mmu.c 85 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "mmu.h"
  21. #include "x86.h"
  22. #include "kvm_cache_regs.h"
  23. #include <linux/kvm_host.h>
  24. #include <linux/types.h>
  25. #include <linux/string.h>
  26. #include <linux/mm.h>
  27. #include <linux/highmem.h>
  28. #include <linux/module.h>
  29. #include <linux/swap.h>
  30. #include <linux/hugetlb.h>
  31. #include <linux/compiler.h>
  32. #include <linux/srcu.h>
  33. #include <linux/slab.h>
  34. #include <linux/uaccess.h>
  35. #include <asm/page.h>
  36. #include <asm/cmpxchg.h>
  37. #include <asm/io.h>
  38. #include <asm/vmx.h>
  39. /*
  40. * When setting this variable to true it enables Two-Dimensional-Paging
  41. * where the hardware walks 2 page tables:
  42. * 1. the guest-virtual to guest-physical
  43. * 2. while doing 1. it walks guest-physical to host-physical
  44. * If the hardware supports that we don't need to do shadow paging.
  45. */
  46. bool tdp_enabled = false;
  47. #undef MMU_DEBUG
  48. #undef AUDIT
  49. #ifdef AUDIT
  50. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  51. #else
  52. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  53. #endif
  54. #ifdef MMU_DEBUG
  55. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  56. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  57. #else
  58. #define pgprintk(x...) do { } while (0)
  59. #define rmap_printk(x...) do { } while (0)
  60. #endif
  61. #if defined(MMU_DEBUG) || defined(AUDIT)
  62. static int dbg = 0;
  63. module_param(dbg, bool, 0644);
  64. #endif
  65. static int oos_shadow = 1;
  66. module_param(oos_shadow, bool, 0644);
  67. #ifndef MMU_DEBUG
  68. #define ASSERT(x) do { } while (0)
  69. #else
  70. #define ASSERT(x) \
  71. if (!(x)) { \
  72. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  73. __FILE__, __LINE__, #x); \
  74. }
  75. #endif
  76. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  77. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  78. #define PT64_LEVEL_BITS 9
  79. #define PT64_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  81. #define PT64_LEVEL_MASK(level) \
  82. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  83. #define PT64_INDEX(address, level)\
  84. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  85. #define PT32_LEVEL_BITS 10
  86. #define PT32_LEVEL_SHIFT(level) \
  87. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  88. #define PT32_LEVEL_MASK(level) \
  89. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  90. #define PT32_LVL_OFFSET_MASK(level) \
  91. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  92. * PT32_LEVEL_BITS))) - 1))
  93. #define PT32_INDEX(address, level)\
  94. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  95. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  96. #define PT64_DIR_BASE_ADDR_MASK \
  97. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  98. #define PT64_LVL_ADDR_MASK(level) \
  99. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  100. * PT64_LEVEL_BITS))) - 1))
  101. #define PT64_LVL_OFFSET_MASK(level) \
  102. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  103. * PT64_LEVEL_BITS))) - 1))
  104. #define PT32_BASE_ADDR_MASK PAGE_MASK
  105. #define PT32_DIR_BASE_ADDR_MASK \
  106. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  107. #define PT32_LVL_ADDR_MASK(level) \
  108. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  109. * PT32_LEVEL_BITS))) - 1))
  110. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  111. | PT64_NX_MASK)
  112. #define RMAP_EXT 4
  113. #define ACC_EXEC_MASK 1
  114. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  115. #define ACC_USER_MASK PT_USER_MASK
  116. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  117. #include <trace/events/kvm.h>
  118. #define CREATE_TRACE_POINTS
  119. #include "mmutrace.h"
  120. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  121. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  122. struct kvm_rmap_desc {
  123. u64 *sptes[RMAP_EXT];
  124. struct kvm_rmap_desc *more;
  125. };
  126. struct kvm_shadow_walk_iterator {
  127. u64 addr;
  128. hpa_t shadow_addr;
  129. int level;
  130. u64 *sptep;
  131. unsigned index;
  132. };
  133. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  134. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  135. shadow_walk_okay(&(_walker)); \
  136. shadow_walk_next(&(_walker)))
  137. typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
  138. static struct kmem_cache *pte_chain_cache;
  139. static struct kmem_cache *rmap_desc_cache;
  140. static struct kmem_cache *mmu_page_header_cache;
  141. static u64 __read_mostly shadow_trap_nonpresent_pte;
  142. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  143. static u64 __read_mostly shadow_base_present_pte;
  144. static u64 __read_mostly shadow_nx_mask;
  145. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  146. static u64 __read_mostly shadow_user_mask;
  147. static u64 __read_mostly shadow_accessed_mask;
  148. static u64 __read_mostly shadow_dirty_mask;
  149. static inline u64 rsvd_bits(int s, int e)
  150. {
  151. return ((1ULL << (e - s + 1)) - 1) << s;
  152. }
  153. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  154. {
  155. shadow_trap_nonpresent_pte = trap_pte;
  156. shadow_notrap_nonpresent_pte = notrap_pte;
  157. }
  158. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  159. void kvm_mmu_set_base_ptes(u64 base_pte)
  160. {
  161. shadow_base_present_pte = base_pte;
  162. }
  163. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  164. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  165. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  166. {
  167. shadow_user_mask = user_mask;
  168. shadow_accessed_mask = accessed_mask;
  169. shadow_dirty_mask = dirty_mask;
  170. shadow_nx_mask = nx_mask;
  171. shadow_x_mask = x_mask;
  172. }
  173. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  174. static bool is_write_protection(struct kvm_vcpu *vcpu)
  175. {
  176. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  177. }
  178. static int is_cpuid_PSE36(void)
  179. {
  180. return 1;
  181. }
  182. static int is_nx(struct kvm_vcpu *vcpu)
  183. {
  184. return vcpu->arch.efer & EFER_NX;
  185. }
  186. static int is_shadow_present_pte(u64 pte)
  187. {
  188. return pte != shadow_trap_nonpresent_pte
  189. && pte != shadow_notrap_nonpresent_pte;
  190. }
  191. static int is_large_pte(u64 pte)
  192. {
  193. return pte & PT_PAGE_SIZE_MASK;
  194. }
  195. static int is_writable_pte(unsigned long pte)
  196. {
  197. return pte & PT_WRITABLE_MASK;
  198. }
  199. static int is_dirty_gpte(unsigned long pte)
  200. {
  201. return pte & PT_DIRTY_MASK;
  202. }
  203. static int is_rmap_spte(u64 pte)
  204. {
  205. return is_shadow_present_pte(pte);
  206. }
  207. static int is_last_spte(u64 pte, int level)
  208. {
  209. if (level == PT_PAGE_TABLE_LEVEL)
  210. return 1;
  211. if (is_large_pte(pte))
  212. return 1;
  213. return 0;
  214. }
  215. static pfn_t spte_to_pfn(u64 pte)
  216. {
  217. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  218. }
  219. static gfn_t pse36_gfn_delta(u32 gpte)
  220. {
  221. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  222. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  223. }
  224. static void __set_spte(u64 *sptep, u64 spte)
  225. {
  226. #ifdef CONFIG_X86_64
  227. set_64bit((unsigned long *)sptep, spte);
  228. #else
  229. set_64bit((unsigned long long *)sptep, spte);
  230. #endif
  231. }
  232. static u64 __xchg_spte(u64 *sptep, u64 new_spte)
  233. {
  234. #ifdef CONFIG_X86_64
  235. return xchg(sptep, new_spte);
  236. #else
  237. u64 old_spte;
  238. do {
  239. old_spte = *sptep;
  240. } while (cmpxchg64(sptep, old_spte, new_spte) != old_spte);
  241. return old_spte;
  242. #endif
  243. }
  244. static void update_spte(u64 *sptep, u64 new_spte)
  245. {
  246. u64 old_spte;
  247. if (!shadow_accessed_mask || (new_spte & shadow_accessed_mask)) {
  248. __set_spte(sptep, new_spte);
  249. } else {
  250. old_spte = __xchg_spte(sptep, new_spte);
  251. if (old_spte & shadow_accessed_mask)
  252. mark_page_accessed(pfn_to_page(spte_to_pfn(old_spte)));
  253. }
  254. }
  255. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  256. struct kmem_cache *base_cache, int min)
  257. {
  258. void *obj;
  259. if (cache->nobjs >= min)
  260. return 0;
  261. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  262. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  263. if (!obj)
  264. return -ENOMEM;
  265. cache->objects[cache->nobjs++] = obj;
  266. }
  267. return 0;
  268. }
  269. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  270. struct kmem_cache *cache)
  271. {
  272. while (mc->nobjs)
  273. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  274. }
  275. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  276. int min)
  277. {
  278. struct page *page;
  279. if (cache->nobjs >= min)
  280. return 0;
  281. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  282. page = alloc_page(GFP_KERNEL);
  283. if (!page)
  284. return -ENOMEM;
  285. cache->objects[cache->nobjs++] = page_address(page);
  286. }
  287. return 0;
  288. }
  289. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  290. {
  291. while (mc->nobjs)
  292. free_page((unsigned long)mc->objects[--mc->nobjs]);
  293. }
  294. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  295. {
  296. int r;
  297. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  298. pte_chain_cache, 4);
  299. if (r)
  300. goto out;
  301. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  302. rmap_desc_cache, 4);
  303. if (r)
  304. goto out;
  305. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  306. if (r)
  307. goto out;
  308. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  309. mmu_page_header_cache, 4);
  310. out:
  311. return r;
  312. }
  313. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  314. {
  315. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
  316. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
  317. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  318. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  319. mmu_page_header_cache);
  320. }
  321. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  322. size_t size)
  323. {
  324. void *p;
  325. BUG_ON(!mc->nobjs);
  326. p = mc->objects[--mc->nobjs];
  327. return p;
  328. }
  329. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  330. {
  331. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  332. sizeof(struct kvm_pte_chain));
  333. }
  334. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  335. {
  336. kmem_cache_free(pte_chain_cache, pc);
  337. }
  338. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  339. {
  340. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  341. sizeof(struct kvm_rmap_desc));
  342. }
  343. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  344. {
  345. kmem_cache_free(rmap_desc_cache, rd);
  346. }
  347. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  348. {
  349. if (!sp->role.direct)
  350. return sp->gfns[index];
  351. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  352. }
  353. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  354. {
  355. if (sp->role.direct)
  356. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  357. else
  358. sp->gfns[index] = gfn;
  359. }
  360. /*
  361. * Return the pointer to the largepage write count for a given
  362. * gfn, handling slots that are not large page aligned.
  363. */
  364. static int *slot_largepage_idx(gfn_t gfn,
  365. struct kvm_memory_slot *slot,
  366. int level)
  367. {
  368. unsigned long idx;
  369. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  370. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  371. return &slot->lpage_info[level - 2][idx].write_count;
  372. }
  373. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  374. {
  375. struct kvm_memory_slot *slot;
  376. int *write_count;
  377. int i;
  378. slot = gfn_to_memslot(kvm, gfn);
  379. for (i = PT_DIRECTORY_LEVEL;
  380. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  381. write_count = slot_largepage_idx(gfn, slot, i);
  382. *write_count += 1;
  383. }
  384. }
  385. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  386. {
  387. struct kvm_memory_slot *slot;
  388. int *write_count;
  389. int i;
  390. slot = gfn_to_memslot(kvm, gfn);
  391. for (i = PT_DIRECTORY_LEVEL;
  392. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  393. write_count = slot_largepage_idx(gfn, slot, i);
  394. *write_count -= 1;
  395. WARN_ON(*write_count < 0);
  396. }
  397. }
  398. static int has_wrprotected_page(struct kvm *kvm,
  399. gfn_t gfn,
  400. int level)
  401. {
  402. struct kvm_memory_slot *slot;
  403. int *largepage_idx;
  404. slot = gfn_to_memslot(kvm, gfn);
  405. if (slot) {
  406. largepage_idx = slot_largepage_idx(gfn, slot, level);
  407. return *largepage_idx;
  408. }
  409. return 1;
  410. }
  411. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  412. {
  413. unsigned long page_size;
  414. int i, ret = 0;
  415. page_size = kvm_host_page_size(kvm, gfn);
  416. for (i = PT_PAGE_TABLE_LEVEL;
  417. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  418. if (page_size >= KVM_HPAGE_SIZE(i))
  419. ret = i;
  420. else
  421. break;
  422. }
  423. return ret;
  424. }
  425. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  426. {
  427. struct kvm_memory_slot *slot;
  428. int host_level, level, max_level;
  429. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  430. if (slot && slot->dirty_bitmap)
  431. return PT_PAGE_TABLE_LEVEL;
  432. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  433. if (host_level == PT_PAGE_TABLE_LEVEL)
  434. return host_level;
  435. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  436. kvm_x86_ops->get_lpage_level() : host_level;
  437. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  438. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  439. break;
  440. return level - 1;
  441. }
  442. /*
  443. * Take gfn and return the reverse mapping to it.
