setup_64.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244
  1. /*
  2. * Copyright (C) 1995 Linus Torvalds
  3. */
  4. /*
  5. * This file handles the architecture-dependent parts of initialization
  6. */
  7. #include <linux/errno.h>
  8. #include <linux/sched.h>
  9. #include <linux/kernel.h>
  10. #include <linux/mm.h>
  11. #include <linux/stddef.h>
  12. #include <linux/unistd.h>
  13. #include <linux/ptrace.h>
  14. #include <linux/slab.h>
  15. #include <linux/user.h>
  16. #include <linux/a.out.h>
  17. #include <linux/screen_info.h>
  18. #include <linux/ioport.h>
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/initrd.h>
  22. #include <linux/highmem.h>
  23. #include <linux/bootmem.h>
  24. #include <linux/module.h>
  25. #include <asm/processor.h>
  26. #include <linux/console.h>
  27. #include <linux/seq_file.h>
  28. #include <linux/crash_dump.h>
  29. #include <linux/root_dev.h>
  30. #include <linux/pci.h>
  31. #include <linux/efi.h>
  32. #include <linux/acpi.h>
  33. #include <linux/kallsyms.h>
  34. #include <linux/edd.h>
  35. #include <linux/mmzone.h>
  36. #include <linux/kexec.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/dmi.h>
  39. #include <linux/dma-mapping.h>
  40. #include <linux/ctype.h>
  41. #include <linux/uaccess.h>
  42. #include <asm/mtrr.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/system.h>
  45. #include <asm/vsyscall.h>
  46. #include <asm/io.h>
  47. #include <asm/smp.h>
  48. #include <asm/msr.h>
  49. #include <asm/desc.h>
  50. #include <video/edid.h>
  51. #include <asm/e820.h>
  52. #include <asm/dma.h>
  53. #include <asm/gart.h>
  54. #include <asm/mpspec.h>
  55. #include <asm/mmu_context.h>
  56. #include <asm/proto.h>
  57. #include <asm/setup.h>
  58. #include <asm/mach_apic.h>
  59. #include <asm/numa.h>
  60. #include <asm/sections.h>
  61. #include <asm/dmi.h>
  62. #include <asm/cacheflush.h>
  63. #include <asm/mce.h>
  64. #include <asm/ds.h>
  65. #include <asm/topology.h>
  66. #ifdef CONFIG_PARAVIRT
  67. #include <asm/paravirt.h>
  68. #else
  69. #define ARCH_SETUP
  70. #endif
  71. /*
  72. * Machine setup..
  73. */
  74. struct cpuinfo_x86 boot_cpu_data __read_mostly;
  75. EXPORT_SYMBOL(boot_cpu_data);
  76. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  77. unsigned long mmu_cr4_features;
  78. /* Boot loader ID as an integer, for the benefit of proc_dointvec */
  79. int bootloader_type;
  80. unsigned long saved_video_mode;
  81. int force_mwait __cpuinitdata;
  82. /*
  83. * Early DMI memory
  84. */
  85. int dmi_alloc_index;
  86. char dmi_alloc_data[DMI_MAX_DATA];
  87. /*
  88. * Setup options
  89. */
  90. struct screen_info screen_info;
  91. EXPORT_SYMBOL(screen_info);
  92. struct sys_desc_table_struct {
  93. unsigned short length;
  94. unsigned char table[0];
  95. };
  96. struct edid_info edid_info;
  97. EXPORT_SYMBOL_GPL(edid_info);
  98. extern int root_mountflags;
  99. char __initdata command_line[COMMAND_LINE_SIZE];
  100. struct resource standard_io_resources[] = {
  101. { .name = "dma1", .start = 0x00, .end = 0x1f,
  102. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  103. { .name = "pic1", .start = 0x20, .end = 0x21,
  104. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  105. { .name = "timer0", .start = 0x40, .end = 0x43,
  106. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  107. { .name = "timer1", .start = 0x50, .end = 0x53,
  108. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  109. { .name = "keyboard", .start = 0x60, .end = 0x6f,
  110. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  111. { .name = "dma page reg", .start = 0x80, .end = 0x8f,
  112. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  113. { .name = "pic2", .start = 0xa0, .end = 0xa1,
  114. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  115. { .name = "dma2", .start = 0xc0, .end = 0xdf,
  116. .flags = IORESOURCE_BUSY | IORESOURCE_IO },
  117. { .name = "fpu", .start = 0xf0, .end = 0xff,
  118. .flags = IORESOURCE_BUSY | IORESOURCE_IO }
  119. };
  120. #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
  121. static struct resource data_resource = {
  122. .name = "Kernel data",
  123. .start = 0,
  124. .end = 0,
  125. .flags = IORESOURCE_RAM,
  126. };
  127. static struct resource code_resource = {
  128. .name = "Kernel code",
  129. .start = 0,
  130. .end = 0,
  131. .flags = IORESOURCE_RAM,
  132. };
  133. static struct resource bss_resource = {
  134. .name = "Kernel bss",
  135. .start = 0,
  136. .end = 0,
  137. .flags = IORESOURCE_RAM,
  138. };
  139. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
  140. #ifdef CONFIG_PROC_VMCORE
  141. /* elfcorehdr= specifies the location of elf core header
  142. * stored by the crashed kernel. This option will be passed
  143. * by kexec loader to the capture kernel.
