forcedeth.c 171 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673
  1. /*
  2. * forcedeth: Ethernet driver for NVIDIA nForce media access controllers.
  3. *
  4. * Note: This driver is a cleanroom reimplementation based on reverse
  5. * engineered documentation written by Carl-Daniel Hailfinger
  6. * and Andrew de Quincey.
  7. *
  8. * NVIDIA, nForce and other NVIDIA marks are trademarks or registered
  9. * trademarks of NVIDIA Corporation in the United States and other
  10. * countries.
  11. *
  12. * Copyright (C) 2003,4,5 Manfred Spraul
  13. * Copyright (C) 2004 Andrew de Quincey (wol support)
  14. * Copyright (C) 2004 Carl-Daniel Hailfinger (invalid MAC handling, insane
  15. * IRQ rate fixes, bigendian fixes, cleanups, verification)
  16. * Copyright (c) 2004,2005,2006,2007,2008 NVIDIA Corporation
  17. *
  18. * This program is free software; you can redistribute it and/or modify
  19. * it under the terms of the GNU General Public License as published by
  20. * the Free Software Foundation; either version 2 of the License, or
  21. * (at your option) any later version.
  22. *
  23. * This program is distributed in the hope that it will be useful,
  24. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  25. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  26. * GNU General Public License for more details.
  27. *
  28. * You should have received a copy of the GNU General Public License
  29. * along with this program; if not, write to the Free Software
  30. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  31. *
  32. * Changelog:
  33. * 0.01: 05 Oct 2003: First release that compiles without warnings.
  34. * 0.02: 05 Oct 2003: Fix bug for nv_drain_tx: do not try to free NULL skbs.
  35. * Check all PCI BARs for the register window.
  36. * udelay added to mii_rw.
  37. * 0.03: 06 Oct 2003: Initialize dev->irq.
  38. * 0.04: 07 Oct 2003: Initialize np->lock, reduce handled irqs, add printks.
  39. * 0.05: 09 Oct 2003: printk removed again, irq status print tx_timeout.
  40. * 0.06: 10 Oct 2003: MAC Address read updated, pff flag generation updated,
  41. * irq mask updated
  42. * 0.07: 14 Oct 2003: Further irq mask updates.
  43. * 0.08: 20 Oct 2003: rx_desc.Length initialization added, nv_alloc_rx refill
  44. * added into irq handler, NULL check for drain_ring.
  45. * 0.09: 20 Oct 2003: Basic link speed irq implementation. Only handle the
  46. * requested interrupt sources.
  47. * 0.10: 20 Oct 2003: First cleanup for release.
  48. * 0.11: 21 Oct 2003: hexdump for tx added, rx buffer sizes increased.
  49. * MAC Address init fix, set_multicast cleanup.
  50. * 0.12: 23 Oct 2003: Cleanups for release.
  51. * 0.13: 25 Oct 2003: Limit for concurrent tx packets increased to 10.
  52. * Set link speed correctly. start rx before starting
  53. * tx (nv_start_rx sets the link speed).
  54. * 0.14: 25 Oct 2003: Nic dependant irq mask.
  55. * 0.15: 08 Nov 2003: fix smp deadlock with set_multicast_list during
  56. * open.
  57. * 0.16: 15 Nov 2003: include file cleanup for ppc64, rx buffer size
  58. * increased to 1628 bytes.
  59. * 0.17: 16 Nov 2003: undo rx buffer size increase. Substract 1 from
  60. * the tx length.
  61. * 0.18: 17 Nov 2003: fix oops due to late initialization of dev_stats
  62. * 0.19: 29 Nov 2003: Handle RxNoBuf, detect & handle invalid mac
  63. * addresses, really stop rx if already running
  64. * in nv_start_rx, clean up a bit.
  65. * 0.20: 07 Dec 2003: alloc fixes
  66. * 0.21: 12 Jan 2004: additional alloc fix, nic polling fix.
  67. * 0.22: 19 Jan 2004: reprogram timer to a sane rate, avoid lockup
  68. * on close.
  69. * 0.23: 26 Jan 2004: various small cleanups
  70. * 0.24: 27 Feb 2004: make driver even less anonymous in backtraces
  71. * 0.25: 09 Mar 2004: wol support
  72. * 0.26: 03 Jun 2004: netdriver specific annotation, sparse-related fixes
  73. * 0.27: 19 Jun 2004: Gigabit support, new descriptor rings,
  74. * added CK804/MCP04 device IDs, code fixes
  75. * for registers, link status and other minor fixes.
  76. * 0.28: 21 Jun 2004: Big cleanup, making driver mostly endian safe
  77. * 0.29: 31 Aug 2004: Add backup timer for link change notification.
  78. * 0.30: 25 Sep 2004: rx checksum support for nf 250 Gb. Add rx reset
  79. * into nv_close, otherwise reenabling for wol can
  80. * cause DMA to kfree'd memory.
  81. * 0.31: 14 Nov 2004: ethtool support for getting/setting link
  82. * capabilities.
  83. * 0.32: 16 Apr 2005: RX_ERROR4 handling added.
  84. * 0.33: 16 May 2005: Support for MCP51 added.
  85. * 0.34: 18 Jun 2005: Add DEV_NEED_LINKTIMER to all nForce nics.
  86. * 0.35: 26 Jun 2005: Support for MCP55 added.
  87. * 0.36: 28 Jun 2005: Add jumbo frame support.
  88. * 0.37: 10 Jul 2005: Additional ethtool support, cleanup of pci id list
  89. * 0.38: 16 Jul 2005: tx irq rewrite: Use global flags instead of
  90. * per-packet flags.
  91. * 0.39: 18 Jul 2005: Add 64bit descriptor support.
  92. * 0.40: 19 Jul 2005: Add support for mac address change.
  93. * 0.41: 30 Jul 2005: Write back original MAC in nv_close instead
  94. * of nv_remove
  95. * 0.42: 06 Aug 2005: Fix lack of link speed initialization
  96. * in the second (and later) nv_open call
  97. * 0.43: 10 Aug 2005: Add support for tx checksum.
  98. * 0.44: 20 Aug 2005: Add support for scatter gather and segmentation.
  99. * 0.45: 18 Sep 2005: Remove nv_stop/start_rx from every link check
  100. * 0.46: 20 Oct 2005: Add irq optimization modes.
  101. * 0.47: 26 Oct 2005: Add phyaddr 0 in phy scan.
  102. * 0.48: 24 Dec 2005: Disable TSO, bugfix for pci_map_single
  103. * 0.49: 10 Dec 2005: Fix tso for large buffers.
  104. * 0.50: 20 Jan 2006: Add 8021pq tagging support.
  105. * 0.51: 20 Jan 2006: Add 64bit consistent memory allocation for rings.
  106. * 0.52: 20 Jan 2006: Add MSI/MSIX support.
  107. * 0.53: 19 Mar 2006: Fix init from low power mode and add hw reset.
  108. * 0.54: 21 Mar 2006: Fix spin locks for multi irqs and cleanup.
  109. * 0.55: 22 Mar 2006: Add flow control (pause frame).
  110. * 0.56: 22 Mar 2006: Additional ethtool config and moduleparam support.
  111. * 0.57: 14 May 2006: Mac address set in probe/remove and order corrections.
  112. * 0.58: 30 Oct 2006: Added support for sideband management unit.
  113. * 0.59: 30 Oct 2006: Added support for recoverable error.
  114. * 0.60: 20 Jan 2007: Code optimizations for rings, rx & tx data paths, and stats.
  115. *
  116. * Known bugs:
  117. * We suspect that on some hardware no TX done interrupts are generated.
  118. * This means recovery from netif_stop_queue only happens if the hw timer
  119. * interrupt fires (100 times/second, configurable with NVREG_POLL_DEFAULT)
  120. * and the timer is active in the IRQMask, or if a rx packet arrives by chance.
  121. * If your hardware reliably generates tx done interrupts, then you can remove
  122. * DEV_NEED_TIMERIRQ from the driver_data flags.
  123. * DEV_NEED_TIMERIRQ will not harm you on sane hardware, only generating a few
  124. * superfluous timer interrupts from the nic.
