raid1.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222
  1. /*
  2. * raid1.c : Multiple Devices driver for Linux
  3. *
  4. * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
  5. *
  6. * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
  7. *
  8. * RAID-1 management functions.
  9. *
  10. * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11. *
  12. * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13. * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14. *
  15. * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16. * bitmapped intelligence in resync:
  17. *
  18. * - bitmap marked during normal i/o
  19. * - bitmap used to skip nondirty blocks during sync
  20. *
  21. * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22. * - persistent bitmap code
  23. *
  24. * This program is free software; you can redistribute it and/or modify
  25. * it under the terms of the GNU General Public License as published by
  26. * the Free Software Foundation; either version 2, or (at your option)
  27. * any later version.
  28. *
  29. * You should have received a copy of the GNU General Public License
  30. * (for example /usr/src/linux/COPYING); if not, write to the Free
  31. * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32. */
  33. #include "dm-bio-list.h"
  34. #include <linux/raid/raid1.h>
  35. #include <linux/raid/bitmap.h>
  36. #define DEBUG 0
  37. #if DEBUG
  38. #define PRINTK(x...) printk(x)
  39. #else
  40. #define PRINTK(x...)
  41. #endif
  42. /*
  43. * Number of guaranteed r1bios in case of extreme VM load:
  44. */
  45. #define NR_RAID1_BIOS 256
  46. static void unplug_slaves(mddev_t *mddev);
  47. static void allow_barrier(conf_t *conf);
  48. static void lower_barrier(conf_t *conf);
  49. static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  50. {
  51. struct pool_info *pi = data;
  52. r1bio_t *r1_bio;
  53. int size = offsetof(r1bio_t, bios[pi->raid_disks]);
  54. /* allocate a r1bio with room for raid_disks entries in the bios array */
  55. r1_bio = kzalloc(size, gfp_flags);
  56. if (!r1_bio)
  57. unplug_slaves(pi->mddev);
  58. return r1_bio;
  59. }
  60. static void r1bio_pool_free(void *r1_bio, void *data)
  61. {
  62. kfree(r1_bio);
  63. }
  64. #define RESYNC_BLOCK_SIZE (64*1024)
  65. //#define RESYNC_BLOCK_SIZE PAGE_SIZE
  66. #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  67. #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  68. #define RESYNC_WINDOW (2048*1024)
  69. static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  70. {
  71. struct pool_info *pi = data;
  72. struct page *page;
  73. r1bio_t *r1_bio;
  74. struct bio *bio;
  75. int i, j;
  76. r1_bio = r1bio_pool_alloc(gfp_flags, pi);
  77. if (!r1_bio) {
  78. unplug_slaves(pi->mddev);
  79. return NULL;
  80. }
  81. /*
  82. * Allocate bios : 1 for reading, n-1 for writing
  83. */
  84. for (j = pi->raid_disks ; j-- ; ) {
  85. bio = bio_alloc(gfp_flags, RESYNC_PAGES);
  86. if (!bio)
  87. goto out_free_bio;
  88. r1_bio->bios[j] = bio;
  89. }
  90. /*
  91. * Allocate RESYNC_PAGES data pages and attach them to
  92. * the first bio.
  93. * If this is a user-requested check/repair, allocate
  94. * RESYNC_PAGES for each bio.
  95. */
  96. if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
  97. j = pi->raid_disks;
  98. else
  99. j = 1;
  100. while(j--) {
  101. bio = r1_bio->bios[j];
  102. for (i = 0; i < RESYNC_PAGES; i++) {
  103. page = alloc_page(gfp_flags);
  104. if (unlikely(!page))
  105. goto out_free_pages;
  106. bio->bi_io_vec[i].bv_page = page;
  107. }
  108. }
  109. /* If not user-requests, copy the page pointers to all bios */
  110. if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
  111. for (i=0; i<RESYNC_PAGES ; i++)
  112. for (j=1; j<pi->raid_disks; j++)
  113. r1_bio->bios[j]->bi_io_vec[i].bv_page =
  114. r1_bio->bios[0]->bi_io_vec[i].bv_page;
  115. }
  116. r1_bio->master_bio = NULL;
  117. return r1_bio;
  118. out_free_pages:
  119. for (i=0; i < RESYNC_PAGES ; i++)
  120. for (j=0 ; j < pi->raid_disks; j++)
  121. safe_put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
  122. j = -1;
  123. out_free_bio:
  124. while ( ++j < pi->raid_disks )
  125. bio_put(r1_bio->bios[j]);
  126. r1bio_pool_free(r1_bio, data);
  127. return NULL;
  128. }
  129. static void r1buf_pool_free(void *__r1_bio, void *data)
  130. {
  131. struct pool_info *pi = data;
  132. int i,j;
  133. r1bio_t *r1bio = __r1_bio;
  134. for (i = 0; i < RESYNC_PAGES; i++)
  135. for (j = pi->raid_disks; j-- ;) {
  136. if (j == 0 ||
  137. r1bio->bios[j]->bi_io_vec[i].bv_page !=
  138. r1bio->bios[0]->bi_io_vec[i].bv_page)
  139. safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
  140. }
  141. for (i=0 ; i < pi->raid_disks; i++)
  142. bio_put(r1bio->bios[i]);
  143. r1bio_pool_free(r1bio, data);
  144. }
  145. static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
  146. {
  147. int i;
  148. for (i = 0; i < conf->raid_disks; i++) {
  149. struct bio **bio = r1_bio->bios + i;
  150. if (*bio && *bio != IO_BLOCKED)
  151. bio_put(*bio);
  152. *bio = NULL;
  153. }
  154. }
  155. static void free_r1bio(r1bio_t *r1_bio)
  156. {
  157. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  158. /*
  159. * Wake up any possible resync thread that waits for the device
  160. * to go idle.
  161. */
  162. allow_barrier(conf);
  163. put_all_bios(conf, r1_bio);
  164. mempool_free(r1_bio, conf->r1bio_pool);
  165. }
  166. static void put_buf(r1bio_t *r1_bio)
  167. {
  168. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  169. int i;
  170. for (i=0; i<conf->raid_disks; i++) {
  171. struct bio *bio = r1_bio->bios[i];
  172. if (bio->bi_end_io)
  173. rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
  174. }
  175. mempool_free(r1_bio, conf->r1buf_pool);
  176. lower_barrier(conf);
  177. }
  178. static void reschedule_retry(r1bio_t *r1_bio)
  179. {
  180. unsigned long flags;
  181. mddev_t *mddev = r1_bio->mddev;
  182. conf_t *conf = mddev_to_conf(mddev);
  183. spin_lock_irqsave(&conf->device_lock, flags);
  184. list_add(&r1_bio->retry_list, &conf->retry_list);
  185. conf->nr_queued ++;
  186. spin_unlock_irqrestore(&conf->device_lock, flags);
  187. wake_up(&conf->wait_barrier);
  188. md_wakeup_thread(mddev->thread);
  189. }
  190. /*
  191. * raid_end_bio_io() is called when we have finished servicing a mirrored
  192. * operation and are ready to return a success/failure code to the buffer
  193. * cache layer.
  194. */
  195. static void raid_end_bio_io(r1bio_t *r1_bio)
  196. {
  197. struct bio *bio = r1_bio->master_bio;
  198. /* if nobody has done the final endio yet, do it now */
  199. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  200. PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
  201. (bio_data_dir(bio) == WRITE) ? "write" : "read",
  202. (unsigned long long) bio->bi_sector,
  203. (unsigned long long) bio->bi_sector +
  204. (bio->bi_size >> 9) - 1);
  205. bio_endio(bio,
  206. test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
  207. }
  208. free_r1bio(r1_bio);
  209. }
  210. /*
  211. * Update disk head position estimator based on IRQ completion info.
  212. */
  213. static inline void update_head_pos(int disk, r1bio_t *r1_bio)
  214. {
  215. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  216. conf->mirrors[disk].head_position =
  217. r1_bio->sector + (r1_bio->sectors);
  218. }
  219. static void raid1_end_read_request(struct bio *bio, int error)
  220. {
  221. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  222. r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
  223. int mirror;
  224. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  225. mirror = r1_bio->read_disk;
  226. /*
  227. * this branch is our 'one mirror IO has finished' event handler:
  228. */
  229. update_head_pos(mirror, r1_bio);
  230. if (uptodate)
  231. set_bit(R1BIO_Uptodate, &r1_bio->state);
  232. else {
  233. /* If all other devices have failed, we want to return
  234. * the error upwards rather than fail the last device.
  235. * Here we redefine "uptodate" to mean "Don't want to retry"
  236. */
  237. unsigned long flags;
  238. spin_lock_irqsave(&conf->device_lock, flags);
  239. if (r1_bio->mddev->degraded == conf->raid_disks ||
  240. (r1_bio->mddev->degraded == conf->raid_disks-1 &&
  241. !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
  242. uptodate = 1;
  243. spin_unlock_irqrestore(&conf->device_lock, flags);
  244. }
  245. if (uptodate)
  246. raid_end_bio_io(r1_bio);
  247. else {
  248. /*
  249. * oops, read error:
  250. */
  251. char b[BDEVNAME_SIZE];
  252. if (printk_ratelimit())
  253. printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
  254. bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
  255. reschedule_retry(r1_bio);
  256. }
  257. rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
  258. }
  259. static void raid1_end_write_request(struct bio *bio, int error)
  260. {
  261. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  262. r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
  263. int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
  264. conf_t *conf = mddev_to_conf(r1_bio->mddev);
  265. struct bio *to_put = NULL;
  266. for (mirror = 0; mirror < conf->raid_disks; mirror++)
  267. if (r1_bio->bios[mirror] == bio)
  268. break;
  269. if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
  270. set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
  271. set_bit(R1BIO_BarrierRetry, &r1_bio->state);
  272. r1_bio->mddev->barriers_work = 0;
  273. /* Don't rdev_dec_pending in this branch - keep it for the retry */
  274. } else {
  275. /*
  276. * this branch is our 'one mirror IO has finished' event handler:
  277. */
  278. r1_bio->bios[mirror] = NULL;
  279. to_put = bio;
  280. if (!uptodate) {
  281. md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
  282. /* an I/O failed, we can't clear the bitmap */
  283. set_bit(R1BIO_Degraded, &r1_bio->state);
  284. } else
  285. /*
  286. * Set R1BIO_Uptodate in our master bio, so that
  287. * we will return a good error code for to the higher
  288. * levels even if IO on some other mirrored buffer fails.
