xfs_inode.c 123 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include <linux/log2.h>
  19. #include "xfs.h"
  20. #include "xfs_fs.h"
  21. #include "xfs_types.h"
  22. #include "xfs_bit.h"
  23. #include "xfs_log.h"
  24. #include "xfs_inum.h"
  25. #include "xfs_trans.h"
  26. #include "xfs_trans_priv.h"
  27. #include "xfs_sb.h"
  28. #include "xfs_ag.h"
  29. #include "xfs_dir2.h"
  30. #include "xfs_dmapi.h"
  31. #include "xfs_mount.h"
  32. #include "xfs_bmap_btree.h"
  33. #include "xfs_alloc_btree.h"
  34. #include "xfs_ialloc_btree.h"
  35. #include "xfs_dir2_sf.h"
  36. #include "xfs_attr_sf.h"
  37. #include "xfs_dinode.h"
  38. #include "xfs_inode.h"
  39. #include "xfs_buf_item.h"
  40. #include "xfs_inode_item.h"
  41. #include "xfs_btree.h"
  42. #include "xfs_btree_trace.h"
  43. #include "xfs_alloc.h"
  44. #include "xfs_ialloc.h"
  45. #include "xfs_bmap.h"
  46. #include "xfs_rw.h"
  47. #include "xfs_error.h"
  48. #include "xfs_utils.h"
  49. #include "xfs_quota.h"
  50. #include "xfs_filestream.h"
  51. #include "xfs_vnodeops.h"
  52. #include "xfs_trace.h"
  53. kmem_zone_t *xfs_ifork_zone;
  54. kmem_zone_t *xfs_inode_zone;
  55. /*
  56. * Used in xfs_itruncate(). This is the maximum number of extents
  57. * freed from a file in a single transaction.
  58. */
  59. #define XFS_ITRUNC_MAX_EXTENTS 2
  60. STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
  61. STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
  62. STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
  63. STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
  64. #ifdef DEBUG
  65. /*
  66. * Make sure that the extents in the given memory buffer
  67. * are valid.
  68. */
  69. STATIC void
  70. xfs_validate_extents(
  71. xfs_ifork_t *ifp,
  72. int nrecs,
  73. xfs_exntfmt_t fmt)
  74. {
  75. xfs_bmbt_irec_t irec;
  76. xfs_bmbt_rec_host_t rec;
  77. int i;
  78. for (i = 0; i < nrecs; i++) {
  79. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  80. rec.l0 = get_unaligned(&ep->l0);
  81. rec.l1 = get_unaligned(&ep->l1);
  82. xfs_bmbt_get_all(&rec, &irec);
  83. if (fmt == XFS_EXTFMT_NOSTATE)
  84. ASSERT(irec.br_state == XFS_EXT_NORM);
  85. }
  86. }
  87. #else /* DEBUG */
  88. #define xfs_validate_extents(ifp, nrecs, fmt)
  89. #endif /* DEBUG */
  90. /*
  91. * Check that none of the inode's in the buffer have a next
  92. * unlinked field of 0.
  93. */
  94. #if defined(DEBUG)
  95. void
  96. xfs_inobp_check(
  97. xfs_mount_t *mp,
  98. xfs_buf_t *bp)
  99. {
  100. int i;
  101. int j;
  102. xfs_dinode_t *dip;
  103. j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
  104. for (i = 0; i < j; i++) {
  105. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  106. i * mp->m_sb.sb_inodesize);
  107. if (!dip->di_next_unlinked) {
  108. xfs_fs_cmn_err(CE_ALERT, mp,
  109. "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
  110. bp);
  111. ASSERT(dip->di_next_unlinked);
  112. }
  113. }
  114. }
  115. #endif
  116. /*
  117. * Find the buffer associated with the given inode map
  118. * We do basic validation checks on the buffer once it has been
  119. * retrieved from disk.
  120. */
  121. STATIC int
  122. xfs_imap_to_bp(
  123. xfs_mount_t *mp,
  124. xfs_trans_t *tp,
  125. struct xfs_imap *imap,
  126. xfs_buf_t **bpp,
  127. uint buf_flags,
  128. uint iget_flags)
  129. {
  130. int error;
  131. int i;
  132. int ni;
  133. xfs_buf_t *bp;
  134. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
  135. (int)imap->im_len, buf_flags, &bp);
  136. if (error) {
  137. if (error != EAGAIN) {
  138. cmn_err(CE_WARN,
  139. "xfs_imap_to_bp: xfs_trans_read_buf()returned "
  140. "an error %d on %s. Returning error.",
  141. error, mp->m_fsname);
  142. } else {
  143. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  144. }
  145. return error;
  146. }
  147. /*
  148. * Validate the magic number and version of every inode in the buffer
  149. * (if DEBUG kernel) or the first inode in the buffer, otherwise.
  150. */
  151. #ifdef DEBUG
  152. ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
  153. #else /* usual case */
  154. ni = 1;
  155. #endif
  156. for (i = 0; i < ni; i++) {
  157. int di_ok;
  158. xfs_dinode_t *dip;
  159. dip = (xfs_dinode_t *)xfs_buf_offset(bp,
  160. (i << mp->m_sb.sb_inodelog));
  161. di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
  162. XFS_DINODE_GOOD_VERSION(dip->di_version);
  163. if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
  164. XFS_ERRTAG_ITOBP_INOTOBP,
  165. XFS_RANDOM_ITOBP_INOTOBP))) {
  166. if (iget_flags & XFS_IGET_BULKSTAT) {
  167. xfs_trans_brelse(tp, bp);
  168. return XFS_ERROR(EINVAL);
  169. }
  170. XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
  171. XFS_ERRLEVEL_HIGH, mp, dip);
  172. #ifdef DEBUG
  173. cmn_err(CE_PANIC,
  174. "Device %s - bad inode magic/vsn "
  175. "daddr %lld #%d (magic=%x)",
  176. XFS_BUFTARG_NAME(mp->m_ddev_targp),
  177. (unsigned long long)imap->im_blkno, i,
  178. be16_to_cpu(dip->di_magic));
  179. #endif
  180. xfs_trans_brelse(tp, bp);
  181. return XFS_ERROR(EFSCORRUPTED);
  182. }
  183. }
  184. xfs_inobp_check(mp, bp);
  185. /*
  186. * Mark the buffer as an inode buffer now that it looks good
  187. */
  188. XFS_BUF_SET_VTYPE(bp, B_FS_INO);
  189. *bpp = bp;
  190. return 0;
  191. }
  192. /*
  193. * This routine is called to map an inode number within a file
  194. * system to the buffer containing the on-disk version of the
  195. * inode. It returns a pointer to the buffer containing the
  196. * on-disk inode in the bpp parameter, and in the dip parameter
  197. * it returns a pointer to the on-disk inode within that buffer.
  198. *
  199. * If a non-zero error is returned, then the contents of bpp and
  200. * dipp are undefined.
  201. *
  202. * Use xfs_imap() to determine the size and location of the
  203. * buffer to read from disk.
  204. */
  205. int
  206. xfs_inotobp(
  207. xfs_mount_t *mp,
  208. xfs_trans_t *tp,
  209. xfs_ino_t ino,
  210. xfs_dinode_t **dipp,
  211. xfs_buf_t **bpp,
  212. int *offset,
  213. uint imap_flags)
  214. {
  215. struct xfs_imap imap;
  216. xfs_buf_t *bp;
  217. int error;
  218. imap.im_blkno = 0;
  219. error = xfs_imap(mp, tp, ino, &imap, imap_flags);
  220. if (error)
  221. return error;
  222. error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, imap_flags);
  223. if (error)
  224. return error;
  225. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  226. *bpp = bp;
  227. *offset = imap.im_boffset;
  228. return 0;
  229. }
  230. /*
  231. * This routine is called to map an inode to the buffer containing
  232. * the on-disk version of the inode. It returns a pointer to the
  233. * buffer containing the on-disk inode in the bpp parameter, and in
  234. * the dip parameter it returns a pointer to the on-disk inode within
  235. * that buffer.
  236. *
  237. * If a non-zero error is returned, then the contents of bpp and
  238. * dipp are undefined.
  239. *
  240. * The inode is expected to already been mapped to its buffer and read
  241. * in once, thus we can use the mapping information stored in the inode
  242. * rather than calling xfs_imap(). This allows us to avoid the overhead
  243. * of looking at the inode btree for small block file systems
  244. * (see xfs_imap()).
  245. */
  246. int
  247. xfs_itobp(
  248. xfs_mount_t *mp,
  249. xfs_trans_t *tp,
  250. xfs_inode_t *ip,
  251. xfs_dinode_t **dipp,
  252. xfs_buf_t **bpp,
  253. uint buf_flags)
  254. {
  255. xfs_buf_t *bp;
  256. int error;
  257. ASSERT(ip->i_imap.im_blkno != 0);
  258. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
  259. if (error)
  260. return error;
  261. if (!bp) {
  262. ASSERT(buf_flags & XFS_BUF_TRYLOCK);
  263. ASSERT(tp == NULL);
  264. *bpp = NULL;
  265. return EAGAIN;
  266. }
  267. *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  268. *bpp = bp;
  269. return 0;
  270. }
  271. /*
  272. * Move inode type and inode format specific information from the
  273. * on-disk inode to the in-core inode. For fifos, devs, and sockets
  274. * this means set if_rdev to the proper value. For files, directories,
  275. * and symlinks this means to bring in the in-line data or extent
  276. * pointers. For a file in B-tree format, only the root is immediately
  277. * brought in-core. The rest will be in-lined in if_extents when it
  278. * is first referenced (see xfs_iread_extents()).
  279. */
  280. STATIC int
  281. xfs_iformat(
  282. xfs_inode_t *ip,
  283. xfs_dinode_t *dip)
  284. {
  285. xfs_attr_shortform_t *atp;
  286. int size;
  287. int error;
  288. xfs_fsize_t di_size;
  289. ip->i_df.if_ext_max =
  290. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  291. error = 0;
  292. if (unlikely(be32_to_cpu(dip->di_nextents) +
  293. be16_to_cpu(dip->di_anextents) >
  294. be64_to_cpu(dip->di_nblocks))) {
  295. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  296. "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
  297. (unsigned long long)ip->i_ino,
  298. (int)(be32_to_cpu(dip->di_nextents) +
  299. be16_to_cpu(dip->di_anextents)),
  300. (unsigned long long)
  301. be64_to_cpu(dip->di_nblocks));
  302. XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
  303. ip->i_mount, dip);
  304. return XFS_ERROR(EFSCORRUPTED);
  305. }
  306. if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
  307. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  308. "corrupt dinode %Lu, forkoff = 0x%x.",
  309. (unsigned long long)ip->i_ino,
  310. dip->di_forkoff);
  311. XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
  312. ip->i_mount, dip);
  313. return XFS_ERROR(EFSCORRUPTED);
  314. }
  315. if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
  316. !ip->i_mount->m_rtdev_targp)) {
  317. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  318. "corrupt dinode %Lu, has realtime flag set.",
  319. ip->i_ino);
  320. XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
  321. XFS_ERRLEVEL_LOW, ip->i_mount, dip);
  322. return XFS_ERROR(EFSCORRUPTED);
  323. }
  324. switch (ip->i_d.di_mode & S_IFMT) {
  325. case S_IFIFO:
  326. case S_IFCHR:
  327. case S_IFBLK:
  328. case S_IFSOCK:
  329. if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
  330. XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
  331. ip->i_mount, dip);
  332. return XFS_ERROR(EFSCORRUPTED);
  333. }
  334. ip->i_d.di_size = 0;
  335. ip->i_size = 0;
  336. ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
  337. break;
  338. case S_IFREG:
  339. case S_IFLNK:
  340. case S_IFDIR:
  341. switch (dip->di_format) {
  342. case XFS_DINODE_FMT_LOCAL:
  343. /*
  344. * no local regular files yet
  345. */
  346. if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
  347. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  348. "corrupt inode %Lu "
  349. "(local format for regular file).",
  350. (unsigned long long) ip->i_ino);
  351. XFS_CORRUPTION_ERROR("xfs_iformat(4)",
  352. XFS_ERRLEVEL_LOW,
  353. ip->i_mount, dip);
  354. return XFS_ERROR(EFSCORRUPTED);
  355. }
  356. di_size = be64_to_cpu(dip->di_size);
  357. if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
  358. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  359. "corrupt inode %Lu "
  360. "(bad size %Ld for local inode).",
  361. (unsigned long long) ip->i_ino,
  362. (long long) di_size);
  363. XFS_CORRUPTION_ERROR("xfs_iformat(5)",
  364. XFS_ERRLEVEL_LOW,
  365. ip->i_mount, dip);
  366. return XFS_ERROR(EFSCORRUPTED);
  367. }
  368. size = (int)di_size;
  369. error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
  370. break;
  371. case XFS_DINODE_FMT_EXTENTS:
  372. error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
  373. break;
  374. case XFS_DINODE_FMT_BTREE:
  375. error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
  376. break;
  377. default:
  378. XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
  379. ip->i_mount);
  380. return XFS_ERROR(EFSCORRUPTED);
  381. }
  382. break;
  383. default:
  384. XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
  385. return XFS_ERROR(EFSCORRUPTED);
  386. }
  387. if (error) {
  388. return error;
  389. }
  390. if (!XFS_DFORK_Q(dip))
  391. return 0;
  392. ASSERT(ip->i_afp == NULL);
  393. ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
  394. ip->i_afp->if_ext_max =
  395. XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  396. switch (dip->di_aformat) {
  397. case XFS_DINODE_FMT_LOCAL:
  398. atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
  399. size = be16_to_cpu(atp->hdr.totsize);
  400. if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
  401. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  402. "corrupt inode %Lu "
  403. "(bad attr fork size %Ld).",
  404. (unsigned long long) ip->i_ino,
  405. (long long) size);
  406. XFS_CORRUPTION_ERROR("xfs_iformat(8)",
  407. XFS_ERRLEVEL_LOW,
  408. ip->i_mount, dip);
  409. return XFS_ERROR(EFSCORRUPTED);
  410. }
  411. error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
  412. break;
  413. case XFS_DINODE_FMT_EXTENTS:
  414. error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
  415. break;
  416. case XFS_DINODE_FMT_BTREE:
  417. error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
  418. break;
  419. default:
  420. error = XFS_ERROR(EFSCORRUPTED);
  421. break;
  422. }
  423. if (error) {
  424. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  425. ip->i_afp = NULL;
  426. xfs_idestroy_fork(ip, XFS_DATA_FORK);
  427. }
  428. return error;
  429. }
  430. /*
  431. * The file is in-lined in the on-disk inode.
  432. * If it fits into if_inline_data, then copy
  433. * it there, otherwise allocate a buffer for it
  434. * and copy the data there. Either way, set
  435. * if_data to point at the data.
  436. * If we allocate a buffer for the data, make
  437. * sure that its size is a multiple of 4 and
  438. * record the real size in i_real_bytes.
  439. */
  440. STATIC int
  441. xfs_iformat_local(
  442. xfs_inode_t *ip,
  443. xfs_dinode_t *dip,
  444. int whichfork,
  445. int size)
  446. {
  447. xfs_ifork_t *ifp;
  448. int real_size;
  449. /*
  450. * If the size is unreasonable, then something
  451. * is wrong and we just bail out rather than crash in
  452. * kmem_alloc() or memcpy() below.
  453. */
  454. if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  455. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  456. "corrupt inode %Lu "
  457. "(bad size %d for local fork, size = %d).",
  458. (unsigned long long) ip->i_ino, size,
  459. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
  460. XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
  461. ip->i_mount, dip);
  462. return XFS_ERROR(EFSCORRUPTED);
  463. }
  464. ifp = XFS_IFORK_PTR(ip, whichfork);
  465. real_size = 0;
  466. if (size == 0)
  467. ifp->if_u1.if_data = NULL;
  468. else if (size <= sizeof(ifp->if_u2.if_inline_data))
  469. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  470. else {
  471. real_size = roundup(size, 4);
  472. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  473. }
  474. ifp->if_bytes = size;
  475. ifp->if_real_bytes = real_size;
  476. if (size)
  477. memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
  478. ifp->if_flags &= ~XFS_IFEXTENTS;
  479. ifp->if_flags |= XFS_IFINLINE;
  480. return 0;
  481. }
  482. /*
  483. * The file consists of a set of extents all
  484. * of which fit into the on-disk inode.
  485. * If there are few enough extents to fit into
  486. * the if_inline_ext, then copy them there.
  487. * Otherwise allocate a buffer for them and copy
  488. * them into it. Either way, set if_extents
  489. * to point at the extents.
  490. */
  491. STATIC int
  492. xfs_iformat_extents(
  493. xfs_inode_t *ip,
  494. xfs_dinode_t *dip,
  495. int whichfork)
  496. {
  497. xfs_bmbt_rec_t *dp;
  498. xfs_ifork_t *ifp;
  499. int nex;
  500. int size;
  501. int i;
  502. ifp = XFS_IFORK_PTR(ip, whichfork);
  503. nex = XFS_DFORK_NEXTENTS(dip, whichfork);
  504. size = nex * (uint)sizeof(xfs_bmbt_rec_t);
  505. /*
  506. * If the number of extents is unreasonable, then something
  507. * is wrong and we just bail out rather than crash in
  508. * kmem_alloc() or memcpy() below.
  509. */
  510. if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
  511. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  512. "corrupt inode %Lu ((a)extents = %d).",
  513. (unsigned long long) ip->i_ino, nex);
  514. XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
  515. ip->i_mount, dip);
  516. return XFS_ERROR(EFSCORRUPTED);
  517. }
  518. ifp->if_real_bytes = 0;
  519. if (nex == 0)
  520. ifp->if_u1.if_extents = NULL;
  521. else if (nex <= XFS_INLINE_EXTS)
  522. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  523. else
  524. xfs_iext_add(ifp, 0, nex);
  525. ifp->if_bytes = size;
  526. if (size) {
  527. dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
  528. xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
  529. for (i = 0; i < nex; i++, dp++) {
  530. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  531. ep->l0 = get_unaligned_be64(&dp->l0);
  532. ep->l1 = get_unaligned_be64(&dp->l1);
  533. }
  534. XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
  535. if (whichfork != XFS_DATA_FORK ||
  536. XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
  537. if (unlikely(xfs_check_nostate_extents(
  538. ifp, 0, nex))) {
  539. XFS_ERROR_REPORT("xfs_iformat_extents(2)",
  540. XFS_ERRLEVEL_LOW,
  541. ip->i_mount);
  542. return XFS_ERROR(EFSCORRUPTED);
  543. }
  544. }
  545. ifp->if_flags |= XFS_IFEXTENTS;
  546. return 0;
  547. }
  548. /*
  549. * The file has too many extents to fit into
  550. * the inode, so they are in B-tree format.
