forcedeth.c 178 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Changelog:
  33. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  34. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  35. * Check all PCI BARs for the register window.
  36. * udelay added to mii_rw.
  37. * 0.03: 06 Oct 2003: Initialize dev->irq.
  38. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  39. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  40. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  41. * irq mask updated
  42. * 0.07: 14 Oct 2003: Further irq mask updates.
  43. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  44. * added into irq handler, NULL check for drain_ring.
  45. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  46. * requested interrupt sources.
  47. * 0.10: 20 Oct 2003: First cleanup for release.
  48. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  49. * MAC Address init fix, set_multicast cleanup.
  50. * 0.12: 23 Oct 2003: Cleanups for release.
  51. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  52. * Set link speed correctly. start rx before starting
  53. * tx (nv_start_rx sets the link speed).
  54. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  55. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  56. * open.
  57. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  58. * increased to 1628 bytes.
  59. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  60. * the tx length.
  61. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  62. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  63. * addresses, really stop rx if already running
  64. * in nv_start_rx, clean up a bit.
  65. * 0.20: 07 Dec 2003: alloc fixes
  66. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  67. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  68. * on close.
  69. * 0.23: 26 Jan 2004: various small cleanups
  70. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  71. * 0.25: 09 Mar 2004: wol support
  72. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  73. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  74. * added CK804/MCP04 device IDs, code fixes
  75. * for registers, link status and other minor fixes.
  76. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  77. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  78. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  79. * into nv_close, otherwise reenabling for wol can
  80. * cause DMA to kfree'd memory.
  81. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  82. * capabilities.
  83. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  84. * 0.33: 16 May 2005: Support for MCP51 added.
  85. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  86. * 0.35: 26 Jun 2005: Support for MCP55 added.
  87. * 0.36: 28 Jun 2005: Add jumbo frame support.
  88. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  89. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  90. * per-packet flags.
  91. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  92. * 0.40: 19 Jul 2005: Add support for mac address change.
  93. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  94. * of nv_remove
  95. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  96. * in the second (and later) nv_open call
  97. * 0.43: 10 Aug 2005: Add support for tx checksum.
  98. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  99. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  100. * 0.46: 20 Oct 2005: Add irq optimization modes.
  101. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  102. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  103. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  104. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  105. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  106. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  107. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  108. * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
  109. * 0.55: 22 Mar 2006: Add flow control (pause frame).
  110. * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
  111. * 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
  112. * 0.58: 30 Oct 2006: Added support for sideband management unit.
  113. * 0.59: 30 Oct 2006: Added support for recoverable error.
  114. * 0.60: 20 Jan 2007: Code optimizations for rings, rx & tx data paths, and stats.
  115. *
  116. * Known bugs:
  117. * We suspect that on some hardware no TX done interrupts are generated.
  118. * This means recovery from netif_stop_queue only happens if the hw timer
  119. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  120. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  121. * If your hardware reliably generates tx done interrupts, then you can remove
  122. * DEV_NEED_TIMERIRQ from the driver_data flags.
  123. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  124. * superfluous timer interrupts from the nic.
  125. */
  126. #ifdef CONFIG_FORCEDETH_NAPI
  127. #define DRIVERNAPI "-NAPI"
  128. #else
  129. #define DRIVERNAPI
  130. #endif
  131. #define FORCEDETH_VERSION "0.61"
  132. #define DRV_NAME "forcedeth"
  133. #include <linux/module.h>
  134. #include <linux/types.h>
  135. #include <linux/pci.h>
  136. #include <linux/interrupt.h>
  137. #include <linux/netdevice.h>
  138. #include <linux/etherdevice.h>
  139. #include <linux/delay.h>
  140. #include <linux/spinlock.h>
  141. #include <linux/ethtool.h>
  142. #include <linux/timer.h>
  143. #include <linux/skbuff.h>
  144. #include <linux/mii.h>
  145. #include <linux/random.h>
  146. #include <linux/init.h>
  147. #include <linux/if_vlan.h>
  148. #include <linux/dma-mapping.h>
  149. #include <asm/irq.h>
  150. #include <asm/io.h>
  151. #include <asm/uaccess.h>
  152. #include <asm/system.h>
  153. #if 0
  154. #define dprintk printk
  155. #else
  156. #define dprintk(x...) do { } while (0)
  157. #endif
  158. #define TX_WORK_PER_LOOP 64
  159. #define RX_WORK_PER_LOOP 64
  160. /*
  161. * Hardware access:
  162. */
  163. #define DEV_NEED_TIMERIRQ 0x00001 /* set the timer irq flag in the irq mask */
  164. #define DEV_NEED_LINKTIMER 0x00002 /* poll link settings. Relies on the timer irq */
  165. #define DEV_HAS_LARGEDESC 0x00004 /* device supports jumbo frames and needs packet format 2 */
  166. #define DEV_HAS_HIGH_DMA 0x00008 /* device supports 64bit dma */
  167. #define DEV_HAS_CHECKSUM 0x00010 /* device supports tx and rx checksum offloads */
  168. #define DEV_HAS_VLAN 0x00020 /* device supports vlan tagging and striping */
  169. #define DEV_HAS_MSI 0x00040 /* device supports MSI */
  170. #define DEV_HAS_MSI_X 0x00080 /* device supports MSI-X */
  171. #define DEV_HAS_POWER_CNTRL 0x00100 /* device supports power savings */
  172. #define DEV_HAS_STATISTICS_V1 0x00200 /* device supports hw statistics version 1 */
  173. #define DEV_HAS_STATISTICS_V2 0x00400 /* device supports hw statistics version 2 */
  174. #define DEV_HAS_TEST_EXTENDED 0x00800 /* device supports extended diagnostic test */
  175. #define DEV_HAS_MGMT_UNIT 0x01000 /* device supports management unit */
  176. #define DEV_HAS_CORRECT_MACADDR 0x02000 /* device supports correct mac address order */
  177. #define DEV_HAS_COLLISION_FIX 0x04000 /* device supports tx collision fix */
  178. #define DEV_HAS_PAUSEFRAME_TX_V1 0x08000 /* device supports tx pause frames version 1 */
  179. #define DEV_HAS_PAUSEFRAME_TX_V2 0x10000 /* device supports tx pause frames version 2 */
  180. #define DEV_HAS_PAUSEFRAME_TX_V3 0x20000 /* device supports tx pause frames version 3 */
  181. #define DEV_NEED_TX_LIMIT 0x40000 /* device needs to limit tx */
  182. enum {
  183. NvRegIrqStatus = 0x000,
  184. #define NVREG_IRQSTAT_MIIEVENT 0x040
  185. #define NVREG_IRQSTAT_MASK 0x81ff
  186. NvRegIrqMask = 0x004,
  187. #define NVREG_IRQ_RX_ERROR 0x0001
  188. #define NVREG_IRQ_RX 0x0002
  189. #define NVREG_IRQ_RX_NOBUF 0x0004
  190. #define NVREG_IRQ_TX_ERR 0x0008
  191. #define NVREG_IRQ_TX_OK 0x0010
  192. #define NVREG_IRQ_TIMER 0x0020
  193. #define NVREG_IRQ_LINK 0x0040
  194. #define NVREG_IRQ_RX_FORCED 0x0080
  195. #define NVREG_IRQ_TX_FORCED 0x0100
  196. #define NVREG_IRQ_RECOVER_ERROR 0x8000
  197. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  198. #define NVREG_IRQMASK_CPU 0x0060
  199. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  200. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  201. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  202. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  203. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  204. NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
  205. NvRegUnknownSetupReg6 = 0x008,
  206. #define NVREG_UNKSETUP6_VAL 3
  207. /*
  208. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  209. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  210. */
  211. NvRegPollingInterval = 0x00c,
  212. #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
  213. #define NVREG_POLL_DEFAULT_CPU 13
  214. NvRegMSIMap0 = 0x020,
  215. NvRegMSIMap1 = 0x024,
  216. NvRegMSIIrqMask = 0x030,
  217. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  218. NvRegMisc1 = 0x080,
  219. #define NVREG_MISC1_PAUSE_TX 0x01
  220. #define NVREG_MISC1_HD 0x02
  221. #define NVREG_MISC1_FORCE 0x3b0f3c
  222. NvRegMacReset = 0x34,
  223. #define NVREG_MAC_RESET_ASSERT 0x0F3
  224. NvRegTransmitterControl = 0x084,
  225. #define NVREG_XMITCTL_START 0x01
  226. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  227. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  228. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  229. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  230. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  231. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  232. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  233. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  234. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  235. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  236. NvRegTransmitterStatus = 0x088,
  237. #define NVREG_XMITSTAT_BUSY 0x01
  238. NvRegPacketFilterFlags = 0x8c,
  239. #define NVREG_PFF_PAUSE_RX 0x08
  240. #define NVREG_PFF_ALWAYS 0x7F0000
  241. #define NVREG_PFF_PROMISC 0x80
  242. #define NVREG_PFF_MYADDR 0x20
  243. #define NVREG_PFF_LOOPBACK 0x10
  244. NvRegOffloadConfig = 0x90,
  245. #define NVREG_OFFLOAD_HOMEPHY 0x601
  246. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  247. NvRegReceiverControl = 0x094,
  248. #define NVREG_RCVCTL_START 0x01
  249. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  250. NvRegReceiverStatus = 0x98,
  251. #define NVREG_RCVSTAT_BUSY 0x01
  252. NvRegRandomSeed = 0x9c,
  253. #define NVREG_RNDSEED_MASK 0x00ff
  254. #define NVREG_RNDSEED_FORCE 0x7f00
  255. #define NVREG_RNDSEED_FORCE2 0x2d00
  256. #define NVREG_RNDSEED_FORCE3 0x7400
  257. NvRegTxDeferral = 0xA0,
  258. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  259. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  260. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  261. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_10 0x16190f
  262. #define NVREG_TX_DEFERRAL_RGMII_STRETCH_100 0x16300f
  263. #define NVREG_TX_DEFERRAL_MII_STRETCH 0x152000
  264. NvRegRxDeferral = 0xA4,
  265. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  266. NvRegMacAddrA = 0xA8,
  267. NvRegMacAddrB = 0xAC,
  268. NvRegMulticastAddrA = 0xB0,
  269. #define NVREG_MCASTADDRA_FORCE 0x01
  270. NvRegMulticastAddrB = 0xB4,
  271. NvRegMulticastMaskA = 0xB8,
  272. #define NVREG_MCASTMASKA_NONE 0xffffffff
  273. NvRegMulticastMaskB = 0xBC,
  274. #define NVREG_MCASTMASKB_NONE 0xffff
  275. NvRegPhyInterface = 0xC0,
  276. #define PHY_RGMII 0x10000000
  277. NvRegTxRingPhysAddr = 0x100,
  278. NvRegRxRingPhysAddr = 0x104,
  279. NvRegRingSizes = 0x108,
  280. #define NVREG_RINGSZ_TXSHIFT 0
  281. #define NVREG_RINGSZ_RXSHIFT 16
  282. NvRegTransmitPoll = 0x10c,
  283. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  284. NvRegLinkSpeed = 0x110,
  285. #define NVREG_LINKSPEED_FORCE 0x10000
  286. #define NVREG_LINKSPEED_10 1000
  287. #define NVREG_LINKSPEED_100 100
  288. #define NVREG_LINKSPEED_1000 50
  289. #define NVREG_LINKSPEED_MASK (0xFFF)
  290. NvRegUnknownSetupReg5 = 0x130,
  291. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  292. NvRegTxWatermark = 0x13c,
  293. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  294. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  295. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  296. NvRegTxRxControl = 0x144,
  297. #define NVREG_TXRXCTL_KICK 0x0001
  298. #define NVREG_TXRXCTL_BIT1 0x0002
  299. #define NVREG_TXRXCTL_BIT2 0x0004
  300. #define NVREG_TXRXCTL_IDLE 0x0008
  301. #define NVREG_TXRXCTL_RESET 0x0010
  302. #define NVREG_TXRXCTL_RXCHECK 0x0400
  303. #define NVREG_TXRXCTL_DESC_1 0
  304. #define NVREG_TXRXCTL_DESC_2 0x002100
  305. #define NVREG_TXRXCTL_DESC_3 0xc02200
  306. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  307. #define NVREG_TXRXCTL_VLANINS 0x00080
  308. NvRegTxRingPhysAddrHigh = 0x148,
  309. NvRegRxRingPhysAddrHigh = 0x14C,
  310. NvRegTxPauseFrame = 0x170,
  311. #define NVREG_TX_PAUSEFRAME_DISABLE 0x0fff0080
  312. #define NVREG_TX_PAUSEFRAME_ENABLE_V1 0x01800010
  313. #define NVREG_TX_PAUSEFRAME_ENABLE_V2 0x056003f0
  314. #define NVREG_TX_PAUSEFRAME_ENABLE_V3 0x09f00880
  315. NvRegMIIStatus = 0x180,
  316. #define NVREG_MIISTAT_ERROR 0x0001
  317. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  318. #define NVREG_MIISTAT_MASK_RW 0x0007
  319. #define NVREG_MIISTAT_MASK_ALL 0x000f
  320. NvRegMIIMask = 0x184,
  321. #define NVREG_MII_LINKCHANGE 0x0008
  322. NvRegAdapterControl = 0x188,
  323. #define NVREG_ADAPTCTL_START 0x02
  324. #define NVREG_ADAPTCTL_LINKUP 0x04
  325. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  326. #define NVREG_ADAPTCTL_RUNNING 0x100000
  327. #define NVREG_ADAPTCTL_PHYSHIFT 24
  328. NvRegMIISpeed = 0x18c,
  329. #define NVREG_MIISPEED_BIT8 (1<<8)
  330. #define NVREG_MIIDELAY 5
  331. NvRegMIIControl = 0x190,
  332. #define NVREG_MIICTL_INUSE 0x08000
  333. #define NVREG_MIICTL_WRITE 0x00400
  334. #define NVREG_MIICTL_ADDRSHIFT 5
  335. NvRegMIIData = 0x194,
  336. NvRegWakeUpFlags = 0x200,
  337. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  338. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  339. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  340. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  341. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  342. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  343. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  344. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  345. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  346. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  347. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  348. NvRegPatternCRC = 0x204,
  349. NvRegPatternMask = 0x208,
  350. NvRegPowerCap = 0x268,
  351. #define NVREG_POWERCAP_D3SUPP (1<<30)
  352. #define NVREG_POWERCAP_D2SUPP (1<<26)
  353. #define NVREG_POWERCAP_D1SUPP (1<<25)
  354. NvRegPowerState = 0x26c,
  355. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  356. #define NVREG_POWERSTATE_VALID 0x0100
  357. #define NVREG_POWERSTATE_MASK 0x0003
  358. #define NVREG_POWERSTATE_D0 0x0000
  359. #define NVREG_POWERSTATE_D1 0x0001
  360. #define NVREG_POWERSTATE_D2 0x0002
  361. #define NVREG_POWERSTATE_D3 0x0003
  362. NvRegTxCnt = 0x280,
  363. NvRegTxZeroReXmt = 0x284,
  364. NvRegTxOneReXmt = 0x288,
  365. NvRegTxManyReXmt = 0x28c,
  366. NvRegTxLateCol = 0x290,
  367. NvRegTxUnderflow = 0x294,
  368. NvRegTxLossCarrier = 0x298,
  369. NvRegTxExcessDef = 0x29c,
  370. NvRegTxRetryErr = 0x2a0,
  371. NvRegRxFrameErr = 0x2a4,
  372. NvRegRxExtraByte = 0x2a8,
  373. NvRegRxLateCol = 0x2ac,
  374. NvRegRxRunt = 0x2b0,
  375. NvRegRxFrameTooLong = 0x2b4,
  376. NvRegRxOverflow = 0x2b8,
  377. NvRegRxFCSErr = 0x2bc,
  378. NvRegRxFrameAlignErr = 0x2c0,
  379. NvRegRxLenErr = 0x2c4,
  380. NvRegRxUnicast = 0x2c8,
  381. NvRegRxMulticast = 0x2cc,
  382. NvRegRxBroadcast = 0x2d0,
  383. NvRegTxDef = 0x2d4,
  384. NvRegTxFrame = 0x2d8,
  385. NvRegRxCnt = 0x2dc,
  386. NvRegTxPause = 0x2e0,
  387. NvRegRxPause = 0x2e4,
  388. NvRegRxDropFrame = 0x2e8,
  389. NvRegVlanControl = 0x300,
  390. #define NVREG_VLANCONTROL_ENABLE 0x2000
  391. NvRegMSIXMap0 = 0x3e0,
  392. NvRegMSIXMap1 = 0x3e4,
  393. NvRegMSIXIrqStatus = 0x3f0,
  394. NvRegPowerState2 = 0x600,
  395. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  396. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  397. };
  398. /* Big endian: should work, but is untested */
  399. struct ring_desc {
  400. __le32 buf;
  401. __le32 flaglen;
  402. };
  403. struct ring_desc_ex {
  404. __le32 bufhigh;
  405. __le32 buflow;
  406. __le32 txvlan;
  407. __le32 flaglen;
  408. };
  409. union ring_type {
  410. struct ring_desc* orig;
  411. struct ring_desc_ex* ex;
  412. };
  413. #define FLAG_MASK_V1 0xffff0000
  414. #define FLAG_MASK_V2 0xffffc000
  415. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  416. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  417. #define NV_TX_LASTPACKET (1<<16)
  418. #define NV_TX_RETRYERROR (1<<19)
  419. #define NV_TX_FORCED_INTERRUPT (1<<24)
  420. #define NV_TX_DEFERRED (1<<26)
  421. #define NV_TX_CARRIERLOST (1<<27)
  422. #define NV_TX_LATECOLLISION (1<<28)
  423. #define NV_TX_UNDERFLOW (1<<29)
  424. #define NV_TX_ERROR (1<<30)
  425. #define NV_TX_VALID (1<<31)
  426. #define NV_TX2_LASTPACKET (1<<29)
  427. #define NV_TX2_RETRYERROR (1<<18)
  428. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  429. #define NV_TX2_DEFERRED (1<<25)
  430. #define NV_TX2_CARRIERLOST (1<<26)
  431. #define NV_TX2_LATECOLLISION (1<<27)
  432. #define NV_TX2_UNDERFLOW (1<<28)
  433. /* error and valid are the same for both */
  434. #define NV_TX2_ERROR (1<<30)
  435. #define NV_TX2_VALID (1<<31)
  436. #define NV_TX2_TSO (1<<28)
  437. #define NV_TX2_TSO_SHIFT 14
  438. #define NV_TX2_TSO_MAX_SHIFT 14
  439. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  440. #define NV_TX2_CHECKSUM_L3 (1<<27)
  441. #define NV_TX2_CHECKSUM_L4 (1<<26)
  442. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  443. #define NV_RX_DESCRIPTORVALID (1<<16)
  444. #define NV_RX_MISSEDFRAME (1<<17)
  445. #define NV_RX_SUBSTRACT1 (1<<18)
  446. #define NV_RX_ERROR1 (1<<23)
  447. #define NV_RX_ERROR2 (1<<24)
  448. #define NV_RX_ERROR3 (1<<25)
  449. #define NV_RX_ERROR4 (1<<26)
  450. #define NV_RX_CRCERR (1<<27)
  451. #define NV_RX_OVERFLOW (1<<28)
  452. #define NV_RX_FRAMINGERR (1<<29)
  453. #define NV_RX_ERROR (1<<30)
  454. #define NV_RX_AVAIL (1<<31)
  455. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  456. #define NV_RX2_CHECKSUM_IP (0x10000000)
  457. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  458. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  459. #define NV_RX2_DESCRIPTORVALID (1<<29)
  460. #define NV_RX2_SUBSTRACT1 (1<<25)
  461. #define NV_RX2_ERROR1 (1<<18)
  462. #define NV_RX2_ERROR2 (1<<19)
  463. #define NV_RX2_ERROR3 (1<<20)
  464. #define NV_RX2_ERROR4 (1<<21)
  465. #define NV_RX2_CRCERR (1<<22)
  466. #define NV_RX2_OVERFLOW (1<<23)
  467. #define NV_RX2_FRAMINGERR (1<<24)
  468. /* error and avail are the same for both */
  469. #define NV_RX2_ERROR (1<<30)
  470. #define NV_RX2_AVAIL (1<<31)
  471. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  472. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  473. /* Miscelaneous hardware related defines: */
  474. #define NV_PCI_REGSZ_VER1 0x270
  475. #define NV_PCI_REGSZ_VER2 0x2d4
  476. #define NV_PCI_REGSZ_VER3 0x604
  477. /* various timeout delays: all in usec */
  478. #define NV_TXRX_RESET_DELAY 4
  479. #define NV_TXSTOP_DELAY1 10
  480. #define NV_TXSTOP_DELAY1MAX 500000
  481. #define NV_TXSTOP_DELAY2 100
  482. #define NV_RXSTOP_DELAY1 10
  483. #define NV_RXSTOP_DELAY1MAX 500000
  484. #define NV_RXSTOP_DELAY2 100
  485. #define NV_SETUP5_DELAY 5
  486. #define NV_SETUP5_DELAYMAX 50000
  487. #define NV_POWERUP_DELAY 5
  488. #define NV_POWERUP_DELAYMAX 5000
  489. #define NV_MIIBUSY_DELAY 50
  490. #define NV_MIIPHY_DELAY 10
  491. #define NV_MIIPHY_DELAYMAX 10000
  492. #define NV_MAC_RESET_DELAY 64
  493. #define NV_WAKEUPPATTERNS 5
  494. #define NV_WAKEUPMASKENTRIES 4
  495. /* General driver defaults */
  496. #define NV_WATCHDOG_TIMEO (5*HZ)
  497. #define RX_RING_DEFAULT 128
  498. #define TX_RING_DEFAULT 256
  499. #define RX_RING_MIN 128
  500. #define TX_RING_MIN 64
  501. #define RING_MAX_DESC_VER_1 1024
  502. #define RING_MAX_DESC_VER_2_3 16384
  503. /* rx/tx mac addr + type + vlan + align + slack*/
  504. #define NV_RX_HEADERS (64)
  505. /* even more slack. */
  506. #define NV_RX_ALLOC_PAD (64)
  507. /* maximum mtu size */
  508. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  509. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  510. #define OOM_REFILL (1+HZ/20)
  511. #define POLL_WAIT (1+HZ/100)
  512. #define LINK_TIMEOUT (3*HZ)
  513. #define STATS_INTERVAL (10*HZ)
  514. /*
  515. * desc_ver values:
  516. * The nic supports three different descriptor types:
  517. * - DESC_VER_1: Original
  518. * - DESC_VER_2: support for jumbo frames.