  289. *
  290. * The 'master' represents the composite IO operation to
  291. * user-side. So if something waits for IO, then it will
  292. * wait for the 'master' bio.
  293. */
  294. set_bit(R1BIO_Uptodate, &r1_bio->state);
  295. update_head_pos(mirror, r1_bio);
  296. if (behind) {
  297. if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
  298. atomic_dec(&r1_bio->behind_remaining);
  299. /* In behind mode, we ACK the master bio once the I/O has safely
  300. * reached all non-writemostly disks. Setting the Returned bit
  301. * ensures that this gets done only once -- we don't ever want to
  302. * return -EIO here, instead we'll wait */
  303. if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
  304. test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  305. /* Maybe we can return now */
  306. if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
  307. struct bio *mbio = r1_bio->master_bio;
  308. PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
  309. (unsigned long long) mbio->bi_sector,
  310. (unsigned long long) mbio->bi_sector +
  311. (mbio->bi_size >> 9) - 1);
  312. bio_endio(mbio, 0);
  313. }
  314. }
  315. }
  316. rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
  317. }
  318. /*
  319. *
  320. * Let's see if all mirrored write operations have finished
  321. * already.
  322. */
  323. if (atomic_dec_and_test(&r1_bio->remaining)) {
  324. if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
  325. reschedule_retry(r1_bio);
  326. else {
  327. /* it really is the end of this request */
  328. if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
  329. /* free extra copy of the data pages */
  330. int i = bio->bi_vcnt;
  331. while (i--)
  332. safe_put_page(bio->bi_io_vec[i].bv_page);
  333. }
  334. /* clear the bitmap if all writes complete successfully */
  335. bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
  336. r1_bio->sectors,
  337. !test_bit(R1BIO_Degraded, &r1_bio->state),
  338. behind);
  339. md_write_end(r1_bio->mddev);
  340. raid_end_bio_io(r1_bio);
  341. }
  342. }
  343. if (to_put)
  344. bio_put(to_put);
  345. }
  346. /*
  347. * This routine returns the disk from which the requested read should
  348. * be done. There is a per-array 'next expected sequential IO' sector
  349. * number - if this matches on the next IO then we use the last disk.
  350. * There is also a per-disk 'last know head position' sector that is
  351. * maintained from IRQ contexts, both the normal and the resync IO
  352. * completion handlers update this position correctly. If there is no
  353. * perfect sequential match then we pick the disk whose head is closest.
  354. *
  355. * If there are 2 mirrors in the same 2 devices, performance degrades
  356. * because position is mirror, not device based.
  357. *
  358. * The rdev for the device selected will have nr_pending incremented.
  359. */
  360. static int read_balance(conf_t *conf, r1bio_t *r1_bio)
  361. {
  362. const unsigned long this_sector = r1_bio->sector;
  363. int new_disk = conf->last_used, disk = new_disk;
  364. int wonly_disk = -1;
  365. const int sectors = r1_bio->sectors;
  366. sector_t new_distance, current_distance;
  367. mdk_rdev_t *rdev;
  368. rcu_read_lock();
  369. /*
  370. * Check if we can balance. We can balance on the whole
  371. * device if no resync is going on, or below the resync window.
  372. * We take the first readable disk when above the resync window.
  373. */
  374. retry:
  375. if (conf->mddev->recovery_cp < MaxSector &&
  376. (this_sector + sectors >= conf->next_resync)) {
  377. /* Choose the first operation device, for consistancy */
  378. new_disk = 0;
  379. for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
  380. r1_bio->bios[new_disk] == IO_BLOCKED ||
  381. !rdev || !test_bit(In_sync, &rdev->flags)
  382. || test_bit(WriteMostly, &rdev->flags);
  383. rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
  384. if (rdev && test_bit(In_sync, &rdev->flags) &&
  385. r1_bio->bios[new_disk] != IO_BLOCKED)
  386. wonly_disk = new_disk;
  387. if (new_disk == conf->raid_disks - 1) {
  388. new_disk = wonly_disk;
  389. break;
  390. }
  391. }
  392. goto rb_out;
  393. }
  394. /* make sure the disk is operational */
  395. for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
  396. r1_bio->bios[new_disk] == IO_BLOCKED ||
  397. !rdev || !test_bit(In_sync, &rdev->flags) ||
  398. test_bit(WriteMostly, &rdev->flags);
  399. rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
  400. if (rdev && test_bit(In_sync, &rdev->flags) &&
  401. r1_bio->bios[new_disk] != IO_BLOCKED)
  402. wonly_disk = new_disk;
  403. if (new_disk <= 0)
  404. new_disk = conf->raid_disks;
  405. new_disk--;
  406. if (new_disk == disk) {
  407. new_disk = wonly_disk;
  408. break;
  409. }
  410. }
  411. if (new_disk < 0)
  412. goto rb_out;
  413. disk = new_disk;
  414. /* now disk == new_disk == starting point for search */
  415. /*
  416. * Don't change to another disk for sequential reads:
  417. */
  418. if (conf->next_seq_sect == this_sector)
  419. goto rb_out;
  420. if (this_sector == conf->mirrors[new_disk].head_position)
  421. goto rb_out;
  422. current_distance = abs(this_sector - conf->mirrors[disk].head_position);
  423. /* Find the disk whose head is closest */
  424. do {
  425. if (disk <= 0)
  426. disk = conf->raid_disks;
  427. disk--;
  428. rdev = rcu_dereference(conf->mirrors[disk].rdev);
  429. if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
  430. !test_bit(In_sync, &rdev->flags) ||
  431. test_bit(WriteMostly, &rdev->flags))
  432. continue;
  433. if (!atomic_read(&rdev->nr_pending)) {
  434. new_disk = disk;
  435. break;
  436. }
  437. new_distance = abs(this_sector - conf->mirrors[disk].head_position);
  438. if (new_distance < current_distance) {
  439. current_distance = new_distance;
  440. new_disk = disk;
  441. }
  442. } while (disk != conf->last_used);
  443. rb_out:
  444. if (new_disk >= 0) {
  445. rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
  446. if (!rdev)
  447. goto retry;
  448. atomic_inc(&rdev->nr_pending);
  449. if (!test_bit(In_sync, &rdev->flags)) {
  450. /* cannot risk returning a device that failed
  451. * before we inc'ed nr_pending
  452. */
  453. rdev_dec_pending(rdev, conf->mddev);
  454. goto retry;
  455. }
  456. conf->next_seq_sect = this_sector + sectors;
  457. conf->last_used = new_disk;
  458. }
  459. rcu_read_unlock();
  460. return new_disk;
  461. }
  462. static void unplug_slaves(mddev_t *mddev)
  463. {
  464. conf_t *conf = mddev_to_conf(mddev);
  465. int i;
  466. rcu_read_lock();
  467. for (i=0; i<mddev->raid_disks; i++) {
  468. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  469. if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
  470. struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
  471. atomic_inc(&rdev->nr_pending);
  472. rcu_read_unlock();
  473. blk_unplug(r_queue);
  474. rdev_dec_pending(rdev, mddev);
  475. rcu_read_lock();
  476. }
  477. }
  478. rcu_read_unlock();
  479. }
  480. static void raid1_unplug(struct request_queue *q)
  481. {
  482. mddev_t *mddev = q->queuedata;
  483. unplug_slaves(mddev);
  484. md_wakeup_thread(mddev->thread);
  485. }
  486. static int raid1_congested(void *data, int bits)
  487. {
  488. mddev_t *mddev = data;
  489. conf_t *conf = mddev_to_conf(mddev);
  490. int i, ret = 0;
  491. rcu_read_lock();
  492. for (i = 0; i < mddev->raid_disks; i++) {
  493. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  494. if (rdev && !test_bit(Faulty, &rdev->flags)) {
  495. struct request_queue *q = bdev_get_queue(rdev->bdev);
  496. /* Note the '|| 1' - when read_balance prefers
  497. * non-congested targets, it can be removed
  498. */
  499. if ((bits & (1<<BDI_write_congested)) || 1)
  500. ret |= bdi_congested(&q->backing_dev_info, bits);
  501. else
  502. ret &= bdi_congested(&q->backing_dev_info, bits);
  503. }
  504. }
  505. rcu_read_unlock();
  506. return ret;
  507. }
  508. static int flush_pending_writes(conf_t *conf)
  509. {
  510. /* Any writes that have been queued but are awaiting
  511. * bitmap updates get flushed here.
  512. * We return 1 if any requests were actually submitted.