  551. * Allocate a buffer for the root of the B-tree
  552. * and copy the root into it. The i_extents
  553. * field will remain NULL until all of the
  554. * extents are read in (when they are needed).
  555. */
  556. STATIC int
  557. xfs_iformat_btree(
  558. xfs_inode_t *ip,
  559. xfs_dinode_t *dip,
  560. int whichfork)
  561. {
  562. xfs_bmdr_block_t *dfp;
  563. xfs_ifork_t *ifp;
  564. /* REFERENCED */
  565. int nrecs;
  566. int size;
  567. ifp = XFS_IFORK_PTR(ip, whichfork);
  568. dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
  569. size = XFS_BMAP_BROOT_SPACE(dfp);
  570. nrecs = be16_to_cpu(dfp->bb_numrecs);
  571. /*
  572. * blow out if -- fork has less extents than can fit in
  573. * fork (fork shouldn't be a btree format), root btree
  574. * block has more records than can fit into the fork,
  575. * or the number of extents is greater than the number of
  576. * blocks.
  577. */
  578. if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
  579. || XFS_BMDR_SPACE_CALC(nrecs) >
  580. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
  581. || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
  582. xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
  583. "corrupt inode %Lu (btree).",
  584. (unsigned long long) ip->i_ino);
  585. XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
  586. ip->i_mount);
  587. return XFS_ERROR(EFSCORRUPTED);
  588. }
  589. ifp->if_broot_bytes = size;
  590. ifp->if_broot = kmem_alloc(size, KM_SLEEP);
  591. ASSERT(ifp->if_broot != NULL);
  592. /*
  593. * Copy and convert from the on-disk structure
  594. * to the in-memory structure.
  595. */
  596. xfs_bmdr_to_bmbt(ip->i_mount, dfp,
  597. XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
  598. ifp->if_broot, size);
  599. ifp->if_flags &= ~XFS_IFEXTENTS;
  600. ifp->if_flags |= XFS_IFBROOT;
  601. return 0;
  602. }
  603. STATIC void
  604. xfs_dinode_from_disk(
  605. xfs_icdinode_t *to,
  606. xfs_dinode_t *from)
  607. {
  608. to->di_magic = be16_to_cpu(from->di_magic);
  609. to->di_mode = be16_to_cpu(from->di_mode);
  610. to->di_version = from ->di_version;
  611. to->di_format = from->di_format;
  612. to->di_onlink = be16_to_cpu(from->di_onlink);
  613. to->di_uid = be32_to_cpu(from->di_uid);
  614. to->di_gid = be32_to_cpu(from->di_gid);
  615. to->di_nlink = be32_to_cpu(from->di_nlink);
  616. to->di_projid = be16_to_cpu(from->di_projid);
  617. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  618. to->di_flushiter = be16_to_cpu(from->di_flushiter);
  619. to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
  620. to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
  621. to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
  622. to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
  623. to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
  624. to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
  625. to->di_size = be64_to_cpu(from->di_size);
  626. to->di_nblocks = be64_to_cpu(from->di_nblocks);
  627. to->di_extsize = be32_to_cpu(from->di_extsize);
  628. to->di_nextents = be32_to_cpu(from->di_nextents);
  629. to->di_anextents = be16_to_cpu(from->di_anextents);
  630. to->di_forkoff = from->di_forkoff;
  631. to->di_aformat = from->di_aformat;
  632. to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
  633. to->di_dmstate = be16_to_cpu(from->di_dmstate);
  634. to->di_flags = be16_to_cpu(from->di_flags);
  635. to->di_gen = be32_to_cpu(from->di_gen);
  636. }
  637. void
  638. xfs_dinode_to_disk(
  639. xfs_dinode_t *to,
  640. xfs_icdinode_t *from)
  641. {
  642. to->di_magic = cpu_to_be16(from->di_magic);
  643. to->di_mode = cpu_to_be16(from->di_mode);
  644. to->di_version = from ->di_version;
  645. to->di_format = from->di_format;
  646. to->di_onlink = cpu_to_be16(from->di_onlink);
  647. to->di_uid = cpu_to_be32(from->di_uid);
  648. to->di_gid = cpu_to_be32(from->di_gid);
  649. to->di_nlink = cpu_to_be32(from->di_nlink);
  650. to->di_projid = cpu_to_be16(from->di_projid);
  651. memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
  652. to->di_flushiter = cpu_to_be16(from->di_flushiter);
  653. to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
  654. to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
  655. to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
  656. to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
  657. to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
  658. to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
  659. to->di_size = cpu_to_be64(from->di_size);
  660. to->di_nblocks = cpu_to_be64(from->di_nblocks);
  661. to->di_extsize = cpu_to_be32(from->di_extsize);
  662. to->di_nextents = cpu_to_be32(from->di_nextents);
  663. to->di_anextents = cpu_to_be16(from->di_anextents);
  664. to->di_forkoff = from->di_forkoff;
  665. to->di_aformat = from->di_aformat;
  666. to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
  667. to->di_dmstate = cpu_to_be16(from->di_dmstate);
  668. to->di_flags = cpu_to_be16(from->di_flags);
  669. to->di_gen = cpu_to_be32(from->di_gen);
  670. }
  671. STATIC uint
  672. _xfs_dic2xflags(
  673. __uint16_t di_flags)
  674. {
  675. uint flags = 0;
  676. if (di_flags & XFS_DIFLAG_ANY) {
  677. if (di_flags & XFS_DIFLAG_REALTIME)
  678. flags |= XFS_XFLAG_REALTIME;
  679. if (di_flags & XFS_DIFLAG_PREALLOC)
  680. flags |= XFS_XFLAG_PREALLOC;
  681. if (di_flags & XFS_DIFLAG_IMMUTABLE)
  682. flags |= XFS_XFLAG_IMMUTABLE;
  683. if (di_flags & XFS_DIFLAG_APPEND)
  684. flags |= XFS_XFLAG_APPEND;
  685. if (di_flags & XFS_DIFLAG_SYNC)
  686. flags |= XFS_XFLAG_SYNC;
  687. if (di_flags & XFS_DIFLAG_NOATIME)
  688. flags |= XFS_XFLAG_NOATIME;
  689. if (di_flags & XFS_DIFLAG_NODUMP)
  690. flags |= XFS_XFLAG_NODUMP;
  691. if (di_flags & XFS_DIFLAG_RTINHERIT)
  692. flags |= XFS_XFLAG_RTINHERIT;
  693. if (di_flags & XFS_DIFLAG_PROJINHERIT)
  694. flags |= XFS_XFLAG_PROJINHERIT;
  695. if (di_flags & XFS_DIFLAG_NOSYMLINKS)
  696. flags |= XFS_XFLAG_NOSYMLINKS;
  697. if (di_flags & XFS_DIFLAG_EXTSIZE)
  698. flags |= XFS_XFLAG_EXTSIZE;
  699. if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
  700. flags |= XFS_XFLAG_EXTSZINHERIT;
  701. if (di_flags & XFS_DIFLAG_NODEFRAG)
  702. flags |= XFS_XFLAG_NODEFRAG;
  703. if (di_flags & XFS_DIFLAG_FILESTREAM)
  704. flags |= XFS_XFLAG_FILESTREAM;
  705. }
  706. return flags;
  707. }
  708. uint
  709. xfs_ip2xflags(
  710. xfs_inode_t *ip)
  711. {
  712. xfs_icdinode_t *dic = &ip->i_d;
  713. return _xfs_dic2xflags(dic->di_flags) |
  714. (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
  715. }
  716. uint
  717. xfs_dic2xflags(
  718. xfs_dinode_t *dip)
  719. {
  720. return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
  721. (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
  722. }
  723. /*
  724. * Read the disk inode attributes into the in-core inode structure.
  725. */
  726. int
  727. xfs_iread(
  728. xfs_mount_t *mp,
  729. xfs_trans_t *tp,
  730. xfs_inode_t *ip,
  731. xfs_daddr_t bno,
  732. uint iget_flags)
  733. {
  734. xfs_buf_t *bp;
  735. xfs_dinode_t *dip;
  736. int error;
  737. /*
  738. * Fill in the location information in the in-core inode.
  739. */
  740. ip->i_imap.im_blkno = bno;
  741. error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
  742. if (error)
  743. return error;
  744. ASSERT(bno == 0 || bno == ip->i_imap.im_blkno);
  745. /*
  746. * Get pointers to the on-disk inode and the buffer containing it.
  747. */
  748. error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
  749. XFS_BUF_LOCK, iget_flags);
  750. if (error)
  751. return error;
  752. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  753. /*
  754. * If we got something that isn't an inode it means someone
  755. * (nfs or dmi) has a stale handle.
  756. */
  757. if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
  758. #ifdef DEBUG
  759. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  760. "dip->di_magic (0x%x) != "
  761. "XFS_DINODE_MAGIC (0x%x)",
  762. be16_to_cpu(dip->di_magic),
  763. XFS_DINODE_MAGIC);
  764. #endif /* DEBUG */
  765. error = XFS_ERROR(EINVAL);
  766. goto out_brelse;
  767. }
  768. /*
  769. * If the on-disk inode is already linked to a directory
  770. * entry, copy all of the inode into the in-core inode.
  771. * xfs_iformat() handles copying in the inode format
  772. * specific information.
  773. * Otherwise, just get the truly permanent information.
  774. */
  775. if (dip->di_mode) {
  776. xfs_dinode_from_disk(&ip->i_d, dip);
  777. error = xfs_iformat(ip, dip);
  778. if (error) {
  779. #ifdef DEBUG
  780. xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
  781. "xfs_iformat() returned error %d",
  782. error);
  783. #endif /* DEBUG */
  784. goto out_brelse;
  785. }
  786. } else {
  787. ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
  788. ip->i_d.di_version = dip->di_version;
  789. ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
  790. ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
  791. /*
  792. * Make sure to pull in the mode here as well in
  793. * case the inode is released without being used.
  794. * This ensures that xfs_inactive() will see that
  795. * the inode is already free and not try to mess
  796. * with the uninitialized part of it.
  797. */
  798. ip->i_d.di_mode = 0;
  799. /*
  800. * Initialize the per-fork minima and maxima for a new
  801. * inode here. xfs_iformat will do it for old inodes.
  802. */
  803. ip->i_df.if_ext_max =
  804. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  805. }
  806. /*
  807. * The inode format changed when we moved the link count and
  808. * made it 32 bits long. If this is an old format inode,
  809. * convert it in memory to look like a new one. If it gets
  810. * flushed to disk we will convert back before flushing or
  811. * logging it. We zero out the new projid field and the old link
  812. * count field. We'll handle clearing the pad field (the remains
  813. * of the old uuid field) when we actually convert the inode to
  814. * the new format. We don't change the version number so that we
  815. * can distinguish this from a real new format inode.
  816. */
  817. if (ip->i_d.di_version == 1) {
  818. ip->i_d.di_nlink = ip->i_d.di_onlink;
  819. ip->i_d.di_onlink = 0;
  820. ip->i_d.di_projid = 0;
  821. }
  822. ip->i_delayed_blks = 0;
  823. ip->i_size = ip->i_d.di_size;
  824. /*
  825. * Mark the buffer containing the inode as something to keep
  826. * around for a while. This helps to keep recently accessed
  827. * meta-data in-core longer.
  828. */
  829. XFS_BUF_SET_REF(bp, XFS_INO_REF);
  830. /*
  831. * Use xfs_trans_brelse() to release the buffer containing the
  832. * on-disk inode, because it was acquired with xfs_trans_read_buf()
  833. * in xfs_itobp() above. If tp is NULL, this is just a normal
  834. * brelse(). If we're within a transaction, then xfs_trans_brelse()
  835. * will only release the buffer if it is not dirty within the
  836. * transaction. It will be OK to release the buffer in this case,
  837. * because inodes on disk are never destroyed and we will be
  838. * locking the new in-core inode before putting it in the hash
  839. * table where other processes can find it. Thus we don't have
  840. * to worry about the inode being changed just because we released
  841. * the buffer.
  842. */
  843. out_brelse:
  844. xfs_trans_brelse(tp, bp);
  845. return error;
  846. }
  847. /*
  848. * Read in extents from a btree-format inode.
  849. * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
  850. */
  851. int
  852. xfs_iread_extents(
  853. xfs_trans_t *tp,
  854. xfs_inode_t *ip,
  855. int whichfork)
  856. {
  857. int error;
  858. xfs_ifork_t *ifp;
  859. xfs_extnum_t nextents;
  860. size_t size;
  861. if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
  862. XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
  863. ip->i_mount);
  864. return XFS_ERROR(EFSCORRUPTED);
  865. }
  866. nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
  867. size = nextents * sizeof(xfs_bmbt_rec_t);
  868. ifp = XFS_IFORK_PTR(ip, whichfork);
  869. /*
  870. * We know that the size is valid (it's checked in iformat_btree)
  871. */
  872. ifp->if_lastex = NULLEXTNUM;
  873. ifp->if_bytes = ifp->if_real_bytes = 0;
  874. ifp->if_flags |= XFS_IFEXTENTS;
  875. xfs_iext_add(ifp, 0, nextents);
  876. error = xfs_bmap_read_extents(tp, ip, whichfork);
  877. if (error) {
  878. xfs_iext_destroy(ifp);
  879. ifp->if_flags &= ~XFS_IFEXTENTS;
  880. return error;
  881. }
  882. xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
  883. return 0;
  884. }
  885. /*
  886. * Allocate an inode on disk and return a copy of its in-core version.
  887. * The in-core inode is locked exclusively. Set mode, nlink, and rdev
  888. * appropriately within the inode. The uid and gid for the inode are
  889. * set according to the contents of the given cred structure.
  890. *
  891. * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
  892. * has a free inode available, call xfs_iget()
  893. * to obtain the in-core version of the allocated inode. Finally,
  894. * fill in the inode and log its initial contents. In this case,
  895. * ialloc_context would be set to NULL and call_again set to false.
  896. *
  897. * If xfs_dialloc() does not have an available inode,
  898. * it will replenish its supply by doing an allocation. Since we can
  899. * only do one allocation within a transaction without deadlocks, we
  900. * must commit the current transaction before returning the inode itself.
  901. * In this case, therefore, we will set call_again to true and return.
  902. * The caller should then commit the current transaction, start a new
  903. * transaction, and call xfs_ialloc() again to actually get the inode.
  904. *
  905. * To ensure that some other process does not grab the inode that
  906. * was allocated during the first call to xfs_ialloc(), this routine
  907. * also returns the [locked] bp pointing to the head of the freelist
  908. * as ialloc_context. The caller should hold this buffer across
  909. * the commit and pass it back into this routine on the second call.
  910. *
  911. * If we are allocating quota inodes, we do not have a parent inode
  912. * to attach to or associate with (i.e. pip == NULL) because they
  913. * are not linked into the directory structure - they are attached
  914. * directly to the superblock - and so have no parent.
  915. */
  916. int
  917. xfs_ialloc(
  918. xfs_trans_t *tp,
  919. xfs_inode_t *pip,
  920. mode_t mode,
  921. xfs_nlink_t nlink,
  922. xfs_dev_t rdev,
  923. cred_t *cr,
  924. xfs_prid_t prid,
  925. int okalloc,
  926. xfs_buf_t **ialloc_context,
  927. boolean_t *call_again,
  928. xfs_inode_t **ipp)
  929. {
  930. xfs_ino_t ino;
  931. xfs_inode_t *ip;
  932. uint flags;
  933. int error;
  934. timespec_t tv;
  935. int filestreams = 0;
  936. /*
  937. * Call the space management code to pick
  938. * the on-disk inode to be allocated.
  939. */
  940. error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
  941. ialloc_context, call_again, &ino);
  942. if (error)
  943. return error;
  944. if (*call_again || ino == NULLFSINO) {
  945. *ipp = NULL;
  946. return 0;
  947. }
  948. ASSERT(*ialloc_context == NULL);
  949. /*
  950. * Get the in-core inode with the lock held exclusively.
  951. * This is because we're setting fields here we need
  952. * to prevent others from looking at until we're done.
  953. */
  954. error = xfs_trans_iget(tp->t_mountp, tp, ino,
  955. XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
  956. if (error)
  957. return error;
  958. ASSERT(ip != NULL);
  959. ip->i_d.di_mode = (__uint16_t)mode;
  960. ip->i_d.di_onlink = 0;
  961. ip->i_d.di_nlink = nlink;
  962. ASSERT(ip->i_d.di_nlink == nlink);
  963. ip->i_d.di_uid = current_fsuid();
  964. ip->i_d.di_gid = current_fsgid();
  965. ip->i_d.di_projid = prid;
  966. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  967. /*
  968. * If the superblock version is up to where we support new format
  969. * inodes and this is currently an old format inode, then change
  970. * the inode version number now. This way we only do the conversion
  971. * here rather than here and in the flush/logging code.
  972. */
  973. if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
  974. ip->i_d.di_version == 1) {
  975. ip->i_d.di_version = 2;
  976. /*
  977. * We've already zeroed the old link count, the projid field,
  978. * and the pad field.
  979. */
  980. }
  981. /*
  982. * Project ids won't be stored on disk if we are using a version 1 inode.
  983. */
  984. if ((prid != 0) && (ip->i_d.di_version == 1))
  985. xfs_bump_ino_vers2(tp, ip);
  986. if (pip && XFS_INHERIT_GID(pip)) {
  987. ip->i_d.di_gid = pip->i_d.di_gid;
  988. if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
  989. ip->i_d.di_mode |= S_ISGID;
  990. }
  991. }
  992. /*
  993. * If the group ID of the new file does not match the effective group
  994. * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
  995. * (and only if the irix_sgid_inherit compatibility variable is set).
  996. */
  997. if ((irix_sgid_inherit) &&
  998. (ip->i_d.di_mode & S_ISGID) &&
  999. (!in_group_p((gid_t)ip->i_d.di_gid))) {
  1000. ip->i_d.di_mode &= ~S_ISGID;
  1001. }
  1002. ip->i_d.di_size = 0;
  1003. ip->i_size = 0;
  1004. ip->i_d.di_nextents = 0;
  1005. ASSERT(ip->i_d.di_nblocks == 0);
  1006. nanotime(&tv);
  1007. ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
  1008. ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
  1009. ip->i_d.di_atime = ip->i_d.di_mtime;
  1010. ip->i_d.di_ctime = ip->i_d.di_mtime;
  1011. /*
  1012. * di_gen will have been taken care of in xfs_iread.
