mtdswap.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593
  1. /*
  2. * Swap block device support for MTDs
  3. * Turns an MTD device into a swap device with block wear leveling
  4. *
  5. * Copyright © 2007,2011 Nokia Corporation. All rights reserved.
  6. *
  7. * Authors: Jarkko Lavinen <jarkko.lavinen@nokia.com>
  8. *
  9. * Based on Richard Purdie's earlier implementation in 2007. Background
  10. * support and lock-less operation written by Adrian Hunter.
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * version 2 as published by the Free Software Foundation.
  15. *
  16. * This program is distributed in the hope that it will be useful, but
  17. * WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with this program; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
  24. * 02110-1301 USA
  25. */
  26. #include <linux/kernel.h>
  27. #include <linux/module.h>
  28. #include <linux/mtd/mtd.h>
  29. #include <linux/mtd/blktrans.h>
  30. #include <linux/rbtree.h>
  31. #include <linux/sched.h>
  32. #include <linux/slab.h>
  33. #include <linux/vmalloc.h>
  34. #include <linux/genhd.h>
  35. #include <linux/swap.h>
  36. #include <linux/debugfs.h>
  37. #include <linux/seq_file.h>
  38. #include <linux/device.h>
  39. #include <linux/math64.h>
  40. #define MTDSWAP_PREFIX "mtdswap"
  41. /*
  42. * The number of free eraseblocks when GC should stop
  43. */
  44. #define CLEAN_BLOCK_THRESHOLD 20
  45. /*
  46. * Number of free eraseblocks below which GC can also collect low frag
  47. * blocks.
  48. */
  49. #define LOW_FRAG_GC_TRESHOLD 5
  50. /*
  51. * Wear level cost amortization. We want to do wear leveling on the background
  52. * without disturbing gc too much. This is made by defining max GC frequency.
  53. * Frequency value 6 means 1/6 of the GC passes will pick an erase block based
  54. * on the biggest wear difference rather than the biggest dirtiness.
  55. *
  56. * The lower freq2 should be chosen so that it makes sure the maximum erase
  57. * difference will decrease even if a malicious application is deliberately
  58. * trying to make erase differences large.
  59. */
  60. #define MAX_ERASE_DIFF 4000
  61. #define COLLECT_NONDIRTY_BASE MAX_ERASE_DIFF
  62. #define COLLECT_NONDIRTY_FREQ1 6
  63. #define COLLECT_NONDIRTY_FREQ2 4
  64. #define PAGE_UNDEF UINT_MAX
  65. #define BLOCK_UNDEF UINT_MAX
  66. #define BLOCK_ERROR (UINT_MAX - 1)
  67. #define BLOCK_MAX (UINT_MAX - 2)
  68. #define EBLOCK_BAD (1 << 0)
  69. #define EBLOCK_NOMAGIC (1 << 1)
  70. #define EBLOCK_BITFLIP (1 << 2)
  71. #define EBLOCK_FAILED (1 << 3)
  72. #define EBLOCK_READERR (1 << 4)
  73. #define EBLOCK_IDX_SHIFT 5
  74. struct swap_eb {
  75. struct rb_node rb;
  76. struct rb_root *root;
  77. unsigned int flags;
  78. unsigned int active_count;
  79. unsigned int erase_count;
  80. unsigned int pad; /* speeds up pointer decremtnt */
  81. };
  82. #define MTDSWAP_ECNT_MIN(rbroot) (rb_entry(rb_first(rbroot), struct swap_eb, \
  83. rb)->erase_count)
  84. #define MTDSWAP_ECNT_MAX(rbroot) (rb_entry(rb_last(rbroot), struct swap_eb, \
  85. rb)->erase_count)
  86. struct mtdswap_tree {
  87. struct rb_root root;
  88. unsigned int count;
  89. };
  90. enum {
  91. MTDSWAP_CLEAN,
  92. MTDSWAP_USED,
  93. MTDSWAP_LOWFRAG,
  94. MTDSWAP_HIFRAG,
  95. MTDSWAP_DIRTY,
  96. MTDSWAP_BITFLIP,
  97. MTDSWAP_FAILING,
  98. MTDSWAP_TREE_CNT,
  99. };
  100. struct mtdswap_dev {
  101. struct mtd_blktrans_dev *mbd_dev;
  102. struct mtd_info *mtd;
  103. struct device *dev;
  104. unsigned int *page_data;
  105. unsigned int *revmap;
  106. unsigned int eblks;
  107. unsigned int spare_eblks;
  108. unsigned int pages_per_eblk;
  109. unsigned int max_erase_count;
  110. struct swap_eb *eb_data;
  111. struct mtdswap_tree trees[MTDSWAP_TREE_CNT];
  112. unsigned long long sect_read_count;
  113. unsigned long long sect_write_count;
  114. unsigned long long mtd_write_count;
  115. unsigned long long mtd_read_count;
  116. unsigned long long discard_count;
  117. unsigned long long discard_page_count;
  118. unsigned int curr_write_pos;
  119. struct swap_eb *curr_write;
  120. char *page_buf;
  121. char *oob_buf;
  122. struct dentry *debugfs_root;
  123. };
  124. struct mtdswap_oobdata {
  125. __le16 magic;
  126. __le32 count;
  127. } __attribute__((packed));
  128. #define MTDSWAP_MAGIC_CLEAN 0x2095
  129. #define MTDSWAP_MAGIC_DIRTY (MTDSWAP_MAGIC_CLEAN + 1)
  130. #define MTDSWAP_TYPE_CLEAN 0
  131. #define MTDSWAP_TYPE_DIRTY 1
  132. #define MTDSWAP_OOBSIZE sizeof(struct mtdswap_oobdata)
  133. #define MTDSWAP_ERASE_RETRIES 3 /* Before marking erase block bad */
  134. #define MTDSWAP_IO_RETRIES 3
  135. #ifdef CONFIG_MTD_SWAP_STRICT
  136. #define MTDSWAP_STRICT 1
  137. #else
  138. #define MTDSWAP_STRICT 0
  139. #endif
  140. enum {
  141. MTDSWAP_SCANNED_CLEAN,
  142. MTDSWAP_SCANNED_DIRTY,
  143. MTDSWAP_SCANNED_BITFLIP,
  144. MTDSWAP_SCANNED_BAD,
  145. };
  146. /*
  147. * In the worst case mtdswap_writesect() has allocated the last clean
  148. * page from the current block and is then pre-empted by the GC
  149. * thread. The thread can consume a full erase block when moving a
  150. * block.