  513. */
  514. int rv = 0;
  515. spin_lock_irq(&conf->device_lock);
  516. if (conf->pending_bio_list.head) {
  517. struct bio *bio;
  518. bio = bio_list_get(&conf->pending_bio_list);
  519. blk_remove_plug(conf->mddev->queue);
  520. spin_unlock_irq(&conf->device_lock);
  521. /* flush any pending bitmap writes to
  522. * disk before proceeding w/ I/O */
  523. bitmap_unplug(conf->mddev->bitmap);
  524. while (bio) { /* submit pending writes */
  525. struct bio *next = bio->bi_next;
  526. bio->bi_next = NULL;
  527. generic_make_request(bio);
  528. bio = next;
  529. }
  530. rv = 1;
  531. } else
  532. spin_unlock_irq(&conf->device_lock);
  533. return rv;
  534. }
  535. /* Barriers....
  536. * Sometimes we need to suspend IO while we do something else,
  537. * either some resync/recovery, or reconfigure the array.
  538. * To do this we raise a 'barrier'.
  539. * The 'barrier' is a counter that can be raised multiple times
  540. * to count how many activities are happening which preclude
  541. * normal IO.
  542. * We can only raise the barrier if there is no pending IO.
  543. * i.e. if nr_pending == 0.
  544. * We choose only to raise the barrier if no-one is waiting for the
  545. * barrier to go down. This means that as soon as an IO request
  546. * is ready, no other operations which require a barrier will start
  547. * until the IO request has had a chance.
  548. *
  549. * So: regular IO calls 'wait_barrier'. When that returns there
  550. * is no backgroup IO happening, It must arrange to call
  551. * allow_barrier when it has finished its IO.
  552. * backgroup IO calls must call raise_barrier. Once that returns
  553. * there is no normal IO happeing. It must arrange to call
  554. * lower_barrier when the particular background IO completes.
  555. */
  556. #define RESYNC_DEPTH 32
  557. static void raise_barrier(conf_t *conf)
  558. {
  559. spin_lock_irq(&conf->resync_lock);
  560. /* Wait until no block IO is waiting */
  561. wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
  562. conf->resync_lock,
  563. raid1_unplug(conf->mddev->queue));
  564. /* block any new IO from starting */
  565. conf->barrier++;
  566. /* No wait for all pending IO to complete */
  567. wait_event_lock_irq(conf->wait_barrier,
  568. !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
  569. conf->resync_lock,
  570. raid1_unplug(conf->mddev->queue));
  571. spin_unlock_irq(&conf->resync_lock);
  572. }
  573. static void lower_barrier(conf_t *conf)
  574. {
  575. unsigned long flags;
  576. spin_lock_irqsave(&conf->resync_lock, flags);
  577. conf->barrier--;
  578. spin_unlock_irqrestore(&conf->resync_lock, flags);
  579. wake_up(&conf->wait_barrier);
  580. }
  581. static void wait_barrier(conf_t *conf)
  582. {
  583. spin_lock_irq(&conf->resync_lock);
  584. if (conf->barrier) {
  585. conf->nr_waiting++;
  586. wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
  587. conf->resync_lock,
  588. raid1_unplug(conf->mddev->queue));
  589. conf->nr_waiting--;
  590. }
  591. conf->nr_pending++;
  592. spin_unlock_irq(&conf->resync_lock);
  593. }
  594. static void allow_barrier(conf_t *conf)
  595. {
  596. unsigned long flags;
  597. spin_lock_irqsave(&conf->resync_lock, flags);
  598. conf->nr_pending--;
  599. spin_unlock_irqrestore(&conf->resync_lock, flags);
  600. wake_up(&conf->wait_barrier);
  601. }
  602. static void freeze_array(conf_t *conf)
  603. {
  604. /* stop syncio and normal IO and wait for everything to
  605. * go quite.
  606. * We increment barrier and nr_waiting, and then
  607. * wait until barrier+nr_pending match nr_queued+2
  608. */
  609. spin_lock_irq(&conf->resync_lock);
  610. conf->barrier++;
  611. conf->nr_waiting++;
  612. wait_event_lock_irq(conf->wait_barrier,
  613. conf->barrier+conf->nr_pending == conf->nr_queued+2,
  614. conf->resync_lock,
  615. ({ flush_pending_writes(conf);
  616. raid1_unplug(conf->mddev->queue); }));
  617. spin_unlock_irq(&conf->resync_lock);
  618. }
  619. static void unfreeze_array(conf_t *conf)
  620. {
  621. /* reverse the effect of the freeze */
  622. spin_lock_irq(&conf->resync_lock);
  623. conf->barrier--;
  624. conf->nr_waiting--;
  625. wake_up(&conf->wait_barrier);
  626. spin_unlock_irq(&conf->resync_lock);
  627. }
  628. /* duplicate the data pages for behind I/O */
  629. static struct page **alloc_behind_pages(struct bio *bio)
  630. {
  631. int i;
  632. struct bio_vec *bvec;
  633. struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
  634. GFP_NOIO);
  635. if (unlikely(!pages))
  636. goto do_sync_io;
  637. bio_for_each_segment(bvec, bio, i) {
  638. pages[i] = alloc_page(GFP_NOIO);
  639. if (unlikely(!pages[i]))
  640. goto do_sync_io;
  641. memcpy(kmap(pages[i]) + bvec->bv_offset,
  642. kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
  643. kunmap(pages[i]);
  644. kunmap(bvec->bv_page);
  645. }
  646. return pages;
  647. do_sync_io:
  648. if (pages)
  649. for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
  650. put_page(pages[i]);
  651. kfree(pages);
  652. PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
  653. return NULL;
  654. }
  655. static int make_request(struct request_queue *q, struct bio * bio)
  656. {
  657. mddev_t *mddev = q->queuedata;
  658. conf_t *conf = mddev_to_conf(mddev);
  659. mirror_info_t *mirror;
  660. r1bio_t *r1_bio;
  661. struct bio *read_bio;
  662. int i, targets = 0, disks;
  663. mdk_rdev_t *rdev;
  664. struct bitmap *bitmap = mddev->bitmap;
  665. unsigned long flags;
  666. struct bio_list bl;
  667. struct page **behind_pages = NULL;
  668. const int rw = bio_data_dir(bio);
  669. const int do_sync = bio_sync(bio);
  670. int do_barriers;
  671. /*
  672. * Register the new request and wait if the reconstruction
  673. * thread has put up a bar for new requests.
  674. * Continue immediately if no resync is active currently.
  675. * We test barriers_work *after* md_write_start as md_write_start
  676. * may cause the first superblock write, and that will check out
  677. * if barriers work.
  678. */
  679. md_write_start(mddev, bio); /* wait on superblock update early */
  680. if (unlikely(!mddev->barriers_work && bio_barrier(bio))) {
  681. if (rw == WRITE)
  682. md_write_end(mddev);
  683. bio_endio(bio, -EOPNOTSUPP);
  684. return 0;
  685. }
  686. wait_barrier(conf);
  687. disk_stat_inc(mddev->gendisk, ios[rw]);
  688. disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
  689. /*
  690. * make_request() can abort the operation when READA is being
  691. * used and no empty request is available.