  519. * - DESC_VER_3: 64-bit format.
  520. */
  521. #define DESC_VER_1 1
  522. #define DESC_VER_2 2
  523. #define DESC_VER_3 3
  524. /* PHY defines */
  525. #define PHY_OUI_MARVELL 0x5043
  526. #define PHY_OUI_CICADA 0x03f1
  527. #define PHY_OUI_VITESSE 0x01c1
  528. #define PHY_OUI_REALTEK 0x0732
  529. #define PHYID1_OUI_MASK 0x03ff
  530. #define PHYID1_OUI_SHFT 6
  531. #define PHYID2_OUI_MASK 0xfc00
  532. #define PHYID2_OUI_SHFT 10
  533. #define PHYID2_MODEL_MASK 0x03f0
  534. #define PHY_MODEL_MARVELL_E3016 0x220
  535. #define PHY_MARVELL_E3016_INITMASK 0x0300
  536. #define PHY_CICADA_INIT1 0x0f000
  537. #define PHY_CICADA_INIT2 0x0e00
  538. #define PHY_CICADA_INIT3 0x01000
  539. #define PHY_CICADA_INIT4 0x0200
  540. #define PHY_CICADA_INIT5 0x0004
  541. #define PHY_CICADA_INIT6 0x02000
  542. #define PHY_VITESSE_INIT_REG1 0x1f
  543. #define PHY_VITESSE_INIT_REG2 0x10
  544. #define PHY_VITESSE_INIT_REG3 0x11
  545. #define PHY_VITESSE_INIT_REG4 0x12
  546. #define PHY_VITESSE_INIT_MSK1 0xc
  547. #define PHY_VITESSE_INIT_MSK2 0x0180
  548. #define PHY_VITESSE_INIT1 0x52b5
  549. #define PHY_VITESSE_INIT2 0xaf8a
  550. #define PHY_VITESSE_INIT3 0x8
  551. #define PHY_VITESSE_INIT4 0x8f8a
  552. #define PHY_VITESSE_INIT5 0xaf86
  553. #define PHY_VITESSE_INIT6 0x8f86
  554. #define PHY_VITESSE_INIT7 0xaf82
  555. #define PHY_VITESSE_INIT8 0x0100
  556. #define PHY_VITESSE_INIT9 0x8f82
  557. #define PHY_VITESSE_INIT10 0x0
  558. #define PHY_REALTEK_INIT_REG1 0x1f
  559. #define PHY_REALTEK_INIT_REG2 0x19
  560. #define PHY_REALTEK_INIT_REG3 0x13
  561. #define PHY_REALTEK_INIT1 0x0000
  562. #define PHY_REALTEK_INIT2 0x8e00
  563. #define PHY_REALTEK_INIT3 0x0001
  564. #define PHY_REALTEK_INIT4 0xad17
  565. #define PHY_GIGABIT 0x0100
  566. #define PHY_TIMEOUT 0x1
  567. #define PHY_ERROR 0x2
  568. #define PHY_100 0x1
  569. #define PHY_1000 0x2
  570. #define PHY_HALF 0x100
  571. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  572. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  573. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  574. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  575. #define NV_PAUSEFRAME_RX_REQ 0x0010
  576. #define NV_PAUSEFRAME_TX_REQ 0x0020
  577. #define NV_PAUSEFRAME_AUTONEG 0x0040
  578. /* MSI/MSI-X defines */
  579. #define NV_MSI_X_MAX_VECTORS 8
  580. #define NV_MSI_X_VECTORS_MASK 0x000f
  581. #define NV_MSI_CAPABLE 0x0010
  582. #define NV_MSI_X_CAPABLE 0x0020
  583. #define NV_MSI_ENABLED 0x0040
  584. #define NV_MSI_X_ENABLED 0x0080
  585. #define NV_MSI_X_VECTOR_ALL 0x0
  586. #define NV_MSI_X_VECTOR_RX 0x0
  587. #define NV_MSI_X_VECTOR_TX 0x1
  588. #define NV_MSI_X_VECTOR_OTHER 0x2
  589. #define NV_RESTART_TX 0x1
  590. #define NV_RESTART_RX 0x2
  591. #define NV_TX_LIMIT_COUNT 16
  592. /* statistics */
  593. struct nv_ethtool_str {
  594. char name[ETH_GSTRING_LEN];
  595. };
  596. static const struct nv_ethtool_str nv_estats_str[] = {
  597. { "tx_bytes" },
  598. { "tx_zero_rexmt" },
  599. { "tx_one_rexmt" },
  600. { "tx_many_rexmt" },
  601. { "tx_late_collision" },
  602. { "tx_fifo_errors" },
  603. { "tx_carrier_errors" },
  604. { "tx_excess_deferral" },
  605. { "tx_retry_error" },
  606. { "rx_frame_error" },
  607. { "rx_extra_byte" },
  608. { "rx_late_collision" },
  609. { "rx_runt" },
  610. { "rx_frame_too_long" },
  611. { "rx_over_errors" },
  612. { "rx_crc_errors" },
  613. { "rx_frame_align_error" },
  614. { "rx_length_error" },
  615. { "rx_unicast" },
  616. { "rx_multicast" },
  617. { "rx_broadcast" },
  618. { "rx_packets" },
  619. { "rx_errors_total" },
  620. { "tx_errors_total" },
  621. /* version 2 stats */
  622. { "tx_deferral" },
  623. { "tx_packets" },
  624. { "rx_bytes" },
  625. { "tx_pause" },
  626. { "rx_pause" },
  627. { "rx_drop_frame" }
  628. };
  629. struct nv_ethtool_stats {
  630. u64 tx_bytes;
  631. u64 tx_zero_rexmt;
  632. u64 tx_one_rexmt;
  633. u64 tx_many_rexmt;
  634. u64 tx_late_collision;
  635. u64 tx_fifo_errors;
  636. u64 tx_carrier_errors;
  637. u64 tx_excess_deferral;
  638. u64 tx_retry_error;
  639. u64 rx_frame_error;
  640. u64 rx_extra_byte;
  641. u64 rx_late_collision;
  642. u64 rx_runt;
  643. u64 rx_frame_too_long;
  644. u64 rx_over_errors;
  645. u64 rx_crc_errors;
  646. u64 rx_frame_align_error;
  647. u64 rx_length_error;
  648. u64 rx_unicast;
  649. u64 rx_multicast;
  650. u64 rx_broadcast;
  651. u64 rx_packets;
  652. u64 rx_errors_total;
  653. u64 tx_errors_total;
  654. /* version 2 stats */
  655. u64 tx_deferral;
  656. u64 tx_packets;
  657. u64 rx_bytes;
  658. u64 tx_pause;
  659. u64 rx_pause;
  660. u64 rx_drop_frame;
  661. };
  662. #define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  663. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  664. /* diagnostics */
  665. #define NV_TEST_COUNT_BASE 3
  666. #define NV_TEST_COUNT_EXTENDED 4
  667. static const struct nv_ethtool_str nv_etests_str[] = {
  668. { "link (online/offline)" },
  669. { "register (offline) " },
  670. { "interrupt (offline) " },
  671. { "loopback (offline) " }
  672. };
  673. struct register_test {
  674. __u32 reg;
  675. __u32 mask;
  676. };
  677. static const struct register_test nv_registers_test[] = {
  678. { NvRegUnknownSetupReg6, 0x01 },
  679. { NvRegMisc1, 0x03c },
  680. { NvRegOffloadConfig, 0x03ff },
  681. { NvRegMulticastAddrA, 0xffffffff },
  682. { NvRegTxWatermark, 0x0ff },
  683. { NvRegWakeUpFlags, 0x07777 },
  684. { 0,0 }
  685. };
  686. struct nv_skb_map {
  687. struct sk_buff *skb;
  688. dma_addr_t dma;
  689. unsigned int dma_len;
  690. struct ring_desc_ex *first_tx_desc;
  691. struct nv_skb_map *next_tx_ctx;
  692. };
  693. /*
  694. * SMP locking:
  695. * All hardware access under dev->priv->lock, except the performance
  696. * critical parts:
  697. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  698. * by the arch code for interrupts.
  699. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  700. * needs dev->priv->lock :-(
  701. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  702. */
  703. /* in dev: base, irq */
  704. struct fe_priv {
  705. spinlock_t lock;
  706. struct net_device *dev;
  707. struct napi_struct napi;
  708. /* General data:
  709. * Locking: spin_lock(&np->lock); */
  710. struct nv_ethtool_stats estats;
  711. int in_shutdown;
  712. u32 linkspeed;
  713. int duplex;
  714. int autoneg;
  715. int fixed_mode;
  716. int phyaddr;
  717. int wolenabled;
  718. unsigned int phy_oui;
  719. unsigned int phy_model;
  720. u16 gigabit;
  721. int intr_test;
  722. int recover_error;
  723. /* General data: RO fields */
  724. dma_addr_t ring_addr;
  725. struct pci_dev *pci_dev;
  726. u32 orig_mac[2];
  727. u32 irqmask;
  728. u32 desc_ver;
  729. u32 txrxctl_bits;
  730. u32 vlanctl_bits;
  731. u32 driver_data;
  732. u32 register_size;
  733. int rx_csum;
  734. u32 mac_in_use;
  735. void __iomem *base;
  736. /* rx specific fields.
  737. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  738. */
  739. union ring_type get_rx, put_rx, first_rx, last_rx;
  740. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  741. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  742. struct nv_skb_map *rx_skb;
  743. union ring_type rx_ring;
  744. unsigned int rx_buf_sz;
  745. unsigned int pkt_limit;
  746. struct timer_list oom_kick;
  747. struct timer_list nic_poll;
  748. struct timer_list stats_poll;
  749. u32 nic_poll_irq;
  750. int rx_ring_size;
  751. /* media detection workaround.
  752. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  753. */
  754. int need_linktimer;
  755. unsigned long link_timeout;
  756. /*
  757. * tx specific fields.
  758. */
  759. union ring_type get_tx, put_tx, first_tx, last_tx;
  760. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  761. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  762. struct nv_skb_map *tx_skb;
  763. union ring_type tx_ring;
  764. u32 tx_flags;
  765. int tx_ring_size;
  766. int tx_limit;
  767. u32 tx_pkts_in_progress;
  768. struct nv_skb_map *tx_change_owner;
  769. struct nv_skb_map *tx_end_flip;
  770. int tx_stop;
  771. /* vlan fields */
  772. struct vlan_group *vlangrp;
  773. /* msi/msi-x fields */
  774. u32 msi_flags;
  775. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  776. /* flow control */
  777. u32 pause_flags;
  778. };
  779. /*
  780. * Maximum number of loops until we assume that a bit in the irq mask
  781. * is stuck. Overridable with module param.
  782. */
  783. static int max_interrupt_work = 5;
  784. /*
  785. * Optimization can be either throuput mode or cpu mode
  786. *
  787. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  788. * CPU Mode: Interrupts are controlled by a timer.
  789. */
  790. enum {
  791. NV_OPTIMIZATION_MODE_THROUGHPUT,
  792. NV_OPTIMIZATION_MODE_CPU
  793. };
  794. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  795. /*
  796. * Poll interval for timer irq
  797. *
  798. * This interval determines how frequent an interrupt is generated.
  799. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  800. * Min = 0, and Max = 65535
  801. */
  802. static int poll_interval = -1;
  803. /*
  804. * MSI interrupts
  805. */
  806. enum {
  807. NV_MSI_INT_DISABLED,
  808. NV_MSI_INT_ENABLED
  809. };
  810. static int msi = NV_MSI_INT_ENABLED;
  811. /*
  812. * MSIX interrupts
  813. */
  814. enum {
  815. NV_MSIX_INT_DISABLED,
  816. NV_MSIX_INT_ENABLED
  817. };
  818. static int msix = NV_MSIX_INT_DISABLED;
  819. /*
  820. * DMA 64bit
  821. */
  822. enum {
  823. NV_DMA_64BIT_DISABLED,
  824. NV_DMA_64BIT_ENABLED
  825. };
  826. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  827. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  828. {
  829. return netdev_priv(dev);
  830. }
  831. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  832. {
  833. return ((struct fe_priv *)netdev_priv(dev))->base;
  834. }
  835. static inline void pci_push(u8 __iomem *base)
  836. {
  837. /* force out pending posted writes */
  838. readl(base);
  839. }
  840. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  841. {
  842. return le32_to_cpu(prd->flaglen)
  843. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  844. }
  845. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  846. {
  847. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  848. }
  849. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  850. int delay, int delaymax, const char *msg)
  851. {
  852. u8 __iomem *base = get_hwbase(dev);
  853. pci_push(base);
  854. do {
  855. udelay(delay);
  856. delaymax -= delay;
  857. if (delaymax < 0) {
  858. if (msg)
  859. printk(msg);
  860. return 1;
  861. }
  862. } while ((readl(base + offset) & mask) != target);
  863. return 0;
  864. }
  865. #define NV_SETUP_RX_RING 0x01
  866. #define NV_SETUP_TX_RING 0x02
  867. static inline u32 dma_low(dma_addr_t addr)
  868. {
  869. return addr;
  870. }
  871. static inline u32 dma_high(dma_addr_t addr)
  872. {
  873. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  874. }
  875. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  876. {
  877. struct fe_priv *np = get_nvpriv(dev);
  878. u8 __iomem *base = get_hwbase(dev);
  879. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  880. if (rxtx_flags & NV_SETUP_RX_RING) {
  881. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  882. }
  883. if (rxtx_flags & NV_SETUP_TX_RING) {
  884. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  885. }
  886. } else {
  887. if (rxtx_flags & NV_SETUP_RX_RING) {
  888. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  889. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  890. }
  891. if (rxtx_flags & NV_SETUP_TX_RING) {
  892. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  893. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  894. }
  895. }
  896. }
  897. static void free_rings(struct net_device *dev)
  898. {
  899. struct fe_priv *np = get_nvpriv(dev);
  900. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  901. if (np->rx_ring.orig)
  902. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  903. np->rx_ring.orig, np->ring_addr);
  904. } else {
  905. if (np->rx_ring.ex)
  906. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  907. np->rx_ring.ex, np->ring_addr);
  908. }
  909. if (np->rx_skb)
  910. kfree(np->rx_skb);
  911. if (np->tx_skb)
  912. kfree(np->tx_skb);
  913. }
  914. static int using_multi_irqs(struct net_device *dev)
  915. {
  916. struct fe_priv *np = get_nvpriv(dev);
  917. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  918. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  919. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  920. return 0;
  921. else
  922. return 1;
  923. }
  924. static void nv_enable_irq(struct net_device *dev)
  925. {
  926. struct fe_priv *np = get_nvpriv(dev);
  927. if (!using_multi_irqs(dev)) {
  928. if (np->msi_flags & NV_MSI_X_ENABLED)
  929. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  930. else
  931. enable_irq(np->pci_dev->irq);
  932. } else {
  933. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  934. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  935. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  936. }
  937. }
  938. static void nv_disable_irq(struct net_device *dev)
  939. {
  940. struct fe_priv *np = get_nvpriv(dev);
  941. if (!using_multi_irqs(dev)) {
  942. if (np->msi_flags & NV_MSI_X_ENABLED)
  943. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  944. else
  945. disable_irq(np->pci_dev->irq);
  946. } else {
  947. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  948. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  949. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  950. }
  951. }
  952. /* In MSIX mode, a write to irqmask behaves as XOR */
  953. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  954. {
  955. u8 __iomem *base = get_hwbase(dev);
  956. writel(mask, base + NvRegIrqMask);
  957. }
  958. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  959. {
  960. struct fe_priv *np = get_nvpriv(dev);
  961. u8 __iomem *base = get_hwbase(dev);
  962. if (np->msi_flags & NV_MSI_X_ENABLED) {
  963. writel(mask, base + NvRegIrqMask);
  964. } else {
  965. if (np->msi_flags & NV_MSI_ENABLED)
  966. writel(0, base + NvRegMSIIrqMask);
  967. writel(0, base + NvRegIrqMask);
  968. }
  969. }
  970. #define MII_READ (-1)
  971. /* mii_rw: read/write a register on the PHY.
