vmx.c 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include "segment_descriptor.h"
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/profile.h>
  25. #include <linux/sched.h>
  26. #include <asm/io.h>
  27. #include <asm/desc.h>
  28. MODULE_AUTHOR("Qumranet");
  29. MODULE_LICENSE("GPL");
  30. struct vmcs {
  31. u32 revision_id;
  32. u32 abort;
  33. char data[0];
  34. };
  35. struct vcpu_vmx {
  36. struct kvm_vcpu *vcpu;
  37. int launched;
  38. struct kvm_msr_entry *guest_msrs;
  39. struct kvm_msr_entry *host_msrs;
  40. int nmsrs;
  41. int save_nmsrs;
  42. int msr_offset_efer;
  43. #ifdef CONFIG_X86_64
  44. int msr_offset_kernel_gs_base;
  45. #endif
  46. struct vmcs *vmcs;
  47. struct {
  48. int loaded;
  49. u16 fs_sel, gs_sel, ldt_sel;
  50. int fs_gs_ldt_reload_needed;
  51. }host_state;
  52. };
  53. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  54. {
  55. return (struct vcpu_vmx*)vcpu->_priv;
  56. }
  57. static int init_rmode_tss(struct kvm *kvm);
  58. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  59. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  60. static struct page *vmx_io_bitmap_a;
  61. static struct page *vmx_io_bitmap_b;
  62. #ifdef CONFIG_X86_64
  63. #define HOST_IS_64 1
  64. #else
  65. #define HOST_IS_64 0
  66. #endif
  67. #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
  68. static struct vmcs_descriptor {
  69. int size;
  70. int order;
  71. u32 revision_id;
  72. } vmcs_descriptor;
  73. #define VMX_SEGMENT_FIELD(seg) \
  74. [VCPU_SREG_##seg] = { \
  75. .selector = GUEST_##seg##_SELECTOR, \
  76. .base = GUEST_##seg##_BASE, \
  77. .limit = GUEST_##seg##_LIMIT, \
  78. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  79. }
  80. static struct kvm_vmx_segment_field {
  81. unsigned selector;
  82. unsigned base;
  83. unsigned limit;
  84. unsigned ar_bytes;
  85. } kvm_vmx_segment_fields[] = {
  86. VMX_SEGMENT_FIELD(CS),
  87. VMX_SEGMENT_FIELD(DS),
  88. VMX_SEGMENT_FIELD(ES),
  89. VMX_SEGMENT_FIELD(FS),
  90. VMX_SEGMENT_FIELD(GS),
  91. VMX_SEGMENT_FIELD(SS),
  92. VMX_SEGMENT_FIELD(TR),
  93. VMX_SEGMENT_FIELD(LDTR),
  94. };
  95. /*
  96. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  97. * away by decrementing the array size.
  98. */
  99. static const u32 vmx_msr_index[] = {
  100. #ifdef CONFIG_X86_64
  101. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  102. #endif
  103. MSR_EFER, MSR_K6_STAR,
  104. };
  105. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  106. static void load_msrs(struct kvm_msr_entry *e, int n)
  107. {
  108. int i;
  109. for (i = 0; i < n; ++i)
  110. wrmsrl(e[i].index, e[i].data);
  111. }
  112. static void save_msrs(struct kvm_msr_entry *e, int n)
  113. {
  114. int i;
  115. for (i = 0; i < n; ++i)
  116. rdmsrl(e[i].index, e[i].data);
  117. }
  118. static inline u64 msr_efer_save_restore_bits(struct kvm_msr_entry msr)
  119. {
  120. return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
  121. }
  122. static inline int msr_efer_need_save_restore(struct kvm_vcpu *vcpu)
  123. {
  124. struct vcpu_vmx *vmx = to_vmx(vcpu);
  125. int efer_offset = vmx->msr_offset_efer;
  126. return msr_efer_save_restore_bits(vmx->host_msrs[efer_offset]) !=
  127. msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
  128. }
  129. static inline int is_page_fault(u32 intr_info)
  130. {
  131. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  132. INTR_INFO_VALID_MASK)) ==
  133. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  134. }
  135. static inline int is_no_device(u32 intr_info)
  136. {
  137. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  138. INTR_INFO_VALID_MASK)) ==
  139. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  140. }
  141. static inline int is_external_interrupt(u32 intr_info)
  142. {
  143. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  144. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  145. }
  146. static int __find_msr_index(struct kvm_vcpu *vcpu, u32 msr)
  147. {
  148. struct vcpu_vmx *vmx = to_vmx(vcpu);
  149. int i;
  150. for (i = 0; i < vmx->nmsrs; ++i)
  151. if (vmx->guest_msrs[i].index == msr)
  152. return i;
  153. return -1;
  154. }
  155. static struct kvm_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  156. {
  157. struct vcpu_vmx *vmx = to_vmx(vcpu);
  158. int i;
  159. i = __find_msr_index(vcpu, msr);
  160. if (i >= 0)
  161. return &vmx->guest_msrs[i];
  162. return NULL;
  163. }
  164. static void vmcs_clear(struct vmcs *vmcs)
  165. {
  166. u64 phys_addr = __pa(vmcs);
  167. u8 error;
  168. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  169. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  170. : "cc", "memory");
  171. if (error)
  172. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  173. vmcs, phys_addr);
  174. }
  175. static void __vcpu_clear(void *arg)
  176. {
  177. struct kvm_vcpu *vcpu = arg;
  178. struct vcpu_vmx *vmx = to_vmx(vcpu);
  179. int cpu = raw_smp_processor_id();
  180. if (vcpu->cpu == cpu)
  181. vmcs_clear(vmx->vmcs);
  182. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  183. per_cpu(current_vmcs, cpu) = NULL;
  184. rdtscll(vcpu->host_tsc);
  185. }
  186. static void vcpu_clear(struct kvm_vcpu *vcpu)
  187. {
  188. if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
  189. smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
  190. else
  191. __vcpu_clear(vcpu);
  192. to_vmx(vcpu)->launched = 0;
  193. }
  194. static unsigned long vmcs_readl(unsigned long field)
  195. {
  196. unsigned long value;
  197. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  198. : "=a"(value) : "d"(field) : "cc");
  199. return value;
  200. }
  201. static u16 vmcs_read16(unsigned long field)
  202. {
  203. return vmcs_readl(field);
  204. }
  205. static u32 vmcs_read32(unsigned long field)
  206. {
  207. return vmcs_readl(field);
  208. }
  209. static u64 vmcs_read64(unsigned long field)
  210. {
  211. #ifdef CONFIG_X86_64
  212. return vmcs_readl(field);
  213. #else
  214. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  215. #endif
  216. }
  217. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  218. {
  219. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  220. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  221. dump_stack();
  222. }
  223. static void vmcs_writel(unsigned long field, unsigned long value)
  224. {
  225. u8 error;
  226. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  227. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  228. if (unlikely(error))
  229. vmwrite_error(field, value);
  230. }
  231. static void vmcs_write16(unsigned long field, u16 value)
  232. {
  233. vmcs_writel(field, value);
  234. }
  235. static void vmcs_write32(unsigned long field, u32 value)
  236. {
  237. vmcs_writel(field, value);
  238. }
  239. static void vmcs_write64(unsigned long field, u64 value)
  240. {
  241. #ifdef CONFIG_X86_64
  242. vmcs_writel(field, value);
  243. #else
  244. vmcs_writel(field, value);
  245. asm volatile ("");
  246. vmcs_writel(field+1, value >> 32);
  247. #endif
  248. }
  249. static void vmcs_clear_bits(unsigned long field, u32 mask)
  250. {
  251. vmcs_writel(field, vmcs_readl(field) & ~mask);
  252. }
  253. static void vmcs_set_bits(unsigned long field, u32 mask)
  254. {
  255. vmcs_writel(field, vmcs_readl(field) | mask);
  256. }
  257. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  258. {
  259. u32 eb;
  260. eb = 1u << PF_VECTOR;
  261. if (!vcpu->fpu_active)
  262. eb |= 1u << NM_VECTOR;
  263. if (vcpu->guest_debug.enabled)
  264. eb |= 1u << 1;
  265. if (vcpu->rmode.active)
  266. eb = ~0;
  267. vmcs_write32(EXCEPTION_BITMAP, eb);
  268. }
  269. static void reload_tss(void)
  270. {
  271. #ifndef CONFIG_X86_64
  272. /*
  273. * VT restores TR but not its size. Useless.