  444. */
  445. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  446. {
  447. struct kvm_memory_slot *slot;
  448. unsigned long idx;
  449. slot = gfn_to_memslot(kvm, gfn);
  450. if (likely(level == PT_PAGE_TABLE_LEVEL))
  451. return &slot->rmap[gfn - slot->base_gfn];
  452. idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
  453. (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
  454. return &slot->lpage_info[level - 2][idx].rmap_pde;
  455. }
  456. /*
  457. * Reverse mapping data structures:
  458. *
  459. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  460. * that points to page_address(page).
  461. *
  462. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  463. * containing more mappings.
  464. *
  465. * Returns the number of rmap entries before the spte was added or zero if
  466. * the spte was not added.
  467. *
  468. */
  469. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  470. {
  471. struct kvm_mmu_page *sp;
  472. struct kvm_rmap_desc *desc;
  473. unsigned long *rmapp;
  474. int i, count = 0;
  475. if (!is_rmap_spte(*spte))
  476. return count;
  477. sp = page_header(__pa(spte));
  478. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  479. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  480. if (!*rmapp) {
  481. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  482. *rmapp = (unsigned long)spte;
  483. } else if (!(*rmapp & 1)) {
  484. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  485. desc = mmu_alloc_rmap_desc(vcpu);
  486. desc->sptes[0] = (u64 *)*rmapp;
  487. desc->sptes[1] = spte;
  488. *rmapp = (unsigned long)desc | 1;
  489. } else {
  490. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  491. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  492. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  493. desc = desc->more;
  494. count += RMAP_EXT;
  495. }
  496. if (desc->sptes[RMAP_EXT-1]) {
  497. desc->more = mmu_alloc_rmap_desc(vcpu);
  498. desc = desc->more;
  499. }
  500. for (i = 0; desc->sptes[i]; ++i)
  501. ;
  502. desc->sptes[i] = spte;
  503. }
  504. return count;
  505. }
  506. static void rmap_desc_remove_entry(unsigned long *rmapp,
  507. struct kvm_rmap_desc *desc,
  508. int i,
  509. struct kvm_rmap_desc *prev_desc)
  510. {
  511. int j;
  512. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  513. ;
  514. desc->sptes[i] = desc->sptes[j];
  515. desc->sptes[j] = NULL;
  516. if (j != 0)
  517. return;
  518. if (!prev_desc && !desc->more)
  519. *rmapp = (unsigned long)desc->sptes[0];
  520. else
  521. if (prev_desc)
  522. prev_desc->more = desc->more;
  523. else
  524. *rmapp = (unsigned long)desc->more | 1;
  525. mmu_free_rmap_desc(desc);
  526. }
  527. static void rmap_remove(struct kvm *kvm, u64 *spte)
  528. {
  529. struct kvm_rmap_desc *desc;
  530. struct kvm_rmap_desc *prev_desc;
  531. struct kvm_mmu_page *sp;
  532. gfn_t gfn;
  533. unsigned long *rmapp;
  534. int i;
  535. sp = page_header(__pa(spte));
  536. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  537. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  538. if (!*rmapp) {
  539. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  540. BUG();
  541. } else if (!(*rmapp & 1)) {
  542. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  543. if ((u64 *)*rmapp != spte) {
  544. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  545. spte, *spte);
  546. BUG();
  547. }
  548. *rmapp = 0;
  549. } else {
  550. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  551. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  552. prev_desc = NULL;
  553. while (desc) {
  554. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  555. if (desc->sptes[i] == spte) {
  556. rmap_desc_remove_entry(rmapp,
  557. desc, i,
  558. prev_desc);
  559. return;
  560. }
  561. prev_desc = desc;
  562. desc = desc->more;
  563. }
  564. pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
  565. BUG();
  566. }
  567. }
  568. static void drop_spte(struct kvm *kvm, u64 *sptep, u64 new_spte)
  569. {
  570. pfn_t pfn;
  571. u64 old_spte;
  572. old_spte = __xchg_spte(sptep, new_spte);
  573. if (!is_rmap_spte(old_spte))
  574. return;
  575. pfn = spte_to_pfn(old_spte);
  576. if (old_spte & shadow_accessed_mask)
  577. kvm_set_pfn_accessed(pfn);
  578. if (is_writable_pte(old_spte))
  579. kvm_set_pfn_dirty(pfn);
  580. rmap_remove(kvm, sptep);
  581. }
  582. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  583. {
  584. struct kvm_rmap_desc *desc;
  585. u64 *prev_spte;
  586. int i;
  587. if (!*rmapp)
  588. return NULL;
  589. else if (!(*rmapp & 1)) {
  590. if (!spte)
  591. return (u64 *)*rmapp;
  592. return NULL;
  593. }
  594. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  595. prev_spte = NULL;
  596. while (desc) {
  597. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  598. if (prev_spte == spte)
  599. return desc->sptes[i];
  600. prev_spte = desc->sptes[i];
  601. }
  602. desc = desc->more;
  603. }
  604. return NULL;
  605. }
  606. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  607. {
  608. unsigned long *rmapp;
  609. u64 *spte;
  610. int i, write_protected = 0;
  611. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  612. spte = rmap_next(kvm, rmapp, NULL);
  613. while (spte) {
  614. BUG_ON(!spte);
  615. BUG_ON(!(*spte & PT_PRESENT_MASK));
  616. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  617. if (is_writable_pte(*spte)) {
  618. update_spte(spte, *spte & ~PT_WRITABLE_MASK);
  619. write_protected = 1;
  620. }
  621. spte = rmap_next(kvm, rmapp, spte);
  622. }
  623. if (write_protected) {
  624. pfn_t pfn;
  625. spte = rmap_next(kvm, rmapp, NULL);
  626. pfn = spte_to_pfn(*spte);
  627. kvm_set_pfn_dirty(pfn);
  628. }
  629. /* check for huge page mappings */
  630. for (i = PT_DIRECTORY_LEVEL;
  631. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  632. rmapp = gfn_to_rmap(kvm, gfn, i);
  633. spte = rmap_next(kvm, rmapp, NULL);
  634. while (spte) {
  635. BUG_ON(!spte);
  636. BUG_ON(!(*spte & PT_PRESENT_MASK));
  637. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  638. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  639. if (is_writable_pte(*spte)) {
  640. drop_spte(kvm, spte,
  641. shadow_trap_nonpresent_pte);
  642. --kvm->stat.lpages;
  643. spte = NULL;
  644. write_protected = 1;
  645. }
  646. spte = rmap_next(kvm, rmapp, spte);
  647. }
  648. }
  649. return write_protected;
  650. }
  651. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  652. unsigned long data)
  653. {
  654. u64 *spte;
  655. int need_tlb_flush = 0;
  656. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  657. BUG_ON(!(*spte & PT_PRESENT_MASK));
  658. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  659. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  660. need_tlb_flush = 1;
  661. }
  662. return need_tlb_flush;
  663. }
  664. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  665. unsigned long data)
  666. {
  667. int need_flush = 0;
  668. u64 *spte, new_spte, old_spte;
  669. pte_t *ptep = (pte_t *)data;
  670. pfn_t new_pfn;
  671. WARN_ON(pte_huge(*ptep));
  672. new_pfn = pte_pfn(*ptep);
  673. spte = rmap_next(kvm, rmapp, NULL);
  674. while (spte) {
  675. BUG_ON(!is_shadow_present_pte(*spte));
  676. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  677. need_flush = 1;
  678. if (pte_write(*ptep)) {
  679. drop_spte(kvm, spte, shadow_trap_nonpresent_pte);
  680. spte = rmap_next(kvm, rmapp, NULL);
  681. } else {
  682. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  683. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  684. new_spte &= ~PT_WRITABLE_MASK;
  685. new_spte &= ~SPTE_HOST_WRITEABLE;
  686. new_spte &= ~shadow_accessed_mask;
  687. if (is_writable_pte(*spte))
  688. kvm_set_pfn_dirty(spte_to_pfn(*spte));
  689. old_spte = __xchg_spte(spte, new_spte);
  690. if (is_shadow_present_pte(old_spte)
  691. && (old_spte & shadow_accessed_mask))
  692. mark_page_accessed(pfn_to_page(spte_to_pfn(old_spte)));
  693. spte = rmap_next(kvm, rmapp, spte);
  694. }
  695. }
  696. if (need_flush)
  697. kvm_flush_remote_tlbs(kvm);
  698. return 0;
  699. }
  700. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  701. unsigned long data,
  702. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  703. unsigned long data))
  704. {
  705. int i, j;
  706. int ret;
  707. int retval = 0;
  708. struct kvm_memslots *slots;
  709. slots = kvm_memslots(kvm);
  710. for (i = 0; i < slots->nmemslots; i++) {
  711. struct kvm_memory_slot *memslot = &slots->memslots[i];
  712. unsigned long start = memslot->userspace_addr;
  713. unsigned long end;
  714. end = start + (memslot->npages << PAGE_SHIFT);
  715. if (hva >= start && hva < end) {
  716. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  717. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  718. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  719. int idx = gfn_offset;
  720. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  721. ret |= handler(kvm,
  722. &memslot->lpage_info[j][idx].rmap_pde,
  723. data);
  724. }
  725. trace_kvm_age_page(hva, memslot, ret);
  726. retval |= ret;
  727. }
  728. }
  729. return retval;
  730. }
  731. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  732. {
  733. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  734. }
  735. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  736. {
  737. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  738. }
  739. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  740. unsigned long data)
  741. {
  742. u64 *spte;
  743. int young = 0;
  744. /*
  745. * Emulate the accessed bit for EPT, by checking if this page has
  746. * an EPT mapping, and clearing it if it does. On the next access,
  747. * a new EPT mapping will be established.
  748. * This has some overhead, but not as much as the cost of swapping
  749. * out actively used pages or breaking up actively used hugepages.