  972. *
  973. * Caller must guarantee serialization
  974. */
  975. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  976. {
  977. u8 __iomem *base = get_hwbase(dev);
  978. u32 reg;
  979. int retval;
  980. writel(NVREG_MIISTAT_MASK_RW, base + NvRegMIIStatus);
  981. reg = readl(base + NvRegMIIControl);
  982. if (reg & NVREG_MIICTL_INUSE) {
  983. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  984. udelay(NV_MIIBUSY_DELAY);
  985. }
  986. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  987. if (value != MII_READ) {
  988. writel(value, base + NvRegMIIData);
  989. reg |= NVREG_MIICTL_WRITE;
  990. }
  991. writel(reg, base + NvRegMIIControl);
  992. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  993. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  994. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  995. dev->name, miireg, addr);
  996. retval = -1;
  997. } else if (value != MII_READ) {
  998. /* it was a write operation - fewer failures are detectable */
  999. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  1000. dev->name, value, miireg, addr);
  1001. retval = 0;
  1002. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  1003. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  1004. dev->name, miireg, addr);
  1005. retval = -1;
  1006. } else {
  1007. retval = readl(base + NvRegMIIData);
  1008. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  1009. dev->name, miireg, addr, retval);
  1010. }
  1011. return retval;
  1012. }
  1013. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  1014. {
  1015. struct fe_priv *np = netdev_priv(dev);
  1016. u32 miicontrol;
  1017. unsigned int tries = 0;
  1018. miicontrol = BMCR_RESET | bmcr_setup;
  1019. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  1020. return -1;
  1021. }
  1022. /* wait for 500ms */
  1023. msleep(500);
  1024. /* must wait till reset is deasserted */
  1025. while (miicontrol & BMCR_RESET) {
  1026. msleep(10);
  1027. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1028. /* FIXME: 100 tries seem excessive */
  1029. if (tries++ > 100)
  1030. return -1;
  1031. }
  1032. return 0;
  1033. }
  1034. static int phy_init(struct net_device *dev)
  1035. {
  1036. struct fe_priv *np = get_nvpriv(dev);
  1037. u8 __iomem *base = get_hwbase(dev);
  1038. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1039. /* phy errata for E3016 phy */
  1040. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1041. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1042. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1043. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1044. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1045. return PHY_ERROR;
  1046. }
  1047. }
  1048. if (np->phy_oui == PHY_OUI_REALTEK) {
  1049. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1050. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1051. return PHY_ERROR;
  1052. }
  1053. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1054. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1055. return PHY_ERROR;
  1056. }
  1057. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1058. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1059. return PHY_ERROR;
  1060. }
  1061. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1062. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1063. return PHY_ERROR;
  1064. }
  1065. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1066. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1067. return PHY_ERROR;
  1068. }
  1069. }
  1070. /* set advertise register */
  1071. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1072. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1073. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1074. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1075. return PHY_ERROR;
  1076. }
  1077. /* get phy interface type */
  1078. phyinterface = readl(base + NvRegPhyInterface);
  1079. /* see if gigabit phy */
  1080. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1081. if (mii_status & PHY_GIGABIT) {
  1082. np->gigabit = PHY_GIGABIT;
  1083. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1084. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1085. if (phyinterface & PHY_RGMII)
  1086. mii_control_1000 |= ADVERTISE_1000FULL;
  1087. else
  1088. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1089. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1090. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1091. return PHY_ERROR;
  1092. }
  1093. }
  1094. else
  1095. np->gigabit = 0;
  1096. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1097. mii_control |= BMCR_ANENABLE;
  1098. /* reset the phy
  1099. * (certain phys need bmcr to be setup with reset)
  1100. */
  1101. if (phy_reset(dev, mii_control)) {
  1102. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1103. return PHY_ERROR;
  1104. }
  1105. /* phy vendor specific configuration */
  1106. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1107. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1108. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1109. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1110. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1111. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1112. return PHY_ERROR;
  1113. }
  1114. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1115. phy_reserved |= PHY_CICADA_INIT5;
  1116. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1117. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1118. return PHY_ERROR;
  1119. }
  1120. }
  1121. if (np->phy_oui == PHY_OUI_CICADA) {
  1122. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1123. phy_reserved |= PHY_CICADA_INIT6;
  1124. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1125. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1126. return PHY_ERROR;
  1127. }
  1128. }
  1129. if (np->phy_oui == PHY_OUI_VITESSE) {
  1130. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1131. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1132. return PHY_ERROR;
  1133. }
  1134. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1135. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1136. return PHY_ERROR;
  1137. }
  1138. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1139. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1140. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1141. return PHY_ERROR;
  1142. }
  1143. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1144. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1145. phy_reserved |= PHY_VITESSE_INIT3;
  1146. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1147. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1148. return PHY_ERROR;
  1149. }
  1150. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1151. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1152. return PHY_ERROR;
  1153. }
  1154. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1155. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1156. return PHY_ERROR;
  1157. }
  1158. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1159. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1160. phy_reserved |= PHY_VITESSE_INIT3;
  1161. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1162. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1163. return PHY_ERROR;
  1164. }
  1165. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1166. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1167. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1168. return PHY_ERROR;
  1169. }
  1170. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1171. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1172. return PHY_ERROR;
  1173. }
  1174. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1175. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1176. return PHY_ERROR;
  1177. }
  1178. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1179. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1180. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1181. return PHY_ERROR;
  1182. }
  1183. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1184. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1185. phy_reserved |= PHY_VITESSE_INIT8;
  1186. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1187. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1188. return PHY_ERROR;
  1189. }
  1190. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1191. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1192. return PHY_ERROR;
  1193. }
  1194. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1195. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1196. return PHY_ERROR;
  1197. }
  1198. }
  1199. if (np->phy_oui == PHY_OUI_REALTEK) {
  1200. /* reset could have cleared these out, set them back */
  1201. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1202. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1203. return PHY_ERROR;
  1204. }
  1205. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1206. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1207. return PHY_ERROR;
  1208. }
  1209. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1210. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1211. return PHY_ERROR;
  1212. }
  1213. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1214. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1215. return PHY_ERROR;
  1216. }
  1217. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1218. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1219. return PHY_ERROR;
  1220. }
  1221. }
  1222. /* some phys clear out pause advertisment on reset, set it back */
  1223. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1224. /* restart auto negotiation */
  1225. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1226. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1227. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1228. return PHY_ERROR;
  1229. }
  1230. return 0;
  1231. }
  1232. static void nv_start_rx(struct net_device *dev)
  1233. {
  1234. struct fe_priv *np = netdev_priv(dev);
  1235. u8 __iomem *base = get_hwbase(dev);
  1236. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1237. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1238. /* Already running? Stop it. */
  1239. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1240. rx_ctrl &= ~NVREG_RCVCTL_START;
  1241. writel(rx_ctrl, base + NvRegReceiverControl);
  1242. pci_push(base);
  1243. }
  1244. writel(np->linkspeed, base + NvRegLinkSpeed);
  1245. pci_push(base);
  1246. rx_ctrl |= NVREG_RCVCTL_START;
  1247. if (np->mac_in_use)
  1248. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1249. writel(rx_ctrl, base + NvRegReceiverControl);
  1250. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1251. dev->name, np->duplex, np->linkspeed);
  1252. pci_push(base);
  1253. }
  1254. static void nv_stop_rx(struct net_device *dev)
  1255. {
  1256. struct fe_priv *np = netdev_priv(dev);
  1257. u8 __iomem *base = get_hwbase(dev);
  1258. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1259. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1260. if (!np->mac_in_use)
  1261. rx_ctrl &= ~NVREG_RCVCTL_START;
  1262. else
  1263. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1264. writel(rx_ctrl, base + NvRegReceiverControl);
  1265. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1266. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1267. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1268. udelay(NV_RXSTOP_DELAY2);
  1269. if (!np->mac_in_use)
  1270. writel(0, base + NvRegLinkSpeed);
  1271. }
  1272. static void nv_start_tx(struct net_device *dev)
  1273. {
  1274. struct fe_priv *np = netdev_priv(dev);
  1275. u8 __iomem *base = get_hwbase(dev);
  1276. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1277. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1278. tx_ctrl |= NVREG_XMITCTL_START;
  1279. if (np->mac_in_use)
  1280. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1281. writel(tx_ctrl, base + NvRegTransmitterControl);
  1282. pci_push(base);
  1283. }
  1284. static void nv_stop_tx(struct net_device *dev)
  1285. {
  1286. struct fe_priv *np = netdev_priv(dev);
  1287. u8 __iomem *base = get_hwbase(dev);
  1288. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1289. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1290. if (!np->mac_in_use)
  1291. tx_ctrl &= ~NVREG_XMITCTL_START;
  1292. else
  1293. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1294. writel(tx_ctrl, base + NvRegTransmitterControl);
  1295. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1296. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1297. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1298. udelay(NV_TXSTOP_DELAY2);
  1299. if (!np->mac_in_use)
  1300. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1301. base + NvRegTransmitPoll);
  1302. }
  1303. static void nv_txrx_reset(struct net_device *dev)
  1304. {
  1305. struct fe_priv *np = netdev_priv(dev);
  1306. u8 __iomem *base = get_hwbase(dev);
  1307. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1308. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1309. pci_push(base);
  1310. udelay(NV_TXRX_RESET_DELAY);
  1311. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1312. pci_push(base);
  1313. }
  1314. static void nv_mac_reset(struct net_device *dev)
  1315. {
  1316. struct fe_priv *np = netdev_priv(dev);
  1317. u8 __iomem *base = get_hwbase(dev);
  1318. u32 temp1, temp2, temp3;
  1319. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1320. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1321. pci_push(base);
  1322. /* save registers since they will be cleared on reset */
  1323. temp1 = readl(base + NvRegMacAddrA);
  1324. temp2 = readl(base + NvRegMacAddrB);
  1325. temp3 = readl(base + NvRegTransmitPoll);
  1326. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1327. pci_push(base);
  1328. udelay(NV_MAC_RESET_DELAY);
  1329. writel(0, base + NvRegMacReset);
  1330. pci_push(base);
  1331. udelay(NV_MAC_RESET_DELAY);
  1332. /* restore saved registers */
  1333. writel(temp1, base + NvRegMacAddrA);
  1334. writel(temp2, base + NvRegMacAddrB);
  1335. writel(temp3, base + NvRegTransmitPoll);
  1336. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1337. pci_push(base);
  1338. }
  1339. static void nv_get_hw_stats(struct net_device *dev)
  1340. {
  1341. struct fe_priv *np = netdev_priv(dev);
  1342. u8 __iomem *base = get_hwbase(dev);
  1343. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1344. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1345. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1346. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1347. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1348. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1349. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1350. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1351. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1352. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1353. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1354. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1355. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1356. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1357. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1358. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1359. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1360. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1361. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1362. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1363. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1364. np->estats.rx_packets =
  1365. np->estats.rx_unicast +
  1366. np->estats.rx_multicast +
  1367. np->estats.rx_broadcast;
  1368. np->estats.rx_errors_total =
  1369. np->estats.rx_crc_errors +
  1370. np->estats.rx_over_errors +
  1371. np->estats.rx_frame_error +
  1372. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1373. np->estats.rx_late_collision +
  1374. np->estats.rx_runt +
  1375. np->estats.rx_frame_too_long;
  1376. np->estats.tx_errors_total =
  1377. np->estats.tx_late_collision +
  1378. np->estats.tx_fifo_errors +
  1379. np->estats.tx_carrier_errors +
  1380. np->estats.tx_excess_deferral +
  1381. np->estats.tx_retry_error;
  1382. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1383. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1384. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1385. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1386. np->estats.tx_pause += readl(base + NvRegTxPause);
  1387. np->estats.rx_pause += readl(base + NvRegRxPause);
  1388. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1389. }
  1390. }
  1391. /*
  1392. * nv_get_stats: dev->get_stats function
  1393. * Get latest stats value from the nic.
  1394. * Called with read_lock(&dev_base_lock) held for read -
  1395. * only synchronized against unregister_netdevice.
  1396. */
  1397. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1398. {
  1399. struct fe_priv *np = netdev_priv(dev);
  1400. /* If the nic supports hw counters then retrieve latest values */
  1401. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
  1402. nv_get_hw_stats(dev);
  1403. /* copy to net_device stats */
  1404. dev->stats.tx_bytes = np->estats.tx_bytes;
  1405. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1406. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1407. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1408. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1409. dev->stats.rx_errors = np->estats.rx_errors_total;
  1410. dev->stats.tx_errors = np->estats.tx_errors_total;
  1411. }
  1412. return &dev->stats;
  1413. }
  1414. /*
  1415. * nv_alloc_rx: fill rx ring entries.
  1416. * Return 1 if the allocations for the skbs failed and the
  1417. * rx engine is without Available descriptors
  1418. */
  1419. static int nv_alloc_rx(struct net_device *dev)
  1420. {
  1421. struct fe_priv *np = netdev_priv(dev);
  1422. struct ring_desc* less_rx;
  1423. less_rx = np->get_rx.orig;
  1424. if (less_rx-- == np->first_rx.orig)
  1425. less_rx = np->last_rx.orig;
  1426. while (np->put_rx.orig != less_rx) {
  1427. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1428. if (skb) {
  1429. np->put_rx_ctx->skb = skb;
  1430. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1431. skb->data,
  1432. skb_tailroom(skb),
  1433. PCI_DMA_FROMDEVICE);
  1434. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1435. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1436. wmb();
  1437. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1438. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1439. np->put_rx.orig = np->first_rx.orig;
  1440. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1441. np->put_rx_ctx = np->first_rx_ctx;
  1442. } else {
  1443. return 1;
  1444. }
  1445. }
  1446. return 0;
  1447. }
  1448. static int nv_alloc_rx_optimized(struct net_device *dev)
  1449. {
  1450. struct fe_priv *np = netdev_priv(dev);
  1451. struct ring_desc_ex* less_rx;
  1452. less_rx = np->get_rx.ex;
  1453. if (less_rx-- == np->first_rx.ex)
  1454. less_rx = np->last_rx.ex;
  1455. while (np->put_rx.ex != less_rx) {
  1456. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1457. if (skb) {
  1458. np->put_rx_ctx->skb = skb;
  1459. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1460. skb->data,
  1461. skb_tailroom(skb),
  1462. PCI_DMA_FROMDEVICE);
  1463. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1464. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1465. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1466. wmb();
  1467. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1468. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1469. np->put_rx.ex = np->first_rx.ex;
  1470. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1471. np->put_rx_ctx = np->first_rx_ctx;
  1472. } else {
  1473. return 1;
  1474. }
  1475. }
  1476. return 0;
  1477. }
  1478. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1479. #ifdef CONFIG_FORCEDETH_NAPI
  1480. static void nv_do_rx_refill(unsigned long data)
  1481. {
  1482. struct net_device *dev = (struct net_device *) data;
  1483. struct fe_priv *np = netdev_priv(dev);
  1484. /* Just reschedule NAPI rx processing */
  1485. netif_rx_schedule(dev, &np->napi);
  1486. }
  1487. #else
  1488. static void nv_do_rx_refill(unsigned long data)
  1489. {
  1490. struct net_device *dev = (struct net_device *) data;
  1491. struct fe_priv *np = netdev_priv(dev);
  1492. int retcode;
  1493. if (!using_multi_irqs(dev)) {
  1494. if (np->msi_flags & NV_MSI_X_ENABLED)
  1495. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1496. else
  1497. disable_irq(np->pci_dev->irq);
  1498. } else {
  1499. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1500. }
  1501. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1502. retcode = nv_alloc_rx(dev);
  1503. else
  1504. retcode = nv_alloc_rx_optimized(dev);
  1505. if (retcode) {
  1506. spin_lock_irq(&np->lock);
  1507. if (!np->in_shutdown)
  1508. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1509. spin_unlock_irq(&np->lock);
  1510. }
  1511. if (!using_multi_irqs(dev)) {
  1512. if (np->msi_flags & NV_MSI_X_ENABLED)
  1513. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1514. else
  1515. enable_irq(np->pci_dev->irq);
  1516. } else {
  1517. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1518. }
  1519. }
  1520. #endif
  1521. static void nv_init_rx(struct net_device *dev)
  1522. {
  1523. struct fe_priv *np = netdev_priv(dev);
  1524. int i;
  1525. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1526. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1527. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1528. else
  1529. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1530. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1531. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1532. for (i = 0; i < np->rx_ring_size; i++) {
  1533. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1534. np->rx_ring.orig[i].flaglen = 0;
  1535. np->rx_ring.orig[i].buf = 0;
  1536. } else {
  1537. np->rx_ring.ex[i].flaglen = 0;
  1538. np->rx_ring.ex[i].txvlan = 0;
  1539. np->rx_ring.ex[i].bufhigh = 0;
  1540. np->rx_ring.ex[i].buflow = 0;
  1541. }
  1542. np->rx_skb[i].skb = NULL;
  1543. np->rx_skb[i].dma = 0;
  1544. }
  1545. }
  1546. static void nv_init_tx(struct net_device *dev)
  1547. {
  1548. struct fe_priv *np = netdev_priv(dev);
  1549. int i;
  1550. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1551. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1552. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1553. else
  1554. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1555. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1556. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1557. np->tx_pkts_in_progress = 0;
  1558. np->tx_change_owner = NULL;
  1559. np->tx_end_flip = NULL;
  1560. for (i = 0; i < np->tx_ring_size; i++) {
  1561. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1562. np->tx_ring.orig[i].flaglen = 0;
  1563. np->tx_ring.orig[i].buf = 0;
  1564. } else {
  1565. np->tx_ring.ex[i].flaglen = 0;
  1566. np->tx_ring.ex[i].txvlan = 0;
  1567. np->tx_ring.ex[i].bufhigh = 0;
  1568. np->tx_ring.ex[i].buflow = 0;
  1569. }
  1570. np->tx_skb[i].skb = NULL;
  1571. np->tx_skb[i].dma = 0;
  1572. np->tx_skb[i].dma_len = 0;
  1573. np->tx_skb[i].first_tx_desc = NULL;
  1574. np->tx_skb[i].next_tx_ctx = NULL;
  1575. }
  1576. }
  1577. static int nv_init_ring(struct net_device *dev)
  1578. {
  1579. struct fe_priv *np = netdev_priv(dev);
  1580. nv_init_tx(dev);
  1581. nv_init_rx(dev);
  1582. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1583. return nv_alloc_rx(dev);
  1584. else
  1585. return nv_alloc_rx_optimized(dev);
  1586. }
  1587. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1588. {
  1589. struct fe_priv *np = netdev_priv(dev);
  1590. if (tx_skb->dma) {
  1591. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1592. tx_skb->dma_len,
  1593. PCI_DMA_TODEVICE);
  1594. tx_skb->dma = 0;
  1595. }
  1596. if (tx_skb->skb) {
  1597. dev_kfree_skb_any(tx_skb->skb);
  1598. tx_skb->skb = NULL;
  1599. return 1;
  1600. } else {
  1601. return 0;
  1602. }
  1603. }
  1604. static void nv_drain_tx(struct net_device *dev)
  1605. {
  1606. struct fe_priv *np = netdev_priv(dev);
  1607. unsigned int i;
  1608. for (i = 0; i < np->tx_ring_size; i++) {
  1609. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1610. np->tx_ring.orig[i].flaglen = 0;
  1611. np->tx_ring.orig[i].buf = 0;
  1612. } else {
  1613. np->tx_ring.ex[i].flaglen = 0;
  1614. np->tx_ring.ex[i].txvlan = 0;
  1615. np->tx_ring.ex[i].bufhigh = 0;
  1616. np->tx_ring.ex[i].buflow = 0;
  1617. }
  1618. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1619. dev->stats.tx_dropped++;
  1620. np->tx_skb[i].dma = 0;
  1621. np->tx_skb[i].dma_len = 0;
  1622. np->tx_skb[i].first_tx_desc = NULL;
  1623. np->tx_skb[i].next_tx_ctx = NULL;
  1624. }
  1625. np->tx_pkts_in_progress = 0;
  1626. np->tx_change_owner = NULL;
  1627. np->tx_end_flip = NULL;
  1628. }
  1629. static void nv_drain_rx(struct net_device *dev)
  1630. {
  1631. struct fe_priv *np = netdev_priv(dev);
  1632. int i;
  1633. for (i = 0; i < np->rx_ring_size; i++) {
  1634. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1635. np->rx_ring.orig[i].flaglen = 0;
  1636. np->rx_ring.orig[i].buf = 0;
  1637. } else {
  1638. np->rx_ring.ex[i].flaglen = 0;
  1639. np->rx_ring.ex[i].txvlan = 0;
  1640. np->rx_ring.ex[i].bufhigh = 0;
  1641. np->rx_ring.ex[i].buflow = 0;
  1642. }
  1643. wmb();
  1644. if (np->rx_skb[i].skb) {
  1645. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1646. (skb_end_pointer(np->rx_skb[i].skb) -
  1647. np->rx_skb[i].skb->data),
  1648. PCI_DMA_FROMDEVICE);
  1649. dev_kfree_skb(np->rx_skb[i].skb);
  1650. np->rx_skb[i].skb = NULL;
  1651. }
  1652. }
  1653. }
  1654. static void drain_ring(struct net_device *dev)
  1655. {
  1656. nv_drain_tx(dev);
  1657. nv_drain_rx(dev);
  1658. }
  1659. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1660. {
  1661. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1662. }
  1663. /*
  1664. * nv_start_xmit: dev->hard_start_xmit function
  1665. * Called with netif_tx_lock held.
  1666. */
  1667. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1668. {
  1669. struct fe_priv *np = netdev_priv(dev);
  1670. u32 tx_flags = 0;
  1671. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1672. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1673. unsigned int i;
  1674. u32 offset = 0;
  1675. u32 bcnt;
  1676. u32 size = skb->len-skb->data_len;
  1677. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1678. u32 empty_slots;
  1679. struct ring_desc* put_tx;
  1680. struct ring_desc* start_tx;
  1681. struct ring_desc* prev_tx;
  1682. struct nv_skb_map* prev_tx_ctx;
  1683. unsigned long flags;
  1684. /* add fragments to entries count */
  1685. for (i = 0; i < fragments; i++) {
  1686. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1687. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1688. }
  1689. empty_slots = nv_get_empty_tx_slots(np);
  1690. if (unlikely(empty_slots <= entries)) {
  1691. spin_lock_irqsave(&np->lock, flags);
  1692. netif_stop_queue(dev);
  1693. np->tx_stop = 1;
  1694. spin_unlock_irqrestore(&np->lock, flags);
  1695. return NETDEV_TX_BUSY;
  1696. }
  1697. start_tx = put_tx = np->put_tx.orig;
  1698. /* setup the header buffer */
  1699. do {
  1700. prev_tx = put_tx;
  1701. prev_tx_ctx = np->put_tx_ctx;
  1702. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1703. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1704. PCI_DMA_TODEVICE);
  1705. np->put_tx_ctx->dma_len = bcnt;
  1706. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1707. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1708. tx_flags = np->tx_flags;
  1709. offset += bcnt;
  1710. size -= bcnt;
  1711. if (unlikely(put_tx++ == np->last_tx.orig))
  1712. put_tx = np->first_tx.orig;
  1713. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1714. np->put_tx_ctx = np->first_tx_ctx;
  1715. } while (size);
  1716. /* setup the fragments */
  1717. for (i = 0; i < fragments; i++) {
  1718. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1719. u32 size = frag->size;
  1720. offset = 0;
  1721. do {
  1722. prev_tx = put_tx;
  1723. prev_tx_ctx = np->put_tx_ctx;
  1724. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1725. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1726. PCI_DMA_TODEVICE);
  1727. np->put_tx_ctx->dma_len = bcnt;
  1728. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1729. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1730. offset += bcnt;
  1731. size -= bcnt;
  1732. if (unlikely(put_tx++ == np->last_tx.orig))
  1733. put_tx = np->first_tx.orig;
  1734. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1735. np->put_tx_ctx = np->first_tx_ctx;
  1736. } while (size);
  1737. }
  1738. /* set last fragment flag */
  1739. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1740. /* save skb in this slot's context area */
  1741. prev_tx_ctx->skb = skb;
  1742. if (skb_is_gso(skb))
  1743. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1744. else
  1745. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1746. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1747. spin_lock_irqsave(&np->lock, flags);
  1748. /* set tx flags */
  1749. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1750. np->put_tx.orig = put_tx;
  1751. spin_unlock_irqrestore(&np->lock, flags);
  1752. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1753. dev->name, entries, tx_flags_extra);
  1754. {
  1755. int j;
  1756. for (j=0; j<64; j++) {
  1757. if ((j%16) == 0)
  1758. dprintk("\n%03x:", j);
  1759. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1760. }
  1761. dprintk("\n");
  1762. }
  1763. dev->trans_start = jiffies;
  1764. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1765. return NETDEV_TX_OK;
  1766. }
  1767. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  1768. {
  1769. struct fe_priv *np = netdev_priv(dev);
  1770. u32 tx_flags = 0;
  1771. u32 tx_flags_extra;
  1772. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1773. unsigned int i;
  1774. u32 offset = 0;
  1775. u32 bcnt;
  1776. u32 size = skb->len-skb->data_len;
  1777. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1778. u32 empty_slots;
  1779. struct ring_desc_ex* put_tx;
  1780. struct ring_desc_ex* start_tx;
  1781. struct ring_desc_ex* prev_tx;
  1782. struct nv_skb_map* prev_tx_ctx;
  1783. struct nv_skb_map* start_tx_ctx;
  1784. unsigned long flags;
  1785. /* add fragments to entries count */
  1786. for (i = 0; i < fragments; i++) {
  1787. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1788. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1789. }
  1790. empty_slots = nv_get_empty_tx_slots(np);
  1791. if (unlikely(empty_slots <= entries)) {
  1792. spin_lock_irqsave(&np->lock, flags);
  1793. netif_stop_queue(dev);
  1794. np->tx_stop = 1;
  1795. spin_unlock_irqrestore(&np->lock, flags);
  1796. return NETDEV_TX_BUSY;
  1797. }
  1798. start_tx = put_tx = np->put_tx.ex;
  1799. start_tx_ctx = np->put_tx_ctx;
  1800. /* setup the header buffer */
  1801. do {
  1802. prev_tx = put_tx;
  1803. prev_tx_ctx = np->put_tx_ctx;
  1804. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1805. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1806. PCI_DMA_TODEVICE);
  1807. np->put_tx_ctx->dma_len = bcnt;
  1808. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  1809. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  1810. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1811. tx_flags = NV_TX2_VALID;
  1812. offset += bcnt;
  1813. size -= bcnt;
  1814. if (unlikely(put_tx++ == np->last_tx.ex))
  1815. put_tx = np->first_tx.ex;
  1816. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1817. np->put_tx_ctx = np->first_tx_ctx;
  1818. } while (size);
  1819. /* setup the fragments */
  1820. for (i = 0; i < fragments; i++) {
  1821. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1822. u32 size = frag->size;
  1823. offset = 0;
  1824. do {
  1825. prev_tx = put_tx;
  1826. prev_tx_ctx = np->put_tx_ctx;
  1827. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1828. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1829. PCI_DMA_TODEVICE);
  1830. np->put_tx_ctx->dma_len = bcnt;
  1831. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  1832. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  1833. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1834. offset += bcnt;
  1835. size -= bcnt;
  1836. if (unlikely(put_tx++ == np->last_tx.ex))
  1837. put_tx = np->first_tx.ex;
  1838. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1839. np->put_tx_ctx = np->first_tx_ctx;
  1840. } while (size);
  1841. }
  1842. /* set last fragment flag */
  1843. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  1844. /* save skb in this slot's context area */
  1845. prev_tx_ctx->skb = skb;
  1846. if (skb_is_gso(skb))
  1847. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1848. else
  1849. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1850. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1851. /* vlan tag */
  1852. if (likely(!np->vlangrp)) {
  1853. start_tx->txvlan = 0;
  1854. } else {
  1855. if (vlan_tx_tag_present(skb))
  1856. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  1857. else
  1858. start_tx->txvlan = 0;
  1859. }
  1860. spin_lock_irqsave(&np->lock, flags);
  1861. if (np->tx_limit) {
  1862. /* Limit the number of outstanding tx. Setup all fragments, but
  1863. * do not set the VALID bit on the first descriptor. Save a pointer
  1864. * to that descriptor and also for next skb_map element.