  274. */
  275. struct descriptor_table gdt;
  276. struct segment_descriptor *descs;
  277. get_gdt(&gdt);
  278. descs = (void *)gdt.base;
  279. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  280. load_TR_desc();
  281. #endif
  282. }
  283. static void load_transition_efer(struct kvm_vcpu *vcpu)
  284. {
  285. u64 trans_efer;
  286. struct vcpu_vmx *vmx = to_vmx(vcpu);
  287. int efer_offset = vmx->msr_offset_efer;
  288. trans_efer = vmx->host_msrs[efer_offset].data;
  289. trans_efer &= ~EFER_SAVE_RESTORE_BITS;
  290. trans_efer |= msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
  291. wrmsrl(MSR_EFER, trans_efer);
  292. vcpu->stat.efer_reload++;
  293. }
  294. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  295. {
  296. struct vcpu_vmx *vmx = to_vmx(vcpu);
  297. if (vmx->host_state.loaded)
  298. return;
  299. vmx->host_state.loaded = 1;
  300. /*
  301. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  302. * allow segment selectors with cpl > 0 or ti == 1.
  303. */
  304. vmx->host_state.ldt_sel = read_ldt();
  305. vmx->host_state.fs_gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  306. vmx->host_state.fs_sel = read_fs();
  307. if (!(vmx->host_state.fs_sel & 7))
  308. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  309. else {
  310. vmcs_write16(HOST_FS_SELECTOR, 0);
  311. vmx->host_state.fs_gs_ldt_reload_needed = 1;
  312. }
  313. vmx->host_state.gs_sel = read_gs();
  314. if (!(vmx->host_state.gs_sel & 7))
  315. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  316. else {
  317. vmcs_write16(HOST_GS_SELECTOR, 0);
  318. vmx->host_state.fs_gs_ldt_reload_needed = 1;
  319. }
  320. #ifdef CONFIG_X86_64
  321. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  322. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  323. #else
  324. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  325. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  326. #endif
  327. #ifdef CONFIG_X86_64
  328. if (is_long_mode(vcpu)) {
  329. save_msrs(vmx->host_msrs +
  330. vmx->msr_offset_kernel_gs_base, 1);
  331. }
  332. #endif
  333. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  334. if (msr_efer_need_save_restore(vcpu))
  335. load_transition_efer(vcpu);
  336. }
  337. static void vmx_load_host_state(struct kvm_vcpu *vcpu)
  338. {
  339. struct vcpu_vmx *vmx = to_vmx(vcpu);
  340. if (!vmx->host_state.loaded)
  341. return;
  342. vmx->host_state.loaded = 0;
  343. if (vmx->host_state.fs_gs_ldt_reload_needed) {
  344. load_ldt(vmx->host_state.ldt_sel);
  345. load_fs(vmx->host_state.fs_sel);
  346. /*
  347. * If we have to reload gs, we must take care to
  348. * preserve our gs base.
  349. */
  350. local_irq_disable();
  351. load_gs(vmx->host_state.gs_sel);
  352. #ifdef CONFIG_X86_64
  353. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  354. #endif
  355. local_irq_enable();
  356. reload_tss();
  357. }
  358. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  359. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  360. if (msr_efer_need_save_restore(vcpu))
  361. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  362. }
  363. /*
  364. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  365. * vcpu mutex is already taken.
  366. */
  367. static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
  368. {
  369. struct vcpu_vmx *vmx = to_vmx(vcpu);
  370. u64 phys_addr = __pa(vmx->vmcs);
  371. int cpu;
  372. u64 tsc_this, delta;
  373. cpu = get_cpu();
  374. if (vcpu->cpu != cpu)
  375. vcpu_clear(vcpu);
  376. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  377. u8 error;
  378. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  379. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  380. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  381. : "cc");
  382. if (error)
  383. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  384. vmx->vmcs, phys_addr);
  385. }
  386. if (vcpu->cpu != cpu) {
  387. struct descriptor_table dt;
  388. unsigned long sysenter_esp;
  389. vcpu->cpu = cpu;
  390. /*
  391. * Linux uses per-cpu TSS and GDT, so set these when switching
  392. * processors.
  393. */
  394. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  395. get_gdt(&dt);
  396. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  397. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  398. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  399. /*
  400. * Make sure the time stamp counter is monotonous.
  401. */
  402. rdtscll(tsc_this);
  403. delta = vcpu->host_tsc - tsc_this;
  404. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  405. }
  406. }
  407. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  408. {
  409. vmx_load_host_state(vcpu);
  410. kvm_put_guest_fpu(vcpu);
  411. put_cpu();
  412. }
  413. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  414. {
  415. if (vcpu->fpu_active)
  416. return;
  417. vcpu->fpu_active = 1;
  418. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  419. if (vcpu->cr0 & X86_CR0_TS)
  420. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  421. update_exception_bitmap(vcpu);
  422. }
  423. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  424. {
  425. if (!vcpu->fpu_active)
  426. return;
  427. vcpu->fpu_active = 0;
  428. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  429. update_exception_bitmap(vcpu);
  430. }
  431. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  432. {
  433. vcpu_clear(vcpu);
  434. }
  435. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  436. {
  437. return vmcs_readl(GUEST_RFLAGS);
  438. }
  439. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  440. {
  441. vmcs_writel(GUEST_RFLAGS, rflags);
  442. }
  443. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  444. {
  445. unsigned long rip;
  446. u32 interruptibility;
  447. rip = vmcs_readl(GUEST_RIP);
  448. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  449. vmcs_writel(GUEST_RIP, rip);
  450. /*
  451. * We emulated an instruction, so temporary interrupt blocking
  452. * should be removed, if set.
  453. */
  454. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  455. if (interruptibility & 3)
  456. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  457. interruptibility & ~3);
  458. vcpu->interrupt_window_open = 1;
  459. }
  460. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  461. {
  462. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  463. vmcs_readl(GUEST_RIP));
  464. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  465. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  466. GP_VECTOR |
  467. INTR_TYPE_EXCEPTION |
  468. INTR_INFO_DELIEVER_CODE_MASK |
  469. INTR_INFO_VALID_MASK);
  470. }
  471. /*
  472. * Swap MSR entry in host/guest MSR entry array.
  473. */
  474. void move_msr_up(struct kvm_vcpu *vcpu, int from, int to)
  475. {
  476. struct vcpu_vmx *vmx = to_vmx(vcpu);
  477. struct kvm_msr_entry tmp;
  478. tmp = vmx->guest_msrs[to];
  479. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  480. vmx->guest_msrs[from] = tmp;
  481. tmp = vmx->host_msrs[to];
  482. vmx->host_msrs[to] = vmx->host_msrs[from];
  483. vmx->host_msrs[from] = tmp;
  484. }
  485. /*
  486. * Set up the vmcs to automatically save and restore system
  487. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  488. * mode, as fiddling with msrs is very expensive.
  489. */
  490. static void setup_msrs(struct kvm_vcpu *vcpu)
  491. {
  492. struct vcpu_vmx *vmx = to_vmx(vcpu);
  493. int save_nmsrs;
  494. save_nmsrs = 0;
  495. #ifdef CONFIG_X86_64
  496. if (is_long_mode(vcpu)) {
  497. int index;
  498. index = __find_msr_index(vcpu, MSR_SYSCALL_MASK);
  499. if (index >= 0)
  500. move_msr_up(vcpu, index, save_nmsrs++);
  501. index = __find_msr_index(vcpu, MSR_LSTAR);
  502. if (index >= 0)
  503. move_msr_up(vcpu, index, save_nmsrs++);
  504. index = __find_msr_index(vcpu, MSR_CSTAR);
  505. if (index >= 0)
  506. move_msr_up(vcpu, index, save_nmsrs++);
  507. index = __find_msr_index(vcpu, MSR_KERNEL_GS_BASE);
  508. if (index >= 0)
  509. move_msr_up(vcpu, index, save_nmsrs++);
  510. /*
  511. * MSR_K6_STAR is only needed on long mode guests, and only
  512. * if efer.sce is enabled.
