request.c 34 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414
  1. /*
  2. * Main bcache entry point - handle a read or a write request and decide what to
  3. * do with it; the make_request functions are called by the block layer.
  4. *
  5. * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
  6. * Copyright 2012 Google, Inc.
  7. */
  8. #include "bcache.h"
  9. #include "btree.h"
  10. #include "debug.h"
  11. #include "request.h"
  12. #include "writeback.h"
  13. #include <linux/cgroup.h>
  14. #include <linux/module.h>
  15. #include <linux/hash.h>
  16. #include <linux/random.h>
  17. #include "blk-cgroup.h"
  18. #include <trace/events/bcache.h>
  19. #define CUTOFF_CACHE_ADD 95
  20. #define CUTOFF_CACHE_READA 90
  21. struct kmem_cache *bch_search_cache;
  22. static void bch_data_insert_start(struct closure *);
  23. /* Cgroup interface */
  24. #ifdef CONFIG_CGROUP_BCACHE
  25. static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
  26. static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
  27. {
  28. struct cgroup_subsys_state *css;
  29. return cgroup &&
  30. (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
  31. ? container_of(css, struct bch_cgroup, css)
  32. : &bcache_default_cgroup;
  33. }
  34. struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
  35. {
  36. struct cgroup_subsys_state *css = bio->bi_css
  37. ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
  38. : task_subsys_state(current, bcache_subsys_id);
  39. return css
  40. ? container_of(css, struct bch_cgroup, css)
  41. : &bcache_default_cgroup;
  42. }
  43. static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
  44. struct file *file,
  45. char __user *buf, size_t nbytes, loff_t *ppos)
  46. {
  47. char tmp[1024];
  48. int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
  49. cgroup_to_bcache(cgrp)->cache_mode + 1);
  50. if (len < 0)
  51. return len;
  52. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  53. }
  54. static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
  55. const char *buf)
  56. {
  57. int v = bch_read_string_list(buf, bch_cache_modes);
  58. if (v < 0)
  59. return v;
  60. cgroup_to_bcache(cgrp)->cache_mode = v - 1;
  61. return 0;
  62. }
  63. static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
  64. {
  65. return cgroup_to_bcache(cgrp)->verify;
  66. }
  67. static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
  68. {
  69. cgroup_to_bcache(cgrp)->verify = val;
  70. return 0;
  71. }
  72. static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
  73. {
  74. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  75. return atomic_read(&bcachecg->stats.cache_hits);
  76. }
  77. static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
  78. {
  79. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  80. return atomic_read(&bcachecg->stats.cache_misses);
  81. }
  82. static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
  83. struct cftype *cft)
  84. {
  85. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  86. return atomic_read(&bcachecg->stats.cache_bypass_hits);
  87. }
  88. static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
  89. struct cftype *cft)
  90. {
  91. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  92. return atomic_read(&bcachecg->stats.cache_bypass_misses);
  93. }
  94. static struct cftype bch_files[] = {
  95. {
  96. .name = "cache_mode",
  97. .read = cache_mode_read,
  98. .write_string = cache_mode_write,
  99. },
  100. {
  101. .name = "verify",
  102. .read_u64 = bch_verify_read,
  103. .write_u64 = bch_verify_write,
  104. },
  105. {
  106. .name = "cache_hits",
  107. .read_u64 = bch_cache_hits_read,
  108. },
  109. {
  110. .name = "cache_misses",
  111. .read_u64 = bch_cache_misses_read,
  112. },
  113. {
  114. .name = "cache_bypass_hits",
  115. .read_u64 = bch_cache_bypass_hits_read,
  116. },
  117. {
  118. .name = "cache_bypass_misses",
  119. .read_u64 = bch_cache_bypass_misses_read,
  120. },
  121. { } /* terminate */
  122. };
  123. static void init_bch_cgroup(struct bch_cgroup *cg)
  124. {
  125. cg->cache_mode = -1;
  126. }
  127. static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
  128. {
  129. struct bch_cgroup *cg;
  130. cg = kzalloc(sizeof(*cg), GFP_KERNEL);
  131. if (!cg)
  132. return ERR_PTR(-ENOMEM);
  133. init_bch_cgroup(cg);
  134. return &cg->css;
  135. }
  136. static void bcachecg_destroy(struct cgroup *cgroup)
  137. {
  138. struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
  139. free_css_id(&bcache_subsys, &cg->css);
  140. kfree(cg);
  141. }
  142. struct cgroup_subsys bcache_subsys = {
  143. .create = bcachecg_create,
  144. .destroy = bcachecg_destroy,
  145. .subsys_id = bcache_subsys_id,
  146. .name = "bcache",
  147. .module = THIS_MODULE,
  148. };
  149. EXPORT_SYMBOL_GPL(bcache_subsys);
  150. #endif
  151. static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
  152. {
  153. #ifdef CONFIG_CGROUP_BCACHE
  154. int r = bch_bio_to_cgroup(bio)->cache_mode;
  155. if (r >= 0)
  156. return r;
  157. #endif
  158. return BDEV_CACHE_MODE(&dc->sb);
  159. }
  160. static bool verify(struct cached_dev *dc, struct bio *bio)