  144. */
  145. static int __init setup_elfcorehdr(char *arg)
  146. {
  147. char *end;
  148. if (!arg)
  149. return -EINVAL;
  150. elfcorehdr_addr = memparse(arg, &end);
  151. return end > arg ? 0 : -EINVAL;
  152. }
  153. early_param("elfcorehdr", setup_elfcorehdr);
  154. #endif
  155. #ifndef CONFIG_NUMA
  156. static void __init
  157. contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
  158. {
  159. unsigned long bootmap_size, bootmap;
  160. bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
  161. bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
  162. if (bootmap == -1L)
  163. panic("Cannot find bootmem map of size %ld\n", bootmap_size);
  164. bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
  165. e820_register_active_regions(0, start_pfn, end_pfn);
  166. free_bootmem_with_active_regions(0, end_pfn);
  167. reserve_bootmem(bootmap, bootmap_size);
  168. }
  169. #endif
  170. #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
  171. struct edd edd;
  172. #ifdef CONFIG_EDD_MODULE
  173. EXPORT_SYMBOL(edd);
  174. #endif
  175. /**
  176. * copy_edd() - Copy the BIOS EDD information
  177. * from boot_params into a safe place.
  178. *
  179. */
  180. static inline void copy_edd(void)
  181. {
  182. memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
  183. sizeof(edd.mbr_signature));
  184. memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
  185. edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
  186. edd.edd_info_nr = boot_params.eddbuf_entries;
  187. }
  188. #else
  189. static inline void copy_edd(void)
  190. {
  191. }
  192. #endif
  193. #ifdef CONFIG_KEXEC
  194. static void __init reserve_crashkernel(void)
  195. {
  196. unsigned long long free_mem;
  197. unsigned long long crash_size, crash_base;
  198. int ret;
  199. free_mem =
  200. ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
  201. ret = parse_crashkernel(boot_command_line, free_mem,
  202. &crash_size, &crash_base);
  203. if (ret == 0 && crash_size) {
  204. if (crash_base > 0) {
  205. printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
  206. "for crashkernel (System RAM: %ldMB)\n",
  207. (unsigned long)(crash_size >> 20),
  208. (unsigned long)(crash_base >> 20),
  209. (unsigned long)(free_mem >> 20));
  210. crashk_res.start = crash_base;
  211. crashk_res.end = crash_base + crash_size - 1;
  212. reserve_bootmem(crash_base, crash_size);
  213. } else
  214. printk(KERN_INFO "crashkernel reservation failed - "
  215. "you have to specify a base address\n");
  216. }
  217. }
  218. #else
  219. static inline void __init reserve_crashkernel(void)
  220. {}
  221. #endif
  222. /* Overridden in paravirt.c if CONFIG_PARAVIRT */
  223. void __attribute__((weak)) __init memory_setup(void)
  224. {
  225. machine_specific_memory_setup();
  226. }
  227. void __init setup_arch(char **cmdline_p)
  228. {
  229. unsigned i;
  230. printk(KERN_INFO "Command line: %s\n", boot_command_line);
  231. ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
  232. screen_info = boot_params.screen_info;
  233. edid_info = boot_params.edid_info;
  234. saved_video_mode = boot_params.hdr.vid_mode;
  235. bootloader_type = boot_params.hdr.type_of_loader;
  236. #ifdef CONFIG_BLK_DEV_RAM
  237. rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
  238. rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
  239. rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
  240. #endif
  241. #ifdef CONFIG_EFI
  242. if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
  243. "EL64", 4))
  244. efi_enabled = 1;
  245. #endif
  246. ARCH_SETUP
  247. memory_setup();
  248. copy_edd();
  249. if (!boot_params.hdr.root_flags)
  250. root_mountflags &= ~MS_RDONLY;
  251. init_mm.start_code = (unsigned long) &_text;
  252. init_mm.end_code = (unsigned long) &_etext;
  253. init_mm.end_data = (unsigned long) &_edata;
  254. init_mm.brk = (unsigned long) &_end;
  255. code_resource.start = virt_to_phys(&_text);
  256. code_resource.end = virt_to_phys(&_etext)-1;
  257. data_resource.start = virt_to_phys(&_etext);
  258. data_resource.end = virt_to_phys(&_edata)-1;
  259. bss_resource.start = virt_to_phys(&__bss_start);
  260. bss_resource.end = virt_to_phys(&__bss_stop)-1;
  261. early_identify_cpu(&boot_cpu_data);
  262. strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
  263. *cmdline_p = command_line;
  264. parse_early_param();
  265. finish_e820_parsing();
  266. early_gart_iommu_check();
  267. e820_register_active_regions(0, 0, -1UL);
  268. /*
  269. * partially used pages are not usable - thus
  270. * we are rounding upwards:
  271. */
  272. end_pfn = e820_end_of_ram();
  273. /* update e820 for memory not covered by WB MTRRs */
  274. mtrr_bp_init();
  275. if (mtrr_trim_uncached_memory(end_pfn)) {
  276. e820_register_active_regions(0, 0, -1UL);
  277. end_pfn = e820_end_of_ram();
  278. }
  279. num_physpages = end_pfn;
  280. check_efer();
  281. init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
  282. if (efi_enabled)
  283. efi_init();
  284. dmi_scan_machine();
  285. io_delay_init();
  286. #ifdef CONFIG_SMP
  287. /* setup to use the early static init tables during kernel startup */
  288. x86_cpu_to_apicid_early_ptr = (void *)x86_cpu_to_apicid_init;
  289. x86_bios_cpu_apicid_early_ptr = (void *)x86_bios_cpu_apicid_init;
  290. #ifdef CONFIG_NUMA
  291. x86_cpu_to_node_map_early_ptr = (void *)x86_cpu_to_node_map_init;
  292. #endif
  293. #endif
  294. #ifdef CONFIG_ACPI
  295. /*
  296. * Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
  297. * Call this early for SRAT node setup.