  125. */
  126. #ifdef CONFIG_FORCEDETH_NAPI
  127. #define DRIVERNAPI "-NAPI"
  128. #else
  129. #define DRIVERNAPI
  130. #endif
  131. #define FORCEDETH_VERSION "0.61"
  132. #define DRV_NAME "forcedeth"
  133. #include <linux/module.h>
  134. #include <linux/types.h>
  135. #include <linux/pci.h>
  136. #include <linux/interrupt.h>
  137. #include <linux/netdevice.h>
  138. #include <linux/etherdevice.h>
  139. #include <linux/delay.h>
  140. #include <linux/spinlock.h>
  141. #include <linux/ethtool.h>
  142. #include <linux/timer.h>
  143. #include <linux/skbuff.h>
  144. #include <linux/mii.h>
  145. #include <linux/random.h>
  146. #include <linux/init.h>
  147. #include <linux/if_vlan.h>
  148. #include <linux/dma-mapping.h>
  149. #include <asm/irq.h>
  150. #include <asm/io.h>
  151. #include <asm/uaccess.h>
  152. #include <asm/system.h>
  153. #if 0
  154. #define dprintk printk
  155. #else
  156. #define dprintk(x...) do { } while (0)
  157. #endif
  158. #define TX_WORK_PER_LOOP 64
  159. #define RX_WORK_PER_LOOP 64
  160. /*
  161. * Hardware access:
  162. */
  163. #define DEV_NEED_TIMERIRQ 0x0001 /* set the timer irq flag in the irq mask */
  164. #define DEV_NEED_LINKTIMER 0x0002 /* poll link settings. Relies on the timer irq */
  165. #define DEV_HAS_LARGEDESC 0x0004 /* device supports jumbo frames and needs packet format 2 */
  166. #define DEV_HAS_HIGH_DMA 0x0008 /* device supports 64bit dma */
  167. #define DEV_HAS_CHECKSUM 0x0010 /* device supports tx and rx checksum offloads */
  168. #define DEV_HAS_VLAN 0x0020 /* device supports vlan tagging and striping */
  169. #define DEV_HAS_MSI 0x0040 /* device supports MSI */
  170. #define DEV_HAS_MSI_X 0x0080 /* device supports MSI-X */
  171. #define DEV_HAS_POWER_CNTRL 0x0100 /* device supports power savings */
  172. #define DEV_HAS_PAUSEFRAME_TX 0x0200 /* device supports tx pause frames */
  173. #define DEV_HAS_STATISTICS_V1 0x0400 /* device supports hw statistics version 1 */
  174. #define DEV_HAS_STATISTICS_V2 0x0800 /* device supports hw statistics version 2 */
  175. #define DEV_HAS_TEST_EXTENDED 0x1000 /* device supports extended diagnostic test */
  176. #define DEV_HAS_MGMT_UNIT 0x2000 /* device supports management unit */
  177. #define DEV_HAS_CORRECT_MACADDR 0x4000 /* device supports correct mac address order */
  178. enum {
  179. NvRegIrqStatus = 0x000,
  180. #define NVREG_IRQSTAT_MIIEVENT 0x040
  181. #define NVREG_IRQSTAT_MASK 0x81ff
  182. NvRegIrqMask = 0x004,
  183. #define NVREG_IRQ_RX_ERROR 0x0001
  184. #define NVREG_IRQ_RX 0x0002
  185. #define NVREG_IRQ_RX_NOBUF 0x0004
  186. #define NVREG_IRQ_TX_ERR 0x0008
  187. #define NVREG_IRQ_TX_OK 0x0010
  188. #define NVREG_IRQ_TIMER 0x0020
  189. #define NVREG_IRQ_LINK 0x0040
  190. #define NVREG_IRQ_RX_FORCED 0x0080
  191. #define NVREG_IRQ_TX_FORCED 0x0100
  192. #define NVREG_IRQ_RECOVER_ERROR 0x8000
  193. #define NVREG_IRQMASK_THROUGHPUT 0x00df
  194. #define NVREG_IRQMASK_CPU 0x0060
  195. #define NVREG_IRQ_TX_ALL (NVREG_IRQ_TX_ERR|NVREG_IRQ_TX_OK|NVREG_IRQ_TX_FORCED)
  196. #define NVREG_IRQ_RX_ALL (NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_RX_FORCED)
  197. #define NVREG_IRQ_OTHER (NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RECOVER_ERROR)
  198. #define NVREG_IRQ_UNKNOWN (~(NVREG_IRQ_RX_ERROR|NVREG_IRQ_RX|NVREG_IRQ_RX_NOBUF|NVREG_IRQ_TX_ERR| \
  199. NVREG_IRQ_TX_OK|NVREG_IRQ_TIMER|NVREG_IRQ_LINK|NVREG_IRQ_RX_FORCED| \
  200. NVREG_IRQ_TX_FORCED|NVREG_IRQ_RECOVER_ERROR))
  201. NvRegUnknownSetupReg6 = 0x008,
  202. #define NVREG_UNKSETUP6_VAL 3
  203. /*
  204. * NVREG_POLL_DEFAULT is the interval length of the timer source on the nic
  205. * NVREG_POLL_DEFAULT=97 would result in an interval length of 1 ms
  206. */
  207. NvRegPollingInterval = 0x00c,
  208. #define NVREG_POLL_DEFAULT_THROUGHPUT 970 /* backup tx cleanup if loop max reached */
  209. #define NVREG_POLL_DEFAULT_CPU 13
  210. NvRegMSIMap0 = 0x020,
  211. NvRegMSIMap1 = 0x024,
  212. NvRegMSIIrqMask = 0x030,
  213. #define NVREG_MSI_VECTOR_0_ENABLED 0x01
  214. NvRegMisc1 = 0x080,
  215. #define NVREG_MISC1_PAUSE_TX 0x01
  216. #define NVREG_MISC1_HD 0x02
  217. #define NVREG_MISC1_FORCE 0x3b0f3c
  218. NvRegMacReset = 0x34,
  219. #define NVREG_MAC_RESET_ASSERT 0x0F3
  220. NvRegTransmitterControl = 0x084,
  221. #define NVREG_XMITCTL_START 0x01
  222. #define NVREG_XMITCTL_MGMT_ST 0x40000000
  223. #define NVREG_XMITCTL_SYNC_MASK 0x000f0000
  224. #define NVREG_XMITCTL_SYNC_NOT_READY 0x0
  225. #define NVREG_XMITCTL_SYNC_PHY_INIT 0x00040000
  226. #define NVREG_XMITCTL_MGMT_SEMA_MASK 0x00000f00
  227. #define NVREG_XMITCTL_MGMT_SEMA_FREE 0x0
  228. #define NVREG_XMITCTL_HOST_SEMA_MASK 0x0000f000
  229. #define NVREG_XMITCTL_HOST_SEMA_ACQ 0x0000f000
  230. #define NVREG_XMITCTL_HOST_LOADED 0x00004000
  231. #define NVREG_XMITCTL_TX_PATH_EN 0x01000000
  232. NvRegTransmitterStatus = 0x088,
  233. #define NVREG_XMITSTAT_BUSY 0x01
  234. NvRegPacketFilterFlags = 0x8c,
  235. #define NVREG_PFF_PAUSE_RX 0x08
  236. #define NVREG_PFF_ALWAYS 0x7F0000
  237. #define NVREG_PFF_PROMISC 0x80
  238. #define NVREG_PFF_MYADDR 0x20
  239. #define NVREG_PFF_LOOPBACK 0x10
  240. NvRegOffloadConfig = 0x90,