  1013. */
  1014. ip->i_d.di_extsize = 0;
  1015. ip->i_d.di_dmevmask = 0;
  1016. ip->i_d.di_dmstate = 0;
  1017. ip->i_d.di_flags = 0;
  1018. flags = XFS_ILOG_CORE;
  1019. switch (mode & S_IFMT) {
  1020. case S_IFIFO:
  1021. case S_IFCHR:
  1022. case S_IFBLK:
  1023. case S_IFSOCK:
  1024. ip->i_d.di_format = XFS_DINODE_FMT_DEV;
  1025. ip->i_df.if_u2.if_rdev = rdev;
  1026. ip->i_df.if_flags = 0;
  1027. flags |= XFS_ILOG_DEV;
  1028. break;
  1029. case S_IFREG:
  1030. /*
  1031. * we can't set up filestreams until after the VFS inode
  1032. * is set up properly.
  1033. */
  1034. if (pip && xfs_inode_is_filestream(pip))
  1035. filestreams = 1;
  1036. /* fall through */
  1037. case S_IFDIR:
  1038. if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
  1039. uint di_flags = 0;
  1040. if ((mode & S_IFMT) == S_IFDIR) {
  1041. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1042. di_flags |= XFS_DIFLAG_RTINHERIT;
  1043. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1044. di_flags |= XFS_DIFLAG_EXTSZINHERIT;
  1045. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1046. }
  1047. } else if ((mode & S_IFMT) == S_IFREG) {
  1048. if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
  1049. di_flags |= XFS_DIFLAG_REALTIME;
  1050. if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
  1051. di_flags |= XFS_DIFLAG_EXTSIZE;
  1052. ip->i_d.di_extsize = pip->i_d.di_extsize;
  1053. }
  1054. }
  1055. if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
  1056. xfs_inherit_noatime)
  1057. di_flags |= XFS_DIFLAG_NOATIME;
  1058. if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
  1059. xfs_inherit_nodump)
  1060. di_flags |= XFS_DIFLAG_NODUMP;
  1061. if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
  1062. xfs_inherit_sync)
  1063. di_flags |= XFS_DIFLAG_SYNC;
  1064. if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
  1065. xfs_inherit_nosymlinks)
  1066. di_flags |= XFS_DIFLAG_NOSYMLINKS;
  1067. if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
  1068. di_flags |= XFS_DIFLAG_PROJINHERIT;
  1069. if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
  1070. xfs_inherit_nodefrag)
  1071. di_flags |= XFS_DIFLAG_NODEFRAG;
  1072. if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
  1073. di_flags |= XFS_DIFLAG_FILESTREAM;
  1074. ip->i_d.di_flags |= di_flags;
  1075. }
  1076. /* FALLTHROUGH */
  1077. case S_IFLNK:
  1078. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1079. ip->i_df.if_flags = XFS_IFEXTENTS;
  1080. ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
  1081. ip->i_df.if_u1.if_extents = NULL;
  1082. break;
  1083. default:
  1084. ASSERT(0);
  1085. }
  1086. /*
  1087. * Attribute fork settings for new inode.
  1088. */
  1089. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1090. ip->i_d.di_anextents = 0;
  1091. /*
  1092. * Log the new values stuffed into the inode.
  1093. */
  1094. xfs_trans_log_inode(tp, ip, flags);
  1095. /* now that we have an i_mode we can setup inode ops and unlock */
  1096. xfs_setup_inode(ip);
  1097. /* now we have set up the vfs inode we can associate the filestream */
  1098. if (filestreams) {
  1099. error = xfs_filestream_associate(pip, ip);
  1100. if (error < 0)
  1101. return -error;
  1102. if (!error)
  1103. xfs_iflags_set(ip, XFS_IFILESTREAM);
  1104. }
  1105. *ipp = ip;
  1106. return 0;
  1107. }
  1108. /*
  1109. * Check to make sure that there are no blocks allocated to the
  1110. * file beyond the size of the file. We don't check this for
  1111. * files with fixed size extents or real time extents, but we
  1112. * at least do it for regular files.
  1113. */
  1114. #ifdef DEBUG
  1115. void
  1116. xfs_isize_check(
  1117. xfs_mount_t *mp,
  1118. xfs_inode_t *ip,
  1119. xfs_fsize_t isize)
  1120. {
  1121. xfs_fileoff_t map_first;
  1122. int nimaps;
  1123. xfs_bmbt_irec_t imaps[2];
  1124. if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
  1125. return;
  1126. if (XFS_IS_REALTIME_INODE(ip))
  1127. return;
  1128. if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
  1129. return;
  1130. nimaps = 2;
  1131. map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
  1132. /*
  1133. * The filesystem could be shutting down, so bmapi may return
  1134. * an error.
  1135. */
  1136. if (xfs_bmapi(NULL, ip, map_first,
  1137. (XFS_B_TO_FSB(mp,
  1138. (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
  1139. map_first),
  1140. XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
  1141. NULL, NULL))
  1142. return;
  1143. ASSERT(nimaps == 1);
  1144. ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
  1145. }
  1146. #endif /* DEBUG */
  1147. /*
  1148. * Calculate the last possible buffered byte in a file. This must
  1149. * include data that was buffered beyond the EOF by the write code.
  1150. * This also needs to deal with overflowing the xfs_fsize_t type
  1151. * which can happen for sizes near the limit.
  1152. *
  1153. * We also need to take into account any blocks beyond the EOF. It
  1154. * may be the case that they were buffered by a write which failed.
  1155. * In that case the pages will still be in memory, but the inode size
  1156. * will never have been updated.
  1157. */
  1158. STATIC xfs_fsize_t
  1159. xfs_file_last_byte(
  1160. xfs_inode_t *ip)
  1161. {
  1162. xfs_mount_t *mp;
  1163. xfs_fsize_t last_byte;
  1164. xfs_fileoff_t last_block;
  1165. xfs_fileoff_t size_last_block;
  1166. int error;
  1167. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
  1168. mp = ip->i_mount;
  1169. /*
  1170. * Only check for blocks beyond the EOF if the extents have
  1171. * been read in. This eliminates the need for the inode lock,
  1172. * and it also saves us from looking when it really isn't
  1173. * necessary.
  1174. */
  1175. if (ip->i_df.if_flags & XFS_IFEXTENTS) {
  1176. xfs_ilock(ip, XFS_ILOCK_SHARED);
  1177. error = xfs_bmap_last_offset(NULL, ip, &last_block,
  1178. XFS_DATA_FORK);
  1179. xfs_iunlock(ip, XFS_ILOCK_SHARED);
  1180. if (error) {
  1181. last_block = 0;
  1182. }
  1183. } else {
  1184. last_block = 0;
  1185. }
  1186. size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
  1187. last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
  1188. last_byte = XFS_FSB_TO_B(mp, last_block);
  1189. if (last_byte < 0) {
  1190. return XFS_MAXIOFFSET(mp);
  1191. }
  1192. last_byte += (1 << mp->m_writeio_log);
  1193. if (last_byte < 0) {
  1194. return XFS_MAXIOFFSET(mp);
  1195. }
  1196. return last_byte;
  1197. }
  1198. /*
  1199. * Start the truncation of the file to new_size. The new size
  1200. * must be smaller than the current size. This routine will
  1201. * clear the buffer and page caches of file data in the removed
  1202. * range, and xfs_itruncate_finish() will remove the underlying
  1203. * disk blocks.
  1204. *
  1205. * The inode must have its I/O lock locked EXCLUSIVELY, and it
  1206. * must NOT have the inode lock held at all. This is because we're
  1207. * calling into the buffer/page cache code and we can't hold the
  1208. * inode lock when we do so.
  1209. *
  1210. * We need to wait for any direct I/Os in flight to complete before we
  1211. * proceed with the truncate. This is needed to prevent the extents
  1212. * being read or written by the direct I/Os from being removed while the
  1213. * I/O is in flight as there is no other method of synchronising
  1214. * direct I/O with the truncate operation. Also, because we hold
  1215. * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
  1216. * started until the truncate completes and drops the lock. Essentially,
  1217. * the xfs_ioend_wait() call forms an I/O barrier that provides strict
  1218. * ordering between direct I/Os and the truncate operation.
  1219. *
  1220. * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
  1221. * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
  1222. * in the case that the caller is locking things out of order and
  1223. * may not be able to call xfs_itruncate_finish() with the inode lock
  1224. * held without dropping the I/O lock. If the caller must drop the
  1225. * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
  1226. * must be called again with all the same restrictions as the initial
  1227. * call.
  1228. */
  1229. int
  1230. xfs_itruncate_start(
  1231. xfs_inode_t *ip,
  1232. uint flags,
  1233. xfs_fsize_t new_size)
  1234. {
  1235. xfs_fsize_t last_byte;
  1236. xfs_off_t toss_start;
  1237. xfs_mount_t *mp;
  1238. int error = 0;
  1239. ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
  1240. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1241. ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
  1242. (flags == XFS_ITRUNC_MAYBE));
  1243. mp = ip->i_mount;
  1244. /* wait for the completion of any pending DIOs */
  1245. if (new_size == 0 || new_size < ip->i_size)
  1246. xfs_ioend_wait(ip);
  1247. /*
  1248. * Call toss_pages or flushinval_pages to get rid of pages
  1249. * overlapping the region being removed. We have to use
  1250. * the less efficient flushinval_pages in the case that the
  1251. * caller may not be able to finish the truncate without
  1252. * dropping the inode's I/O lock. Make sure
  1253. * to catch any pages brought in by buffers overlapping
  1254. * the EOF by searching out beyond the isize by our
  1255. * block size. We round new_size up to a block boundary
  1256. * so that we don't toss things on the same block as
  1257. * new_size but before it.
  1258. *
  1259. * Before calling toss_page or flushinval_pages, make sure to
  1260. * call remapf() over the same region if the file is mapped.
  1261. * This frees up mapped file references to the pages in the
  1262. * given range and for the flushinval_pages case it ensures
  1263. * that we get the latest mapped changes flushed out.
  1264. */
  1265. toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1266. toss_start = XFS_FSB_TO_B(mp, toss_start);
  1267. if (toss_start < 0) {
  1268. /*
  1269. * The place to start tossing is beyond our maximum
  1270. * file size, so there is no way that the data extended
  1271. * out there.
  1272. */
  1273. return 0;
  1274. }
  1275. last_byte = xfs_file_last_byte(ip);
  1276. trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
  1277. if (last_byte > toss_start) {
  1278. if (flags & XFS_ITRUNC_DEFINITE) {
  1279. xfs_tosspages(ip, toss_start,
  1280. -1, FI_REMAPF_LOCKED);
  1281. } else {
  1282. error = xfs_flushinval_pages(ip, toss_start,
  1283. -1, FI_REMAPF_LOCKED);
  1284. }
  1285. }
  1286. #ifdef DEBUG
  1287. if (new_size == 0) {
  1288. ASSERT(VN_CACHED(VFS_I(ip)) == 0);
  1289. }
  1290. #endif
  1291. return error;
  1292. }
  1293. /*
  1294. * Shrink the file to the given new_size. The new size must be smaller than
  1295. * the current size. This will free up the underlying blocks in the removed
  1296. * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
  1297. *
  1298. * The transaction passed to this routine must have made a permanent log
  1299. * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
  1300. * given transaction and start new ones, so make sure everything involved in
  1301. * the transaction is tidy before calling here. Some transaction will be
  1302. * returned to the caller to be committed. The incoming transaction must
  1303. * already include the inode, and both inode locks must be held exclusively.
  1304. * The inode must also be "held" within the transaction. On return the inode
  1305. * will be "held" within the returned transaction. This routine does NOT
  1306. * require any disk space to be reserved for it within the transaction.
  1307. *
  1308. * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
  1309. * indicates the fork which is to be truncated. For the attribute fork we only
  1310. * support truncation to size 0.
  1311. *
  1312. * We use the sync parameter to indicate whether or not the first transaction
  1313. * we perform might have to be synchronous. For the attr fork, it needs to be
  1314. * so if the unlink of the inode is not yet known to be permanent in the log.
  1315. * This keeps us from freeing and reusing the blocks of the attribute fork
  1316. * before the unlink of the inode becomes permanent.
  1317. *
  1318. * For the data fork, we normally have to run synchronously if we're being
  1319. * called out of the inactive path or we're being called out of the create path
  1320. * where we're truncating an existing file. Either way, the truncate needs to
  1321. * be sync so blocks don't reappear in the file with altered data in case of a
  1322. * crash. wsync filesystems can run the first case async because anything that
  1323. * shrinks the inode has to run sync so by the time we're called here from
  1324. * inactive, the inode size is permanently set to 0.
  1325. *
  1326. * Calls from the truncate path always need to be sync unless we're in a wsync
  1327. * filesystem and the file has already been unlinked.
  1328. *
  1329. * The caller is responsible for correctly setting the sync parameter. It gets
  1330. * too hard for us to guess here which path we're being called out of just
  1331. * based on inode state.
  1332. *
  1333. * If we get an error, we must return with the inode locked and linked into the
  1334. * current transaction. This keeps things simple for the higher level code,
  1335. * because it always knows that the inode is locked and held in the transaction
  1336. * that returns to it whether errors occur or not. We don't mark the inode
  1337. * dirty on error so that transactions can be easily aborted if possible.
  1338. */
  1339. int
  1340. xfs_itruncate_finish(
  1341. xfs_trans_t **tp,
  1342. xfs_inode_t *ip,
  1343. xfs_fsize_t new_size,
  1344. int fork,
  1345. int sync)
  1346. {
  1347. xfs_fsblock_t first_block;
  1348. xfs_fileoff_t first_unmap_block;
  1349. xfs_fileoff_t last_block;
  1350. xfs_filblks_t unmap_len=0;
  1351. xfs_mount_t *mp;
  1352. xfs_trans_t *ntp;
  1353. int done;
  1354. int committed;
  1355. xfs_bmap_free_t free_list;
  1356. int error;
  1357. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
  1358. ASSERT((new_size == 0) || (new_size <= ip->i_size));
  1359. ASSERT(*tp != NULL);
  1360. ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
  1361. ASSERT(ip->i_transp == *tp);
  1362. ASSERT(ip->i_itemp != NULL);
  1363. ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
  1364. ntp = *tp;
  1365. mp = (ntp)->t_mountp;
  1366. ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
  1367. /*
  1368. * We only support truncating the entire attribute fork.
  1369. */
  1370. if (fork == XFS_ATTR_FORK) {
  1371. new_size = 0LL;
  1372. }
  1373. first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
  1374. trace_xfs_itruncate_finish_start(ip, new_size);
  1375. /*
  1376. * The first thing we do is set the size to new_size permanently
  1377. * on disk. This way we don't have to worry about anyone ever
  1378. * being able to look at the data being freed even in the face
  1379. * of a crash. What we're getting around here is the case where
  1380. * we free a block, it is allocated to another file, it is written
  1381. * to, and then we crash. If the new data gets written to the
  1382. * file but the log buffers containing the free and reallocation
  1383. * don't, then we'd end up with garbage in the blocks being freed.
  1384. * As long as we make the new_size permanent before actually
  1385. * freeing any blocks it doesn't matter if they get writtten to.
  1386. *
  1387. * The callers must signal into us whether or not the size
  1388. * setting here must be synchronous. There are a few cases
  1389. * where it doesn't have to be synchronous. Those cases
  1390. * occur if the file is unlinked and we know the unlink is
  1391. * permanent or if the blocks being truncated are guaranteed
  1392. * to be beyond the inode eof (regardless of the link count)
  1393. * and the eof value is permanent. Both of these cases occur
  1394. * only on wsync-mounted filesystems. In those cases, we're
  1395. * guaranteed that no user will ever see the data in the blocks
  1396. * that are being truncated so the truncate can run async.
  1397. * In the free beyond eof case, the file may wind up with
  1398. * more blocks allocated to it than it needs if we crash
  1399. * and that won't get fixed until the next time the file
  1400. * is re-opened and closed but that's ok as that shouldn't
  1401. * be too many blocks.
  1402. *
  1403. * However, we can't just make all wsync xactions run async
  1404. * because there's one call out of the create path that needs
  1405. * to run sync where it's truncating an existing file to size
  1406. * 0 whose size is > 0.
  1407. *
  1408. * It's probably possible to come up with a test in this
  1409. * routine that would correctly distinguish all the above
  1410. * cases from the values of the function parameters and the
  1411. * inode state but for sanity's sake, I've decided to let the
  1412. * layers above just tell us. It's simpler to correctly figure
  1413. * out in the layer above exactly under what conditions we
  1414. * can run async and I think it's easier for others read and
  1415. * follow the logic in case something has to be changed.
  1416. * cscope is your friend -- rcc.
  1417. *
  1418. * The attribute fork is much simpler.
  1419. *
  1420. * For the attribute fork we allow the caller to tell us whether
  1421. * the unlink of the inode that led to this call is yet permanent
  1422. * in the on disk log. If it is not and we will be freeing extents
  1423. * in this inode then we make the first transaction synchronous
  1424. * to make sure that the unlink is permanent by the time we free
  1425. * the blocks.
  1426. */
  1427. if (fork == XFS_DATA_FORK) {
  1428. if (ip->i_d.di_nextents > 0) {
  1429. /*
  1430. * If we are not changing the file size then do
  1431. * not update the on-disk file size - we may be
  1432. * called from xfs_inactive_free_eofblocks(). If we
  1433. * update the on-disk file size and then the system
  1434. * crashes before the contents of the file are
  1435. * flushed to disk then the files may be full of
  1436. * holes (ie NULL files bug).
  1437. */
  1438. if (ip->i_size != new_size) {
  1439. ip->i_d.di_size = new_size;
  1440. ip->i_size = new_size;
  1441. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1442. }
  1443. }
  1444. } else if (sync) {
  1445. ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
  1446. if (ip->i_d.di_anextents > 0)
  1447. xfs_trans_set_sync(ntp);
  1448. }
  1449. ASSERT(fork == XFS_DATA_FORK ||
  1450. (fork == XFS_ATTR_FORK &&
  1451. ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
  1452. (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
  1453. /*
  1454. * Since it is possible for space to become allocated beyond
  1455. * the end of the file (in a crash where the space is allocated
  1456. * but the inode size is not yet updated), simply remove any
  1457. * blocks which show up between the new EOF and the maximum
  1458. * possible file size. If the first block to be removed is
  1459. * beyond the maximum file size (ie it is the same as last_block),
  1460. * then there is nothing to do.