  298. */
  299. acpi_boot_table_init();
  300. #endif
  301. /* How many end-of-memory variables you have, grandma! */
  302. max_low_pfn = end_pfn;
  303. max_pfn = end_pfn;
  304. high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
  305. /* Remove active ranges so rediscovery with NUMA-awareness happens */
  306. remove_all_active_ranges();
  307. #ifdef CONFIG_ACPI_NUMA
  308. /*
  309. * Parse SRAT to discover nodes.
  310. */
  311. acpi_numa_init();
  312. #endif
  313. #ifdef CONFIG_NUMA
  314. numa_initmem_init(0, end_pfn);
  315. #else
  316. contig_initmem_init(0, end_pfn);
  317. #endif
  318. early_res_to_bootmem();
  319. #ifdef CONFIG_ACPI_SLEEP
  320. /*
  321. * Reserve low memory region for sleep support.
  322. */
  323. acpi_reserve_bootmem();
  324. #endif
  325. if (efi_enabled)
  326. efi_reserve_bootmem();
  327. /*
  328. * Find and reserve possible boot-time SMP configuration:
  329. */
  330. find_smp_config();
  331. #ifdef CONFIG_BLK_DEV_INITRD
  332. if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
  333. unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
  334. unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
  335. unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
  336. unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
  337. if (ramdisk_end <= end_of_mem) {
  338. reserve_bootmem_generic(ramdisk_image, ramdisk_size);
  339. initrd_start = ramdisk_image + PAGE_OFFSET;
  340. initrd_end = initrd_start+ramdisk_size;
  341. } else {
  342. /* Assumes everything on node 0 */
  343. free_bootmem(ramdisk_image, ramdisk_size);
  344. printk(KERN_ERR "initrd extends beyond end of memory "
  345. "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
  346. ramdisk_end, end_of_mem);
  347. initrd_start = 0;
  348. }
  349. }
  350. #endif
  351. reserve_crashkernel();
  352. paging_init();
  353. map_vsyscall();
  354. early_quirks();
  355. #ifdef CONFIG_ACPI
  356. /*
  357. * Read APIC and some other early information from ACPI tables.
  358. */
  359. acpi_boot_init();
  360. #endif
  361. init_cpu_to_node();
  362. /*
  363. * get boot-time SMP configuration:
  364. */
  365. if (smp_found_config)
  366. get_smp_config();
  367. init_apic_mappings();
  368. ioapic_init_mappings();
  369. /*
  370. * We trust e820 completely. No explicit ROM probing in memory.