  151. */
  152. #define MIN_SPARE_EBLOCKS 2
  153. #define MIN_ERASE_BLOCKS (MIN_SPARE_EBLOCKS + 1)
  154. #define TREE_ROOT(d, name) (&d->trees[MTDSWAP_ ## name].root)
  155. #define TREE_EMPTY(d, name) (TREE_ROOT(d, name)->rb_node == NULL)
  156. #define TREE_NONEMPTY(d, name) (!TREE_EMPTY(d, name))
  157. #define TREE_COUNT(d, name) (d->trees[MTDSWAP_ ## name].count)
  158. #define MTDSWAP_MBD_TO_MTDSWAP(dev) ((struct mtdswap_dev *)dev->priv)
  159. static char partitions[128] = "";
  160. module_param_string(partitions, partitions, sizeof(partitions), 0444);
  161. MODULE_PARM_DESC(partitions, "MTD partition numbers to use as swap "
  162. "partitions=\"1,3,5\"");
  163. static unsigned int spare_eblocks = 10;
  164. module_param(spare_eblocks, uint, 0444);
  165. MODULE_PARM_DESC(spare_eblocks, "Percentage of spare erase blocks for "
  166. "garbage collection (default 10%)");
  167. static bool header; /* false */
  168. module_param(header, bool, 0444);
  169. MODULE_PARM_DESC(header,
  170. "Include builtin swap header (default 0, without header)");
  171. static int mtdswap_gc(struct mtdswap_dev *d, unsigned int background);
  172. static loff_t mtdswap_eb_offset(struct mtdswap_dev *d, struct swap_eb *eb)
  173. {
  174. return (loff_t)(eb - d->eb_data) * d->mtd->erasesize;
  175. }
  176. static void mtdswap_eb_detach(struct mtdswap_dev *d, struct swap_eb *eb)
  177. {
  178. unsigned int oldidx;
  179. struct mtdswap_tree *tp;
  180. if (eb->root) {
  181. tp = container_of(eb->root, struct mtdswap_tree, root);
  182. oldidx = tp - &d->trees[0];
  183. d->trees[oldidx].count--;
  184. rb_erase(&eb->rb, eb->root);
  185. }
  186. }
  187. static void __mtdswap_rb_add(struct rb_root *root, struct swap_eb *eb)
  188. {
  189. struct rb_node **p, *parent = NULL;
  190. struct swap_eb *cur;
  191. p = &root->rb_node;
  192. while (*p) {
  193. parent = *p;
  194. cur = rb_entry(parent, struct swap_eb, rb);
  195. if (eb->erase_count > cur->erase_count)
  196. p = &(*p)->rb_right;
  197. else
  198. p = &(*p)->rb_left;
  199. }
  200. rb_link_node(&eb->rb, parent, p);
  201. rb_insert_color(&eb->rb, root);
  202. }
  203. static void mtdswap_rb_add(struct mtdswap_dev *d, struct swap_eb *eb, int idx)
  204. {
  205. struct rb_root *root;
  206. if (eb->root == &d->trees[idx].root)
  207. return;
  208. mtdswap_eb_detach(d, eb);
  209. root = &d->trees[idx].root;
  210. __mtdswap_rb_add(root, eb);
  211. eb->root = root;
  212. d->trees[idx].count++;
  213. }
  214. static struct rb_node *mtdswap_rb_index(struct rb_root *root, unsigned int idx)
  215. {
  216. struct rb_node *p;
  217. unsigned int i;
  218. p = rb_first(root);
  219. i = 0;
  220. while (i < idx && p) {
  221. p = rb_next(p);
  222. i++;
  223. }
  224. return p;
  225. }
  226. static int mtdswap_handle_badblock(struct mtdswap_dev *d, struct swap_eb *eb)
  227. {
  228. int ret;
  229. loff_t offset;
  230. d->spare_eblks--;
  231. eb->flags |= EBLOCK_BAD;
  232. mtdswap_eb_detach(d, eb);
  233. eb->root = NULL;
  234. /* badblocks not supported */
  235. if (!d->mtd->block_markbad)
  236. return 1;
  237. offset = mtdswap_eb_offset(d, eb);
  238. dev_warn(d->dev, "Marking bad block at %08llx\n", offset);
  239. ret = d->mtd->block_markbad(d->mtd, offset);
  240. if (ret) {
  241. dev_warn(d->dev, "Mark block bad failed for block at %08llx "
  242. "error %d\n", offset, ret);
  243. return ret;
  244. }
  245. return 1;
  246. }
  247. static int mtdswap_handle_write_error(struct mtdswap_dev *d, struct swap_eb *eb)
  248. {
  249. unsigned int marked = eb->flags & EBLOCK_FAILED;
  250. struct swap_eb *curr_write = d->curr_write;
  251. eb->flags |= EBLOCK_FAILED;
  252. if (curr_write == eb) {
  253. d->curr_write = NULL;
  254. if (!marked && d->curr_write_pos != 0) {
  255. mtdswap_rb_add(d, eb, MTDSWAP_FAILING);
  256. return 0;
  257. }
  258. }
  259. return mtdswap_handle_badblock(d, eb);
  260. }
  261. static int mtdswap_read_oob(struct mtdswap_dev *d, loff_t from,
  262. struct mtd_oob_ops *ops)
  263. {
  264. int ret = d->mtd->read_oob(d->mtd, from, ops);
  265. if (ret == -EUCLEAN)
  266. return ret;
  267. if (ret) {
  268. dev_warn(d->dev, "Read OOB failed %d for block at %08llx\n",
  269. ret, from);
  270. return ret;
  271. }
  272. if (ops->oobretlen < ops->ooblen) {
  273. dev_warn(d->dev, "Read OOB return short read (%zd bytes not "
  274. "%d) for block at %08llx\n",
  275. ops->oobretlen, ops->ooblen, from);
  276. return -EIO;
  277. }
  278. return 0;
  279. }
  280. static int mtdswap_read_markers(struct mtdswap_dev *d, struct swap_eb *eb)
  281. {
  282. struct mtdswap_oobdata *data, *data2;
  283. int ret;
  284. loff_t offset;
  285. struct mtd_oob_ops ops;
  286. offset = mtdswap_eb_offset(d, eb);
  287. /* Check first if the block is bad. */
  288. if (d->mtd->block_isbad && d->mtd->block_isbad(d->mtd, offset))
  289. return MTDSWAP_SCANNED_BAD;
  290. ops.ooblen = 2 * d->mtd->ecclayout->oobavail;
  291. ops.oobbuf = d->oob_buf;
  292. ops.ooboffs = 0;
  293. ops.datbuf = NULL;
  294. ops.mode = MTD_OOB_AUTO;
  295. ret = mtdswap_read_oob(d, offset, &ops);
  296. if (ret && ret != -EUCLEAN)
  297. return ret;
  298. data = (struct mtdswap_oobdata *)d->oob_buf;
  299. data2 = (struct mtdswap_oobdata *)
  300. (d->oob_buf + d->mtd->ecclayout->oobavail);
  301. if (le16_to_cpu(data->magic) == MTDSWAP_MAGIC_CLEAN) {
  302. eb->erase_count = le32_to_cpu(data->count);
  303. if (ret == -EUCLEAN)
  304. ret = MTDSWAP_SCANNED_BITFLIP;
  305. else {
  306. if (le16_to_cpu(data2->magic) == MTDSWAP_MAGIC_DIRTY)
  307. ret = MTDSWAP_SCANNED_DIRTY;
  308. else
  309. ret = MTDSWAP_SCANNED_CLEAN;
  310. }
  311. } else {
  312. eb->flags |= EBLOCK_NOMAGIC;
  313. ret = MTDSWAP_SCANNED_DIRTY;
  314. }
  315. return ret;
  316. }
  317. static int mtdswap_write_marker(struct mtdswap_dev *d, struct swap_eb *eb,
  318. u16 marker)
  319. {
  320. struct mtdswap_oobdata n;
  321. int ret;
  322. loff_t offset;
  323. struct mtd_oob_ops ops;
  324. ops.ooboffs = 0;
  325. ops.oobbuf = (uint8_t *)&n;
  326. ops.mode = MTD_OOB_AUTO;
  327. ops.datbuf = NULL;
  328. if (marker == MTDSWAP_TYPE_CLEAN) {
  329. n.magic = cpu_to_le16(MTDSWAP_MAGIC_CLEAN);
  330. n.count = cpu_to_le32(eb->erase_count);
  331. ops.ooblen = MTDSWAP_OOBSIZE;
  332. offset = mtdswap_eb_offset(d, eb);
  333. } else {
  334. n.magic = cpu_to_le16(MTDSWAP_MAGIC_DIRTY);
  335. ops.ooblen = sizeof(n.magic);
  336. offset = mtdswap_eb_offset(d, eb) + d->mtd->writesize;
  337. }
  338. ret = d->mtd->write_oob(d->mtd, offset , &ops);
  339. if (ret) {
  340. dev_warn(d->dev, "Write OOB failed for block at %08llx "
  341. "error %d\n", offset, ret);
  342. if (ret == -EIO || ret == -EBADMSG)
  343. mtdswap_handle_write_error(d, eb);
  344. return ret;
  345. }
  346. if (ops.oobretlen != ops.ooblen) {
  347. dev_warn(d->dev, "Short OOB write for block at %08llx: "
  348. "%zd not %d\n",
  349. offset, ops.oobretlen, ops.ooblen);
  350. return ret;
  351. }
  352. return 0;
  353. }
  354. /*
  355. * Are there any erase blocks without MAGIC_CLEAN header, presumably
  356. * because power was cut off after erase but before header write? We
  357. * need to guestimate the erase count.