  692. *
  693. */
  694. r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
  695. r1_bio->master_bio = bio;
  696. r1_bio->sectors = bio->bi_size >> 9;
  697. r1_bio->state = 0;
  698. r1_bio->mddev = mddev;
  699. r1_bio->sector = bio->bi_sector;
  700. if (rw == READ) {
  701. /*
  702. * read balancing logic:
  703. */
  704. int rdisk = read_balance(conf, r1_bio);
  705. if (rdisk < 0) {
  706. /* couldn't find anywhere to read from */
  707. raid_end_bio_io(r1_bio);
  708. return 0;
  709. }
  710. mirror = conf->mirrors + rdisk;
  711. r1_bio->read_disk = rdisk;
  712. read_bio = bio_clone(bio, GFP_NOIO);
  713. r1_bio->bios[rdisk] = read_bio;
  714. read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
  715. read_bio->bi_bdev = mirror->rdev->bdev;
  716. read_bio->bi_end_io = raid1_end_read_request;
  717. read_bio->bi_rw = READ | do_sync;
  718. read_bio->bi_private = r1_bio;
  719. generic_make_request(read_bio);
  720. return 0;
  721. }
  722. /*
  723. * WRITE:
  724. */
  725. /* first select target devices under spinlock and
  726. * inc refcount on their rdev. Record them by setting
  727. * bios[x] to bio
  728. */
  729. disks = conf->raid_disks;
  730. #if 0
  731. { static int first=1;
  732. if (first) printk("First Write sector %llu disks %d\n",
  733. (unsigned long long)r1_bio->sector, disks);
  734. first = 0;
  735. }
  736. #endif
  737. rcu_read_lock();
  738. for (i = 0; i < disks; i++) {
  739. if ((rdev=rcu_dereference(conf->mirrors[i].rdev)) != NULL &&
  740. !test_bit(Faulty, &rdev->flags)) {
  741. atomic_inc(&rdev->nr_pending);
  742. if (test_bit(Faulty, &rdev->flags)) {
  743. rdev_dec_pending(rdev, mddev);
  744. r1_bio->bios[i] = NULL;
  745. } else
  746. r1_bio->bios[i] = bio;
  747. targets++;
  748. } else
  749. r1_bio->bios[i] = NULL;
  750. }
  751. rcu_read_unlock();
  752. BUG_ON(targets == 0); /* we never fail the last device */
  753. if (targets < conf->raid_disks) {
  754. /* array is degraded, we will not clear the bitmap
  755. * on I/O completion (see raid1_end_write_request) */
  756. set_bit(R1BIO_Degraded, &r1_bio->state);
  757. }
  758. /* do behind I/O ? */
  759. if (bitmap &&
  760. atomic_read(&bitmap->behind_writes) < bitmap->max_write_behind &&
  761. (behind_pages = alloc_behind_pages(bio)) != NULL)
  762. set_bit(R1BIO_BehindIO, &r1_bio->state);
  763. atomic_set(&r1_bio->remaining, 0);
  764. atomic_set(&r1_bio->behind_remaining, 0);
  765. do_barriers = bio_barrier(bio);
  766. if (do_barriers)
  767. set_bit(R1BIO_Barrier, &r1_bio->state);
  768. bio_list_init(&bl);
  769. for (i = 0; i < disks; i++) {
  770. struct bio *mbio;
  771. if (!r1_bio->bios[i])
  772. continue;
  773. mbio = bio_clone(bio, GFP_NOIO);
  774. r1_bio->bios[i] = mbio;
  775. mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
  776. mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  777. mbio->bi_end_io = raid1_end_write_request;
  778. mbio->bi_rw = WRITE | do_barriers | do_sync;
  779. mbio->bi_private = r1_bio;
  780. if (behind_pages) {
  781. struct bio_vec *bvec;
  782. int j;
  783. /* Yes, I really want the '__' version so that
  784. * we clear any unused pointer in the io_vec, rather
  785. * than leave them unchanged. This is important
  786. * because when we come to free the pages, we won't
  787. * know the originial bi_idx, so we just free
  788. * them all
  789. */
  790. __bio_for_each_segment(bvec, mbio, j, 0)
  791. bvec->bv_page = behind_pages[j];
  792. if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
  793. atomic_inc(&r1_bio->behind_remaining);
  794. }
  795. atomic_inc(&r1_bio->remaining);
  796. bio_list_add(&bl, mbio);
  797. }
  798. kfree(behind_pages); /* the behind pages are attached to the bios now */
  799. bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
  800. test_bit(R1BIO_BehindIO, &r1_bio->state));
  801. spin_lock_irqsave(&conf->device_lock, flags);
  802. bio_list_merge(&conf->pending_bio_list, &bl);
  803. bio_list_init(&bl);
  804. blk_plug_device(mddev->queue);
  805. spin_unlock_irqrestore(&conf->device_lock, flags);
  806. /* In case raid1d snuck into freeze_array */
  807. wake_up(&conf->wait_barrier);
  808. if (do_sync)
  809. md_wakeup_thread(mddev->thread);
  810. #if 0
  811. while ((bio = bio_list_pop(&bl)) != NULL)
  812. generic_make_request(bio);
  813. #endif
  814. return 0;
  815. }
  816. static void status(struct seq_file *seq, mddev_t *mddev)
  817. {
  818. conf_t *conf = mddev_to_conf(mddev);
  819. int i;
  820. seq_printf(seq, " [%d/%d] [", conf->raid_disks,
  821. conf->raid_disks - mddev->degraded);
  822. rcu_read_lock();
  823. for (i = 0; i < conf->raid_disks; i++) {
  824. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  825. seq_printf(seq, "%s",
  826. rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
  827. }
  828. rcu_read_unlock();
  829. seq_printf(seq, "]");
  830. }
  831. static void error(mddev_t *mddev, mdk_rdev_t *rdev)
  832. {
  833. char b[BDEVNAME_SIZE];
  834. conf_t *conf = mddev_to_conf(mddev);
  835. /*
  836. * If it is not operational, then we have already marked it as dead
  837. * else if it is the last working disks, ignore the error, let the
  838. * next level up know.
  839. * else mark the drive as failed
  840. */
  841. if (test_bit(In_sync, &rdev->flags)
  842. && (conf->raid_disks - mddev->degraded) == 1)
  843. /*
  844. * Don't fail the drive, act as though we were just a
  845. * normal single drive
  846. */
  847. return;
  848. if (test_and_clear_bit(In_sync, &rdev->flags)) {
  849. unsigned long flags;
  850. spin_lock_irqsave(&conf->device_lock, flags);
  851. mddev->degraded++;
  852. set_bit(Faulty, &rdev->flags);
  853. spin_unlock_irqrestore(&conf->device_lock, flags);
  854. /*
  855. * if recovery is running, make sure it aborts.
  856. */
  857. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  858. } else
  859. set_bit(Faulty, &rdev->flags);
  860. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  861. printk(KERN_ALERT "raid1: Disk failure on %s, disabling device. \n"
  862. " Operation continuing on %d devices\n",
  863. bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
  864. }
  865. static void print_conf(conf_t *conf)
  866. {
  867. int i;
  868. printk("RAID1 conf printout:\n");
  869. if (!conf) {
  870. printk("(!conf)\n");
  871. return;
  872. }
  873. printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
  874. conf->raid_disks);
  875. rcu_read_lock();
  876. for (i = 0; i < conf->raid_disks; i++) {
  877. char b[BDEVNAME_SIZE];
  878. mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
  879. if (rdev)
  880. printk(" disk %d, wo:%d, o:%d, dev:%s\n",
  881. i, !test_bit(In_sync, &rdev->flags),
  882. !test_bit(Faulty, &rdev->flags),
  883. bdevname(rdev->bdev,b));
  884. }
  885. rcu_read_unlock();
  886. }
  887. static void close_sync(conf_t *conf)
  888. {
  889. wait_barrier(conf);
  890. allow_barrier(conf);
  891. mempool_destroy(conf->r1buf_pool);
  892. conf->r1buf_pool = NULL;
  893. }
  894. static int raid1_spare_active(mddev_t *mddev)
  895. {
  896. int i;
  897. conf_t *conf = mddev->private;
  898. /*
  899. * Find all failed disks within the RAID1 configuration
  900. * and mark them readable.
  901. * Called under mddev lock, so rcu protection not needed.
  902. */
  903. for (i = 0; i < conf->raid_disks; i++) {
  904. mdk_rdev_t *rdev = conf->mirrors[i].rdev;
  905. if (rdev
  906. && !test_bit(Faulty, &rdev->flags)
  907. && !test_and_set_bit(In_sync, &rdev->flags)) {
  908. unsigned long flags;
  909. spin_lock_irqsave(&conf->device_lock, flags);
  910. mddev->degraded--;
  911. spin_unlock_irqrestore(&conf->device_lock, flags);
  912. }
  913. }
  914. print_conf(conf);
  915. return 0;
  916. }
  917. static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
  918. {
  919. conf_t *conf = mddev->private;
  920. int found = 0;
  921. int mirror = 0;
  922. mirror_info_t *p;
  923. for (mirror=0; mirror < mddev->raid_disks; mirror++)
  924. if ( !(p=conf->mirrors+mirror)->rdev) {
  925. blk_queue_stack_limits(mddev->queue,
  926. rdev->bdev->bd_disk->queue);
  927. /* as we don't honour merge_bvec_fn, we must never risk
  928. * violating it, so limit ->max_sector to one PAGE, as
  929. * a one page request is never in violation.
  930. */
  931. if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
  932. mddev->queue->max_sectors > (PAGE_SIZE>>9))
  933. blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
  934. p->head_position = 0;
  935. rdev->raid_disk = mirror;
  936. found = 1;
  937. /* As all devices are equivalent, we don't need a full recovery
  938. * if this was recently any drive of the array
  939. */
  940. if (rdev->saved_raid_disk < 0)
  941. conf->fullsync = 1;
  942. rcu_assign_pointer(p->rdev, rdev);
  943. break;
  944. }
  945. print_conf(conf);
  946. return found;
  947. }
  948. static int raid1_remove_disk(mddev_t *mddev, int number)
  949. {
  950. conf_t *conf = mddev->private;
  951. int err = 0;
  952. mdk_rdev_t *rdev;
  953. mirror_info_t *p = conf->mirrors+ number;
  954. print_conf(conf);
  955. rdev = p->rdev;
  956. if (rdev) {
  957. if (test_bit(In_sync, &rdev->flags) ||
  958. atomic_read(&rdev->nr_pending)) {
  959. err = -EBUSY;
  960. goto abort;
  961. }
  962. p->rdev = NULL;
  963. synchronize_rcu();
  964. if (atomic_read(&rdev->nr_pending)) {
  965. /* lost the race, try later */
  966. err = -EBUSY;
  967. p->rdev = rdev;
  968. }
  969. }
  970. abort:
  971. print_conf(conf);
  972. return err;
  973. }
  974. static void end_sync_read(struct bio *bio, int error)
  975. {
  976. r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
  977. int i;
  978. for (i=r1_bio->mddev->raid_disks; i--; )
  979. if (r1_bio->bios[i] == bio)
  980. break;
  981. BUG_ON(i < 0);
  982. update_head_pos(i, r1_bio);
  983. /*
  984. * we have read a block, now it needs to be re-written,
  985. * or re-read if the read failed.