  161. {
  162. #ifdef CONFIG_CGROUP_BCACHE
  163. if (bch_bio_to_cgroup(bio)->verify)
  164. return true;
  165. #endif
  166. return dc->verify;
  167. }
  168. static void bio_csum(struct bio *bio, struct bkey *k)
  169. {
  170. struct bio_vec *bv;
  171. uint64_t csum = 0;
  172. int i;
  173. bio_for_each_segment(bv, bio, i) {
  174. void *d = kmap(bv->bv_page) + bv->bv_offset;
  175. csum = bch_crc64_update(csum, d, bv->bv_len);
  176. kunmap(bv->bv_page);
  177. }
  178. k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
  179. }
  180. /* Insert data into cache */
  181. static void bch_data_insert_keys(struct closure *cl)
  182. {
  183. struct btree_op *op = container_of(cl, struct btree_op, cl);
  184. struct search *s = container_of(op, struct search, op);
  185. /*
  186. * If we're looping, might already be waiting on
  187. * another journal write - can't wait on more than one journal write at
  188. * a time
  189. *
  190. * XXX: this looks wrong
  191. */
  192. #if 0
  193. while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
  194. closure_sync(&s->cl);
  195. #endif
  196. if (s->write)
  197. op->journal = bch_journal(op->c, &op->keys,
  198. op->flush_journal
  199. ? &s->cl : NULL);
  200. if (bch_btree_insert(op, op->c, &op->keys)) {
  201. s->error = -ENOMEM;
  202. op->insert_data_done = true;
  203. }
  204. if (op->journal)
  205. atomic_dec_bug(op->journal);
  206. op->journal = NULL;
  207. if (!op->insert_data_done)
  208. continue_at(cl, bch_data_insert_start, bcache_wq);
  209. bch_keylist_free(&op->keys);
  210. closure_return(cl);
  211. }
  212. struct open_bucket {
  213. struct list_head list;
  214. struct task_struct *last;
  215. unsigned sectors_free;
  216. BKEY_PADDED(key);
  217. };
  218. void bch_open_buckets_free(struct cache_set *c)
  219. {
  220. struct open_bucket *b;
  221. while (!list_empty(&c->data_buckets)) {
  222. b = list_first_entry(&c->data_buckets,
  223. struct open_bucket, list);
  224. list_del(&b->list);
  225. kfree(b);
  226. }
  227. }
  228. int bch_open_buckets_alloc(struct cache_set *c)
  229. {
  230. int i;
  231. spin_lock_init(&c->data_bucket_lock);
  232. for (i = 0; i < 6; i++) {
  233. struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
  234. if (!b)
  235. return -ENOMEM;
  236. list_add(&b->list, &c->data_buckets);
  237. }
  238. return 0;
  239. }
  240. /*
  241. * We keep multiple buckets open for writes, and try to segregate different
  242. * write streams for better cache utilization: first we look for a bucket where
  243. * the last write to it was sequential with the current write, and failing that
  244. * we look for a bucket that was last used by the same task.
  245. *
  246. * The ideas is if you've got multiple tasks pulling data into the cache at the
  247. * same time, you'll get better cache utilization if you try to segregate their
  248. * data and preserve locality.
  249. *
  250. * For example, say you've starting Firefox at the same time you're copying a
  251. * bunch of files. Firefox will likely end up being fairly hot and stay in the
  252. * cache awhile, but the data you copied might not be; if you wrote all that
  253. * data to the same buckets it'd get invalidated at the same time.
  254. *
  255. * Both of those tasks will be doing fairly random IO so we can't rely on
  256. * detecting sequential IO to segregate their data, but going off of the task
  257. * should be a sane heuristic.
  258. */
  259. static struct open_bucket *pick_data_bucket(struct cache_set *c,
  260. const struct bkey *search,
  261. struct task_struct *task,
  262. struct bkey *alloc)
  263. {
  264. struct open_bucket *ret, *ret_task = NULL;
  265. list_for_each_entry_reverse(ret, &c->data_buckets, list)
  266. if (!bkey_cmp(&ret->key, search))
  267. goto found;
  268. else if (ret->last == task)
  269. ret_task = ret;
  270. ret = ret_task ?: list_first_entry(&c->data_buckets,
  271. struct open_bucket, list);
  272. found:
  273. if (!ret->sectors_free && KEY_PTRS(alloc)) {
  274. ret->sectors_free = c->sb.bucket_size;
  275. bkey_copy(&ret->key, alloc);
  276. bkey_init(alloc);
  277. }
  278. if (!ret->sectors_free)
  279. ret = NULL;
  280. return ret;
  281. }
  282. /*
  283. * Allocates some space in the cache to write to, and k to point to the newly
  284. * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
  285. * end of the newly allocated space).
  286. *
  287. * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
  288. * sectors were actually allocated.
  289. *
  290. * If s->writeback is true, will not fail.
  291. */
  292. static bool bch_alloc_sectors(struct bkey *k, unsigned sectors,
  293. struct search *s)
  294. {
  295. struct cache_set *c = s->op.c;
  296. struct open_bucket *b;
  297. BKEY_PADDED(key) alloc;
  298. struct closure cl, *w = NULL;
  299. unsigned i;
  300. if (s->writeback) {
  301. closure_init_stack(&cl);
  302. w = &cl;
  303. }
  304. /*
  305. * We might have to allocate a new bucket, which we can't do with a
  306. * spinlock held. So if we have to allocate, we drop the lock, allocate
  307. * and then retry. KEY_PTRS() indicates whether alloc points to
  308. * allocated bucket(s).