  358. */
  359. static void mtdswap_check_counts(struct mtdswap_dev *d)
  360. {
  361. struct rb_root hist_root = RB_ROOT;
  362. struct rb_node *medrb;
  363. struct swap_eb *eb;
  364. unsigned int i, cnt, median;
  365. cnt = 0;
  366. for (i = 0; i < d->eblks; i++) {
  367. eb = d->eb_data + i;
  368. if (eb->flags & (EBLOCK_NOMAGIC | EBLOCK_BAD | EBLOCK_READERR))
  369. continue;
  370. __mtdswap_rb_add(&hist_root, eb);
  371. cnt++;
  372. }
  373. if (cnt == 0)
  374. return;
  375. medrb = mtdswap_rb_index(&hist_root, cnt / 2);
  376. median = rb_entry(medrb, struct swap_eb, rb)->erase_count;
  377. d->max_erase_count = MTDSWAP_ECNT_MAX(&hist_root);
  378. for (i = 0; i < d->eblks; i++) {
  379. eb = d->eb_data + i;
  380. if (eb->flags & (EBLOCK_NOMAGIC | EBLOCK_READERR))
  381. eb->erase_count = median;
  382. if (eb->flags & (EBLOCK_NOMAGIC | EBLOCK_BAD | EBLOCK_READERR))
  383. continue;
  384. rb_erase(&eb->rb, &hist_root);
  385. }
  386. }
  387. static void mtdswap_scan_eblks(struct mtdswap_dev *d)
  388. {
  389. int status;
  390. unsigned int i, idx;
  391. struct swap_eb *eb;
  392. for (i = 0; i < d->eblks; i++) {
  393. eb = d->eb_data + i;
  394. status = mtdswap_read_markers(d, eb);
  395. if (status < 0)
  396. eb->flags |= EBLOCK_READERR;
  397. else if (status == MTDSWAP_SCANNED_BAD) {
  398. eb->flags |= EBLOCK_BAD;
  399. continue;
  400. }
  401. switch (status) {
  402. case MTDSWAP_SCANNED_CLEAN:
  403. idx = MTDSWAP_CLEAN;
  404. break;
  405. case MTDSWAP_SCANNED_DIRTY:
  406. case MTDSWAP_SCANNED_BITFLIP:
  407. idx = MTDSWAP_DIRTY;
  408. break;
  409. default:
  410. idx = MTDSWAP_FAILING;
  411. }
  412. eb->flags |= (idx << EBLOCK_IDX_SHIFT);
  413. }
  414. mtdswap_check_counts(d);
  415. for (i = 0; i < d->eblks; i++) {
  416. eb = d->eb_data + i;
  417. if (eb->flags & EBLOCK_BAD)
  418. continue;
  419. idx = eb->flags >> EBLOCK_IDX_SHIFT;
  420. mtdswap_rb_add(d, eb, idx);
  421. }
  422. }
  423. /*
  424. * Place eblk into a tree corresponding to its number of active blocks
  425. * it contains.
  426. */
  427. static void mtdswap_store_eb(struct mtdswap_dev *d, struct swap_eb *eb)
  428. {
  429. unsigned int weight = eb->active_count;
  430. unsigned int maxweight = d->pages_per_eblk;
  431. if (eb == d->curr_write)
  432. return;
  433. if (eb->flags & EBLOCK_BITFLIP)
  434. mtdswap_rb_add(d, eb, MTDSWAP_BITFLIP);
  435. else if (eb->flags & (EBLOCK_READERR | EBLOCK_FAILED))
  436. mtdswap_rb_add(d, eb, MTDSWAP_FAILING);
  437. if (weight == maxweight)
  438. mtdswap_rb_add(d, eb, MTDSWAP_USED);
  439. else if (weight == 0)
  440. mtdswap_rb_add(d, eb, MTDSWAP_DIRTY);
  441. else if (weight > (maxweight/2))
  442. mtdswap_rb_add(d, eb, MTDSWAP_LOWFRAG);
  443. else
  444. mtdswap_rb_add(d, eb, MTDSWAP_HIFRAG);
  445. }
  446. static void mtdswap_erase_callback(struct erase_info *done)
  447. {
  448. wait_queue_head_t *wait_q = (wait_queue_head_t *)done->priv;
  449. wake_up(wait_q);
  450. }
  451. static int mtdswap_erase_block(struct mtdswap_dev *d, struct swap_eb *eb)
  452. {
  453. struct mtd_info *mtd = d->mtd;
  454. struct erase_info erase;
  455. wait_queue_head_t wq;
  456. unsigned int retries = 0;
  457. int ret;
  458. eb->erase_count++;
  459. if (eb->erase_count > d->max_erase_count)
  460. d->max_erase_count = eb->erase_count;
  461. retry:
  462. init_waitqueue_head(&wq);
  463. memset(&erase, 0, sizeof(struct erase_info));
  464. erase.mtd = mtd;
  465. erase.callback = mtdswap_erase_callback;
  466. erase.addr = mtdswap_eb_offset(d, eb);
  467. erase.len = mtd->erasesize;
  468. erase.priv = (u_long)&wq;
  469. ret = mtd->erase(mtd, &erase);
  470. if (ret) {
  471. if (retries++ < MTDSWAP_ERASE_RETRIES && !MTDSWAP_STRICT) {
  472. dev_warn(d->dev,
  473. "erase of erase block %#llx on %s failed",
  474. erase.addr, mtd->name);
  475. yield();
  476. goto retry;
  477. }
  478. dev_err(d->dev, "Cannot erase erase block %#llx on %s\n",
  479. erase.addr, mtd->name);
  480. mtdswap_handle_badblock(d, eb);
  481. return -EIO;
  482. }
  483. ret = wait_event_interruptible(wq, erase.state == MTD_ERASE_DONE ||
  484. erase.state == MTD_ERASE_FAILED);
  485. if (ret) {
  486. dev_err(d->dev, "Interrupted erase block %#llx erassure on %s",
  487. erase.addr, mtd->name);
  488. return -EINTR;
  489. }
  490. if (erase.state == MTD_ERASE_FAILED) {
  491. if (retries++ < MTDSWAP_ERASE_RETRIES) {
  492. dev_warn(d->dev,
  493. "erase of erase block %#llx on %s failed",
  494. erase.addr, mtd->name);
  495. yield();
  496. goto retry;
  497. }
  498. mtdswap_handle_badblock(d, eb);
  499. return -EIO;
  500. }
  501. return 0;
  502. }
  503. static int mtdswap_map_free_block(struct mtdswap_dev *d, unsigned int page,
  504. unsigned int *block)
  505. {
  506. int ret;
  507. struct swap_eb *old_eb = d->curr_write;
  508. struct rb_root *clean_root;
  509. struct swap_eb *eb;
  510. if (old_eb == NULL || d->curr_write_pos >= d->pages_per_eblk) {
  511. do {
  512. if (TREE_EMPTY(d, CLEAN))
  513. return -ENOSPC;
  514. clean_root = TREE_ROOT(d, CLEAN);
  515. eb = rb_entry(rb_first(clean_root), struct swap_eb, rb);
  516. rb_erase(&eb->rb, clean_root);