  1461. */
  1462. last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
  1463. ASSERT(first_unmap_block <= last_block);
  1464. done = 0;
  1465. if (last_block == first_unmap_block) {
  1466. done = 1;
  1467. } else {
  1468. unmap_len = last_block - first_unmap_block + 1;
  1469. }
  1470. while (!done) {
  1471. /*
  1472. * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
  1473. * will tell us whether it freed the entire range or
  1474. * not. If this is a synchronous mount (wsync),
  1475. * then we can tell bunmapi to keep all the
  1476. * transactions asynchronous since the unlink
  1477. * transaction that made this inode inactive has
  1478. * already hit the disk. There's no danger of
  1479. * the freed blocks being reused, there being a
  1480. * crash, and the reused blocks suddenly reappearing
  1481. * in this file with garbage in them once recovery
  1482. * runs.
  1483. */
  1484. xfs_bmap_init(&free_list, &first_block);
  1485. error = xfs_bunmapi(ntp, ip,
  1486. first_unmap_block, unmap_len,
  1487. xfs_bmapi_aflag(fork) |
  1488. (sync ? 0 : XFS_BMAPI_ASYNC),
  1489. XFS_ITRUNC_MAX_EXTENTS,
  1490. &first_block, &free_list,
  1491. NULL, &done);
  1492. if (error) {
  1493. /*
  1494. * If the bunmapi call encounters an error,
  1495. * return to the caller where the transaction
  1496. * can be properly aborted. We just need to
  1497. * make sure we're not holding any resources
  1498. * that we were not when we came in.
  1499. */
  1500. xfs_bmap_cancel(&free_list);
  1501. return error;
  1502. }
  1503. /*
  1504. * Duplicate the transaction that has the permanent
  1505. * reservation and commit the old transaction.
  1506. */
  1507. error = xfs_bmap_finish(tp, &free_list, &committed);
  1508. ntp = *tp;
  1509. if (committed) {
  1510. /* link the inode into the next xact in the chain */
  1511. xfs_trans_ijoin(ntp, ip,
  1512. XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1513. xfs_trans_ihold(ntp, ip);
  1514. }
  1515. if (error) {
  1516. /*
  1517. * If the bmap finish call encounters an error, return
  1518. * to the caller where the transaction can be properly
  1519. * aborted. We just need to make sure we're not
  1520. * holding any resources that we were not when we came
  1521. * in.
  1522. *
  1523. * Aborting from this point might lose some blocks in
  1524. * the file system, but oh well.
  1525. */
  1526. xfs_bmap_cancel(&free_list);
  1527. return error;
  1528. }
  1529. if (committed) {
  1530. /*
  1531. * Mark the inode dirty so it will be logged and
  1532. * moved forward in the log as part of every commit.
  1533. */
  1534. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1535. }
  1536. ntp = xfs_trans_dup(ntp);
  1537. error = xfs_trans_commit(*tp, 0);
  1538. *tp = ntp;
  1539. /* link the inode into the next transaction in the chain */
  1540. xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
  1541. xfs_trans_ihold(ntp, ip);
  1542. if (error)
  1543. return error;
  1544. /*
  1545. * transaction commit worked ok so we can drop the extra ticket
  1546. * reference that we gained in xfs_trans_dup()
  1547. */
  1548. xfs_log_ticket_put(ntp->t_ticket);
  1549. error = xfs_trans_reserve(ntp, 0,
  1550. XFS_ITRUNCATE_LOG_RES(mp), 0,
  1551. XFS_TRANS_PERM_LOG_RES,
  1552. XFS_ITRUNCATE_LOG_COUNT);
  1553. if (error)
  1554. return error;
  1555. }
  1556. /*
  1557. * Only update the size in the case of the data fork, but
  1558. * always re-log the inode so that our permanent transaction
  1559. * can keep on rolling it forward in the log.
  1560. */
  1561. if (fork == XFS_DATA_FORK) {
  1562. xfs_isize_check(mp, ip, new_size);
  1563. /*
  1564. * If we are not changing the file size then do
  1565. * not update the on-disk file size - we may be
  1566. * called from xfs_inactive_free_eofblocks(). If we
  1567. * update the on-disk file size and then the system
  1568. * crashes before the contents of the file are
  1569. * flushed to disk then the files may be full of
  1570. * holes (ie NULL files bug).
  1571. */
  1572. if (ip->i_size != new_size) {
  1573. ip->i_d.di_size = new_size;
  1574. ip->i_size = new_size;
  1575. }
  1576. }
  1577. xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
  1578. ASSERT((new_size != 0) ||
  1579. (fork == XFS_ATTR_FORK) ||
  1580. (ip->i_delayed_blks == 0));
  1581. ASSERT((new_size != 0) ||
  1582. (fork == XFS_ATTR_FORK) ||
  1583. (ip->i_d.di_nextents == 0));
  1584. trace_xfs_itruncate_finish_end(ip, new_size);
  1585. return 0;
  1586. }
  1587. /*
  1588. * This is called when the inode's link count goes to 0.
  1589. * We place the on-disk inode on a list in the AGI. It
  1590. * will be pulled from this list when the inode is freed.
  1591. */
  1592. int
  1593. xfs_iunlink(
  1594. xfs_trans_t *tp,
  1595. xfs_inode_t *ip)
  1596. {
  1597. xfs_mount_t *mp;
  1598. xfs_agi_t *agi;
  1599. xfs_dinode_t *dip;
  1600. xfs_buf_t *agibp;
  1601. xfs_buf_t *ibp;
  1602. xfs_agino_t agino;
  1603. short bucket_index;
  1604. int offset;
  1605. int error;
  1606. ASSERT(ip->i_d.di_nlink == 0);
  1607. ASSERT(ip->i_d.di_mode != 0);
  1608. ASSERT(ip->i_transp == tp);
  1609. mp = tp->t_mountp;
  1610. /*
  1611. * Get the agi buffer first. It ensures lock ordering
  1612. * on the list.
  1613. */
  1614. error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
  1615. if (error)
  1616. return error;
  1617. agi = XFS_BUF_TO_AGI(agibp);
  1618. /*
  1619. * Get the index into the agi hash table for the
  1620. * list this inode will go on.
  1621. */
  1622. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1623. ASSERT(agino != 0);
  1624. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1625. ASSERT(agi->agi_unlinked[bucket_index]);
  1626. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
  1627. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
  1628. /*
  1629. * There is already another inode in the bucket we need
  1630. * to add ourselves to. Add us at the front of the list.
  1631. * Here we put the head pointer into our next pointer,
  1632. * and then we fall through to point the head at us.
  1633. */
  1634. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
  1635. if (error)
  1636. return error;
  1637. ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
  1638. /* both on-disk, don't endian flip twice */
  1639. dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
  1640. offset = ip->i_imap.im_boffset +
  1641. offsetof(xfs_dinode_t, di_next_unlinked);
  1642. xfs_trans_inode_buf(tp, ibp);
  1643. xfs_trans_log_buf(tp, ibp, offset,
  1644. (offset + sizeof(xfs_agino_t) - 1));
  1645. xfs_inobp_check(mp, ibp);
  1646. }
  1647. /*
  1648. * Point the bucket head pointer at the inode being inserted.
  1649. */
  1650. ASSERT(agino != 0);
  1651. agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
  1652. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1653. (sizeof(xfs_agino_t) * bucket_index);
  1654. xfs_trans_log_buf(tp, agibp, offset,
  1655. (offset + sizeof(xfs_agino_t) - 1));
  1656. return 0;
  1657. }
  1658. /*
  1659. * Pull the on-disk inode from the AGI unlinked list.
  1660. */
  1661. STATIC int
  1662. xfs_iunlink_remove(
  1663. xfs_trans_t *tp,
  1664. xfs_inode_t *ip)
  1665. {
  1666. xfs_ino_t next_ino;
  1667. xfs_mount_t *mp;
  1668. xfs_agi_t *agi;
  1669. xfs_dinode_t *dip;
  1670. xfs_buf_t *agibp;
  1671. xfs_buf_t *ibp;
  1672. xfs_agnumber_t agno;
  1673. xfs_agino_t agino;
  1674. xfs_agino_t next_agino;
  1675. xfs_buf_t *last_ibp;
  1676. xfs_dinode_t *last_dip = NULL;
  1677. short bucket_index;
  1678. int offset, last_offset = 0;
  1679. int error;
  1680. mp = tp->t_mountp;
  1681. agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
  1682. /*
  1683. * Get the agi buffer first. It ensures lock ordering
  1684. * on the list.
  1685. */
  1686. error = xfs_read_agi(mp, tp, agno, &agibp);
  1687. if (error)
  1688. return error;
  1689. agi = XFS_BUF_TO_AGI(agibp);
  1690. /*
  1691. * Get the index into the agi hash table for the
  1692. * list this inode will go on.
  1693. */
  1694. agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
  1695. ASSERT(agino != 0);
  1696. bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
  1697. ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
  1698. ASSERT(agi->agi_unlinked[bucket_index]);
  1699. if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
  1700. /*
  1701. * We're at the head of the list. Get the inode's
  1702. * on-disk buffer to see if there is anyone after us
  1703. * on the list. Only modify our next pointer if it
  1704. * is not already NULLAGINO. This saves us the overhead
  1705. * of dealing with the buffer when there is no need to
  1706. * change it.
  1707. */
  1708. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
  1709. if (error) {
  1710. cmn_err(CE_WARN,
  1711. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1712. error, mp->m_fsname);
  1713. return error;
  1714. }
  1715. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1716. ASSERT(next_agino != 0);
  1717. if (next_agino != NULLAGINO) {
  1718. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1719. offset = ip->i_imap.im_boffset +
  1720. offsetof(xfs_dinode_t, di_next_unlinked);
  1721. xfs_trans_inode_buf(tp, ibp);
  1722. xfs_trans_log_buf(tp, ibp, offset,
  1723. (offset + sizeof(xfs_agino_t) - 1));
  1724. xfs_inobp_check(mp, ibp);
  1725. } else {
  1726. xfs_trans_brelse(tp, ibp);
  1727. }
  1728. /*
  1729. * Point the bucket head pointer at the next inode.
  1730. */
  1731. ASSERT(next_agino != 0);
  1732. ASSERT(next_agino != agino);
  1733. agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
  1734. offset = offsetof(xfs_agi_t, agi_unlinked) +
  1735. (sizeof(xfs_agino_t) * bucket_index);
  1736. xfs_trans_log_buf(tp, agibp, offset,
  1737. (offset + sizeof(xfs_agino_t) - 1));
  1738. } else {
  1739. /*
  1740. * We need to search the list for the inode being freed.
  1741. */
  1742. next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
  1743. last_ibp = NULL;
  1744. while (next_agino != agino) {
  1745. /*
  1746. * If the last inode wasn't the one pointing to
  1747. * us, then release its buffer since we're not
  1748. * going to do anything with it.
  1749. */
  1750. if (last_ibp != NULL) {
  1751. xfs_trans_brelse(tp, last_ibp);
  1752. }
  1753. next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
  1754. error = xfs_inotobp(mp, tp, next_ino, &last_dip,
  1755. &last_ibp, &last_offset, 0);
  1756. if (error) {
  1757. cmn_err(CE_WARN,
  1758. "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
  1759. error, mp->m_fsname);
  1760. return error;
  1761. }
  1762. next_agino = be32_to_cpu(last_dip->di_next_unlinked);
  1763. ASSERT(next_agino != NULLAGINO);
  1764. ASSERT(next_agino != 0);
  1765. }
  1766. /*
  1767. * Now last_ibp points to the buffer previous to us on
  1768. * the unlinked list. Pull us from the list.
  1769. */
  1770. error = xfs_itobp(mp, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
  1771. if (error) {
  1772. cmn_err(CE_WARN,
  1773. "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
  1774. error, mp->m_fsname);
  1775. return error;
  1776. }
  1777. next_agino = be32_to_cpu(dip->di_next_unlinked);
  1778. ASSERT(next_agino != 0);
  1779. ASSERT(next_agino != agino);
  1780. if (next_agino != NULLAGINO) {
  1781. dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
  1782. offset = ip->i_imap.im_boffset +
  1783. offsetof(xfs_dinode_t, di_next_unlinked);
  1784. xfs_trans_inode_buf(tp, ibp);
  1785. xfs_trans_log_buf(tp, ibp, offset,
  1786. (offset + sizeof(xfs_agino_t) - 1));
  1787. xfs_inobp_check(mp, ibp);
  1788. } else {
  1789. xfs_trans_brelse(tp, ibp);
  1790. }
  1791. /*
  1792. * Point the previous inode on the list to the next inode.
  1793. */
  1794. last_dip->di_next_unlinked = cpu_to_be32(next_agino);
  1795. ASSERT(next_agino != 0);
  1796. offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
  1797. xfs_trans_inode_buf(tp, last_ibp);
  1798. xfs_trans_log_buf(tp, last_ibp, offset,
  1799. (offset + sizeof(xfs_agino_t) - 1));
  1800. xfs_inobp_check(mp, last_ibp);
  1801. }
  1802. return 0;
  1803. }
  1804. STATIC void
  1805. xfs_ifree_cluster(
  1806. xfs_inode_t *free_ip,
  1807. xfs_trans_t *tp,
  1808. xfs_ino_t inum)
  1809. {
  1810. xfs_mount_t *mp = free_ip->i_mount;
  1811. int blks_per_cluster;
  1812. int nbufs;
  1813. int ninodes;
  1814. int i, j, found, pre_flushed;
  1815. xfs_daddr_t blkno;
  1816. xfs_buf_t *bp;
  1817. xfs_inode_t *ip, **ip_found;
  1818. xfs_inode_log_item_t *iip;
  1819. xfs_log_item_t *lip;
  1820. xfs_perag_t *pag = xfs_get_perag(mp, inum);
  1821. if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
  1822. blks_per_cluster = 1;
  1823. ninodes = mp->m_sb.sb_inopblock;
  1824. nbufs = XFS_IALLOC_BLOCKS(mp);
  1825. } else {
  1826. blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
  1827. mp->m_sb.sb_blocksize;
  1828. ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
  1829. nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
  1830. }
  1831. ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
  1832. for (j = 0; j < nbufs; j++, inum += ninodes) {
  1833. blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
  1834. XFS_INO_TO_AGBNO(mp, inum));
  1835. /*
  1836. * Look for each inode in memory and attempt to lock it,
  1837. * we can be racing with flush and tail pushing here.
  1838. * any inode we get the locks on, add to an array of
  1839. * inode items to process later.
  1840. *
  1841. * The get the buffer lock, we could beat a flush
  1842. * or tail pushing thread to the lock here, in which
  1843. * case they will go looking for the inode buffer
  1844. * and fail, we need some other form of interlock
  1845. * here.
  1846. */
  1847. found = 0;
  1848. for (i = 0; i < ninodes; i++) {
  1849. read_lock(&pag->pag_ici_lock);
  1850. ip = radix_tree_lookup(&pag->pag_ici_root,
  1851. XFS_INO_TO_AGINO(mp, (inum + i)));
  1852. /* Inode not in memory or we found it already,
  1853. * nothing to do
  1854. */
  1855. if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
  1856. read_unlock(&pag->pag_ici_lock);
  1857. continue;
  1858. }
  1859. if (xfs_inode_clean(ip)) {
  1860. read_unlock(&pag->pag_ici_lock);
  1861. continue;
  1862. }
  1863. /* If we can get the locks then add it to the
  1864. * list, otherwise by the time we get the bp lock
  1865. * below it will already be attached to the
  1866. * inode buffer.
  1867. */
  1868. /* This inode will already be locked - by us, lets
  1869. * keep it that way.
  1870. */
  1871. if (ip == free_ip) {
  1872. if (xfs_iflock_nowait(ip)) {
  1873. xfs_iflags_set(ip, XFS_ISTALE);
  1874. if (xfs_inode_clean(ip)) {
  1875. xfs_ifunlock(ip);
  1876. } else {
  1877. ip_found[found++] = ip;
  1878. }
  1879. }
  1880. read_unlock(&pag->pag_ici_lock);
  1881. continue;
  1882. }
  1883. if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
  1884. if (xfs_iflock_nowait(ip)) {
  1885. xfs_iflags_set(ip, XFS_ISTALE);
  1886. if (xfs_inode_clean(ip)) {
  1887. xfs_ifunlock(ip);
  1888. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1889. } else {
  1890. ip_found[found++] = ip;
  1891. }
  1892. } else {
  1893. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1894. }
  1895. }
  1896. read_unlock(&pag->pag_ici_lock);
  1897. }
  1898. bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
  1899. mp->m_bsize * blks_per_cluster,
  1900. XFS_BUF_LOCK);
  1901. pre_flushed = 0;
  1902. lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
  1903. while (lip) {
  1904. if (lip->li_type == XFS_LI_INODE) {
  1905. iip = (xfs_inode_log_item_t *)lip;
  1906. ASSERT(iip->ili_logged == 1);
  1907. lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
  1908. xfs_trans_ail_copy_lsn(mp->m_ail,
  1909. &iip->ili_flush_lsn,
  1910. &iip->ili_item.li_lsn);
  1911. xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
  1912. pre_flushed++;
  1913. }
  1914. lip = lip->li_bio_list;
  1915. }
  1916. for (i = 0; i < found; i++) {
  1917. ip = ip_found[i];
  1918. iip = ip->i_itemp;
  1919. if (!iip) {
  1920. ip->i_update_core = 0;
  1921. xfs_ifunlock(ip);
  1922. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1923. continue;
  1924. }
  1925. iip->ili_last_fields = iip->ili_format.ilf_fields;
  1926. iip->ili_format.ilf_fields = 0;
  1927. iip->ili_logged = 1;
  1928. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  1929. &iip->ili_item.li_lsn);
  1930. xfs_buf_attach_iodone(bp,
  1931. (void(*)(xfs_buf_t*,xfs_log_item_t*))
  1932. xfs_istale_done, (xfs_log_item_t *)iip);
  1933. if (ip != free_ip) {
  1934. xfs_iunlock(ip, XFS_ILOCK_EXCL);
  1935. }
  1936. }
  1937. if (found || pre_flushed)
  1938. xfs_trans_stale_inode_buf(tp, bp);
  1939. xfs_trans_binval(tp, bp);
  1940. }
  1941. kmem_free(ip_found);
  1942. xfs_put_perag(mp, pag);
  1943. }
  1944. /*
  1945. * This is called to return an inode to the inode free list.
  1946. * The inode should already be truncated to 0 length and have
  1947. * no pages associated with it. This routine also assumes that
  1948. * the inode is already a part of the transaction.
  1949. *
  1950. * The on-disk copy of the inode will have been added to the list
  1951. * of unlinked inodes in the AGI. We need to remove the inode from
  1952. * that list atomically with respect to freeing it here.
