. else
  1886. complete(&sc->paprd_complete);
  1887. } else {
  1888. ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
  1889. ath_tx_complete(sc, skb, tx_flags, txq);
  1890. }
  1891. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1892. * accidentally reference it later.
  1893. */
  1894. bf->bf_mpdu = NULL;
  1895. /*
  1896. * Return the list of ath_buf of this mpdu to free queue
  1897. */
  1898. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1899. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1900. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1901. }
  1902. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1903. struct ath_tx_status *ts, int nframes, int nbad,
  1904. int txok)
  1905. {
  1906. struct sk_buff *skb = bf->bf_mpdu;
  1907. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1908. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1909. struct ieee80211_hw *hw = sc->hw;
  1910. struct ath_hw *ah = sc->sc_ah;
  1911. u8 i, tx_rateindex;
  1912. if (txok)
  1913. tx_info->status.ack_signal = ts->ts_rssi;
  1914. tx_rateindex = ts->ts_rateindex;
  1915. WARN_ON(tx_rateindex >= hw->max_rates);
  1916. if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
  1917. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1918. BUG_ON(nbad > nframes);
  1919. }
  1920. tx_info->status.ampdu_len = nframes;
  1921. tx_info->status.ampdu_ack_len = nframes - nbad;
  1922. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1923. (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
  1924. /*
  1925. * If an underrun error is seen assume it as an excessive
  1926. * retry only if max frame trigger level has been reached
  1927. * (2 KB for single stream, and 4 KB for dual stream).
  1928. * Adjust the long retry as if the frame was tried
  1929. * hw->max_rate_tries times to affect how rate control updates
  1930. * PER for the failed rate.
  1931. * In case of congestion on the bus penalizing this type of
  1932. * underruns should help hardware actually transmit new frames
  1933. * successfully by eventually preferring slower rates.
  1934. * This itself should also alleviate congestion on the bus.
  1935. */
  1936. if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1937. ATH9K_TX_DELIM_UNDERRUN)) &&
  1938. ieee80211_is_data(hdr->frame_control) &&
  1939. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1940. tx_info->status.rates[tx_rateindex].count =
  1941. hw->max_rate_tries;
  1942. }
  1943. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1944. tx_info->status.rates[i].count = 0;
  1945. tx_info->status.rates[i].idx = -1;
  1946. }
  1947. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1948. }
  1949. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1950. {
  1951. struct ath_hw *ah = sc->sc_ah;
  1952. struct ath_common *common = ath9k_hw_common(ah);
  1953. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1954. struct list_head bf_head;
  1955. struct ath_desc *ds;
  1956. struct ath_tx_status ts;
  1957. int status;
  1958. ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
  1959. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1960. txq->axq_link);
  1961. ath_txq_lock(sc, txq);
  1962. for (;;) {
  1963. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  1964. break;
  1965. if (list_empty(&txq->axq_q)) {
  1966. txq->axq_link = NULL;
  1967. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
  1968. ath_txq_schedule(sc, txq);
  1969. break;
  1970. }
  1971. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1972. /*
  1973. * There is a race condition that a BH gets scheduled
  1974. * after sw writes TxE and before hw re-load the last
  1975. * descriptor to get the newly chained one.
  1976. * Software must keep the last DONE descriptor as a
  1977. * holding descriptor - software does so by marking
  1978. * it with the STALE flag.
  1979. */
  1980. bf_held = NULL;
  1981. if (bf->bf_stale) {
  1982. bf_held = bf;
  1983. if (list_is_last(&bf_held->list, &txq->axq_q))
  1984. break;
  1985. bf = list_entry(bf_held->list.next, struct ath_buf,
  1986. list);
  1987. }
  1988. lastbf = bf->bf_lastbf;
  1989. ds = lastbf->bf_desc;
  1990. memset(&ts, 0, sizeof(ts));
  1991. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1992. if (status == -EINPROGRESS)
  1993. break;
  1994. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1995. /*
  1996. * Remove ath_buf's of the same transmit unit from txq,
  1997. * however leave the last descriptor back as the holding
  1998. * descriptor for hw.