  513. */
  514. index = __find_msr_index(vcpu, MSR_K6_STAR);
  515. if ((index >= 0) && (vcpu->shadow_efer & EFER_SCE))
  516. move_msr_up(vcpu, index, save_nmsrs++);
  517. }
  518. #endif
  519. vmx->save_nmsrs = save_nmsrs;
  520. #ifdef CONFIG_X86_64
  521. vmx->msr_offset_kernel_gs_base =
  522. __find_msr_index(vcpu, MSR_KERNEL_GS_BASE);
  523. #endif
  524. vmx->msr_offset_efer = __find_msr_index(vcpu, MSR_EFER);
  525. }
  526. /*
  527. * reads and returns guest's timestamp counter "register"
  528. * guest_tsc = host_tsc + tsc_offset -- 21.3
  529. */
  530. static u64 guest_read_tsc(void)
  531. {
  532. u64 host_tsc, tsc_offset;
  533. rdtscll(host_tsc);
  534. tsc_offset = vmcs_read64(TSC_OFFSET);
  535. return host_tsc + tsc_offset;
  536. }
  537. /*
  538. * writes 'guest_tsc' into guest's timestamp counter "register"
  539. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  540. */
  541. static void guest_write_tsc(u64 guest_tsc)
  542. {
  543. u64 host_tsc;
  544. rdtscll(host_tsc);
  545. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  546. }
  547. /*
  548. * Reads an msr value (of 'msr_index') into 'pdata'.
  549. * Returns 0 on success, non-0 otherwise.
  550. * Assumes vcpu_load() was already called.
  551. */
  552. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  553. {
  554. u64 data;
  555. struct kvm_msr_entry *msr;
  556. if (!pdata) {
  557. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  558. return -EINVAL;
  559. }
  560. switch (msr_index) {
  561. #ifdef CONFIG_X86_64
  562. case MSR_FS_BASE:
  563. data = vmcs_readl(GUEST_FS_BASE);
  564. break;
  565. case MSR_GS_BASE:
  566. data = vmcs_readl(GUEST_GS_BASE);
  567. break;
  568. case MSR_EFER:
  569. return kvm_get_msr_common(vcpu, msr_index, pdata);
  570. #endif
  571. case MSR_IA32_TIME_STAMP_COUNTER:
  572. data = guest_read_tsc();
  573. break;
  574. case MSR_IA32_SYSENTER_CS:
  575. data = vmcs_read32(GUEST_SYSENTER_CS);
  576. break;
  577. case MSR_IA32_SYSENTER_EIP:
  578. data = vmcs_readl(GUEST_SYSENTER_EIP);
  579. break;
  580. case MSR_IA32_SYSENTER_ESP:
  581. data = vmcs_readl(GUEST_SYSENTER_ESP);
  582. break;
  583. default:
  584. msr = find_msr_entry(vcpu, msr_index);
  585. if (msr) {
  586. data = msr->data;
  587. break;
  588. }
  589. return kvm_get_msr_common(vcpu, msr_index, pdata);
  590. }
  591. *pdata = data;
  592. return 0;
  593. }
  594. /*
  595. * Writes msr value into into the appropriate "register".
  596. * Returns 0 on success, non-0 otherwise.
  597. * Assumes vcpu_load() was already called.
  598. */
  599. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  600. {
  601. struct vcpu_vmx *vmx = to_vmx(vcpu);
  602. struct kvm_msr_entry *msr;
  603. int ret = 0;
  604. switch (msr_index) {
  605. #ifdef CONFIG_X86_64
  606. case MSR_EFER:
  607. ret = kvm_set_msr_common(vcpu, msr_index, data);
  608. if (vmx->host_state.loaded)
  609. load_transition_efer(vcpu);
  610. break;
  611. case MSR_FS_BASE:
  612. vmcs_writel(GUEST_FS_BASE, data);
  613. break;
  614. case MSR_GS_BASE:
  615. vmcs_writel(GUEST_GS_BASE, data);
  616. break;
  617. #endif
  618. case MSR_IA32_SYSENTER_CS:
  619. vmcs_write32(GUEST_SYSENTER_CS, data);
  620. break;
  621. case MSR_IA32_SYSENTER_EIP:
  622. vmcs_writel(GUEST_SYSENTER_EIP, data);
  623. break;
  624. case MSR_IA32_SYSENTER_ESP:
  625. vmcs_writel(GUEST_SYSENTER_ESP, data);
  626. break;
  627. case MSR_IA32_TIME_STAMP_COUNTER:
  628. guest_write_tsc(data);
  629. break;
  630. default:
  631. msr = find_msr_entry(vcpu, msr_index);
  632. if (msr) {
  633. msr->data = data;
  634. if (vmx->host_state.loaded)
  635. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  636. break;
  637. }
  638. ret = kvm_set_msr_common(vcpu, msr_index, data);
  639. }
  640. return ret;
  641. }
  642. /*
  643. * Sync the rsp and rip registers into the vcpu structure. This allows
  644. * registers to be accessed by indexing vcpu->regs.
  645. */
  646. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  647. {
  648. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  649. vcpu->rip = vmcs_readl(GUEST_RIP);
  650. }
  651. /*
  652. * Syncs rsp and rip back into the vmcs. Should be called after possible
  653. * modification.
  654. */
  655. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  656. {
  657. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  658. vmcs_writel(GUEST_RIP, vcpu->rip);
  659. }
  660. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  661. {
  662. unsigned long dr7 = 0x400;
  663. int old_singlestep;
  664. old_singlestep = vcpu->guest_debug.singlestep;
  665. vcpu->guest_debug.enabled = dbg->enabled;
  666. if (vcpu->guest_debug.enabled) {
  667. int i;
  668. dr7 |= 0x200; /* exact */
  669. for (i = 0; i < 4; ++i) {
  670. if (!dbg->breakpoints[i].enabled)
  671. continue;
  672. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  673. dr7 |= 2 << (i*2); /* global enable */
  674. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  675. }
  676. vcpu->guest_debug.singlestep = dbg->singlestep;
  677. } else
  678. vcpu->guest_debug.singlestep = 0;
  679. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  680. unsigned long flags;
  681. flags = vmcs_readl(GUEST_RFLAGS);
  682. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  683. vmcs_writel(GUEST_RFLAGS, flags);
  684. }
  685. update_exception_bitmap(vcpu);
  686. vmcs_writel(GUEST_DR7, dr7);
  687. return 0;
  688. }
  689. static __init int cpu_has_kvm_support(void)
  690. {
  691. unsigned long ecx = cpuid_ecx(1);
  692. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  693. }
  694. static __init int vmx_disabled_by_bios(void)
  695. {
  696. u64 msr;
  697. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  698. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  699. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  700. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  701. /* locked but not enabled */
  702. }
  703. static void hardware_enable(void *garbage)
  704. {
  705. int cpu = raw_smp_processor_id();
  706. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  707. u64 old;
  708. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  709. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  710. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  711. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  712. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  713. /* enable and lock */
  714. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  715. MSR_IA32_FEATURE_CONTROL_LOCKED |
  716. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  717. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  718. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  719. : "memory", "cc");
  720. }
  721. static void hardware_disable(void *garbage)
  722. {
  723. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  724. }
  725. static __init void setup_vmcs_descriptor(void)
  726. {
  727. u32 vmx_msr_low, vmx_msr_high;
  728. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  729. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  730. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  731. vmcs_descriptor.revision_id = vmx_msr_low;
  732. }
  733. static struct vmcs *alloc_vmcs_cpu(int cpu)
  734. {
  735. int node = cpu_to_node(cpu);
  736. struct page *pages;
  737. struct vmcs *vmcs;
  738. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  739. if (!pages)
  740. return NULL;
  741. vmcs = page_address(pages);
  742. memset(vmcs, 0, vmcs_descriptor.size);
  743. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  744. return vmcs;
  745. }
  746. static struct vmcs *alloc_vmcs(void)
  747. {
  748. return alloc_vmcs_cpu(raw_smp_processor_id());
  749. }
  750. static void free_vmcs(struct vmcs *vmcs)
  751. {
  752. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  753. }
  754. static void free_kvm_area(void)
  755. {
  756. int cpu;
  757. for_each_online_cpu(cpu)
  758. free_vmcs(per_cpu(vmxarea, cpu));
  759. }
  760. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  761. static __init int alloc_kvm_area(void)
  762. {
  763. int cpu;
  764. for_each_online_cpu(cpu) {
  765. struct vmcs *vmcs;
  766. vmcs = alloc_vmcs_cpu(cpu);
  767. if (!vmcs) {
  768. free_kvm_area();
  769. return -ENOMEM;
  770. }
  771. per_cpu(vmxarea, cpu) = vmcs;
  772. }
  773. return 0;
  774. }
  775. static __init int hardware_setup(void)
  776. {
  777. setup_vmcs_descriptor();
  778. return alloc_kvm_area();
  779. }
  780. static __exit void hardware_unsetup(void)
  781. {
  782. free_kvm_area();
  783. }
  784. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  785. {