  309. */
  310. bkey_init(&alloc.key);
  311. spin_lock(&c->data_bucket_lock);
  312. while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) {
  313. unsigned watermark = s->op.write_prio
  314. ? WATERMARK_MOVINGGC
  315. : WATERMARK_NONE;
  316. spin_unlock(&c->data_bucket_lock);
  317. if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, w))
  318. return false;
  319. spin_lock(&c->data_bucket_lock);
  320. }
  321. /*
  322. * If we had to allocate, we might race and not need to allocate the
  323. * second time we call find_data_bucket(). If we allocated a bucket but
  324. * didn't use it, drop the refcount bch_bucket_alloc_set() took:
  325. */
  326. if (KEY_PTRS(&alloc.key))
  327. __bkey_put(c, &alloc.key);
  328. for (i = 0; i < KEY_PTRS(&b->key); i++)
  329. EBUG_ON(ptr_stale(c, &b->key, i));
  330. /* Set up the pointer to the space we're allocating: */
  331. for (i = 0; i < KEY_PTRS(&b->key); i++)
  332. k->ptr[i] = b->key.ptr[i];
  333. sectors = min(sectors, b->sectors_free);
  334. SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
  335. SET_KEY_SIZE(k, sectors);
  336. SET_KEY_PTRS(k, KEY_PTRS(&b->key));
  337. /*
  338. * Move b to the end of the lru, and keep track of what this bucket was
  339. * last used for:
  340. */
  341. list_move_tail(&b->list, &c->data_buckets);
  342. bkey_copy_key(&b->key, k);
  343. b->last = s->task;
  344. b->sectors_free -= sectors;
  345. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  346. SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
  347. atomic_long_add(sectors,
  348. &PTR_CACHE(c, &b->key, i)->sectors_written);
  349. }
  350. if (b->sectors_free < c->sb.block_size)
  351. b->sectors_free = 0;
  352. /*
  353. * k takes refcounts on the buckets it points to until it's inserted
  354. * into the btree, but if we're done with this bucket we just transfer
  355. * get_data_bucket()'s refcount.
  356. */
  357. if (b->sectors_free)
  358. for (i = 0; i < KEY_PTRS(&b->key); i++)
  359. atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
  360. spin_unlock(&c->data_bucket_lock);
  361. return true;
  362. }
  363. static void bch_data_invalidate(struct closure *cl)
  364. {
  365. struct btree_op *op = container_of(cl, struct btree_op, cl);
  366. struct bio *bio = op->cache_bio;
  367. pr_debug("invalidating %i sectors from %llu",
  368. bio_sectors(bio), (uint64_t) bio->bi_sector);
  369. while (bio_sectors(bio)) {
  370. unsigned len = min(bio_sectors(bio), 1U << 14);
  371. if (bch_keylist_realloc(&op->keys, 0, op->c))
  372. goto out;
  373. bio->bi_sector += len;
  374. bio->bi_size -= len << 9;
  375. bch_keylist_add(&op->keys, &KEY(op->inode,
  376. bio->bi_sector, len));
  377. }
  378. op->insert_data_done = true;
  379. bio_put(bio);
  380. out:
  381. continue_at(cl, bch_data_insert_keys, bcache_wq);
  382. }
  383. static void bch_data_insert_error(struct closure *cl)
  384. {
  385. struct btree_op *op = container_of(cl, struct btree_op, cl);
  386. /*
  387. * Our data write just errored, which means we've got a bunch of keys to
  388. * insert that point to data that wasn't succesfully written.
  389. *
  390. * We don't have to insert those keys but we still have to invalidate
  391. * that region of the cache - so, if we just strip off all the pointers
  392. * from the keys we'll accomplish just that.
  393. */
  394. struct bkey *src = op->keys.keys, *dst = op->keys.keys;
  395. while (src != op->keys.top) {
  396. struct bkey *n = bkey_next(src);
  397. SET_KEY_PTRS(src, 0);
  398. memmove(dst, src, bkey_bytes(src));
  399. dst = bkey_next(dst);
  400. src = n;
  401. }
  402. op->keys.top = dst;
  403. bch_data_insert_keys(cl);
  404. }
  405. static void bch_data_insert_endio(struct bio *bio, int error)
  406. {
  407. struct closure *cl = bio->bi_private;
  408. struct btree_op *op = container_of(cl, struct btree_op, cl);
  409. struct search *s = container_of(op, struct search, op);
  410. if (error) {
  411. /* TODO: We could try to recover from this. */
  412. if (s->writeback)
  413. s->error = error;
  414. else if (s->write)
  415. set_closure_fn(cl, bch_data_insert_error, bcache_wq);
  416. else
  417. set_closure_fn(cl, NULL, NULL);
  418. }
  419. bch_bbio_endio(op->c, bio, error, "writing data to cache");
  420. }
  421. static void bch_data_insert_start(struct closure *cl)
  422. {
  423. struct btree_op *op = container_of(cl, struct btree_op, cl);
  424. struct search *s = container_of(op, struct search, op);
  425. struct bio *bio = op->cache_bio, *n;
  426. if (op->bypass)
  427. return bch_data_invalidate(cl);
  428. if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
  429. set_gc_sectors(op->c);
  430. bch_queue_gc(op->c);
  431. }
  432. /*
  433. * Journal writes are marked REQ_FLUSH; if the original write was a
  434. * flush, it'll wait on the journal write.