  241. #define NVREG_OFFLOAD_HOMEPHY 0x601
  242. #define NVREG_OFFLOAD_NORMAL RX_NIC_BUFSIZE
  243. NvRegReceiverControl = 0x094,
  244. #define NVREG_RCVCTL_START 0x01
  245. #define NVREG_RCVCTL_RX_PATH_EN 0x01000000
  246. NvRegReceiverStatus = 0x98,
  247. #define NVREG_RCVSTAT_BUSY 0x01
  248. NvRegRandomSeed = 0x9c,
  249. #define NVREG_RNDSEED_MASK 0x00ff
  250. #define NVREG_RNDSEED_FORCE 0x7f00
  251. #define NVREG_RNDSEED_FORCE2 0x2d00
  252. #define NVREG_RNDSEED_FORCE3 0x7400
  253. NvRegTxDeferral = 0xA0,
  254. #define NVREG_TX_DEFERRAL_DEFAULT 0x15050f
  255. #define NVREG_TX_DEFERRAL_RGMII_10_100 0x16070f
  256. #define NVREG_TX_DEFERRAL_RGMII_1000 0x14050f
  257. NvRegRxDeferral = 0xA4,
  258. #define NVREG_RX_DEFERRAL_DEFAULT 0x16
  259. NvRegMacAddrA = 0xA8,
  260. NvRegMacAddrB = 0xAC,
  261. NvRegMulticastAddrA = 0xB0,
  262. #define NVREG_MCASTADDRA_FORCE 0x01
  263. NvRegMulticastAddrB = 0xB4,
  264. NvRegMulticastMaskA = 0xB8,
  265. #define NVREG_MCASTMASKA_NONE 0xffffffff
  266. NvRegMulticastMaskB = 0xBC,
  267. #define NVREG_MCASTMASKB_NONE 0xffff
  268. NvRegPhyInterface = 0xC0,
  269. #define PHY_RGMII 0x10000000
  270. NvRegTxRingPhysAddr = 0x100,
  271. NvRegRxRingPhysAddr = 0x104,
  272. NvRegRingSizes = 0x108,
  273. #define NVREG_RINGSZ_TXSHIFT 0
  274. #define NVREG_RINGSZ_RXSHIFT 16
  275. NvRegTransmitPoll = 0x10c,
  276. #define NVREG_TRANSMITPOLL_MAC_ADDR_REV 0x00008000
  277. NvRegLinkSpeed = 0x110,
  278. #define NVREG_LINKSPEED_FORCE 0x10000
  279. #define NVREG_LINKSPEED_10 1000
  280. #define NVREG_LINKSPEED_100 100
  281. #define NVREG_LINKSPEED_1000 50
  282. #define NVREG_LINKSPEED_MASK (0xFFF)
  283. NvRegUnknownSetupReg5 = 0x130,
  284. #define NVREG_UNKSETUP5_BIT31 (1<<31)
  285. NvRegTxWatermark = 0x13c,
  286. #define NVREG_TX_WM_DESC1_DEFAULT 0x0200010
  287. #define NVREG_TX_WM_DESC2_3_DEFAULT 0x1e08000
  288. #define NVREG_TX_WM_DESC2_3_1000 0xfe08000
  289. NvRegTxRxControl = 0x144,
  290. #define NVREG_TXRXCTL_KICK 0x0001
  291. #define NVREG_TXRXCTL_BIT1 0x0002
  292. #define NVREG_TXRXCTL_BIT2 0x0004
  293. #define NVREG_TXRXCTL_IDLE 0x0008
  294. #define NVREG_TXRXCTL_RESET 0x0010
  295. #define NVREG_TXRXCTL_RXCHECK 0x0400
  296. #define NVREG_TXRXCTL_DESC_1 0
  297. #define NVREG_TXRXCTL_DESC_2 0x002100
  298. #define NVREG_TXRXCTL_DESC_3 0xc02200
  299. #define NVREG_TXRXCTL_VLANSTRIP 0x00040
  300. #define NVREG_TXRXCTL_VLANINS 0x00080
  301. NvRegTxRingPhysAddrHigh = 0x148,
  302. NvRegRxRingPhysAddrHigh = 0x14C,
  303. NvRegTxPauseFrame = 0x170,
  304. #define NVREG_TX_PAUSEFRAME_DISABLE 0x01ff0080
  305. #define NVREG_TX_PAUSEFRAME_ENABLE 0x01800010
  306. NvRegMIIStatus = 0x180,
  307. #define NVREG_MIISTAT_ERROR 0x0001
  308. #define NVREG_MIISTAT_LINKCHANGE 0x0008
  309. #define NVREG_MIISTAT_MASK 0x000f
  310. #define NVREG_MIISTAT_MASK2 0x000f
  311. NvRegMIIMask = 0x184,
  312. #define NVREG_MII_LINKCHANGE 0x0008
  313. NvRegAdapterControl = 0x188,
  314. #define NVREG_ADAPTCTL_START 0x02
  315. #define NVREG_ADAPTCTL_LINKUP 0x04
  316. #define NVREG_ADAPTCTL_PHYVALID 0x40000
  317. #define NVREG_ADAPTCTL_RUNNING 0x100000
  318. #define NVREG_ADAPTCTL_PHYSHIFT 24
  319. NvRegMIISpeed = 0x18c,
  320. #define NVREG_MIISPEED_BIT8 (1<<8)
  321. #define NVREG_MIIDELAY 5
  322. NvRegMIIControl = 0x190,
  323. #define NVREG_MIICTL_INUSE 0x08000
  324. #define NVREG_MIICTL_WRITE 0x00400
  325. #define NVREG_MIICTL_ADDRSHIFT 5
  326. NvRegMIIData = 0x194,
  327. NvRegWakeUpFlags = 0x200,
  328. #define NVREG_WAKEUPFLAGS_VAL 0x7770
  329. #define NVREG_WAKEUPFLAGS_BUSYSHIFT 24
  330. #define NVREG_WAKEUPFLAGS_ENABLESHIFT 16
  331. #define NVREG_WAKEUPFLAGS_D3SHIFT 12
  332. #define NVREG_WAKEUPFLAGS_D2SHIFT 8
  333. #define NVREG_WAKEUPFLAGS_D1SHIFT 4
  334. #define NVREG_WAKEUPFLAGS_D0SHIFT 0
  335. #define NVREG_WAKEUPFLAGS_ACCEPT_MAGPAT 0x01
  336. #define NVREG_WAKEUPFLAGS_ACCEPT_WAKEUPPAT 0x02
  337. #define NVREG_WAKEUPFLAGS_ACCEPT_LINKCHANGE 0x04
  338. #define NVREG_WAKEUPFLAGS_ENABLE 0x1111
  339. NvRegPatternCRC = 0x204,
  340. NvRegPatternMask = 0x208,
  341. NvRegPowerCap = 0x268,
  342. #define NVREG_POWERCAP_D3SUPP (1<<30)
  343. #define NVREG_POWERCAP_D2SUPP (1<<26)
  344. #define NVREG_POWERCAP_D1SUPP (1<<25)
  345. NvRegPowerState = 0x26c,
  346. #define NVREG_POWERSTATE_POWEREDUP 0x8000
  347. #define NVREG_POWERSTATE_VALID 0x0100
  348. #define NVREG_POWERSTATE_MASK 0x0003
  349. #define NVREG_POWERSTATE_D0 0x0000
  350. #define NVREG_POWERSTATE_D1 0x0001
  351. #define NVREG_POWERSTATE_D2 0x0002
  352. #define NVREG_POWERSTATE_D3 0x0003
  353. NvRegTxCnt = 0x280,
  354. NvRegTxZeroReXmt = 0x284,
  355. NvRegTxOneReXmt = 0x288,
  356. NvRegTxManyReXmt = 0x28c,
  357. NvRegTxLateCol = 0x290,
  358. NvRegTxUnderflow = 0x294,
  359. NvRegTxLossCarrier = 0x298,
  360. NvRegTxExcessDef = 0x29c,
  361. NvRegTxRetryErr = 0x2a0,
  362. NvRegRxFrameErr = 0x2a4,
  363. NvRegRxExtraByte = 0x2a8,
  364. NvRegRxLateCol = 0x2ac,
  365. NvRegRxRunt = 0x2b0,
  366. NvRegRxFrameTooLong = 0x2b4,
  367. NvRegRxOverflow = 0x2b8,
  368. NvRegRxFCSErr = 0x2bc,
  369. NvRegRxFrameAlignErr = 0x2c0,
  370. NvRegRxLenErr = 0x2c4,
  371. NvRegRxUnicast = 0x2c8,