  986. * We don't do much here, just schedule handling by raid1d
  987. */
  988. if (test_bit(BIO_UPTODATE, &bio->bi_flags))
  989. set_bit(R1BIO_Uptodate, &r1_bio->state);
  990. if (atomic_dec_and_test(&r1_bio->remaining))
  991. reschedule_retry(r1_bio);
  992. }
  993. static void end_sync_write(struct bio *bio, int error)
  994. {
  995. int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
  996. r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
  997. mddev_t *mddev = r1_bio->mddev;
  998. conf_t *conf = mddev_to_conf(mddev);
  999. int i;
  1000. int mirror=0;
  1001. for (i = 0; i < conf->raid_disks; i++)
  1002. if (r1_bio->bios[i] == bio) {
  1003. mirror = i;
  1004. break;
  1005. }
  1006. if (!uptodate) {
  1007. int sync_blocks = 0;
  1008. sector_t s = r1_bio->sector;
  1009. long sectors_to_go = r1_bio->sectors;
  1010. /* make sure these bits doesn't get cleared. */
  1011. do {
  1012. bitmap_end_sync(mddev->bitmap, s,
  1013. &sync_blocks, 1);
  1014. s += sync_blocks;
  1015. sectors_to_go -= sync_blocks;
  1016. } while (sectors_to_go > 0);
  1017. md_error(mddev, conf->mirrors[mirror].rdev);
  1018. }
  1019. update_head_pos(mirror, r1_bio);
  1020. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1021. md_done_sync(mddev, r1_bio->sectors, uptodate);
  1022. put_buf(r1_bio);
  1023. }
  1024. }
  1025. static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
  1026. {
  1027. conf_t *conf = mddev_to_conf(mddev);
  1028. int i;
  1029. int disks = conf->raid_disks;
  1030. struct bio *bio, *wbio;
  1031. bio = r1_bio->bios[r1_bio->read_disk];
  1032. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1033. /* We have read all readable devices. If we haven't
  1034. * got the block, then there is no hope left.
  1035. * If we have, then we want to do a comparison
  1036. * and skip the write if everything is the same.
  1037. * If any blocks failed to read, then we need to
  1038. * attempt an over-write
  1039. */
  1040. int primary;
  1041. if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  1042. for (i=0; i<mddev->raid_disks; i++)
  1043. if (r1_bio->bios[i]->bi_end_io == end_sync_read)
  1044. md_error(mddev, conf->mirrors[i].rdev);
  1045. md_done_sync(mddev, r1_bio->sectors, 1);
  1046. put_buf(r1_bio);
  1047. return;
  1048. }
  1049. for (primary=0; primary<mddev->raid_disks; primary++)
  1050. if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
  1051. test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
  1052. r1_bio->bios[primary]->bi_end_io = NULL;
  1053. rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
  1054. break;
  1055. }
  1056. r1_bio->read_disk = primary;
  1057. for (i=0; i<mddev->raid_disks; i++)
  1058. if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
  1059. int j;
  1060. int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
  1061. struct bio *pbio = r1_bio->bios[primary];
  1062. struct bio *sbio = r1_bio->bios[i];
  1063. if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
  1064. for (j = vcnt; j-- ; ) {
  1065. struct page *p, *s;
  1066. p = pbio->bi_io_vec[j].bv_page;
  1067. s = sbio->bi_io_vec[j].bv_page;
  1068. if (memcmp(page_address(p),
  1069. page_address(s),
  1070. PAGE_SIZE))
  1071. break;
  1072. }
  1073. } else
  1074. j = 0;
  1075. if (j >= 0)
  1076. mddev->resync_mismatches += r1_bio->sectors;
  1077. if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
  1078. && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
  1079. sbio->bi_end_io = NULL;
  1080. rdev_dec_pending(conf->mirrors[i].rdev, mddev);
  1081. } else {
  1082. /* fixup the bio for reuse */
  1083. sbio->bi_vcnt = vcnt;
  1084. sbio->bi_size = r1_bio->sectors << 9;
  1085. sbio->bi_idx = 0;
  1086. sbio->bi_phys_segments = 0;
  1087. sbio->bi_hw_segments = 0;
  1088. sbio->bi_hw_front_size = 0;
  1089. sbio->bi_hw_back_size = 0;
  1090. sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
  1091. sbio->bi_flags |= 1 << BIO_UPTODATE;
  1092. sbio->bi_next = NULL;
  1093. sbio->bi_sector = r1_bio->sector +
  1094. conf->mirrors[i].rdev->data_offset;
  1095. sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
  1096. for (j = 0; j < vcnt ; j++)
  1097. memcpy(page_address(sbio->bi_io_vec[j].bv_page),
  1098. page_address(pbio->bi_io_vec[j].bv_page),
  1099. PAGE_SIZE);
  1100. }
  1101. }
  1102. }
  1103. if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
  1104. /* ouch - failed to read all of that.
  1105. * Try some synchronous reads of other devices to get
  1106. * good data, much like with normal read errors. Only
  1107. * read into the pages we already have so we don't
  1108. * need to re-issue the read request.
  1109. * We don't need to freeze the array, because being in an
  1110. * active sync request, there is no normal IO, and
  1111. * no overlapping syncs.
  1112. */
  1113. sector_t sect = r1_bio->sector;
  1114. int sectors = r1_bio->sectors;
  1115. int idx = 0;
  1116. while(sectors) {
  1117. int s = sectors;
  1118. int d = r1_bio->read_disk;
  1119. int success = 0;
  1120. mdk_rdev_t *rdev;
  1121. if (s > (PAGE_SIZE>>9))
  1122. s = PAGE_SIZE >> 9;
  1123. do {
  1124. if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
  1125. /* No rcu protection needed here devices
  1126. * can only be removed when no resync is
  1127. * active, and resync is currently active
  1128. */
  1129. rdev = conf->mirrors[d].rdev;
  1130. if (sync_page_io(rdev->bdev,
  1131. sect + rdev->data_offset,
  1132. s<<9,
  1133. bio->bi_io_vec[idx].bv_page,
  1134. READ)) {
  1135. success = 1;
  1136. break;
  1137. }
  1138. }
  1139. d++;
  1140. if (d == conf->raid_disks)
  1141. d = 0;
  1142. } while (!success && d != r1_bio->read_disk);
  1143. if (success) {
  1144. int start = d;
  1145. /* write it back and re-read */
  1146. set_bit(R1BIO_Uptodate, &r1_bio->state);
  1147. while (d != r1_bio->read_disk) {
  1148. if (d == 0)
  1149. d = conf->raid_disks;
  1150. d--;
  1151. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1152. continue;
  1153. rdev = conf->mirrors[d].rdev;
  1154. atomic_add(s, &rdev->corrected_errors);
  1155. if (sync_page_io(rdev->bdev,
  1156. sect + rdev->data_offset,
  1157. s<<9,
  1158. bio->bi_io_vec[idx].bv_page,
  1159. WRITE) == 0)
  1160. md_error(mddev, rdev);
  1161. }
  1162. d = start;
  1163. while (d != r1_bio->read_disk) {
  1164. if (d == 0)
  1165. d = conf->raid_disks;
  1166. d--;
  1167. if (r1_bio->bios[d]->bi_end_io != end_sync_read)
  1168. continue;
  1169. rdev = conf->mirrors[d].rdev;
  1170. if (sync_page_io(rdev->bdev,
  1171. sect + rdev->data_offset,
  1172. s<<9,
  1173. bio->bi_io_vec[idx].bv_page,
  1174. READ) == 0)
  1175. md_error(mddev, rdev);
  1176. }
  1177. } else {
  1178. char b[BDEVNAME_SIZE];
  1179. /* Cannot read from anywhere, array is toast */
  1180. md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
  1181. printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
  1182. " for block %llu\n",
  1183. bdevname(bio->bi_bdev,b),
  1184. (unsigned long long)r1_bio->sector);
  1185. md_done_sync(mddev, r1_bio->sectors, 0);
  1186. put_buf(r1_bio);
  1187. return;
  1188. }
  1189. sectors -= s;
  1190. sect += s;
  1191. idx ++;
  1192. }
  1193. }
  1194. /*
  1195. * schedule writes
  1196. */
  1197. atomic_set(&r1_bio->remaining, 1);
  1198. for (i = 0; i < disks ; i++) {
  1199. wbio = r1_bio->bios[i];
  1200. if (wbio->bi_end_io == NULL ||
  1201. (wbio->bi_end_io == end_sync_read &&
  1202. (i == r1_bio->read_disk ||
  1203. !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
  1204. continue;
  1205. wbio->bi_rw = WRITE;
  1206. wbio->bi_end_io = end_sync_write;
  1207. atomic_inc(&r1_bio->remaining);
  1208. md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
  1209. generic_make_request(wbio);
  1210. }
  1211. if (atomic_dec_and_test(&r1_bio->remaining)) {
  1212. /* if we're here, all write(s) have completed, so clean up */
  1213. md_done_sync(mddev, r1_bio->sectors, 1);
  1214. put_buf(r1_bio);
  1215. }
  1216. }
  1217. /*
  1218. * This is a kernel thread which:
  1219. *
  1220. * 1. Retries failed read operations on working mirrors.
  1221. * 2. Updates the raid superblock when problems encounter.
  1222. * 3. Performs writes following reads for array syncronising.
  1223. */
  1224. static void fix_read_error(conf_t *conf, int read_disk,
  1225. sector_t sect, int sectors)
  1226. {
  1227. mddev_t *mddev = conf->mddev;
  1228. while(sectors) {
  1229. int s = sectors;
  1230. int d = read_disk;
  1231. int success = 0;
  1232. int start;
  1233. mdk_rdev_t *rdev;
  1234. if (s > (PAGE_SIZE>>9))
  1235. s = PAGE_SIZE >> 9;
  1236. do {
  1237. /* Note: no rcu protection needed here
  1238. * as this is synchronous in the raid1d thread
  1239. * which is the thread that might remove
  1240. * a device. If raid1d ever becomes multi-threaded....