  750. */
  751. if (!shadow_accessed_mask)
  752. return kvm_unmap_rmapp(kvm, rmapp, data);
  753. spte = rmap_next(kvm, rmapp, NULL);
  754. while (spte) {
  755. int _young;
  756. u64 _spte = *spte;
  757. BUG_ON(!(_spte & PT_PRESENT_MASK));
  758. _young = _spte & PT_ACCESSED_MASK;
  759. if (_young) {
  760. young = 1;
  761. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  762. }
  763. spte = rmap_next(kvm, rmapp, spte);
  764. }
  765. return young;
  766. }
  767. #define RMAP_RECYCLE_THRESHOLD 1000
  768. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  769. {
  770. unsigned long *rmapp;
  771. struct kvm_mmu_page *sp;
  772. sp = page_header(__pa(spte));
  773. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  774. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  775. kvm_flush_remote_tlbs(vcpu->kvm);
  776. }
  777. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  778. {
  779. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  780. }
  781. #ifdef MMU_DEBUG
  782. static int is_empty_shadow_page(u64 *spt)
  783. {
  784. u64 *pos;
  785. u64 *end;
  786. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  787. if (is_shadow_present_pte(*pos)) {
  788. printk(KERN_ERR "%s: %p %llx\n", __func__,
  789. pos, *pos);
  790. return 0;
  791. }
  792. return 1;
  793. }
  794. #endif
  795. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  796. {
  797. ASSERT(is_empty_shadow_page(sp->spt));
  798. hlist_del(&sp->hash_link);
  799. list_del(&sp->link);
  800. __free_page(virt_to_page(sp->spt));
  801. if (!sp->role.direct)
  802. __free_page(virt_to_page(sp->gfns));
  803. kmem_cache_free(mmu_page_header_cache, sp);
  804. ++kvm->arch.n_free_mmu_pages;
  805. }
  806. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  807. {
  808. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  809. }
  810. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  811. u64 *parent_pte, int direct)
  812. {
  813. struct kvm_mmu_page *sp;
  814. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  815. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  816. if (!direct)
  817. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  818. PAGE_SIZE);
  819. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  820. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  821. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  822. sp->multimapped = 0;
  823. sp->parent_pte = parent_pte;
  824. --vcpu->kvm->arch.n_free_mmu_pages;
  825. return sp;
  826. }
  827. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  828. struct kvm_mmu_page *sp, u64 *parent_pte)
  829. {
  830. struct kvm_pte_chain *pte_chain;
  831. struct hlist_node *node;
  832. int i;
  833. if (!parent_pte)
  834. return;
  835. if (!sp->multimapped) {
  836. u64 *old = sp->parent_pte;
  837. if (!old) {
  838. sp->parent_pte = parent_pte;
  839. return;
  840. }
  841. sp->multimapped = 1;
  842. pte_chain = mmu_alloc_pte_chain(vcpu);
  843. INIT_HLIST_HEAD(&sp->parent_ptes);
  844. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  845. pte_chain->parent_ptes[0] = old;
  846. }
  847. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  848. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  849. continue;
  850. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  851. if (!pte_chain->parent_ptes[i]) {
  852. pte_chain->parent_ptes[i] = parent_pte;
  853. return;
  854. }
  855. }
  856. pte_chain = mmu_alloc_pte_chain(vcpu);
  857. BUG_ON(!pte_chain);
  858. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  859. pte_chain->parent_ptes[0] = parent_pte;
  860. }
  861. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  862. u64 *parent_pte)
  863. {
  864. struct kvm_pte_chain *pte_chain;
  865. struct hlist_node *node;
  866. int i;
  867. if (!sp->multimapped) {
  868. BUG_ON(sp->parent_pte != parent_pte);
  869. sp->parent_pte = NULL;
  870. return;
  871. }
  872. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  873. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  874. if (!pte_chain->parent_ptes[i])
  875. break;
  876. if (pte_chain->parent_ptes[i] != parent_pte)
  877. continue;
  878. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  879. && pte_chain->parent_ptes[i + 1]) {
  880. pte_chain->parent_ptes[i]
  881. = pte_chain->parent_ptes[i + 1];
  882. ++i;
  883. }
  884. pte_chain->parent_ptes[i] = NULL;
  885. if (i == 0) {
  886. hlist_del(&pte_chain->link);
  887. mmu_free_pte_chain(pte_chain);
  888. if (hlist_empty(&sp->parent_ptes)) {
  889. sp->multimapped = 0;
  890. sp->parent_pte = NULL;
  891. }
  892. }
  893. return;
  894. }
  895. BUG();
  896. }
  897. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  898. {
  899. struct kvm_pte_chain *pte_chain;
  900. struct hlist_node *node;
  901. struct kvm_mmu_page *parent_sp;
  902. int i;
  903. if (!sp->multimapped && sp->parent_pte) {
  904. parent_sp = page_header(__pa(sp->parent_pte));
  905. fn(parent_sp, sp->parent_pte);
  906. return;
  907. }
  908. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  909. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  910. u64 *spte = pte_chain->parent_ptes[i];
  911. if (!spte)
  912. break;
  913. parent_sp = page_header(__pa(spte));
  914. fn(parent_sp, spte);
  915. }
  916. }
  917. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
  918. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  919. {
  920. mmu_parent_walk(sp, mark_unsync);
  921. }
  922. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
  923. {
  924. unsigned int index;
  925. index = spte - sp->spt;
  926. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  927. return;
  928. if (sp->unsync_children++)
  929. return;
  930. kvm_mmu_mark_parents_unsync(sp);
  931. }
  932. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  933. struct kvm_mmu_page *sp)
  934. {
  935. int i;
  936. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  937. sp->spt[i] = shadow_trap_nonpresent_pte;
  938. }
  939. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  940. struct kvm_mmu_page *sp, bool clear_unsync)
  941. {
  942. return 1;
  943. }
  944. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  945. {
  946. }
  947. #define KVM_PAGE_ARRAY_NR 16
  948. struct kvm_mmu_pages {
  949. struct mmu_page_and_offset {
  950. struct kvm_mmu_page *sp;
  951. unsigned int idx;
  952. } page[KVM_PAGE_ARRAY_NR];
  953. unsigned int nr;
  954. };
  955. #define for_each_unsync_children(bitmap, idx) \
  956. for (idx = find_first_bit(bitmap, 512); \
  957. idx < 512; \
  958. idx = find_next_bit(bitmap, 512, idx+1))
  959. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  960. int idx)
  961. {
  962. int i;
  963. if (sp->unsync)
  964. for (i=0; i < pvec->nr; i++)
  965. if (pvec->page[i].sp == sp)
  966. return 0;
  967. pvec->page[pvec->nr].sp = sp;
  968. pvec->page[pvec->nr].idx = idx;
  969. pvec->nr++;
  970. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  971. }
  972. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  973. struct kvm_mmu_pages *pvec)
  974. {
  975. int i, ret, nr_unsync_leaf = 0;
  976. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  977. struct kvm_mmu_page *child;
  978. u64 ent = sp->spt[i];
  979. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  980. goto clear_child_bitmap;
  981. child = page_header(ent & PT64_BASE_ADDR_MASK);
  982. if (child->unsync_children) {
  983. if (mmu_pages_add(pvec, child, i))
  984. return -ENOSPC;
  985. ret = __mmu_unsync_walk(child, pvec);
  986. if (!ret)
  987. goto clear_child_bitmap;
  988. else if (ret > 0)
  989. nr_unsync_leaf += ret;
  990. else
  991. return ret;
  992. } else if (child->unsync) {
  993. nr_unsync_leaf++;
  994. if (mmu_pages_add(pvec, child, i))
  995. return -ENOSPC;
  996. } else
  997. goto clear_child_bitmap;
  998. continue;
  999. clear_child_bitmap:
  1000. __clear_bit(i, sp->unsync_child_bitmap);
  1001. sp->unsync_children--;
  1002. WARN_ON((int)sp->unsync_children < 0);
  1003. }
  1004. return nr_unsync_leaf;
  1005. }
  1006. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  1007. struct kvm_mmu_pages *pvec)
  1008. {
  1009. if (!sp->unsync_children)
  1010. return 0;
  1011. mmu_pages_add(pvec, sp, 0);
  1012. return __mmu_unsync_walk(sp, pvec);
  1013. }
  1014. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  1015. {
  1016. WARN_ON(!sp->unsync);
  1017. trace_kvm_mmu_sync_page(sp);
  1018. sp->unsync = 0;
  1019. --kvm->stat.mmu_unsync;
  1020. }
  1021. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1022. struct list_head *invalid_list);
  1023. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1024. struct list_head *invalid_list);
  1025. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  1026. hlist_for_each_entry(sp, pos, \
  1027. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1028. if ((sp)->gfn != (gfn)) {} else
  1029. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1030. hlist_for_each_entry(sp, pos, \
  1031. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1032. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1033. (sp)->role.invalid) {} else
  1034. /* @sp->gfn should be write-protected at the call site */
  1035. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1036. struct list_head *invalid_list, bool clear_unsync)
  1037. {
  1038. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1039. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1040. return 1;
  1041. }
  1042. if (clear_unsync)
  1043. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1044. if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
  1045. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1046. return 1;
  1047. }
  1048. kvm_mmu_flush_tlb(vcpu);
  1049. return 0;
  1050. }
  1051. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1052. struct kvm_mmu_page *sp)
  1053. {
  1054. LIST_HEAD(invalid_list);
  1055. int ret;
  1056. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1057. if (ret)
  1058. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1059. return ret;
  1060. }
  1061. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1062. struct list_head *invalid_list)
  1063. {
  1064. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1065. }
  1066. /* @gfn should be write-protected at the call site */
  1067. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1068. {
  1069. struct kvm_mmu_page *s;
  1070. struct hlist_node *node;
  1071. LIST_HEAD(invalid_list);
  1072. bool flush = false;
  1073. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1074. if (!s->unsync)
  1075. continue;
  1076. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1077. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1078. (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
  1079. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1080. continue;
  1081. }
  1082. kvm_unlink_unsync_page(vcpu->kvm, s);
  1083. flush = true;
  1084. }
  1085. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1086. if (flush)
  1087. kvm_mmu_flush_tlb(vcpu);
  1088. }
  1089. struct mmu_page_path {
  1090. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1091. unsigned int idx[PT64_ROOT_LEVEL-1];
  1092. };
  1093. #define for_each_sp(pvec, sp, parents, i) \
  1094. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1095. sp = pvec.page[i].sp; \
  1096. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1097. i = mmu_pages_next(&pvec, &parents, i))
  1098. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1099. struct mmu_page_path *parents,
  1100. int i)
  1101. {
  1102. int n;
  1103. for (n = i+1; n < pvec->nr; n++) {
  1104. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1105. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1106. parents->idx[0] = pvec->page[n].idx;
  1107. return n;
  1108. }
  1109. parents->parent[sp->role.level-2] = sp;
  1110. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1111. }
  1112. return n;
  1113. }
  1114. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1115. {
  1116. struct kvm_mmu_page *sp;
  1117. unsigned int level = 0;
  1118. do {
  1119. unsigned int idx = parents->idx[level];
  1120. sp = parents->parent[level];
  1121. if (!sp)
  1122. return;
  1123. --sp->unsync_children;
  1124. WARN_ON((int)sp->unsync_children < 0);
  1125. __clear_bit(idx, sp->unsync_child_bitmap);
  1126. level++;
  1127. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1128. }
  1129. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1130. struct mmu_page_path *parents,
  1131. struct kvm_mmu_pages *pvec)
  1132. {
  1133. parents->parent[parent->role.level-1] = NULL;
  1134. pvec->nr = 0;
  1135. }
  1136. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1137. struct kvm_mmu_page *parent)
  1138. {
  1139. int i;
  1140. struct kvm_mmu_page *sp;
  1141. struct mmu_page_path parents;
  1142. struct kvm_mmu_pages pages;
  1143. LIST_HEAD(invalid_list);
  1144. kvm_mmu_pages_init(parent, &parents, &pages);
  1145. while (mmu_unsync_walk(parent, &pages)) {
  1146. int protected = 0;
  1147. for_each_sp(pages, sp, parents, i)
  1148. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1149. if (protected)
  1150. kvm_flush_remote_tlbs(vcpu->kvm);
  1151. for_each_sp(pages, sp, parents, i) {
  1152. kvm_sync_page(vcpu, sp, &invalid_list);
  1153. mmu_pages_clear_parents(&parents);
  1154. }
  1155. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1156. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1157. kvm_mmu_pages_init(parent, &parents, &pages);
  1158. }
  1159. }
  1160. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1161. gfn_t gfn,
  1162. gva_t gaddr,
  1163. unsigned level,
  1164. int direct,
  1165. unsigned access,
  1166. u64 *parent_pte)
  1167. {
  1168. union kvm_mmu_page_role role;
  1169. unsigned quadrant;
  1170. struct kvm_mmu_page *sp;
  1171. struct hlist_node *node;
  1172. bool need_sync = false;
  1173. role = vcpu->arch.mmu.base_role;
  1174. role.level = level;
  1175. role.direct = direct;
  1176. if (role.direct)
  1177. role.cr4_pae = 0;
  1178. role.access = access;
  1179. if (!tdp_enabled && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1180. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1181. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1182. role.quadrant = quadrant;
  1183. }
  1184. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1185. if (!need_sync && sp->unsync)
  1186. need_sync = true;
  1187. if (sp->role.word != role.word)
  1188. continue;
  1189. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1190. break;
  1191. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1192. if (sp->unsync_children) {
  1193. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1194. kvm_mmu_mark_parents_unsync(sp);
  1195. } else if (sp->unsync)
  1196. kvm_mmu_mark_parents_unsync(sp);
  1197. trace_kvm_mmu_get_page(sp, false);
  1198. return sp;
  1199. }
  1200. ++vcpu->kvm->stat.mmu_cache_miss;
  1201. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1202. if (!sp)
  1203. return sp;
  1204. sp->gfn = gfn;
  1205. sp->role = role;
  1206. hlist_add_head(&sp->hash_link,
  1207. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1208. if (!direct) {
  1209. if (rmap_write_protect(vcpu->kvm, gfn))
  1210. kvm_flush_remote_tlbs(vcpu->kvm);
  1211. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1212. kvm_sync_pages(vcpu, gfn);
  1213. account_shadowed(vcpu->kvm, gfn);
  1214. }
  1215. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1216. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1217. else
  1218. nonpaging_prefetch_page(vcpu, sp);
  1219. trace_kvm_mmu_get_page(sp, true);
  1220. return sp;
  1221. }
  1222. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1223. struct kvm_vcpu *vcpu, u64 addr)
  1224. {
  1225. iterator->addr = addr;
  1226. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1227. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1228. if (iterator->level == PT32E_ROOT_LEVEL) {
  1229. iterator->shadow_addr
  1230. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1231. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1232. --iterator->level;
  1233. if (!iterator->shadow_addr)
  1234. iterator->level = 0;
  1235. }
  1236. }
  1237. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1238. {
  1239. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1240. return false;
  1241. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1242. if (is_large_pte(*iterator->sptep))
  1243. return false;
  1244. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1245. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1246. return true;
  1247. }
  1248. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1249. {
  1250. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1251. --iterator->level;
  1252. }
  1253. static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
  1254. {
  1255. u64 spte;
  1256. spte = __pa(sp->spt)
  1257. | PT_PRESENT_MASK | PT_ACCESSED_MASK
  1258. | PT_WRITABLE_MASK | PT_USER_MASK;
  1259. __set_spte(sptep, spte);
  1260. }
  1261. static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
  1262. {
  1263. if (is_large_pte(*sptep)) {
  1264. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1265. kvm_flush_remote_tlbs(vcpu->kvm);
  1266. }
  1267. }
  1268. static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1269. unsigned direct_access)
  1270. {
  1271. if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
  1272. struct kvm_mmu_page *child;
  1273. /*
  1274. * For the direct sp, if the guest pte's dirty bit
  1275. * changed form clean to dirty, it will corrupt the
  1276. * sp's access: allow writable in the read-only sp,
  1277. * so we should update the spte at this point to get
  1278. * a new sp with the correct access.