  786. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  787. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  788. vmcs_write16(sf->selector, save->selector);
  789. vmcs_writel(sf->base, save->base);
  790. vmcs_write32(sf->limit, save->limit);
  791. vmcs_write32(sf->ar_bytes, save->ar);
  792. } else {
  793. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  794. << AR_DPL_SHIFT;
  795. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  796. }
  797. }
  798. static void enter_pmode(struct kvm_vcpu *vcpu)
  799. {
  800. unsigned long flags;
  801. vcpu->rmode.active = 0;
  802. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  803. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  804. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  805. flags = vmcs_readl(GUEST_RFLAGS);
  806. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  807. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  808. vmcs_writel(GUEST_RFLAGS, flags);
  809. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  810. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  811. update_exception_bitmap(vcpu);
  812. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  813. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  814. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  815. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  816. vmcs_write16(GUEST_SS_SELECTOR, 0);
  817. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  818. vmcs_write16(GUEST_CS_SELECTOR,
  819. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  820. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  821. }
  822. static int rmode_tss_base(struct kvm* kvm)
  823. {
  824. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  825. return base_gfn << PAGE_SHIFT;
  826. }
  827. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  828. {
  829. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  830. save->selector = vmcs_read16(sf->selector);
  831. save->base = vmcs_readl(sf->base);
  832. save->limit = vmcs_read32(sf->limit);
  833. save->ar = vmcs_read32(sf->ar_bytes);
  834. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  835. vmcs_write32(sf->limit, 0xffff);
  836. vmcs_write32(sf->ar_bytes, 0xf3);
  837. }
  838. static void enter_rmode(struct kvm_vcpu *vcpu)
  839. {
  840. unsigned long flags;
  841. vcpu->rmode.active = 1;
  842. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  843. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  844. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  845. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  846. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  847. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  848. flags = vmcs_readl(GUEST_RFLAGS);
  849. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  850. flags |= IOPL_MASK | X86_EFLAGS_VM;
  851. vmcs_writel(GUEST_RFLAGS, flags);
  852. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  853. update_exception_bitmap(vcpu);
  854. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  855. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  856. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  857. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  858. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  859. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  860. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  861. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  862. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  863. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  864. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  865. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  866. init_rmode_tss(vcpu->kvm);
  867. }
  868. #ifdef CONFIG_X86_64
  869. static void enter_lmode(struct kvm_vcpu *vcpu)
  870. {
  871. u32 guest_tr_ar;
  872. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  873. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  874. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  875. __FUNCTION__);
  876. vmcs_write32(GUEST_TR_AR_BYTES,
  877. (guest_tr_ar & ~AR_TYPE_MASK)
  878. | AR_TYPE_BUSY_64_TSS);
  879. }
  880. vcpu->shadow_efer |= EFER_LMA;
  881. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  882. vmcs_write32(VM_ENTRY_CONTROLS,
  883. vmcs_read32(VM_ENTRY_CONTROLS)
  884. | VM_ENTRY_CONTROLS_IA32E_MASK);
  885. }
  886. static void exit_lmode(struct kvm_vcpu *vcpu)
  887. {
  888. vcpu->shadow_efer &= ~EFER_LMA;
  889. vmcs_write32(VM_ENTRY_CONTROLS,
  890. vmcs_read32(VM_ENTRY_CONTROLS)
  891. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  892. }
  893. #endif
  894. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  895. {
  896. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  897. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  898. }
  899. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  900. {
  901. vmx_fpu_deactivate(vcpu);
  902. if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
  903. enter_pmode(vcpu);
  904. if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
  905. enter_rmode(vcpu);
  906. #ifdef CONFIG_X86_64
  907. if (vcpu->shadow_efer & EFER_LME) {
  908. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  909. enter_lmode(vcpu);
  910. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  911. exit_lmode(vcpu);
  912. }
  913. #endif
  914. vmcs_writel(CR0_READ_SHADOW, cr0);
  915. vmcs_writel(GUEST_CR0,
  916. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  917. vcpu->cr0 = cr0;
  918. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  919. vmx_fpu_activate(vcpu);
  920. }
  921. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  922. {
  923. vmcs_writel(GUEST_CR3, cr3);
  924. if (vcpu->cr0 & X86_CR0_PE)
  925. vmx_fpu_deactivate(vcpu);
  926. }
  927. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  928. {
  929. vmcs_writel(CR4_READ_SHADOW, cr4);
  930. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  931. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  932. vcpu->cr4 = cr4;
  933. }
  934. #ifdef CONFIG_X86_64
  935. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  936. {
  937. struct kvm_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  938. vcpu->shadow_efer = efer;
  939. if (efer & EFER_LMA) {
  940. vmcs_write32(VM_ENTRY_CONTROLS,
  941. vmcs_read32(VM_ENTRY_CONTROLS) |
  942. VM_ENTRY_CONTROLS_IA32E_MASK);
  943. msr->data = efer;
  944. } else {
  945. vmcs_write32(VM_ENTRY_CONTROLS,
  946. vmcs_read32(VM_ENTRY_CONTROLS) &
  947. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  948. msr->data = efer & ~EFER_LME;
  949. }
  950. setup_msrs(vcpu);
  951. }
  952. #endif
  953. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  954. {
  955. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  956. return vmcs_readl(sf->base);
  957. }
  958. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  959. struct kvm_segment *var, int seg)
  960. {
  961. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  962. u32 ar;
  963. var->base = vmcs_readl(sf->base);
  964. var->limit = vmcs_read32(sf->limit);
  965. var->selector = vmcs_read16(sf->selector);
  966. ar = vmcs_read32(sf->ar_bytes);
  967. if (ar & AR_UNUSABLE_MASK)
  968. ar = 0;
  969. var->type = ar & 15;
  970. var->s = (ar >> 4) & 1;
  971. var->dpl = (ar >> 5) & 3;
  972. var->present = (ar >> 7) & 1;
  973. var->avl = (ar >> 12) & 1;
  974. var->l = (ar >> 13) & 1;
  975. var->db = (ar >> 14) & 1;
  976. var->g = (ar >> 15) & 1;
  977. var->unusable = (ar >> 16) & 1;
  978. }
  979. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  980. {
  981. u32 ar;
  982. if (var->unusable)
  983. ar = 1 << 16;
  984. else {
  985. ar = var->type & 15;
  986. ar |= (var->s & 1) << 4;
  987. ar |= (var->dpl & 3) << 5;
  988. ar |= (var->present & 1) << 7;
  989. ar |= (var->avl & 1) << 12;
  990. ar |= (var->l & 1) << 13;
  991. ar |= (var->db & 1) << 14;
  992. ar |= (var->g & 1) << 15;
  993. }
  994. if (ar == 0) /* a 0 value means unusable */
  995. ar = AR_UNUSABLE_MASK;
  996. return ar;
  997. }
  998. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  999. struct kvm_segment *var, int seg)
  1000. {
  1001. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1002. u32 ar;
  1003. if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
  1004. vcpu->rmode.tr.selector = var->selector;
  1005. vcpu->rmode.tr.base = var->base;
  1006. vcpu->rmode.tr.limit = var->limit;
  1007. vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
  1008. return;
  1009. }
  1010. vmcs_writel(sf->base, var->base);
  1011. vmcs_write32(sf->limit, var->limit);
  1012. vmcs_write16(sf->selector, var->selector);
  1013. if (vcpu->rmode.active && var->s) {
  1014. /*
  1015. * Hack real-mode segments into vm86 compatibility.