  435. */
  436. bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
  437. do {
  438. unsigned i;
  439. struct bkey *k;
  440. struct bio_set *split = s->d
  441. ? s->d->bio_split : op->c->bio_split;
  442. /* 1 for the device pointer and 1 for the chksum */
  443. if (bch_keylist_realloc(&op->keys,
  444. 1 + (op->csum ? 1 : 0),
  445. op->c))
  446. continue_at(cl, bch_data_insert_keys, bcache_wq);
  447. k = op->keys.top;
  448. bkey_init(k);
  449. SET_KEY_INODE(k, op->inode);
  450. SET_KEY_OFFSET(k, bio->bi_sector);
  451. if (!bch_alloc_sectors(k, bio_sectors(bio), s))
  452. goto err;
  453. n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
  454. n->bi_end_io = bch_data_insert_endio;
  455. n->bi_private = cl;
  456. if (s->writeback) {
  457. SET_KEY_DIRTY(k, true);
  458. for (i = 0; i < KEY_PTRS(k); i++)
  459. SET_GC_MARK(PTR_BUCKET(op->c, k, i),
  460. GC_MARK_DIRTY);
  461. }
  462. SET_KEY_CSUM(k, op->csum);
  463. if (KEY_CSUM(k))
  464. bio_csum(n, k);
  465. trace_bcache_cache_insert(k);
  466. bch_keylist_push(&op->keys);
  467. n->bi_rw |= REQ_WRITE;
  468. bch_submit_bbio(n, op->c, k, 0);
  469. } while (n != bio);
  470. op->insert_data_done = true;
  471. continue_at(cl, bch_data_insert_keys, bcache_wq);
  472. err:
  473. /* bch_alloc_sectors() blocks if s->writeback = true */
  474. BUG_ON(s->writeback);
  475. /*
  476. * But if it's not a writeback write we'd rather just bail out if
  477. * there aren't any buckets ready to write to - it might take awhile and
  478. * we might be starving btree writes for gc or something.
  479. */
  480. if (s->write) {
  481. /*
  482. * Writethrough write: We can't complete the write until we've
  483. * updated the index. But we don't want to delay the write while
  484. * we wait for buckets to be freed up, so just invalidate the
  485. * rest of the write.
  486. */
  487. op->bypass = true;
  488. return bch_data_invalidate(cl);
  489. } else {
  490. /*
  491. * From a cache miss, we can just insert the keys for the data
  492. * we have written or bail out if we didn't do anything.
  493. */
  494. op->insert_data_done = true;
  495. bio_put(bio);
  496. if (!bch_keylist_empty(&op->keys))
  497. continue_at(cl, bch_data_insert_keys, bcache_wq);
  498. else
  499. closure_return(cl);
  500. }
  501. }
  502. /**
  503. * bch_data_insert - stick some data in the cache
  504. *
  505. * This is the starting point for any data to end up in a cache device; it could
  506. * be from a normal write, or a writeback write, or a write to a flash only
  507. * volume - it's also used by the moving garbage collector to compact data in
  508. * mostly empty buckets.
  509. *
  510. * It first writes the data to the cache, creating a list of keys to be inserted
  511. * (if the data had to be fragmented there will be multiple keys); after the
  512. * data is written it calls bch_journal, and after the keys have been added to
  513. * the next journal write they're inserted into the btree.
  514. *
  515. * It inserts the data in op->cache_bio; bi_sector is used for the key offset,
  516. * and op->inode is used for the key inode.
  517. *
  518. * If op->bypass is true, instead of inserting the data it invalidates the
  519. * region of the cache represented by op->cache_bio and op->inode.
  520. */
  521. void bch_data_insert(struct closure *cl)
  522. {
  523. struct btree_op *op = container_of(cl, struct btree_op, cl);
  524. bch_keylist_init(&op->keys);
  525. bio_get(op->cache_bio);
  526. bch_data_insert_start(cl);
  527. }
  528. /* Common code for the make_request functions */
  529. static void request_endio(struct bio *bio, int error)
  530. {
  531. struct closure *cl = bio->bi_private;
  532. if (error) {
  533. struct search *s = container_of(cl, struct search, cl);
  534. s->error = error;
  535. /* Only cache read errors are recoverable */
  536. s->recoverable = false;
  537. }
  538. bio_put(bio);
  539. closure_put(cl);
  540. }
  541. void bch_cache_read_endio(struct bio *bio, int error)
  542. {
  543. struct bbio *b = container_of(bio, struct bbio, bio);
  544. struct closure *cl = bio->bi_private;
  545. struct search *s = container_of(cl, struct search, cl);
  546. /*
  547. * If the bucket was reused while our bio was in flight, we might have
  548. * read the wrong data. Set s->error but not error so it doesn't get
  549. * counted against the cache device, but we'll still reread the data
  550. * from the backing device.