  517. eb->root = NULL;
  518. TREE_COUNT(d, CLEAN)--;
  519. ret = mtdswap_write_marker(d, eb, MTDSWAP_TYPE_DIRTY);
  520. } while (ret == -EIO || ret == -EBADMSG);
  521. if (ret)
  522. return ret;
  523. d->curr_write_pos = 0;
  524. d->curr_write = eb;
  525. if (old_eb)
  526. mtdswap_store_eb(d, old_eb);
  527. }
  528. *block = (d->curr_write - d->eb_data) * d->pages_per_eblk +
  529. d->curr_write_pos;
  530. d->curr_write->active_count++;
  531. d->revmap[*block] = page;
  532. d->curr_write_pos++;
  533. return 0;
  534. }
  535. static unsigned int mtdswap_free_page_cnt(struct mtdswap_dev *d)
  536. {
  537. return TREE_COUNT(d, CLEAN) * d->pages_per_eblk +
  538. d->pages_per_eblk - d->curr_write_pos;
  539. }
  540. static unsigned int mtdswap_enough_free_pages(struct mtdswap_dev *d)
  541. {
  542. return mtdswap_free_page_cnt(d) > d->pages_per_eblk;
  543. }
  544. static int mtdswap_write_block(struct mtdswap_dev *d, char *buf,
  545. unsigned int page, unsigned int *bp, int gc_context)
  546. {
  547. struct mtd_info *mtd = d->mtd;
  548. struct swap_eb *eb;
  549. size_t retlen;
  550. loff_t writepos;
  551. int ret;
  552. retry:
  553. if (!gc_context)
  554. while (!mtdswap_enough_free_pages(d))
  555. if (mtdswap_gc(d, 0) > 0)
  556. return -ENOSPC;
  557. ret = mtdswap_map_free_block(d, page, bp);
  558. eb = d->eb_data + (*bp / d->pages_per_eblk);
  559. if (ret == -EIO || ret == -EBADMSG) {
  560. d->curr_write = NULL;
  561. eb->active_count--;
  562. d->revmap[*bp] = PAGE_UNDEF;
  563. goto retry;
  564. }
  565. if (ret < 0)
  566. return ret;
  567. writepos = (loff_t)*bp << PAGE_SHIFT;
  568. ret = mtd->write(mtd, writepos, PAGE_SIZE, &retlen, buf);
  569. if (ret == -EIO || ret == -EBADMSG) {
  570. d->curr_write_pos--;
  571. eb->active_count--;
  572. d->revmap[*bp] = PAGE_UNDEF;
  573. mtdswap_handle_write_error(d, eb);
  574. goto retry;
  575. }
  576. if (ret < 0) {
  577. dev_err(d->dev, "Write to MTD device failed: %d (%d written)",
  578. ret, retlen);
  579. goto err;
  580. }
  581. if (retlen != PAGE_SIZE) {
  582. dev_err(d->dev, "Short write to MTD device: %d written",
  583. retlen);
  584. ret = -EIO;
  585. goto err;
  586. }
  587. return ret;
  588. err:
  589. d->curr_write_pos--;
  590. eb->active_count--;
  591. d->revmap[*bp] = PAGE_UNDEF;
  592. return ret;
  593. }
  594. static int mtdswap_move_block(struct mtdswap_dev *d, unsigned int oldblock,
  595. unsigned int *newblock)
  596. {
  597. struct mtd_info *mtd = d->mtd;
  598. struct swap_eb *eb, *oldeb;
  599. int ret;
  600. size_t retlen;
  601. unsigned int page, retries;
  602. loff_t readpos;
  603. page = d->revmap[oldblock];
  604. readpos = (loff_t) oldblock << PAGE_SHIFT;
  605. retries = 0;
  606. retry:
  607. ret = mtd->read(mtd, readpos, PAGE_SIZE, &retlen, d->page_buf);
  608. if (ret < 0 && ret != -EUCLEAN) {
  609. oldeb = d->eb_data + oldblock / d->pages_per_eblk;
  610. oldeb->flags |= EBLOCK_READERR;
  611. dev_err(d->dev, "Read Error: %d (block %u)\n", ret,
  612. oldblock);
  613. retries++;
  614. if (retries < MTDSWAP_IO_RETRIES)
  615. goto retry;
  616. goto read_error;
  617. }
  618. if (retlen != PAGE_SIZE) {
  619. dev_err(d->dev, "Short read: %d (block %u)\n", retlen,
  620. oldblock);
  621. ret = -EIO;
  622. goto read_error;
  623. }
  624. ret = mtdswap_write_block(d, d->page_buf, page, newblock, 1);
  625. if (ret < 0) {
  626. d->page_data[page] = BLOCK_ERROR;
  627. dev_err(d->dev, "Write error: %d\n", ret);
  628. return ret;
  629. }
  630. eb = d->eb_data + *newblock / d->pages_per_eblk;
  631. d->page_data[page] = *newblock;
  632. d->revmap[oldblock] = PAGE_UNDEF;
  633. eb = d->eb_data + oldblock / d->pages_per_eblk;
  634. eb->active_count--;
  635. return 0;
  636. read_error:
  637. d->page_data[page] = BLOCK_ERROR;
  638. d->revmap[oldblock] = PAGE_UNDEF;
  639. return ret;
  640. }
  641. static int mtdswap_gc_eblock(struct mtdswap_dev *d, struct swap_eb *eb)
  642. {
  643. unsigned int i, block, eblk_base, newblock;
  644. int ret, errcode;
  645. errcode = 0;
  646. eblk_base = (eb - d->eb_data) * d->pages_per_eblk;
  647. for (i = 0; i < d->pages_per_eblk; i++) {
  648. if (d->spare_eblks < MIN_SPARE_EBLOCKS)
  649. return -ENOSPC;
  650. block = eblk_base + i;
  651. if (d->revmap[block] == PAGE_UNDEF)
  652. continue;
  653. ret = mtdswap_move_block(d, block, &newblock);
  654. if (ret < 0 && !errcode)
  655. errcode = ret;
  656. }
  657. return errcode;
  658. }
  659. static int __mtdswap_choose_gc_tree(struct mtdswap_dev *d)
  660. {
  661. int idx, stopat;
  662. if (TREE_COUNT(d, CLEAN) < LOW_FRAG_GC_TRESHOLD)
  663. stopat = MTDSWAP_LOWFRAG;
  664. else
  665. stopat = MTDSWAP_HIFRAG;
  666. for (idx = MTDSWAP_BITFLIP; idx >= stopat; idx--)
  667. if (d->trees[idx].root.rb_node != NULL)
  668. return idx;
  669. return -1;
  670. }
  671. static int mtdswap_wlfreq(unsigned int maxdiff)
  672. {
  673. unsigned int h, x, y, dist, base;
  674. /*
  675. * Calculate linear ramp down from f1 to f2 when maxdiff goes from
  676. * MAX_ERASE_DIFF to MAX_ERASE_DIFF + COLLECT_NONDIRTY_BASE. Similar
  677. * to triangle with height f1 - f1 and width COLLECT_NONDIRTY_BASE.