  1016. */
  1017. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1018. vmcs_writel(sf->base, 0xf0000);
  1019. ar = 0xf3;
  1020. } else
  1021. ar = vmx_segment_access_rights(var);
  1022. vmcs_write32(sf->ar_bytes, ar);
  1023. }
  1024. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1025. {
  1026. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1027. *db = (ar >> 14) & 1;
  1028. *l = (ar >> 13) & 1;
  1029. }
  1030. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1031. {
  1032. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1033. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1034. }
  1035. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1036. {
  1037. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1038. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1039. }
  1040. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1041. {
  1042. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1043. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1044. }
  1045. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1046. {
  1047. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1048. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1049. }
  1050. static int init_rmode_tss(struct kvm* kvm)
  1051. {
  1052. struct page *p1, *p2, *p3;
  1053. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1054. char *page;
  1055. p1 = gfn_to_page(kvm, fn++);
  1056. p2 = gfn_to_page(kvm, fn++);
  1057. p3 = gfn_to_page(kvm, fn);
  1058. if (!p1 || !p2 || !p3) {
  1059. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  1060. return 0;
  1061. }
  1062. page = kmap_atomic(p1, KM_USER0);
  1063. clear_page(page);
  1064. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1065. kunmap_atomic(page, KM_USER0);
  1066. page = kmap_atomic(p2, KM_USER0);
  1067. clear_page(page);
  1068. kunmap_atomic(page, KM_USER0);
  1069. page = kmap_atomic(p3, KM_USER0);
  1070. clear_page(page);
  1071. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  1072. kunmap_atomic(page, KM_USER0);
  1073. return 1;
  1074. }
  1075. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  1076. {
  1077. u32 msr_high, msr_low;
  1078. rdmsr(msr, msr_low, msr_high);
  1079. val &= msr_high;
  1080. val |= msr_low;
  1081. vmcs_write32(vmcs_field, val);
  1082. }
  1083. static void seg_setup(int seg)
  1084. {
  1085. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1086. vmcs_write16(sf->selector, 0);
  1087. vmcs_writel(sf->base, 0);
  1088. vmcs_write32(sf->limit, 0xffff);
  1089. vmcs_write32(sf->ar_bytes, 0x93);
  1090. }
  1091. /*
  1092. * Sets up the vmcs for emulated real mode.
  1093. */
  1094. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  1095. {
  1096. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1097. u32 host_sysenter_cs;
  1098. u32 junk;
  1099. unsigned long a;
  1100. struct descriptor_table dt;
  1101. int i;
  1102. int ret = 0;
  1103. unsigned long kvm_vmx_return;
  1104. if (!init_rmode_tss(vcpu->kvm)) {
  1105. ret = -ENOMEM;
  1106. goto out;
  1107. }
  1108. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  1109. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1110. vcpu->cr8 = 0;
  1111. vcpu->apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1112. if (vcpu->vcpu_id == 0)
  1113. vcpu->apic_base |= MSR_IA32_APICBASE_BSP;
  1114. fx_init(vcpu);
  1115. /*
  1116. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1117. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1118. */
  1119. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1120. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1121. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1122. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1123. seg_setup(VCPU_SREG_DS);
  1124. seg_setup(VCPU_SREG_ES);
  1125. seg_setup(VCPU_SREG_FS);
  1126. seg_setup(VCPU_SREG_GS);
  1127. seg_setup(VCPU_SREG_SS);
  1128. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1129. vmcs_writel(GUEST_TR_BASE, 0);
  1130. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1131. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1132. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1133. vmcs_writel(GUEST_LDTR_BASE, 0);
  1134. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1135. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1136. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1137. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1138. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1139. vmcs_writel(GUEST_RFLAGS, 0x02);
  1140. vmcs_writel(GUEST_RIP, 0xfff0);
  1141. vmcs_writel(GUEST_RSP, 0);
  1142. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  1143. vmcs_writel(GUEST_DR7, 0x400);
  1144. vmcs_writel(GUEST_GDTR_BASE, 0);
  1145. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1146. vmcs_writel(GUEST_IDTR_BASE, 0);
  1147. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1148. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1149. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1150. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1151. /* I/O */
  1152. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1153. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1154. guest_write_tsc(0);
  1155. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1156. /* Special registers */
  1157. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1158. /* Control */
  1159. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
  1160. PIN_BASED_VM_EXEC_CONTROL,
  1161. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  1162. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  1163. );
  1164. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
  1165. CPU_BASED_VM_EXEC_CONTROL,
  1166. CPU_BASED_HLT_EXITING /* 20.6.2 */
  1167. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  1168. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  1169. | CPU_BASED_USE_IO_BITMAPS /* 20.6.2 */
  1170. | CPU_BASED_MOV_DR_EXITING
  1171. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  1172. );
  1173. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  1174. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  1175. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1176. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1177. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1178. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1179. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1180. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1181. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1182. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1183. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1184. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1185. #ifdef CONFIG_X86_64
  1186. rdmsrl(MSR_FS_BASE, a);
  1187. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1188. rdmsrl(MSR_GS_BASE, a);
  1189. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1190. #else
  1191. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1192. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1193. #endif
  1194. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1195. get_idt(&dt);
  1196. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1197. asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1198. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1199. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1200. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1201. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1202. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1203. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1204. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1205. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1206. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1207. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1208. for (i = 0; i < NR_VMX_MSR; ++i) {
  1209. u32 index = vmx_msr_index[i];
  1210. u32 data_low, data_high;
  1211. u64 data;
  1212. int j = vmx->nmsrs;
  1213. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1214. continue;
  1215. if (wrmsr_safe(index, data_low, data_high) < 0)
  1216. continue;
  1217. data = data_low | ((u64)data_high << 32);
  1218. vmx->host_msrs[j].index = index;
  1219. vmx->host_msrs[j].reserved = 0;
  1220. vmx->host_msrs[j].data = data;
  1221. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1222. ++vmx->nmsrs;
  1223. }
  1224. setup_msrs(vcpu);
  1225. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
  1226. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  1227. /* 22.2.1, 20.8.1 */
  1228. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
  1229. VM_ENTRY_CONTROLS, 0);
  1230. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1231. #ifdef CONFIG_X86_64
  1232. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  1233. vmcs_writel(TPR_THRESHOLD, 0);
  1234. #endif
  1235. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1236. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1237. vcpu->cr0 = 0x60000010;
  1238. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  1239. vmx_set_cr4(vcpu, 0);
  1240. #ifdef CONFIG_X86_64
  1241. vmx_set_efer(vcpu, 0);
  1242. #endif
  1243. vmx_fpu_activate(vcpu);
  1244. update_exception_bitmap(vcpu);
  1245. return 0;
  1246. out:
  1247. return ret;
  1248. }
  1249. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1250. {
  1251. u16 ent[2];
  1252. u16 cs;
  1253. u16 ip;
  1254. unsigned long flags;
  1255. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1256. u16 sp = vmcs_readl(GUEST_RSP);
  1257. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1258. if (sp > ss_limit || sp < 6 ) {
  1259. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1260. __FUNCTION__,
  1261. vmcs_readl(GUEST_RSP),
  1262. vmcs_readl(GUEST_SS_BASE),
  1263. vmcs_read32(GUEST_SS_LIMIT));
  1264. return;
  1265. }
  1266. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  1267. sizeof(ent)) {
  1268. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1269. return;
  1270. }
  1271. flags = vmcs_readl(GUEST_RFLAGS);
  1272. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1273. ip = vmcs_readl(GUEST_RIP);
  1274. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1275. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1276. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1277. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1278. return;
  1279. }
  1280. vmcs_writel(GUEST_RFLAGS, flags &
  1281. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1282. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1283. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1284. vmcs_writel(GUEST_RIP, ent[0]);
  1285. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1286. }
  1287. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1288. {
  1289. int word_index = __ffs(vcpu->irq_summary);
  1290. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1291. int irq = word_index * BITS_PER_LONG + bit_index;
  1292. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1293. if (!vcpu->irq_pending[word_index])
  1294. clear_bit(word_index, &vcpu->irq_summary);
  1295. if (vcpu->rmode.active) {
  1296. inject_rmode_irq(vcpu, irq);
  1297. return;
  1298. }
  1299. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1300. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1301. }
  1302. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1303. struct kvm_run *kvm_run)
  1304. {
  1305. u32 cpu_based_vm_exec_control;
  1306. vcpu->interrupt_window_open =
  1307. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1308. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1309. if (vcpu->interrupt_window_open &&
  1310. vcpu->irq_summary &&
  1311. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1312. /*
  1313. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1314. */
  1315. kvm_do_inject_irq(vcpu);
  1316. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1317. if (!vcpu->interrupt_window_open &&
  1318. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1319. /*
  1320. * Interrupts blocked. Wait for unblock.
  1321. */
  1322. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1323. else
  1324. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1325. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1326. }
  1327. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1328. {
  1329. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1330. set_debugreg(dbg->bp[0], 0);
  1331. set_debugreg(dbg->bp[1], 1);
  1332. set_debugreg(dbg->bp[2], 2);
  1333. set_debugreg(dbg->bp[3], 3);
  1334. if (dbg->singlestep) {
  1335. unsigned long flags;
  1336. flags = vmcs_readl(GUEST_RFLAGS);
  1337. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1338. vmcs_writel(GUEST_RFLAGS, flags);
  1339. }
  1340. }
  1341. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1342. int vec, u32 err_code)
  1343. {
  1344. if (!vcpu->rmode.active)
  1345. return 0;
  1346. /*
  1347. * Instruction with address size override prefix opcode 0x67
  1348. * Cause the #SS fault with 0 error code in VM86 mode.