  371. */
  372. e820_reserve_resources(&code_resource, &data_resource, &bss_resource);
  373. e820_mark_nosave_regions();
  374. /* request I/O space for devices used on all i[345]86 PCs */
  375. for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
  376. request_resource(&ioport_resource, &standard_io_resources[i]);
  377. e820_setup_gap();
  378. #ifdef CONFIG_VT
  379. #if defined(CONFIG_VGA_CONSOLE)
  380. if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
  381. conswitchp = &vga_con;
  382. #elif defined(CONFIG_DUMMY_CONSOLE)
  383. conswitchp = &dummy_con;
  384. #endif
  385. #endif
  386. }
  387. static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  388. {
  389. unsigned int *v;
  390. if (c->extended_cpuid_level < 0x80000004)
  391. return 0;
  392. v = (unsigned int *) c->x86_model_id;
  393. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  394. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  395. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  396. c->x86_model_id[48] = 0;
  397. return 1;
  398. }
  399. static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  400. {
  401. unsigned int n, dummy, eax, ebx, ecx, edx;
  402. n = c->extended_cpuid_level;
  403. if (n >= 0x80000005) {
  404. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  405. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
  406. "D cache %dK (%d bytes/line)\n",
  407. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  408. c->x86_cache_size = (ecx>>24) + (edx>>24);
  409. /* On K8 L1 TLB is inclusive, so don't count it */
  410. c->x86_tlbsize = 0;
  411. }
  412. if (n >= 0x80000006) {
  413. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  414. ecx = cpuid_ecx(0x80000006);
  415. c->x86_cache_size = ecx >> 16;
  416. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  417. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  418. c->x86_cache_size, ecx & 0xFF);
  419. }
  420. if (n >= 0x80000008) {
  421. cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
  422. c->x86_virt_bits = (eax >> 8) & 0xff;
  423. c->x86_phys_bits = eax & 0xff;
  424. }
  425. }
  426. #ifdef CONFIG_NUMA
  427. static int nearby_node(int apicid)
  428. {
  429. int i, node;
  430. for (i = apicid - 1; i >= 0; i--) {
  431. node = apicid_to_node[i];
  432. if (node != NUMA_NO_NODE && node_online(node))
  433. return node;
  434. }
  435. for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
  436. node = apicid_to_node[i];
  437. if (node != NUMA_NO_NODE && node_online(node))
  438. return node;
  439. }
  440. return first_node(node_online_map); /* Shouldn't happen */
  441. }
  442. #endif
  443. /*
  444. * On a AMD dual core setup the lower bits of the APIC id distingush the cores.
  445. * Assumes number of cores is a power of two.
  446. */
  447. static void __cpuinit amd_detect_cmp(struct cpuinfo_x86 *c)
  448. {
  449. #ifdef CONFIG_SMP
  450. unsigned bits;
  451. #ifdef CONFIG_NUMA
  452. int cpu = smp_processor_id();
  453. int node = 0;
  454. unsigned apicid = hard_smp_processor_id();
  455. #endif
  456. bits = c->x86_coreid_bits;
  457. /* Low order bits define the core id (index of core in socket) */
  458. c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
  459. /* Convert the APIC ID into the socket ID */
  460. c->phys_proc_id = phys_pkg_id(bits);
  461. #ifdef CONFIG_NUMA
  462. node = c->phys_proc_id;
  463. if (apicid_to_node[apicid] != NUMA_NO_NODE)
  464. node = apicid_to_node[apicid];
  465. if (!node_online(node)) {
  466. /* Two possibilities here:
  467. - The CPU is missing memory and no node was created.
  468. In that case try picking one from a nearby CPU
  469. - The APIC IDs differ from the HyperTransport node IDs
  470. which the K8 northbridge parsing fills in.
  471. Assume they are all increased by a constant offset,
  472. but in the same order as the HT nodeids.
  473. If that doesn't result in a usable node fall back to the
  474. path for the previous case. */
  475. int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
  476. if (ht_nodeid >= 0 &&
  477. apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
  478. node = apicid_to_node[ht_nodeid];
  479. /* Pick a nearby node */
  480. if (!node_online(node))
  481. node = nearby_node(apicid);
  482. }
  483. numa_set_node(cpu, node);
  484. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  485. #endif
  486. #endif
  487. }
  488. static void __cpuinit early_init_amd_mc(struct cpuinfo_x86 *c)
  489. {
  490. #ifdef CONFIG_SMP
  491. unsigned bits, ecx;
  492. /* Multi core CPU? */
  493. if (c->extended_cpuid_level < 0x80000008)
  494. return;
  495. ecx = cpuid_ecx(0x80000008);
  496. c->x86_max_cores = (ecx & 0xff) + 1;
  497. /* CPU telling us the core id bits shift? */
  498. bits = (ecx >> 12) & 0xF;
  499. /* Otherwise recompute */
  500. if (bits == 0) {
  501. while ((1 << bits) < c->x86_max_cores)
  502. bits++;
  503. }
  504. c->x86_coreid_bits = bits;
  505. #endif
  506. }
  507. #define ENABLE_C1E_MASK 0x18000000
  508. #define CPUID_PROCESSOR_SIGNATURE 1
  509. #define CPUID_XFAM 0x0ff00000
  510. #define CPUID_XFAM_K8 0x00000000
  511. #define CPUID_XFAM_10H 0x00100000
  512. #define CPUID_XFAM_11H 0x00200000