  678. */
  679. dist = maxdiff - MAX_ERASE_DIFF;
  680. if (dist > COLLECT_NONDIRTY_BASE)
  681. dist = COLLECT_NONDIRTY_BASE;
  682. /*
  683. * Modelling the slop as right angular triangle with base
  684. * COLLECT_NONDIRTY_BASE and height freq1 - freq2. The ratio y/x is
  685. * equal to the ratio h/base.
  686. */
  687. h = COLLECT_NONDIRTY_FREQ1 - COLLECT_NONDIRTY_FREQ2;
  688. base = COLLECT_NONDIRTY_BASE;
  689. x = dist - base;
  690. y = (x * h + base / 2) / base;
  691. return COLLECT_NONDIRTY_FREQ2 + y;
  692. }
  693. static int mtdswap_choose_wl_tree(struct mtdswap_dev *d)
  694. {
  695. static unsigned int pick_cnt;
  696. unsigned int i, idx, wear, max;
  697. struct rb_root *root;
  698. max = 0;
  699. for (i = 0; i <= MTDSWAP_DIRTY; i++) {
  700. root = &d->trees[i].root;
  701. if (root->rb_node == NULL)
  702. continue;
  703. wear = d->max_erase_count - MTDSWAP_ECNT_MIN(root);
  704. if (wear > max) {
  705. max = wear;
  706. idx = i;
  707. }
  708. }
  709. if (max > MAX_ERASE_DIFF && pick_cnt >= mtdswap_wlfreq(max) - 1) {
  710. pick_cnt = 0;
  711. return idx;
  712. }
  713. pick_cnt++;
  714. return -1;
  715. }
  716. static int mtdswap_choose_gc_tree(struct mtdswap_dev *d,
  717. unsigned int background)
  718. {
  719. int idx;
  720. if (TREE_NONEMPTY(d, FAILING) &&
  721. (background || (TREE_EMPTY(d, CLEAN) && TREE_EMPTY(d, DIRTY))))
  722. return MTDSWAP_FAILING;
  723. idx = mtdswap_choose_wl_tree(d);
  724. if (idx >= MTDSWAP_CLEAN)
  725. return idx;
  726. return __mtdswap_choose_gc_tree(d);
  727. }
  728. static struct swap_eb *mtdswap_pick_gc_eblk(struct mtdswap_dev *d,
  729. unsigned int background)
  730. {
  731. struct rb_root *rp = NULL;
  732. struct swap_eb *eb = NULL;
  733. int idx;
  734. if (background && TREE_COUNT(d, CLEAN) > CLEAN_BLOCK_THRESHOLD &&
  735. TREE_EMPTY(d, DIRTY) && TREE_EMPTY(d, FAILING))
  736. return NULL;
  737. idx = mtdswap_choose_gc_tree(d, background);
  738. if (idx < 0)
  739. return NULL;
  740. rp = &d->trees[idx].root;
  741. eb = rb_entry(rb_first(rp), struct swap_eb, rb);
  742. rb_erase(&eb->rb, rp);
  743. eb->root = NULL;
  744. d->trees[idx].count--;
  745. return eb;
  746. }
  747. static unsigned int mtdswap_test_patt(unsigned int i)
  748. {
  749. return i % 2 ? 0x55555555 : 0xAAAAAAAA;
  750. }
  751. static unsigned int mtdswap_eblk_passes(struct mtdswap_dev *d,
  752. struct swap_eb *eb)
  753. {
  754. struct mtd_info *mtd = d->mtd;
  755. unsigned int test, i, j, patt, mtd_pages;
  756. loff_t base, pos;
  757. unsigned int *p1 = (unsigned int *)d->page_buf;
  758. unsigned char *p2 = (unsigned char *)d->oob_buf;
  759. struct mtd_oob_ops ops;
  760. int ret;
  761. ops.mode = MTD_OOB_AUTO;
  762. ops.len = mtd->writesize;
  763. ops.ooblen = mtd->ecclayout->oobavail;
  764. ops.ooboffs = 0;
  765. ops.datbuf = d->page_buf;
  766. ops.oobbuf = d->oob_buf;
  767. base = mtdswap_eb_offset(d, eb);
  768. mtd_pages = d->pages_per_eblk * PAGE_SIZE / mtd->writesize;
  769. for (test = 0; test < 2; test++) {
  770. pos = base;
  771. for (i = 0; i < mtd_pages; i++) {
  772. patt = mtdswap_test_patt(test + i);
  773. memset(d->page_buf, patt, mtd->writesize);
  774. memset(d->oob_buf, patt, mtd->ecclayout->oobavail);
  775. ret = mtd->write_oob(mtd, pos, &ops);
  776. if (ret)
  777. goto error;
  778. pos += mtd->writesize;
  779. }
  780. pos = base;
  781. for (i = 0; i < mtd_pages; i++) {
  782. ret = mtd->read_oob(mtd, pos, &ops);
  783. if (ret)
  784. goto error;
  785. patt = mtdswap_test_patt(test + i);
  786. for (j = 0; j < mtd->writesize/sizeof(int); j++)
  787. if (p1[j] != patt)
  788. goto error;
  789. for (j = 0; j < mtd->ecclayout->oobavail; j++)
  790. if (p2[j] != (unsigned char)patt)
  791. goto error;
  792. pos += mtd->writesize;
  793. }
  794. ret = mtdswap_erase_block(d, eb);
  795. if (ret)
  796. goto error;
  797. }
  798. eb->flags &= ~EBLOCK_READERR;
  799. return 1;
  800. error:
  801. mtdswap_handle_badblock(d, eb);
  802. return 0;
  803. }
  804. static int mtdswap_gc(struct mtdswap_dev *d, unsigned int background)
  805. {
  806. struct swap_eb *eb;
  807. int ret;
  808. if (d->spare_eblks < MIN_SPARE_EBLOCKS)
  809. return 1;
  810. eb = mtdswap_pick_gc_eblk(d, background);
  811. if (!eb)
  812. return 1;
  813. ret = mtdswap_gc_eblock(d, eb);
  814. if (ret == -ENOSPC)
  815. return 1;
  816. if (eb->flags & EBLOCK_FAILED) {
  817. mtdswap_handle_badblock(d, eb);
  818. return 0;
  819. }
  820. eb->flags &= ~EBLOCK_BITFLIP;
  821. ret = mtdswap_erase_block(d, eb);
  822. if ((eb->flags & EBLOCK_READERR) &&
  823. (ret || !mtdswap_eblk_passes(d, eb)))
  824. return 0;
  825. if (ret == 0)
  826. ret = mtdswap_write_marker(d, eb, MTDSWAP_TYPE_CLEAN);
  827. if (ret == 0)
  828. mtdswap_rb_add(d, eb, MTDSWAP_CLEAN);
  829. else if (ret != -EIO && ret != -EBADMSG)
  830. mtdswap_rb_add(d, eb, MTDSWAP_DIRTY);
  831. return 0;
  832. }
  833. static void mtdswap_background(struct mtd_blktrans_dev *dev)
  834. {
  835. struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