  1349. */
  1350. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1351. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1352. return 1;
  1353. return 0;
  1354. }
  1355. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1356. {
  1357. u32 intr_info, error_code;
  1358. unsigned long cr2, rip;
  1359. u32 vect_info;
  1360. enum emulation_result er;
  1361. int r;
  1362. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1363. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1364. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1365. !is_page_fault(intr_info)) {
  1366. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1367. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1368. }
  1369. if (is_external_interrupt(vect_info)) {
  1370. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1371. set_bit(irq, vcpu->irq_pending);
  1372. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1373. }
  1374. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1375. asm ("int $2");
  1376. return 1;
  1377. }
  1378. if (is_no_device(intr_info)) {
  1379. vmx_fpu_activate(vcpu);
  1380. return 1;
  1381. }
  1382. error_code = 0;
  1383. rip = vmcs_readl(GUEST_RIP);
  1384. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1385. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1386. if (is_page_fault(intr_info)) {
  1387. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1388. spin_lock(&vcpu->kvm->lock);
  1389. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1390. if (r < 0) {
  1391. spin_unlock(&vcpu->kvm->lock);
  1392. return r;
  1393. }
  1394. if (!r) {
  1395. spin_unlock(&vcpu->kvm->lock);
  1396. return 1;
  1397. }
  1398. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1399. spin_unlock(&vcpu->kvm->lock);
  1400. switch (er) {
  1401. case EMULATE_DONE:
  1402. return 1;
  1403. case EMULATE_DO_MMIO:
  1404. ++vcpu->stat.mmio_exits;
  1405. return 0;
  1406. case EMULATE_FAIL:
  1407. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1408. break;
  1409. default:
  1410. BUG();
  1411. }
  1412. }
  1413. if (vcpu->rmode.active &&
  1414. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1415. error_code)) {
  1416. if (vcpu->halt_request) {
  1417. vcpu->halt_request = 0;
  1418. return kvm_emulate_halt(vcpu);
  1419. }
  1420. return 1;
  1421. }
  1422. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1423. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1424. return 0;
  1425. }
  1426. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1427. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1428. kvm_run->ex.error_code = error_code;
  1429. return 0;
  1430. }
  1431. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1432. struct kvm_run *kvm_run)
  1433. {
  1434. ++vcpu->stat.irq_exits;
  1435. return 1;
  1436. }
  1437. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1438. {
  1439. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1440. return 0;
  1441. }
  1442. static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
  1443. {
  1444. u64 inst;
  1445. gva_t rip;
  1446. int countr_size;
  1447. int i, n;
  1448. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1449. countr_size = 2;
  1450. } else {
  1451. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1452. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1453. (cs_ar & AR_DB_MASK) ? 4: 2;
  1454. }
  1455. rip = vmcs_readl(GUEST_RIP);
  1456. if (countr_size != 8)
  1457. rip += vmcs_readl(GUEST_CS_BASE);
  1458. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1459. for (i = 0; i < n; i++) {
  1460. switch (((u8*)&inst)[i]) {
  1461. case 0xf0:
  1462. case 0xf2:
  1463. case 0xf3:
  1464. case 0x2e:
  1465. case 0x36:
  1466. case 0x3e:
  1467. case 0x26:
  1468. case 0x64:
  1469. case 0x65:
  1470. case 0x66:
  1471. break;
  1472. case 0x67:
  1473. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1474. default:
  1475. goto done;
  1476. }
  1477. }
  1478. return 0;
  1479. done:
  1480. countr_size *= 8;
  1481. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1482. //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
  1483. return 1;
  1484. }
  1485. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1486. {
  1487. u64 exit_qualification;
  1488. int size, down, in, string, rep;
  1489. unsigned port;
  1490. unsigned long count;
  1491. gva_t address;
  1492. ++vcpu->stat.io_exits;
  1493. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1494. in = (exit_qualification & 8) != 0;
  1495. size = (exit_qualification & 7) + 1;
  1496. string = (exit_qualification & 16) != 0;
  1497. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1498. count = 1;
  1499. rep = (exit_qualification & 32) != 0;
  1500. port = exit_qualification >> 16;
  1501. address = 0;
  1502. if (string) {
  1503. if (rep && !get_io_count(vcpu, &count))
  1504. return 1;
  1505. address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1506. }
  1507. return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
  1508. address, rep, port);
  1509. }
  1510. static void
  1511. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1512. {
  1513. /*
  1514. * Patch in the VMCALL instruction:
  1515. */
  1516. hypercall[0] = 0x0f;
  1517. hypercall[1] = 0x01;
  1518. hypercall[2] = 0xc1;
  1519. hypercall[3] = 0xc3;
  1520. }
  1521. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1522. {
  1523. u64 exit_qualification;
  1524. int cr;
  1525. int reg;
  1526. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1527. cr = exit_qualification & 15;
  1528. reg = (exit_qualification >> 8) & 15;
  1529. switch ((exit_qualification >> 4) & 3) {
  1530. case 0: /* mov to cr */
  1531. switch (cr) {
  1532. case 0:
  1533. vcpu_load_rsp_rip(vcpu);
  1534. set_cr0(vcpu, vcpu->regs[reg]);
  1535. skip_emulated_instruction(vcpu);
  1536. return 1;
  1537. case 3:
  1538. vcpu_load_rsp_rip(vcpu);
  1539. set_cr3(vcpu, vcpu->regs[reg]);
  1540. skip_emulated_instruction(vcpu);
  1541. return 1;
  1542. case 4:
  1543. vcpu_load_rsp_rip(vcpu);
  1544. set_cr4(vcpu, vcpu->regs[reg]);
  1545. skip_emulated_instruction(vcpu);
  1546. return 1;
  1547. case 8:
  1548. vcpu_load_rsp_rip(vcpu);
  1549. set_cr8(vcpu, vcpu->regs[reg]);
  1550. skip_emulated_instruction(vcpu);
  1551. return 1;
  1552. };
  1553. break;
  1554. case 2: /* clts */
  1555. vcpu_load_rsp_rip(vcpu);
  1556. vmx_fpu_deactivate(vcpu);
  1557. vcpu->cr0 &= ~X86_CR0_TS;
  1558. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1559. vmx_fpu_activate(vcpu);
  1560. skip_emulated_instruction(vcpu);
  1561. return 1;
  1562. case 1: /*mov from cr*/
  1563. switch (cr) {
  1564. case 3:
  1565. vcpu_load_rsp_rip(vcpu);
  1566. vcpu->regs[reg] = vcpu->cr3;
  1567. vcpu_put_rsp_rip(vcpu);
  1568. skip_emulated_instruction(vcpu);
  1569. return 1;
  1570. case 8:
  1571. vcpu_load_rsp_rip(vcpu);
  1572. vcpu->regs[reg] = vcpu->cr8;
  1573. vcpu_put_rsp_rip(vcpu);
  1574. skip_emulated_instruction(vcpu);
  1575. return 1;
  1576. }
  1577. break;
  1578. case 3: /* lmsw */
  1579. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1580. skip_emulated_instruction(vcpu);
  1581. return 1;
  1582. default:
  1583. break;
  1584. }
  1585. kvm_run->exit_reason = 0;
  1586. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1587. (int)(exit_qualification >> 4) & 3, cr);
  1588. return 0;
  1589. }
  1590. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1591. {
  1592. u64 exit_qualification;
  1593. unsigned long val;
  1594. int dr, reg;
  1595. /*
  1596. * FIXME: this code assumes the host is debugging the guest.
  1597. * need to deal with guest debugging itself too.