  513. #define CPUID_XMOD 0x000f0000
  514. #define CPUID_XMOD_REV_F 0x00040000
  515. /* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
  516. static __cpuinit int amd_apic_timer_broken(void)
  517. {
  518. u32 lo, hi, eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
  519. switch (eax & CPUID_XFAM) {
  520. case CPUID_XFAM_K8:
  521. if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
  522. break;
  523. case CPUID_XFAM_10H:
  524. case CPUID_XFAM_11H:
  525. rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
  526. if (lo & ENABLE_C1E_MASK)
  527. return 1;
  528. break;
  529. default:
  530. /* err on the side of caution */
  531. return 1;
  532. }
  533. return 0;
  534. }
  535. static void __cpuinit early_init_amd(struct cpuinfo_x86 *c)
  536. {
  537. early_init_amd_mc(c);
  538. /* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
  539. if (c->x86_power & (1<<8))
  540. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  541. }
  542. static void __cpuinit init_amd(struct cpuinfo_x86 *c)
  543. {
  544. unsigned level;
  545. #ifdef CONFIG_SMP
  546. unsigned long value;
  547. /*
  548. * Disable TLB flush filter by setting HWCR.FFDIS on K8
  549. * bit 6 of msr C001_0015
  550. *
  551. * Errata 63 for SH-B3 steppings
  552. * Errata 122 for all steppings (F+ have it disabled by default)
  553. */
  554. if (c->x86 == 15) {
  555. rdmsrl(MSR_K8_HWCR, value);
  556. value |= 1 << 6;
  557. wrmsrl(MSR_K8_HWCR, value);
  558. }
  559. #endif
  560. /* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
  561. 3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
  562. clear_bit(0*32+31, (unsigned long *)&c->x86_capability);
  563. /* On C+ stepping K8 rep microcode works well for copy/memset */
  564. level = cpuid_eax(1);
  565. if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) ||
  566. level >= 0x0f58))
  567. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  568. if (c->x86 == 0x10 || c->x86 == 0x11)
  569. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  570. /* Enable workaround for FXSAVE leak */
  571. if (c->x86 >= 6)
  572. set_cpu_cap(c, X86_FEATURE_FXSAVE_LEAK);
  573. level = get_model_name(c);
  574. if (!level) {
  575. switch (c->x86) {
  576. case 15:
  577. /* Should distinguish Models here, but this is only
  578. a fallback anyways. */
  579. strcpy(c->x86_model_id, "Hammer");
  580. break;
  581. }
  582. }
  583. display_cacheinfo(c);
  584. /* Multi core CPU? */
  585. if (c->extended_cpuid_level >= 0x80000008)
  586. amd_detect_cmp(c);
  587. if (c->extended_cpuid_level >= 0x80000006 &&
  588. (cpuid_edx(0x80000006) & 0xf000))
  589. num_cache_leaves = 4;
  590. else
  591. num_cache_leaves = 3;
  592. if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
  593. set_cpu_cap(c, X86_FEATURE_K8);
  594. /* MFENCE stops RDTSC speculation */
  595. set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
  596. if (amd_apic_timer_broken())
  597. disable_apic_timer = 1;
  598. }
  599. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  600. {
  601. #ifdef CONFIG_SMP
  602. u32 eax, ebx, ecx, edx;
  603. int index_msb, core_bits;
  604. cpuid(1, &eax, &ebx, &ecx, &edx);
  605. if (!cpu_has(c, X86_FEATURE_HT))
  606. return;
  607. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  608. goto out;
  609. smp_num_siblings = (ebx & 0xff0000) >> 16;
  610. if (smp_num_siblings == 1) {
  611. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  612. } else if (smp_num_siblings > 1) {
  613. if (smp_num_siblings > NR_CPUS) {
  614. printk(KERN_WARNING "CPU: Unsupported number of "
  615. "siblings %d", smp_num_siblings);
  616. smp_num_siblings = 1;
  617. return;
  618. }
  619. index_msb = get_count_order(smp_num_siblings);
  620. c->phys_proc_id = phys_pkg_id(index_msb);
  621. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  622. index_msb = get_count_order(smp_num_siblings);
  623. core_bits = get_count_order(c->x86_max_cores);
  624. c->cpu_core_id = phys_pkg_id(index_msb) &
  625. ((1 << core_bits) - 1);
  626. }
  627. out:
  628. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  629. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  630. c->phys_proc_id);
  631. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  632. c->cpu_core_id);
  633. }
  634. #endif
  635. }
  636. /*
  637. * find out the number of processor cores on the die
  638. */
  639. static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
  640. {
  641. unsigned int eax, t;
  642. if (c->cpuid_level < 4)
  643. return 1;
  644. cpuid_count(4, 0, &eax, &t, &t, &t);
  645. if (eax & 0x1f)
  646. return ((eax >> 26) + 1);
  647. else
  648. return 1;
  649. }
  650. static void srat_detect_node(void)
  651. {
  652. #ifdef CONFIG_NUMA
  653. unsigned node;
  654. int cpu = smp_processor_id();
  655. int apicid = hard_smp_processor_id();
  656. /* Don't do the funky fallback heuristics the AMD version employs
  657. for now. */
  658. node = apicid_to_node[apicid];
  659. if (node == NUMA_NO_NODE)
  660. node = first_node(node_online_map);
  661. numa_set_node(cpu, node);
  662. printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
  663. #endif
  664. }