  1865. */
  1866. if (np->tx_pkts_in_progress == NV_TX_LIMIT_COUNT) {
  1867. if (!np->tx_change_owner)
  1868. np->tx_change_owner = start_tx_ctx;
  1869. /* remove VALID bit */
  1870. tx_flags &= ~NV_TX2_VALID;
  1871. start_tx_ctx->first_tx_desc = start_tx;
  1872. start_tx_ctx->next_tx_ctx = np->put_tx_ctx;
  1873. np->tx_end_flip = np->put_tx_ctx;
  1874. } else {
  1875. np->tx_pkts_in_progress++;
  1876. }
  1877. }
  1878. /* set tx flags */
  1879. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1880. np->put_tx.ex = put_tx;
  1881. spin_unlock_irqrestore(&np->lock, flags);
  1882. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  1883. dev->name, entries, tx_flags_extra);
  1884. {
  1885. int j;
  1886. for (j=0; j<64; j++) {
  1887. if ((j%16) == 0)
  1888. dprintk("\n%03x:", j);
  1889. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1890. }
  1891. dprintk("\n");
  1892. }
  1893. dev->trans_start = jiffies;
  1894. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1895. return NETDEV_TX_OK;
  1896. }
  1897. static inline void nv_tx_flip_ownership(struct net_device *dev)
  1898. {
  1899. struct fe_priv *np = netdev_priv(dev);
  1900. np->tx_pkts_in_progress--;
  1901. if (np->tx_change_owner) {
  1902. np->tx_change_owner->first_tx_desc->flaglen |=
  1903. cpu_to_le32(NV_TX2_VALID);
  1904. np->tx_pkts_in_progress++;
  1905. np->tx_change_owner = np->tx_change_owner->next_tx_ctx;
  1906. if (np->tx_change_owner == np->tx_end_flip)
  1907. np->tx_change_owner = NULL;
  1908. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1909. }
  1910. }
  1911. /*
  1912. * nv_tx_done: check for completed packets, release the skbs.
  1913. *
  1914. * Caller must own np->lock.
  1915. */
  1916. static void nv_tx_done(struct net_device *dev)
  1917. {
  1918. struct fe_priv *np = netdev_priv(dev);
  1919. u32 flags;
  1920. struct ring_desc* orig_get_tx = np->get_tx.orig;
  1921. while ((np->get_tx.orig != np->put_tx.orig) &&
  1922. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
  1923. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  1924. dev->name, flags);
  1925. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1926. np->get_tx_ctx->dma_len,
  1927. PCI_DMA_TODEVICE);
  1928. np->get_tx_ctx->dma = 0;
  1929. if (np->desc_ver == DESC_VER_1) {
  1930. if (flags & NV_TX_LASTPACKET) {
  1931. if (flags & NV_TX_ERROR) {
  1932. if (flags & NV_TX_UNDERFLOW)
  1933. dev->stats.tx_fifo_errors++;
  1934. if (flags & NV_TX_CARRIERLOST)
  1935. dev->stats.tx_carrier_errors++;
  1936. dev->stats.tx_errors++;
  1937. } else {
  1938. dev->stats.tx_packets++;
  1939. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1940. }
  1941. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1942. np->get_tx_ctx->skb = NULL;
  1943. }
  1944. } else {
  1945. if (flags & NV_TX2_LASTPACKET) {
  1946. if (flags & NV_TX2_ERROR) {
  1947. if (flags & NV_TX2_UNDERFLOW)
  1948. dev->stats.tx_fifo_errors++;
  1949. if (flags & NV_TX2_CARRIERLOST)
  1950. dev->stats.tx_carrier_errors++;
  1951. dev->stats.tx_errors++;
  1952. } else {
  1953. dev->stats.tx_packets++;
  1954. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1955. }
  1956. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1957. np->get_tx_ctx->skb = NULL;
  1958. }
  1959. }
  1960. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  1961. np->get_tx.orig = np->first_tx.orig;
  1962. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1963. np->get_tx_ctx = np->first_tx_ctx;
  1964. }
  1965. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  1966. np->tx_stop = 0;
  1967. netif_wake_queue(dev);
  1968. }
  1969. }
  1970. static void nv_tx_done_optimized(struct net_device *dev, int limit)
  1971. {
  1972. struct fe_priv *np = netdev_priv(dev);
  1973. u32 flags;
  1974. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  1975. while ((np->get_tx.ex != np->put_tx.ex) &&
  1976. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  1977. (limit-- > 0)) {
  1978. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  1979. dev->name, flags);
  1980. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1981. np->get_tx_ctx->dma_len,
  1982. PCI_DMA_TODEVICE);
  1983. np->get_tx_ctx->dma = 0;
  1984. if (flags & NV_TX2_LASTPACKET) {
  1985. if (!(flags & NV_TX2_ERROR))
  1986. dev->stats.tx_packets++;
  1987. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1988. np->get_tx_ctx->skb = NULL;
  1989. if (np->tx_limit) {
  1990. nv_tx_flip_ownership(dev);
  1991. }
  1992. }
  1993. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  1994. np->get_tx.ex = np->first_tx.ex;
  1995. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1996. np->get_tx_ctx = np->first_tx_ctx;
  1997. }
  1998. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  1999. np->tx_stop = 0;
  2000. netif_wake_queue(dev);
  2001. }
  2002. }
  2003. /*
  2004. * nv_tx_timeout: dev->tx_timeout function
  2005. * Called with netif_tx_lock held.
  2006. */
  2007. static void nv_tx_timeout(struct net_device *dev)
  2008. {
  2009. struct fe_priv *np = netdev_priv(dev);
  2010. u8 __iomem *base = get_hwbase(dev);
  2011. u32 status;
  2012. if (np->msi_flags & NV_MSI_X_ENABLED)
  2013. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2014. else
  2015. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2016. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  2017. {
  2018. int i;
  2019. printk(KERN_INFO "%s: Ring at %lx\n",
  2020. dev->name, (unsigned long)np->ring_addr);
  2021. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  2022. for (i=0;i<=np->register_size;i+= 32) {
  2023. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  2024. i,
  2025. readl(base + i + 0), readl(base + i + 4),
  2026. readl(base + i + 8), readl(base + i + 12),
  2027. readl(base + i + 16), readl(base + i + 20),
  2028. readl(base + i + 24), readl(base + i + 28));
  2029. }
  2030. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  2031. for (i=0;i<np->tx_ring_size;i+= 4) {
  2032. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2033. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  2034. i,
  2035. le32_to_cpu(np->tx_ring.orig[i].buf),
  2036. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  2037. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  2038. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  2039. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  2040. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  2041. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  2042. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  2043. } else {
  2044. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  2045. i,
  2046. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  2047. le32_to_cpu(np->tx_ring.ex[i].buflow),
  2048. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  2049. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  2050. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  2051. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  2052. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  2053. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  2054. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  2055. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  2056. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  2057. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  2058. }
  2059. }
  2060. }
  2061. spin_lock_irq(&np->lock);
  2062. /* 1) stop tx engine */
  2063. nv_stop_tx(dev);
  2064. /* 2) check that the packets were not sent already: */
  2065. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  2066. nv_tx_done(dev);
  2067. else
  2068. nv_tx_done_optimized(dev, np->tx_ring_size);
  2069. /* 3) if there are dead entries: clear everything */
  2070. if (np->get_tx_ctx != np->put_tx_ctx) {
  2071. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  2072. nv_drain_tx(dev);
  2073. nv_init_tx(dev);
  2074. setup_hw_rings(dev, NV_SETUP_TX_RING);
  2075. }
  2076. netif_wake_queue(dev);
  2077. /* 4) restart tx engine */
  2078. nv_start_tx(dev);
  2079. spin_unlock_irq(&np->lock);
  2080. }
  2081. /*
  2082. * Called when the nic notices a mismatch between the actual data len on the
  2083. * wire and the len indicated in the 802 header
  2084. */
  2085. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2086. {
  2087. int hdrlen; /* length of the 802 header */
  2088. int protolen; /* length as stored in the proto field */
  2089. /* 1) calculate len according to header */
  2090. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2091. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2092. hdrlen = VLAN_HLEN;
  2093. } else {
  2094. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2095. hdrlen = ETH_HLEN;
  2096. }
  2097. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2098. dev->name, datalen, protolen, hdrlen);
  2099. if (protolen > ETH_DATA_LEN)
  2100. return datalen; /* Value in proto field not a len, no checks possible */
  2101. protolen += hdrlen;
  2102. /* consistency checks: */
  2103. if (datalen > ETH_ZLEN) {
  2104. if (datalen >= protolen) {
  2105. /* more data on wire than in 802 header, trim of
  2106. * additional data.
  2107. */
  2108. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2109. dev->name, protolen);
  2110. return protolen;
  2111. } else {
  2112. /* less data on wire than mentioned in header.
  2113. * Discard the packet.
  2114. */
  2115. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2116. dev->name);
  2117. return -1;
  2118. }
  2119. } else {
  2120. /* short packet. Accept only if 802 values are also short */
  2121. if (protolen > ETH_ZLEN) {
  2122. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2123. dev->name);
  2124. return -1;
  2125. }
  2126. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2127. dev->name, datalen);
  2128. return datalen;
  2129. }
  2130. }
  2131. static int nv_rx_process(struct net_device *dev, int limit)
  2132. {
  2133. struct fe_priv *np = netdev_priv(dev);
  2134. u32 flags;
  2135. int rx_work = 0;
  2136. struct sk_buff *skb;
  2137. int len;
  2138. while((np->get_rx.orig != np->put_rx.orig) &&
  2139. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2140. (rx_work < limit)) {
  2141. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2142. dev->name, flags);
  2143. /*
  2144. * the packet is for us - immediately tear down the pci mapping.
  2145. * TODO: check if a prefetch of the first cacheline improves
  2146. * the performance.
  2147. */
  2148. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2149. np->get_rx_ctx->dma_len,
  2150. PCI_DMA_FROMDEVICE);
  2151. skb = np->get_rx_ctx->skb;
  2152. np->get_rx_ctx->skb = NULL;
  2153. {
  2154. int j;
  2155. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2156. for (j=0; j<64; j++) {
  2157. if ((j%16) == 0)
  2158. dprintk("\n%03x:", j);
  2159. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2160. }
  2161. dprintk("\n");
  2162. }
  2163. /* look at what we actually got: */
  2164. if (np->desc_ver == DESC_VER_1) {
  2165. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2166. len = flags & LEN_MASK_V1;
  2167. if (unlikely(flags & NV_RX_ERROR)) {
  2168. if (flags & NV_RX_ERROR4) {
  2169. len = nv_getlen(dev, skb->data, len);
  2170. if (len < 0) {
  2171. dev->stats.rx_errors++;
  2172. dev_kfree_skb(skb);
  2173. goto next_pkt;
  2174. }
  2175. }
  2176. /* framing errors are soft errors */
  2177. else if (flags & NV_RX_FRAMINGERR) {
  2178. if (flags & NV_RX_SUBSTRACT1) {
  2179. len--;
  2180. }
  2181. }
  2182. /* the rest are hard errors */
  2183. else {
  2184. if (flags & NV_RX_MISSEDFRAME)
  2185. dev->stats.rx_missed_errors++;
  2186. if (flags & NV_RX_CRCERR)
  2187. dev->stats.rx_crc_errors++;
  2188. if (flags & NV_RX_OVERFLOW)
  2189. dev->stats.rx_over_errors++;
  2190. dev->stats.rx_errors++;
  2191. dev_kfree_skb(skb);
  2192. goto next_pkt;
  2193. }
  2194. }
  2195. } else {
  2196. dev_kfree_skb(skb);
  2197. goto next_pkt;
  2198. }
  2199. } else {
  2200. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2201. len = flags & LEN_MASK_V2;
  2202. if (unlikely(flags & NV_RX2_ERROR)) {
  2203. if (flags & NV_RX2_ERROR4) {
  2204. len = nv_getlen(dev, skb->data, len);
  2205. if (len < 0) {
  2206. dev->stats.rx_errors++;
  2207. dev_kfree_skb(skb);
  2208. goto next_pkt;
  2209. }
  2210. }
  2211. /* framing errors are soft errors */
  2212. else if (flags & NV_RX2_FRAMINGERR) {
  2213. if (flags & NV_RX2_SUBSTRACT1) {
  2214. len--;
  2215. }
  2216. }
  2217. /* the rest are hard errors */
  2218. else {
  2219. if (flags & NV_RX2_CRCERR)
  2220. dev->stats.rx_crc_errors++;
  2221. if (flags & NV_RX2_OVERFLOW)
  2222. dev->stats.rx_over_errors++;
  2223. dev->stats.rx_errors++;
  2224. dev_kfree_skb(skb);
  2225. goto next_pkt;
  2226. }
  2227. }
  2228. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2229. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2230. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2231. } else {
  2232. dev_kfree_skb(skb);
  2233. goto next_pkt;
  2234. }
  2235. }
  2236. /* got a valid packet - forward it to the network core */
  2237. skb_put(skb, len);
  2238. skb->protocol = eth_type_trans(skb, dev);
  2239. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2240. dev->name, len, skb->protocol);
  2241. #ifdef CONFIG_FORCEDETH_NAPI
  2242. netif_receive_skb(skb);
  2243. #else
  2244. netif_rx(skb);
  2245. #endif
  2246. dev->last_rx = jiffies;
  2247. dev->stats.rx_packets++;
  2248. dev->stats.rx_bytes += len;
  2249. next_pkt:
  2250. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2251. np->get_rx.orig = np->first_rx.orig;
  2252. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2253. np->get_rx_ctx = np->first_rx_ctx;
  2254. rx_work++;
  2255. }
  2256. return rx_work;
  2257. }
  2258. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2259. {
  2260. struct fe_priv *np = netdev_priv(dev);
  2261. u32 flags;
  2262. u32 vlanflags = 0;
  2263. int rx_work = 0;
  2264. struct sk_buff *skb;
  2265. int len;
  2266. while((np->get_rx.ex != np->put_rx.ex) &&
  2267. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2268. (rx_work < limit)) {
  2269. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2270. dev->name, flags);
  2271. /*
  2272. * the packet is for us - immediately tear down the pci mapping.
  2273. * TODO: check if a prefetch of the first cacheline improves
  2274. * the performance.
  2275. */
  2276. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2277. np->get_rx_ctx->dma_len,
  2278. PCI_DMA_FROMDEVICE);
  2279. skb = np->get_rx_ctx->skb;
  2280. np->get_rx_ctx->skb = NULL;
  2281. {
  2282. int j;
  2283. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2284. for (j=0; j<64; j++) {
  2285. if ((j%16) == 0)
  2286. dprintk("\n%03x:", j);
  2287. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2288. }
  2289. dprintk("\n");
  2290. }
  2291. /* look at what we actually got: */
  2292. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2293. len = flags & LEN_MASK_V2;
  2294. if (unlikely(flags & NV_RX2_ERROR)) {
  2295. if (flags & NV_RX2_ERROR4) {
  2296. len = nv_getlen(dev, skb->data, len);
  2297. if (len < 0) {
  2298. dev_kfree_skb(skb);
  2299. goto next_pkt;
  2300. }
  2301. }
  2302. /* framing errors are soft errors */
  2303. else if (flags & NV_RX2_FRAMINGERR) {
  2304. if (flags & NV_RX2_SUBSTRACT1) {
  2305. len--;
  2306. }
  2307. }
  2308. /* the rest are hard errors */
  2309. else {
  2310. dev_kfree_skb(skb);
  2311. goto next_pkt;
  2312. }
  2313. }
  2314. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2315. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2316. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2317. /* got a valid packet - forward it to the network core */
  2318. skb_put(skb, len);
  2319. skb->protocol = eth_type_trans(skb, dev);
  2320. prefetch(skb->data);
  2321. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2322. dev->name, len, skb->protocol);
  2323. if (likely(!np->vlangrp)) {
  2324. #ifdef CONFIG_FORCEDETH_NAPI
  2325. netif_receive_skb(skb);
  2326. #else
  2327. netif_rx(skb);
  2328. #endif
  2329. } else {
  2330. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2331. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2332. #ifdef CONFIG_FORCEDETH_NAPI
  2333. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2334. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2335. #else
  2336. vlan_hwaccel_rx(skb, np->vlangrp,
  2337. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2338. #endif
  2339. } else {
  2340. #ifdef CONFIG_FORCEDETH_NAPI
  2341. netif_receive_skb(skb);
  2342. #else
  2343. netif_rx(skb);
  2344. #endif
  2345. }
  2346. }
  2347. dev->last_rx = jiffies;
  2348. dev->stats.rx_packets++;
  2349. dev->stats.rx_bytes += len;
  2350. } else {
  2351. dev_kfree_skb(skb);
  2352. }
  2353. next_pkt:
  2354. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2355. np->get_rx.ex = np->first_rx.ex;
  2356. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2357. np->get_rx_ctx = np->first_rx_ctx;
  2358. rx_work++;
  2359. }
  2360. return rx_work;
  2361. }
  2362. static void set_bufsize(struct net_device *dev)
  2363. {
  2364. struct fe_priv *np = netdev_priv(dev);
  2365. if (dev->mtu <= ETH_DATA_LEN)
  2366. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2367. else
  2368. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2369. }
  2370. /*
  2371. * nv_change_mtu: dev->change_mtu function
  2372. * Called with dev_base_lock held for read.
  2373. */
  2374. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2375. {
  2376. struct fe_priv *np = netdev_priv(dev);
  2377. int old_mtu;
  2378. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2379. return -EINVAL;
  2380. old_mtu = dev->mtu;
  2381. dev->mtu = new_mtu;
  2382. /* return early if the buffer sizes will not change */
  2383. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2384. return 0;
  2385. if (old_mtu == new_mtu)
  2386. return 0;
  2387. /* synchronized against open : rtnl_lock() held by caller */
  2388. if (netif_running(dev)) {
  2389. u8 __iomem *base = get_hwbase(dev);
  2390. /*
  2391. * It seems that the nic preloads valid ring entries into an
  2392. * internal buffer. The procedure for flushing everything is
  2393. * guessed, there is probably a simpler approach.
  2394. * Changing the MTU is a rare event, it shouldn't matter.
  2395. */
  2396. nv_disable_irq(dev);
  2397. netif_tx_lock_bh(dev);
  2398. spin_lock(&np->lock);
  2399. /* stop engines */
  2400. nv_stop_rx(dev);
  2401. nv_stop_tx(dev);
  2402. nv_txrx_reset(dev);
  2403. /* drain rx queue */
  2404. nv_drain_rx(dev);
  2405. nv_drain_tx(dev);
  2406. /* reinit driver view of the rx queue */
  2407. set_bufsize(dev);
  2408. if (nv_init_ring(dev)) {
  2409. if (!np->in_shutdown)
  2410. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2411. }
  2412. /* reinit nic view of the rx queue */
  2413. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2414. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2415. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2416. base + NvRegRingSizes);
  2417. pci_push(base);
  2418. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2419. pci_push(base);
  2420. /* restart rx engine */
  2421. nv_start_rx(dev);
  2422. nv_start_tx(dev);
  2423. spin_unlock(&np->lock);
  2424. netif_tx_unlock_bh(dev);
  2425. nv_enable_irq(dev);
  2426. }
  2427. return 0;
  2428. }
  2429. static void nv_copy_mac_to_hw(struct net_device *dev)
  2430. {
  2431. u8 __iomem *base = get_hwbase(dev);
  2432. u32 mac[2];
  2433. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2434. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2435. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2436. writel(mac[0], base + NvRegMacAddrA);
  2437. writel(mac[1], base + NvRegMacAddrB);
  2438. }
  2439. /*
  2440. * nv_set_mac_address: dev->set_mac_address function
  2441. * Called with rtnl_lock() held.
  2442. */
  2443. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2444. {
  2445. struct fe_priv *np = netdev_priv(dev);
  2446. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2447. if (!is_valid_ether_addr(macaddr->sa_data))
  2448. return -EADDRNOTAVAIL;
  2449. /* synchronized against open : rtnl_lock() held by caller */
  2450. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2451. if (netif_running(dev)) {
  2452. netif_tx_lock_bh(dev);
  2453. spin_lock_irq(&np->lock);
  2454. /* stop rx engine */
  2455. nv_stop_rx(dev);
  2456. /* set mac address */
  2457. nv_copy_mac_to_hw(dev);
  2458. /* restart rx engine */
  2459. nv_start_rx(dev);
  2460. spin_unlock_irq(&np->lock);
  2461. netif_tx_unlock_bh(dev);
  2462. } else {
  2463. nv_copy_mac_to_hw(dev);
  2464. }
  2465. return 0;
  2466. }
  2467. /*
  2468. * nv_set_multicast: dev->set_multicast function
  2469. * Called with netif_tx_lock held.