  1598. */
  1599. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1600. dr = exit_qualification & 7;
  1601. reg = (exit_qualification >> 8) & 15;
  1602. vcpu_load_rsp_rip(vcpu);
  1603. if (exit_qualification & 16) {
  1604. /* mov from dr */
  1605. switch (dr) {
  1606. case 6:
  1607. val = 0xffff0ff0;
  1608. break;
  1609. case 7:
  1610. val = 0x400;
  1611. break;
  1612. default:
  1613. val = 0;
  1614. }
  1615. vcpu->regs[reg] = val;
  1616. } else {
  1617. /* mov to dr */
  1618. }
  1619. vcpu_put_rsp_rip(vcpu);
  1620. skip_emulated_instruction(vcpu);
  1621. return 1;
  1622. }
  1623. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1624. {
  1625. kvm_emulate_cpuid(vcpu);
  1626. return 1;
  1627. }
  1628. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1629. {
  1630. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1631. u64 data;
  1632. if (vmx_get_msr(vcpu, ecx, &data)) {
  1633. vmx_inject_gp(vcpu, 0);
  1634. return 1;
  1635. }
  1636. /* FIXME: handling of bits 32:63 of rax, rdx */
  1637. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1638. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1639. skip_emulated_instruction(vcpu);
  1640. return 1;
  1641. }
  1642. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1643. {
  1644. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1645. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1646. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1647. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1648. vmx_inject_gp(vcpu, 0);
  1649. return 1;
  1650. }
  1651. skip_emulated_instruction(vcpu);
  1652. return 1;
  1653. }
  1654. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1655. struct kvm_run *kvm_run)
  1656. {
  1657. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1658. kvm_run->cr8 = vcpu->cr8;
  1659. kvm_run->apic_base = vcpu->apic_base;
  1660. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1661. vcpu->irq_summary == 0);
  1662. }
  1663. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1664. struct kvm_run *kvm_run)
  1665. {
  1666. /*
  1667. * If the user space waits to inject interrupts, exit as soon as
  1668. * possible
  1669. */
  1670. if (kvm_run->request_interrupt_window &&
  1671. !vcpu->irq_summary) {
  1672. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1673. ++vcpu->stat.irq_window_exits;
  1674. return 0;
  1675. }
  1676. return 1;
  1677. }
  1678. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1679. {
  1680. skip_emulated_instruction(vcpu);
  1681. return kvm_emulate_halt(vcpu);
  1682. }
  1683. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1684. {
  1685. skip_emulated_instruction(vcpu);
  1686. return kvm_hypercall(vcpu, kvm_run);
  1687. }
  1688. /*
  1689. * The exit handlers return 1 if the exit was handled fully and guest execution
  1690. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1691. * to be done to userspace and return 0.
  1692. */
  1693. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1694. struct kvm_run *kvm_run) = {
  1695. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1696. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1697. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1698. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1699. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1700. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1701. [EXIT_REASON_CPUID] = handle_cpuid,
  1702. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1703. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1704. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1705. [EXIT_REASON_HLT] = handle_halt,
  1706. [EXIT_REASON_VMCALL] = handle_vmcall,
  1707. };
  1708. static const int kvm_vmx_max_exit_handlers =
  1709. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1710. /*
  1711. * The guest has exited. See if we can fix it or if we need userspace
  1712. * assistance.
  1713. */
  1714. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1715. {
  1716. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1717. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1718. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1719. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1720. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1721. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1722. if (exit_reason < kvm_vmx_max_exit_handlers
  1723. && kvm_vmx_exit_handlers[exit_reason])
  1724. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1725. else {
  1726. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1727. kvm_run->hw.hardware_exit_reason = exit_reason;
  1728. }
  1729. return 0;
  1730. }
  1731. /*
  1732. * Check if userspace requested an interrupt window, and that the
  1733. * interrupt window is open.
  1734. *
  1735. * No need to exit to userspace if we already have an interrupt queued.
  1736. */
  1737. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1738. struct kvm_run *kvm_run)
  1739. {
  1740. return (!vcpu->irq_summary &&
  1741. kvm_run->request_interrupt_window &&
  1742. vcpu->interrupt_window_open &&
  1743. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1744. }
  1745. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1746. {
  1747. }
  1748. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1749. {
  1750. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1751. u8 fail;
  1752. int r;
  1753. preempted:
  1754. if (vcpu->guest_debug.enabled)
  1755. kvm_guest_debug_pre(vcpu);
  1756. again:
  1757. r = kvm_mmu_reload(vcpu);
  1758. if (unlikely(r))
  1759. goto out;
  1760. if (!vcpu->mmio_read_completed)
  1761. do_interrupt_requests(vcpu, kvm_run);
  1762. vmx_save_host_state(vcpu);
  1763. kvm_load_guest_fpu(vcpu);
  1764. /*
  1765. * Loading guest fpu may have cleared host cr0.ts
  1766. */
  1767. vmcs_writel(HOST_CR0, read_cr0());
  1768. local_irq_disable();
  1769. vcpu->guest_mode = 1;
  1770. if (vcpu->requests)
  1771. if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
  1772. vmx_flush_tlb(vcpu);
  1773. asm (
  1774. /* Store host registers */
  1775. #ifdef CONFIG_X86_64
  1776. "push %%rax; push %%rbx; push %%rdx;"
  1777. "push %%rsi; push %%rdi; push %%rbp;"
  1778. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1779. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1780. "push %%rcx \n\t"
  1781. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1782. #else
  1783. "pusha; push %%ecx \n\t"
  1784. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1785. #endif
  1786. /* Check if vmlaunch of vmresume is needed */
  1787. "cmp $0, %1 \n\t"
  1788. /* Load guest registers. Don't clobber flags. */
  1789. #ifdef CONFIG_X86_64
  1790. "mov %c[cr2](%3), %%rax \n\t"
  1791. "mov %%rax, %%cr2 \n\t"
  1792. "mov %c[rax](%3), %%rax \n\t"
  1793. "mov %c[rbx](%3), %%rbx \n\t"
  1794. "mov %c[rdx](%3), %%rdx \n\t"
  1795. "mov %c[rsi](%3), %%rsi \n\t"
  1796. "mov %c[rdi](%3), %%rdi \n\t"
  1797. "mov %c[rbp](%3), %%rbp \n\t"
  1798. "mov %c[r8](%3), %%r8 \n\t"
  1799. "mov %c[r9](%3), %%r9 \n\t"
  1800. "mov %c[r10](%3), %%r10 \n\t"
  1801. "mov %c[r11](%3), %%r11 \n\t"
  1802. "mov %c[r12](%3), %%r12 \n\t"
  1803. "mov %c[r13](%3), %%r13 \n\t"
  1804. "mov %c[r14](%3), %%r14 \n\t"
  1805. "mov %c[r15](%3), %%r15 \n\t"
  1806. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1807. #else
  1808. "mov %c[cr2](%3), %%eax \n\t"
  1809. "mov %%eax, %%cr2 \n\t"
  1810. "mov %c[rax](%3), %%eax \n\t"
  1811. "mov %c[rbx](%3), %%ebx \n\t"
  1812. "mov %c[rdx](%3), %%edx \n\t"
  1813. "mov %c[rsi](%3), %%esi \n\t"
  1814. "mov %c[rdi](%3), %%edi \n\t"
  1815. "mov %c[rbp](%3), %%ebp \n\t"
  1816. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1817. #endif
  1818. /* Enter guest mode */
  1819. "jne .Llaunched \n\t"
  1820. ASM_VMX_VMLAUNCH "\n\t"
  1821. "jmp .Lkvm_vmx_return \n\t"
  1822. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  1823. ".Lkvm_vmx_return: "
  1824. /* Save guest registers, load host registers, keep flags */
  1825. #ifdef CONFIG_X86_64
  1826. "xchg %3, (%%rsp) \n\t"
  1827. "mov %%rax, %c[rax](%3) \n\t"
  1828. "mov %%rbx, %c[rbx](%3) \n\t"
  1829. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1830. "mov %%rdx, %c[rdx](%3) \n\t"
  1831. "mov %%rsi, %c[rsi](%3) \n\t"
  1832. "mov %%rdi, %c[rdi](%3) \n\t"
  1833. "mov %%rbp, %c[rbp](%3) \n\t"
  1834. "mov %%r8, %c[r8](%3) \n\t"
  1835. "mov %%r9, %c[r9](%3) \n\t"