  665. static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
  666. {
  667. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  668. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  669. set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
  670. }
  671. static void __cpuinit init_intel(struct cpuinfo_x86 *c)
  672. {
  673. /* Cache sizes */
  674. unsigned n;
  675. init_intel_cacheinfo(c);
  676. if (c->cpuid_level > 9) {
  677. unsigned eax = cpuid_eax(10);
  678. /* Check for version and the number of counters */
  679. if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
  680. set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
  681. }
  682. if (cpu_has_ds) {
  683. unsigned int l1, l2;
  684. rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
  685. if (!(l1 & (1<<11)))
  686. set_cpu_cap(c, X86_FEATURE_BTS);
  687. if (!(l1 & (1<<12)))
  688. set_cpu_cap(c, X86_FEATURE_PEBS);
  689. }
  690. if (cpu_has_bts)
  691. ds_init_intel(c);
  692. n = c->extended_cpuid_level;
  693. if (n >= 0x80000008) {
  694. unsigned eax = cpuid_eax(0x80000008);
  695. c->x86_virt_bits = (eax >> 8) & 0xff;
  696. c->x86_phys_bits = eax & 0xff;
  697. /* CPUID workaround for Intel 0F34 CPU */
  698. if (c->x86_vendor == X86_VENDOR_INTEL &&
  699. c->x86 == 0xF && c->x86_model == 0x3 &&
  700. c->x86_mask == 0x4)
  701. c->x86_phys_bits = 36;
  702. }
  703. if (c->x86 == 15)
  704. c->x86_cache_alignment = c->x86_clflush_size * 2;
  705. if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
  706. (c->x86 == 0x6 && c->x86_model >= 0x0e))
  707. set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
  708. if (c->x86 == 6)
  709. set_cpu_cap(c, X86_FEATURE_REP_GOOD);
  710. set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
  711. c->x86_max_cores = intel_num_cpu_cores(c);
  712. srat_detect_node();
  713. }
  714. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  715. {
  716. char *v = c->x86_vendor_id;
  717. if (!strcmp(v, "AuthenticAMD"))
  718. c->x86_vendor = X86_VENDOR_AMD;
  719. else if (!strcmp(v, "GenuineIntel"))
  720. c->x86_vendor = X86_VENDOR_INTEL;
  721. else
  722. c->x86_vendor = X86_VENDOR_UNKNOWN;
  723. }
  724. /* Do some early cpuid on the boot CPU to get some parameter that are
  725. needed before check_bugs. Everything advanced is in identify_cpu
  726. below. */
  727. static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
  728. {
  729. u32 tfms, xlvl;
  730. c->loops_per_jiffy = loops_per_jiffy;
  731. c->x86_cache_size = -1;
  732. c->x86_vendor = X86_VENDOR_UNKNOWN;
  733. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  734. c->x86_vendor_id[0] = '\0'; /* Unset */
  735. c->x86_model_id[0] = '\0'; /* Unset */
  736. c->x86_clflush_size = 64;
  737. c->x86_cache_alignment = c->x86_clflush_size;
  738. c->x86_max_cores = 1;
  739. c->x86_coreid_bits = 0;
  740. c->extended_cpuid_level = 0;
  741. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  742. /* Get vendor name */
  743. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  744. (unsigned int *)&c->x86_vendor_id[0],
  745. (unsigned int *)&c->x86_vendor_id[8],
  746. (unsigned int *)&c->x86_vendor_id[4]);
  747. get_cpu_vendor(c);
  748. /* Initialize the standard set of capabilities */
  749. /* Note that the vendor-specific code below might override */
  750. /* Intel-defined flags: level 0x00000001 */
  751. if (c->cpuid_level >= 0x00000001) {
  752. __u32 misc;
  753. cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
  754. &c->x86_capability[0]);
  755. c->x86 = (tfms >> 8) & 0xf;
  756. c->x86_model = (tfms >> 4) & 0xf;
  757. c->x86_mask = tfms & 0xf;
  758. if (c->x86 == 0xf)
  759. c->x86 += (tfms >> 20) & 0xff;
  760. if (c->x86 >= 0x6)
  761. c->x86_model += ((tfms >> 16) & 0xF) << 4;
  762. if (c->x86_capability[0] & (1<<19))
  763. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  764. } else {
  765. /* Have CPUID level 0 only - unheard of */
  766. c->x86 = 4;
  767. }
  768. #ifdef CONFIG_SMP
  769. c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
  770. #endif
  771. /* AMD-defined flags: level 0x80000001 */
  772. xlvl = cpuid_eax(0x80000000);
  773. c->extended_cpuid_level = xlvl;
  774. if ((xlvl & 0xffff0000) == 0x80000000) {
  775. if (xlvl >= 0x80000001) {
  776. c->x86_capability[1] = cpuid_edx(0x80000001);
  777. c->x86_capability[6] = cpuid_ecx(0x80000001);
  778. }
  779. if (xlvl >= 0x80000004)
  780. get_model_name(c); /* Default name */
  781. }
  782. /* Transmeta-defined flags: level 0x80860001 */
  783. xlvl = cpuid_eax(0x80860000);
  784. if ((xlvl & 0xffff0000) == 0x80860000) {
  785. /* Don't set x86_cpuid_level here for now to not confuse. */
  786. if (xlvl >= 0x80860001)
  787. c->x86_capability[2] = cpuid_edx(0x80860001);
  788. }
  789. c->extended_cpuid_level = cpuid_eax(0x80000000);
  790. if (c->extended_cpuid_level >= 0x80000007)
  791. c->x86_power = cpuid_edx(0x80000007);
  792. switch (c->x86_vendor) {
  793. case X86_VENDOR_AMD:
  794. early_init_amd(c);
  795. break;
  796. case X86_VENDOR_INTEL:
  797. early_init_intel(c);
  798. break;
  799. }
  800. }
  801. /*
  802. * This does the hard work of actually picking apart the CPU stuff...