  1953. */
  1954. int
  1955. xfs_ifree(
  1956. xfs_trans_t *tp,
  1957. xfs_inode_t *ip,
  1958. xfs_bmap_free_t *flist)
  1959. {
  1960. int error;
  1961. int delete;
  1962. xfs_ino_t first_ino;
  1963. xfs_dinode_t *dip;
  1964. xfs_buf_t *ibp;
  1965. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  1966. ASSERT(ip->i_transp == tp);
  1967. ASSERT(ip->i_d.di_nlink == 0);
  1968. ASSERT(ip->i_d.di_nextents == 0);
  1969. ASSERT(ip->i_d.di_anextents == 0);
  1970. ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
  1971. ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
  1972. ASSERT(ip->i_d.di_nblocks == 0);
  1973. /*
  1974. * Pull the on-disk inode from the AGI unlinked list.
  1975. */
  1976. error = xfs_iunlink_remove(tp, ip);
  1977. if (error != 0) {
  1978. return error;
  1979. }
  1980. error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
  1981. if (error != 0) {
  1982. return error;
  1983. }
  1984. ip->i_d.di_mode = 0; /* mark incore inode as free */
  1985. ip->i_d.di_flags = 0;
  1986. ip->i_d.di_dmevmask = 0;
  1987. ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
  1988. ip->i_df.if_ext_max =
  1989. XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
  1990. ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
  1991. ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
  1992. /*
  1993. * Bump the generation count so no one will be confused
  1994. * by reincarnations of this inode.
  1995. */
  1996. ip->i_d.di_gen++;
  1997. xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
  1998. error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XFS_BUF_LOCK);
  1999. if (error)
  2000. return error;
  2001. /*
  2002. * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
  2003. * from picking up this inode when it is reclaimed (its incore state
  2004. * initialzed but not flushed to disk yet). The in-core di_mode is
  2005. * already cleared and a corresponding transaction logged.
  2006. * The hack here just synchronizes the in-core to on-disk
  2007. * di_mode value in advance before the actual inode sync to disk.
  2008. * This is OK because the inode is already unlinked and would never
  2009. * change its di_mode again for this inode generation.
  2010. * This is a temporary hack that would require a proper fix
  2011. * in the future.
  2012. */
  2013. dip->di_mode = 0;
  2014. if (delete) {
  2015. xfs_ifree_cluster(ip, tp, first_ino);
  2016. }
  2017. return 0;
  2018. }
  2019. /*
  2020. * Reallocate the space for if_broot based on the number of records
  2021. * being added or deleted as indicated in rec_diff. Move the records
  2022. * and pointers in if_broot to fit the new size. When shrinking this
  2023. * will eliminate holes between the records and pointers created by
  2024. * the caller. When growing this will create holes to be filled in
  2025. * by the caller.
  2026. *
  2027. * The caller must not request to add more records than would fit in
  2028. * the on-disk inode root. If the if_broot is currently NULL, then
  2029. * if we adding records one will be allocated. The caller must also
  2030. * not request that the number of records go below zero, although
  2031. * it can go to zero.
  2032. *
  2033. * ip -- the inode whose if_broot area is changing
  2034. * ext_diff -- the change in the number of records, positive or negative,
  2035. * requested for the if_broot array.
  2036. */
  2037. void
  2038. xfs_iroot_realloc(
  2039. xfs_inode_t *ip,
  2040. int rec_diff,
  2041. int whichfork)
  2042. {
  2043. struct xfs_mount *mp = ip->i_mount;
  2044. int cur_max;
  2045. xfs_ifork_t *ifp;
  2046. struct xfs_btree_block *new_broot;
  2047. int new_max;
  2048. size_t new_size;
  2049. char *np;
  2050. char *op;
  2051. /*
  2052. * Handle the degenerate case quietly.
  2053. */
  2054. if (rec_diff == 0) {
  2055. return;
  2056. }
  2057. ifp = XFS_IFORK_PTR(ip, whichfork);
  2058. if (rec_diff > 0) {
  2059. /*
  2060. * If there wasn't any memory allocated before, just
  2061. * allocate it now and get out.
  2062. */
  2063. if (ifp->if_broot_bytes == 0) {
  2064. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
  2065. ifp->if_broot = kmem_alloc(new_size, KM_SLEEP);
  2066. ifp->if_broot_bytes = (int)new_size;
  2067. return;
  2068. }
  2069. /*
  2070. * If there is already an existing if_broot, then we need
  2071. * to realloc() it and shift the pointers to their new
  2072. * location. The records don't change location because
  2073. * they are kept butted up against the btree block header.
  2074. */
  2075. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2076. new_max = cur_max + rec_diff;
  2077. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2078. ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
  2079. (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
  2080. KM_SLEEP);
  2081. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2082. ifp->if_broot_bytes);
  2083. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2084. (int)new_size);
  2085. ifp->if_broot_bytes = (int)new_size;
  2086. ASSERT(ifp->if_broot_bytes <=
  2087. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2088. memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
  2089. return;
  2090. }
  2091. /*
  2092. * rec_diff is less than 0. In this case, we are shrinking the
  2093. * if_broot buffer. It must already exist. If we go to zero
  2094. * records, just get rid of the root and clear the status bit.
  2095. */
  2096. ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
  2097. cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
  2098. new_max = cur_max + rec_diff;
  2099. ASSERT(new_max >= 0);
  2100. if (new_max > 0)
  2101. new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
  2102. else
  2103. new_size = 0;
  2104. if (new_size > 0) {
  2105. new_broot = kmem_alloc(new_size, KM_SLEEP);
  2106. /*
  2107. * First copy over the btree block header.
  2108. */
  2109. memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
  2110. } else {
  2111. new_broot = NULL;
  2112. ifp->if_flags &= ~XFS_IFBROOT;
  2113. }
  2114. /*
  2115. * Only copy the records and pointers if there are any.
  2116. */
  2117. if (new_max > 0) {
  2118. /*
  2119. * First copy the records.
  2120. */
  2121. op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
  2122. np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
  2123. memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
  2124. /*
  2125. * Then copy the pointers.
  2126. */
  2127. op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
  2128. ifp->if_broot_bytes);
  2129. np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
  2130. (int)new_size);
  2131. memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
  2132. }
  2133. kmem_free(ifp->if_broot);
  2134. ifp->if_broot = new_broot;
  2135. ifp->if_broot_bytes = (int)new_size;
  2136. ASSERT(ifp->if_broot_bytes <=
  2137. XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
  2138. return;
  2139. }
  2140. /*
  2141. * This is called when the amount of space needed for if_data
  2142. * is increased or decreased. The change in size is indicated by
  2143. * the number of bytes that need to be added or deleted in the
  2144. * byte_diff parameter.
  2145. *
  2146. * If the amount of space needed has decreased below the size of the
  2147. * inline buffer, then switch to using the inline buffer. Otherwise,
  2148. * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
  2149. * to what is needed.
  2150. *
  2151. * ip -- the inode whose if_data area is changing
  2152. * byte_diff -- the change in the number of bytes, positive or negative,
  2153. * requested for the if_data array.
  2154. */
  2155. void
  2156. xfs_idata_realloc(
  2157. xfs_inode_t *ip,
  2158. int byte_diff,
  2159. int whichfork)
  2160. {
  2161. xfs_ifork_t *ifp;
  2162. int new_size;
  2163. int real_size;
  2164. if (byte_diff == 0) {
  2165. return;
  2166. }
  2167. ifp = XFS_IFORK_PTR(ip, whichfork);
  2168. new_size = (int)ifp->if_bytes + byte_diff;
  2169. ASSERT(new_size >= 0);
  2170. if (new_size == 0) {
  2171. if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2172. kmem_free(ifp->if_u1.if_data);
  2173. }
  2174. ifp->if_u1.if_data = NULL;
  2175. real_size = 0;
  2176. } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
  2177. /*
  2178. * If the valid extents/data can fit in if_inline_ext/data,
  2179. * copy them from the malloc'd vector and free it.
  2180. */
  2181. if (ifp->if_u1.if_data == NULL) {
  2182. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2183. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2184. ASSERT(ifp->if_real_bytes != 0);
  2185. memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
  2186. new_size);
  2187. kmem_free(ifp->if_u1.if_data);
  2188. ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
  2189. }
  2190. real_size = 0;
  2191. } else {
  2192. /*
  2193. * Stuck with malloc/realloc.
  2194. * For inline data, the underlying buffer must be
  2195. * a multiple of 4 bytes in size so that it can be
  2196. * logged and stay on word boundaries. We enforce
  2197. * that here.
  2198. */
  2199. real_size = roundup(new_size, 4);
  2200. if (ifp->if_u1.if_data == NULL) {
  2201. ASSERT(ifp->if_real_bytes == 0);
  2202. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2203. } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
  2204. /*
  2205. * Only do the realloc if the underlying size
  2206. * is really changing.
  2207. */
  2208. if (ifp->if_real_bytes != real_size) {
  2209. ifp->if_u1.if_data =
  2210. kmem_realloc(ifp->if_u1.if_data,
  2211. real_size,
  2212. ifp->if_real_bytes,
  2213. KM_SLEEP);
  2214. }
  2215. } else {
  2216. ASSERT(ifp->if_real_bytes == 0);
  2217. ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
  2218. memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
  2219. ifp->if_bytes);
  2220. }
  2221. }
  2222. ifp->if_real_bytes = real_size;
  2223. ifp->if_bytes = new_size;
  2224. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2225. }
  2226. void
  2227. xfs_idestroy_fork(
  2228. xfs_inode_t *ip,
  2229. int whichfork)
  2230. {
  2231. xfs_ifork_t *ifp;
  2232. ifp = XFS_IFORK_PTR(ip, whichfork);
  2233. if (ifp->if_broot != NULL) {
  2234. kmem_free(ifp->if_broot);
  2235. ifp->if_broot = NULL;
  2236. }
  2237. /*
  2238. * If the format is local, then we can't have an extents
  2239. * array so just look for an inline data array. If we're
  2240. * not local then we may or may not have an extents list,
  2241. * so check and free it up if we do.
  2242. */
  2243. if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
  2244. if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
  2245. (ifp->if_u1.if_data != NULL)) {
  2246. ASSERT(ifp->if_real_bytes != 0);
  2247. kmem_free(ifp->if_u1.if_data);
  2248. ifp->if_u1.if_data = NULL;
  2249. ifp->if_real_bytes = 0;
  2250. }
  2251. } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
  2252. ((ifp->if_flags & XFS_IFEXTIREC) ||
  2253. ((ifp->if_u1.if_extents != NULL) &&
  2254. (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
  2255. ASSERT(ifp->if_real_bytes != 0);
  2256. xfs_iext_destroy(ifp);
  2257. }
  2258. ASSERT(ifp->if_u1.if_extents == NULL ||
  2259. ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
  2260. ASSERT(ifp->if_real_bytes == 0);
  2261. if (whichfork == XFS_ATTR_FORK) {
  2262. kmem_zone_free(xfs_ifork_zone, ip->i_afp);
  2263. ip->i_afp = NULL;
  2264. }
  2265. }
  2266. /*
  2267. * Increment the pin count of the given buffer.
  2268. * This value is protected by ipinlock spinlock in the mount structure.
  2269. */
  2270. void
  2271. xfs_ipin(
  2272. xfs_inode_t *ip)
  2273. {
  2274. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
  2275. atomic_inc(&ip->i_pincount);
  2276. }
  2277. /*
  2278. * Decrement the pin count of the given inode, and wake up
  2279. * anyone in xfs_iwait_unpin() if the count goes to 0. The
  2280. * inode must have been previously pinned with a call to xfs_ipin().
  2281. */
  2282. void
  2283. xfs_iunpin(
  2284. xfs_inode_t *ip)
  2285. {
  2286. ASSERT(atomic_read(&ip->i_pincount) > 0);
  2287. if (atomic_dec_and_test(&ip->i_pincount))
  2288. wake_up(&ip->i_ipin_wait);
  2289. }
  2290. /*
  2291. * This is called to unpin an inode. It can be directed to wait or to return
  2292. * immediately without waiting for the inode to be unpinned. The caller must
  2293. * have the inode locked in at least shared mode so that the buffer cannot be
  2294. * subsequently pinned once someone is waiting for it to be unpinned.
  2295. */
  2296. STATIC void
  2297. __xfs_iunpin_wait(
  2298. xfs_inode_t *ip,
  2299. int wait)
  2300. {
  2301. xfs_inode_log_item_t *iip = ip->i_itemp;
  2302. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2303. if (atomic_read(&ip->i_pincount) == 0)
  2304. return;
  2305. /* Give the log a push to start the unpinning I/O */
  2306. xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
  2307. iip->ili_last_lsn : 0, XFS_LOG_FORCE);
  2308. if (wait)
  2309. wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
  2310. }
  2311. static inline void
  2312. xfs_iunpin_wait(
  2313. xfs_inode_t *ip)
  2314. {
  2315. __xfs_iunpin_wait(ip, 1);
  2316. }
  2317. static inline void
  2318. xfs_iunpin_nowait(
  2319. xfs_inode_t *ip)
  2320. {
  2321. __xfs_iunpin_wait(ip, 0);
  2322. }
  2323. /*
  2324. * xfs_iextents_copy()
  2325. *
  2326. * This is called to copy the REAL extents (as opposed to the delayed
  2327. * allocation extents) from the inode into the given buffer. It
  2328. * returns the number of bytes copied into the buffer.
  2329. *
  2330. * If there are no delayed allocation extents, then we can just
  2331. * memcpy() the extents into the buffer. Otherwise, we need to
  2332. * examine each extent in turn and skip those which are delayed.
  2333. */
  2334. int
  2335. xfs_iextents_copy(
  2336. xfs_inode_t *ip,
  2337. xfs_bmbt_rec_t *dp,
  2338. int whichfork)
  2339. {
  2340. int copied;
  2341. int i;
  2342. xfs_ifork_t *ifp;
  2343. int nrecs;
  2344. xfs_fsblock_t start_block;
  2345. ifp = XFS_IFORK_PTR(ip, whichfork);
  2346. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2347. ASSERT(ifp->if_bytes > 0);
  2348. nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  2349. XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
  2350. ASSERT(nrecs > 0);
  2351. /*
  2352. * There are some delayed allocation extents in the
  2353. * inode, so copy the extents one at a time and skip
  2354. * the delayed ones. There must be at least one
  2355. * non-delayed extent.
  2356. */
  2357. copied = 0;
  2358. for (i = 0; i < nrecs; i++) {
  2359. xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
  2360. start_block = xfs_bmbt_get_startblock(ep);
  2361. if (isnullstartblock(start_block)) {
  2362. /*
  2363. * It's a delayed allocation extent, so skip it.
  2364. */
  2365. continue;
  2366. }
  2367. /* Translate to on disk format */
  2368. put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
  2369. put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
  2370. dp++;
  2371. copied++;
  2372. }
  2373. ASSERT(copied != 0);
  2374. xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
  2375. return (copied * (uint)sizeof(xfs_bmbt_rec_t));
  2376. }
  2377. /*
  2378. * Each of the following cases stores data into the same region
  2379. * of the on-disk inode, so only one of them can be valid at
  2380. * any given time. While it is possible to have conflicting formats
  2381. * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
  2382. * in EXTENTS format, this can only happen when the fork has
  2383. * changed formats after being modified but before being flushed.
  2384. * In these cases, the format always takes precedence, because the
  2385. * format indicates the current state of the fork.
  2386. */
  2387. /*ARGSUSED*/
  2388. STATIC void
  2389. xfs_iflush_fork(
  2390. xfs_inode_t *ip,
  2391. xfs_dinode_t *dip,
  2392. xfs_inode_log_item_t *iip,
  2393. int whichfork,
  2394. xfs_buf_t *bp)
  2395. {
  2396. char *cp;
  2397. xfs_ifork_t *ifp;
  2398. xfs_mount_t *mp;
  2399. #ifdef XFS_TRANS_DEBUG
  2400. int first;
  2401. #endif
  2402. static const short brootflag[2] =
  2403. { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
  2404. static const short dataflag[2] =
  2405. { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
  2406. static const short extflag[2] =
  2407. { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
  2408. if (!iip)
  2409. return;
  2410. ifp = XFS_IFORK_PTR(ip, whichfork);
  2411. /*
  2412. * This can happen if we gave up in iformat in an error path,
  2413. * for the attribute fork.
  2414. */
  2415. if (!ifp) {
  2416. ASSERT(whichfork == XFS_ATTR_FORK);
  2417. return;
  2418. }
  2419. cp = XFS_DFORK_PTR(dip, whichfork);
  2420. mp = ip->i_mount;
  2421. switch (XFS_IFORK_FORMAT(ip, whichfork)) {
  2422. case XFS_DINODE_FMT_LOCAL:
  2423. if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
  2424. (ifp->if_bytes > 0)) {
  2425. ASSERT(ifp->if_u1.if_data != NULL);
  2426. ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
  2427. memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
  2428. }
  2429. break;
  2430. case XFS_DINODE_FMT_EXTENTS:
  2431. ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
  2432. !(iip->ili_format.ilf_fields & extflag[whichfork]));
  2433. ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
  2434. (ifp->if_bytes == 0));
  2435. ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
  2436. (ifp->if_bytes > 0));
  2437. if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
  2438. (ifp->if_bytes > 0)) {
  2439. ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
  2440. (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
  2441. whichfork);
  2442. }
  2443. break;
  2444. case XFS_DINODE_FMT_BTREE:
  2445. if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
  2446. (ifp->if_broot_bytes > 0)) {
  2447. ASSERT(ifp->if_broot != NULL);
  2448. ASSERT(ifp->if_broot_bytes <=
  2449. (XFS_IFORK_SIZE(ip, whichfork) +
  2450. XFS_BROOT_SIZE_ADJ));
  2451. xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
  2452. (xfs_bmdr_block_t *)cp,
  2453. XFS_DFORK_SIZE(dip, mp, whichfork));
  2454. }
  2455. break;
  2456. case XFS_DINODE_FMT_DEV:
  2457. if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
  2458. ASSERT(whichfork == XFS_DATA_FORK);
  2459. xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
  2460. }
  2461. break;
  2462. case XFS_DINODE_FMT_UUID:
  2463. if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
  2464. ASSERT(whichfork == XFS_DATA_FORK);
  2465. memcpy(XFS_DFORK_DPTR(dip),
  2466. &ip->i_df.if_u2.if_uuid,
  2467. sizeof(uuid_t));
  2468. }
  2469. break;
  2470. default:
  2471. ASSERT(0);
  2472. break;
  2473. }
  2474. }
  2475. STATIC int
  2476. xfs_iflush_cluster(
  2477. xfs_inode_t *ip,
  2478. xfs_buf_t *bp)
  2479. {
  2480. xfs_mount_t *mp = ip->i_mount;
  2481. xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
  2482. unsigned long first_index, mask;
  2483. unsigned long inodes_per_cluster;
  2484. int ilist_size;
  2485. xfs_inode_t **ilist;
  2486. xfs_inode_t *iq;
  2487. int nr_found;
  2488. int clcount = 0;
  2489. int bufwasdelwri;
  2490. int i;
  2491. ASSERT(pag->pagi_inodeok);
  2492. ASSERT(pag->pag_ici_init);
  2493. inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
  2494. ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
  2495. ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
  2496. if (!ilist)
  2497. return 0;
  2498. mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
  2499. first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
  2500. read_lock(&pag->pag_ici_lock);
  2501. /* really need a gang lookup range call here */
  2502. nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
  2503. first_index, inodes_per_cluster);
  2504. if (nr_found == 0)
  2505. goto out_free;
  2506. for (i = 0; i < nr_found; i++) {
  2507. iq = ilist[i];
  2508. if (iq == ip)
  2509. continue;
  2510. /* if the inode lies outside this cluster, we're done. */
  2511. if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
  2512. break;
  2513. /*
  2514. * Do an un-protected check to see if the inode is dirty and
  2515. * is a candidate for flushing. These checks will be repeated
  2516. * later after the appropriate locks are acquired.