  2470. */
  2471. static void nv_set_multicast(struct net_device *dev)
  2472. {
  2473. struct fe_priv *np = netdev_priv(dev);
  2474. u8 __iomem *base = get_hwbase(dev);
  2475. u32 addr[2];
  2476. u32 mask[2];
  2477. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2478. memset(addr, 0, sizeof(addr));
  2479. memset(mask, 0, sizeof(mask));
  2480. if (dev->flags & IFF_PROMISC) {
  2481. pff |= NVREG_PFF_PROMISC;
  2482. } else {
  2483. pff |= NVREG_PFF_MYADDR;
  2484. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2485. u32 alwaysOff[2];
  2486. u32 alwaysOn[2];
  2487. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2488. if (dev->flags & IFF_ALLMULTI) {
  2489. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2490. } else {
  2491. struct dev_mc_list *walk;
  2492. walk = dev->mc_list;
  2493. while (walk != NULL) {
  2494. u32 a, b;
  2495. a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
  2496. b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
  2497. alwaysOn[0] &= a;
  2498. alwaysOff[0] &= ~a;
  2499. alwaysOn[1] &= b;
  2500. alwaysOff[1] &= ~b;
  2501. walk = walk->next;
  2502. }
  2503. }
  2504. addr[0] = alwaysOn[0];
  2505. addr[1] = alwaysOn[1];
  2506. mask[0] = alwaysOn[0] | alwaysOff[0];
  2507. mask[1] = alwaysOn[1] | alwaysOff[1];
  2508. } else {
  2509. mask[0] = NVREG_MCASTMASKA_NONE;
  2510. mask[1] = NVREG_MCASTMASKB_NONE;
  2511. }
  2512. }
  2513. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2514. pff |= NVREG_PFF_ALWAYS;
  2515. spin_lock_irq(&np->lock);
  2516. nv_stop_rx(dev);
  2517. writel(addr[0], base + NvRegMulticastAddrA);
  2518. writel(addr[1], base + NvRegMulticastAddrB);
  2519. writel(mask[0], base + NvRegMulticastMaskA);
  2520. writel(mask[1], base + NvRegMulticastMaskB);
  2521. writel(pff, base + NvRegPacketFilterFlags);
  2522. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2523. dev->name);
  2524. nv_start_rx(dev);
  2525. spin_unlock_irq(&np->lock);
  2526. }
  2527. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2528. {
  2529. struct fe_priv *np = netdev_priv(dev);
  2530. u8 __iomem *base = get_hwbase(dev);
  2531. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2532. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2533. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2534. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2535. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2536. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2537. } else {
  2538. writel(pff, base + NvRegPacketFilterFlags);
  2539. }
  2540. }
  2541. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2542. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2543. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2544. u32 pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V1;
  2545. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V2)
  2546. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V2;
  2547. if (np->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)
  2548. pause_enable = NVREG_TX_PAUSEFRAME_ENABLE_V3;
  2549. writel(pause_enable, base + NvRegTxPauseFrame);
  2550. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2551. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2552. } else {
  2553. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2554. writel(regmisc, base + NvRegMisc1);
  2555. }
  2556. }
  2557. }
  2558. /**
  2559. * nv_update_linkspeed: Setup the MAC according to the link partner
  2560. * @dev: Network device to be configured
  2561. *
  2562. * The function queries the PHY and checks if there is a link partner.
  2563. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2564. * set to 10 MBit HD.
  2565. *
  2566. * The function returns 0 if there is no link partner and 1 if there is
  2567. * a good link partner.
  2568. */
  2569. static int nv_update_linkspeed(struct net_device *dev)
  2570. {
  2571. struct fe_priv *np = netdev_priv(dev);
  2572. u8 __iomem *base = get_hwbase(dev);
  2573. int adv = 0;
  2574. int lpa = 0;
  2575. int adv_lpa, adv_pause, lpa_pause;
  2576. int newls = np->linkspeed;
  2577. int newdup = np->duplex;
  2578. int mii_status;
  2579. int retval = 0;
  2580. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2581. u32 txrxFlags = 0;
  2582. u32 phy_exp;
  2583. /* BMSR_LSTATUS is latched, read it twice:
  2584. * we want the current value.
  2585. */
  2586. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2587. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2588. if (!(mii_status & BMSR_LSTATUS)) {
  2589. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2590. dev->name);
  2591. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2592. newdup = 0;
  2593. retval = 0;
  2594. goto set_speed;
  2595. }
  2596. if (np->autoneg == 0) {
  2597. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2598. dev->name, np->fixed_mode);
  2599. if (np->fixed_mode & LPA_100FULL) {
  2600. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2601. newdup = 1;
  2602. } else if (np->fixed_mode & LPA_100HALF) {
  2603. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2604. newdup = 0;
  2605. } else if (np->fixed_mode & LPA_10FULL) {
  2606. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2607. newdup = 1;
  2608. } else {
  2609. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2610. newdup = 0;
  2611. }
  2612. retval = 1;
  2613. goto set_speed;
  2614. }
  2615. /* check auto negotiation is complete */
  2616. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2617. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2618. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2619. newdup = 0;
  2620. retval = 0;
  2621. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2622. goto set_speed;
  2623. }
  2624. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2625. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2626. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2627. dev->name, adv, lpa);
  2628. retval = 1;
  2629. if (np->gigabit == PHY_GIGABIT) {
  2630. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2631. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2632. if ((control_1000 & ADVERTISE_1000FULL) &&
  2633. (status_1000 & LPA_1000FULL)) {
  2634. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2635. dev->name);
  2636. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2637. newdup = 1;
  2638. goto set_speed;
  2639. }
  2640. }
  2641. /* FIXME: handle parallel detection properly */
  2642. adv_lpa = lpa & adv;
  2643. if (adv_lpa & LPA_100FULL) {
  2644. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2645. newdup = 1;
  2646. } else if (adv_lpa & LPA_100HALF) {
  2647. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2648. newdup = 0;
  2649. } else if (adv_lpa & LPA_10FULL) {
  2650. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2651. newdup = 1;
  2652. } else if (adv_lpa & LPA_10HALF) {
  2653. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2654. newdup = 0;
  2655. } else {
  2656. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2657. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2658. newdup = 0;
  2659. }
  2660. set_speed:
  2661. if (np->duplex == newdup && np->linkspeed == newls)
  2662. return retval;
  2663. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2664. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2665. np->duplex = newdup;
  2666. np->linkspeed = newls;
  2667. /* The transmitter and receiver must be restarted for safe update */
  2668. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_START) {
  2669. txrxFlags |= NV_RESTART_TX;
  2670. nv_stop_tx(dev);
  2671. }
  2672. if (readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) {
  2673. txrxFlags |= NV_RESTART_RX;
  2674. nv_stop_rx(dev);
  2675. }
  2676. if (np->gigabit == PHY_GIGABIT) {
  2677. phyreg = readl(base + NvRegRandomSeed);
  2678. phyreg &= ~(0x3FF00);
  2679. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2680. phyreg |= NVREG_RNDSEED_FORCE3;
  2681. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2682. phyreg |= NVREG_RNDSEED_FORCE2;
  2683. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2684. phyreg |= NVREG_RNDSEED_FORCE;
  2685. writel(phyreg, base + NvRegRandomSeed);
  2686. }
  2687. phyreg = readl(base + NvRegPhyInterface);
  2688. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2689. if (np->duplex == 0)
  2690. phyreg |= PHY_HALF;
  2691. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2692. phyreg |= PHY_100;
  2693. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2694. phyreg |= PHY_1000;
  2695. writel(phyreg, base + NvRegPhyInterface);
  2696. phy_exp = mii_rw(dev, np->phyaddr, MII_EXPANSION, MII_READ) & EXPANSION_NWAY; /* autoneg capable */
  2697. if (phyreg & PHY_RGMII) {
  2698. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000) {
  2699. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2700. } else {
  2701. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX)) {
  2702. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_10)
  2703. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_10;
  2704. else
  2705. txreg = NVREG_TX_DEFERRAL_RGMII_STRETCH_100;
  2706. } else {
  2707. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2708. }
  2709. }
  2710. } else {
  2711. if (!phy_exp && !np->duplex && (np->driver_data & DEV_HAS_COLLISION_FIX))
  2712. txreg = NVREG_TX_DEFERRAL_MII_STRETCH;
  2713. else
  2714. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2715. }
  2716. writel(txreg, base + NvRegTxDeferral);
  2717. if (np->desc_ver == DESC_VER_1) {
  2718. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2719. } else {
  2720. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2721. txreg = NVREG_TX_WM_DESC2_3_1000;
  2722. else
  2723. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2724. }
  2725. writel(txreg, base + NvRegTxWatermark);
  2726. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2727. base + NvRegMisc1);
  2728. pci_push(base);
  2729. writel(np->linkspeed, base + NvRegLinkSpeed);
  2730. pci_push(base);
  2731. pause_flags = 0;
  2732. /* setup pause frame */
  2733. if (np->duplex != 0) {
  2734. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2735. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2736. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2737. switch (adv_pause) {
  2738. case ADVERTISE_PAUSE_CAP:
  2739. if (lpa_pause & LPA_PAUSE_CAP) {
  2740. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2741. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2742. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2743. }
  2744. break;
  2745. case ADVERTISE_PAUSE_ASYM:
  2746. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2747. {
  2748. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2749. }
  2750. break;
  2751. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2752. if (lpa_pause & LPA_PAUSE_CAP)
  2753. {
  2754. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2755. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2756. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2757. }
  2758. if (lpa_pause == LPA_PAUSE_ASYM)
  2759. {
  2760. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2761. }
  2762. break;
  2763. }
  2764. } else {
  2765. pause_flags = np->pause_flags;
  2766. }
  2767. }
  2768. nv_update_pause(dev, pause_flags);
  2769. if (txrxFlags & NV_RESTART_TX)
  2770. nv_start_tx(dev);
  2771. if (txrxFlags & NV_RESTART_RX)
  2772. nv_start_rx(dev);
  2773. return retval;
  2774. }
  2775. static void nv_linkchange(struct net_device *dev)
  2776. {
  2777. if (nv_update_linkspeed(dev)) {
  2778. if (!netif_carrier_ok(dev)) {
  2779. netif_carrier_on(dev);
  2780. printk(KERN_INFO "%s: link up.\n", dev->name);
  2781. nv_start_rx(dev);
  2782. }
  2783. } else {
  2784. if (netif_carrier_ok(dev)) {
  2785. netif_carrier_off(dev);
  2786. printk(KERN_INFO "%s: link down.\n", dev->name);
  2787. nv_stop_rx(dev);
  2788. }
  2789. }
  2790. }
  2791. static void nv_link_irq(struct net_device *dev)
  2792. {
  2793. u8 __iomem *base = get_hwbase(dev);
  2794. u32 miistat;
  2795. miistat = readl(base + NvRegMIIStatus);
  2796. writel(NVREG_MIISTAT_LINKCHANGE, base + NvRegMIIStatus);
  2797. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  2798. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2799. nv_linkchange(dev);
  2800. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  2801. }
  2802. static irqreturn_t nv_nic_irq(int foo, void *data)
  2803. {
  2804. struct net_device *dev = (struct net_device *) data;
  2805. struct fe_priv *np = netdev_priv(dev);
  2806. u8 __iomem *base = get_hwbase(dev);
  2807. u32 events;
  2808. int i;
  2809. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  2810. for (i=0; ; i++) {
  2811. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2812. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2813. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2814. } else {
  2815. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2816. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2817. }
  2818. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2819. if (!(events & np->irqmask))
  2820. break;
  2821. spin_lock(&np->lock);
  2822. nv_tx_done(dev);
  2823. spin_unlock(&np->lock);
  2824. #ifdef CONFIG_FORCEDETH_NAPI
  2825. if (events & NVREG_IRQ_RX_ALL) {
  2826. netif_rx_schedule(dev, &np->napi);
  2827. /* Disable furthur receive irq's */
  2828. spin_lock(&np->lock);
  2829. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2830. if (np->msi_flags & NV_MSI_X_ENABLED)
  2831. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2832. else
  2833. writel(np->irqmask, base + NvRegIrqMask);
  2834. spin_unlock(&np->lock);
  2835. }
  2836. #else
  2837. if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
  2838. if (unlikely(nv_alloc_rx(dev))) {
  2839. spin_lock(&np->lock);
  2840. if (!np->in_shutdown)
  2841. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2842. spin_unlock(&np->lock);
  2843. }
  2844. }
  2845. #endif
  2846. if (unlikely(events & NVREG_IRQ_LINK)) {
  2847. spin_lock(&np->lock);
  2848. nv_link_irq(dev);
  2849. spin_unlock(&np->lock);
  2850. }
  2851. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2852. spin_lock(&np->lock);
  2853. nv_linkchange(dev);
  2854. spin_unlock(&np->lock);
  2855. np->link_timeout = jiffies + LINK_TIMEOUT;
  2856. }
  2857. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2858. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2859. dev->name, events);
  2860. }
  2861. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2862. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2863. dev->name, events);
  2864. }
  2865. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2866. spin_lock(&np->lock);
  2867. /* disable interrupts on the nic */
  2868. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2869. writel(0, base + NvRegIrqMask);
  2870. else
  2871. writel(np->irqmask, base + NvRegIrqMask);
  2872. pci_push(base);
  2873. if (!np->in_shutdown) {
  2874. np->nic_poll_irq = np->irqmask;
  2875. np->recover_error = 1;
  2876. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2877. }
  2878. spin_unlock(&np->lock);
  2879. break;
  2880. }
  2881. if (unlikely(i > max_interrupt_work)) {
  2882. spin_lock(&np->lock);
  2883. /* disable interrupts on the nic */
  2884. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2885. writel(0, base + NvRegIrqMask);
  2886. else
  2887. writel(np->irqmask, base + NvRegIrqMask);
  2888. pci_push(base);
  2889. if (!np->in_shutdown) {
  2890. np->nic_poll_irq = np->irqmask;
  2891. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2892. }
  2893. spin_unlock(&np->lock);
  2894. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2895. break;
  2896. }
  2897. }
  2898. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  2899. return IRQ_RETVAL(i);
  2900. }
  2901. /**
  2902. * All _optimized functions are used to help increase performance
  2903. * (reduce CPU and increase throughput). They use descripter version 3,
  2904. * compiler directives, and reduce memory accesses.
  2905. */
  2906. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  2907. {
  2908. struct net_device *dev = (struct net_device *) data;
  2909. struct fe_priv *np = netdev_priv(dev);
  2910. u8 __iomem *base = get_hwbase(dev);
  2911. u32 events;
  2912. int i;
  2913. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  2914. for (i=0; ; i++) {
  2915. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2916. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2917. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2918. } else {
  2919. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2920. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2921. }
  2922. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2923. if (!(events & np->irqmask))
  2924. break;
  2925. spin_lock(&np->lock);
  2926. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  2927. spin_unlock(&np->lock);
  2928. #ifdef CONFIG_FORCEDETH_NAPI
  2929. if (events & NVREG_IRQ_RX_ALL) {
  2930. netif_rx_schedule(dev, &np->napi);
  2931. /* Disable furthur receive irq's */
  2932. spin_lock(&np->lock);
  2933. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2934. if (np->msi_flags & NV_MSI_X_ENABLED)
  2935. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2936. else
  2937. writel(np->irqmask, base + NvRegIrqMask);
  2938. spin_unlock(&np->lock);
  2939. }
  2940. #else
  2941. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  2942. if (unlikely(nv_alloc_rx_optimized(dev))) {
  2943. spin_lock(&np->lock);
  2944. if (!np->in_shutdown)
  2945. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2946. spin_unlock(&np->lock);
  2947. }
  2948. }
  2949. #endif
  2950. if (unlikely(events & NVREG_IRQ_LINK)) {
  2951. spin_lock(&np->lock);
  2952. nv_link_irq(dev);
  2953. spin_unlock(&np->lock);
  2954. }
  2955. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2956. spin_lock(&np->lock);
  2957. nv_linkchange(dev);
  2958. spin_unlock(&np->lock);
  2959. np->link_timeout = jiffies + LINK_TIMEOUT;
  2960. }
  2961. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2962. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2963. dev->name, events);
  2964. }
  2965. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2966. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2967. dev->name, events);
  2968. }
  2969. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2970. spin_lock(&np->lock);
  2971. /* disable interrupts on the nic */
  2972. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2973. writel(0, base + NvRegIrqMask);
  2974. else
  2975. writel(np->irqmask, base + NvRegIrqMask);
  2976. pci_push(base);
  2977. if (!np->in_shutdown) {
  2978. np->nic_poll_irq = np->irqmask;
  2979. np->recover_error = 1;
  2980. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2981. }
  2982. spin_unlock(&np->lock);
  2983. break;
  2984. }
  2985. if (unlikely(i > max_interrupt_work)) {
  2986. spin_lock(&np->lock);
  2987. /* disable interrupts on the nic */
  2988. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2989. writel(0, base + NvRegIrqMask);
  2990. else
  2991. writel(np->irqmask, base + NvRegIrqMask);
  2992. pci_push(base);
  2993. if (!np->in_shutdown) {
  2994. np->nic_poll_irq = np->irqmask;
  2995. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2996. }
  2997. spin_unlock(&np->lock);
  2998. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2999. break;
  3000. }
  3001. }
  3002. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  3003. return IRQ_RETVAL(i);
  3004. }
  3005. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  3006. {
  3007. struct net_device *dev = (struct net_device *) data;
  3008. struct fe_priv *np = netdev_priv(dev);
  3009. u8 __iomem *base = get_hwbase(dev);
  3010. u32 events;
  3011. int i;
  3012. unsigned long flags;
  3013. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  3014. for (i=0; ; i++) {
  3015. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  3016. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  3017. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  3018. if (!(events & np->irqmask))
  3019. break;
  3020. spin_lock_irqsave(&np->lock, flags);
  3021. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3022. spin_unlock_irqrestore(&np->lock, flags);
  3023. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  3024. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  3025. dev->name, events);
  3026. }
  3027. if (unlikely(i > max_interrupt_work)) {
  3028. spin_lock_irqsave(&np->lock, flags);
  3029. /* disable interrupts on the nic */
  3030. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  3031. pci_push(base);
  3032. if (!np->in_shutdown) {
  3033. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  3034. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3035. }
  3036. spin_unlock_irqrestore(&np->lock, flags);
  3037. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  3038. break;
  3039. }
  3040. }
  3041. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  3042. return IRQ_RETVAL(i);
  3043. }
  3044. #ifdef CONFIG_FORCEDETH_NAPI
  3045. static int nv_napi_poll(struct napi_struct *napi, int budget)
  3046. {
  3047. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  3048. struct net_device *dev = np->dev;
  3049. u8 __iomem *base = get_hwbase(dev);
  3050. unsigned long flags;
  3051. int pkts, retcode;
  3052. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3053. pkts = nv_rx_process(dev, budget);
  3054. retcode = nv_alloc_rx(dev);
  3055. } else {
  3056. pkts = nv_rx_process_optimized(dev, budget);
  3057. retcode = nv_alloc_rx_optimized(dev);
  3058. }
  3059. if (retcode) {
  3060. spin_lock_irqsave(&np->lock, flags);
  3061. if (!np->in_shutdown)
  3062. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3063. spin_unlock_irqrestore(&np->lock, flags);
  3064. }
  3065. if (pkts < budget) {
  3066. /* re-enable receive interrupts */
  3067. spin_lock_irqsave(&np->lock, flags);
  3068. __netif_rx_complete(dev, napi);
  3069. np->irqmask |= NVREG_IRQ_RX_ALL;
  3070. if (np->msi_flags & NV_MSI_X_ENABLED)
  3071. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3072. else
  3073. writel(np->irqmask, base + NvRegIrqMask);
  3074. spin_unlock_irqrestore(&np->lock, flags);
  3075. }
  3076. return pkts;
  3077. }
  3078. #endif
  3079. #ifdef CONFIG_FORCEDETH_NAPI
  3080. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3081. {
  3082. struct net_device *dev = (struct net_device *) data;
  3083. struct fe_priv *np = netdev_priv(dev);
  3084. u8 __iomem *base = get_hwbase(dev);
  3085. u32 events;
  3086. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3087. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3088. if (events) {
  3089. netif_rx_schedule(dev, &np->napi);
  3090. /* disable receive interrupts on the nic */
  3091. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3092. pci_push(base);
  3093. }
  3094. return IRQ_HANDLED;
  3095. }
  3096. #else
  3097. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  3098. {
  3099. struct net_device *dev = (struct net_device *) data;
  3100. struct fe_priv *np = netdev_priv(dev);
  3101. u8 __iomem *base = get_hwbase(dev);
  3102. u32 events;
  3103. int i;
  3104. unsigned long flags;
  3105. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  3106. for (i=0; ; i++) {
  3107. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  3108. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  3109. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3110. if (!(events & np->irqmask))
  3111. break;
  3112. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3113. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3114. spin_lock_irqsave(&np->lock, flags);
  3115. if (!np->in_shutdown)
  3116. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3117. spin_unlock_irqrestore(&np->lock, flags);
  3118. }
  3119. }
  3120. if (unlikely(i > max_interrupt_work)) {
  3121. spin_lock_irqsave(&np->lock, flags);
  3122. /* disable interrupts on the nic */
  3123. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3124. pci_push(base);
  3125. if (!np->in_shutdown) {
  3126. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3127. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3128. }
  3129. spin_unlock_irqrestore(&np->lock, flags);
  3130. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3131. break;
  3132. }
  3133. }
  3134. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3135. return IRQ_RETVAL(i);
  3136. }
  3137. #endif
  3138. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3139. {
  3140. struct net_device *dev = (struct net_device *) data;
  3141. struct fe_priv *np = netdev_priv(dev);
  3142. u8 __iomem *base = get_hwbase(dev);
  3143. u32 events;
  3144. int i;
  3145. unsigned long flags;
  3146. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3147. for (i=0; ; i++) {
  3148. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3149. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3150. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3151. if (!(events & np->irqmask))
  3152. break;
  3153. /* check tx in case we reached max loop limit in tx isr */
  3154. spin_lock_irqsave(&np->lock, flags);
  3155. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3156. spin_unlock_irqrestore(&np->lock, flags);
  3157. if (events & NVREG_IRQ_LINK) {
  3158. spin_lock_irqsave(&np->lock, flags);
  3159. nv_link_irq(dev);
  3160. spin_unlock_irqrestore(&np->lock, flags);
  3161. }
  3162. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3163. spin_lock_irqsave(&np->lock, flags);
  3164. nv_linkchange(dev);
  3165. spin_unlock_irqrestore(&np->lock, flags);
  3166. np->link_timeout = jiffies + LINK_TIMEOUT;
  3167. }
  3168. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3169. spin_lock_irq(&np->lock);
  3170. /* disable interrupts on the nic */
  3171. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3172. pci_push(base);
  3173. if (!np->in_shutdown) {
  3174. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3175. np->recover_error = 1;
  3176. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3177. }
  3178. spin_unlock_irq(&np->lock);
  3179. break;
  3180. }
  3181. if (events & (NVREG_IRQ_UNKNOWN)) {
  3182. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3183. dev->name, events);
  3184. }
  3185. if (unlikely(i > max_interrupt_work)) {
  3186. spin_lock_irqsave(&np->lock, flags);
  3187. /* disable interrupts on the nic */
  3188. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3189. pci_push(base);
  3190. if (!np->in_shutdown) {
  3191. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3192. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3193. }
  3194. spin_unlock_irqrestore(&np->lock, flags);
  3195. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3196. break;
  3197. }
  3198. }
  3199. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3200. return IRQ_RETVAL(i);
  3201. }
  3202. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3203. {
  3204. struct net_device *dev = (struct net_device *) data;
  3205. struct fe_priv *np = netdev_priv(dev);
  3206. u8 __iomem *base = get_hwbase(dev);
  3207. u32 events;
  3208. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3209. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3210. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3211. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3212. } else {
  3213. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3214. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3215. }
  3216. pci_push(base);
  3217. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3218. if (!(events & NVREG_IRQ_TIMER))
  3219. return IRQ_RETVAL(0);
  3220. spin_lock(&np->lock);
  3221. np->intr_test = 1;
  3222. spin_unlock(&np->lock);
  3223. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3224. return IRQ_RETVAL(1);
  3225. }
  3226. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3227. {
  3228. u8 __iomem *base = get_hwbase(dev);
  3229. int i;
  3230. u32 msixmap = 0;
  3231. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3232. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3233. * the remaining 8 interrupts.