  551. */
  552. if (error)
  553. s->error = error;
  554. else if (ptr_stale(s->op.c, &b->key, 0)) {
  555. atomic_long_inc(&s->op.c->cache_read_races);
  556. s->error = -EINTR;
  557. }
  558. bch_bbio_endio(s->op.c, bio, error, "reading from cache");
  559. }
  560. static void bio_complete(struct search *s)
  561. {
  562. if (s->orig_bio) {
  563. int cpu, rw = bio_data_dir(s->orig_bio);
  564. unsigned long duration = jiffies - s->start_time;
  565. cpu = part_stat_lock();
  566. part_round_stats(cpu, &s->d->disk->part0);
  567. part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
  568. part_stat_unlock();
  569. trace_bcache_request_end(s, s->orig_bio);
  570. bio_endio(s->orig_bio, s->error);
  571. s->orig_bio = NULL;
  572. }
  573. }
  574. static void do_bio_hook(struct search *s)
  575. {
  576. struct bio *bio = &s->bio.bio;
  577. memcpy(bio, s->orig_bio, sizeof(struct bio));
  578. bio->bi_end_io = request_endio;
  579. bio->bi_private = &s->cl;
  580. atomic_set(&bio->bi_cnt, 3);
  581. }
  582. static void search_free(struct closure *cl)
  583. {
  584. struct search *s = container_of(cl, struct search, cl);
  585. bio_complete(s);
  586. if (s->op.cache_bio)
  587. bio_put(s->op.cache_bio);
  588. if (s->unaligned_bvec)
  589. mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
  590. closure_debug_destroy(cl);
  591. mempool_free(s, s->d->c->search);
  592. }
  593. static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
  594. {
  595. struct bio_vec *bv;
  596. struct search *s = mempool_alloc(d->c->search, GFP_NOIO);
  597. memset(s, 0, offsetof(struct search, op.keys));
  598. __closure_init(&s->cl, NULL);
  599. s->op.inode = d->id;
  600. s->op.c = d->c;
  601. s->d = d;
  602. s->op.lock = -1;
  603. s->task = current;
  604. s->orig_bio = bio;
  605. s->write = (bio->bi_rw & REQ_WRITE) != 0;
  606. s->op.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
  607. s->recoverable = 1;
  608. s->start_time = jiffies;
  609. do_bio_hook(s);
  610. if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
  611. bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
  612. memcpy(bv, bio_iovec(bio),
  613. sizeof(struct bio_vec) * bio_segments(bio));
  614. s->bio.bio.bi_io_vec = bv;
  615. s->unaligned_bvec = 1;
  616. }
  617. return s;
  618. }
  619. static void btree_read_async(struct closure *cl)
  620. {
  621. struct btree_op *op = container_of(cl, struct btree_op, cl);
  622. int ret = btree_root(search_recurse, op->c, op);
  623. if (ret == -EAGAIN)
  624. continue_at(cl, btree_read_async, bcache_wq);
  625. closure_return(cl);
  626. }
  627. /* Cached devices */
  628. static void cached_dev_bio_complete(struct closure *cl)
  629. {
  630. struct search *s = container_of(cl, struct search, cl);
  631. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  632. search_free(cl);
  633. cached_dev_put(dc);
  634. }
  635. unsigned bch_get_congested(struct cache_set *c)
  636. {
  637. int i;
  638. long rand;
  639. if (!c->congested_read_threshold_us &&
  640. !c->congested_write_threshold_us)
  641. return 0;
  642. i = (local_clock_us() - c->congested_last_us) / 1024;
  643. if (i < 0)
  644. return 0;
  645. i += atomic_read(&c->congested);
  646. if (i >= 0)
  647. return 0;
  648. i += CONGESTED_MAX;
  649. if (i > 0)
  650. i = fract_exp_two(i, 6);
  651. rand = get_random_int();
  652. i -= bitmap_weight(&rand, BITS_PER_LONG);
  653. return i > 0 ? i : 1;
  654. }
  655. static void add_sequential(struct task_struct *t)
  656. {
  657. ewma_add(t->sequential_io_avg,
  658. t->sequential_io, 8, 0);
  659. t->sequential_io = 0;
  660. }
  661. static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
  662. {
  663. return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
  664. }
  665. static bool check_should_bypass(struct cached_dev *dc, struct search *s)
  666. {
  667. struct cache_set *c = s->op.c;
  668. struct bio *bio = &s->bio.bio;
  669. unsigned mode = cache_mode(dc, bio);
  670. unsigned sectors, congested = bch_get_congested(c);
  671. if (atomic_read(&dc->disk.detaching) ||
  672. c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
  673. (bio->bi_rw & REQ_DISCARD))
  674. goto skip;
  675. if (mode == CACHE_MODE_NONE ||
  676. (mode == CACHE_MODE_WRITEAROUND &&
  677. (bio->bi_rw & REQ_WRITE)))
  678. goto skip;
  679. if (bio->bi_sector & (c->sb.block_size - 1) ||
  680. bio_sectors(bio) & (c->sb.block_size - 1)) {
  681. pr_debug("skipping unaligned io");
  682. goto skip;
  683. }
  684. if (!congested && !dc->sequential_cutoff)
  685. goto rescale;
  686. if (!congested &&
  687. mode == CACHE_MODE_WRITEBACK &&
  688. (bio->bi_rw & REQ_WRITE) &&
  689. (bio->bi_rw & REQ_SYNC))
  690. goto rescale;
  691. if (dc->sequential_merge) {
  692. struct io *i;
  693. spin_lock(&dc->io_lock);
  694. hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
  695. if (i->last == bio->bi_sector &&
  696. time_before(jiffies, i->jiffies))
  697. goto found;
  698. i = list_first_entry(&dc->io_lru, struct io, lru);
  699. add_sequential(s->task);
  700. i->sequential = 0;
  701. found:
  702. if (i->sequential + bio->bi_size > i->sequential)
  703. i->sequential += bio->bi_size;