  2517. */
  2518. if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
  2519. continue;
  2520. /*
  2521. * Try to get locks. If any are unavailable or it is pinned,
  2522. * then this inode cannot be flushed and is skipped.
  2523. */
  2524. if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
  2525. continue;
  2526. if (!xfs_iflock_nowait(iq)) {
  2527. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2528. continue;
  2529. }
  2530. if (xfs_ipincount(iq)) {
  2531. xfs_ifunlock(iq);
  2532. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2533. continue;
  2534. }
  2535. /*
  2536. * arriving here means that this inode can be flushed. First
  2537. * re-check that it's dirty before flushing.
  2538. */
  2539. if (!xfs_inode_clean(iq)) {
  2540. int error;
  2541. error = xfs_iflush_int(iq, bp);
  2542. if (error) {
  2543. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2544. goto cluster_corrupt_out;
  2545. }
  2546. clcount++;
  2547. } else {
  2548. xfs_ifunlock(iq);
  2549. }
  2550. xfs_iunlock(iq, XFS_ILOCK_SHARED);
  2551. }
  2552. if (clcount) {
  2553. XFS_STATS_INC(xs_icluster_flushcnt);
  2554. XFS_STATS_ADD(xs_icluster_flushinode, clcount);
  2555. }
  2556. out_free:
  2557. read_unlock(&pag->pag_ici_lock);
  2558. kmem_free(ilist);
  2559. return 0;
  2560. cluster_corrupt_out:
  2561. /*
  2562. * Corruption detected in the clustering loop. Invalidate the
  2563. * inode buffer and shut down the filesystem.
  2564. */
  2565. read_unlock(&pag->pag_ici_lock);
  2566. /*
  2567. * Clean up the buffer. If it was B_DELWRI, just release it --
  2568. * brelse can handle it with no problems. If not, shut down the
  2569. * filesystem before releasing the buffer.
  2570. */
  2571. bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
  2572. if (bufwasdelwri)
  2573. xfs_buf_relse(bp);
  2574. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2575. if (!bufwasdelwri) {
  2576. /*
  2577. * Just like incore_relse: if we have b_iodone functions,
  2578. * mark the buffer as an error and call them. Otherwise
  2579. * mark it as stale and brelse.
  2580. */
  2581. if (XFS_BUF_IODONE_FUNC(bp)) {
  2582. XFS_BUF_CLR_BDSTRAT_FUNC(bp);
  2583. XFS_BUF_UNDONE(bp);
  2584. XFS_BUF_STALE(bp);
  2585. XFS_BUF_ERROR(bp,EIO);
  2586. xfs_biodone(bp);
  2587. } else {
  2588. XFS_BUF_STALE(bp);
  2589. xfs_buf_relse(bp);
  2590. }
  2591. }
  2592. /*
  2593. * Unlocks the flush lock
  2594. */
  2595. xfs_iflush_abort(iq);
  2596. kmem_free(ilist);
  2597. return XFS_ERROR(EFSCORRUPTED);
  2598. }
  2599. /*
  2600. * xfs_iflush() will write a modified inode's changes out to the
  2601. * inode's on disk home. The caller must have the inode lock held
  2602. * in at least shared mode and the inode flush completion must be
  2603. * active as well. The inode lock will still be held upon return from
  2604. * the call and the caller is free to unlock it.
  2605. * The inode flush will be completed when the inode reaches the disk.
  2606. * The flags indicate how the inode's buffer should be written out.
  2607. */
  2608. int
  2609. xfs_iflush(
  2610. xfs_inode_t *ip,
  2611. uint flags)
  2612. {
  2613. xfs_inode_log_item_t *iip;
  2614. xfs_buf_t *bp;
  2615. xfs_dinode_t *dip;
  2616. xfs_mount_t *mp;
  2617. int error;
  2618. int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
  2619. enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
  2620. XFS_STATS_INC(xs_iflush_count);
  2621. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2622. ASSERT(!completion_done(&ip->i_flush));
  2623. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2624. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2625. iip = ip->i_itemp;
  2626. mp = ip->i_mount;
  2627. /*
  2628. * If the inode isn't dirty, then just release the inode
  2629. * flush lock and do nothing.
  2630. */
  2631. if (xfs_inode_clean(ip)) {
  2632. xfs_ifunlock(ip);
  2633. return 0;
  2634. }
  2635. /*
  2636. * We can't flush the inode until it is unpinned, so wait for it if we
  2637. * are allowed to block. We know noone new can pin it, because we are
  2638. * holding the inode lock shared and you need to hold it exclusively to
  2639. * pin the inode.
  2640. *
  2641. * If we are not allowed to block, force the log out asynchronously so
  2642. * that when we come back the inode will be unpinned. If other inodes
  2643. * in the same cluster are dirty, they will probably write the inode
  2644. * out for us if they occur after the log force completes.
  2645. */
  2646. if (noblock && xfs_ipincount(ip)) {
  2647. xfs_iunpin_nowait(ip);
  2648. xfs_ifunlock(ip);
  2649. return EAGAIN;
  2650. }
  2651. xfs_iunpin_wait(ip);
  2652. /*
  2653. * This may have been unpinned because the filesystem is shutting
  2654. * down forcibly. If that's the case we must not write this inode
  2655. * to disk, because the log record didn't make it to disk!
  2656. */
  2657. if (XFS_FORCED_SHUTDOWN(mp)) {
  2658. ip->i_update_core = 0;
  2659. if (iip)
  2660. iip->ili_format.ilf_fields = 0;
  2661. xfs_ifunlock(ip);
  2662. return XFS_ERROR(EIO);
  2663. }
  2664. /*
  2665. * Decide how buffer will be flushed out. This is done before
  2666. * the call to xfs_iflush_int because this field is zeroed by it.
  2667. */
  2668. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2669. /*
  2670. * Flush out the inode buffer according to the directions
  2671. * of the caller. In the cases where the caller has given
  2672. * us a choice choose the non-delwri case. This is because
  2673. * the inode is in the AIL and we need to get it out soon.
  2674. */
  2675. switch (flags) {
  2676. case XFS_IFLUSH_SYNC:
  2677. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2678. flags = 0;
  2679. break;
  2680. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2681. case XFS_IFLUSH_ASYNC:
  2682. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2683. flags = INT_ASYNC;
  2684. break;
  2685. case XFS_IFLUSH_DELWRI:
  2686. flags = INT_DELWRI;
  2687. break;
  2688. default:
  2689. ASSERT(0);
  2690. flags = 0;
  2691. break;
  2692. }
  2693. } else {
  2694. switch (flags) {
  2695. case XFS_IFLUSH_DELWRI_ELSE_SYNC:
  2696. case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
  2697. case XFS_IFLUSH_DELWRI:
  2698. flags = INT_DELWRI;
  2699. break;
  2700. case XFS_IFLUSH_ASYNC_NOBLOCK:
  2701. case XFS_IFLUSH_ASYNC:
  2702. flags = INT_ASYNC;
  2703. break;
  2704. case XFS_IFLUSH_SYNC:
  2705. flags = 0;
  2706. break;
  2707. default:
  2708. ASSERT(0);
  2709. flags = 0;
  2710. break;
  2711. }
  2712. }
  2713. /*
  2714. * Get the buffer containing the on-disk inode.
  2715. */
  2716. error = xfs_itobp(mp, NULL, ip, &dip, &bp,
  2717. noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
  2718. if (error || !bp) {
  2719. xfs_ifunlock(ip);
  2720. return error;
  2721. }
  2722. /*
  2723. * First flush out the inode that xfs_iflush was called with.
  2724. */
  2725. error = xfs_iflush_int(ip, bp);
  2726. if (error)
  2727. goto corrupt_out;
  2728. /*
  2729. * If the buffer is pinned then push on the log now so we won't
  2730. * get stuck waiting in the write for too long.
  2731. */
  2732. if (XFS_BUF_ISPINNED(bp))
  2733. xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
  2734. /*
  2735. * inode clustering:
  2736. * see if other inodes can be gathered into this write
  2737. */
  2738. error = xfs_iflush_cluster(ip, bp);
  2739. if (error)
  2740. goto cluster_corrupt_out;
  2741. if (flags & INT_DELWRI) {
  2742. xfs_bdwrite(mp, bp);
  2743. } else if (flags & INT_ASYNC) {
  2744. error = xfs_bawrite(mp, bp);
  2745. } else {
  2746. error = xfs_bwrite(mp, bp);
  2747. }
  2748. return error;
  2749. corrupt_out:
  2750. xfs_buf_relse(bp);
  2751. xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
  2752. cluster_corrupt_out:
  2753. /*
  2754. * Unlocks the flush lock
  2755. */
  2756. xfs_iflush_abort(ip);
  2757. return XFS_ERROR(EFSCORRUPTED);
  2758. }
  2759. STATIC int
  2760. xfs_iflush_int(
  2761. xfs_inode_t *ip,
  2762. xfs_buf_t *bp)
  2763. {
  2764. xfs_inode_log_item_t *iip;
  2765. xfs_dinode_t *dip;
  2766. xfs_mount_t *mp;
  2767. #ifdef XFS_TRANS_DEBUG
  2768. int first;
  2769. #endif
  2770. ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
  2771. ASSERT(!completion_done(&ip->i_flush));
  2772. ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
  2773. ip->i_d.di_nextents > ip->i_df.if_ext_max);
  2774. iip = ip->i_itemp;
  2775. mp = ip->i_mount;
  2776. /*
  2777. * If the inode isn't dirty, then just release the inode
  2778. * flush lock and do nothing.
  2779. */
  2780. if (xfs_inode_clean(ip)) {
  2781. xfs_ifunlock(ip);
  2782. return 0;
  2783. }
  2784. /* set *dip = inode's place in the buffer */
  2785. dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
  2786. /*
  2787. * Clear i_update_core before copying out the data.
  2788. * This is for coordination with our timestamp updates
  2789. * that don't hold the inode lock. They will always
  2790. * update the timestamps BEFORE setting i_update_core,
  2791. * so if we clear i_update_core after they set it we
  2792. * are guaranteed to see their updates to the timestamps.
  2793. * I believe that this depends on strongly ordered memory
  2794. * semantics, but we have that. We use the SYNCHRONIZE
  2795. * macro to make sure that the compiler does not reorder
  2796. * the i_update_core access below the data copy below.
  2797. */
  2798. ip->i_update_core = 0;
  2799. SYNCHRONIZE();
  2800. /*
  2801. * Make sure to get the latest timestamps from the Linux inode.
  2802. */
  2803. xfs_synchronize_times(ip);
  2804. if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
  2805. mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
  2806. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2807. "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
  2808. ip->i_ino, be16_to_cpu(dip->di_magic), dip);
  2809. goto corrupt_out;
  2810. }
  2811. if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
  2812. mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
  2813. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2814. "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
  2815. ip->i_ino, ip, ip->i_d.di_magic);
  2816. goto corrupt_out;
  2817. }
  2818. if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
  2819. if (XFS_TEST_ERROR(
  2820. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2821. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
  2822. mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
  2823. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2824. "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
  2825. ip->i_ino, ip);
  2826. goto corrupt_out;
  2827. }
  2828. } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
  2829. if (XFS_TEST_ERROR(
  2830. (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
  2831. (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
  2832. (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
  2833. mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
  2834. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2835. "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
  2836. ip->i_ino, ip);
  2837. goto corrupt_out;
  2838. }
  2839. }
  2840. if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
  2841. ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
  2842. XFS_RANDOM_IFLUSH_5)) {
  2843. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2844. "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
  2845. ip->i_ino,
  2846. ip->i_d.di_nextents + ip->i_d.di_anextents,
  2847. ip->i_d.di_nblocks,
  2848. ip);
  2849. goto corrupt_out;
  2850. }
  2851. if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
  2852. mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
  2853. xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
  2854. "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
  2855. ip->i_ino, ip->i_d.di_forkoff, ip);
  2856. goto corrupt_out;
  2857. }
  2858. /*
  2859. * bump the flush iteration count, used to detect flushes which
  2860. * postdate a log record during recovery.
  2861. */
  2862. ip->i_d.di_flushiter++;
  2863. /*
  2864. * Copy the dirty parts of the inode into the on-disk
  2865. * inode. We always copy out the core of the inode,
  2866. * because if the inode is dirty at all the core must
  2867. * be.
  2868. */
  2869. xfs_dinode_to_disk(dip, &ip->i_d);
  2870. /* Wrap, we never let the log put out DI_MAX_FLUSH */
  2871. if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
  2872. ip->i_d.di_flushiter = 0;
  2873. /*
  2874. * If this is really an old format inode and the superblock version
  2875. * has not been updated to support only new format inodes, then
  2876. * convert back to the old inode format. If the superblock version
  2877. * has been updated, then make the conversion permanent.
  2878. */
  2879. ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
  2880. if (ip->i_d.di_version == 1) {
  2881. if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
  2882. /*
  2883. * Convert it back.
  2884. */
  2885. ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
  2886. dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
  2887. } else {
  2888. /*
  2889. * The superblock version has already been bumped,
  2890. * so just make the conversion to the new inode
  2891. * format permanent.
  2892. */
  2893. ip->i_d.di_version = 2;
  2894. dip->di_version = 2;
  2895. ip->i_d.di_onlink = 0;
  2896. dip->di_onlink = 0;
  2897. memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
  2898. memset(&(dip->di_pad[0]), 0,
  2899. sizeof(dip->di_pad));
  2900. ASSERT(ip->i_d.di_projid == 0);
  2901. }
  2902. }
  2903. xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
  2904. if (XFS_IFORK_Q(ip))
  2905. xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
  2906. xfs_inobp_check(mp, bp);
  2907. /*
  2908. * We've recorded everything logged in the inode, so we'd
  2909. * like to clear the ilf_fields bits so we don't log and
  2910. * flush things unnecessarily. However, we can't stop
  2911. * logging all this information until the data we've copied
  2912. * into the disk buffer is written to disk. If we did we might
  2913. * overwrite the copy of the inode in the log with all the
  2914. * data after re-logging only part of it, and in the face of
  2915. * a crash we wouldn't have all the data we need to recover.
  2916. *
  2917. * What we do is move the bits to the ili_last_fields field.
  2918. * When logging the inode, these bits are moved back to the
  2919. * ilf_fields field. In the xfs_iflush_done() routine we
  2920. * clear ili_last_fields, since we know that the information
  2921. * those bits represent is permanently on disk. As long as
  2922. * the flush completes before the inode is logged again, then
  2923. * both ilf_fields and ili_last_fields will be cleared.
  2924. *
  2925. * We can play with the ilf_fields bits here, because the inode
  2926. * lock must be held exclusively in order to set bits there
  2927. * and the flush lock protects the ili_last_fields bits.
  2928. * Set ili_logged so the flush done
  2929. * routine can tell whether or not to look in the AIL.
  2930. * Also, store the current LSN of the inode so that we can tell
  2931. * whether the item has moved in the AIL from xfs_iflush_done().
  2932. * In order to read the lsn we need the AIL lock, because
  2933. * it is a 64 bit value that cannot be read atomically.
  2934. */
  2935. if (iip != NULL && iip->ili_format.ilf_fields != 0) {
  2936. iip->ili_last_fields = iip->ili_format.ilf_fields;
  2937. iip->ili_format.ilf_fields = 0;
  2938. iip->ili_logged = 1;
  2939. xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
  2940. &iip->ili_item.li_lsn);
  2941. /*
  2942. * Attach the function xfs_iflush_done to the inode's
  2943. * buffer. This will remove the inode from the AIL
  2944. * and unlock the inode's flush lock when the inode is
  2945. * completely written to disk.
  2946. */
  2947. xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
  2948. xfs_iflush_done, (xfs_log_item_t *)iip);
  2949. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
  2950. ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
  2951. } else {
  2952. /*
  2953. * We're flushing an inode which is not in the AIL and has
  2954. * not been logged but has i_update_core set. For this
  2955. * case we can use a B_DELWRI flush and immediately drop
  2956. * the inode flush lock because we can avoid the whole
  2957. * AIL state thing. It's OK to drop the flush lock now,
  2958. * because we've already locked the buffer and to do anything
  2959. * you really need both.
  2960. */
  2961. if (iip != NULL) {
  2962. ASSERT(iip->ili_logged == 0);
  2963. ASSERT(iip->ili_last_fields == 0);
  2964. ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
  2965. }
  2966. xfs_ifunlock(ip);
  2967. }
  2968. return 0;
  2969. corrupt_out:
  2970. return XFS_ERROR(EFSCORRUPTED);
  2971. }
  2972. /*
  2973. * Return a pointer to the extent record at file index idx.
  2974. */
  2975. xfs_bmbt_rec_host_t *
  2976. xfs_iext_get_ext(
  2977. xfs_ifork_t *ifp, /* inode fork pointer */
  2978. xfs_extnum_t idx) /* index of target extent */
  2979. {
  2980. ASSERT(idx >= 0);
  2981. if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
  2982. return ifp->if_u1.if_ext_irec->er_extbuf;
  2983. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  2984. xfs_ext_irec_t *erp; /* irec pointer */
  2985. int erp_idx = 0; /* irec index */
  2986. xfs_extnum_t page_idx = idx; /* ext index in target list */
  2987. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  2988. return &erp->er_extbuf[page_idx];
  2989. } else if (ifp->if_bytes) {
  2990. return &ifp->if_u1.if_extents[idx];
  2991. } else {
  2992. return NULL;
  2993. }
  2994. }
  2995. /*
  2996. * Insert new item(s) into the extent records for incore inode
  2997. * fork 'ifp'. 'count' new items are inserted at index 'idx'.