  1279. */
  1280. child = page_header(*sptep & PT64_BASE_ADDR_MASK);
  1281. if (child->role.access == direct_access)
  1282. return;
  1283. mmu_page_remove_parent_pte(child, sptep);
  1284. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1285. kvm_flush_remote_tlbs(vcpu->kvm);
  1286. }
  1287. }
  1288. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1289. struct kvm_mmu_page *sp)
  1290. {
  1291. unsigned i;
  1292. u64 *pt;
  1293. u64 ent;
  1294. pt = sp->spt;
  1295. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1296. ent = pt[i];
  1297. if (is_shadow_present_pte(ent)) {
  1298. if (!is_last_spte(ent, sp->role.level)) {
  1299. ent &= PT64_BASE_ADDR_MASK;
  1300. mmu_page_remove_parent_pte(page_header(ent),
  1301. &pt[i]);
  1302. } else {
  1303. if (is_large_pte(ent))
  1304. --kvm->stat.lpages;
  1305. drop_spte(kvm, &pt[i],
  1306. shadow_trap_nonpresent_pte);
  1307. }
  1308. }
  1309. pt[i] = shadow_trap_nonpresent_pte;
  1310. }
  1311. }
  1312. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1313. {
  1314. mmu_page_remove_parent_pte(sp, parent_pte);
  1315. }
  1316. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1317. {
  1318. int i;
  1319. struct kvm_vcpu *vcpu;
  1320. kvm_for_each_vcpu(i, vcpu, kvm)
  1321. vcpu->arch.last_pte_updated = NULL;
  1322. }
  1323. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1324. {
  1325. u64 *parent_pte;
  1326. while (sp->multimapped || sp->parent_pte) {
  1327. if (!sp->multimapped)
  1328. parent_pte = sp->parent_pte;
  1329. else {
  1330. struct kvm_pte_chain *chain;
  1331. chain = container_of(sp->parent_ptes.first,
  1332. struct kvm_pte_chain, link);
  1333. parent_pte = chain->parent_ptes[0];
  1334. }
  1335. BUG_ON(!parent_pte);
  1336. kvm_mmu_put_page(sp, parent_pte);
  1337. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1338. }
  1339. }
  1340. static int mmu_zap_unsync_children(struct kvm *kvm,
  1341. struct kvm_mmu_page *parent,
  1342. struct list_head *invalid_list)
  1343. {
  1344. int i, zapped = 0;
  1345. struct mmu_page_path parents;
  1346. struct kvm_mmu_pages pages;
  1347. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1348. return 0;
  1349. kvm_mmu_pages_init(parent, &parents, &pages);
  1350. while (mmu_unsync_walk(parent, &pages)) {
  1351. struct kvm_mmu_page *sp;
  1352. for_each_sp(pages, sp, parents, i) {
  1353. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1354. mmu_pages_clear_parents(&parents);
  1355. zapped++;
  1356. }
  1357. kvm_mmu_pages_init(parent, &parents, &pages);
  1358. }
  1359. return zapped;
  1360. }
  1361. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1362. struct list_head *invalid_list)
  1363. {
  1364. int ret;
  1365. trace_kvm_mmu_prepare_zap_page(sp);
  1366. ++kvm->stat.mmu_shadow_zapped;
  1367. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1368. kvm_mmu_page_unlink_children(kvm, sp);
  1369. kvm_mmu_unlink_parents(kvm, sp);
  1370. if (!sp->role.invalid && !sp->role.direct)
  1371. unaccount_shadowed(kvm, sp->gfn);
  1372. if (sp->unsync)
  1373. kvm_unlink_unsync_page(kvm, sp);
  1374. if (!sp->root_count) {
  1375. /* Count self */
  1376. ret++;
  1377. list_move(&sp->link, invalid_list);
  1378. } else {
  1379. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1380. kvm_reload_remote_mmus(kvm);
  1381. }
  1382. sp->role.invalid = 1;
  1383. kvm_mmu_reset_last_pte_updated(kvm);
  1384. return ret;
  1385. }
  1386. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1387. struct list_head *invalid_list)
  1388. {
  1389. struct kvm_mmu_page *sp;
  1390. if (list_empty(invalid_list))
  1391. return;
  1392. kvm_flush_remote_tlbs(kvm);
  1393. do {
  1394. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1395. WARN_ON(!sp->role.invalid || sp->root_count);
  1396. kvm_mmu_free_page(kvm, sp);
  1397. } while (!list_empty(invalid_list));
  1398. }
  1399. /*
  1400. * Changing the number of mmu pages allocated to the vm
  1401. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1402. */
  1403. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1404. {
  1405. int used_pages;
  1406. LIST_HEAD(invalid_list);
  1407. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1408. used_pages = max(0, used_pages);
  1409. /*
  1410. * If we set the number of mmu pages to be smaller be than the
  1411. * number of actived pages , we must to free some mmu pages before we
  1412. * change the value
  1413. */
  1414. if (used_pages > kvm_nr_mmu_pages) {
  1415. while (used_pages > kvm_nr_mmu_pages &&
  1416. !list_empty(&kvm->arch.active_mmu_pages)) {
  1417. struct kvm_mmu_page *page;
  1418. page = container_of(kvm->arch.active_mmu_pages.prev,
  1419. struct kvm_mmu_page, link);
  1420. used_pages -= kvm_mmu_prepare_zap_page(kvm, page,
  1421. &invalid_list);
  1422. }
  1423. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1424. kvm_nr_mmu_pages = used_pages;
  1425. kvm->arch.n_free_mmu_pages = 0;
  1426. }
  1427. else
  1428. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1429. - kvm->arch.n_alloc_mmu_pages;
  1430. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1431. }
  1432. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1433. {
  1434. struct kvm_mmu_page *sp;
  1435. struct hlist_node *node;
  1436. LIST_HEAD(invalid_list);
  1437. int r;
  1438. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1439. r = 0;
  1440. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1441. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1442. sp->role.word);
  1443. r = 1;
  1444. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1445. }
  1446. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1447. return r;
  1448. }
  1449. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1450. {
  1451. struct kvm_mmu_page *sp;
  1452. struct hlist_node *node;
  1453. LIST_HEAD(invalid_list);
  1454. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1455. pgprintk("%s: zap %lx %x\n",
  1456. __func__, gfn, sp->role.word);
  1457. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1458. }
  1459. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1460. }
  1461. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1462. {
  1463. int slot = memslot_id(kvm, gfn);
  1464. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1465. __set_bit(slot, sp->slot_bitmap);
  1466. }
  1467. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1468. {
  1469. int i;
  1470. u64 *pt = sp->spt;
  1471. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1472. return;
  1473. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1474. if (pt[i] == shadow_notrap_nonpresent_pte)
  1475. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1476. }
  1477. }
  1478. /*
  1479. * The function is based on mtrr_type_lookup() in
  1480. * arch/x86/kernel/cpu/mtrr/generic.c
  1481. */
  1482. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1483. u64 start, u64 end)
  1484. {
  1485. int i;
  1486. u64 base, mask;
  1487. u8 prev_match, curr_match;
  1488. int num_var_ranges = KVM_NR_VAR_MTRR;
  1489. if (!mtrr_state->enabled)
  1490. return 0xFF;
  1491. /* Make end inclusive end, instead of exclusive */
  1492. end--;
  1493. /* Look in fixed ranges. Just return the type as per start */
  1494. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1495. int idx;
  1496. if (start < 0x80000) {
  1497. idx = 0;
  1498. idx += (start >> 16);
  1499. return mtrr_state->fixed_ranges[idx];
  1500. } else if (start < 0xC0000) {
  1501. idx = 1 * 8;
  1502. idx += ((start - 0x80000) >> 14);
  1503. return mtrr_state->fixed_ranges[idx];
  1504. } else if (start < 0x1000000) {
  1505. idx = 3 * 8;
  1506. idx += ((start - 0xC0000) >> 12);
  1507. return mtrr_state->fixed_ranges[idx];
  1508. }
  1509. }
  1510. /*
  1511. * Look in variable ranges
  1512. * Look of multiple ranges matching this address and pick type
  1513. * as per MTRR precedence
  1514. */
  1515. if (!(mtrr_state->enabled & 2))
  1516. return mtrr_state->def_type;
  1517. prev_match = 0xFF;
  1518. for (i = 0; i < num_var_ranges; ++i) {
  1519. unsigned short start_state, end_state;
  1520. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1521. continue;
  1522. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1523. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1524. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1525. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1526. start_state = ((start & mask) == (base & mask));
  1527. end_state = ((end & mask) == (base & mask));
  1528. if (start_state != end_state)
  1529. return 0xFE;
  1530. if ((start & mask) != (base & mask))
  1531. continue;
  1532. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1533. if (prev_match == 0xFF) {
  1534. prev_match = curr_match;
  1535. continue;
  1536. }
  1537. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1538. curr_match == MTRR_TYPE_UNCACHABLE)
  1539. return MTRR_TYPE_UNCACHABLE;
  1540. if ((prev_match == MTRR_TYPE_WRBACK &&
  1541. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1542. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1543. curr_match == MTRR_TYPE_WRBACK)) {
  1544. prev_match = MTRR_TYPE_WRTHROUGH;
  1545. curr_match = MTRR_TYPE_WRTHROUGH;
  1546. }
  1547. if (prev_match != curr_match)
  1548. return MTRR_TYPE_UNCACHABLE;
  1549. }
  1550. if (prev_match != 0xFF)
  1551. return prev_match;
  1552. return mtrr_state->def_type;
  1553. }
  1554. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1555. {
  1556. u8 mtrr;
  1557. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1558. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1559. if (mtrr == 0xfe || mtrr == 0xff)
  1560. mtrr = MTRR_TYPE_WRBACK;
  1561. return mtrr;
  1562. }
  1563. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1564. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1565. {
  1566. trace_kvm_mmu_unsync_page(sp);
  1567. ++vcpu->kvm->stat.mmu_unsync;
  1568. sp->unsync = 1;
  1569. kvm_mmu_mark_parents_unsync(sp);
  1570. mmu_convert_notrap(sp);
  1571. }
  1572. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1573. {
  1574. struct kvm_mmu_page *s;
  1575. struct hlist_node *node;
  1576. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1577. if (s->unsync)
  1578. continue;
  1579. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1580. __kvm_unsync_page(vcpu, s);
  1581. }
  1582. }
  1583. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1584. bool can_unsync)
  1585. {
  1586. struct kvm_mmu_page *s;
  1587. struct hlist_node *node;
  1588. bool need_unsync = false;
  1589. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1590. if (!can_unsync)
  1591. return 1;
  1592. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1593. return 1;
  1594. if (!need_unsync && !s->unsync) {
  1595. if (!oos_shadow)
  1596. return 1;
  1597. need_unsync = true;
  1598. }
  1599. }
  1600. if (need_unsync)
  1601. kvm_unsync_pages(vcpu, gfn);
  1602. return 0;
  1603. }
  1604. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1605. unsigned pte_access, int user_fault,
  1606. int write_fault, int dirty, int level,
  1607. gfn_t gfn, pfn_t pfn, bool speculative,
  1608. bool can_unsync, bool reset_host_protection)
  1609. {
  1610. u64 spte;
  1611. int ret = 0;
  1612. /*
  1613. * We don't set the accessed bit, since we sometimes want to see
  1614. * whether the guest actually used the pte (in order to detect
  1615. * demand paging).