  704. i->last = bio_end_sector(bio);
  705. i->jiffies = jiffies + msecs_to_jiffies(5000);
  706. s->task->sequential_io = i->sequential;
  707. hlist_del(&i->hash);
  708. hlist_add_head(&i->hash, iohash(dc, i->last));
  709. list_move_tail(&i->lru, &dc->io_lru);
  710. spin_unlock(&dc->io_lock);
  711. } else {
  712. s->task->sequential_io = bio->bi_size;
  713. add_sequential(s->task);
  714. }
  715. sectors = max(s->task->sequential_io,
  716. s->task->sequential_io_avg) >> 9;
  717. if (dc->sequential_cutoff &&
  718. sectors >= dc->sequential_cutoff >> 9) {
  719. trace_bcache_bypass_sequential(s->orig_bio);
  720. goto skip;
  721. }
  722. if (congested && sectors >= congested) {
  723. trace_bcache_bypass_congested(s->orig_bio);
  724. goto skip;
  725. }
  726. rescale:
  727. bch_rescale_priorities(c, bio_sectors(bio));
  728. return false;
  729. skip:
  730. bch_mark_sectors_bypassed(s, bio_sectors(bio));
  731. return true;
  732. }
  733. /* Process reads */
  734. static void cached_dev_cache_miss_done(struct closure *cl)
  735. {
  736. struct search *s = container_of(cl, struct search, cl);
  737. if (s->op.insert_collision)
  738. bch_mark_cache_miss_collision(s);
  739. if (s->op.cache_bio) {
  740. int i;
  741. struct bio_vec *bv;
  742. __bio_for_each_segment(bv, s->op.cache_bio, i, 0)
  743. __free_page(bv->bv_page);
  744. }
  745. cached_dev_bio_complete(cl);
  746. }
  747. static void cached_dev_read_error(struct closure *cl)
  748. {
  749. struct search *s = container_of(cl, struct search, cl);
  750. struct bio *bio = &s->bio.bio;
  751. struct bio_vec *bv;
  752. int i;
  753. if (s->recoverable) {
  754. /* Retry from the backing device: */
  755. trace_bcache_read_retry(s->orig_bio);
  756. s->error = 0;
  757. bv = s->bio.bio.bi_io_vec;
  758. do_bio_hook(s);
  759. s->bio.bio.bi_io_vec = bv;
  760. if (!s->unaligned_bvec)
  761. bio_for_each_segment(bv, s->orig_bio, i)
  762. bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
  763. else
  764. memcpy(s->bio.bio.bi_io_vec,
  765. bio_iovec(s->orig_bio),
  766. sizeof(struct bio_vec) *
  767. bio_segments(s->orig_bio));
  768. /* XXX: invalidate cache */
  769. closure_bio_submit(bio, cl, s->d);
  770. }
  771. continue_at(cl, cached_dev_cache_miss_done, NULL);
  772. }
  773. static void cached_dev_read_done(struct closure *cl)
  774. {
  775. struct search *s = container_of(cl, struct search, cl);
  776. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  777. /*
  778. * We had a cache miss; cache_bio now contains data ready to be inserted
  779. * into the cache.
  780. *
  781. * First, we copy the data we just read from cache_bio's bounce buffers
  782. * to the buffers the original bio pointed to:
  783. */
  784. if (s->op.cache_bio) {
  785. bio_reset(s->op.cache_bio);
  786. s->op.cache_bio->bi_sector = s->cache_miss->bi_sector;
  787. s->op.cache_bio->bi_bdev = s->cache_miss->bi_bdev;
  788. s->op.cache_bio->bi_size = s->cache_bio_sectors << 9;
  789. bch_bio_map(s->op.cache_bio, NULL);
  790. bio_copy_data(s->cache_miss, s->op.cache_bio);
  791. bio_put(s->cache_miss);
  792. s->cache_miss = NULL;
  793. }
  794. if (verify(dc, &s->bio.bio) && s->recoverable)
  795. bch_data_verify(s);
  796. bio_complete(s);
  797. if (s->op.cache_bio &&
  798. !test_bit(CACHE_SET_STOPPING, &s->op.c->flags)) {
  799. s->op.type = BTREE_REPLACE;
  800. closure_call(&s->op.cl, bch_data_insert, NULL, cl);
  801. }
  802. continue_at(cl, cached_dev_cache_miss_done, NULL);
  803. }
  804. static void cached_dev_read_done_bh(struct closure *cl)
  805. {
  806. struct search *s = container_of(cl, struct search, cl);
  807. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  808. bch_mark_cache_accounting(s, !s->cache_miss, s->op.bypass);
  809. trace_bcache_read(s->orig_bio, !s->cache_miss, s->op.bypass);
  810. if (s->error)
  811. continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
  812. else if (s->op.cache_bio || verify(dc, &s->bio.bio))
  813. continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
  814. else
  815. continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
  816. }
  817. static int cached_dev_cache_miss(struct btree *b, struct search *s,
  818. struct bio *bio, unsigned sectors)
  819. {
  820. int ret = 0;
  821. unsigned reada = 0;
  822. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  823. struct bio *miss, *cache_bio;
  824. if (s->cache_miss || s->op.bypass) {
  825. miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
  826. if (miss == bio)
  827. s->op.lookup_done = true;
  828. goto out_submit;
  829. }
  830. if (!(bio->bi_rw & REQ_RAHEAD) &&
  831. !(bio->bi_rw & REQ_META) &&
  832. s->op.c->gc_stats.in_use < CUTOFF_CACHE_READA)
  833. reada = min_t(sector_t, dc->readahead >> 9,
  834. bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
  835. s->cache_bio_sectors = min(sectors, bio_sectors(bio) + reada);
  836. s->op.replace = KEY(s->op.inode, bio->bi_sector +
  837. s->cache_bio_sectors, s->cache_bio_sectors);
  838. ret = bch_btree_insert_check_key(b, &s->op, &s->op.replace);
  839. if (ret)
  840. return ret;
  841. miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