  1241. */
  1242. rdev = conf->mirrors[d].rdev;
  1243. if (rdev &&
  1244. test_bit(In_sync, &rdev->flags) &&
  1245. sync_page_io(rdev->bdev,
  1246. sect + rdev->data_offset,
  1247. s<<9,
  1248. conf->tmppage, READ))
  1249. success = 1;
  1250. else {
  1251. d++;
  1252. if (d == conf->raid_disks)
  1253. d = 0;
  1254. }
  1255. } while (!success && d != read_disk);
  1256. if (!success) {
  1257. /* Cannot read from anywhere -- bye bye array */
  1258. md_error(mddev, conf->mirrors[read_disk].rdev);
  1259. break;
  1260. }
  1261. /* write it back and re-read */
  1262. start = d;
  1263. while (d != read_disk) {
  1264. if (d==0)
  1265. d = conf->raid_disks;
  1266. d--;
  1267. rdev = conf->mirrors[d].rdev;
  1268. if (rdev &&
  1269. test_bit(In_sync, &rdev->flags)) {
  1270. if (sync_page_io(rdev->bdev,
  1271. sect + rdev->data_offset,
  1272. s<<9, conf->tmppage, WRITE)
  1273. == 0)
  1274. /* Well, this device is dead */
  1275. md_error(mddev, rdev);
  1276. }
  1277. }
  1278. d = start;
  1279. while (d != read_disk) {
  1280. char b[BDEVNAME_SIZE];
  1281. if (d==0)
  1282. d = conf->raid_disks;
  1283. d--;
  1284. rdev = conf->mirrors[d].rdev;
  1285. if (rdev &&
  1286. test_bit(In_sync, &rdev->flags)) {
  1287. if (sync_page_io(rdev->bdev,
  1288. sect + rdev->data_offset,
  1289. s<<9, conf->tmppage, READ)
  1290. == 0)
  1291. /* Well, this device is dead */
  1292. md_error(mddev, rdev);
  1293. else {
  1294. atomic_add(s, &rdev->corrected_errors);
  1295. printk(KERN_INFO
  1296. "raid1:%s: read error corrected "
  1297. "(%d sectors at %llu on %s)\n",
  1298. mdname(mddev), s,
  1299. (unsigned long long)(sect +
  1300. rdev->data_offset),
  1301. bdevname(rdev->bdev, b));
  1302. }
  1303. }
  1304. }
  1305. sectors -= s;
  1306. sect += s;
  1307. }
  1308. }
  1309. static void raid1d(mddev_t *mddev)
  1310. {
  1311. r1bio_t *r1_bio;
  1312. struct bio *bio;
  1313. unsigned long flags;
  1314. conf_t *conf = mddev_to_conf(mddev);
  1315. struct list_head *head = &conf->retry_list;
  1316. int unplug=0;
  1317. mdk_rdev_t *rdev;
  1318. md_check_recovery(mddev);
  1319. for (;;) {
  1320. char b[BDEVNAME_SIZE];
  1321. unplug += flush_pending_writes(conf);
  1322. spin_lock_irqsave(&conf->device_lock, flags);
  1323. if (list_empty(head)) {
  1324. spin_unlock_irqrestore(&conf->device_lock, flags);
  1325. break;
  1326. }
  1327. r1_bio = list_entry(head->prev, r1bio_t, retry_list);
  1328. list_del(head->prev);
  1329. conf->nr_queued--;
  1330. spin_unlock_irqrestore(&conf->device_lock, flags);
  1331. mddev = r1_bio->mddev;
  1332. conf = mddev_to_conf(mddev);
  1333. if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
  1334. sync_request_write(mddev, r1_bio);
  1335. unplug = 1;
  1336. } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
  1337. /* some requests in the r1bio were BIO_RW_BARRIER
  1338. * requests which failed with -EOPNOTSUPP. Hohumm..
  1339. * Better resubmit without the barrier.
  1340. * We know which devices to resubmit for, because
  1341. * all others have had their bios[] entry cleared.
  1342. * We already have a nr_pending reference on these rdevs.
  1343. */
  1344. int i;
  1345. const int do_sync = bio_sync(r1_bio->master_bio);
  1346. clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
  1347. clear_bit(R1BIO_Barrier, &r1_bio->state);
  1348. for (i=0; i < conf->raid_disks; i++)
  1349. if (r1_bio->bios[i])
  1350. atomic_inc(&r1_bio->remaining);
  1351. for (i=0; i < conf->raid_disks; i++)
  1352. if (r1_bio->bios[i]) {
  1353. struct bio_vec *bvec;
  1354. int j;
  1355. bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
  1356. /* copy pages from the failed bio, as
  1357. * this might be a write-behind device */
  1358. __bio_for_each_segment(bvec, bio, j, 0)
  1359. bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
  1360. bio_put(r1_bio->bios[i]);
  1361. bio->bi_sector = r1_bio->sector +
  1362. conf->mirrors[i].rdev->data_offset;
  1363. bio->bi_bdev = conf->mirrors[i].rdev->bdev;
  1364. bio->bi_end_io = raid1_end_write_request;
  1365. bio->bi_rw = WRITE | do_sync;
  1366. bio->bi_private = r1_bio;
  1367. r1_bio->bios[i] = bio;
  1368. generic_make_request(bio);
  1369. }
  1370. } else {
  1371. int disk;
  1372. /* we got a read error. Maybe the drive is bad. Maybe just
  1373. * the block and we can fix it.
  1374. * We freeze all other IO, and try reading the block from
  1375. * other devices. When we find one, we re-write
  1376. * and check it that fixes the read error.
  1377. * This is all done synchronously while the array is
  1378. * frozen
  1379. */
  1380. if (mddev->ro == 0) {
  1381. freeze_array(conf);
  1382. fix_read_error(conf, r1_bio->read_disk,
  1383. r1_bio->sector,
  1384. r1_bio->sectors);
  1385. unfreeze_array(conf);
  1386. }
  1387. bio = r1_bio->bios[r1_bio->read_disk];
  1388. if ((disk=read_balance(conf, r1_bio)) == -1) {
  1389. printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
  1390. " read error for block %llu\n",
  1391. bdevname(bio->bi_bdev,b),
  1392. (unsigned long long)r1_bio->sector);
  1393. raid_end_bio_io(r1_bio);
  1394. } else {
  1395. const int do_sync = bio_sync(r1_bio->master_bio);
  1396. r1_bio->bios[r1_bio->read_disk] =
  1397. mddev->ro ? IO_BLOCKED : NULL;
  1398. r1_bio->read_disk = disk;
  1399. bio_put(bio);
  1400. bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
  1401. r1_bio->bios[r1_bio->read_disk] = bio;
  1402. rdev = conf->mirrors[disk].rdev;
  1403. if (printk_ratelimit())
  1404. printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
  1405. " another mirror\n",
  1406. bdevname(rdev->bdev,b),
  1407. (unsigned long long)r1_bio->sector);
  1408. bio->bi_sector = r1_bio->sector + rdev->data_offset;
  1409. bio->bi_bdev = rdev->bdev;
  1410. bio->bi_end_io = raid1_end_read_request;
  1411. bio->bi_rw = READ | do_sync;
  1412. bio->bi_private = r1_bio;
  1413. unplug = 1;
  1414. generic_make_request(bio);
  1415. }
  1416. }
  1417. }
  1418. if (unplug)
  1419. unplug_slaves(mddev);
  1420. }
  1421. static int init_resync(conf_t *conf)
  1422. {
  1423. int buffs;
  1424. buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
  1425. BUG_ON(conf->r1buf_pool);
  1426. conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
  1427. conf->poolinfo);
  1428. if (!conf->r1buf_pool)
  1429. return -ENOMEM;
  1430. conf->next_resync = 0;
  1431. return 0;
  1432. }
  1433. /*
  1434. * perform a "sync" on one "block"
  1435. *
  1436. * We need to make sure that no normal I/O request - particularly write
  1437. * requests - conflict with active sync requests.
  1438. *
  1439. * This is achieved by tracking pending requests and a 'barrier' concept
  1440. * that can be installed to exclude normal IO requests.
  1441. */
  1442. static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
  1443. {
  1444. conf_t *conf = mddev_to_conf(mddev);
  1445. r1bio_t *r1_bio;
  1446. struct bio *bio;
  1447. sector_t max_sector, nr_sectors;
  1448. int disk = -1;
  1449. int i;
  1450. int wonly = -1;
  1451. int write_targets = 0, read_targets = 0;
  1452. int sync_blocks;
  1453. int still_degraded = 0;
  1454. if (!conf->r1buf_pool)
  1455. {
  1456. /*
  1457. printk("sync start - bitmap %p\n", mddev->bitmap);
  1458. */
  1459. if (init_resync(conf))
  1460. return 0;
  1461. }
  1462. max_sector = mddev->size << 1;
  1463. if (sector_nr >= max_sector) {
  1464. /* If we aborted, we need to abort the
  1465. * sync on the 'current' bitmap chunk (there will
  1466. * only be one in raid1 resync.
  1467. * We can find the current addess in mddev->curr_resync
  1468. */
  1469. if (mddev->curr_resync < max_sector) /* aborted */
  1470. bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
  1471. &sync_blocks, 1);
  1472. else /* completed sync */
  1473. conf->fullsync = 0;
  1474. bitmap_close_sync(mddev->bitmap);
  1475. close_sync(conf);
  1476. return 0;
  1477. }
  1478. if (mddev->bitmap == NULL &&
  1479. mddev->recovery_cp == MaxSector &&
  1480. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
  1481. conf->fullsync == 0) {
  1482. *skipped = 1;
  1483. return max_sector - sector_nr;
  1484. }
  1485. /* before building a request, check if we can skip these blocks..
  1486. * This call the bitmap_start_sync doesn't actually record anything
  1487. */
  1488. if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
  1489. !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1490. /* We can skip this block, and probably several more */
  1491. *skipped = 1;
  1492. return sync_blocks;
  1493. }
  1494. /*
  1495. * If there is non-resync activity waiting for a turn,
  1496. * and resync is going fast enough,
  1497. * then let it though before starting on this new sync request.