  1616. */
  1617. spte = shadow_base_present_pte | shadow_dirty_mask;
  1618. if (!speculative)
  1619. spte |= shadow_accessed_mask;
  1620. if (!dirty)
  1621. pte_access &= ~ACC_WRITE_MASK;
  1622. if (pte_access & ACC_EXEC_MASK)
  1623. spte |= shadow_x_mask;
  1624. else
  1625. spte |= shadow_nx_mask;
  1626. if (pte_access & ACC_USER_MASK)
  1627. spte |= shadow_user_mask;
  1628. if (level > PT_PAGE_TABLE_LEVEL)
  1629. spte |= PT_PAGE_SIZE_MASK;
  1630. if (tdp_enabled)
  1631. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1632. kvm_is_mmio_pfn(pfn));
  1633. if (reset_host_protection)
  1634. spte |= SPTE_HOST_WRITEABLE;
  1635. spte |= (u64)pfn << PAGE_SHIFT;
  1636. if ((pte_access & ACC_WRITE_MASK)
  1637. || (!tdp_enabled && write_fault && !is_write_protection(vcpu)
  1638. && !user_fault)) {
  1639. if (level > PT_PAGE_TABLE_LEVEL &&
  1640. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1641. ret = 1;
  1642. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1643. goto done;
  1644. }
  1645. spte |= PT_WRITABLE_MASK;
  1646. if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
  1647. spte &= ~PT_USER_MASK;
  1648. /*
  1649. * Optimization: for pte sync, if spte was writable the hash
  1650. * lookup is unnecessary (and expensive). Write protection
  1651. * is responsibility of mmu_get_page / kvm_sync_page.
  1652. * Same reasoning can be applied to dirty page accounting.
  1653. */
  1654. if (!can_unsync && is_writable_pte(*sptep))
  1655. goto set_pte;
  1656. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1657. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1658. __func__, gfn);
  1659. ret = 1;
  1660. pte_access &= ~ACC_WRITE_MASK;
  1661. if (is_writable_pte(spte))
  1662. spte &= ~PT_WRITABLE_MASK;
  1663. }
  1664. }
  1665. if (pte_access & ACC_WRITE_MASK)
  1666. mark_page_dirty(vcpu->kvm, gfn);
  1667. set_pte:
  1668. update_spte(sptep, spte);
  1669. done:
  1670. return ret;
  1671. }
  1672. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1673. unsigned pt_access, unsigned pte_access,
  1674. int user_fault, int write_fault, int dirty,
  1675. int *ptwrite, int level, gfn_t gfn,
  1676. pfn_t pfn, bool speculative,
  1677. bool reset_host_protection)
  1678. {
  1679. int was_rmapped = 0;
  1680. int was_writable = is_writable_pte(*sptep);
  1681. int rmap_count;
  1682. pgprintk("%s: spte %llx access %x write_fault %d"
  1683. " user_fault %d gfn %lx\n",
  1684. __func__, *sptep, pt_access,
  1685. write_fault, user_fault, gfn);
  1686. if (is_rmap_spte(*sptep)) {
  1687. /*
  1688. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1689. * the parent of the now unreachable PTE.
  1690. */
  1691. if (level > PT_PAGE_TABLE_LEVEL &&
  1692. !is_large_pte(*sptep)) {
  1693. struct kvm_mmu_page *child;
  1694. u64 pte = *sptep;
  1695. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1696. mmu_page_remove_parent_pte(child, sptep);
  1697. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1698. kvm_flush_remote_tlbs(vcpu->kvm);
  1699. } else if (pfn != spte_to_pfn(*sptep)) {
  1700. pgprintk("hfn old %lx new %lx\n",
  1701. spte_to_pfn(*sptep), pfn);
  1702. drop_spte(vcpu->kvm, sptep, shadow_trap_nonpresent_pte);
  1703. kvm_flush_remote_tlbs(vcpu->kvm);
  1704. } else
  1705. was_rmapped = 1;
  1706. }
  1707. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1708. dirty, level, gfn, pfn, speculative, true,
  1709. reset_host_protection)) {
  1710. if (write_fault)
  1711. *ptwrite = 1;
  1712. kvm_mmu_flush_tlb(vcpu);
  1713. }
  1714. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1715. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1716. is_large_pte(*sptep)? "2MB" : "4kB",
  1717. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1718. *sptep, sptep);
  1719. if (!was_rmapped && is_large_pte(*sptep))
  1720. ++vcpu->kvm->stat.lpages;
  1721. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1722. if (!was_rmapped) {
  1723. rmap_count = rmap_add(vcpu, sptep, gfn);
  1724. kvm_release_pfn_clean(pfn);
  1725. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1726. rmap_recycle(vcpu, sptep, gfn);
  1727. } else {
  1728. if (was_writable)
  1729. kvm_release_pfn_dirty(pfn);
  1730. else
  1731. kvm_release_pfn_clean(pfn);
  1732. }
  1733. if (speculative) {
  1734. vcpu->arch.last_pte_updated = sptep;
  1735. vcpu->arch.last_pte_gfn = gfn;
  1736. }
  1737. }
  1738. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1739. {
  1740. }
  1741. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1742. int level, gfn_t gfn, pfn_t pfn)
  1743. {
  1744. struct kvm_shadow_walk_iterator iterator;
  1745. struct kvm_mmu_page *sp;
  1746. int pt_write = 0;
  1747. gfn_t pseudo_gfn;
  1748. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1749. if (iterator.level == level) {
  1750. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1751. 0, write, 1, &pt_write,
  1752. level, gfn, pfn, false, true);
  1753. ++vcpu->stat.pf_fixed;
  1754. break;
  1755. }
  1756. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1757. u64 base_addr = iterator.addr;
  1758. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  1759. pseudo_gfn = base_addr >> PAGE_SHIFT;
  1760. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1761. iterator.level - 1,
  1762. 1, ACC_ALL, iterator.sptep);
  1763. if (!sp) {
  1764. pgprintk("nonpaging_map: ENOMEM\n");
  1765. kvm_release_pfn_clean(pfn);
  1766. return -ENOMEM;
  1767. }
  1768. __set_spte(iterator.sptep,
  1769. __pa(sp->spt)
  1770. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1771. | shadow_user_mask | shadow_x_mask);
  1772. }
  1773. }
  1774. return pt_write;
  1775. }
  1776. static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
  1777. {
  1778. char buf[1];
  1779. void __user *hva;
  1780. int r;
  1781. /* Touch the page, so send SIGBUS */
  1782. hva = (void __user *)gfn_to_hva(kvm, gfn);
  1783. r = copy_from_user(buf, hva, 1);
  1784. }
  1785. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1786. {
  1787. kvm_release_pfn_clean(pfn);
  1788. if (is_hwpoison_pfn(pfn)) {
  1789. kvm_send_hwpoison_signal(kvm, gfn);
  1790. return 0;
  1791. } else if (is_fault_pfn(pfn))
  1792. return -EFAULT;
  1793. return 1;
  1794. }
  1795. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1796. {
  1797. int r;
  1798. int level;
  1799. pfn_t pfn;
  1800. unsigned long mmu_seq;
  1801. level = mapping_level(vcpu, gfn);
  1802. /*
  1803. * This path builds a PAE pagetable - so we can map 2mb pages at
  1804. * maximum. Therefore check if the level is larger than that.
  1805. */
  1806. if (level > PT_DIRECTORY_LEVEL)
  1807. level = PT_DIRECTORY_LEVEL;
  1808. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1809. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1810. smp_rmb();
  1811. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1812. /* mmio */
  1813. if (is_error_pfn(pfn))
  1814. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1815. spin_lock(&vcpu->kvm->mmu_lock);
  1816. if (mmu_notifier_retry(vcpu, mmu_seq))
  1817. goto out_unlock;
  1818. kvm_mmu_free_some_pages(vcpu);
  1819. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1820. spin_unlock(&vcpu->kvm->mmu_lock);
  1821. return r;
  1822. out_unlock:
  1823. spin_unlock(&vcpu->kvm->mmu_lock);
  1824. kvm_release_pfn_clean(pfn);
  1825. return 0;
  1826. }
  1827. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1828. {
  1829. int i;
  1830. struct kvm_mmu_page *sp;
  1831. LIST_HEAD(invalid_list);
  1832. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1833. return;
  1834. spin_lock(&vcpu->kvm->mmu_lock);
  1835. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1836. hpa_t root = vcpu->arch.mmu.root_hpa;
  1837. sp = page_header(root);
  1838. --sp->root_count;
  1839. if (!sp->root_count && sp->role.invalid) {
  1840. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  1841. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1842. }
  1843. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1844. spin_unlock(&vcpu->kvm->mmu_lock);
  1845. return;
  1846. }
  1847. for (i = 0; i < 4; ++i) {
  1848. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1849. if (root) {
  1850. root &= PT64_BASE_ADDR_MASK;
  1851. sp = page_header(root);
  1852. --sp->root_count;
  1853. if (!sp->root_count && sp->role.invalid)
  1854. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  1855. &invalid_list);
  1856. }
  1857. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1858. }
  1859. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1860. spin_unlock(&vcpu->kvm->mmu_lock);
  1861. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1862. }
  1863. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1864. {
  1865. int ret = 0;
  1866. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1867. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1868. ret = 1;
  1869. }
  1870. return ret;
  1871. }
  1872. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1873. {
  1874. int i;
  1875. gfn_t root_gfn;
  1876. struct kvm_mmu_page *sp;
  1877. int direct = 0;
  1878. u64 pdptr;
  1879. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1880. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1881. hpa_t root = vcpu->arch.mmu.root_hpa;
  1882. ASSERT(!VALID_PAGE(root));
  1883. if (mmu_check_root(vcpu, root_gfn))
  1884. return 1;
  1885. if (tdp_enabled) {
  1886. direct = 1;
  1887. root_gfn = 0;
  1888. }
  1889. spin_lock(&vcpu->kvm->mmu_lock);
  1890. kvm_mmu_free_some_pages(vcpu);
  1891. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1892. PT64_ROOT_LEVEL, direct,
  1893. ACC_ALL, NULL);
  1894. root = __pa(sp->spt);
  1895. ++sp->root_count;
  1896. spin_unlock(&vcpu->kvm->mmu_lock);
  1897. vcpu->arch.mmu.root_hpa = root;
  1898. return 0;
  1899. }
  1900. direct = !is_paging(vcpu);
  1901. for (i = 0; i < 4; ++i) {
  1902. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1903. ASSERT(!VALID_PAGE(root));
  1904. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1905. pdptr = kvm_pdptr_read(vcpu, i);
  1906. if (!is_present_gpte(pdptr)) {
  1907. vcpu->arch.mmu.pae_root[i] = 0;
  1908. continue;
  1909. }
  1910. root_gfn = pdptr >> PAGE_SHIFT;
  1911. } else if (vcpu->arch.mmu.root_level == 0)
  1912. root_gfn = 0;
  1913. if (mmu_check_root(vcpu, root_gfn))
  1914. return 1;
  1915. if (tdp_enabled) {
  1916. direct = 1;
  1917. root_gfn = i << 30;
  1918. }
  1919. spin_lock(&vcpu->kvm->mmu_lock);
  1920. kvm_mmu_free_some_pages(vcpu);
  1921. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1922. PT32_ROOT_LEVEL, direct,
  1923. ACC_ALL, NULL);
  1924. root = __pa(sp->spt);
  1925. ++sp->root_count;
  1926. spin_unlock(&vcpu->kvm->mmu_lock);
  1927. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1928. }
  1929. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1930. return 0;
  1931. }
  1932. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1933. {
  1934. int i;
  1935. struct kvm_mmu_page *sp;
  1936. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1937. return;
  1938. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1939. hpa_t root = vcpu->arch.mmu.root_hpa;
  1940. sp = page_header(root);
  1941. mmu_sync_children(vcpu, sp);
  1942. return;
  1943. }
  1944. for (i = 0; i < 4; ++i) {
  1945. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1946. if (root && VALID_PAGE(root)) {
  1947. root &= PT64_BASE_ADDR_MASK;
  1948. sp = page_header(root);
  1949. mmu_sync_children(vcpu, sp);
  1950. }
  1951. }
  1952. }
  1953. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1954. {
  1955. spin_lock(&vcpu->kvm->mmu_lock);
  1956. mmu_sync_roots(vcpu);
  1957. spin_unlock(&vcpu->kvm->mmu_lock);
  1958. }
  1959. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1960. u32 access, u32 *error)
  1961. {
  1962. if (error)
  1963. *error = 0;
  1964. return vaddr;
  1965. }
  1966. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1967. u32 error_code)
  1968. {
  1969. gfn_t gfn;
  1970. int r;
  1971. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1972. r = mmu_topup_memory_caches(vcpu);
  1973. if (r)
  1974. return r;
  1975. ASSERT(vcpu);
  1976. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1977. gfn = gva >> PAGE_SHIFT;
  1978. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1979. error_code & PFERR_WRITE_MASK, gfn);
  1980. }
  1981. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1982. u32 error_code)
  1983. {
  1984. pfn_t pfn;
  1985. int r;
  1986. int level;
  1987. gfn_t gfn = gpa >> PAGE_SHIFT;
  1988. unsigned long mmu_seq;
  1989. ASSERT(vcpu);
  1990. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1991. r = mmu_topup_memory_caches(vcpu);
  1992. if (r)
  1993. return r;
  1994. level = mapping_level(vcpu, gfn);
  1995. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1996. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1997. smp_rmb();
  1998. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1999. if (is_error_pfn(pfn))
  2000. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  2001. spin_lock(&vcpu->kvm->mmu_lock);