  842. if (miss == bio)
  843. s->op.lookup_done = true;
  844. else
  845. /* btree_search_recurse()'s btree iterator is no good anymore */
  846. ret = -EINTR;
  847. cache_bio = bio_alloc_bioset(GFP_NOWAIT,
  848. DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS),
  849. dc->disk.bio_split);
  850. if (!cache_bio)
  851. goto out_submit;
  852. cache_bio->bi_sector = miss->bi_sector;
  853. cache_bio->bi_bdev = miss->bi_bdev;
  854. cache_bio->bi_size = s->cache_bio_sectors << 9;
  855. cache_bio->bi_end_io = request_endio;
  856. cache_bio->bi_private = &s->cl;
  857. bch_bio_map(cache_bio, NULL);
  858. if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
  859. goto out_put;
  860. s->cache_miss = miss;
  861. s->op.cache_bio = cache_bio;
  862. bio_get(cache_bio);
  863. closure_bio_submit(cache_bio, &s->cl, s->d);
  864. return ret;
  865. out_put:
  866. bio_put(cache_bio);
  867. out_submit:
  868. miss->bi_end_io = request_endio;
  869. miss->bi_private = &s->cl;
  870. closure_bio_submit(miss, &s->cl, s->d);
  871. return ret;
  872. }
  873. static void cached_dev_read(struct cached_dev *dc, struct search *s)
  874. {
  875. struct closure *cl = &s->cl;
  876. closure_call(&s->op.cl, btree_read_async, NULL, cl);
  877. continue_at(cl, cached_dev_read_done_bh, NULL);
  878. }
  879. /* Process writes */
  880. static void cached_dev_write_complete(struct closure *cl)
  881. {
  882. struct search *s = container_of(cl, struct search, cl);
  883. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  884. up_read_non_owner(&dc->writeback_lock);
  885. cached_dev_bio_complete(cl);
  886. }
  887. static void cached_dev_write(struct cached_dev *dc, struct search *s)
  888. {
  889. struct closure *cl = &s->cl;
  890. struct bio *bio = &s->bio.bio;
  891. struct bkey start = KEY(dc->disk.id, bio->bi_sector, 0);
  892. struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
  893. bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &start, &end);
  894. down_read_non_owner(&dc->writeback_lock);
  895. if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
  896. /*
  897. * We overlap with some dirty data undergoing background
  898. * writeback, force this write to writeback
  899. */
  900. s->op.bypass = false;
  901. s->writeback = true;
  902. }
  903. /*
  904. * Discards aren't _required_ to do anything, so skipping if
  905. * check_overlapping returned true is ok
  906. *
  907. * But check_overlapping drops dirty keys for which io hasn't started,
  908. * so we still want to call it.
  909. */
  910. if (bio->bi_rw & REQ_DISCARD)
  911. s->op.bypass = true;
  912. if (should_writeback(dc, s->orig_bio,
  913. cache_mode(dc, bio),
  914. s->op.bypass)) {
  915. s->op.bypass = false;
  916. s->writeback = true;
  917. }
  918. trace_bcache_write(s->orig_bio, s->writeback, s->op.bypass);
  919. if (s->op.bypass) {
  920. s->op.cache_bio = s->orig_bio;
  921. bio_get(s->op.cache_bio);
  922. if (!(bio->bi_rw & REQ_DISCARD) ||
  923. blk_queue_discard(bdev_get_queue(dc->bdev)))
  924. closure_bio_submit(bio, cl, s->d);
  925. } else if (s->writeback) {
  926. bch_writeback_add(dc);
  927. s->op.cache_bio = bio;
  928. if (bio->bi_rw & REQ_FLUSH) {
  929. /* Also need to send a flush to the backing device */
  930. struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
  931. dc->disk.bio_split);
  932. flush->bi_rw = WRITE_FLUSH;
  933. flush->bi_bdev = bio->bi_bdev;
  934. flush->bi_end_io = request_endio;
  935. flush->bi_private = cl;
  936. closure_bio_submit(flush, cl, s->d);
  937. }
  938. } else {
  939. s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO,
  940. dc->disk.bio_split);
  941. closure_bio_submit(bio, cl, s->d);
  942. }
  943. closure_call(&s->op.cl, bch_data_insert, NULL, cl);
  944. continue_at(cl, cached_dev_write_complete, NULL);
  945. }
  946. static void cached_dev_nodata(struct closure *cl)
  947. {
  948. struct search *s = container_of(cl, struct search, cl);
  949. struct bio *bio = &s->bio.bio;
  950. if (s->op.flush_journal)
  951. bch_journal_meta(s->op.c, cl);
  952. /* If it's a flush, we send the flush to the backing device too */
  953. closure_bio_submit(bio, cl, s->d);
  954. continue_at(cl, cached_dev_bio_complete, NULL);
  955. }
  956. /* Cached devices - read & write stuff */
  957. static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
  958. {
  959. struct search *s;
  960. struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
  961. struct cached_dev *dc = container_of(d, struct cached_dev, disk);
  962. int cpu, rw = bio_data_dir(bio);
  963. cpu = part_stat_lock();
  964. part_stat_inc(cpu, &d->disk->part0, ios[rw]);
  965. part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
  966. part_stat_unlock();
  967. bio->bi_bdev = dc->bdev;
  968. bio->bi_sector += dc->sb.data_offset;
  969. if (cached_dev_get(dc)) {
  970. s = search_alloc(bio, d);
  971. trace_bcache_request_start(s, bio);
  972. if (!bio->bi_size) {
  973. /*
  974. * can't call bch_journal_meta from under
  975. * generic_make_request
  976. */
  977. continue_at_nobarrier(&s->cl,
  978. cached_dev_nodata,
  979. bcache_wq);
  980. } else {
  981. s->op.bypass = check_should_bypass(dc, s);