  372. NvRegRxMulticast = 0x2cc,
  373. NvRegRxBroadcast = 0x2d0,
  374. NvRegTxDef = 0x2d4,
  375. NvRegTxFrame = 0x2d8,
  376. NvRegRxCnt = 0x2dc,
  377. NvRegTxPause = 0x2e0,
  378. NvRegRxPause = 0x2e4,
  379. NvRegRxDropFrame = 0x2e8,
  380. NvRegVlanControl = 0x300,
  381. #define NVREG_VLANCONTROL_ENABLE 0x2000
  382. NvRegMSIXMap0 = 0x3e0,
  383. NvRegMSIXMap1 = 0x3e4,
  384. NvRegMSIXIrqStatus = 0x3f0,
  385. NvRegPowerState2 = 0x600,
  386. #define NVREG_POWERSTATE2_POWERUP_MASK 0x0F11
  387. #define NVREG_POWERSTATE2_POWERUP_REV_A3 0x0001
  388. };
  389. /* Big endian: should work, but is untested */
  390. struct ring_desc {
  391. __le32 buf;
  392. __le32 flaglen;
  393. };
  394. struct ring_desc_ex {
  395. __le32 bufhigh;
  396. __le32 buflow;
  397. __le32 txvlan;
  398. __le32 flaglen;
  399. };
  400. union ring_type {
  401. struct ring_desc* orig;
  402. struct ring_desc_ex* ex;
  403. };
  404. #define FLAG_MASK_V1 0xffff0000
  405. #define FLAG_MASK_V2 0xffffc000
  406. #define LEN_MASK_V1 (0xffffffff ^ FLAG_MASK_V1)
  407. #define LEN_MASK_V2 (0xffffffff ^ FLAG_MASK_V2)
  408. #define NV_TX_LASTPACKET (1<<16)
  409. #define NV_TX_RETRYERROR (1<<19)
  410. #define NV_TX_FORCED_INTERRUPT (1<<24)
  411. #define NV_TX_DEFERRED (1<<26)
  412. #define NV_TX_CARRIERLOST (1<<27)
  413. #define NV_TX_LATECOLLISION (1<<28)
  414. #define NV_TX_UNDERFLOW (1<<29)
  415. #define NV_TX_ERROR (1<<30)
  416. #define NV_TX_VALID (1<<31)
  417. #define NV_TX2_LASTPACKET (1<<29)
  418. #define NV_TX2_RETRYERROR (1<<18)
  419. #define NV_TX2_FORCED_INTERRUPT (1<<30)
  420. #define NV_TX2_DEFERRED (1<<25)
  421. #define NV_TX2_CARRIERLOST (1<<26)
  422. #define NV_TX2_LATECOLLISION (1<<27)
  423. #define NV_TX2_UNDERFLOW (1<<28)
  424. /* error and valid are the same for both */
  425. #define NV_TX2_ERROR (1<<30)
  426. #define NV_TX2_VALID (1<<31)
  427. #define NV_TX2_TSO (1<<28)
  428. #define NV_TX2_TSO_SHIFT 14
  429. #define NV_TX2_TSO_MAX_SHIFT 14
  430. #define NV_TX2_TSO_MAX_SIZE (1<<NV_TX2_TSO_MAX_SHIFT)
  431. #define NV_TX2_CHECKSUM_L3 (1<<27)
  432. #define NV_TX2_CHECKSUM_L4 (1<<26)
  433. #define NV_TX3_VLAN_TAG_PRESENT (1<<18)
  434. #define NV_RX_DESCRIPTORVALID (1<<16)
  435. #define NV_RX_MISSEDFRAME (1<<17)
  436. #define NV_RX_SUBSTRACT1 (1<<18)
  437. #define NV_RX_ERROR1 (1<<23)
  438. #define NV_RX_ERROR2 (1<<24)
  439. #define NV_RX_ERROR3 (1<<25)
  440. #define NV_RX_ERROR4 (1<<26)
  441. #define NV_RX_CRCERR (1<<27)
  442. #define NV_RX_OVERFLOW (1<<28)
  443. #define NV_RX_FRAMINGERR (1<<29)
  444. #define NV_RX_ERROR (1<<30)
  445. #define NV_RX_AVAIL (1<<31)
  446. #define NV_RX2_CHECKSUMMASK (0x1C000000)
  447. #define NV_RX2_CHECKSUM_IP (0x10000000)
  448. #define NV_RX2_CHECKSUM_IP_TCP (0x14000000)
  449. #define NV_RX2_CHECKSUM_IP_UDP (0x18000000)
  450. #define NV_RX2_DESCRIPTORVALID (1<<29)
  451. #define NV_RX2_SUBSTRACT1 (1<<25)
  452. #define NV_RX2_ERROR1 (1<<18)
  453. #define NV_RX2_ERROR2 (1<<19)
  454. #define NV_RX2_ERROR3 (1<<20)
  455. #define NV_RX2_ERROR4 (1<<21)
  456. #define NV_RX2_CRCERR (1<<22)
  457. #define NV_RX2_OVERFLOW (1<<23)
  458. #define NV_RX2_FRAMINGERR (1<<24)
  459. /* error and avail are the same for both */
  460. #define NV_RX2_ERROR (1<<30)
  461. #define NV_RX2_AVAIL (1<<31)
  462. #define NV_RX3_VLAN_TAG_PRESENT (1<<16)
  463. #define NV_RX3_VLAN_TAG_MASK (0x0000FFFF)
  464. /* Miscelaneous hardware related defines: */
  465. #define NV_PCI_REGSZ_VER1 0x270
  466. #define NV_PCI_REGSZ_VER2 0x2d4
  467. #define NV_PCI_REGSZ_VER3 0x604
  468. /* various timeout delays: all in usec */
  469. #define NV_TXRX_RESET_DELAY 4
  470. #define NV_TXSTOP_DELAY1 10
  471. #define NV_TXSTOP_DELAY1MAX 500000
  472. #define NV_TXSTOP_DELAY2 100
  473. #define NV_RXSTOP_DELAY1 10
  474. #define NV_RXSTOP_DELAY1MAX 500000
  475. #define NV_RXSTOP_DELAY2 100
  476. #define NV_SETUP5_DELAY 5
  477. #define NV_SETUP5_DELAYMAX 50000
  478. #define NV_POWERUP_DELAY 5
  479. #define NV_POWERUP_DELAYMAX 5000
  480. #define NV_MIIBUSY_DELAY 50
  481. #define NV_MIIPHY_DELAY 10
  482. #define NV_MIIPHY_DELAYMAX 10000
  483. #define NV_MAC_RESET_DELAY 64
  484. #define NV_WAKEUPPATTERNS 5
  485. #define NV_WAKEUPMASKENTRIES 4
  486. /* General driver defaults */
  487. #define NV_WATCHDOG_TIMEO (5*HZ)
  488. #define RX_RING_DEFAULT 128
  489. #define TX_RING_DEFAULT 256
  490. #define RX_RING_MIN 128
  491. #define TX_RING_MIN 64
  492. #define RING_MAX_DESC_VER_1 1024
  493. #define RING_MAX_DESC_VER_2_3 16384
  494. /* rx/tx mac addr + type + vlan + align + slack*/
  495. #define NV_RX_HEADERS (64)
  496. /* even more slack. */
  497. #define NV_RX_ALLOC_PAD (64)
  498. /* maximum mtu size */
  499. #define NV_PKTLIMIT_1 ETH_DATA_LEN /* hard limit not known */
  500. #define NV_PKTLIMIT_2 9100 /* Actual limit according to NVidia: 9202 */
  501. #define OOM_REFILL (1+HZ/20)
  502. #define POLL_WAIT (1+HZ/100)
  503. #define LINK_TIMEOUT (3*HZ)
  504. #define STATS_INTERVAL (10*HZ)
  505. /*
  506. * desc_ver values:
  507. * The nic supports three different descriptor types:
  508. * - DESC_VER_1: Original
  509. * - DESC_VER_2: support for jumbo frames.
  510. * - DESC_VER_3: 64-bit format.