  2002. if (mmu_notifier_retry(vcpu, mmu_seq))
  2003. goto out_unlock;
  2004. kvm_mmu_free_some_pages(vcpu);
  2005. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  2006. level, gfn, pfn);
  2007. spin_unlock(&vcpu->kvm->mmu_lock);
  2008. return r;
  2009. out_unlock:
  2010. spin_unlock(&vcpu->kvm->mmu_lock);
  2011. kvm_release_pfn_clean(pfn);
  2012. return 0;
  2013. }
  2014. static void nonpaging_free(struct kvm_vcpu *vcpu)
  2015. {
  2016. mmu_free_roots(vcpu);
  2017. }
  2018. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  2019. {
  2020. struct kvm_mmu *context = &vcpu->arch.mmu;
  2021. context->new_cr3 = nonpaging_new_cr3;
  2022. context->page_fault = nonpaging_page_fault;
  2023. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2024. context->free = nonpaging_free;
  2025. context->prefetch_page = nonpaging_prefetch_page;
  2026. context->sync_page = nonpaging_sync_page;
  2027. context->invlpg = nonpaging_invlpg;
  2028. context->root_level = 0;
  2029. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2030. context->root_hpa = INVALID_PAGE;
  2031. return 0;
  2032. }
  2033. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2034. {
  2035. ++vcpu->stat.tlb_flush;
  2036. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  2037. }
  2038. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  2039. {
  2040. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  2041. mmu_free_roots(vcpu);
  2042. }
  2043. static void inject_page_fault(struct kvm_vcpu *vcpu,
  2044. u64 addr,
  2045. u32 err_code)
  2046. {
  2047. kvm_inject_page_fault(vcpu, addr, err_code);
  2048. }
  2049. static void paging_free(struct kvm_vcpu *vcpu)
  2050. {
  2051. nonpaging_free(vcpu);
  2052. }
  2053. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  2054. {
  2055. int bit7;
  2056. bit7 = (gpte >> 7) & 1;
  2057. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  2058. }
  2059. #define PTTYPE 64
  2060. #include "paging_tmpl.h"
  2061. #undef PTTYPE
  2062. #define PTTYPE 32
  2063. #include "paging_tmpl.h"
  2064. #undef PTTYPE
  2065. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  2066. {
  2067. struct kvm_mmu *context = &vcpu->arch.mmu;
  2068. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2069. u64 exb_bit_rsvd = 0;
  2070. if (!is_nx(vcpu))
  2071. exb_bit_rsvd = rsvd_bits(63, 63);
  2072. switch (level) {
  2073. case PT32_ROOT_LEVEL:
  2074. /* no rsvd bits for 2 level 4K page table entries */
  2075. context->rsvd_bits_mask[0][1] = 0;
  2076. context->rsvd_bits_mask[0][0] = 0;
  2077. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2078. if (!is_pse(vcpu)) {
  2079. context->rsvd_bits_mask[1][1] = 0;
  2080. break;
  2081. }
  2082. if (is_cpuid_PSE36())
  2083. /* 36bits PSE 4MB page */
  2084. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2085. else
  2086. /* 32 bits PSE 4MB page */
  2087. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2088. break;
  2089. case PT32E_ROOT_LEVEL:
  2090. context->rsvd_bits_mask[0][2] =
  2091. rsvd_bits(maxphyaddr, 63) |
  2092. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2093. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2094. rsvd_bits(maxphyaddr, 62); /* PDE */
  2095. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2096. rsvd_bits(maxphyaddr, 62); /* PTE */
  2097. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2098. rsvd_bits(maxphyaddr, 62) |
  2099. rsvd_bits(13, 20); /* large page */
  2100. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2101. break;
  2102. case PT64_ROOT_LEVEL:
  2103. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2104. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2105. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2106. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2107. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2108. rsvd_bits(maxphyaddr, 51);
  2109. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2110. rsvd_bits(maxphyaddr, 51);
  2111. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2112. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2113. rsvd_bits(maxphyaddr, 51) |
  2114. rsvd_bits(13, 29);
  2115. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2116. rsvd_bits(maxphyaddr, 51) |
  2117. rsvd_bits(13, 20); /* large page */
  2118. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2119. break;
  2120. }
  2121. }
  2122. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  2123. {
  2124. struct kvm_mmu *context = &vcpu->arch.mmu;
  2125. ASSERT(is_pae(vcpu));
  2126. context->new_cr3 = paging_new_cr3;
  2127. context->page_fault = paging64_page_fault;
  2128. context->gva_to_gpa = paging64_gva_to_gpa;
  2129. context->prefetch_page = paging64_prefetch_page;
  2130. context->sync_page = paging64_sync_page;
  2131. context->invlpg = paging64_invlpg;
  2132. context->free = paging_free;
  2133. context->root_level = level;
  2134. context->shadow_root_level = level;
  2135. context->root_hpa = INVALID_PAGE;
  2136. return 0;
  2137. }
  2138. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2139. {
  2140. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2141. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2142. }
  2143. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2144. {
  2145. struct kvm_mmu *context = &vcpu->arch.mmu;
  2146. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2147. context->new_cr3 = paging_new_cr3;
  2148. context->page_fault = paging32_page_fault;
  2149. context->gva_to_gpa = paging32_gva_to_gpa;
  2150. context->free = paging_free;
  2151. context->prefetch_page = paging32_prefetch_page;
  2152. context->sync_page = paging32_sync_page;
  2153. context->invlpg = paging32_invlpg;
  2154. context->root_level = PT32_ROOT_LEVEL;
  2155. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2156. context->root_hpa = INVALID_PAGE;
  2157. return 0;
  2158. }
  2159. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2160. {
  2161. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2162. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2163. }
  2164. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2165. {
  2166. struct kvm_mmu *context = &vcpu->arch.mmu;
  2167. context->new_cr3 = nonpaging_new_cr3;
  2168. context->page_fault = tdp_page_fault;
  2169. context->free = nonpaging_free;
  2170. context->prefetch_page = nonpaging_prefetch_page;
  2171. context->sync_page = nonpaging_sync_page;
  2172. context->invlpg = nonpaging_invlpg;
  2173. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2174. context->root_hpa = INVALID_PAGE;
  2175. if (!is_paging(vcpu)) {
  2176. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2177. context->root_level = 0;
  2178. } else if (is_long_mode(vcpu)) {
  2179. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2180. context->gva_to_gpa = paging64_gva_to_gpa;
  2181. context->root_level = PT64_ROOT_LEVEL;
  2182. } else if (is_pae(vcpu)) {
  2183. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2184. context->gva_to_gpa = paging64_gva_to_gpa;
  2185. context->root_level = PT32E_ROOT_LEVEL;
  2186. } else {
  2187. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2188. context->gva_to_gpa = paging32_gva_to_gpa;
  2189. context->root_level = PT32_ROOT_LEVEL;
  2190. }
  2191. return 0;
  2192. }
  2193. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2194. {
  2195. int r;
  2196. ASSERT(vcpu);
  2197. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2198. if (!is_paging(vcpu))
  2199. r = nonpaging_init_context(vcpu);
  2200. else if (is_long_mode(vcpu))
  2201. r = paging64_init_context(vcpu);
  2202. else if (is_pae(vcpu))
  2203. r = paging32E_init_context(vcpu);
  2204. else
  2205. r = paging32_init_context(vcpu);
  2206. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2207. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2208. return r;
  2209. }
  2210. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2211. {
  2212. vcpu->arch.update_pte.pfn = bad_pfn;
  2213. if (tdp_enabled)
  2214. return init_kvm_tdp_mmu(vcpu);
  2215. else
  2216. return init_kvm_softmmu(vcpu);
  2217. }
  2218. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2219. {
  2220. ASSERT(vcpu);
  2221. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2222. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2223. vcpu->arch.mmu.free(vcpu);
  2224. }
  2225. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2226. {
  2227. destroy_kvm_mmu(vcpu);
  2228. return init_kvm_mmu(vcpu);
  2229. }
  2230. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2231. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2232. {
  2233. int r;
  2234. r = mmu_topup_memory_caches(vcpu);
  2235. if (r)
  2236. goto out;
  2237. r = mmu_alloc_roots(vcpu);
  2238. spin_lock(&vcpu->kvm->mmu_lock);
  2239. mmu_sync_roots(vcpu);
  2240. spin_unlock(&vcpu->kvm->mmu_lock);
  2241. if (r)
  2242. goto out;
  2243. /* set_cr3() should ensure TLB has been flushed */
  2244. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2245. out:
  2246. return r;
  2247. }
  2248. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2249. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2250. {
  2251. mmu_free_roots(vcpu);
  2252. }
  2253. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2254. struct kvm_mmu_page *sp,
  2255. u64 *spte)
  2256. {
  2257. u64 pte;
  2258. struct kvm_mmu_page *child;
  2259. pte = *spte;
  2260. if (is_shadow_present_pte(pte)) {
  2261. if (is_last_spte(pte, sp->role.level))
  2262. drop_spte(vcpu->kvm, spte, shadow_trap_nonpresent_pte);
  2263. else {
  2264. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2265. mmu_page_remove_parent_pte(child, spte);
  2266. }
  2267. }
  2268. __set_spte(spte, shadow_trap_nonpresent_pte);
  2269. if (is_large_pte(pte))
  2270. --vcpu->kvm->stat.lpages;
  2271. }
  2272. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2273. struct kvm_mmu_page *sp,
  2274. u64 *spte,
  2275. const void *new)
  2276. {
  2277. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2278. ++vcpu->kvm->stat.mmu_pde_zapped;
  2279. return;
  2280. }
  2281. ++vcpu->kvm->stat.mmu_pte_updated;
  2282. if (!sp->role.cr4_pae)
  2283. paging32_update_pte(vcpu, sp, spte, new);
  2284. else
  2285. paging64_update_pte(vcpu, sp, spte, new);
  2286. }
  2287. static bool need_remote_flush(u64 old, u64 new)
  2288. {
  2289. if (!is_shadow_present_pte(old))
  2290. return false;
  2291. if (!is_shadow_present_pte(new))
  2292. return true;
  2293. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2294. return true;
  2295. old ^= PT64_NX_MASK;
  2296. new ^= PT64_NX_MASK;
  2297. return (old & ~new & PT64_PERM_MASK) != 0;
  2298. }
  2299. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2300. bool remote_flush, bool local_flush)
  2301. {
  2302. if (zap_page)
  2303. return;
  2304. if (remote_flush)
  2305. kvm_flush_remote_tlbs(vcpu->kvm);
  2306. else if (local_flush)
  2307. kvm_mmu_flush_tlb(vcpu);
  2308. }
  2309. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2310. {
  2311. u64 *spte = vcpu->arch.last_pte_updated;
  2312. return !!(spte && (*spte & shadow_accessed_mask));
  2313. }
  2314. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2315. u64 gpte)
  2316. {
  2317. gfn_t gfn;
  2318. pfn_t pfn;
  2319. if (!is_present_gpte(gpte))
  2320. return;
  2321. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2322. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2323. smp_rmb();
  2324. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2325. if (is_error_pfn(pfn)) {
  2326. kvm_release_pfn_clean(pfn);
  2327. return;
  2328. }
  2329. vcpu->arch.update_pte.gfn = gfn;
  2330. vcpu->arch.update_pte.pfn = pfn;
  2331. }
  2332. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2333. {
  2334. u64 *spte = vcpu->arch.last_pte_updated;
  2335. if (spte
  2336. && vcpu->arch.last_pte_gfn == gfn
  2337. && shadow_accessed_mask
  2338. && !(*spte & shadow_accessed_mask)
  2339. && is_shadow_present_pte(*spte))
  2340. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2341. }
  2342. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2343. const u8 *new, int bytes,
  2344. bool guest_initiated)
  2345. {
  2346. gfn_t gfn = gpa >> PAGE_SHIFT;
  2347. struct kvm_mmu_page *sp;
  2348. struct hlist_node *node;
  2349. LIST_HEAD(invalid_list);
  2350. u64 entry, gentry;
  2351. u64 *spte;
  2352. unsigned offset = offset_in_page(gpa);
  2353. unsigned pte_size;
  2354. unsigned page_offset;
  2355. unsigned misaligned;
  2356. unsigned quadrant;
  2357. int level;
  2358. int flooded = 0;
  2359. int npte;
  2360. int r;
  2361. int invlpg_counter;
  2362. bool remote_flush, local_flush, zap_page;
  2363. zap_page = remote_flush = local_flush = false;
  2364. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2365. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2366. /*
  2367. * Assume that the pte write on a page table of the same type
  2368. * as the current vcpu paging mode. This is nearly always true
  2369. * (might be false while changing modes). Note it is verified later
  2370. * by update_pte().