  1836. "mov %%r10, %c[r10](%3) \n\t"
  1837. "mov %%r11, %c[r11](%3) \n\t"
  1838. "mov %%r12, %c[r12](%3) \n\t"
  1839. "mov %%r13, %c[r13](%3) \n\t"
  1840. "mov %%r14, %c[r14](%3) \n\t"
  1841. "mov %%r15, %c[r15](%3) \n\t"
  1842. "mov %%cr2, %%rax \n\t"
  1843. "mov %%rax, %c[cr2](%3) \n\t"
  1844. "mov (%%rsp), %3 \n\t"
  1845. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1846. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1847. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1848. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1849. #else
  1850. "xchg %3, (%%esp) \n\t"
  1851. "mov %%eax, %c[rax](%3) \n\t"
  1852. "mov %%ebx, %c[rbx](%3) \n\t"
  1853. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1854. "mov %%edx, %c[rdx](%3) \n\t"
  1855. "mov %%esi, %c[rsi](%3) \n\t"
  1856. "mov %%edi, %c[rdi](%3) \n\t"
  1857. "mov %%ebp, %c[rbp](%3) \n\t"
  1858. "mov %%cr2, %%eax \n\t"
  1859. "mov %%eax, %c[cr2](%3) \n\t"
  1860. "mov (%%esp), %3 \n\t"
  1861. "pop %%ecx; popa \n\t"
  1862. #endif
  1863. "setbe %0 \n\t"
  1864. : "=q" (fail)
  1865. : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
  1866. "c"(vcpu),
  1867. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1868. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1869. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1870. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1871. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1872. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1873. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1874. #ifdef CONFIG_X86_64
  1875. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1876. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1877. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1878. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1879. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1880. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1881. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1882. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1883. #endif
  1884. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1885. : "cc", "memory" );
  1886. vcpu->guest_mode = 0;
  1887. local_irq_enable();
  1888. ++vcpu->stat.exits;
  1889. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1890. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1891. if (unlikely(fail)) {
  1892. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1893. kvm_run->fail_entry.hardware_entry_failure_reason
  1894. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1895. r = 0;
  1896. goto out;
  1897. }
  1898. /*
  1899. * Profile KVM exit RIPs:
  1900. */
  1901. if (unlikely(prof_on == KVM_PROFILING))
  1902. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  1903. vmx->launched = 1;
  1904. r = kvm_handle_exit(kvm_run, vcpu);
  1905. if (r > 0) {
  1906. /* Give scheduler a change to reschedule. */
  1907. if (signal_pending(current)) {
  1908. r = -EINTR;
  1909. kvm_run->exit_reason = KVM_EXIT_INTR;
  1910. ++vcpu->stat.signal_exits;
  1911. goto out;
  1912. }
  1913. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1914. r = -EINTR;
  1915. kvm_run->exit_reason = KVM_EXIT_INTR;
  1916. ++vcpu->stat.request_irq_exits;
  1917. goto out;
  1918. }
  1919. if (!need_resched()) {
  1920. ++vcpu->stat.light_exits;
  1921. goto again;
  1922. }
  1923. }
  1924. out:
  1925. if (r > 0) {
  1926. kvm_resched(vcpu);
  1927. goto preempted;
  1928. }
  1929. post_kvm_run_save(vcpu, kvm_run);
  1930. return r;
  1931. }
  1932. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1933. unsigned long addr,
  1934. u32 err_code)
  1935. {
  1936. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1937. ++vcpu->stat.pf_guest;
  1938. if (is_page_fault(vect_info)) {
  1939. printk(KERN_DEBUG "inject_page_fault: "
  1940. "double fault 0x%lx @ 0x%lx\n",
  1941. addr, vmcs_readl(GUEST_RIP));
  1942. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1943. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1944. DF_VECTOR |
  1945. INTR_TYPE_EXCEPTION |
  1946. INTR_INFO_DELIEVER_CODE_MASK |
  1947. INTR_INFO_VALID_MASK);
  1948. return;
  1949. }
  1950. vcpu->cr2 = addr;
  1951. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1952. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1953. PF_VECTOR |
  1954. INTR_TYPE_EXCEPTION |
  1955. INTR_INFO_DELIEVER_CODE_MASK |
  1956. INTR_INFO_VALID_MASK);
  1957. }
  1958. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1959. {
  1960. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1961. if (vmx->vmcs) {
  1962. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1963. free_vmcs(vmx->vmcs);
  1964. vmx->vmcs = NULL;
  1965. }
  1966. }
  1967. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1968. {
  1969. vmx_free_vmcs(vcpu);
  1970. }
  1971. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1972. {
  1973. struct vcpu_vmx *vmx;
  1974. vmx = kzalloc(sizeof(*vmx), GFP_KERNEL);
  1975. if (!vmx)
  1976. return -ENOMEM;
  1977. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1978. if (!vmx->guest_msrs)
  1979. goto out_free;
  1980. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1981. if (!vmx->host_msrs)
  1982. goto out_free;
  1983. vmx->vmcs = alloc_vmcs();
  1984. if (!vmx->vmcs)
  1985. goto out_free;
  1986. vmcs_clear(vmx->vmcs);
  1987. vmx->vcpu = vcpu;
  1988. vcpu->_priv = vmx;
  1989. return 0;
  1990. out_free:
  1991. if (vmx->host_msrs)
  1992. kfree(vmx->host_msrs);
  1993. if (vmx->guest_msrs)
  1994. kfree(vmx->guest_msrs);
  1995. kfree(vmx);
  1996. return -ENOMEM;
  1997. }
  1998. static struct kvm_arch_ops vmx_arch_ops = {
  1999. .cpu_has_kvm_support = cpu_has_kvm_support,
  2000. .disabled_by_bios = vmx_disabled_by_bios,
  2001. .hardware_setup = hardware_setup,
  2002. .hardware_unsetup = hardware_unsetup,
  2003. .hardware_enable = hardware_enable,
  2004. .hardware_disable = hardware_disable,
  2005. .vcpu_create = vmx_create_vcpu,
  2006. .vcpu_free = vmx_free_vcpu,
  2007. .vcpu_load = vmx_vcpu_load,
  2008. .vcpu_put = vmx_vcpu_put,
  2009. .vcpu_decache = vmx_vcpu_decache,
  2010. .set_guest_debug = set_guest_debug,
  2011. .get_msr = vmx_get_msr,
  2012. .set_msr = vmx_set_msr,
  2013. .get_segment_base = vmx_get_segment_base,
  2014. .get_segment = vmx_get_segment,
  2015. .set_segment = vmx_set_segment,
  2016. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2017. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2018. .set_cr0 = vmx_set_cr0,
  2019. .set_cr3 = vmx_set_cr3,
  2020. .set_cr4 = vmx_set_cr4,
  2021. #ifdef CONFIG_X86_64
  2022. .set_efer = vmx_set_efer,
  2023. #endif
  2024. .get_idt = vmx_get_idt,
  2025. .set_idt = vmx_set_idt,
  2026. .get_gdt = vmx_get_gdt,
  2027. .set_gdt = vmx_set_gdt,
  2028. .cache_regs = vcpu_load_rsp_rip,
  2029. .decache_regs = vcpu_put_rsp_rip,
  2030. .get_rflags = vmx_get_rflags,
  2031. .set_rflags = vmx_set_rflags,
  2032. .tlb_flush = vmx_flush_tlb,
  2033. .inject_page_fault = vmx_inject_page_fault,
  2034. .inject_gp = vmx_inject_gp,
  2035. .run = vmx_vcpu_run,
  2036. .skip_emulated_instruction = skip_emulated_instruction,
  2037. .vcpu_setup = vmx_vcpu_setup,
  2038. .patch_hypercall = vmx_patch_hypercall,
  2039. };
  2040. static int __init vmx_init(void)
  2041. {
  2042. void *iova;
  2043. int r;
  2044. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2045. if (!vmx_io_bitmap_a)
  2046. return -ENOMEM;
  2047. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2048. if (!vmx_io_bitmap_b) {
  2049. r = -ENOMEM;
  2050. goto out;
  2051. }
  2052. /*
  2053. * Allow direct access to the PC debug port (it is often used for I/O
  2054. * delays, but the vmexits simply slow things down).
  2055. */
  2056. iova = kmap(vmx_io_bitmap_a);
  2057. memset(iova, 0xff, PAGE_SIZE);
  2058. clear_bit(0x80, iova);
  2059. kunmap(vmx_io_bitmap_a);
  2060. iova = kmap(vmx_io_bitmap_b);
  2061. memset(iova, 0xff, PAGE_SIZE);
  2062. kunmap(vmx_io_bitmap_b);
  2063. r = kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  2064. if (r)
  2065. goto out1;
  2066. return 0;
  2067. out1:
  2068. __free_page(vmx_io_bitmap_b);
  2069. out:
  2070. __free_page(vmx_io_bitmap_a);
  2071. return r;
  2072. }
  2073. static void __exit vmx_exit(void)
  2074. {
  2075. __free_page(vmx_io_bitmap_b);
  2076. __free_page(vmx_io_bitmap_a);
  2077. kvm_exit_arch();
  2078. }
  2079. module_init(vmx_init)
  2080. module_exit(vmx_exit)