  511. */
  512. #define DESC_VER_1 1
  513. #define DESC_VER_2 2
  514. #define DESC_VER_3 3
  515. /* PHY defines */
  516. #define PHY_OUI_MARVELL 0x5043
  517. #define PHY_OUI_CICADA 0x03f1
  518. #define PHY_OUI_VITESSE 0x01c1
  519. #define PHY_OUI_REALTEK 0x0732
  520. #define PHYID1_OUI_MASK 0x03ff
  521. #define PHYID1_OUI_SHFT 6
  522. #define PHYID2_OUI_MASK 0xfc00
  523. #define PHYID2_OUI_SHFT 10
  524. #define PHYID2_MODEL_MASK 0x03f0
  525. #define PHY_MODEL_MARVELL_E3016 0x220
  526. #define PHY_MARVELL_E3016_INITMASK 0x0300
  527. #define PHY_CICADA_INIT1 0x0f000
  528. #define PHY_CICADA_INIT2 0x0e00
  529. #define PHY_CICADA_INIT3 0x01000
  530. #define PHY_CICADA_INIT4 0x0200
  531. #define PHY_CICADA_INIT5 0x0004
  532. #define PHY_CICADA_INIT6 0x02000
  533. #define PHY_VITESSE_INIT_REG1 0x1f
  534. #define PHY_VITESSE_INIT_REG2 0x10
  535. #define PHY_VITESSE_INIT_REG3 0x11
  536. #define PHY_VITESSE_INIT_REG4 0x12
  537. #define PHY_VITESSE_INIT_MSK1 0xc
  538. #define PHY_VITESSE_INIT_MSK2 0x0180
  539. #define PHY_VITESSE_INIT1 0x52b5
  540. #define PHY_VITESSE_INIT2 0xaf8a
  541. #define PHY_VITESSE_INIT3 0x8
  542. #define PHY_VITESSE_INIT4 0x8f8a
  543. #define PHY_VITESSE_INIT5 0xaf86
  544. #define PHY_VITESSE_INIT6 0x8f86
  545. #define PHY_VITESSE_INIT7 0xaf82
  546. #define PHY_VITESSE_INIT8 0x0100
  547. #define PHY_VITESSE_INIT9 0x8f82
  548. #define PHY_VITESSE_INIT10 0x0
  549. #define PHY_REALTEK_INIT_REG1 0x1f
  550. #define PHY_REALTEK_INIT_REG2 0x19
  551. #define PHY_REALTEK_INIT_REG3 0x13
  552. #define PHY_REALTEK_INIT1 0x0000
  553. #define PHY_REALTEK_INIT2 0x8e00
  554. #define PHY_REALTEK_INIT3 0x0001
  555. #define PHY_REALTEK_INIT4 0xad17
  556. #define PHY_GIGABIT 0x0100
  557. #define PHY_TIMEOUT 0x1
  558. #define PHY_ERROR 0x2
  559. #define PHY_100 0x1
  560. #define PHY_1000 0x2
  561. #define PHY_HALF 0x100
  562. #define NV_PAUSEFRAME_RX_CAPABLE 0x0001
  563. #define NV_PAUSEFRAME_TX_CAPABLE 0x0002
  564. #define NV_PAUSEFRAME_RX_ENABLE 0x0004
  565. #define NV_PAUSEFRAME_TX_ENABLE 0x0008
  566. #define NV_PAUSEFRAME_RX_REQ 0x0010
  567. #define NV_PAUSEFRAME_TX_REQ 0x0020
  568. #define NV_PAUSEFRAME_AUTONEG 0x0040
  569. /* MSI/MSI-X defines */
  570. #define NV_MSI_X_MAX_VECTORS 8
  571. #define NV_MSI_X_VECTORS_MASK 0x000f
  572. #define NV_MSI_CAPABLE 0x0010
  573. #define NV_MSI_X_CAPABLE 0x0020
  574. #define NV_MSI_ENABLED 0x0040
  575. #define NV_MSI_X_ENABLED 0x0080
  576. #define NV_MSI_X_VECTOR_ALL 0x0
  577. #define NV_MSI_X_VECTOR_RX 0x0
  578. #define NV_MSI_X_VECTOR_TX 0x1
  579. #define NV_MSI_X_VECTOR_OTHER 0x2
  580. /* statistics */
  581. struct nv_ethtool_str {
  582. char name[ETH_GSTRING_LEN];
  583. };
  584. static const struct nv_ethtool_str nv_estats_str[] = {
  585. { "tx_bytes" },
  586. { "tx_zero_rexmt" },
  587. { "tx_one_rexmt" },
  588. { "tx_many_rexmt" },
  589. { "tx_late_collision" },
  590. { "tx_fifo_errors" },
  591. { "tx_carrier_errors" },
  592. { "tx_excess_deferral" },
  593. { "tx_retry_error" },
  594. { "rx_frame_error" },
  595. { "rx_extra_byte" },
  596. { "rx_late_collision" },
  597. { "rx_runt" },
  598. { "rx_frame_too_long" },
  599. { "rx_over_errors" },
  600. { "rx_crc_errors" },
  601. { "rx_frame_align_error" },
  602. { "rx_length_error" },
  603. { "rx_unicast" },
  604. { "rx_multicast" },
  605. { "rx_broadcast" },
  606. { "rx_packets" },
  607. { "rx_errors_total" },
  608. { "tx_errors_total" },
  609. /* version 2 stats */
  610. { "tx_deferral" },
  611. { "tx_packets" },
  612. { "rx_bytes" },
  613. { "tx_pause" },
  614. { "rx_pause" },
  615. { "rx_drop_frame" }
  616. };
  617. struct nv_ethtool_stats {
  618. u64 tx_bytes;
  619. u64 tx_zero_rexmt;
  620. u64 tx_one_rexmt;
  621. u64 tx_many_rexmt;
  622. u64 tx_late_collision;
  623. u64 tx_fifo_errors;
  624. u64 tx_carrier_errors;
  625. u64 tx_excess_deferral;
  626. u64 tx_retry_error;
  627. u64 rx_frame_error;
  628. u64 rx_extra_byte;
  629. u64 rx_late_collision;
  630. u64 rx_runt;
  631. u64 rx_frame_too_long;
  632. u64 rx_over_errors;
  633. u64 rx_crc_errors;
  634. u64 rx_frame_align_error;
  635. u64 rx_length_error;
  636. u64 rx_unicast;
  637. u64 rx_multicast;
  638. u64 rx_broadcast;
  639. u64 rx_packets;
  640. u64 rx_errors_total;
  641. u64 tx_errors_total;
  642. /* version 2 stats */
  643. u64 tx_deferral;
  644. u64 tx_packets;
  645. u64 rx_bytes;
  646. u64 tx_pause;
  647. u64 rx_pause;
  648. u64 rx_drop_frame;
  649. };
  650. #define NV_DEV_STATISTICS_V2_COUNT (sizeof(struct nv_ethtool_stats)/sizeof(u64))
  651. #define NV_DEV_STATISTICS_V1_COUNT (NV_DEV_STATISTICS_V2_COUNT - 6)
  652. /* diagnostics */
  653. #define NV_TEST_COUNT_BASE 3
  654. #define NV_TEST_COUNT_EXTENDED 4
  655. static const struct nv_ethtool_str nv_etests_str[] = {
  656. { "link (online/offline)" },
  657. { "register (offline) " },
  658. { "interrupt (offline) " },
  659. { "loopback (offline) " }
  660. };
  661. struct register_test {
  662. __u32 reg;
  663. __u32 mask;
  664. };
  665. static const struct register_test nv_registers_test[] = {
  666. { NvRegUnknownSetupReg6, 0x01 },
  667. { NvRegMisc1, 0x03c },
  668. { NvRegOffloadConfig, 0x03ff },
  669. { NvRegMulticastAddrA, 0xffffffff },
  670. { NvRegTxWatermark, 0x0ff },
  671. { NvRegWakeUpFlags, 0x07777 },
  672. { 0,0 }
  673. };
  674. struct nv_skb_map {
  675. struct sk_buff *skb;
  676. dma_addr_t dma;
  677. unsigned int dma_len;
  678. };
  679. /*
  680. * SMP locking:
  681. * All hardware access under dev->priv->lock, except the performance
  682. * critical parts:
  683. * - rx is (pseudo-) lockless: it relies on the single-threading provided
  684. * by the arch code for interrupts.
  685. * - tx setup is lockless: it relies on netif_tx_lock. Actual submission
  686. * needs dev->priv->lock :-(
  687. * - set_multicast_list: preparation lockless, relies on netif_tx_lock.
  688. */
  689. /* in dev: base, irq */
  690. struct fe_priv {
  691. spinlock_t lock;
  692. struct net_device *dev;
  693. struct napi_struct napi;
  694. /* General data:
  695. * Locking: spin_lock(&np->lock); */
  696. struct nv_ethtool_stats estats;
  697. int in_shutdown;
  698. u32 linkspeed;
  699. int duplex;
  700. int autoneg;
  701. int fixed_mode;
  702. int phyaddr;
  703. int wolenabled;
  704. unsigned int phy_oui;
  705. unsigned int phy_model;
  706. u16 gigabit;
  707. int intr_test;
  708. int recover_error;
  709. /* General data: RO fields */
  710. dma_addr_t ring_addr;
  711. struct pci_dev *pci_dev;
  712. u32 orig_mac[2];
  713. u32 irqmask;
  714. u32 desc_ver;
  715. u32 txrxctl_bits;
  716. u32 vlanctl_bits;
  717. u32 driver_data;
  718. u32 register_size;
  719. int rx_csum;
  720. u32 mac_in_use;
  721. void __iomem *base;
  722. /* rx specific fields.
  723. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  724. */
  725. union ring_type get_rx, put_rx, first_rx, last_rx;
  726. struct nv_skb_map *get_rx_ctx, *put_rx_ctx;
  727. struct nv_skb_map *first_rx_ctx, *last_rx_ctx;
  728. struct nv_skb_map *rx_skb;
  729. union ring_type rx_ring;
  730. unsigned int rx_buf_sz;
  731. unsigned int pkt_limit;
  732. struct timer_list oom_kick;
  733. struct timer_list nic_poll;
  734. struct timer_list stats_poll;
  735. u32 nic_poll_irq;
  736. int rx_ring_size;
  737. /* media detection workaround.
  738. * Locking: Within irq hander or disable_irq+spin_lock(&np->lock);
  739. */
  740. int need_linktimer;
  741. unsigned long link_timeout;
  742. /*
  743. * tx specific fields.
  744. */
  745. union ring_type get_tx, put_tx, first_tx, last_tx;
  746. struct nv_skb_map *get_tx_ctx, *put_tx_ctx;
  747. struct nv_skb_map *first_tx_ctx, *last_tx_ctx;
  748. struct nv_skb_map *tx_skb;
  749. union ring_type tx_ring;
  750. u32 tx_flags;
  751. int tx_ring_size;
  752. int tx_stop;
  753. /* vlan fields */
  754. struct vlan_group *vlangrp;
  755. /* msi/msi-x fields */
  756. u32 msi_flags;
  757. struct msix_entry msi_x_entry[NV_MSI_X_MAX_VECTORS];
  758. /* flow control */
  759. u32 pause_flags;
  760. };
  761. /*
  762. * Maximum number of loops until we assume that a bit in the irq mask
  763. * is stuck. Overridable with module param.