  2998. */
  2999. void
  3000. xfs_iext_insert(
  3001. xfs_inode_t *ip, /* incore inode pointer */
  3002. xfs_extnum_t idx, /* starting index of new items */
  3003. xfs_extnum_t count, /* number of inserted items */
  3004. xfs_bmbt_irec_t *new, /* items to insert */
  3005. int state) /* type of extent conversion */
  3006. {
  3007. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  3008. xfs_extnum_t i; /* extent record index */
  3009. trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
  3010. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3011. xfs_iext_add(ifp, idx, count);
  3012. for (i = idx; i < idx + count; i++, new++)
  3013. xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
  3014. }
  3015. /*
  3016. * This is called when the amount of space required for incore file
  3017. * extents needs to be increased. The ext_diff parameter stores the
  3018. * number of new extents being added and the idx parameter contains
  3019. * the extent index where the new extents will be added. If the new
  3020. * extents are being appended, then we just need to (re)allocate and
  3021. * initialize the space. Otherwise, if the new extents are being
  3022. * inserted into the middle of the existing entries, a bit more work
  3023. * is required to make room for the new extents to be inserted. The
  3024. * caller is responsible for filling in the new extent entries upon
  3025. * return.
  3026. */
  3027. void
  3028. xfs_iext_add(
  3029. xfs_ifork_t *ifp, /* inode fork pointer */
  3030. xfs_extnum_t idx, /* index to begin adding exts */
  3031. int ext_diff) /* number of extents to add */
  3032. {
  3033. int byte_diff; /* new bytes being added */
  3034. int new_size; /* size of extents after adding */
  3035. xfs_extnum_t nextents; /* number of extents in file */
  3036. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3037. ASSERT((idx >= 0) && (idx <= nextents));
  3038. byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
  3039. new_size = ifp->if_bytes + byte_diff;
  3040. /*
  3041. * If the new number of extents (nextents + ext_diff)
  3042. * fits inside the inode, then continue to use the inline
  3043. * extent buffer.
  3044. */
  3045. if (nextents + ext_diff <= XFS_INLINE_EXTS) {
  3046. if (idx < nextents) {
  3047. memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
  3048. &ifp->if_u2.if_inline_ext[idx],
  3049. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3050. memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
  3051. }
  3052. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3053. ifp->if_real_bytes = 0;
  3054. ifp->if_lastex = nextents + ext_diff;
  3055. }
  3056. /*
  3057. * Otherwise use a linear (direct) extent list.
  3058. * If the extents are currently inside the inode,
  3059. * xfs_iext_realloc_direct will switch us from
  3060. * inline to direct extent allocation mode.
  3061. */
  3062. else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
  3063. xfs_iext_realloc_direct(ifp, new_size);
  3064. if (idx < nextents) {
  3065. memmove(&ifp->if_u1.if_extents[idx + ext_diff],
  3066. &ifp->if_u1.if_extents[idx],
  3067. (nextents - idx) * sizeof(xfs_bmbt_rec_t));
  3068. memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
  3069. }
  3070. }
  3071. /* Indirection array */
  3072. else {
  3073. xfs_ext_irec_t *erp;
  3074. int erp_idx = 0;
  3075. int page_idx = idx;
  3076. ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
  3077. if (ifp->if_flags & XFS_IFEXTIREC) {
  3078. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
  3079. } else {
  3080. xfs_iext_irec_init(ifp);
  3081. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3082. erp = ifp->if_u1.if_ext_irec;
  3083. }
  3084. /* Extents fit in target extent page */
  3085. if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
  3086. if (page_idx < erp->er_extcount) {
  3087. memmove(&erp->er_extbuf[page_idx + ext_diff],
  3088. &erp->er_extbuf[page_idx],
  3089. (erp->er_extcount - page_idx) *
  3090. sizeof(xfs_bmbt_rec_t));
  3091. memset(&erp->er_extbuf[page_idx], 0, byte_diff);
  3092. }
  3093. erp->er_extcount += ext_diff;
  3094. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3095. }
  3096. /* Insert a new extent page */
  3097. else if (erp) {
  3098. xfs_iext_add_indirect_multi(ifp,
  3099. erp_idx, page_idx, ext_diff);
  3100. }
  3101. /*
  3102. * If extent(s) are being appended to the last page in
  3103. * the indirection array and the new extent(s) don't fit
  3104. * in the page, then erp is NULL and erp_idx is set to
  3105. * the next index needed in the indirection array.
  3106. */
  3107. else {
  3108. int count = ext_diff;
  3109. while (count) {
  3110. erp = xfs_iext_irec_new(ifp, erp_idx);
  3111. erp->er_extcount = count;
  3112. count -= MIN(count, (int)XFS_LINEAR_EXTS);
  3113. if (count) {
  3114. erp_idx++;
  3115. }
  3116. }
  3117. }
  3118. }
  3119. ifp->if_bytes = new_size;
  3120. }
  3121. /*
  3122. * This is called when incore extents are being added to the indirection
  3123. * array and the new extents do not fit in the target extent list. The
  3124. * erp_idx parameter contains the irec index for the target extent list
  3125. * in the indirection array, and the idx parameter contains the extent
  3126. * index within the list. The number of extents being added is stored
  3127. * in the count parameter.
  3128. *
  3129. * |-------| |-------|
  3130. * | | | | idx - number of extents before idx
  3131. * | idx | | count |
  3132. * | | | | count - number of extents being inserted at idx
  3133. * |-------| |-------|
  3134. * | count | | nex2 | nex2 - number of extents after idx + count
  3135. * |-------| |-------|
  3136. */
  3137. void
  3138. xfs_iext_add_indirect_multi(
  3139. xfs_ifork_t *ifp, /* inode fork pointer */
  3140. int erp_idx, /* target extent irec index */
  3141. xfs_extnum_t idx, /* index within target list */
  3142. int count) /* new extents being added */
  3143. {
  3144. int byte_diff; /* new bytes being added */
  3145. xfs_ext_irec_t *erp; /* pointer to irec entry */
  3146. xfs_extnum_t ext_diff; /* number of extents to add */
  3147. xfs_extnum_t ext_cnt; /* new extents still needed */
  3148. xfs_extnum_t nex2; /* extents after idx + count */
  3149. xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
  3150. int nlists; /* number of irec's (lists) */
  3151. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3152. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3153. nex2 = erp->er_extcount - idx;
  3154. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3155. /*
  3156. * Save second part of target extent list
  3157. * (all extents past */
  3158. if (nex2) {
  3159. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3160. nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
  3161. memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
  3162. erp->er_extcount -= nex2;
  3163. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
  3164. memset(&erp->er_extbuf[idx], 0, byte_diff);
  3165. }
  3166. /*
  3167. * Add the new extents to the end of the target
  3168. * list, then allocate new irec record(s) and
  3169. * extent buffer(s) as needed to store the rest
  3170. * of the new extents.
  3171. */
  3172. ext_cnt = count;
  3173. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
  3174. if (ext_diff) {
  3175. erp->er_extcount += ext_diff;
  3176. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3177. ext_cnt -= ext_diff;
  3178. }
  3179. while (ext_cnt) {
  3180. erp_idx++;
  3181. erp = xfs_iext_irec_new(ifp, erp_idx);
  3182. ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
  3183. erp->er_extcount = ext_diff;
  3184. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
  3185. ext_cnt -= ext_diff;
  3186. }
  3187. /* Add nex2 extents back to indirection array */
  3188. if (nex2) {
  3189. xfs_extnum_t ext_avail;
  3190. int i;
  3191. byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
  3192. ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
  3193. i = 0;
  3194. /*
  3195. * If nex2 extents fit in the current page, append
  3196. * nex2_ep after the new extents.
  3197. */
  3198. if (nex2 <= ext_avail) {
  3199. i = erp->er_extcount;
  3200. }
  3201. /*
  3202. * Otherwise, check if space is available in the
  3203. * next page.
  3204. */
  3205. else if ((erp_idx < nlists - 1) &&
  3206. (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
  3207. ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
  3208. erp_idx++;
  3209. erp++;
  3210. /* Create a hole for nex2 extents */
  3211. memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
  3212. erp->er_extcount * sizeof(xfs_bmbt_rec_t));
  3213. }
  3214. /*
  3215. * Final choice, create a new extent page for
  3216. * nex2 extents.
  3217. */
  3218. else {
  3219. erp_idx++;
  3220. erp = xfs_iext_irec_new(ifp, erp_idx);
  3221. }
  3222. memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
  3223. kmem_free(nex2_ep);
  3224. erp->er_extcount += nex2;
  3225. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
  3226. }
  3227. }
  3228. /*
  3229. * This is called when the amount of space required for incore file
  3230. * extents needs to be decreased. The ext_diff parameter stores the
  3231. * number of extents to be removed and the idx parameter contains
  3232. * the extent index where the extents will be removed from.
  3233. *
  3234. * If the amount of space needed has decreased below the linear
  3235. * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
  3236. * extent array. Otherwise, use kmem_realloc() to adjust the
  3237. * size to what is needed.
  3238. */
  3239. void
  3240. xfs_iext_remove(
  3241. xfs_inode_t *ip, /* incore inode pointer */
  3242. xfs_extnum_t idx, /* index to begin removing exts */
  3243. int ext_diff, /* number of extents to remove */
  3244. int state) /* type of extent conversion */
  3245. {
  3246. xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
  3247. xfs_extnum_t nextents; /* number of extents in file */
  3248. int new_size; /* size of extents after removal */
  3249. trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
  3250. ASSERT(ext_diff > 0);
  3251. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3252. new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
  3253. if (new_size == 0) {
  3254. xfs_iext_destroy(ifp);
  3255. } else if (ifp->if_flags & XFS_IFEXTIREC) {
  3256. xfs_iext_remove_indirect(ifp, idx, ext_diff);
  3257. } else if (ifp->if_real_bytes) {
  3258. xfs_iext_remove_direct(ifp, idx, ext_diff);
  3259. } else {
  3260. xfs_iext_remove_inline(ifp, idx, ext_diff);
  3261. }
  3262. ifp->if_bytes = new_size;
  3263. }
  3264. /*
  3265. * This removes ext_diff extents from the inline buffer, beginning
  3266. * at extent index idx.
  3267. */
  3268. void
  3269. xfs_iext_remove_inline(
  3270. xfs_ifork_t *ifp, /* inode fork pointer */
  3271. xfs_extnum_t idx, /* index to begin removing exts */
  3272. int ext_diff) /* number of extents to remove */
  3273. {
  3274. int nextents; /* number of extents in file */
  3275. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3276. ASSERT(idx < XFS_INLINE_EXTS);
  3277. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3278. ASSERT(((nextents - ext_diff) > 0) &&
  3279. (nextents - ext_diff) < XFS_INLINE_EXTS);
  3280. if (idx + ext_diff < nextents) {
  3281. memmove(&ifp->if_u2.if_inline_ext[idx],
  3282. &ifp->if_u2.if_inline_ext[idx + ext_diff],
  3283. (nextents - (idx + ext_diff)) *
  3284. sizeof(xfs_bmbt_rec_t));
  3285. memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
  3286. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3287. } else {
  3288. memset(&ifp->if_u2.if_inline_ext[idx], 0,
  3289. ext_diff * sizeof(xfs_bmbt_rec_t));
  3290. }
  3291. }
  3292. /*
  3293. * This removes ext_diff extents from a linear (direct) extent list,
  3294. * beginning at extent index idx. If the extents are being removed
  3295. * from the end of the list (ie. truncate) then we just need to re-
  3296. * allocate the list to remove the extra space. Otherwise, if the
  3297. * extents are being removed from the middle of the existing extent
  3298. * entries, then we first need to move the extent records beginning
  3299. * at idx + ext_diff up in the list to overwrite the records being
  3300. * removed, then remove the extra space via kmem_realloc.
  3301. */
  3302. void
  3303. xfs_iext_remove_direct(
  3304. xfs_ifork_t *ifp, /* inode fork pointer */
  3305. xfs_extnum_t idx, /* index to begin removing exts */
  3306. int ext_diff) /* number of extents to remove */
  3307. {
  3308. xfs_extnum_t nextents; /* number of extents in file */
  3309. int new_size; /* size of extents after removal */
  3310. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3311. new_size = ifp->if_bytes -
  3312. (ext_diff * sizeof(xfs_bmbt_rec_t));
  3313. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3314. if (new_size == 0) {
  3315. xfs_iext_destroy(ifp);
  3316. return;
  3317. }
  3318. /* Move extents up in the list (if needed) */
  3319. if (idx + ext_diff < nextents) {
  3320. memmove(&ifp->if_u1.if_extents[idx],
  3321. &ifp->if_u1.if_extents[idx + ext_diff],
  3322. (nextents - (idx + ext_diff)) *
  3323. sizeof(xfs_bmbt_rec_t));
  3324. }
  3325. memset(&ifp->if_u1.if_extents[nextents - ext_diff],
  3326. 0, ext_diff * sizeof(xfs_bmbt_rec_t));
  3327. /*
  3328. * Reallocate the direct extent list. If the extents
  3329. * will fit inside the inode then xfs_iext_realloc_direct
  3330. * will switch from direct to inline extent allocation
  3331. * mode for us.
  3332. */
  3333. xfs_iext_realloc_direct(ifp, new_size);
  3334. ifp->if_bytes = new_size;
  3335. }
  3336. /*
  3337. * This is called when incore extents are being removed from the
  3338. * indirection array and the extents being removed span multiple extent
  3339. * buffers. The idx parameter contains the file extent index where we
  3340. * want to begin removing extents, and the count parameter contains
  3341. * how many extents need to be removed.
  3342. *
  3343. * |-------| |-------|
  3344. * | nex1 | | | nex1 - number of extents before idx
  3345. * |-------| | count |
  3346. * | | | | count - number of extents being removed at idx
  3347. * | count | |-------|
  3348. * | | | nex2 | nex2 - number of extents after idx + count
  3349. * |-------| |-------|
  3350. */
  3351. void
  3352. xfs_iext_remove_indirect(
  3353. xfs_ifork_t *ifp, /* inode fork pointer */
  3354. xfs_extnum_t idx, /* index to begin removing extents */
  3355. int count) /* number of extents to remove */
  3356. {
  3357. xfs_ext_irec_t *erp; /* indirection array pointer */
  3358. int erp_idx = 0; /* indirection array index */
  3359. xfs_extnum_t ext_cnt; /* extents left to remove */
  3360. xfs_extnum_t ext_diff; /* extents to remove in current list */
  3361. xfs_extnum_t nex1; /* number of extents before idx */
  3362. xfs_extnum_t nex2; /* extents after idx + count */
  3363. int nlists; /* entries in indirection array */
  3364. int page_idx = idx; /* index in target extent list */
  3365. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3366. erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
  3367. ASSERT(erp != NULL);
  3368. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3369. nex1 = page_idx;
  3370. ext_cnt = count;
  3371. while (ext_cnt) {
  3372. nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
  3373. ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
  3374. /*
  3375. * Check for deletion of entire list;
  3376. * xfs_iext_irec_remove() updates extent offsets.
  3377. */
  3378. if (ext_diff == erp->er_extcount) {
  3379. xfs_iext_irec_remove(ifp, erp_idx);
  3380. ext_cnt -= ext_diff;
  3381. nex1 = 0;
  3382. if (ext_cnt) {
  3383. ASSERT(erp_idx < ifp->if_real_bytes /
  3384. XFS_IEXT_BUFSZ);
  3385. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3386. nex1 = 0;
  3387. continue;
  3388. } else {
  3389. break;
  3390. }
  3391. }
  3392. /* Move extents up (if needed) */
  3393. if (nex2) {
  3394. memmove(&erp->er_extbuf[nex1],
  3395. &erp->er_extbuf[nex1 + ext_diff],
  3396. nex2 * sizeof(xfs_bmbt_rec_t));
  3397. }
  3398. /* Zero out rest of page */
  3399. memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
  3400. ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
  3401. /* Update remaining counters */
  3402. erp->er_extcount -= ext_diff;
  3403. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
  3404. ext_cnt -= ext_diff;
  3405. nex1 = 0;
  3406. erp_idx++;
  3407. erp++;
  3408. }
  3409. ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
  3410. xfs_iext_irec_compact(ifp);
  3411. }
  3412. /*
  3413. * Create, destroy, or resize a linear (direct) block of extents.
  3414. */
  3415. void
  3416. xfs_iext_realloc_direct(
  3417. xfs_ifork_t *ifp, /* inode fork pointer */
  3418. int new_size) /* new size of extents */
  3419. {
  3420. int rnew_size; /* real new size of extents */
  3421. rnew_size = new_size;
  3422. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
  3423. ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
  3424. (new_size != ifp->if_real_bytes)));
  3425. /* Free extent records */
  3426. if (new_size == 0) {
  3427. xfs_iext_destroy(ifp);
  3428. }
  3429. /* Resize direct extent list and zero any new bytes */
  3430. else if (ifp->if_real_bytes) {
  3431. /* Check if extents will fit inside the inode */
  3432. if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
  3433. xfs_iext_direct_to_inline(ifp, new_size /
  3434. (uint)sizeof(xfs_bmbt_rec_t));
  3435. ifp->if_bytes = new_size;
  3436. return;
  3437. }
  3438. if (!is_power_of_2(new_size)){
  3439. rnew_size = roundup_pow_of_two(new_size);
  3440. }
  3441. if (rnew_size != ifp->if_real_bytes) {
  3442. ifp->if_u1.if_extents =
  3443. kmem_realloc(ifp->if_u1.if_extents,
  3444. rnew_size,
  3445. ifp->if_real_bytes, KM_NOFS);
  3446. }
  3447. if (rnew_size > ifp->if_real_bytes) {
  3448. memset(&ifp->if_u1.if_extents[ifp->if_bytes /
  3449. (uint)sizeof(xfs_bmbt_rec_t)], 0,
  3450. rnew_size - ifp->if_real_bytes);
  3451. }
  3452. }
  3453. /*
  3454. * Switch from the inline extent buffer to a direct
  3455. * extent list. Be sure to include the inline extent
  3456. * bytes in new_size.