  1498. */
  1499. if (!go_faster && conf->nr_waiting)
  1500. msleep_interruptible(1000);
  1501. bitmap_cond_end_sync(mddev->bitmap, sector_nr);
  1502. raise_barrier(conf);
  1503. conf->next_resync = sector_nr;
  1504. r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
  1505. rcu_read_lock();
  1506. /*
  1507. * If we get a correctably read error during resync or recovery,
  1508. * we might want to read from a different device. So we
  1509. * flag all drives that could conceivably be read from for READ,
  1510. * and any others (which will be non-In_sync devices) for WRITE.
  1511. * If a read fails, we try reading from something else for which READ
  1512. * is OK.
  1513. */
  1514. r1_bio->mddev = mddev;
  1515. r1_bio->sector = sector_nr;
  1516. r1_bio->state = 0;
  1517. set_bit(R1BIO_IsSync, &r1_bio->state);
  1518. for (i=0; i < conf->raid_disks; i++) {
  1519. mdk_rdev_t *rdev;
  1520. bio = r1_bio->bios[i];
  1521. /* take from bio_init */
  1522. bio->bi_next = NULL;
  1523. bio->bi_flags |= 1 << BIO_UPTODATE;
  1524. bio->bi_rw = READ;
  1525. bio->bi_vcnt = 0;
  1526. bio->bi_idx = 0;
  1527. bio->bi_phys_segments = 0;
  1528. bio->bi_hw_segments = 0;
  1529. bio->bi_size = 0;
  1530. bio->bi_end_io = NULL;
  1531. bio->bi_private = NULL;
  1532. rdev = rcu_dereference(conf->mirrors[i].rdev);
  1533. if (rdev == NULL ||
  1534. test_bit(Faulty, &rdev->flags)) {
  1535. still_degraded = 1;
  1536. continue;
  1537. } else if (!test_bit(In_sync, &rdev->flags)) {
  1538. bio->bi_rw = WRITE;
  1539. bio->bi_end_io = end_sync_write;
  1540. write_targets ++;
  1541. } else {
  1542. /* may need to read from here */
  1543. bio->bi_rw = READ;
  1544. bio->bi_end_io = end_sync_read;
  1545. if (test_bit(WriteMostly, &rdev->flags)) {
  1546. if (wonly < 0)
  1547. wonly = i;
  1548. } else {
  1549. if (disk < 0)
  1550. disk = i;
  1551. }
  1552. read_targets++;
  1553. }
  1554. atomic_inc(&rdev->nr_pending);
  1555. bio->bi_sector = sector_nr + rdev->data_offset;
  1556. bio->bi_bdev = rdev->bdev;
  1557. bio->bi_private = r1_bio;
  1558. }
  1559. rcu_read_unlock();
  1560. if (disk < 0)
  1561. disk = wonly;
  1562. r1_bio->read_disk = disk;
  1563. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
  1564. /* extra read targets are also write targets */
  1565. write_targets += read_targets-1;
  1566. if (write_targets == 0 || read_targets == 0) {
  1567. /* There is nowhere to write, so all non-sync
  1568. * drives must be failed - so we are finished
  1569. */
  1570. sector_t rv = max_sector - sector_nr;
  1571. *skipped = 1;
  1572. put_buf(r1_bio);
  1573. return rv;
  1574. }
  1575. if (max_sector > mddev->resync_max)
  1576. max_sector = mddev->resync_max; /* Don't do IO beyond here */
  1577. nr_sectors = 0;
  1578. sync_blocks = 0;
  1579. do {
  1580. struct page *page;
  1581. int len = PAGE_SIZE;
  1582. if (sector_nr + (len>>9) > max_sector)
  1583. len = (max_sector - sector_nr) << 9;
  1584. if (len == 0)
  1585. break;
  1586. if (sync_blocks == 0) {
  1587. if (!bitmap_start_sync(mddev->bitmap, sector_nr,
  1588. &sync_blocks, still_degraded) &&
  1589. !conf->fullsync &&
  1590. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  1591. break;
  1592. BUG_ON(sync_blocks < (PAGE_SIZE>>9));
  1593. if (len > (sync_blocks<<9))
  1594. len = sync_blocks<<9;
  1595. }
  1596. for (i=0 ; i < conf->raid_disks; i++) {
  1597. bio = r1_bio->bios[i];
  1598. if (bio->bi_end_io) {
  1599. page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
  1600. if (bio_add_page(bio, page, len, 0) == 0) {
  1601. /* stop here */
  1602. bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
  1603. while (i > 0) {
  1604. i--;
  1605. bio = r1_bio->bios[i];
  1606. if (bio->bi_end_io==NULL)
  1607. continue;
  1608. /* remove last page from this bio */
  1609. bio->bi_vcnt--;
  1610. bio->bi_size -= len;
  1611. bio->bi_flags &= ~(1<< BIO_SEG_VALID);
  1612. }
  1613. goto bio_full;
  1614. }
  1615. }
  1616. }
  1617. nr_sectors += len>>9;
  1618. sector_nr += len>>9;
  1619. sync_blocks -= (len>>9);
  1620. } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
  1621. bio_full:
  1622. r1_bio->sectors = nr_sectors;
  1623. /* For a user-requested sync, we read all readable devices and do a
  1624. * compare
  1625. */
  1626. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  1627. atomic_set(&r1_bio->remaining, read_targets);
  1628. for (i=0; i<conf->raid_disks; i++) {
  1629. bio = r1_bio->bios[i];
  1630. if (bio->bi_end_io == end_sync_read) {
  1631. md_sync_acct(bio->bi_bdev, nr_sectors);
  1632. generic_make_request(bio);
  1633. }
  1634. }
  1635. } else {
  1636. atomic_set(&r1_bio->remaining, 1);
  1637. bio = r1_bio->bios[r1_bio->read_disk];
  1638. md_sync_acct(bio->bi_bdev, nr_sectors);
  1639. generic_make_request(bio);
  1640. }
  1641. return nr_sectors;
  1642. }
  1643. static int run(mddev_t *mddev)
  1644. {
  1645. conf_t *conf;
  1646. int i, j, disk_idx;
  1647. mirror_info_t *disk;
  1648. mdk_rdev_t *rdev;
  1649. struct list_head *tmp;
  1650. if (mddev->level != 1) {
  1651. printk("raid1: %s: raid level not set to mirroring (%d)\n",
  1652. mdname(mddev), mddev->level);
  1653. goto out;
  1654. }
  1655. if (mddev->reshape_position != MaxSector) {
  1656. printk("raid1: %s: reshape_position set but not supported\n",
  1657. mdname(mddev));
  1658. goto out;
  1659. }
  1660. /*
  1661. * copy the already verified devices into our private RAID1
  1662. * bookkeeping area. [whatever we allocate in run(),
  1663. * should be freed in stop()]
  1664. */
  1665. conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
  1666. mddev->private = conf;
  1667. if (!conf)
  1668. goto out_no_mem;
  1669. conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
  1670. GFP_KERNEL);
  1671. if (!conf->mirrors)
  1672. goto out_no_mem;
  1673. conf->tmppage = alloc_page(GFP_KERNEL);
  1674. if (!conf->tmppage)
  1675. goto out_no_mem;
  1676. conf->poolinfo = kmalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
  1677. if (!conf->poolinfo)
  1678. goto out_no_mem;
  1679. conf->poolinfo->mddev = mddev;
  1680. conf->poolinfo->raid_disks = mddev->raid_disks;
  1681. conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  1682. r1bio_pool_free,
  1683. conf->poolinfo);
  1684. if (!conf->r1bio_pool)
  1685. goto out_no_mem;
  1686. rdev_for_each(rdev, tmp, mddev) {
  1687. disk_idx = rdev->raid_disk;
  1688. if (disk_idx >= mddev->raid_disks
  1689. || disk_idx < 0)
  1690. continue;
  1691. disk = conf->mirrors + disk_idx;
  1692. disk->rdev = rdev;
  1693. blk_queue_stack_limits(mddev->queue,
  1694. rdev->bdev->bd_disk->queue);
  1695. /* as we don't honour merge_bvec_fn, we must never risk
  1696. * violating it, so limit ->max_sector to one PAGE, as
  1697. * a one page request is never in violation.
  1698. */
  1699. if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
  1700. mddev->queue->max_sectors > (PAGE_SIZE>>9))
  1701. blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
  1702. disk->head_position = 0;
  1703. }
  1704. conf->raid_disks = mddev->raid_disks;
  1705. conf->mddev = mddev;
  1706. spin_lock_init(&conf->device_lock);
  1707. INIT_LIST_HEAD(&conf->retry_list);
  1708. spin_lock_init(&conf->resync_lock);
  1709. init_waitqueue_head(&conf->wait_barrier);
  1710. bio_list_init(&conf->pending_bio_list);
  1711. bio_list_init(&conf->flushing_bio_list);
  1712. mddev->degraded = 0;
  1713. for (i = 0; i < conf->raid_disks; i++) {
  1714. disk = conf->mirrors + i;
  1715. if (!disk->rdev ||
  1716. !test_bit(In_sync, &disk->rdev->flags)) {
  1717. disk->head_position = 0;
  1718. mddev->degraded++;
  1719. if (disk->rdev)
  1720. conf->fullsync = 1;
  1721. }
  1722. }
  1723. if (mddev->degraded == conf->raid_disks) {
  1724. printk(KERN_ERR "raid1: no operational mirrors for %s\n",
  1725. mdname(mddev));
  1726. goto out_free_conf;
  1727. }
  1728. if (conf->raid_disks - mddev->degraded == 1)
  1729. mddev->recovery_cp = MaxSector;
  1730. /*
  1731. * find the first working one and use it as a starting point
  1732. * to read balancing.