  764. */
  765. static int max_interrupt_work = 5;
  766. /*
  767. * Optimization can be either throuput mode or cpu mode
  768. *
  769. * Throughput Mode: Every tx and rx packet will generate an interrupt.
  770. * CPU Mode: Interrupts are controlled by a timer.
  771. */
  772. enum {
  773. NV_OPTIMIZATION_MODE_THROUGHPUT,
  774. NV_OPTIMIZATION_MODE_CPU
  775. };
  776. static int optimization_mode = NV_OPTIMIZATION_MODE_THROUGHPUT;
  777. /*
  778. * Poll interval for timer irq
  779. *
  780. * This interval determines how frequent an interrupt is generated.
  781. * The is value is determined by [(time_in_micro_secs * 100) / (2^10)]
  782. * Min = 0, and Max = 65535
  783. */
  784. static int poll_interval = -1;
  785. /*
  786. * MSI interrupts
  787. */
  788. enum {
  789. NV_MSI_INT_DISABLED,
  790. NV_MSI_INT_ENABLED
  791. };
  792. static int msi = NV_MSI_INT_ENABLED;
  793. /*
  794. * MSIX interrupts
  795. */
  796. enum {
  797. NV_MSIX_INT_DISABLED,
  798. NV_MSIX_INT_ENABLED
  799. };
  800. static int msix = NV_MSIX_INT_DISABLED;
  801. /*
  802. * DMA 64bit
  803. */
  804. enum {
  805. NV_DMA_64BIT_DISABLED,
  806. NV_DMA_64BIT_ENABLED
  807. };
  808. static int dma_64bit = NV_DMA_64BIT_ENABLED;
  809. static inline struct fe_priv *get_nvpriv(struct net_device *dev)
  810. {
  811. return netdev_priv(dev);
  812. }
  813. static inline u8 __iomem *get_hwbase(struct net_device *dev)
  814. {
  815. return ((struct fe_priv *)netdev_priv(dev))->base;
  816. }
  817. static inline void pci_push(u8 __iomem *base)
  818. {
  819. /* force out pending posted writes */
  820. readl(base);
  821. }
  822. static inline u32 nv_descr_getlength(struct ring_desc *prd, u32 v)
  823. {
  824. return le32_to_cpu(prd->flaglen)
  825. & ((v == DESC_VER_1) ? LEN_MASK_V1 : LEN_MASK_V2);
  826. }
  827. static inline u32 nv_descr_getlength_ex(struct ring_desc_ex *prd, u32 v)
  828. {
  829. return le32_to_cpu(prd->flaglen) & LEN_MASK_V2;
  830. }
  831. static int reg_delay(struct net_device *dev, int offset, u32 mask, u32 target,
  832. int delay, int delaymax, const char *msg)
  833. {
  834. u8 __iomem *base = get_hwbase(dev);
  835. pci_push(base);
  836. do {
  837. udelay(delay);
  838. delaymax -= delay;
  839. if (delaymax < 0) {
  840. if (msg)
  841. printk(msg);
  842. return 1;
  843. }
  844. } while ((readl(base + offset) & mask) != target);
  845. return 0;
  846. }
  847. #define NV_SETUP_RX_RING 0x01
  848. #define NV_SETUP_TX_RING 0x02
  849. static inline u32 dma_low(dma_addr_t addr)
  850. {
  851. return addr;
  852. }
  853. static inline u32 dma_high(dma_addr_t addr)
  854. {
  855. return addr>>31>>1; /* 0 if 32bit, shift down by 32 if 64bit */
  856. }
  857. static void setup_hw_rings(struct net_device *dev, int rxtx_flags)
  858. {
  859. struct fe_priv *np = get_nvpriv(dev);
  860. u8 __iomem *base = get_hwbase(dev);
  861. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  862. if (rxtx_flags & NV_SETUP_RX_RING) {
  863. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  864. }
  865. if (rxtx_flags & NV_SETUP_TX_RING) {
  866. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc)), base + NvRegTxRingPhysAddr);
  867. }
  868. } else {
  869. if (rxtx_flags & NV_SETUP_RX_RING) {
  870. writel(dma_low(np->ring_addr), base + NvRegRxRingPhysAddr);
  871. writel(dma_high(np->ring_addr), base + NvRegRxRingPhysAddrHigh);
  872. }
  873. if (rxtx_flags & NV_SETUP_TX_RING) {
  874. writel(dma_low(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddr);
  875. writel(dma_high(np->ring_addr + np->rx_ring_size*sizeof(struct ring_desc_ex)), base + NvRegTxRingPhysAddrHigh);
  876. }
  877. }
  878. }
  879. static void free_rings(struct net_device *dev)
  880. {
  881. struct fe_priv *np = get_nvpriv(dev);
  882. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  883. if (np->rx_ring.orig)
  884. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  885. np->rx_ring.orig, np->ring_addr);
  886. } else {
  887. if (np->rx_ring.ex)
  888. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  889. np->rx_ring.ex, np->ring_addr);
  890. }
  891. if (np->rx_skb)
  892. kfree(np->rx_skb);
  893. if (np->tx_skb)
  894. kfree(np->tx_skb);
  895. }
  896. static int using_multi_irqs(struct net_device *dev)
  897. {
  898. struct fe_priv *np = get_nvpriv(dev);
  899. if (!(np->msi_flags & NV_MSI_X_ENABLED) ||
  900. ((np->msi_flags & NV_MSI_X_ENABLED) &&
  901. ((np->msi_flags & NV_MSI_X_VECTORS_MASK) == 0x1)))
  902. return 0;
  903. else
  904. return 1;
  905. }
  906. static void nv_enable_irq(struct net_device *dev)
  907. {
  908. struct fe_priv *np = get_nvpriv(dev);
  909. if (!using_multi_irqs(dev)) {
  910. if (np->msi_flags & NV_MSI_X_ENABLED)
  911. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  912. else
  913. enable_irq(np->pci_dev->irq);
  914. } else {
  915. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  916. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  917. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  918. }
  919. }
  920. static void nv_disable_irq(struct net_device *dev)
  921. {
  922. struct fe_priv *np = get_nvpriv(dev);
  923. if (!using_multi_irqs(dev)) {
  924. if (np->msi_flags & NV_MSI_X_ENABLED)
  925. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  926. else
  927. disable_irq(np->pci_dev->irq);
  928. } else {
  929. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  930. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  931. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  932. }
  933. }
  934. /* In MSIX mode, a write to irqmask behaves as XOR */
  935. static void nv_enable_hw_interrupts(struct net_device *dev, u32 mask)
  936. {
  937. u8 __iomem *base = get_hwbase(dev);
  938. writel(mask, base + NvRegIrqMask);
  939. }
  940. static void nv_disable_hw_interrupts(struct net_device *dev, u32 mask)
  941. {
  942. struct fe_priv *np = get_nvpriv(dev);
  943. u8 __iomem *base = get_hwbase(dev);
  944. if (np->msi_flags & NV_MSI_X_ENABLED) {
  945. writel(mask, base + NvRegIrqMask);
  946. } else {
  947. if (np->msi_flags & NV_MSI_ENABLED)
  948. writel(0, base + NvRegMSIIrqMask);
  949. writel(0, base + NvRegIrqMask);
  950. }
  951. }
  952. #define MII_READ (-1)
  953. /* mii_rw: read/write a register on the PHY.