  3234. */
  3235. for (i = 0; i < 8; i++) {
  3236. if ((irqmask >> i) & 0x1) {
  3237. msixmap |= vector << (i << 2);
  3238. }
  3239. }
  3240. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3241. msixmap = 0;
  3242. for (i = 0; i < 8; i++) {
  3243. if ((irqmask >> (i + 8)) & 0x1) {
  3244. msixmap |= vector << (i << 2);
  3245. }
  3246. }
  3247. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3248. }
  3249. static int nv_request_irq(struct net_device *dev, int intr_test)
  3250. {
  3251. struct fe_priv *np = get_nvpriv(dev);
  3252. u8 __iomem *base = get_hwbase(dev);
  3253. int ret = 1;
  3254. int i;
  3255. irqreturn_t (*handler)(int foo, void *data);
  3256. if (intr_test) {
  3257. handler = nv_nic_irq_test;
  3258. } else {
  3259. if (np->desc_ver == DESC_VER_3)
  3260. handler = nv_nic_irq_optimized;
  3261. else
  3262. handler = nv_nic_irq;
  3263. }
  3264. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3265. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3266. np->msi_x_entry[i].entry = i;
  3267. }
  3268. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3269. np->msi_flags |= NV_MSI_X_ENABLED;
  3270. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3271. /* Request irq for rx handling */
  3272. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
  3273. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3274. pci_disable_msix(np->pci_dev);
  3275. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3276. goto out_err;
  3277. }
  3278. /* Request irq for tx handling */
  3279. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
  3280. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3281. pci_disable_msix(np->pci_dev);
  3282. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3283. goto out_free_rx;
  3284. }
  3285. /* Request irq for link and timer handling */
  3286. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
  3287. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3288. pci_disable_msix(np->pci_dev);
  3289. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3290. goto out_free_tx;
  3291. }
  3292. /* map interrupts to their respective vector */
  3293. writel(0, base + NvRegMSIXMap0);
  3294. writel(0, base + NvRegMSIXMap1);
  3295. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3296. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3297. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3298. } else {
  3299. /* Request irq for all interrupts */
  3300. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3301. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3302. pci_disable_msix(np->pci_dev);
  3303. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3304. goto out_err;
  3305. }
  3306. /* map interrupts to vector 0 */
  3307. writel(0, base + NvRegMSIXMap0);
  3308. writel(0, base + NvRegMSIXMap1);
  3309. }
  3310. }
  3311. }
  3312. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3313. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3314. np->msi_flags |= NV_MSI_ENABLED;
  3315. dev->irq = np->pci_dev->irq;
  3316. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3317. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3318. pci_disable_msi(np->pci_dev);
  3319. np->msi_flags &= ~NV_MSI_ENABLED;
  3320. dev->irq = np->pci_dev->irq;
  3321. goto out_err;
  3322. }
  3323. /* map interrupts to vector 0 */
  3324. writel(0, base + NvRegMSIMap0);
  3325. writel(0, base + NvRegMSIMap1);
  3326. /* enable msi vector 0 */
  3327. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3328. }
  3329. }
  3330. if (ret != 0) {
  3331. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3332. goto out_err;
  3333. }
  3334. return 0;
  3335. out_free_tx:
  3336. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3337. out_free_rx:
  3338. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3339. out_err:
  3340. return 1;
  3341. }
  3342. static void nv_free_irq(struct net_device *dev)
  3343. {
  3344. struct fe_priv *np = get_nvpriv(dev);
  3345. int i;
  3346. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3347. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3348. free_irq(np->msi_x_entry[i].vector, dev);
  3349. }
  3350. pci_disable_msix(np->pci_dev);
  3351. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3352. } else {
  3353. free_irq(np->pci_dev->irq, dev);
  3354. if (np->msi_flags & NV_MSI_ENABLED) {
  3355. pci_disable_msi(np->pci_dev);
  3356. np->msi_flags &= ~NV_MSI_ENABLED;
  3357. }
  3358. }
  3359. }
  3360. static void nv_do_nic_poll(unsigned long data)
  3361. {
  3362. struct net_device *dev = (struct net_device *) data;
  3363. struct fe_priv *np = netdev_priv(dev);
  3364. u8 __iomem *base = get_hwbase(dev);
  3365. u32 mask = 0;
  3366. /*
  3367. * First disable irq(s) and then
  3368. * reenable interrupts on the nic, we have to do this before calling
  3369. * nv_nic_irq because that may decide to do otherwise
  3370. */
  3371. if (!using_multi_irqs(dev)) {
  3372. if (np->msi_flags & NV_MSI_X_ENABLED)
  3373. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3374. else
  3375. disable_irq_lockdep(np->pci_dev->irq);
  3376. mask = np->irqmask;
  3377. } else {
  3378. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3379. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3380. mask |= NVREG_IRQ_RX_ALL;
  3381. }
  3382. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3383. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3384. mask |= NVREG_IRQ_TX_ALL;
  3385. }
  3386. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3387. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3388. mask |= NVREG_IRQ_OTHER;
  3389. }
  3390. }
  3391. np->nic_poll_irq = 0;
  3392. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3393. if (np->recover_error) {
  3394. np->recover_error = 0;
  3395. printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
  3396. if (netif_running(dev)) {
  3397. netif_tx_lock_bh(dev);
  3398. spin_lock(&np->lock);
  3399. /* stop engines */
  3400. nv_stop_rx(dev);
  3401. nv_stop_tx(dev);
  3402. nv_txrx_reset(dev);
  3403. /* drain rx queue */
  3404. nv_drain_rx(dev);
  3405. nv_drain_tx(dev);
  3406. /* reinit driver view of the rx queue */
  3407. set_bufsize(dev);
  3408. if (nv_init_ring(dev)) {
  3409. if (!np->in_shutdown)
  3410. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3411. }
  3412. /* reinit nic view of the rx queue */
  3413. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3414. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3415. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3416. base + NvRegRingSizes);
  3417. pci_push(base);
  3418. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3419. pci_push(base);
  3420. /* restart rx engine */
  3421. nv_start_rx(dev);
  3422. nv_start_tx(dev);
  3423. spin_unlock(&np->lock);
  3424. netif_tx_unlock_bh(dev);
  3425. }
  3426. }
  3427. writel(mask, base + NvRegIrqMask);
  3428. pci_push(base);
  3429. if (!using_multi_irqs(dev)) {
  3430. if (np->desc_ver == DESC_VER_3)
  3431. nv_nic_irq_optimized(0, dev);
  3432. else
  3433. nv_nic_irq(0, dev);
  3434. if (np->msi_flags & NV_MSI_X_ENABLED)
  3435. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3436. else
  3437. enable_irq_lockdep(np->pci_dev->irq);
  3438. } else {
  3439. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3440. nv_nic_irq_rx(0, dev);
  3441. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3442. }
  3443. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3444. nv_nic_irq_tx(0, dev);
  3445. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3446. }
  3447. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3448. nv_nic_irq_other(0, dev);
  3449. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3450. }
  3451. }
  3452. }
  3453. #ifdef CONFIG_NET_POLL_CONTROLLER
  3454. static void nv_poll_controller(struct net_device *dev)
  3455. {
  3456. nv_do_nic_poll((unsigned long) dev);
  3457. }
  3458. #endif
  3459. static void nv_do_stats_poll(unsigned long data)
  3460. {
  3461. struct net_device *dev = (struct net_device *) data;
  3462. struct fe_priv *np = netdev_priv(dev);
  3463. nv_get_hw_stats(dev);
  3464. if (!np->in_shutdown)
  3465. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  3466. }
  3467. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3468. {
  3469. struct fe_priv *np = netdev_priv(dev);
  3470. strcpy(info->driver, DRV_NAME);
  3471. strcpy(info->version, FORCEDETH_VERSION);
  3472. strcpy(info->bus_info, pci_name(np->pci_dev));
  3473. }
  3474. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3475. {
  3476. struct fe_priv *np = netdev_priv(dev);
  3477. wolinfo->supported = WAKE_MAGIC;
  3478. spin_lock_irq(&np->lock);
  3479. if (np->wolenabled)
  3480. wolinfo->wolopts = WAKE_MAGIC;
  3481. spin_unlock_irq(&np->lock);
  3482. }
  3483. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3484. {
  3485. struct fe_priv *np = netdev_priv(dev);
  3486. u8 __iomem *base = get_hwbase(dev);
  3487. u32 flags = 0;
  3488. if (wolinfo->wolopts == 0) {
  3489. np->wolenabled = 0;
  3490. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3491. np->wolenabled = 1;
  3492. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3493. }
  3494. if (netif_running(dev)) {
  3495. spin_lock_irq(&np->lock);
  3496. writel(flags, base + NvRegWakeUpFlags);
  3497. spin_unlock_irq(&np->lock);
  3498. }
  3499. return 0;
  3500. }
  3501. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3502. {
  3503. struct fe_priv *np = netdev_priv(dev);
  3504. int adv;
  3505. spin_lock_irq(&np->lock);
  3506. ecmd->port = PORT_MII;
  3507. if (!netif_running(dev)) {
  3508. /* We do not track link speed / duplex setting if the
  3509. * interface is disabled. Force a link check */
  3510. if (nv_update_linkspeed(dev)) {
  3511. if (!netif_carrier_ok(dev))
  3512. netif_carrier_on(dev);
  3513. } else {
  3514. if (netif_carrier_ok(dev))
  3515. netif_carrier_off(dev);
  3516. }
  3517. }
  3518. if (netif_carrier_ok(dev)) {
  3519. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3520. case NVREG_LINKSPEED_10:
  3521. ecmd->speed = SPEED_10;
  3522. break;
  3523. case NVREG_LINKSPEED_100:
  3524. ecmd->speed = SPEED_100;
  3525. break;
  3526. case NVREG_LINKSPEED_1000:
  3527. ecmd->speed = SPEED_1000;
  3528. break;
  3529. }
  3530. ecmd->duplex = DUPLEX_HALF;
  3531. if (np->duplex)
  3532. ecmd->duplex = DUPLEX_FULL;
  3533. } else {
  3534. ecmd->speed = -1;
  3535. ecmd->duplex = -1;
  3536. }
  3537. ecmd->autoneg = np->autoneg;
  3538. ecmd->advertising = ADVERTISED_MII;
  3539. if (np->autoneg) {
  3540. ecmd->advertising |= ADVERTISED_Autoneg;
  3541. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3542. if (adv & ADVERTISE_10HALF)
  3543. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3544. if (adv & ADVERTISE_10FULL)
  3545. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3546. if (adv & ADVERTISE_100HALF)
  3547. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3548. if (adv & ADVERTISE_100FULL)
  3549. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3550. if (np->gigabit == PHY_GIGABIT) {
  3551. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3552. if (adv & ADVERTISE_1000FULL)
  3553. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3554. }
  3555. }
  3556. ecmd->supported = (SUPPORTED_Autoneg |
  3557. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3558. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3559. SUPPORTED_MII);
  3560. if (np->gigabit == PHY_GIGABIT)
  3561. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3562. ecmd->phy_address = np->phyaddr;
  3563. ecmd->transceiver = XCVR_EXTERNAL;
  3564. /* ignore maxtxpkt, maxrxpkt for now */
  3565. spin_unlock_irq(&np->lock);
  3566. return 0;
  3567. }
  3568. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3569. {
  3570. struct fe_priv *np = netdev_priv(dev);
  3571. if (ecmd->port != PORT_MII)
  3572. return -EINVAL;
  3573. if (ecmd->transceiver != XCVR_EXTERNAL)
  3574. return -EINVAL;
  3575. if (ecmd->phy_address != np->phyaddr) {
  3576. /* TODO: support switching between multiple phys. Should be
  3577. * trivial, but not enabled due to lack of test hardware. */
  3578. return -EINVAL;
  3579. }
  3580. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3581. u32 mask;
  3582. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3583. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3584. if (np->gigabit == PHY_GIGABIT)
  3585. mask |= ADVERTISED_1000baseT_Full;
  3586. if ((ecmd->advertising & mask) == 0)
  3587. return -EINVAL;
  3588. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3589. /* Note: autonegotiation disable, speed 1000 intentionally
  3590. * forbidden - noone should need that. */
  3591. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3592. return -EINVAL;
  3593. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3594. return -EINVAL;
  3595. } else {
  3596. return -EINVAL;
  3597. }
  3598. netif_carrier_off(dev);
  3599. if (netif_running(dev)) {
  3600. nv_disable_irq(dev);
  3601. netif_tx_lock_bh(dev);
  3602. spin_lock(&np->lock);
  3603. /* stop engines */
  3604. nv_stop_rx(dev);
  3605. nv_stop_tx(dev);
  3606. spin_unlock(&np->lock);
  3607. netif_tx_unlock_bh(dev);
  3608. }
  3609. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3610. int adv, bmcr;
  3611. np->autoneg = 1;
  3612. /* advertise only what has been requested */
  3613. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3614. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3615. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3616. adv |= ADVERTISE_10HALF;
  3617. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3618. adv |= ADVERTISE_10FULL;
  3619. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3620. adv |= ADVERTISE_100HALF;
  3621. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3622. adv |= ADVERTISE_100FULL;
  3623. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3624. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3625. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3626. adv |= ADVERTISE_PAUSE_ASYM;
  3627. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3628. if (np->gigabit == PHY_GIGABIT) {
  3629. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3630. adv &= ~ADVERTISE_1000FULL;
  3631. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3632. adv |= ADVERTISE_1000FULL;
  3633. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3634. }
  3635. if (netif_running(dev))
  3636. printk(KERN_INFO "%s: link down.\n", dev->name);
  3637. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3638. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3639. bmcr |= BMCR_ANENABLE;
  3640. /* reset the phy in order for settings to stick,
  3641. * and cause autoneg to start */
  3642. if (phy_reset(dev, bmcr)) {
  3643. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3644. return -EINVAL;
  3645. }
  3646. } else {
  3647. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3648. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3649. }
  3650. } else {
  3651. int adv, bmcr;
  3652. np->autoneg = 0;
  3653. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3654. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3655. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3656. adv |= ADVERTISE_10HALF;
  3657. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3658. adv |= ADVERTISE_10FULL;
  3659. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3660. adv |= ADVERTISE_100HALF;
  3661. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3662. adv |= ADVERTISE_100FULL;
  3663. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3664. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3665. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3666. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3667. }
  3668. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3669. adv |= ADVERTISE_PAUSE_ASYM;
  3670. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3671. }
  3672. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3673. np->fixed_mode = adv;
  3674. if (np->gigabit == PHY_GIGABIT) {
  3675. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3676. adv &= ~ADVERTISE_1000FULL;
  3677. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3678. }
  3679. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3680. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3681. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3682. bmcr |= BMCR_FULLDPLX;
  3683. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3684. bmcr |= BMCR_SPEED100;
  3685. if (np->phy_oui == PHY_OUI_MARVELL) {
  3686. /* reset the phy in order for forced mode settings to stick */
  3687. if (phy_reset(dev, bmcr)) {
  3688. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3689. return -EINVAL;
  3690. }
  3691. } else {
  3692. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3693. if (netif_running(dev)) {
  3694. /* Wait a bit and then reconfigure the nic. */
  3695. udelay(10);
  3696. nv_linkchange(dev);
  3697. }
  3698. }
  3699. }
  3700. if (netif_running(dev)) {
  3701. nv_start_rx(dev);
  3702. nv_start_tx(dev);
  3703. nv_enable_irq(dev);
  3704. }
  3705. return 0;
  3706. }
  3707. #define FORCEDETH_REGS_VER 1
  3708. static int nv_get_regs_len(struct net_device *dev)
  3709. {
  3710. struct fe_priv *np = netdev_priv(dev);
  3711. return np->register_size;
  3712. }
  3713. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3714. {
  3715. struct fe_priv *np = netdev_priv(dev);
  3716. u8 __iomem *base = get_hwbase(dev);
  3717. u32 *rbuf = buf;
  3718. int i;
  3719. regs->version = FORCEDETH_REGS_VER;
  3720. spin_lock_irq(&np->lock);
  3721. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3722. rbuf[i] = readl(base + i*sizeof(u32));
  3723. spin_unlock_irq(&np->lock);
  3724. }
  3725. static int nv_nway_reset(struct net_device *dev)
  3726. {
  3727. struct fe_priv *np = netdev_priv(dev);
  3728. int ret;
  3729. if (np->autoneg) {
  3730. int bmcr;
  3731. netif_carrier_off(dev);
  3732. if (netif_running(dev)) {
  3733. nv_disable_irq(dev);
  3734. netif_tx_lock_bh(dev);
  3735. spin_lock(&np->lock);
  3736. /* stop engines */
  3737. nv_stop_rx(dev);
  3738. nv_stop_tx(dev);
  3739. spin_unlock(&np->lock);
  3740. netif_tx_unlock_bh(dev);
  3741. printk(KERN_INFO "%s: link down.\n", dev->name);
  3742. }
  3743. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3744. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3745. bmcr |= BMCR_ANENABLE;
  3746. /* reset the phy in order for settings to stick*/
  3747. if (phy_reset(dev, bmcr)) {
  3748. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3749. return -EINVAL;
  3750. }
  3751. } else {
  3752. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3753. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3754. }
  3755. if (netif_running(dev)) {
  3756. nv_start_rx(dev);
  3757. nv_start_tx(dev);
  3758. nv_enable_irq(dev);
  3759. }
  3760. ret = 0;
  3761. } else {
  3762. ret = -EINVAL;
  3763. }
  3764. return ret;
  3765. }
  3766. static int nv_set_tso(struct net_device *dev, u32 value)
  3767. {
  3768. struct fe_priv *np = netdev_priv(dev);
  3769. if ((np->driver_data & DEV_HAS_CHECKSUM))
  3770. return ethtool_op_set_tso(dev, value);
  3771. else
  3772. return -EOPNOTSUPP;
  3773. }
  3774. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3775. {
  3776. struct fe_priv *np = netdev_priv(dev);
  3777. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3778. ring->rx_mini_max_pending = 0;
  3779. ring->rx_jumbo_max_pending = 0;
  3780. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3781. ring->rx_pending = np->rx_ring_size;
  3782. ring->rx_mini_pending = 0;
  3783. ring->rx_jumbo_pending = 0;
  3784. ring->tx_pending = np->tx_ring_size;
  3785. }
  3786. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3787. {
  3788. struct fe_priv *np = netdev_priv(dev);
  3789. u8 __iomem *base = get_hwbase(dev);
  3790. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  3791. dma_addr_t ring_addr;
  3792. if (ring->rx_pending < RX_RING_MIN ||
  3793. ring->tx_pending < TX_RING_MIN ||
  3794. ring->rx_mini_pending != 0 ||
  3795. ring->rx_jumbo_pending != 0 ||
  3796. (np->desc_ver == DESC_VER_1 &&
  3797. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  3798. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  3799. (np->desc_ver != DESC_VER_1 &&
  3800. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  3801. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  3802. return -EINVAL;
  3803. }
  3804. /* allocate new rings */
  3805. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3806. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3807. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3808. &ring_addr);
  3809. } else {
  3810. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3811. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3812. &ring_addr);
  3813. }
  3814. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  3815. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  3816. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  3817. /* fall back to old rings */
  3818. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3819. if (rxtx_ring)
  3820. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3821. rxtx_ring, ring_addr);
  3822. } else {
  3823. if (rxtx_ring)
  3824. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3825. rxtx_ring, ring_addr);
  3826. }
  3827. if (rx_skbuff)
  3828. kfree(rx_skbuff);
  3829. if (tx_skbuff)
  3830. kfree(tx_skbuff);
  3831. goto exit;
  3832. }
  3833. if (netif_running(dev)) {
  3834. nv_disable_irq(dev);
  3835. netif_tx_lock_bh(dev);
  3836. spin_lock(&np->lock);
  3837. /* stop engines */
  3838. nv_stop_rx(dev);
  3839. nv_stop_tx(dev);
  3840. nv_txrx_reset(dev);
  3841. /* drain queues */
  3842. nv_drain_rx(dev);
  3843. nv_drain_tx(dev);
  3844. /* delete queues */
  3845. free_rings(dev);
  3846. }
  3847. /* set new values */
  3848. np->rx_ring_size = ring->rx_pending;
  3849. np->tx_ring_size = ring->tx_pending;
  3850. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3851. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  3852. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3853. } else {
  3854. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  3855. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3856. }
  3857. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  3858. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  3859. np->ring_addr = ring_addr;