  803. */
  804. void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  805. {
  806. int i;
  807. early_identify_cpu(c);
  808. init_scattered_cpuid_features(c);
  809. c->apicid = phys_pkg_id(0);
  810. /*
  811. * Vendor-specific initialization. In this section we
  812. * canonicalize the feature flags, meaning if there are
  813. * features a certain CPU supports which CPUID doesn't
  814. * tell us, CPUID claiming incorrect flags, or other bugs,
  815. * we handle them here.
  816. *
  817. * At the end of this section, c->x86_capability better
  818. * indicate the features this CPU genuinely supports!
  819. */
  820. switch (c->x86_vendor) {
  821. case X86_VENDOR_AMD:
  822. init_amd(c);
  823. break;
  824. case X86_VENDOR_INTEL:
  825. init_intel(c);
  826. break;
  827. case X86_VENDOR_UNKNOWN:
  828. default:
  829. display_cacheinfo(c);
  830. break;
  831. }
  832. detect_ht(c);
  833. /*
  834. * On SMP, boot_cpu_data holds the common feature set between
  835. * all CPUs; so make sure that we indicate which features are
  836. * common between the CPUs. The first time this routine gets
  837. * executed, c == &boot_cpu_data.
  838. */
  839. if (c != &boot_cpu_data) {
  840. /* AND the already accumulated flags with these */
  841. for (i = 0; i < NCAPINTS; i++)
  842. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  843. }
  844. /* Clear all flags overriden by options */
  845. for (i = 0; i < NCAPINTS; i++)
  846. c->x86_capability[i] ^= cleared_cpu_caps[i];
  847. #ifdef CONFIG_X86_MCE
  848. mcheck_init(c);
  849. #endif
  850. select_idle_routine(c);
  851. if (c != &boot_cpu_data)
  852. mtrr_ap_init();
  853. #ifdef CONFIG_NUMA
  854. numa_add_cpu(smp_processor_id());
  855. #endif
  856. }
  857. static __init int setup_noclflush(char *arg)
  858. {
  859. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  860. return 1;
  861. }
  862. __setup("noclflush", setup_noclflush);
  863. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  864. {
  865. if (c->x86_model_id[0])
  866. printk(KERN_INFO "%s", c->x86_model_id);
  867. if (c->x86_mask || c->cpuid_level >= 0)
  868. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  869. else
  870. printk(KERN_CONT "\n");
  871. }
  872. static __init int setup_disablecpuid(char *arg)
  873. {
  874. int bit;
  875. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  876. setup_clear_cpu_cap(bit);
  877. else
  878. return 0;
  879. return 1;
  880. }
  881. __setup("clearcpuid=", setup_disablecpuid);
  882. /*
  883. * Get CPU information for use by the procfs.
  884. */
  885. static int show_cpuinfo(struct seq_file *m, void *v)
  886. {
  887. struct cpuinfo_x86 *c = v;
  888. int cpu = 0, i;
  889. /*
  890. * These flag bits must match the definitions in <asm/cpufeature.h>.
  891. * NULL means this bit is undefined or reserved; either way it doesn't
  892. * have meaning as far as Linux is concerned. Note that it's important
  893. * to realize there is a difference between this table and CPUID -- if
  894. * applications want to get the raw CPUID data, they should access
  895. * /dev/cpu/<cpu_nr>/cpuid instead.