  982. if (rw)
  983. cached_dev_write(dc, s);
  984. else
  985. cached_dev_read(dc, s);
  986. }
  987. } else {
  988. if ((bio->bi_rw & REQ_DISCARD) &&
  989. !blk_queue_discard(bdev_get_queue(dc->bdev)))
  990. bio_endio(bio, 0);
  991. else
  992. bch_generic_make_request(bio, &d->bio_split_hook);
  993. }
  994. }
  995. static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
  996. unsigned int cmd, unsigned long arg)
  997. {
  998. struct cached_dev *dc = container_of(d, struct cached_dev, disk);
  999. return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
  1000. }
  1001. static int cached_dev_congested(void *data, int bits)
  1002. {
  1003. struct bcache_device *d = data;
  1004. struct cached_dev *dc = container_of(d, struct cached_dev, disk);
  1005. struct request_queue *q = bdev_get_queue(dc->bdev);
  1006. int ret = 0;
  1007. if (bdi_congested(&q->backing_dev_info, bits))
  1008. return 1;
  1009. if (cached_dev_get(dc)) {
  1010. unsigned i;
  1011. struct cache *ca;
  1012. for_each_cache(ca, d->c, i) {
  1013. q = bdev_get_queue(ca->bdev);
  1014. ret |= bdi_congested(&q->backing_dev_info, bits);
  1015. }
  1016. cached_dev_put(dc);
  1017. }
  1018. return ret;
  1019. }
  1020. void bch_cached_dev_request_init(struct cached_dev *dc)
  1021. {
  1022. struct gendisk *g = dc->disk.disk;
  1023. g->queue->make_request_fn = cached_dev_make_request;
  1024. g->queue->backing_dev_info.congested_fn = cached_dev_congested;
  1025. dc->disk.cache_miss = cached_dev_cache_miss;
  1026. dc->disk.ioctl = cached_dev_ioctl;
  1027. }
  1028. /* Flash backed devices */
  1029. static int flash_dev_cache_miss(struct btree *b, struct search *s,
  1030. struct bio *bio, unsigned sectors)
  1031. {
  1032. struct bio_vec *bv;
  1033. int i;
  1034. /* Zero fill bio */
  1035. bio_for_each_segment(bv, bio, i) {
  1036. unsigned j = min(bv->bv_len >> 9, sectors);
  1037. void *p = kmap(bv->bv_page);
  1038. memset(p + bv->bv_offset, 0, j << 9);
  1039. kunmap(bv->bv_page);
  1040. sectors -= j;
  1041. }
  1042. bio_advance(bio, min(sectors << 9, bio->bi_size));
  1043. if (!bio->bi_size)
  1044. s->op.lookup_done = true;
  1045. return 0;
  1046. }
  1047. static void flash_dev_nodata(struct closure *cl)
  1048. {
  1049. struct search *s = container_of(cl, struct search, cl);
  1050. if (s->op.flush_journal)
  1051. bch_journal_meta(s->op.c, cl);
  1052. continue_at(cl, search_free, NULL);
  1053. }
  1054. static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
  1055. {
  1056. struct search *s;
  1057. struct closure *cl;
  1058. struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
  1059. int cpu, rw = bio_data_dir(bio);
  1060. cpu = part_stat_lock();
  1061. part_stat_inc(cpu, &d->disk->part0, ios[rw]);
  1062. part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
  1063. part_stat_unlock();
  1064. s = search_alloc(bio, d);
  1065. cl = &s->cl;
  1066. bio = &s->bio.bio;
  1067. trace_bcache_request_start(s, bio);
  1068. if (!bio->bi_size) {
  1069. /*
  1070. * can't call bch_journal_meta from under
  1071. * generic_make_request
  1072. */
  1073. continue_at_nobarrier(&s->cl,
  1074. flash_dev_nodata,
  1075. bcache_wq);
  1076. } else if (rw) {
  1077. bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys,
  1078. &KEY(d->id, bio->bi_sector, 0),
  1079. &KEY(d->id, bio_end_sector(bio), 0));
  1080. s->op.bypass = (bio->bi_rw & REQ_DISCARD) != 0;
  1081. s->writeback = true;
  1082. s->op.cache_bio = bio;
  1083. closure_call(&s->op.cl, bch_data_insert, NULL, cl);
  1084. } else {
  1085. closure_call(&s->op.cl, btree_read_async, NULL, cl);
  1086. }
  1087. continue_at(cl, search_free, NULL);
  1088. }
  1089. static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
  1090. unsigned int cmd, unsigned long arg)
  1091. {
  1092. return -ENOTTY;
  1093. }
  1094. static int flash_dev_congested(void *data, int bits)
  1095. {
  1096. struct bcache_device *d = data;
  1097. struct request_queue *q;
  1098. struct cache *ca;
  1099. unsigned i;
  1100. int ret = 0;
  1101. for_each_cache(ca, d->c, i) {
  1102. q = bdev_get_queue(ca->bdev);
  1103. ret |= bdi_congested(&q->backing_dev_info, bits);
  1104. }
  1105. return ret;
  1106. }
  1107. void bch_flash_dev_request_init(struct bcache_device *d)
  1108. {
  1109. struct gendisk *g = d->disk;
  1110. g->queue->make_request_fn = flash_dev_make_request;
  1111. g->queue->backing_dev_info.congested_fn = flash_dev_congested;
  1112. d->cache_miss = flash_dev_cache_miss;
  1113. d->ioctl = flash_dev_ioctl;
  1114. }
  1115. void bch_request_exit(void)
  1116. {
  1117. #ifdef CONFIG_CGROUP_BCACHE
  1118. cgroup_unload_subsys(&bcache_subsys);
  1119. #endif
  1120. if (bch_search_cache)
  1121. kmem_cache_destroy(bch_search_cache);
  1122. }
  1123. int __init bch_request_init(void)
  1124. {
  1125. bch_search_cache = KMEM_CACHE(search, 0);
  1126. if (!bch_search_cache)
  1127. return -ENOMEM;
  1128. #ifdef CONFIG_CGROUP_BCACHE
  1129. cgroup_load_subsys(&bcache_subsys);
  1130. init_bch_cgroup(&bcache_default_cgroup);
  1131. cgroup_add_cftypes(&bcache_subsys, bch_files);
  1132. #endif
  1133. return 0;
  1134. }