  3860. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  3861. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  3862. if (netif_running(dev)) {
  3863. /* reinit driver view of the queues */
  3864. set_bufsize(dev);
  3865. if (nv_init_ring(dev)) {
  3866. if (!np->in_shutdown)
  3867. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3868. }
  3869. /* reinit nic view of the queues */
  3870. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3871. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3872. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3873. base + NvRegRingSizes);
  3874. pci_push(base);
  3875. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3876. pci_push(base);
  3877. /* restart engines */
  3878. nv_start_rx(dev);
  3879. nv_start_tx(dev);
  3880. spin_unlock(&np->lock);
  3881. netif_tx_unlock_bh(dev);
  3882. nv_enable_irq(dev);
  3883. }
  3884. return 0;
  3885. exit:
  3886. return -ENOMEM;
  3887. }
  3888. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3889. {
  3890. struct fe_priv *np = netdev_priv(dev);
  3891. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  3892. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  3893. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  3894. }
  3895. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3896. {
  3897. struct fe_priv *np = netdev_priv(dev);
  3898. int adv, bmcr;
  3899. if ((!np->autoneg && np->duplex == 0) ||
  3900. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  3901. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  3902. dev->name);
  3903. return -EINVAL;
  3904. }
  3905. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  3906. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  3907. return -EINVAL;
  3908. }
  3909. netif_carrier_off(dev);
  3910. if (netif_running(dev)) {
  3911. nv_disable_irq(dev);
  3912. netif_tx_lock_bh(dev);
  3913. spin_lock(&np->lock);
  3914. /* stop engines */
  3915. nv_stop_rx(dev);
  3916. nv_stop_tx(dev);
  3917. spin_unlock(&np->lock);
  3918. netif_tx_unlock_bh(dev);
  3919. }
  3920. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  3921. if (pause->rx_pause)
  3922. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  3923. if (pause->tx_pause)
  3924. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  3925. if (np->autoneg && pause->autoneg) {
  3926. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  3927. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3928. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3929. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3930. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3931. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3932. adv |= ADVERTISE_PAUSE_ASYM;
  3933. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3934. if (netif_running(dev))
  3935. printk(KERN_INFO "%s: link down.\n", dev->name);
  3936. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3937. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3938. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3939. } else {
  3940. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3941. if (pause->rx_pause)
  3942. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3943. if (pause->tx_pause)
  3944. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3945. if (!netif_running(dev))
  3946. nv_update_linkspeed(dev);
  3947. else
  3948. nv_update_pause(dev, np->pause_flags);
  3949. }
  3950. if (netif_running(dev)) {
  3951. nv_start_rx(dev);
  3952. nv_start_tx(dev);
  3953. nv_enable_irq(dev);
  3954. }
  3955. return 0;
  3956. }
  3957. static u32 nv_get_rx_csum(struct net_device *dev)
  3958. {
  3959. struct fe_priv *np = netdev_priv(dev);
  3960. return (np->rx_csum) != 0;
  3961. }
  3962. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  3963. {
  3964. struct fe_priv *np = netdev_priv(dev);
  3965. u8 __iomem *base = get_hwbase(dev);
  3966. int retcode = 0;
  3967. if (np->driver_data & DEV_HAS_CHECKSUM) {
  3968. if (data) {
  3969. np->rx_csum = 1;
  3970. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3971. } else {
  3972. np->rx_csum = 0;
  3973. /* vlan is dependent on rx checksum offload */
  3974. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  3975. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  3976. }
  3977. if (netif_running(dev)) {
  3978. spin_lock_irq(&np->lock);
  3979. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3980. spin_unlock_irq(&np->lock);
  3981. }
  3982. } else {
  3983. return -EINVAL;
  3984. }
  3985. return retcode;
  3986. }
  3987. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  3988. {
  3989. struct fe_priv *np = netdev_priv(dev);
  3990. if (np->driver_data & DEV_HAS_CHECKSUM)
  3991. return ethtool_op_set_tx_hw_csum(dev, data);
  3992. else
  3993. return -EOPNOTSUPP;
  3994. }
  3995. static int nv_set_sg(struct net_device *dev, u32 data)
  3996. {
  3997. struct fe_priv *np = netdev_priv(dev);
  3998. if (np->driver_data & DEV_HAS_CHECKSUM)
  3999. return ethtool_op_set_sg(dev, data);
  4000. else
  4001. return -EOPNOTSUPP;
  4002. }
  4003. static int nv_get_sset_count(struct net_device *dev, int sset)
  4004. {
  4005. struct fe_priv *np = netdev_priv(dev);
  4006. switch (sset) {
  4007. case ETH_SS_TEST:
  4008. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  4009. return NV_TEST_COUNT_EXTENDED;
  4010. else
  4011. return NV_TEST_COUNT_BASE;
  4012. case ETH_SS_STATS:
  4013. if (np->driver_data & DEV_HAS_STATISTICS_V1)
  4014. return NV_DEV_STATISTICS_V1_COUNT;
  4015. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  4016. return NV_DEV_STATISTICS_V2_COUNT;
  4017. else
  4018. return 0;
  4019. default:
  4020. return -EOPNOTSUPP;
  4021. }
  4022. }
  4023. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  4024. {
  4025. struct fe_priv *np = netdev_priv(dev);
  4026. /* update stats */
  4027. nv_do_stats_poll((unsigned long)dev);
  4028. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  4029. }
  4030. static int nv_link_test(struct net_device *dev)
  4031. {
  4032. struct fe_priv *np = netdev_priv(dev);
  4033. int mii_status;
  4034. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4035. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4036. /* check phy link status */
  4037. if (!(mii_status & BMSR_LSTATUS))
  4038. return 0;
  4039. else
  4040. return 1;
  4041. }
  4042. static int nv_register_test(struct net_device *dev)
  4043. {
  4044. u8 __iomem *base = get_hwbase(dev);
  4045. int i = 0;
  4046. u32 orig_read, new_read;
  4047. do {
  4048. orig_read = readl(base + nv_registers_test[i].reg);
  4049. /* xor with mask to toggle bits */
  4050. orig_read ^= nv_registers_test[i].mask;
  4051. writel(orig_read, base + nv_registers_test[i].reg);
  4052. new_read = readl(base + nv_registers_test[i].reg);
  4053. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  4054. return 0;
  4055. /* restore original value */
  4056. orig_read ^= nv_registers_test[i].mask;
  4057. writel(orig_read, base + nv_registers_test[i].reg);
  4058. } while (nv_registers_test[++i].reg != 0);
  4059. return 1;
  4060. }
  4061. static int nv_interrupt_test(struct net_device *dev)
  4062. {
  4063. struct fe_priv *np = netdev_priv(dev);
  4064. u8 __iomem *base = get_hwbase(dev);
  4065. int ret = 1;
  4066. int testcnt;
  4067. u32 save_msi_flags, save_poll_interval = 0;
  4068. if (netif_running(dev)) {
  4069. /* free current irq */
  4070. nv_free_irq(dev);
  4071. save_poll_interval = readl(base+NvRegPollingInterval);
  4072. }
  4073. /* flag to test interrupt handler */
  4074. np->intr_test = 0;
  4075. /* setup test irq */
  4076. save_msi_flags = np->msi_flags;
  4077. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  4078. np->msi_flags |= 0x001; /* setup 1 vector */
  4079. if (nv_request_irq(dev, 1))
  4080. return 0;
  4081. /* setup timer interrupt */
  4082. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4083. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4084. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4085. /* wait for at least one interrupt */
  4086. msleep(100);
  4087. spin_lock_irq(&np->lock);
  4088. /* flag should be set within ISR */
  4089. testcnt = np->intr_test;
  4090. if (!testcnt)
  4091. ret = 2;
  4092. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  4093. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  4094. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4095. else
  4096. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4097. spin_unlock_irq(&np->lock);
  4098. nv_free_irq(dev);
  4099. np->msi_flags = save_msi_flags;
  4100. if (netif_running(dev)) {
  4101. writel(save_poll_interval, base + NvRegPollingInterval);
  4102. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4103. /* restore original irq */
  4104. if (nv_request_irq(dev, 0))
  4105. return 0;
  4106. }
  4107. return ret;
  4108. }
  4109. static int nv_loopback_test(struct net_device *dev)
  4110. {
  4111. struct fe_priv *np = netdev_priv(dev);
  4112. u8 __iomem *base = get_hwbase(dev);
  4113. struct sk_buff *tx_skb, *rx_skb;
  4114. dma_addr_t test_dma_addr;
  4115. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4116. u32 flags;
  4117. int len, i, pkt_len;
  4118. u8 *pkt_data;
  4119. u32 filter_flags = 0;
  4120. u32 misc1_flags = 0;
  4121. int ret = 1;
  4122. if (netif_running(dev)) {
  4123. nv_disable_irq(dev);
  4124. filter_flags = readl(base + NvRegPacketFilterFlags);
  4125. misc1_flags = readl(base + NvRegMisc1);
  4126. } else {
  4127. nv_txrx_reset(dev);
  4128. }
  4129. /* reinit driver view of the rx queue */
  4130. set_bufsize(dev);
  4131. nv_init_ring(dev);
  4132. /* setup hardware for loopback */
  4133. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4134. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4135. /* reinit nic view of the rx queue */
  4136. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4137. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4138. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4139. base + NvRegRingSizes);
  4140. pci_push(base);
  4141. /* restart rx engine */
  4142. nv_start_rx(dev);
  4143. nv_start_tx(dev);
  4144. /* setup packet for tx */
  4145. pkt_len = ETH_DATA_LEN;
  4146. tx_skb = dev_alloc_skb(pkt_len);
  4147. if (!tx_skb) {
  4148. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4149. " of %s\n", dev->name);
  4150. ret = 0;
  4151. goto out;
  4152. }
  4153. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4154. skb_tailroom(tx_skb),
  4155. PCI_DMA_FROMDEVICE);
  4156. pkt_data = skb_put(tx_skb, pkt_len);
  4157. for (i = 0; i < pkt_len; i++)
  4158. pkt_data[i] = (u8)(i & 0xff);
  4159. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4160. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4161. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4162. } else {
  4163. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4164. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4165. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4166. }
  4167. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4168. pci_push(get_hwbase(dev));
  4169. msleep(500);
  4170. /* check for rx of the packet */
  4171. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4172. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4173. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4174. } else {
  4175. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4176. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4177. }
  4178. if (flags & NV_RX_AVAIL) {
  4179. ret = 0;
  4180. } else if (np->desc_ver == DESC_VER_1) {
  4181. if (flags & NV_RX_ERROR)
  4182. ret = 0;
  4183. } else {
  4184. if (flags & NV_RX2_ERROR) {
  4185. ret = 0;
  4186. }
  4187. }
  4188. if (ret) {
  4189. if (len != pkt_len) {
  4190. ret = 0;
  4191. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4192. dev->name, len, pkt_len);
  4193. } else {
  4194. rx_skb = np->rx_skb[0].skb;
  4195. for (i = 0; i < pkt_len; i++) {
  4196. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4197. ret = 0;
  4198. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4199. dev->name, i);
  4200. break;
  4201. }
  4202. }
  4203. }
  4204. } else {
  4205. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4206. }
  4207. pci_unmap_page(np->pci_dev, test_dma_addr,
  4208. (skb_end_pointer(tx_skb) - tx_skb->data),
  4209. PCI_DMA_TODEVICE);
  4210. dev_kfree_skb_any(tx_skb);
  4211. out:
  4212. /* stop engines */
  4213. nv_stop_rx(dev);
  4214. nv_stop_tx(dev);
  4215. nv_txrx_reset(dev);
  4216. /* drain rx queue */
  4217. nv_drain_rx(dev);
  4218. nv_drain_tx(dev);
  4219. if (netif_running(dev)) {
  4220. writel(misc1_flags, base + NvRegMisc1);
  4221. writel(filter_flags, base + NvRegPacketFilterFlags);
  4222. nv_enable_irq(dev);
  4223. }
  4224. return ret;
  4225. }
  4226. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4227. {
  4228. struct fe_priv *np = netdev_priv(dev);
  4229. u8 __iomem *base = get_hwbase(dev);
  4230. int result;
  4231. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4232. if (!nv_link_test(dev)) {
  4233. test->flags |= ETH_TEST_FL_FAILED;
  4234. buffer[0] = 1;
  4235. }
  4236. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4237. if (netif_running(dev)) {
  4238. netif_stop_queue(dev);
  4239. #ifdef CONFIG_FORCEDETH_NAPI
  4240. napi_disable(&np->napi);
  4241. #endif
  4242. netif_tx_lock_bh(dev);
  4243. spin_lock_irq(&np->lock);
  4244. nv_disable_hw_interrupts(dev, np->irqmask);
  4245. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4246. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4247. } else {
  4248. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4249. }
  4250. /* stop engines */
  4251. nv_stop_rx(dev);
  4252. nv_stop_tx(dev);
  4253. nv_txrx_reset(dev);
  4254. /* drain rx queue */
  4255. nv_drain_rx(dev);
  4256. nv_drain_tx(dev);
  4257. spin_unlock_irq(&np->lock);
  4258. netif_tx_unlock_bh(dev);
  4259. }
  4260. if (!nv_register_test(dev)) {
  4261. test->flags |= ETH_TEST_FL_FAILED;
  4262. buffer[1] = 1;
  4263. }
  4264. result = nv_interrupt_test(dev);
  4265. if (result != 1) {
  4266. test->flags |= ETH_TEST_FL_FAILED;
  4267. buffer[2] = 1;
  4268. }
  4269. if (result == 0) {
  4270. /* bail out */
  4271. return;
  4272. }
  4273. if (!nv_loopback_test(dev)) {
  4274. test->flags |= ETH_TEST_FL_FAILED;
  4275. buffer[3] = 1;
  4276. }
  4277. if (netif_running(dev)) {
  4278. /* reinit driver view of the rx queue */
  4279. set_bufsize(dev);
  4280. if (nv_init_ring(dev)) {
  4281. if (!np->in_shutdown)
  4282. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4283. }
  4284. /* reinit nic view of the rx queue */
  4285. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4286. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4287. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4288. base + NvRegRingSizes);
  4289. pci_push(base);
  4290. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4291. pci_push(base);
  4292. /* restart rx engine */
  4293. nv_start_rx(dev);
  4294. nv_start_tx(dev);
  4295. netif_start_queue(dev);
  4296. #ifdef CONFIG_FORCEDETH_NAPI
  4297. napi_enable(&np->napi);
  4298. #endif
  4299. nv_enable_hw_interrupts(dev, np->irqmask);
  4300. }
  4301. }
  4302. }
  4303. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4304. {
  4305. switch (stringset) {
  4306. case ETH_SS_STATS:
  4307. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4308. break;
  4309. case ETH_SS_TEST:
  4310. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4311. break;
  4312. }
  4313. }
  4314. static const struct ethtool_ops ops = {
  4315. .get_drvinfo = nv_get_drvinfo,
  4316. .get_link = ethtool_op_get_link,
  4317. .get_wol = nv_get_wol,
  4318. .set_wol = nv_set_wol,
  4319. .get_settings = nv_get_settings,
  4320. .set_settings = nv_set_settings,
  4321. .get_regs_len = nv_get_regs_len,
  4322. .get_regs = nv_get_regs,
  4323. .nway_reset = nv_nway_reset,
  4324. .set_tso = nv_set_tso,
  4325. .get_ringparam = nv_get_ringparam,
  4326. .set_ringparam = nv_set_ringparam,
  4327. .get_pauseparam = nv_get_pauseparam,
  4328. .set_pauseparam = nv_set_pauseparam,
  4329. .get_rx_csum = nv_get_rx_csum,
  4330. .set_rx_csum = nv_set_rx_csum,
  4331. .set_tx_csum = nv_set_tx_csum,
  4332. .set_sg = nv_set_sg,
  4333. .get_strings = nv_get_strings,
  4334. .get_ethtool_stats = nv_get_ethtool_stats,
  4335. .get_sset_count = nv_get_sset_count,
  4336. .self_test = nv_self_test,
  4337. };
  4338. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4339. {
  4340. struct fe_priv *np = get_nvpriv(dev);
  4341. spin_lock_irq(&np->lock);
  4342. /* save vlan group */
  4343. np->vlangrp = grp;
  4344. if (grp) {
  4345. /* enable vlan on MAC */
  4346. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4347. } else {
  4348. /* disable vlan on MAC */
  4349. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4350. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4351. }
  4352. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4353. spin_unlock_irq(&np->lock);
  4354. }
  4355. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4356. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4357. {
  4358. u8 __iomem *base = get_hwbase(dev);
  4359. int i;
  4360. u32 tx_ctrl, mgmt_sema;
  4361. for (i = 0; i < 10; i++) {
  4362. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4363. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4364. break;
  4365. msleep(500);
  4366. }
  4367. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4368. return 0;
  4369. for (i = 0; i < 2; i++) {
  4370. tx_ctrl = readl(base + NvRegTransmitterControl);
  4371. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4372. writel(tx_ctrl, base + NvRegTransmitterControl);
  4373. /* verify that semaphore was acquired */
  4374. tx_ctrl = readl(base + NvRegTransmitterControl);
  4375. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4376. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
  4377. return 1;
  4378. else
  4379. udelay(50);
  4380. }
  4381. return 0;
  4382. }
  4383. static int nv_open(struct net_device *dev)
  4384. {
  4385. struct fe_priv *np = netdev_priv(dev);
  4386. u8 __iomem *base = get_hwbase(dev);
  4387. int ret = 1;
  4388. int oom, i;
  4389. dprintk(KERN_DEBUG "nv_open: begin\n");
  4390. /* erase previous misconfiguration */
  4391. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4392. nv_mac_reset(dev);
  4393. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4394. writel(0, base + NvRegMulticastAddrB);
  4395. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4396. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4397. writel(0, base + NvRegPacketFilterFlags);
  4398. writel(0, base + NvRegTransmitterControl);
  4399. writel(0, base + NvRegReceiverControl);
  4400. writel(0, base + NvRegAdapterControl);
  4401. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4402. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4403. /* initialize descriptor rings */
  4404. set_bufsize(dev);
  4405. oom = nv_init_ring(dev);
  4406. writel(0, base + NvRegLinkSpeed);
  4407. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4408. nv_txrx_reset(dev);
  4409. writel(0, base + NvRegUnknownSetupReg6);
  4410. np->in_shutdown = 0;
  4411. /* give hw rings */
  4412. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4413. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4414. base + NvRegRingSizes);
  4415. writel(np->linkspeed, base + NvRegLinkSpeed);
  4416. if (np->desc_ver == DESC_VER_1)
  4417. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4418. else
  4419. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4420. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4421. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4422. pci_push(base);
  4423. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4424. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4425. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4426. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4427. writel(0, base + NvRegMIIMask);
  4428. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4429. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4430. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4431. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4432. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4433. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4434. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4435. get_random_bytes(&i, sizeof(i));
  4436. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  4437. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4438. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4439. if (poll_interval == -1) {
  4440. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4441. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4442. else
  4443. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4444. }
  4445. else
  4446. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4447. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4448. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4449. base + NvRegAdapterControl);
  4450. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4451. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4452. if (np->wolenabled)
  4453. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4454. i = readl(base + NvRegPowerState);
  4455. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4456. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4457. pci_push(base);
  4458. udelay(10);
  4459. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4460. nv_disable_hw_interrupts(dev, np->irqmask);
  4461. pci_push(base);
  4462. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4463. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4464. pci_push(base);
  4465. if (nv_request_irq(dev, 0)) {
  4466. goto out_drain;
  4467. }
  4468. /* ask for interrupts */
  4469. nv_enable_hw_interrupts(dev, np->irqmask);
  4470. spin_lock_irq(&np->lock);
  4471. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4472. writel(0, base + NvRegMulticastAddrB);
  4473. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4474. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4475. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4476. /* One manual link speed update: Interrupts are enabled, future link
  4477. * speed changes cause interrupts and are handled by nv_link_irq().