  896. */
  897. static const char *const x86_cap_flags[] = {
  898. /* Intel-defined */
  899. "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
  900. "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
  901. "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
  902. "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
  903. /* AMD-defined */
  904. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  905. NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
  906. NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
  907. NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
  908. "3dnowext", "3dnow",
  909. /* Transmeta-defined */
  910. "recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
  911. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  912. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  913. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  914. /* Other (Linux-defined) */
  915. "cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
  916. NULL, NULL, NULL, NULL,
  917. "constant_tsc", "up", NULL, "arch_perfmon",
  918. "pebs", "bts", NULL, "sync_rdtsc",
  919. "rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  920. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  921. /* Intel-defined (#2) */
  922. "pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
  923. "tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
  924. NULL, NULL, "dca", "sse4_1", "sse4_2", NULL, NULL, "popcnt",
  925. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  926. /* VIA/Cyrix/Centaur-defined */
  927. NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
  928. "ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
  929. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  930. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  931. /* AMD-defined (#2) */
  932. "lahf_lm", "cmp_legacy", "svm", "extapic",
  933. "cr8_legacy", "abm", "sse4a", "misalignsse",
  934. "3dnowprefetch", "osvw", "ibs", "sse5",
  935. "skinit", "wdt", NULL, NULL,
  936. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  937. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  938. /* Auxiliary (Linux-defined) */
  939. "ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  940. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  941. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  942. NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
  943. };
  944. static const char *const x86_power_flags[] = {
  945. "ts", /* temperature sensor */
  946. "fid", /* frequency id control */
  947. "vid", /* voltage id control */
  948. "ttp", /* thermal trip */
  949. "tm",
  950. "stc",
  951. "100mhzsteps",
  952. "hwpstate",
  953. "", /* tsc invariant mapped to constant_tsc */
  954. /* nothing */
  955. };
  956. #ifdef CONFIG_SMP
  957. cpu = c->cpu_index;
  958. #endif
  959. seq_printf(m, "processor\t: %u\n"
  960. "vendor_id\t: %s\n"
  961. "cpu family\t: %d\n"
  962. "model\t\t: %d\n"
  963. "model name\t: %s\n",
  964. (unsigned)cpu,
  965. c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
  966. c->x86,
  967. (int)c->x86_model,
  968. c->x86_model_id[0] ? c->x86_model_id : "unknown");
  969. if (c->x86_mask || c->cpuid_level >= 0)
  970. seq_printf(m, "stepping\t: %d\n", c->x86_mask);
  971. else
  972. seq_printf(m, "stepping\t: unknown\n");
  973. if (cpu_has(c, X86_FEATURE_TSC)) {
  974. unsigned int freq = cpufreq_quick_get((unsigned)cpu);
  975. if (!freq)
  976. freq = cpu_khz;
  977. seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
  978. freq / 1000, (freq % 1000));
  979. }
  980. /* Cache size */
  981. if (c->x86_cache_size >= 0)
  982. seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
  983. #ifdef CONFIG_SMP
  984. if (smp_num_siblings * c->x86_max_cores > 1) {
  985. seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
  986. seq_printf(m, "siblings\t: %d\n",
  987. cpus_weight(per_cpu(cpu_core_map, cpu)));
  988. seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
  989. seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
  990. }
  991. #endif
  992. seq_printf(m,
  993. "fpu\t\t: yes\n"
  994. "fpu_exception\t: yes\n"
  995. "cpuid level\t: %d\n"
  996. "wp\t\t: yes\n"
  997. "flags\t\t:",
  998. c->cpuid_level);
  999. for (i = 0; i < 32*NCAPINTS; i++)
  1000. if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
  1001. seq_printf(m, " %s", x86_cap_flags[i]);
  1002. seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
  1003. c->loops_per_jiffy/(500000/HZ),
  1004. (c->loops_per_jiffy/(5000/HZ)) % 100);
  1005. if (c->x86_tlbsize > 0)
  1006. seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
  1007. seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
  1008. seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
  1009. seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
  1010. c->x86_phys_bits, c->x86_virt_bits);
  1011. seq_printf(m, "power management:");
  1012. for (i = 0; i < 32; i++) {
  1013. if (c->x86_power & (1 << i)) {
  1014. if (i < ARRAY_SIZE(x86_power_flags) &&
  1015. x86_power_flags[i])
  1016. seq_printf(m, "%s%s",
  1017. x86_power_flags[i][0]?" ":"",
  1018. x86_power_flags[i]);
  1019. else
  1020. seq_printf(m, " [%d]", i);
  1021. }
  1022. }
  1023. seq_printf(m, "\n\n");
  1024. return 0;
  1025. }
  1026. static void *c_start(struct seq_file *m, loff_t *pos)
  1027. {
  1028. if (*pos == 0) /* just in case, cpu 0 is not the first */
  1029. *pos = first_cpu(cpu_online_map);
  1030. if ((*pos) < NR_CPUS && cpu_online(*pos))
  1031. return &cpu_data(*pos);
  1032. return NULL;
  1033. }
  1034. static void *c_next(struct seq_file *m, void *v, loff_t *pos)
  1035. {
  1036. *pos = next_cpu(*pos, cpu_online_map);
  1037. return c_start(m, pos);
  1038. }
  1039. static void c_stop(struct seq_file *m, void *v)
  1040. {
  1041. }
  1042. const struct seq_operations cpuinfo_op = {
  1043. .start = c_start,
  1044. .next = c_next,
  1045. .stop = c_stop,
  1046. .show = show_cpuinfo,
  1047. };