  954. *
  955. * Caller must guarantee serialization
  956. */
  957. static int mii_rw(struct net_device *dev, int addr, int miireg, int value)
  958. {
  959. u8 __iomem *base = get_hwbase(dev);
  960. u32 reg;
  961. int retval;
  962. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  963. reg = readl(base + NvRegMIIControl);
  964. if (reg & NVREG_MIICTL_INUSE) {
  965. writel(NVREG_MIICTL_INUSE, base + NvRegMIIControl);
  966. udelay(NV_MIIBUSY_DELAY);
  967. }
  968. reg = (addr << NVREG_MIICTL_ADDRSHIFT) | miireg;
  969. if (value != MII_READ) {
  970. writel(value, base + NvRegMIIData);
  971. reg |= NVREG_MIICTL_WRITE;
  972. }
  973. writel(reg, base + NvRegMIIControl);
  974. if (reg_delay(dev, NvRegMIIControl, NVREG_MIICTL_INUSE, 0,
  975. NV_MIIPHY_DELAY, NV_MIIPHY_DELAYMAX, NULL)) {
  976. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d timed out.\n",
  977. dev->name, miireg, addr);
  978. retval = -1;
  979. } else if (value != MII_READ) {
  980. /* it was a write operation - fewer failures are detectable */
  981. dprintk(KERN_DEBUG "%s: mii_rw wrote 0x%x to reg %d at PHY %d\n",
  982. dev->name, value, miireg, addr);
  983. retval = 0;
  984. } else if (readl(base + NvRegMIIStatus) & NVREG_MIISTAT_ERROR) {
  985. dprintk(KERN_DEBUG "%s: mii_rw of reg %d at PHY %d failed.\n",
  986. dev->name, miireg, addr);
  987. retval = -1;
  988. } else {
  989. retval = readl(base + NvRegMIIData);
  990. dprintk(KERN_DEBUG "%s: mii_rw read from reg %d at PHY %d: 0x%x.\n",
  991. dev->name, miireg, addr, retval);
  992. }
  993. return retval;
  994. }
  995. static int phy_reset(struct net_device *dev, u32 bmcr_setup)
  996. {
  997. struct fe_priv *np = netdev_priv(dev);
  998. u32 miicontrol;
  999. unsigned int tries = 0;
  1000. miicontrol = BMCR_RESET | bmcr_setup;
  1001. if (mii_rw(dev, np->phyaddr, MII_BMCR, miicontrol)) {
  1002. return -1;
  1003. }
  1004. /* wait for 500ms */
  1005. msleep(500);
  1006. /* must wait till reset is deasserted */
  1007. while (miicontrol & BMCR_RESET) {
  1008. msleep(10);
  1009. miicontrol = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1010. /* FIXME: 100 tries seem excessive */
  1011. if (tries++ > 100)
  1012. return -1;
  1013. }
  1014. return 0;
  1015. }
  1016. static int phy_init(struct net_device *dev)
  1017. {
  1018. struct fe_priv *np = get_nvpriv(dev);
  1019. u8 __iomem *base = get_hwbase(dev);
  1020. u32 phyinterface, phy_reserved, mii_status, mii_control, mii_control_1000,reg;
  1021. /* phy errata for E3016 phy */
  1022. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  1023. reg = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1024. reg &= ~PHY_MARVELL_E3016_INITMASK;
  1025. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, reg)) {
  1026. printk(KERN_INFO "%s: phy write to errata reg failed.\n", pci_name(np->pci_dev));
  1027. return PHY_ERROR;
  1028. }
  1029. }
  1030. if (np->phy_oui == PHY_OUI_REALTEK) {
  1031. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1032. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1033. return PHY_ERROR;
  1034. }
  1035. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1036. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1037. return PHY_ERROR;
  1038. }
  1039. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1040. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1041. return PHY_ERROR;
  1042. }
  1043. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1044. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1045. return PHY_ERROR;
  1046. }
  1047. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1048. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1049. return PHY_ERROR;
  1050. }
  1051. }
  1052. /* set advertise register */
  1053. reg = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  1054. reg |= (ADVERTISE_10HALF|ADVERTISE_10FULL|ADVERTISE_100HALF|ADVERTISE_100FULL|ADVERTISE_PAUSE_ASYM|ADVERTISE_PAUSE_CAP);
  1055. if (mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg)) {
  1056. printk(KERN_INFO "%s: phy write to advertise failed.\n", pci_name(np->pci_dev));
  1057. return PHY_ERROR;
  1058. }
  1059. /* get phy interface type */
  1060. phyinterface = readl(base + NvRegPhyInterface);
  1061. /* see if gigabit phy */
  1062. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  1063. if (mii_status & PHY_GIGABIT) {
  1064. np->gigabit = PHY_GIGABIT;
  1065. mii_control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  1066. mii_control_1000 &= ~ADVERTISE_1000HALF;
  1067. if (phyinterface & PHY_RGMII)
  1068. mii_control_1000 |= ADVERTISE_1000FULL;
  1069. else
  1070. mii_control_1000 &= ~ADVERTISE_1000FULL;
  1071. if (mii_rw(dev, np->phyaddr, MII_CTRL1000, mii_control_1000)) {
  1072. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1073. return PHY_ERROR;
  1074. }
  1075. }
  1076. else
  1077. np->gigabit = 0;
  1078. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1079. mii_control |= BMCR_ANENABLE;
  1080. /* reset the phy
  1081. * (certain phys need bmcr to be setup with reset)
  1082. */
  1083. if (phy_reset(dev, mii_control)) {
  1084. printk(KERN_INFO "%s: phy reset failed\n", pci_name(np->pci_dev));
  1085. return PHY_ERROR;
  1086. }
  1087. /* phy vendor specific configuration */
  1088. if ((np->phy_oui == PHY_OUI_CICADA) && (phyinterface & PHY_RGMII) ) {
  1089. phy_reserved = mii_rw(dev, np->phyaddr, MII_RESV1, MII_READ);
  1090. phy_reserved &= ~(PHY_CICADA_INIT1 | PHY_CICADA_INIT2);
  1091. phy_reserved |= (PHY_CICADA_INIT3 | PHY_CICADA_INIT4);
  1092. if (mii_rw(dev, np->phyaddr, MII_RESV1, phy_reserved)) {
  1093. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1094. return PHY_ERROR;
  1095. }
  1096. phy_reserved = mii_rw(dev, np->phyaddr, MII_NCONFIG, MII_READ);
  1097. phy_reserved |= PHY_CICADA_INIT5;
  1098. if (mii_rw(dev, np->phyaddr, MII_NCONFIG, phy_reserved)) {
  1099. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1100. return PHY_ERROR;
  1101. }
  1102. }
  1103. if (np->phy_oui == PHY_OUI_CICADA) {
  1104. phy_reserved = mii_rw(dev, np->phyaddr, MII_SREVISION, MII_READ);
  1105. phy_reserved |= PHY_CICADA_INIT6;
  1106. if (mii_rw(dev, np->phyaddr, MII_SREVISION, phy_reserved)) {
  1107. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1108. return PHY_ERROR;
  1109. }
  1110. }
  1111. if (np->phy_oui == PHY_OUI_VITESSE) {
  1112. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT1)) {
  1113. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1114. return PHY_ERROR;
  1115. }
  1116. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT2)) {
  1117. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1118. return PHY_ERROR;
  1119. }
  1120. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1121. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1122. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1123. return PHY_ERROR;
  1124. }
  1125. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1126. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1127. phy_reserved |= PHY_VITESSE_INIT3;
  1128. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1129. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1130. return PHY_ERROR;
  1131. }
  1132. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT4)) {
  1133. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1134. return PHY_ERROR;
  1135. }
  1136. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT5)) {
  1137. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1138. return PHY_ERROR;
  1139. }
  1140. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1141. phy_reserved &= ~PHY_VITESSE_INIT_MSK1;
  1142. phy_reserved |= PHY_VITESSE_INIT3;
  1143. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1144. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1145. return PHY_ERROR;
  1146. }
  1147. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1148. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1149. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1150. return PHY_ERROR;
  1151. }
  1152. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT6)) {
  1153. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1154. return PHY_ERROR;
  1155. }
  1156. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT7)) {