  3457. */
  3458. else {
  3459. new_size += ifp->if_bytes;
  3460. if (!is_power_of_2(new_size)) {
  3461. rnew_size = roundup_pow_of_two(new_size);
  3462. }
  3463. xfs_iext_inline_to_direct(ifp, rnew_size);
  3464. }
  3465. ifp->if_real_bytes = rnew_size;
  3466. ifp->if_bytes = new_size;
  3467. }
  3468. /*
  3469. * Switch from linear (direct) extent records to inline buffer.
  3470. */
  3471. void
  3472. xfs_iext_direct_to_inline(
  3473. xfs_ifork_t *ifp, /* inode fork pointer */
  3474. xfs_extnum_t nextents) /* number of extents in file */
  3475. {
  3476. ASSERT(ifp->if_flags & XFS_IFEXTENTS);
  3477. ASSERT(nextents <= XFS_INLINE_EXTS);
  3478. /*
  3479. * The inline buffer was zeroed when we switched
  3480. * from inline to direct extent allocation mode,
  3481. * so we don't need to clear it here.
  3482. */
  3483. memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
  3484. nextents * sizeof(xfs_bmbt_rec_t));
  3485. kmem_free(ifp->if_u1.if_extents);
  3486. ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
  3487. ifp->if_real_bytes = 0;
  3488. }
  3489. /*
  3490. * Switch from inline buffer to linear (direct) extent records.
  3491. * new_size should already be rounded up to the next power of 2
  3492. * by the caller (when appropriate), so use new_size as it is.
  3493. * However, since new_size may be rounded up, we can't update
  3494. * if_bytes here. It is the caller's responsibility to update
  3495. * if_bytes upon return.
  3496. */
  3497. void
  3498. xfs_iext_inline_to_direct(
  3499. xfs_ifork_t *ifp, /* inode fork pointer */
  3500. int new_size) /* number of extents in file */
  3501. {
  3502. ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
  3503. memset(ifp->if_u1.if_extents, 0, new_size);
  3504. if (ifp->if_bytes) {
  3505. memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
  3506. ifp->if_bytes);
  3507. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3508. sizeof(xfs_bmbt_rec_t));
  3509. }
  3510. ifp->if_real_bytes = new_size;
  3511. }
  3512. /*
  3513. * Resize an extent indirection array to new_size bytes.
  3514. */
  3515. STATIC void
  3516. xfs_iext_realloc_indirect(
  3517. xfs_ifork_t *ifp, /* inode fork pointer */
  3518. int new_size) /* new indirection array size */
  3519. {
  3520. int nlists; /* number of irec's (ex lists) */
  3521. int size; /* current indirection array size */
  3522. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3523. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3524. size = nlists * sizeof(xfs_ext_irec_t);
  3525. ASSERT(ifp->if_real_bytes);
  3526. ASSERT((new_size >= 0) && (new_size != size));
  3527. if (new_size == 0) {
  3528. xfs_iext_destroy(ifp);
  3529. } else {
  3530. ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
  3531. kmem_realloc(ifp->if_u1.if_ext_irec,
  3532. new_size, size, KM_NOFS);
  3533. }
  3534. }
  3535. /*
  3536. * Switch from indirection array to linear (direct) extent allocations.
  3537. */
  3538. STATIC void
  3539. xfs_iext_indirect_to_direct(
  3540. xfs_ifork_t *ifp) /* inode fork pointer */
  3541. {
  3542. xfs_bmbt_rec_host_t *ep; /* extent record pointer */
  3543. xfs_extnum_t nextents; /* number of extents in file */
  3544. int size; /* size of file extents */
  3545. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3546. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3547. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3548. size = nextents * sizeof(xfs_bmbt_rec_t);
  3549. xfs_iext_irec_compact_pages(ifp);
  3550. ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
  3551. ep = ifp->if_u1.if_ext_irec->er_extbuf;
  3552. kmem_free(ifp->if_u1.if_ext_irec);
  3553. ifp->if_flags &= ~XFS_IFEXTIREC;
  3554. ifp->if_u1.if_extents = ep;
  3555. ifp->if_bytes = size;
  3556. if (nextents < XFS_LINEAR_EXTS) {
  3557. xfs_iext_realloc_direct(ifp, size);
  3558. }
  3559. }
  3560. /*
  3561. * Free incore file extents.
  3562. */
  3563. void
  3564. xfs_iext_destroy(
  3565. xfs_ifork_t *ifp) /* inode fork pointer */
  3566. {
  3567. if (ifp->if_flags & XFS_IFEXTIREC) {
  3568. int erp_idx;
  3569. int nlists;
  3570. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3571. for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
  3572. xfs_iext_irec_remove(ifp, erp_idx);
  3573. }
  3574. ifp->if_flags &= ~XFS_IFEXTIREC;
  3575. } else if (ifp->if_real_bytes) {
  3576. kmem_free(ifp->if_u1.if_extents);
  3577. } else if (ifp->if_bytes) {
  3578. memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
  3579. sizeof(xfs_bmbt_rec_t));
  3580. }
  3581. ifp->if_u1.if_extents = NULL;
  3582. ifp->if_real_bytes = 0;
  3583. ifp->if_bytes = 0;
  3584. }
  3585. /*
  3586. * Return a pointer to the extent record for file system block bno.
  3587. */
  3588. xfs_bmbt_rec_host_t * /* pointer to found extent record */
  3589. xfs_iext_bno_to_ext(
  3590. xfs_ifork_t *ifp, /* inode fork pointer */
  3591. xfs_fileoff_t bno, /* block number to search for */
  3592. xfs_extnum_t *idxp) /* index of target extent */
  3593. {
  3594. xfs_bmbt_rec_host_t *base; /* pointer to first extent */
  3595. xfs_filblks_t blockcount = 0; /* number of blocks in extent */
  3596. xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
  3597. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3598. int high; /* upper boundary in search */
  3599. xfs_extnum_t idx = 0; /* index of target extent */
  3600. int low; /* lower boundary in search */
  3601. xfs_extnum_t nextents; /* number of file extents */
  3602. xfs_fileoff_t startoff = 0; /* start offset of extent */
  3603. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3604. if (nextents == 0) {
  3605. *idxp = 0;
  3606. return NULL;
  3607. }
  3608. low = 0;
  3609. if (ifp->if_flags & XFS_IFEXTIREC) {
  3610. /* Find target extent list */
  3611. int erp_idx = 0;
  3612. erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
  3613. base = erp->er_extbuf;
  3614. high = erp->er_extcount - 1;
  3615. } else {
  3616. base = ifp->if_u1.if_extents;
  3617. high = nextents - 1;
  3618. }
  3619. /* Binary search extent records */
  3620. while (low <= high) {
  3621. idx = (low + high) >> 1;
  3622. ep = base + idx;
  3623. startoff = xfs_bmbt_get_startoff(ep);
  3624. blockcount = xfs_bmbt_get_blockcount(ep);
  3625. if (bno < startoff) {
  3626. high = idx - 1;
  3627. } else if (bno >= startoff + blockcount) {
  3628. low = idx + 1;
  3629. } else {
  3630. /* Convert back to file-based extent index */
  3631. if (ifp->if_flags & XFS_IFEXTIREC) {
  3632. idx += erp->er_extoff;
  3633. }
  3634. *idxp = idx;
  3635. return ep;
  3636. }
  3637. }
  3638. /* Convert back to file-based extent index */
  3639. if (ifp->if_flags & XFS_IFEXTIREC) {
  3640. idx += erp->er_extoff;
  3641. }
  3642. if (bno >= startoff + blockcount) {
  3643. if (++idx == nextents) {
  3644. ep = NULL;
  3645. } else {
  3646. ep = xfs_iext_get_ext(ifp, idx);
  3647. }
  3648. }
  3649. *idxp = idx;
  3650. return ep;
  3651. }
  3652. /*
  3653. * Return a pointer to the indirection array entry containing the
  3654. * extent record for filesystem block bno. Store the index of the
  3655. * target irec in *erp_idxp.
  3656. */
  3657. xfs_ext_irec_t * /* pointer to found extent record */
  3658. xfs_iext_bno_to_irec(
  3659. xfs_ifork_t *ifp, /* inode fork pointer */
  3660. xfs_fileoff_t bno, /* block number to search for */
  3661. int *erp_idxp) /* irec index of target ext list */
  3662. {
  3663. xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
  3664. xfs_ext_irec_t *erp_next; /* next indirection array entry */
  3665. int erp_idx; /* indirection array index */
  3666. int nlists; /* number of extent irec's (lists) */
  3667. int high; /* binary search upper limit */
  3668. int low; /* binary search lower limit */
  3669. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3670. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3671. erp_idx = 0;
  3672. low = 0;
  3673. high = nlists - 1;
  3674. while (low <= high) {
  3675. erp_idx = (low + high) >> 1;
  3676. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3677. erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
  3678. if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
  3679. high = erp_idx - 1;
  3680. } else if (erp_next && bno >=
  3681. xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
  3682. low = erp_idx + 1;
  3683. } else {
  3684. break;
  3685. }
  3686. }
  3687. *erp_idxp = erp_idx;
  3688. return erp;
  3689. }
  3690. /*
  3691. * Return a pointer to the indirection array entry containing the
  3692. * extent record at file extent index *idxp. Store the index of the
  3693. * target irec in *erp_idxp and store the page index of the target
  3694. * extent record in *idxp.
  3695. */
  3696. xfs_ext_irec_t *
  3697. xfs_iext_idx_to_irec(
  3698. xfs_ifork_t *ifp, /* inode fork pointer */
  3699. xfs_extnum_t *idxp, /* extent index (file -> page) */
  3700. int *erp_idxp, /* pointer to target irec */
  3701. int realloc) /* new bytes were just added */
  3702. {
  3703. xfs_ext_irec_t *prev; /* pointer to previous irec */
  3704. xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
  3705. int erp_idx; /* indirection array index */
  3706. int nlists; /* number of irec's (ex lists) */
  3707. int high; /* binary search upper limit */
  3708. int low; /* binary search lower limit */
  3709. xfs_extnum_t page_idx = *idxp; /* extent index in target list */
  3710. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3711. ASSERT(page_idx >= 0 && page_idx <=
  3712. ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
  3713. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3714. erp_idx = 0;
  3715. low = 0;
  3716. high = nlists - 1;
  3717. /* Binary search extent irec's */
  3718. while (low <= high) {
  3719. erp_idx = (low + high) >> 1;
  3720. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3721. prev = erp_idx > 0 ? erp - 1 : NULL;
  3722. if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
  3723. realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
  3724. high = erp_idx - 1;
  3725. } else if (page_idx > erp->er_extoff + erp->er_extcount ||
  3726. (page_idx == erp->er_extoff + erp->er_extcount &&
  3727. !realloc)) {
  3728. low = erp_idx + 1;
  3729. } else if (page_idx == erp->er_extoff + erp->er_extcount &&
  3730. erp->er_extcount == XFS_LINEAR_EXTS) {
  3731. ASSERT(realloc);
  3732. page_idx = 0;
  3733. erp_idx++;
  3734. erp = erp_idx < nlists ? erp + 1 : NULL;
  3735. break;
  3736. } else {
  3737. page_idx -= erp->er_extoff;
  3738. break;
  3739. }
  3740. }
  3741. *idxp = page_idx;
  3742. *erp_idxp = erp_idx;
  3743. return(erp);
  3744. }
  3745. /*
  3746. * Allocate and initialize an indirection array once the space needed
  3747. * for incore extents increases above XFS_IEXT_BUFSZ.
  3748. */
  3749. void
  3750. xfs_iext_irec_init(
  3751. xfs_ifork_t *ifp) /* inode fork pointer */
  3752. {
  3753. xfs_ext_irec_t *erp; /* indirection array pointer */
  3754. xfs_extnum_t nextents; /* number of extents in file */
  3755. ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
  3756. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3757. ASSERT(nextents <= XFS_LINEAR_EXTS);
  3758. erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
  3759. if (nextents == 0) {
  3760. ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3761. } else if (!ifp->if_real_bytes) {
  3762. xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
  3763. } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
  3764. xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
  3765. }
  3766. erp->er_extbuf = ifp->if_u1.if_extents;
  3767. erp->er_extcount = nextents;
  3768. erp->er_extoff = 0;
  3769. ifp->if_flags |= XFS_IFEXTIREC;
  3770. ifp->if_real_bytes = XFS_IEXT_BUFSZ;
  3771. ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
  3772. ifp->if_u1.if_ext_irec = erp;
  3773. return;
  3774. }
  3775. /*
  3776. * Allocate and initialize a new entry in the indirection array.
  3777. */
  3778. xfs_ext_irec_t *
  3779. xfs_iext_irec_new(
  3780. xfs_ifork_t *ifp, /* inode fork pointer */
  3781. int erp_idx) /* index for new irec */
  3782. {
  3783. xfs_ext_irec_t *erp; /* indirection array pointer */
  3784. int i; /* loop counter */
  3785. int nlists; /* number of irec's (ex lists) */
  3786. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3787. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3788. /* Resize indirection array */
  3789. xfs_iext_realloc_indirect(ifp, ++nlists *
  3790. sizeof(xfs_ext_irec_t));
  3791. /*
  3792. * Move records down in the array so the
  3793. * new page can use erp_idx.
  3794. */
  3795. erp = ifp->if_u1.if_ext_irec;
  3796. for (i = nlists - 1; i > erp_idx; i--) {
  3797. memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
  3798. }
  3799. ASSERT(i == erp_idx);
  3800. /* Initialize new extent record */
  3801. erp = ifp->if_u1.if_ext_irec;
  3802. erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
  3803. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3804. memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
  3805. erp[erp_idx].er_extcount = 0;
  3806. erp[erp_idx].er_extoff = erp_idx > 0 ?
  3807. erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
  3808. return (&erp[erp_idx]);
  3809. }
  3810. /*
  3811. * Remove a record from the indirection array.
  3812. */
  3813. void
  3814. xfs_iext_irec_remove(
  3815. xfs_ifork_t *ifp, /* inode fork pointer */
  3816. int erp_idx) /* irec index to remove */
  3817. {
  3818. xfs_ext_irec_t *erp; /* indirection array pointer */
  3819. int i; /* loop counter */
  3820. int nlists; /* number of irec's (ex lists) */
  3821. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3822. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3823. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3824. if (erp->er_extbuf) {
  3825. xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
  3826. -erp->er_extcount);
  3827. kmem_free(erp->er_extbuf);
  3828. }
  3829. /* Compact extent records */
  3830. erp = ifp->if_u1.if_ext_irec;
  3831. for (i = erp_idx; i < nlists - 1; i++) {
  3832. memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
  3833. }
  3834. /*
  3835. * Manually free the last extent record from the indirection
  3836. * array. A call to xfs_iext_realloc_indirect() with a size
  3837. * of zero would result in a call to xfs_iext_destroy() which
  3838. * would in turn call this function again, creating a nasty
  3839. * infinite loop.
  3840. */
  3841. if (--nlists) {
  3842. xfs_iext_realloc_indirect(ifp,
  3843. nlists * sizeof(xfs_ext_irec_t));
  3844. } else {
  3845. kmem_free(ifp->if_u1.if_ext_irec);
  3846. }
  3847. ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
  3848. }
  3849. /*
  3850. * This is called to clean up large amounts of unused memory allocated
  3851. * by the indirection array. Before compacting anything though, verify
  3852. * that the indirection array is still needed and switch back to the
  3853. * linear extent list (or even the inline buffer) if possible. The
  3854. * compaction policy is as follows:
  3855. *
  3856. * Full Compaction: Extents fit into a single page (or inline buffer)
  3857. * Partial Compaction: Extents occupy less than 50% of allocated space
  3858. * No Compaction: Extents occupy at least 50% of allocated space
  3859. */
  3860. void
  3861. xfs_iext_irec_compact(
  3862. xfs_ifork_t *ifp) /* inode fork pointer */
  3863. {
  3864. xfs_extnum_t nextents; /* number of extents in file */
  3865. int nlists; /* number of irec's (ex lists) */
  3866. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3867. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3868. nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
  3869. if (nextents == 0) {
  3870. xfs_iext_destroy(ifp);
  3871. } else if (nextents <= XFS_INLINE_EXTS) {
  3872. xfs_iext_indirect_to_direct(ifp);
  3873. xfs_iext_direct_to_inline(ifp, nextents);
  3874. } else if (nextents <= XFS_LINEAR_EXTS) {
  3875. xfs_iext_indirect_to_direct(ifp);
  3876. } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
  3877. xfs_iext_irec_compact_pages(ifp);
  3878. }
  3879. }
  3880. /*
  3881. * Combine extents from neighboring extent pages.
  3882. */
  3883. void
  3884. xfs_iext_irec_compact_pages(
  3885. xfs_ifork_t *ifp) /* inode fork pointer */
  3886. {
  3887. xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
  3888. int erp_idx = 0; /* indirection array index */
  3889. int nlists; /* number of irec's (ex lists) */
  3890. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3891. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3892. while (erp_idx < nlists - 1) {
  3893. erp = &ifp->if_u1.if_ext_irec[erp_idx];
  3894. erp_next = erp + 1;
  3895. if (erp_next->er_extcount <=
  3896. (XFS_LINEAR_EXTS - erp->er_extcount)) {
  3897. memcpy(&erp->er_extbuf[erp->er_extcount],
  3898. erp_next->er_extbuf, erp_next->er_extcount *
  3899. sizeof(xfs_bmbt_rec_t));
  3900. erp->er_extcount += erp_next->er_extcount;
  3901. /*
  3902. * Free page before removing extent record
  3903. * so er_extoffs don't get modified in
  3904. * xfs_iext_irec_remove.
  3905. */
  3906. kmem_free(erp_next->er_extbuf);
  3907. erp_next->er_extbuf = NULL;
  3908. xfs_iext_irec_remove(ifp, erp_idx + 1);
  3909. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3910. } else {
  3911. erp_idx++;
  3912. }
  3913. }
  3914. }
  3915. /*
  3916. * This is called to update the er_extoff field in the indirection
  3917. * array when extents have been added or removed from one of the
  3918. * extent lists. erp_idx contains the irec index to begin updating
  3919. * at and ext_diff contains the number of extents that were added
  3920. * or removed.
  3921. */
  3922. void
  3923. xfs_iext_irec_update_extoffs(
  3924. xfs_ifork_t *ifp, /* inode fork pointer */
  3925. int erp_idx, /* irec index to update */
  3926. int ext_diff) /* number of new extents */
  3927. {
  3928. int i; /* loop counter */
  3929. int nlists; /* number of irec's (ex lists */
  3930. ASSERT(ifp->if_flags & XFS_IFEXTIREC);
  3931. nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
  3932. for (i = erp_idx; i < nlists; i++) {
  3933. ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
  3934. }
  3935. }