  2371. */
  2372. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2373. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2374. if (is_pae(vcpu)) {
  2375. gpa &= ~(gpa_t)7;
  2376. bytes = 8;
  2377. }
  2378. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2379. if (r)
  2380. gentry = 0;
  2381. new = (const u8 *)&gentry;
  2382. }
  2383. switch (bytes) {
  2384. case 4:
  2385. gentry = *(const u32 *)new;
  2386. break;
  2387. case 8:
  2388. gentry = *(const u64 *)new;
  2389. break;
  2390. default:
  2391. gentry = 0;
  2392. break;
  2393. }
  2394. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2395. spin_lock(&vcpu->kvm->mmu_lock);
  2396. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2397. gentry = 0;
  2398. kvm_mmu_access_page(vcpu, gfn);
  2399. kvm_mmu_free_some_pages(vcpu);
  2400. ++vcpu->kvm->stat.mmu_pte_write;
  2401. kvm_mmu_audit(vcpu, "pre pte write");
  2402. if (guest_initiated) {
  2403. if (gfn == vcpu->arch.last_pt_write_gfn
  2404. && !last_updated_pte_accessed(vcpu)) {
  2405. ++vcpu->arch.last_pt_write_count;
  2406. if (vcpu->arch.last_pt_write_count >= 3)
  2407. flooded = 1;
  2408. } else {
  2409. vcpu->arch.last_pt_write_gfn = gfn;
  2410. vcpu->arch.last_pt_write_count = 1;
  2411. vcpu->arch.last_pte_updated = NULL;
  2412. }
  2413. }
  2414. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  2415. pte_size = sp->role.cr4_pae ? 8 : 4;
  2416. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2417. misaligned |= bytes < 4;
  2418. if (misaligned || flooded) {
  2419. /*
  2420. * Misaligned accesses are too much trouble to fix
  2421. * up; also, they usually indicate a page is not used
  2422. * as a page table.
  2423. *
  2424. * If we're seeing too many writes to a page,
  2425. * it may no longer be a page table, or we may be
  2426. * forking, in which case it is better to unmap the
  2427. * page.
  2428. */
  2429. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2430. gpa, bytes, sp->role.word);
  2431. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2432. &invalid_list);
  2433. ++vcpu->kvm->stat.mmu_flooded;
  2434. continue;
  2435. }
  2436. page_offset = offset;
  2437. level = sp->role.level;
  2438. npte = 1;
  2439. if (!sp->role.cr4_pae) {
  2440. page_offset <<= 1; /* 32->64 */
  2441. /*
  2442. * A 32-bit pde maps 4MB while the shadow pdes map
  2443. * only 2MB. So we need to double the offset again
  2444. * and zap two pdes instead of one.
  2445. */
  2446. if (level == PT32_ROOT_LEVEL) {
  2447. page_offset &= ~7; /* kill rounding error */
  2448. page_offset <<= 1;
  2449. npte = 2;
  2450. }
  2451. quadrant = page_offset >> PAGE_SHIFT;
  2452. page_offset &= ~PAGE_MASK;
  2453. if (quadrant != sp->role.quadrant)
  2454. continue;
  2455. }
  2456. local_flush = true;
  2457. spte = &sp->spt[page_offset / sizeof(*spte)];
  2458. while (npte--) {
  2459. entry = *spte;
  2460. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2461. if (gentry)
  2462. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2463. if (!remote_flush && need_remote_flush(entry, *spte))
  2464. remote_flush = true;
  2465. ++spte;
  2466. }
  2467. }
  2468. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  2469. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2470. kvm_mmu_audit(vcpu, "post pte write");
  2471. spin_unlock(&vcpu->kvm->mmu_lock);
  2472. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2473. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2474. vcpu->arch.update_pte.pfn = bad_pfn;
  2475. }
  2476. }
  2477. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2478. {
  2479. gpa_t gpa;
  2480. int r;
  2481. if (tdp_enabled)
  2482. return 0;
  2483. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2484. spin_lock(&vcpu->kvm->mmu_lock);
  2485. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2486. spin_unlock(&vcpu->kvm->mmu_lock);
  2487. return r;
  2488. }
  2489. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2490. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2491. {
  2492. int free_pages;
  2493. LIST_HEAD(invalid_list);
  2494. free_pages = vcpu->kvm->arch.n_free_mmu_pages;
  2495. while (free_pages < KVM_REFILL_PAGES &&
  2496. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2497. struct kvm_mmu_page *sp;
  2498. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2499. struct kvm_mmu_page, link);
  2500. free_pages += kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2501. &invalid_list);
  2502. ++vcpu->kvm->stat.mmu_recycled;
  2503. }
  2504. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2505. }
  2506. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2507. {
  2508. int r;
  2509. enum emulation_result er;
  2510. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2511. if (r < 0)
  2512. goto out;
  2513. if (!r) {
  2514. r = 1;
  2515. goto out;
  2516. }
  2517. r = mmu_topup_memory_caches(vcpu);
  2518. if (r)
  2519. goto out;
  2520. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2521. switch (er) {
  2522. case EMULATE_DONE:
  2523. return 1;
  2524. case EMULATE_DO_MMIO:
  2525. ++vcpu->stat.mmio_exits;
  2526. /* fall through */
  2527. case EMULATE_FAIL:
  2528. return 0;
  2529. default:
  2530. BUG();
  2531. }
  2532. out:
  2533. return r;
  2534. }
  2535. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2536. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2537. {
  2538. vcpu->arch.mmu.invlpg(vcpu, gva);
  2539. kvm_mmu_flush_tlb(vcpu);
  2540. ++vcpu->stat.invlpg;
  2541. }
  2542. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2543. void kvm_enable_tdp(void)
  2544. {
  2545. tdp_enabled = true;
  2546. }
  2547. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2548. void kvm_disable_tdp(void)
  2549. {
  2550. tdp_enabled = false;
  2551. }
  2552. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2553. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2554. {
  2555. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2556. }
  2557. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2558. {
  2559. struct page *page;
  2560. int i;
  2561. ASSERT(vcpu);
  2562. /*
  2563. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2564. * Therefore we need to allocate shadow page tables in the first
  2565. * 4GB of memory, which happens to fit the DMA32 zone.
  2566. */
  2567. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2568. if (!page)
  2569. return -ENOMEM;
  2570. vcpu->arch.mmu.pae_root = page_address(page);
  2571. for (i = 0; i < 4; ++i)
  2572. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2573. return 0;
  2574. }
  2575. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2576. {
  2577. ASSERT(vcpu);
  2578. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2579. return alloc_mmu_pages(vcpu);
  2580. }
  2581. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2582. {
  2583. ASSERT(vcpu);
  2584. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2585. return init_kvm_mmu(vcpu);
  2586. }
  2587. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2588. {
  2589. ASSERT(vcpu);
  2590. destroy_kvm_mmu(vcpu);
  2591. free_mmu_pages(vcpu);
  2592. mmu_free_memory_caches(vcpu);
  2593. }
  2594. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2595. {
  2596. struct kvm_mmu_page *sp;
  2597. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2598. int i;
  2599. u64 *pt;
  2600. if (!test_bit(slot, sp->slot_bitmap))
  2601. continue;
  2602. pt = sp->spt;
  2603. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2604. /* avoid RMW */
  2605. if (is_writable_pte(pt[i]))
  2606. pt[i] &= ~PT_WRITABLE_MASK;
  2607. }
  2608. kvm_flush_remote_tlbs(kvm);
  2609. }
  2610. void kvm_mmu_zap_all(struct kvm *kvm)
  2611. {
  2612. struct kvm_mmu_page *sp, *node;
  2613. LIST_HEAD(invalid_list);
  2614. spin_lock(&kvm->mmu_lock);
  2615. restart:
  2616. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2617. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  2618. goto restart;
  2619. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2620. spin_unlock(&kvm->mmu_lock);
  2621. }
  2622. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  2623. struct list_head *invalid_list)
  2624. {
  2625. struct kvm_mmu_page *page;
  2626. page = container_of(kvm->arch.active_mmu_pages.prev,
  2627. struct kvm_mmu_page, link);
  2628. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  2629. }
  2630. static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  2631. {
  2632. struct kvm *kvm;
  2633. struct kvm *kvm_freed = NULL;
  2634. int cache_count = 0;
  2635. spin_lock(&kvm_lock);
  2636. list_for_each_entry(kvm, &vm_list, vm_list) {
  2637. int npages, idx, freed_pages;
  2638. LIST_HEAD(invalid_list);
  2639. idx = srcu_read_lock(&kvm->srcu);
  2640. spin_lock(&kvm->mmu_lock);
  2641. npages = kvm->arch.n_alloc_mmu_pages -
  2642. kvm->arch.n_free_mmu_pages;
  2643. cache_count += npages;
  2644. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2645. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  2646. &invalid_list);
  2647. cache_count -= freed_pages;
  2648. kvm_freed = kvm;
  2649. }
  2650. nr_to_scan--;
  2651. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2652. spin_unlock(&kvm->mmu_lock);
  2653. srcu_read_unlock(&kvm->srcu, idx);
  2654. }
  2655. if (kvm_freed)
  2656. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2657. spin_unlock(&kvm_lock);
  2658. return cache_count;
  2659. }
  2660. static struct shrinker mmu_shrinker = {
  2661. .shrink = mmu_shrink,
  2662. .seeks = DEFAULT_SEEKS * 10,
  2663. };
  2664. static void mmu_destroy_caches(void)
  2665. {
  2666. if (pte_chain_cache)
  2667. kmem_cache_destroy(pte_chain_cache);
  2668. if (rmap_desc_cache)
  2669. kmem_cache_destroy(rmap_desc_cache);
  2670. if (mmu_page_header_cache)
  2671. kmem_cache_destroy(mmu_page_header_cache);
  2672. }
  2673. void kvm_mmu_module_exit(void)
  2674. {
  2675. mmu_destroy_caches();
  2676. unregister_shrinker(&mmu_shrinker);
  2677. }
  2678. int kvm_mmu_module_init(void)
  2679. {
  2680. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2681. sizeof(struct kvm_pte_chain),
  2682. 0, 0, NULL);
  2683. if (!pte_chain_cache)
  2684. goto nomem;
  2685. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2686. sizeof(struct kvm_rmap_desc),
  2687. 0, 0, NULL);
  2688. if (!rmap_desc_cache)
  2689. goto nomem;
  2690. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2691. sizeof(struct kvm_mmu_page),
  2692. 0, 0, NULL);
  2693. if (!mmu_page_header_cache)
  2694. goto nomem;
  2695. register_shrinker(&mmu_shrinker);
  2696. return 0;
  2697. nomem:
  2698. mmu_destroy_caches();
  2699. return -ENOMEM;
  2700. }
  2701. /*
  2702. * Caculate mmu pages needed for kvm.