  836. int ret;
  837. while (1) {
  838. ret = mtdswap_gc(d, 1);
  839. if (ret || mtd_blktrans_cease_background(dev))
  840. return;
  841. }
  842. }
  843. static void mtdswap_cleanup(struct mtdswap_dev *d)
  844. {
  845. vfree(d->eb_data);
  846. vfree(d->revmap);
  847. vfree(d->page_data);
  848. kfree(d->oob_buf);
  849. kfree(d->page_buf);
  850. }
  851. static int mtdswap_flush(struct mtd_blktrans_dev *dev)
  852. {
  853. struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
  854. if (d->mtd->sync)
  855. d->mtd->sync(d->mtd);
  856. return 0;
  857. }
  858. static unsigned int mtdswap_badblocks(struct mtd_info *mtd, uint64_t size)
  859. {
  860. loff_t offset;
  861. unsigned int badcnt;
  862. badcnt = 0;
  863. if (mtd->block_isbad)
  864. for (offset = 0; offset < size; offset += mtd->erasesize)
  865. if (mtd->block_isbad(mtd, offset))
  866. badcnt++;
  867. return badcnt;
  868. }
  869. static int mtdswap_writesect(struct mtd_blktrans_dev *dev,
  870. unsigned long page, char *buf)
  871. {
  872. struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
  873. unsigned int newblock, mapped;
  874. struct swap_eb *eb;
  875. int ret;
  876. d->sect_write_count++;
  877. if (d->spare_eblks < MIN_SPARE_EBLOCKS)
  878. return -ENOSPC;
  879. if (header) {
  880. /* Ignore writes to the header page */
  881. if (unlikely(page == 0))
  882. return 0;
  883. page--;
  884. }
  885. mapped = d->page_data[page];
  886. if (mapped <= BLOCK_MAX) {
  887. eb = d->eb_data + (mapped / d->pages_per_eblk);
  888. eb->active_count--;
  889. mtdswap_store_eb(d, eb);
  890. d->page_data[page] = BLOCK_UNDEF;
  891. d->revmap[mapped] = PAGE_UNDEF;
  892. }
  893. ret = mtdswap_write_block(d, buf, page, &newblock, 0);
  894. d->mtd_write_count++;
  895. if (ret < 0)
  896. return ret;
  897. eb = d->eb_data + (newblock / d->pages_per_eblk);
  898. d->page_data[page] = newblock;
  899. return 0;
  900. }
  901. /* Provide a dummy swap header for the kernel */
  902. static int mtdswap_auto_header(struct mtdswap_dev *d, char *buf)
  903. {
  904. union swap_header *hd = (union swap_header *)(buf);
  905. memset(buf, 0, PAGE_SIZE - 10);
  906. hd->info.version = 1;
  907. hd->info.last_page = d->mbd_dev->size - 1;
  908. hd->info.nr_badpages = 0;
  909. memcpy(buf + PAGE_SIZE - 10, "SWAPSPACE2", 10);
  910. return 0;
  911. }
  912. static int mtdswap_readsect(struct mtd_blktrans_dev *dev,
  913. unsigned long page, char *buf)
  914. {
  915. struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
  916. struct mtd_info *mtd = d->mtd;
  917. unsigned int realblock, retries;
  918. loff_t readpos;
  919. struct swap_eb *eb;
  920. size_t retlen;
  921. int ret;
  922. d->sect_read_count++;
  923. if (header) {
  924. if (unlikely(page == 0))
  925. return mtdswap_auto_header(d, buf);
  926. page--;
  927. }
  928. realblock = d->page_data[page];
  929. if (realblock > BLOCK_MAX) {
  930. memset(buf, 0x0, PAGE_SIZE);
  931. if (realblock == BLOCK_UNDEF)
  932. return 0;
  933. else
  934. return -EIO;
  935. }
  936. eb = d->eb_data + (realblock / d->pages_per_eblk);
  937. BUG_ON(d->revmap[realblock] == PAGE_UNDEF);
  938. readpos = (loff_t)realblock << PAGE_SHIFT;
  939. retries = 0;
  940. retry:
  941. ret = mtd->read(mtd, readpos, PAGE_SIZE, &retlen, buf);
  942. d->mtd_read_count++;
  943. if (ret == -EUCLEAN) {
  944. eb->flags |= EBLOCK_BITFLIP;
  945. mtdswap_rb_add(d, eb, MTDSWAP_BITFLIP);
  946. ret = 0;
  947. }
  948. if (ret < 0) {
  949. dev_err(d->dev, "Read error %d\n", ret);
  950. eb->flags |= EBLOCK_READERR;
  951. mtdswap_rb_add(d, eb, MTDSWAP_FAILING);
  952. retries++;
  953. if (retries < MTDSWAP_IO_RETRIES)
  954. goto retry;
  955. return ret;
  956. }
  957. if (retlen != PAGE_SIZE) {
  958. dev_err(d->dev, "Short read %d\n", retlen);
  959. return -EIO;
  960. }
  961. return 0;
  962. }
  963. static int mtdswap_discard(struct mtd_blktrans_dev *dev, unsigned long first,
  964. unsigned nr_pages)
  965. {
  966. struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
  967. unsigned long page;
  968. struct swap_eb *eb;
  969. unsigned int mapped;
  970. d->discard_count++;
  971. for (page = first; page < first + nr_pages; page++) {
  972. mapped = d->page_data[page];
  973. if (mapped <= BLOCK_MAX) {
  974. eb = d->eb_data + (mapped / d->pages_per_eblk);
  975. eb->active_count--;
  976. mtdswap_store_eb(d, eb);
  977. d->page_data[page] = BLOCK_UNDEF;
  978. d->revmap[mapped] = PAGE_UNDEF;
  979. d->discard_page_count++;
  980. } else if (mapped == BLOCK_ERROR) {
  981. d->page_data[page] = BLOCK_UNDEF;
  982. d->discard_page_count++;
  983. }
  984. }
  985. return 0;
  986. }
  987. static int mtdswap_show(struct seq_file *s, void *data)
  988. {
  989. struct mtdswap_dev *d = (struct mtdswap_dev *) s->private;
  990. unsigned long sum;
  991. unsigned int count[MTDSWAP_TREE_CNT];
  992. unsigned int min[MTDSWAP_TREE_CNT];
  993. unsigned int max[MTDSWAP_TREE_CNT];
  994. unsigned int i, cw = 0, cwp = 0, cwecount = 0, bb_cnt, mapped, pages;
  995. uint64_t use_size;