  4478. */
  4479. {
  4480. u32 miistat;
  4481. miistat = readl(base + NvRegMIIStatus);
  4482. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4483. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4484. }
  4485. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4486. * to init hw */
  4487. np->linkspeed = 0;
  4488. ret = nv_update_linkspeed(dev);
  4489. nv_start_rx(dev);
  4490. nv_start_tx(dev);
  4491. netif_start_queue(dev);
  4492. #ifdef CONFIG_FORCEDETH_NAPI
  4493. napi_enable(&np->napi);
  4494. #endif
  4495. if (ret) {
  4496. netif_carrier_on(dev);
  4497. } else {
  4498. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4499. netif_carrier_off(dev);
  4500. }
  4501. if (oom)
  4502. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4503. /* start statistics timer */
  4504. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
  4505. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  4506. spin_unlock_irq(&np->lock);
  4507. return 0;
  4508. out_drain:
  4509. drain_ring(dev);
  4510. return ret;
  4511. }
  4512. static int nv_close(struct net_device *dev)
  4513. {
  4514. struct fe_priv *np = netdev_priv(dev);
  4515. u8 __iomem *base;
  4516. spin_lock_irq(&np->lock);
  4517. np->in_shutdown = 1;
  4518. spin_unlock_irq(&np->lock);
  4519. #ifdef CONFIG_FORCEDETH_NAPI
  4520. napi_disable(&np->napi);
  4521. #endif
  4522. synchronize_irq(np->pci_dev->irq);
  4523. del_timer_sync(&np->oom_kick);
  4524. del_timer_sync(&np->nic_poll);
  4525. del_timer_sync(&np->stats_poll);
  4526. netif_stop_queue(dev);
  4527. spin_lock_irq(&np->lock);
  4528. nv_stop_tx(dev);
  4529. nv_stop_rx(dev);
  4530. nv_txrx_reset(dev);
  4531. /* disable interrupts on the nic or we will lock up */
  4532. base = get_hwbase(dev);
  4533. nv_disable_hw_interrupts(dev, np->irqmask);
  4534. pci_push(base);
  4535. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4536. spin_unlock_irq(&np->lock);
  4537. nv_free_irq(dev);
  4538. drain_ring(dev);
  4539. if (np->wolenabled) {
  4540. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4541. nv_start_rx(dev);
  4542. }
  4543. /* FIXME: power down nic */
  4544. return 0;
  4545. }
  4546. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4547. {
  4548. struct net_device *dev;
  4549. struct fe_priv *np;
  4550. unsigned long addr;
  4551. u8 __iomem *base;
  4552. int err, i;
  4553. u32 powerstate, txreg;
  4554. u32 phystate_orig = 0, phystate;
  4555. int phyinitialized = 0;
  4556. DECLARE_MAC_BUF(mac);
  4557. static int printed_version;
  4558. if (!printed_version++)
  4559. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4560. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4561. dev = alloc_etherdev(sizeof(struct fe_priv));
  4562. err = -ENOMEM;
  4563. if (!dev)
  4564. goto out;
  4565. np = netdev_priv(dev);
  4566. np->dev = dev;
  4567. np->pci_dev = pci_dev;
  4568. spin_lock_init(&np->lock);
  4569. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4570. init_timer(&np->oom_kick);
  4571. np->oom_kick.data = (unsigned long) dev;
  4572. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4573. init_timer(&np->nic_poll);
  4574. np->nic_poll.data = (unsigned long) dev;
  4575. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4576. init_timer(&np->stats_poll);
  4577. np->stats_poll.data = (unsigned long) dev;
  4578. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4579. err = pci_enable_device(pci_dev);
  4580. if (err)
  4581. goto out_free;
  4582. pci_set_master(pci_dev);
  4583. err = pci_request_regions(pci_dev, DRV_NAME);
  4584. if (err < 0)
  4585. goto out_disable;
  4586. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
  4587. np->register_size = NV_PCI_REGSZ_VER3;
  4588. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4589. np->register_size = NV_PCI_REGSZ_VER2;
  4590. else
  4591. np->register_size = NV_PCI_REGSZ_VER1;
  4592. err = -EINVAL;
  4593. addr = 0;
  4594. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4595. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4596. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4597. pci_resource_len(pci_dev, i),
  4598. pci_resource_flags(pci_dev, i));
  4599. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4600. pci_resource_len(pci_dev, i) >= np->register_size) {
  4601. addr = pci_resource_start(pci_dev, i);
  4602. break;
  4603. }
  4604. }
  4605. if (i == DEVICE_COUNT_RESOURCE) {
  4606. dev_printk(KERN_INFO, &pci_dev->dev,
  4607. "Couldn't find register window\n");
  4608. goto out_relreg;
  4609. }
  4610. /* copy of driver data */
  4611. np->driver_data = id->driver_data;
  4612. /* handle different descriptor versions */
  4613. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4614. /* packet format 3: supports 40-bit addressing */
  4615. np->desc_ver = DESC_VER_3;
  4616. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4617. if (dma_64bit) {
  4618. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
  4619. dev_printk(KERN_INFO, &pci_dev->dev,
  4620. "64-bit DMA failed, using 32-bit addressing\n");
  4621. else
  4622. dev->features |= NETIF_F_HIGHDMA;
  4623. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4624. dev_printk(KERN_INFO, &pci_dev->dev,
  4625. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4626. }
  4627. }
  4628. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4629. /* packet format 2: supports jumbo frames */
  4630. np->desc_ver = DESC_VER_2;
  4631. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4632. } else {
  4633. /* original packet format */
  4634. np->desc_ver = DESC_VER_1;
  4635. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4636. }
  4637. np->pkt_limit = NV_PKTLIMIT_1;
  4638. if (id->driver_data & DEV_HAS_LARGEDESC)
  4639. np->pkt_limit = NV_PKTLIMIT_2;
  4640. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4641. np->rx_csum = 1;
  4642. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4643. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  4644. dev->features |= NETIF_F_TSO;
  4645. }
  4646. np->vlanctl_bits = 0;
  4647. if (id->driver_data & DEV_HAS_VLAN) {
  4648. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4649. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4650. dev->vlan_rx_register = nv_vlan_rx_register;
  4651. }
  4652. np->msi_flags = 0;
  4653. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  4654. np->msi_flags |= NV_MSI_CAPABLE;
  4655. }
  4656. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  4657. np->msi_flags |= NV_MSI_X_CAPABLE;
  4658. }
  4659. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4660. if ((id->driver_data & DEV_HAS_PAUSEFRAME_TX_V1) ||
  4661. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V2) ||
  4662. (id->driver_data & DEV_HAS_PAUSEFRAME_TX_V3)) {
  4663. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4664. }
  4665. err = -ENOMEM;
  4666. np->base = ioremap(addr, np->register_size);
  4667. if (!np->base)
  4668. goto out_relreg;
  4669. dev->base_addr = (unsigned long)np->base;
  4670. dev->irq = pci_dev->irq;
  4671. np->rx_ring_size = RX_RING_DEFAULT;
  4672. np->tx_ring_size = TX_RING_DEFAULT;
  4673. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4674. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  4675. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  4676. &np->ring_addr);
  4677. if (!np->rx_ring.orig)
  4678. goto out_unmap;
  4679. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4680. } else {
  4681. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  4682. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  4683. &np->ring_addr);
  4684. if (!np->rx_ring.ex)
  4685. goto out_unmap;
  4686. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4687. }
  4688. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4689. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4690. if (!np->rx_skb || !np->tx_skb)
  4691. goto out_freering;
  4692. dev->open = nv_open;
  4693. dev->stop = nv_close;
  4694. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  4695. dev->hard_start_xmit = nv_start_xmit;
  4696. else
  4697. dev->hard_start_xmit = nv_start_xmit_optimized;
  4698. dev->get_stats = nv_get_stats;
  4699. dev->change_mtu = nv_change_mtu;
  4700. dev->set_mac_address = nv_set_mac_address;
  4701. dev->set_multicast_list = nv_set_multicast;
  4702. #ifdef CONFIG_NET_POLL_CONTROLLER
  4703. dev->poll_controller = nv_poll_controller;
  4704. #endif
  4705. #ifdef CONFIG_FORCEDETH_NAPI
  4706. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  4707. #endif
  4708. SET_ETHTOOL_OPS(dev, &ops);
  4709. dev->tx_timeout = nv_tx_timeout;
  4710. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  4711. pci_set_drvdata(pci_dev, dev);
  4712. /* read the mac address */
  4713. base = get_hwbase(dev);
  4714. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  4715. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  4716. /* check the workaround bit for correct mac address order */
  4717. txreg = readl(base + NvRegTransmitPoll);
  4718. if (id->driver_data & DEV_HAS_CORRECT_MACADDR) {
  4719. /* mac address is already in correct order */
  4720. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4721. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4722. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4723. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4724. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4725. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4726. } else if (txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) {
  4727. /* mac address is already in correct order */
  4728. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4729. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4730. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4731. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4732. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4733. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4734. /*
  4735. * Set orig mac address back to the reversed version.
  4736. * This flag will be cleared during low power transition.
  4737. * Therefore, we should always put back the reversed address.
  4738. */
  4739. np->orig_mac[0] = (dev->dev_addr[5] << 0) + (dev->dev_addr[4] << 8) +
  4740. (dev->dev_addr[3] << 16) + (dev->dev_addr[2] << 24);
  4741. np->orig_mac[1] = (dev->dev_addr[1] << 0) + (dev->dev_addr[0] << 8);
  4742. } else {
  4743. /* need to reverse mac address to correct order */
  4744. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  4745. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  4746. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  4747. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  4748. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  4749. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  4750. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4751. }
  4752. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  4753. if (!is_valid_ether_addr(dev->perm_addr)) {
  4754. /*
  4755. * Bad mac address. At least one bios sets the mac address
  4756. * to 01:23:45:67:89:ab
  4757. */
  4758. dev_printk(KERN_ERR, &pci_dev->dev,
  4759. "Invalid Mac address detected: %s\n",
  4760. print_mac(mac, dev->dev_addr));
  4761. dev_printk(KERN_ERR, &pci_dev->dev,
  4762. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  4763. dev->dev_addr[0] = 0x00;
  4764. dev->dev_addr[1] = 0x00;
  4765. dev->dev_addr[2] = 0x6c;
  4766. get_random_bytes(&dev->dev_addr[3], 3);
  4767. }
  4768. dprintk(KERN_DEBUG "%s: MAC Address %s\n",
  4769. pci_name(pci_dev), print_mac(mac, dev->dev_addr));
  4770. /* set mac address */
  4771. nv_copy_mac_to_hw(dev);
  4772. /* disable WOL */
  4773. writel(0, base + NvRegWakeUpFlags);
  4774. np->wolenabled = 0;
  4775. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  4776. /* take phy and nic out of low power mode */
  4777. powerstate = readl(base + NvRegPowerState2);
  4778. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  4779. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  4780. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  4781. pci_dev->revision >= 0xA3)
  4782. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  4783. writel(powerstate, base + NvRegPowerState2);
  4784. }
  4785. if (np->desc_ver == DESC_VER_1) {
  4786. np->tx_flags = NV_TX_VALID;
  4787. } else {
  4788. np->tx_flags = NV_TX2_VALID;
  4789. }
  4790. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  4791. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  4792. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4793. np->msi_flags |= 0x0003;
  4794. } else {
  4795. np->irqmask = NVREG_IRQMASK_CPU;
  4796. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4797. np->msi_flags |= 0x0001;
  4798. }
  4799. if (id->driver_data & DEV_NEED_TIMERIRQ)
  4800. np->irqmask |= NVREG_IRQ_TIMER;
  4801. if (id->driver_data & DEV_NEED_LINKTIMER) {
  4802. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  4803. np->need_linktimer = 1;
  4804. np->link_timeout = jiffies + LINK_TIMEOUT;
  4805. } else {
  4806. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  4807. np->need_linktimer = 0;
  4808. }
  4809. /* Limit the number of tx's outstanding for hw bug */
  4810. if (id->driver_data & DEV_NEED_TX_LIMIT) {
  4811. np->tx_limit = 1;
  4812. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_32 ||
  4813. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_33 ||
  4814. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_34 ||
  4815. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_35 ||
  4816. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_36 ||
  4817. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_37 ||
  4818. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_38 ||
  4819. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_39) &&
  4820. pci_dev->revision >= 0xA2)
  4821. np->tx_limit = 0;
  4822. }
  4823. /* clear phy state and temporarily halt phy interrupts */
  4824. writel(0, base + NvRegMIIMask);
  4825. phystate = readl(base + NvRegAdapterControl);
  4826. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  4827. phystate_orig = 1;
  4828. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  4829. writel(phystate, base + NvRegAdapterControl);
  4830. }
  4831. writel(NVREG_MIISTAT_MASK_ALL, base + NvRegMIIStatus);
  4832. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  4833. /* management unit running on the mac? */
  4834. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
  4835. np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
  4836. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
  4837. if (nv_mgmt_acquire_sema(dev)) {
  4838. /* management unit setup the phy already? */
  4839. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  4840. NVREG_XMITCTL_SYNC_PHY_INIT) {
  4841. /* phy is inited by mgmt unit */
  4842. phyinitialized = 1;
  4843. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
  4844. } else {
  4845. /* we need to init the phy */
  4846. }
  4847. }
  4848. }
  4849. }
  4850. /* find a suitable phy */
  4851. for (i = 1; i <= 32; i++) {
  4852. int id1, id2;
  4853. int phyaddr = i & 0x1F;
  4854. spin_lock_irq(&np->lock);
  4855. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  4856. spin_unlock_irq(&np->lock);
  4857. if (id1 < 0 || id1 == 0xffff)
  4858. continue;
  4859. spin_lock_irq(&np->lock);
  4860. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  4861. spin_unlock_irq(&np->lock);
  4862. if (id2 < 0 || id2 == 0xffff)
  4863. continue;
  4864. np->phy_model = id2 & PHYID2_MODEL_MASK;
  4865. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  4866. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  4867. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  4868. pci_name(pci_dev), id1, id2, phyaddr);
  4869. np->phyaddr = phyaddr;
  4870. np->phy_oui = id1 | id2;
  4871. break;
  4872. }
  4873. if (i == 33) {
  4874. dev_printk(KERN_INFO, &pci_dev->dev,
  4875. "open: Could not find a valid PHY.\n");
  4876. goto out_error;
  4877. }
  4878. if (!phyinitialized) {
  4879. /* reset it */
  4880. phy_init(dev);
  4881. } else {
  4882. /* see if it is a gigabit phy */
  4883. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4884. if (mii_status & PHY_GIGABIT) {
  4885. np->gigabit = PHY_GIGABIT;
  4886. }
  4887. }
  4888. /* set default link speed settings */
  4889. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  4890. np->duplex = 0;
  4891. np->autoneg = 1;
  4892. err = register_netdev(dev);
  4893. if (err) {
  4894. dev_printk(KERN_INFO, &pci_dev->dev,
  4895. "unable to register netdev: %d\n", err);
  4896. goto out_error;
  4897. }
  4898. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  4899. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  4900. dev->name,
  4901. np->phy_oui,
  4902. np->phyaddr,
  4903. dev->dev_addr[0],
  4904. dev->dev_addr[1],
  4905. dev->dev_addr[2],
  4906. dev->dev_addr[3],
  4907. dev->dev_addr[4],
  4908. dev->dev_addr[5]);
  4909. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  4910. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  4911. dev->features & (NETIF_F_HW_CSUM | NETIF_F_SG) ?
  4912. "csum " : "",
  4913. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  4914. "vlan " : "",
  4915. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  4916. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  4917. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  4918. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  4919. np->need_linktimer ? "lnktim " : "",
  4920. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  4921. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  4922. np->desc_ver);
  4923. return 0;
  4924. out_error:
  4925. if (phystate_orig)
  4926. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  4927. pci_set_drvdata(pci_dev, NULL);
  4928. out_freering:
  4929. free_rings(dev);
  4930. out_unmap:
  4931. iounmap(get_hwbase(dev));
  4932. out_relreg:
  4933. pci_release_regions(pci_dev);
  4934. out_disable:
  4935. pci_disable_device(pci_dev);
  4936. out_free:
  4937. free_netdev(dev);
  4938. out:
  4939. return err;
  4940. }
  4941. static void __devexit nv_remove(struct pci_dev *pci_dev)
  4942. {
  4943. struct net_device *dev = pci_get_drvdata(pci_dev);
  4944. struct fe_priv *np = netdev_priv(dev);
  4945. u8 __iomem *base = get_hwbase(dev);
  4946. unregister_netdev(dev);
  4947. /* special op: write back the misordered MAC address - otherwise
  4948. * the next nv_probe would see a wrong address.
  4949. */
  4950. writel(np->orig_mac[0], base + NvRegMacAddrA);
  4951. writel(np->orig_mac[1], base + NvRegMacAddrB);
  4952. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  4953. base + NvRegTransmitPoll);
  4954. /* free all structures */
  4955. free_rings(dev);
  4956. iounmap(get_hwbase(dev));
  4957. pci_release_regions(pci_dev);
  4958. pci_disable_device(pci_dev);
  4959. free_netdev(dev);
  4960. pci_set_drvdata(pci_dev, NULL);
  4961. }
  4962. #ifdef CONFIG_PM
  4963. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  4964. {
  4965. struct net_device *dev = pci_get_drvdata(pdev);
  4966. struct fe_priv *np = netdev_priv(dev);
  4967. if (!netif_running(dev))
  4968. goto out;
  4969. netif_device_detach(dev);
  4970. // Gross.
  4971. nv_close(dev);
  4972. pci_save_state(pdev);
  4973. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  4974. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4975. out:
  4976. return 0;
  4977. }
  4978. static int nv_resume(struct pci_dev *pdev)
  4979. {
  4980. struct net_device *dev = pci_get_drvdata(pdev);
  4981. u8 __iomem *base = get_hwbase(dev);
  4982. int rc = 0;
  4983. u32 txreg;
  4984. if (!netif_running(dev))
  4985. goto out;
  4986. netif_device_attach(dev);
  4987. pci_set_power_state(pdev, PCI_D0);
  4988. pci_restore_state(pdev);
  4989. pci_enable_wake(pdev, PCI_D0, 0);
  4990. /* restore mac address reverse flag */
  4991. txreg = readl(base + NvRegTransmitPoll);
  4992. txreg |= NVREG_TRANSMITPOLL_MAC_ADDR_REV;
  4993. writel(txreg, base + NvRegTransmitPoll);
  4994. rc = nv_open(dev);
  4995. out:
  4996. return rc;
  4997. }
  4998. #else
  4999. #define nv_suspend NULL
  5000. #define nv_resume NULL
  5001. #endif /* CONFIG_PM */
  5002. static struct pci_device_id pci_tbl[] = {
  5003. { /* nForce Ethernet Controller */
  5004. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  5005. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5006. },
  5007. { /* nForce2 Ethernet Controller */
  5008. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  5009. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5010. },
  5011. { /* nForce3 Ethernet Controller */
  5012. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  5013. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  5014. },
  5015. { /* nForce3 Ethernet Controller */
  5016. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  5017. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5018. },
  5019. { /* nForce3 Ethernet Controller */
  5020. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  5021. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5022. },
  5023. { /* nForce3 Ethernet Controller */
  5024. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  5025. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5026. },
  5027. { /* nForce3 Ethernet Controller */
  5028. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  5029. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  5030. },
  5031. { /* CK804 Ethernet Controller */
  5032. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  5033. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5034. },
  5035. { /* CK804 Ethernet Controller */
  5036. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  5037. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5038. },
  5039. { /* MCP04 Ethernet Controller */
  5040. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  5041. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5042. },
  5043. { /* MCP04 Ethernet Controller */
  5044. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  5045. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1|DEV_NEED_TX_LIMIT,
  5046. },
  5047. { /* MCP51 Ethernet Controller */
  5048. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  5049. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5050. },
  5051. { /* MCP51 Ethernet Controller */
  5052. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  5053. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  5054. },
  5055. { /* MCP55 Ethernet Controller */
  5056. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  5057. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5058. },
  5059. { /* MCP55 Ethernet Controller */
  5060. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  5061. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_NEED_TX_LIMIT,
  5062. },
  5063. { /* MCP61 Ethernet Controller */
  5064. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  5065. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5066. },
  5067. { /* MCP61 Ethernet Controller */
  5068. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  5069. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5070. },
  5071. { /* MCP61 Ethernet Controller */
  5072. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  5073. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5074. },
  5075. { /* MCP61 Ethernet Controller */
  5076. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  5077. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5078. },
  5079. { /* MCP65 Ethernet Controller */
  5080. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  5081. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT|DEV_NEED_TX_LIMIT,
  5082. },
  5083. { /* MCP65 Ethernet Controller */
  5084. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  5085. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT,
  5086. },
  5087. { /* MCP65 Ethernet Controller */
  5088. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  5089. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT,
  5090. },
  5091. { /* MCP65 Ethernet Controller */
  5092. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  5093. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_NEED_TX_LIMIT,
  5094. },
  5095. { /* MCP67 Ethernet Controller */
  5096. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  5097. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5098. },
  5099. { /* MCP67 Ethernet Controller */
  5100. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  5101. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5102. },
  5103. { /* MCP67 Ethernet Controller */
  5104. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  5105. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5106. },
  5107. { /* MCP67 Ethernet Controller */
  5108. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  5109. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5110. },
  5111. { /* MCP73 Ethernet Controller */
  5112. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  5113. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5114. },
  5115. { /* MCP73 Ethernet Controller */
  5116. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  5117. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5118. },
  5119. { /* MCP73 Ethernet Controller */
  5120. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  5121. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5122. },
  5123. { /* MCP73 Ethernet Controller */
  5124. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  5125. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX_V1|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX,
  5126. },
  5127. { /* MCP77 Ethernet Controller */
  5128. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
  5129. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5130. },
  5131. { /* MCP77 Ethernet Controller */
  5132. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
  5133. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5134. },
  5135. { /* MCP77 Ethernet Controller */
  5136. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
  5137. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5138. },
  5139. { /* MCP77 Ethernet Controller */
  5140. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
  5141. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V2|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5142. },
  5143. { /* MCP79 Ethernet Controller */
  5144. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
  5145. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5146. },
  5147. { /* MCP79 Ethernet Controller */
  5148. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
  5149. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5150. },
  5151. { /* MCP79 Ethernet Controller */
  5152. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
  5153. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5154. },
  5155. { /* MCP79 Ethernet Controller */
  5156. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
  5157. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX_V3|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR|DEV_HAS_COLLISION_FIX|DEV_NEED_TX_LIMIT,
  5158. },
  5159. {0,},
  5160. };
  5161. static struct pci_driver driver = {
  5162. .name = DRV_NAME,
  5163. .id_table = pci_tbl,
  5164. .probe = nv_probe,
  5165. .remove = __devexit_p(nv_remove),
  5166. .suspend = nv_suspend,
  5167. .resume = nv_resume,
  5168. };
  5169. static int __init init_nic(void)
  5170. {
  5171. return pci_register_driver(&driver);
  5172. }
  5173. static void __exit exit_nic(void)
  5174. {
  5175. pci_unregister_driver(&driver);
  5176. }
  5177. module_param(max_interrupt_work, int, 0);
  5178. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5179. module_param(optimization_mode, int, 0);
  5180. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  5181. module_param(poll_interval, int, 0);
  5182. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5183. module_param(msi, int, 0);
  5184. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5185. module_param(msix, int, 0);
  5186. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5187. module_param(dma_64bit, int, 0);
  5188. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5189. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5190. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5191. MODULE_LICENSE("GPL");
  5192. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5193. module_init(init_nic);
  5194. module_exit(exit_nic);