  2703. */
  2704. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2705. {
  2706. int i;
  2707. unsigned int nr_mmu_pages;
  2708. unsigned int nr_pages = 0;
  2709. struct kvm_memslots *slots;
  2710. slots = kvm_memslots(kvm);
  2711. for (i = 0; i < slots->nmemslots; i++)
  2712. nr_pages += slots->memslots[i].npages;
  2713. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2714. nr_mmu_pages = max(nr_mmu_pages,
  2715. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2716. return nr_mmu_pages;
  2717. }
  2718. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2719. unsigned len)
  2720. {
  2721. if (len > buffer->len)
  2722. return NULL;
  2723. return buffer->ptr;
  2724. }
  2725. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2726. unsigned len)
  2727. {
  2728. void *ret;
  2729. ret = pv_mmu_peek_buffer(buffer, len);
  2730. if (!ret)
  2731. return ret;
  2732. buffer->ptr += len;
  2733. buffer->len -= len;
  2734. buffer->processed += len;
  2735. return ret;
  2736. }
  2737. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2738. gpa_t addr, gpa_t value)
  2739. {
  2740. int bytes = 8;
  2741. int r;
  2742. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2743. bytes = 4;
  2744. r = mmu_topup_memory_caches(vcpu);
  2745. if (r)
  2746. return r;
  2747. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2748. return -EFAULT;
  2749. return 1;
  2750. }
  2751. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2752. {
  2753. (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2754. return 1;
  2755. }
  2756. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2757. {
  2758. spin_lock(&vcpu->kvm->mmu_lock);
  2759. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2760. spin_unlock(&vcpu->kvm->mmu_lock);
  2761. return 1;
  2762. }
  2763. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2764. struct kvm_pv_mmu_op_buffer *buffer)
  2765. {
  2766. struct kvm_mmu_op_header *header;
  2767. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2768. if (!header)
  2769. return 0;
  2770. switch (header->op) {
  2771. case KVM_MMU_OP_WRITE_PTE: {
  2772. struct kvm_mmu_op_write_pte *wpte;
  2773. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2774. if (!wpte)
  2775. return 0;
  2776. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2777. wpte->pte_val);
  2778. }
  2779. case KVM_MMU_OP_FLUSH_TLB: {
  2780. struct kvm_mmu_op_flush_tlb *ftlb;
  2781. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2782. if (!ftlb)
  2783. return 0;
  2784. return kvm_pv_mmu_flush_tlb(vcpu);
  2785. }
  2786. case KVM_MMU_OP_RELEASE_PT: {
  2787. struct kvm_mmu_op_release_pt *rpt;
  2788. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2789. if (!rpt)
  2790. return 0;
  2791. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2792. }
  2793. default: return 0;
  2794. }
  2795. }
  2796. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2797. gpa_t addr, unsigned long *ret)
  2798. {
  2799. int r;
  2800. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2801. buffer->ptr = buffer->buf;
  2802. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2803. buffer->processed = 0;
  2804. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2805. if (r)
  2806. goto out;
  2807. while (buffer->len) {
  2808. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2809. if (r < 0)
  2810. goto out;
  2811. if (r == 0)
  2812. break;
  2813. }
  2814. r = 1;
  2815. out:
  2816. *ret = buffer->processed;
  2817. return r;
  2818. }
  2819. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2820. {
  2821. struct kvm_shadow_walk_iterator iterator;
  2822. int nr_sptes = 0;
  2823. spin_lock(&vcpu->kvm->mmu_lock);
  2824. for_each_shadow_entry(vcpu, addr, iterator) {
  2825. sptes[iterator.level-1] = *iterator.sptep;
  2826. nr_sptes++;
  2827. if (!is_shadow_present_pte(*iterator.sptep))
  2828. break;
  2829. }
  2830. spin_unlock(&vcpu->kvm->mmu_lock);
  2831. return nr_sptes;
  2832. }
  2833. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2834. #ifdef AUDIT
  2835. static const char *audit_msg;
  2836. static gva_t canonicalize(gva_t gva)
  2837. {
  2838. #ifdef CONFIG_X86_64
  2839. gva = (long long)(gva << 16) >> 16;
  2840. #endif
  2841. return gva;
  2842. }
  2843. typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
  2844. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2845. inspect_spte_fn fn)
  2846. {
  2847. int i;
  2848. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2849. u64 ent = sp->spt[i];
  2850. if (is_shadow_present_pte(ent)) {
  2851. if (!is_last_spte(ent, sp->role.level)) {
  2852. struct kvm_mmu_page *child;
  2853. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2854. __mmu_spte_walk(kvm, child, fn);
  2855. } else
  2856. fn(kvm, &sp->spt[i]);
  2857. }
  2858. }
  2859. }
  2860. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2861. {
  2862. int i;
  2863. struct kvm_mmu_page *sp;
  2864. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2865. return;
  2866. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2867. hpa_t root = vcpu->arch.mmu.root_hpa;
  2868. sp = page_header(root);
  2869. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2870. return;
  2871. }
  2872. for (i = 0; i < 4; ++i) {
  2873. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2874. if (root && VALID_PAGE(root)) {
  2875. root &= PT64_BASE_ADDR_MASK;
  2876. sp = page_header(root);
  2877. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2878. }
  2879. }
  2880. return;
  2881. }
  2882. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2883. gva_t va, int level)
  2884. {
  2885. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2886. int i;
  2887. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2888. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2889. u64 ent = pt[i];
  2890. if (ent == shadow_trap_nonpresent_pte)
  2891. continue;
  2892. va = canonicalize(va);
  2893. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2894. audit_mappings_page(vcpu, ent, va, level - 1);
  2895. else {
  2896. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2897. gfn_t gfn = gpa >> PAGE_SHIFT;
  2898. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2899. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2900. if (is_error_pfn(pfn)) {
  2901. kvm_release_pfn_clean(pfn);
  2902. continue;
  2903. }
  2904. if (is_shadow_present_pte(ent)
  2905. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2906. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2907. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2908. audit_msg, vcpu->arch.mmu.root_level,
  2909. va, gpa, hpa, ent,
  2910. is_shadow_present_pte(ent));
  2911. else if (ent == shadow_notrap_nonpresent_pte
  2912. && !is_error_hpa(hpa))
  2913. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2914. " valid guest gva %lx\n", audit_msg, va);
  2915. kvm_release_pfn_clean(pfn);
  2916. }
  2917. }
  2918. }
  2919. static void audit_mappings(struct kvm_vcpu *vcpu)
  2920. {
  2921. unsigned i;
  2922. if (vcpu->arch.mmu.root_level == 4)
  2923. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2924. else
  2925. for (i = 0; i < 4; ++i)
  2926. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2927. audit_mappings_page(vcpu,
  2928. vcpu->arch.mmu.pae_root[i],
  2929. i << 30,
  2930. 2);
  2931. }
  2932. static int count_rmaps(struct kvm_vcpu *vcpu)
  2933. {
  2934. struct kvm *kvm = vcpu->kvm;
  2935. struct kvm_memslots *slots;
  2936. int nmaps = 0;
  2937. int i, j, k, idx;
  2938. idx = srcu_read_lock(&kvm->srcu);
  2939. slots = kvm_memslots(kvm);
  2940. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2941. struct kvm_memory_slot *m = &slots->memslots[i];
  2942. struct kvm_rmap_desc *d;
  2943. for (j = 0; j < m->npages; ++j) {
  2944. unsigned long *rmapp = &m->rmap[j];
  2945. if (!*rmapp)
  2946. continue;
  2947. if (!(*rmapp & 1)) {
  2948. ++nmaps;
  2949. continue;
  2950. }
  2951. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2952. while (d) {
  2953. for (k = 0; k < RMAP_EXT; ++k)
  2954. if (d->sptes[k])
  2955. ++nmaps;
  2956. else
  2957. break;
  2958. d = d->more;
  2959. }
  2960. }
  2961. }
  2962. srcu_read_unlock(&kvm->srcu, idx);
  2963. return nmaps;
  2964. }
  2965. void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
  2966. {
  2967. unsigned long *rmapp;
  2968. struct kvm_mmu_page *rev_sp;
  2969. gfn_t gfn;
  2970. if (is_writable_pte(*sptep)) {
  2971. rev_sp = page_header(__pa(sptep));
  2972. gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);
  2973. if (!gfn_to_memslot(kvm, gfn)) {
  2974. if (!printk_ratelimit())
  2975. return;
  2976. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2977. audit_msg, gfn);
  2978. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2979. audit_msg, (long int)(sptep - rev_sp->spt),
  2980. rev_sp->gfn);
  2981. dump_stack();
  2982. return;
  2983. }
  2984. rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level);
  2985. if (!*rmapp) {
  2986. if (!printk_ratelimit())
  2987. return;
  2988. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2989. audit_msg, *sptep);
  2990. dump_stack();
  2991. }
  2992. }
  2993. }
  2994. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2995. {
  2996. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2997. }
  2998. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2999. {
  3000. struct kvm_mmu_page *sp;
  3001. int i;
  3002. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  3003. u64 *pt = sp->spt;
  3004. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  3005. continue;
  3006. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  3007. u64 ent = pt[i];
  3008. if (!(ent & PT_PRESENT_MASK))
  3009. continue;
  3010. if (!is_writable_pte(ent))
  3011. continue;
  3012. inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
  3013. }
  3014. }
  3015. return;
  3016. }
  3017. static void audit_rmap(struct kvm_vcpu *vcpu)
  3018. {
  3019. check_writable_mappings_rmap(vcpu);
  3020. count_rmaps(vcpu);
  3021. }
  3022. static void audit_write_protection(struct kvm_vcpu *vcpu)
  3023. {
  3024. struct kvm_mmu_page *sp;
  3025. struct kvm_memory_slot *slot;
  3026. unsigned long *rmapp;
  3027. u64 *spte;
  3028. gfn_t gfn;
  3029. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  3030. if (sp->role.direct)
  3031. continue;
  3032. if (sp->unsync)
  3033. continue;
  3034. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  3035. rmapp = &slot->rmap[gfn - slot->base_gfn];
  3036. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  3037. while (spte) {
  3038. if (is_writable_pte(*spte))
  3039. printk(KERN_ERR "%s: (%s) shadow page has "
  3040. "writable mappings: gfn %lx role %x\n",
  3041. __func__, audit_msg, sp->gfn,
  3042. sp->role.word);
  3043. spte = rmap_next(vcpu->kvm, rmapp, spte);
  3044. }
  3045. }
  3046. }
  3047. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  3048. {
  3049. int olddbg = dbg;
  3050. dbg = 0;
  3051. audit_msg = msg;
  3052. audit_rmap(vcpu);
  3053. audit_write_protection(vcpu);
  3054. if (strcmp("pre pte write", audit_msg) != 0)
  3055. audit_mappings(vcpu);
  3056. audit_writable_sptes_have_rmaps(vcpu);
  3057. dbg = olddbg;
  3058. }
  3059. #endif