  1999. */
  2000. lastbf->bf_stale = true;
  2001. INIT_LIST_HEAD(&bf_head);
  2002. if (!list_is_singular(&lastbf->list))
  2003. list_cut_position(&bf_head,
  2004. &txq->axq_q, lastbf->list.prev);
  2005. if (bf_held) {
  2006. list_del(&bf_held->list);
  2007. ath_tx_return_buffer(sc, bf_held);
  2008. }
  2009. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  2010. }
  2011. ath_txq_unlock_complete(sc, txq);
  2012. }
  2013. void ath_tx_tasklet(struct ath_softc *sc)
  2014. {
  2015. struct ath_hw *ah = sc->sc_ah;
  2016. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
  2017. int i;
  2018. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  2019. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  2020. ath_tx_processq(sc, &sc->tx.txq[i]);
  2021. }
  2022. }
  2023. void ath_tx_edma_tasklet(struct ath_softc *sc)
  2024. {
  2025. struct ath_tx_status ts;
  2026. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2027. struct ath_hw *ah = sc->sc_ah;
  2028. struct ath_txq *txq;
  2029. struct ath_buf *bf, *lastbf;
  2030. struct list_head bf_head;
  2031. struct list_head *fifo_list;
  2032. int status;
  2033. for (;;) {
  2034. if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
  2035. break;
  2036. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
  2037. if (status == -EINPROGRESS)
  2038. break;
  2039. if (status == -EIO) {
  2040. ath_dbg(common, XMIT, "Error processing tx status\n");
  2041. break;
  2042. }
  2043. /* Process beacon completions separately */
  2044. if (ts.qid == sc->beacon.beaconq) {
  2045. sc->beacon.tx_processed = true;
  2046. sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
  2047. continue;
  2048. }
  2049. txq = &sc->tx.txq[ts.qid];
  2050. ath_txq_lock(sc, txq);
  2051. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  2052. fifo_list = &txq->txq_fifo[txq->txq_tailidx];
  2053. if (list_empty(fifo_list)) {
  2054. ath_txq_unlock(sc, txq);
  2055. return;
  2056. }
  2057. bf = list_first_entry(fifo_list, struct ath_buf, list);
  2058. if (bf->bf_stale) {
  2059. list_del(&bf->list);
  2060. ath_tx_return_buffer(sc, bf);
  2061. bf = list_first_entry(fifo_list, struct ath_buf, list);
  2062. }
  2063. lastbf = bf->bf_lastbf;
  2064. INIT_LIST_HEAD(&bf_head);
  2065. if (list_is_last(&lastbf->list, fifo_list)) {
  2066. list_splice_tail_init(fifo_list, &bf_head);
  2067. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  2068. if (!list_empty(&txq->axq_q)) {
  2069. struct list_head bf_q;
  2070. INIT_LIST_HEAD(&bf_q);
  2071. txq->axq_link = NULL;
  2072. list_splice_tail_init(&txq->axq_q, &bf_q);
  2073. ath_tx_txqaddbuf(sc, txq, &bf_q, true);
  2074. }
  2075. } else {
  2076. lastbf->bf_stale = true;
  2077. if (bf != lastbf)
  2078. list_cut_position(&bf_head, fifo_list,
  2079. lastbf->list.prev);
  2080. }
  2081. ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
  2082. ath_txq_unlock_complete(sc, txq);
  2083. }
  2084. }
  2085. /*****************/
  2086. /* Init, Cleanup */
  2087. /*****************/
  2088. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  2089. {
  2090. struct ath_descdma *dd = &sc->txsdma;
  2091. u8 txs_len = sc->sc_ah->caps.txs_len;
  2092. dd->dd_desc_len = size * txs_len;
  2093. dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
  2094. &dd->dd_desc_paddr, GFP_KERNEL);
  2095. if (!dd->dd_desc)
  2096. return -ENOMEM;
  2097. return 0;
  2098. }
  2099. static int ath_tx_edma_init(struct ath_softc *sc)
  2100. {
  2101. int err;
  2102. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  2103. if (!err)
  2104. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  2105. sc->txsdma.dd_desc_paddr,
  2106. ATH_TXSTATUS_RING_SIZE);
  2107. return err;
  2108. }
  2109. int ath_tx_init(struct ath_softc *sc, int nbufs)
  2110. {
  2111. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  2112. int error = 0;
  2113. spin_lock_init(&sc->tx.txbuflock);
  2114. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  2115. "tx", nbufs, 1, 1);
  2116. if (error != 0) {
  2117. ath_err(common,
  2118. "Failed to allocate tx descriptors: %d\n", error);
  2119. return error;
  2120. }
  2121. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  2122. "beacon", ATH_BCBUF, 1, 1);
  2123. if (error != 0) {
  2124. ath_err(common,
  2125. "Failed to allocate beacon descriptors: %d\n", error);
  2126. return error;
  2127. }
  2128. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  2129. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  2130. error = ath_tx_edma_init(sc);
  2131. return error;
  2132. }
  2133. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  2134. {
  2135. struct ath_atx_tid *tid;
  2136. struct ath_atx_ac *ac;
  2137. int tidno, acno;
  2138. for (tidno = 0, tid = &an->tid[tidno];
  2139. tidno < IEEE80211_NUM_TIDS;
  2140. tidno++, tid++) {
  2141. tid->an = an;
  2142. tid->tidno = tidno;
  2143. tid->seq_start = tid->seq_next = 0;
  2144. tid->baw_size = WME_MAX_BA;
  2145. tid->baw_head = tid->baw_tail = 0;
  2146. tid->sched = false;
  2147. tid->paused = false;
  2148. tid->active = false;
  2149. __skb_queue_head_init(&tid->buf_q);
  2150. acno = TID_TO_WME_AC(tidno);
  2151. tid->ac = &an->ac[acno];
  2152. }
  2153. for (acno = 0, ac = &an->ac[acno];
  2154. acno < IEEE80211_NUM_ACS; acno++, ac++) {
  2155. ac->sched = false;
  2156. ac->txq = sc->tx.txq_map[acno];
  2157. INIT_LIST_HEAD(&ac->tid_q);
  2158. }
  2159. }
  2160. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2161. {
  2162. struct ath_atx_ac *ac;
  2163. struct ath_atx_tid *tid;
  2164. struct ath_txq *txq;
  2165. int tidno;
  2166. for (tidno = 0, tid = &an->tid[tidno];
  2167. tidno < IEEE80211_NUM_TIDS; tidno++, tid++) {
  2168. ac = tid->ac;
  2169. txq = ac->txq;
  2170. ath_txq_lock(sc, txq);
  2171. if (tid->sched) {
  2172. list_del(&tid->list);
  2173. tid->sched = false;
  2174. }
  2175. if (ac->sched) {
  2176. list_del(&ac->list);
  2177. tid->ac->sched = false;
  2178. }
  2179. ath_tid_drain(sc, txq, tid);
  2180. tid->active = false;
  2181. ath_txq_unlock(sc, txq);
  2182. }
  2183. }