  996. char *name[] = {"clean", "used", "low", "high", "dirty", "bitflip",
  997. "failing"};
  998. mutex_lock(&d->mbd_dev->lock);
  999. for (i = 0; i < MTDSWAP_TREE_CNT; i++) {
  1000. struct rb_root *root = &d->trees[i].root;
  1001. if (root->rb_node) {
  1002. count[i] = d->trees[i].count;
  1003. min[i] = rb_entry(rb_first(root), struct swap_eb,
  1004. rb)->erase_count;
  1005. max[i] = rb_entry(rb_last(root), struct swap_eb,
  1006. rb)->erase_count;
  1007. } else
  1008. count[i] = 0;
  1009. }
  1010. if (d->curr_write) {
  1011. cw = 1;
  1012. cwp = d->curr_write_pos;
  1013. cwecount = d->curr_write->erase_count;
  1014. }
  1015. sum = 0;
  1016. for (i = 0; i < d->eblks; i++)
  1017. sum += d->eb_data[i].erase_count;
  1018. use_size = (uint64_t)d->eblks * d->mtd->erasesize;
  1019. bb_cnt = mtdswap_badblocks(d->mtd, use_size);
  1020. mapped = 0;
  1021. pages = d->mbd_dev->size;
  1022. for (i = 0; i < pages; i++)
  1023. if (d->page_data[i] != BLOCK_UNDEF)
  1024. mapped++;
  1025. mutex_unlock(&d->mbd_dev->lock);
  1026. for (i = 0; i < MTDSWAP_TREE_CNT; i++) {
  1027. if (!count[i])
  1028. continue;
  1029. if (min[i] != max[i])
  1030. seq_printf(s, "%s:\t%5d erase blocks, erased min %d, "
  1031. "max %d times\n",
  1032. name[i], count[i], min[i], max[i]);
  1033. else
  1034. seq_printf(s, "%s:\t%5d erase blocks, all erased %d "
  1035. "times\n", name[i], count[i], min[i]);
  1036. }
  1037. if (bb_cnt)
  1038. seq_printf(s, "bad:\t%5u erase blocks\n", bb_cnt);
  1039. if (cw)
  1040. seq_printf(s, "current erase block: %u pages used, %u free, "
  1041. "erased %u times\n",
  1042. cwp, d->pages_per_eblk - cwp, cwecount);
  1043. seq_printf(s, "total erasures: %lu\n", sum);
  1044. seq_printf(s, "\n");
  1045. seq_printf(s, "mtdswap_readsect count: %llu\n", d->sect_read_count);
  1046. seq_printf(s, "mtdswap_writesect count: %llu\n", d->sect_write_count);
  1047. seq_printf(s, "mtdswap_discard count: %llu\n", d->discard_count);
  1048. seq_printf(s, "mtd read count: %llu\n", d->mtd_read_count);
  1049. seq_printf(s, "mtd write count: %llu\n", d->mtd_write_count);
  1050. seq_printf(s, "discarded pages count: %llu\n", d->discard_page_count);
  1051. seq_printf(s, "\n");
  1052. seq_printf(s, "total pages: %lu\n", pages);
  1053. seq_printf(s, "pages mapped: %u\n", mapped);
  1054. return 0;
  1055. }
  1056. static int mtdswap_open(struct inode *inode, struct file *file)
  1057. {
  1058. return single_open(file, mtdswap_show, inode->i_private);
  1059. }
  1060. static const struct file_operations mtdswap_fops = {
  1061. .open = mtdswap_open,
  1062. .read = seq_read,
  1063. .llseek = seq_lseek,
  1064. .release = single_release,
  1065. };
  1066. static int mtdswap_add_debugfs(struct mtdswap_dev *d)
  1067. {
  1068. struct gendisk *gd = d->mbd_dev->disk;
  1069. struct device *dev = disk_to_dev(gd);
  1070. struct dentry *root;
  1071. struct dentry *dent;
  1072. root = debugfs_create_dir(gd->disk_name, NULL);
  1073. if (IS_ERR(root))
  1074. return 0;
  1075. if (!root) {
  1076. dev_err(dev, "failed to initialize debugfs\n");
  1077. return -1;
  1078. }
  1079. d->debugfs_root = root;
  1080. dent = debugfs_create_file("stats", S_IRUSR, root, d,
  1081. &mtdswap_fops);
  1082. if (!dent) {
  1083. dev_err(d->dev, "debugfs_create_file failed\n");
  1084. debugfs_remove_recursive(root);
  1085. d->debugfs_root = NULL;
  1086. return -1;
  1087. }
  1088. return 0;
  1089. }
  1090. static int mtdswap_init(struct mtdswap_dev *d, unsigned int eblocks,
  1091. unsigned int spare_cnt)
  1092. {
  1093. struct mtd_info *mtd = d->mbd_dev->mtd;
  1094. unsigned int i, eblk_bytes, pages, blocks;
  1095. int ret = -ENOMEM;
  1096. d->mtd = mtd;
  1097. d->eblks = eblocks;
  1098. d->spare_eblks = spare_cnt;
  1099. d->pages_per_eblk = mtd->erasesize >> PAGE_SHIFT;
  1100. pages = d->mbd_dev->size;
  1101. blocks = eblocks * d->pages_per_eblk;
  1102. for (i = 0; i < MTDSWAP_TREE_CNT; i++)
  1103. d->trees[i].root = RB_ROOT;
  1104. d->page_data = vmalloc(sizeof(int)*pages);
  1105. if (!d->page_data)
  1106. goto page_data_fail;
  1107. d->revmap = vmalloc(sizeof(int)*blocks);
  1108. if (!d->revmap)
  1109. goto revmap_fail;
  1110. eblk_bytes = sizeof(struct swap_eb)*d->eblks;
  1111. d->eb_data = vmalloc(eblk_bytes);
  1112. if (!d->eb_data)
  1113. goto eb_data_fail;
  1114. memset(d->eb_data, 0, eblk_bytes);
  1115. for (i = 0; i < pages; i++)
  1116. d->page_data[i] = BLOCK_UNDEF;
  1117. for (i = 0; i < blocks; i++)
  1118. d->revmap[i] = PAGE_UNDEF;
  1119. d->page_buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1120. if (!d->page_buf)
  1121. goto page_buf_fail;
  1122. d->oob_buf = kmalloc(2 * mtd->ecclayout->oobavail, GFP_KERNEL);
  1123. if (!d->oob_buf)
  1124. goto oob_buf_fail;
  1125. mtdswap_scan_eblks(d);
  1126. return 0;
  1127. oob_buf_fail:
  1128. kfree(d->page_buf);
  1129. page_buf_fail:
  1130. vfree(d->eb_data);
  1131. eb_data_fail:
  1132. vfree(d->revmap);
  1133. revmap_fail:
  1134. vfree(d->page_data);
  1135. page_data_fail:
  1136. printk(KERN_ERR "%s: init failed (%d)\n", MTDSWAP_PREFIX, ret);
  1137. return ret;
  1138. }
  1139. static void mtdswap_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd)
  1140. {
  1141. struct mtdswap_dev *d;
  1142. struct mtd_blktrans_dev *mbd_dev;
  1143. char *parts;
  1144. char *this_opt;
  1145. unsigned long part;
  1146. unsigned int eblocks, eavailable, bad_blocks, spare_cnt;
  1147. uint64_t swap_size, use_size, size_limit;
  1148. struct nand_ecclayout *oinfo;
  1149. int ret;
  1150. parts = &partitions[0];
  1151. if (!*parts)
  1152. return;
  1153. while ((this_opt = strsep(&parts, ",")) != NULL) {
  1154. if (strict_strtoul(this_opt, 0, &part) < 0)
  1155. return;
  1156. if (mtd->index == part)
  1157. break;
  1158. }
  1159. if (mtd->index != part)
  1160. return;
  1161. if (mtd->erasesize < PAGE_SIZE || mtd->erasesize % PAGE_SIZE) {
  1162. printk(KERN_ERR "%s: Erase size %u not multiple of PAGE_SIZE "
  1163. "%lu\n", MTDSWAP_PREFIX, mtd->erasesize, PAGE_SIZE);
  1164. return;
  1165. }
  1166. if (PAGE_SIZE % mtd->writesize || mtd->writesize > PAGE_SIZE) {
  1167. printk(KERN_ERR "%s: PAGE_SIZE %lu not multiple of write size"
  1168. " %u\n", MTDSWAP_PREFIX, PAGE_SIZE, mtd->writesize);
  1169. return;
  1170. }
  1171. oinfo = mtd->ecclayout;
  1172. if (!mtd->oobsize || !oinfo || oinfo->oobavail < MTDSWAP_OOBSIZE) {
  1173. printk(KERN_ERR "%s: Not enough free bytes in OOB, "
  1174. "%d available, %u needed.\n",
  1175. MTDSWAP_PREFIX, oinfo->oobavail, MTDSWAP_OOBSIZE);
  1176. return;
  1177. }
  1178. if (spare_eblocks > 100)
  1179. spare_eblocks = 100;
  1180. use_size = mtd->size;
  1181. size_limit = (uint64_t) BLOCK_MAX * PAGE_SIZE;
  1182. if (mtd->size > size_limit) {
  1183. printk(KERN_WARNING "%s: Device too large. Limiting size to "
  1184. "%llu bytes\n", MTDSWAP_PREFIX, size_limit);
  1185. use_size = size_limit;
  1186. }
  1187. eblocks = mtd_div_by_eb(use_size, mtd);
  1188. use_size = eblocks * mtd->erasesize;
  1189. bad_blocks = mtdswap_badblocks(mtd, use_size);
  1190. eavailable = eblocks - bad_blocks;
  1191. if (eavailable < MIN_ERASE_BLOCKS) {
  1192. printk(KERN_ERR "%s: Not enough erase blocks. %u available, "
  1193. "%d needed\n", MTDSWAP_PREFIX, eavailable,
  1194. MIN_ERASE_BLOCKS);
  1195. return;
  1196. }
  1197. spare_cnt = div_u64((uint64_t)eavailable * spare_eblocks, 100);
  1198. if (spare_cnt < MIN_SPARE_EBLOCKS)
  1199. spare_cnt = MIN_SPARE_EBLOCKS;
  1200. if (spare_cnt > eavailable - 1)
  1201. spare_cnt = eavailable - 1;
  1202. swap_size = (uint64_t)(eavailable - spare_cnt) * mtd->erasesize +
  1203. (header ? PAGE_SIZE : 0);
  1204. printk(KERN_INFO "%s: Enabling MTD swap on device %lu, size %llu KB, "
  1205. "%u spare, %u bad blocks\n",
  1206. MTDSWAP_PREFIX, part, swap_size / 1024, spare_cnt, bad_blocks);
  1207. d = kzalloc(sizeof(struct mtdswap_dev), GFP_KERNEL);
  1208. if (!d)
  1209. return;
  1210. mbd_dev = kzalloc(sizeof(struct mtd_blktrans_dev), GFP_KERNEL);
  1211. if (!mbd_dev) {
  1212. kfree(d);
  1213. return;
  1214. }
  1215. d->mbd_dev = mbd_dev;
  1216. mbd_dev->priv = d;
  1217. mbd_dev->mtd = mtd;
  1218. mbd_dev->devnum = mtd->index;
  1219. mbd_dev->size = swap_size >> PAGE_SHIFT;
  1220. mbd_dev->tr = tr;
  1221. if (!(mtd->flags & MTD_WRITEABLE))
  1222. mbd_dev->readonly = 1;
  1223. if (mtdswap_init(d, eblocks, spare_cnt) < 0)
  1224. goto init_failed;
  1225. if (add_mtd_blktrans_dev(mbd_dev) < 0)
  1226. goto cleanup;
  1227. d->dev = disk_to_dev(mbd_dev->disk);
  1228. ret = mtdswap_add_debugfs(d);
  1229. if (ret < 0)
  1230. goto debugfs_failed;
  1231. return;
  1232. debugfs_failed:
  1233. del_mtd_blktrans_dev(mbd_dev);
  1234. cleanup:
  1235. mtdswap_cleanup(d);
  1236. init_failed:
  1237. kfree(mbd_dev);
  1238. kfree(d);
  1239. }
  1240. static void mtdswap_remove_dev(struct mtd_blktrans_dev *dev)
  1241. {
  1242. struct mtdswap_dev *d = MTDSWAP_MBD_TO_MTDSWAP(dev);
  1243. debugfs_remove_recursive(d->debugfs_root);
  1244. del_mtd_blktrans_dev(dev);
  1245. mtdswap_cleanup(d);
  1246. kfree(d);
  1247. }
  1248. static struct mtd_blktrans_ops mtdswap_ops = {
  1249. .name = "mtdswap",
  1250. .major = 0,
  1251. .part_bits = 0,
  1252. .blksize = PAGE_SIZE,
  1253. .flush = mtdswap_flush,
  1254. .readsect = mtdswap_readsect,
  1255. .writesect = mtdswap_writesect,
  1256. .discard = mtdswap_discard,
  1257. .background = mtdswap_background,
  1258. .add_mtd = mtdswap_add_mtd,
  1259. .remove_dev = mtdswap_remove_dev,
  1260. .owner = THIS_MODULE,
  1261. };
  1262. static int __init mtdswap_modinit(void)
  1263. {
  1264. return register_mtd_blktrans(&mtdswap_ops);
  1265. }
  1266. static void __exit mtdswap_modexit(void)
  1267. {
  1268. deregister_mtd_blktrans(&mtdswap_ops);
  1269. }
  1270. module_init(mtdswap_modinit);
  1271. module_exit(mtdswap_modexit);
  1272. MODULE_LICENSE("GPL");
  1273. MODULE_AUTHOR("Jarkko Lavinen <jarkko.lavinen@nokia.com>");
  1274. MODULE_DESCRIPTION("Block device access to an MTD suitable for using as "
  1275. "swap space");