  1733. */
  1734. for (j = 0; j < conf->raid_disks &&
  1735. (!conf->mirrors[j].rdev ||
  1736. !test_bit(In_sync, &conf->mirrors[j].rdev->flags)) ; j++)
  1737. /* nothing */;
  1738. conf->last_used = j;
  1739. mddev->thread = md_register_thread(raid1d, mddev, "%s_raid1");
  1740. if (!mddev->thread) {
  1741. printk(KERN_ERR
  1742. "raid1: couldn't allocate thread for %s\n",
  1743. mdname(mddev));
  1744. goto out_free_conf;
  1745. }
  1746. printk(KERN_INFO
  1747. "raid1: raid set %s active with %d out of %d mirrors\n",
  1748. mdname(mddev), mddev->raid_disks - mddev->degraded,
  1749. mddev->raid_disks);
  1750. /*
  1751. * Ok, everything is just fine now
  1752. */
  1753. mddev->array_size = mddev->size;
  1754. mddev->queue->unplug_fn = raid1_unplug;
  1755. mddev->queue->backing_dev_info.congested_fn = raid1_congested;
  1756. mddev->queue->backing_dev_info.congested_data = mddev;
  1757. return 0;
  1758. out_no_mem:
  1759. printk(KERN_ERR "raid1: couldn't allocate memory for %s\n",
  1760. mdname(mddev));
  1761. out_free_conf:
  1762. if (conf) {
  1763. if (conf->r1bio_pool)
  1764. mempool_destroy(conf->r1bio_pool);
  1765. kfree(conf->mirrors);
  1766. safe_put_page(conf->tmppage);
  1767. kfree(conf->poolinfo);
  1768. kfree(conf);
  1769. mddev->private = NULL;
  1770. }
  1771. out:
  1772. return -EIO;
  1773. }
  1774. static int stop(mddev_t *mddev)
  1775. {
  1776. conf_t *conf = mddev_to_conf(mddev);
  1777. struct bitmap *bitmap = mddev->bitmap;
  1778. int behind_wait = 0;
  1779. /* wait for behind writes to complete */
  1780. while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
  1781. behind_wait++;
  1782. printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
  1783. set_current_state(TASK_UNINTERRUPTIBLE);
  1784. schedule_timeout(HZ); /* wait a second */
  1785. /* need to kick something here to make sure I/O goes? */
  1786. }
  1787. md_unregister_thread(mddev->thread);
  1788. mddev->thread = NULL;
  1789. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  1790. if (conf->r1bio_pool)
  1791. mempool_destroy(conf->r1bio_pool);
  1792. kfree(conf->mirrors);
  1793. kfree(conf->poolinfo);
  1794. kfree(conf);
  1795. mddev->private = NULL;
  1796. return 0;
  1797. }
  1798. static int raid1_resize(mddev_t *mddev, sector_t sectors)
  1799. {
  1800. /* no resync is happening, and there is enough space
  1801. * on all devices, so we can resize.
  1802. * We need to make sure resync covers any new space.
  1803. * If the array is shrinking we should possibly wait until
  1804. * any io in the removed space completes, but it hardly seems
  1805. * worth it.
  1806. */
  1807. mddev->array_size = sectors>>1;
  1808. set_capacity(mddev->gendisk, mddev->array_size << 1);
  1809. mddev->changed = 1;
  1810. if (mddev->array_size > mddev->size && mddev->recovery_cp == MaxSector) {
  1811. mddev->recovery_cp = mddev->size << 1;
  1812. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1813. }
  1814. mddev->size = mddev->array_size;
  1815. mddev->resync_max_sectors = sectors;
  1816. return 0;
  1817. }
  1818. static int raid1_reshape(mddev_t *mddev)
  1819. {
  1820. /* We need to:
  1821. * 1/ resize the r1bio_pool
  1822. * 2/ resize conf->mirrors
  1823. *
  1824. * We allocate a new r1bio_pool if we can.
  1825. * Then raise a device barrier and wait until all IO stops.
  1826. * Then resize conf->mirrors and swap in the new r1bio pool.
  1827. *
  1828. * At the same time, we "pack" the devices so that all the missing
  1829. * devices have the higher raid_disk numbers.
  1830. */
  1831. mempool_t *newpool, *oldpool;
  1832. struct pool_info *newpoolinfo;
  1833. mirror_info_t *newmirrors;
  1834. conf_t *conf = mddev_to_conf(mddev);
  1835. int cnt, raid_disks;
  1836. unsigned long flags;
  1837. int d, d2;
  1838. /* Cannot change chunk_size, layout, or level */
  1839. if (mddev->chunk_size != mddev->new_chunk ||
  1840. mddev->layout != mddev->new_layout ||
  1841. mddev->level != mddev->new_level) {
  1842. mddev->new_chunk = mddev->chunk_size;
  1843. mddev->new_layout = mddev->layout;
  1844. mddev->new_level = mddev->level;
  1845. return -EINVAL;
  1846. }
  1847. md_allow_write(mddev);
  1848. raid_disks = mddev->raid_disks + mddev->delta_disks;
  1849. if (raid_disks < conf->raid_disks) {
  1850. cnt=0;
  1851. for (d= 0; d < conf->raid_disks; d++)
  1852. if (conf->mirrors[d].rdev)
  1853. cnt++;
  1854. if (cnt > raid_disks)
  1855. return -EBUSY;
  1856. }
  1857. newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
  1858. if (!newpoolinfo)
  1859. return -ENOMEM;
  1860. newpoolinfo->mddev = mddev;
  1861. newpoolinfo->raid_disks = raid_disks;
  1862. newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
  1863. r1bio_pool_free, newpoolinfo);
  1864. if (!newpool) {
  1865. kfree(newpoolinfo);
  1866. return -ENOMEM;
  1867. }
  1868. newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
  1869. if (!newmirrors) {
  1870. kfree(newpoolinfo);
  1871. mempool_destroy(newpool);
  1872. return -ENOMEM;
  1873. }
  1874. raise_barrier(conf);
  1875. /* ok, everything is stopped */
  1876. oldpool = conf->r1bio_pool;
  1877. conf->r1bio_pool = newpool;
  1878. for (d = d2 = 0; d < conf->raid_disks; d++) {
  1879. mdk_rdev_t *rdev = conf->mirrors[d].rdev;
  1880. if (rdev && rdev->raid_disk != d2) {
  1881. char nm[20];
  1882. sprintf(nm, "rd%d", rdev->raid_disk);
  1883. sysfs_remove_link(&mddev->kobj, nm);
  1884. rdev->raid_disk = d2;
  1885. sprintf(nm, "rd%d", rdev->raid_disk);
  1886. sysfs_remove_link(&mddev->kobj, nm);
  1887. if (sysfs_create_link(&mddev->kobj,
  1888. &rdev->kobj, nm))
  1889. printk(KERN_WARNING
  1890. "md/raid1: cannot register "
  1891. "%s for %s\n",
  1892. nm, mdname(mddev));
  1893. }
  1894. if (rdev)
  1895. newmirrors[d2++].rdev = rdev;
  1896. }
  1897. kfree(conf->mirrors);
  1898. conf->mirrors = newmirrors;
  1899. kfree(conf->poolinfo);
  1900. conf->poolinfo = newpoolinfo;
  1901. spin_lock_irqsave(&conf->device_lock, flags);
  1902. mddev->degraded += (raid_disks - conf->raid_disks);
  1903. spin_unlock_irqrestore(&conf->device_lock, flags);
  1904. conf->raid_disks = mddev->raid_disks = raid_disks;
  1905. mddev->delta_disks = 0;
  1906. conf->last_used = 0; /* just make sure it is in-range */
  1907. lower_barrier(conf);
  1908. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  1909. md_wakeup_thread(mddev->thread);
  1910. mempool_destroy(oldpool);
  1911. return 0;
  1912. }
  1913. static void raid1_quiesce(mddev_t *mddev, int state)
  1914. {
  1915. conf_t *conf = mddev_to_conf(mddev);
  1916. switch(state) {
  1917. case 1:
  1918. raise_barrier(conf);
  1919. break;
  1920. case 0:
  1921. lower_barrier(conf);
  1922. break;
  1923. }
  1924. }
  1925. static struct mdk_personality raid1_personality =
  1926. {
  1927. .name = "raid1",
  1928. .level = 1,
  1929. .owner = THIS_MODULE,
  1930. .make_request = make_request,
  1931. .run = run,
  1932. .stop = stop,
  1933. .status = status,
  1934. .error_handler = error,
  1935. .hot_add_disk = raid1_add_disk,
  1936. .hot_remove_disk= raid1_remove_disk,
  1937. .spare_active = raid1_spare_active,
  1938. .sync_request = sync_request,
  1939. .resize = raid1_resize,
  1940. .check_reshape = raid1_reshape,
  1941. .quiesce = raid1_quiesce,
  1942. };
  1943. static int __init raid_init(void)
  1944. {
  1945. return register_md_personality(&raid1_personality);
  1946. }
  1947. static void raid_exit(void)
  1948. {
  1949. unregister_md_personality(&raid1_personality);
  1950. }
  1951. module_init(raid_init);
  1952. module_exit(raid_exit);
  1953. MODULE_LICENSE("GPL");
  1954. MODULE_ALIAS("md-personality-3"); /* RAID1 */
  1955. MODULE_ALIAS("md-raid1");
  1956. MODULE_ALIAS("md-level-1");