  1157. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1158. return PHY_ERROR;
  1159. }
  1160. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, MII_READ);
  1161. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG4, phy_reserved)) {
  1162. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1163. return PHY_ERROR;
  1164. }
  1165. phy_reserved = mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, MII_READ);
  1166. phy_reserved &= ~PHY_VITESSE_INIT_MSK2;
  1167. phy_reserved |= PHY_VITESSE_INIT8;
  1168. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG3, phy_reserved)) {
  1169. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1170. return PHY_ERROR;
  1171. }
  1172. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG2, PHY_VITESSE_INIT9)) {
  1173. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1174. return PHY_ERROR;
  1175. }
  1176. if (mii_rw(dev, np->phyaddr, PHY_VITESSE_INIT_REG1, PHY_VITESSE_INIT10)) {
  1177. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1178. return PHY_ERROR;
  1179. }
  1180. }
  1181. if (np->phy_oui == PHY_OUI_REALTEK) {
  1182. /* reset could have cleared these out, set them back */
  1183. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1184. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1185. return PHY_ERROR;
  1186. }
  1187. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG2, PHY_REALTEK_INIT2)) {
  1188. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1189. return PHY_ERROR;
  1190. }
  1191. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT3)) {
  1192. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1193. return PHY_ERROR;
  1194. }
  1195. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG3, PHY_REALTEK_INIT4)) {
  1196. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1197. return PHY_ERROR;
  1198. }
  1199. if (mii_rw(dev, np->phyaddr, PHY_REALTEK_INIT_REG1, PHY_REALTEK_INIT1)) {
  1200. printk(KERN_INFO "%s: phy init failed.\n", pci_name(np->pci_dev));
  1201. return PHY_ERROR;
  1202. }
  1203. }
  1204. /* some phys clear out pause advertisment on reset, set it back */
  1205. mii_rw(dev, np->phyaddr, MII_ADVERTISE, reg);
  1206. /* restart auto negotiation */
  1207. mii_control = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  1208. mii_control |= (BMCR_ANRESTART | BMCR_ANENABLE);
  1209. if (mii_rw(dev, np->phyaddr, MII_BMCR, mii_control)) {
  1210. return PHY_ERROR;
  1211. }
  1212. return 0;
  1213. }
  1214. static void nv_start_rx(struct net_device *dev)
  1215. {
  1216. struct fe_priv *np = netdev_priv(dev);
  1217. u8 __iomem *base = get_hwbase(dev);
  1218. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1219. dprintk(KERN_DEBUG "%s: nv_start_rx\n", dev->name);
  1220. /* Already running? Stop it. */
  1221. if ((readl(base + NvRegReceiverControl) & NVREG_RCVCTL_START) && !np->mac_in_use) {
  1222. rx_ctrl &= ~NVREG_RCVCTL_START;
  1223. writel(rx_ctrl, base + NvRegReceiverControl);
  1224. pci_push(base);
  1225. }
  1226. writel(np->linkspeed, base + NvRegLinkSpeed);
  1227. pci_push(base);
  1228. rx_ctrl |= NVREG_RCVCTL_START;
  1229. if (np->mac_in_use)
  1230. rx_ctrl &= ~NVREG_RCVCTL_RX_PATH_EN;
  1231. writel(rx_ctrl, base + NvRegReceiverControl);
  1232. dprintk(KERN_DEBUG "%s: nv_start_rx to duplex %d, speed 0x%08x.\n",
  1233. dev->name, np->duplex, np->linkspeed);
  1234. pci_push(base);
  1235. }
  1236. static void nv_stop_rx(struct net_device *dev)
  1237. {
  1238. struct fe_priv *np = netdev_priv(dev);
  1239. u8 __iomem *base = get_hwbase(dev);
  1240. u32 rx_ctrl = readl(base + NvRegReceiverControl);
  1241. dprintk(KERN_DEBUG "%s: nv_stop_rx\n", dev->name);
  1242. if (!np->mac_in_use)
  1243. rx_ctrl &= ~NVREG_RCVCTL_START;
  1244. else
  1245. rx_ctrl |= NVREG_RCVCTL_RX_PATH_EN;
  1246. writel(rx_ctrl, base + NvRegReceiverControl);
  1247. reg_delay(dev, NvRegReceiverStatus, NVREG_RCVSTAT_BUSY, 0,
  1248. NV_RXSTOP_DELAY1, NV_RXSTOP_DELAY1MAX,
  1249. KERN_INFO "nv_stop_rx: ReceiverStatus remained busy");
  1250. udelay(NV_RXSTOP_DELAY2);
  1251. if (!np->mac_in_use)
  1252. writel(0, base + NvRegLinkSpeed);
  1253. }
  1254. static void nv_start_tx(struct net_device *dev)
  1255. {
  1256. struct fe_priv *np = netdev_priv(dev);
  1257. u8 __iomem *base = get_hwbase(dev);
  1258. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1259. dprintk(KERN_DEBUG "%s: nv_start_tx\n", dev->name);
  1260. tx_ctrl |= NVREG_XMITCTL_START;
  1261. if (np->mac_in_use)
  1262. tx_ctrl &= ~NVREG_XMITCTL_TX_PATH_EN;
  1263. writel(tx_ctrl, base + NvRegTransmitterControl);
  1264. pci_push(base);
  1265. }
  1266. static void nv_stop_tx(struct net_device *dev)
  1267. {
  1268. struct fe_priv *np = netdev_priv(dev);
  1269. u8 __iomem *base = get_hwbase(dev);
  1270. u32 tx_ctrl = readl(base + NvRegTransmitterControl);
  1271. dprintk(KERN_DEBUG "%s: nv_stop_tx\n", dev->name);
  1272. if (!np->mac_in_use)
  1273. tx_ctrl &= ~NVREG_XMITCTL_START;
  1274. else
  1275. tx_ctrl |= NVREG_XMITCTL_TX_PATH_EN;
  1276. writel(tx_ctrl, base + NvRegTransmitterControl);
  1277. reg_delay(dev, NvRegTransmitterStatus, NVREG_XMITSTAT_BUSY, 0,
  1278. NV_TXSTOP_DELAY1, NV_TXSTOP_DELAY1MAX,
  1279. KERN_INFO "nv_stop_tx: TransmitterStatus remained busy");
  1280. udelay(NV_TXSTOP_DELAY2);
  1281. if (!np->mac_in_use)
  1282. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  1283. base + NvRegTransmitPoll);
  1284. }
  1285. static void nv_txrx_reset(struct net_device *dev)
  1286. {
  1287. struct fe_priv *np = netdev_priv(dev);
  1288. u8 __iomem *base = get_hwbase(dev);
  1289. dprintk(KERN_DEBUG "%s: nv_txrx_reset\n", dev->name);
  1290. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1291. pci_push(base);
  1292. udelay(NV_TXRX_RESET_DELAY);
  1293. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1294. pci_push(base);
  1295. }
  1296. static void nv_mac_reset(struct net_device *dev)
  1297. {
  1298. struct fe_priv *np = netdev_priv(dev);
  1299. u8 __iomem *base = get_hwbase(dev);
  1300. dprintk(KERN_DEBUG "%s: nv_mac_reset\n", dev->name);
  1301. writel(NVREG_TXRXCTL_BIT2 | NVREG_TXRXCTL_RESET | np->txrxctl_bits, base + NvRegTxRxControl);
  1302. pci_push(base);
  1303. writel(NVREG_MAC_RESET_ASSERT, base + NvRegMacReset);
  1304. pci_push(base);
  1305. udelay(NV_MAC_RESET_DELAY);
  1306. writel(0, base + NvRegMacReset);
  1307. pci_push(base);
  1308. udelay(NV_MAC_RESET_DELAY);
  1309. writel(NVREG_TXRXCTL_BIT2 | np->txrxctl_bits, base + NvRegTxRxControl);
  1310. pci_push(base);
  1311. }
  1312. static void nv_get_hw_stats(struct net_device *dev)
  1313. {
  1314. struct fe_priv *np = netdev_priv(dev);
  1315. u8 __iomem *base = get_hwbase(dev);
  1316. np->estats.tx_bytes += readl(base + NvRegTxCnt);
  1317. np->estats.tx_zero_rexmt += readl(base + NvRegTxZeroReXmt);
  1318. np->estats.tx_one_rexmt += readl(base + NvRegTxOneReXmt);
  1319. np->estats.tx_many_rexmt += readl(base + NvRegTxManyReXmt);
  1320. np->estats.tx_late_collision += readl(base + NvRegTxLateCol);
  1321. np->estats.tx_fifo_errors += readl(base + NvRegTxUnderflow);
  1322. np->estats.tx_carrier_errors += readl(base + NvRegTxLossCarrier);
  1323. np->estats.tx_excess_deferral += readl(base + NvRegTxExcessDef);
  1324. np->estats.tx_retry_error += readl(base + NvRegTxRetryErr);
  1325. np->estats.rx_frame_error += readl(base + NvRegRxFrameErr);
  1326. np->estats.rx_extra_byte += readl(base + NvRegRxExtraByte);
  1327. np->estats.rx_late_collision += readl(base + NvRegRxLateCol);
  1328. np->estats.rx_runt += readl(base + NvRegRxRunt);
  1329. np->estats.rx_frame_too_long += readl(base + NvRegRxFrameTooLong);
  1330. np->estats.rx_over_errors += readl(base + NvRegRxOverflow);
  1331. np->estats.rx_crc_errors += readl(base + NvRegRxFCSErr);
  1332. np->estats.rx_frame_align_error += readl(base + NvRegRxFrameAlignErr);
  1333. np->estats.rx_length_error += readl(base + NvRegRxLenErr);
  1334. np->estats.rx_unicast += readl(base + NvRegRxUnicast);
  1335. np->estats.rx_multicast += readl(base + NvRegRxMulticast);
  1336. np->estats.rx_broadcast += readl(base + NvRegRxBroadcast);
  1337. np->estats.rx_packets =
  1338. np->estats.rx_unicast +
  1339. np->estats.rx_multicast +
  1340. np->estats.rx_broadcast;
  1341. np->estats.rx_errors_total =
  1342. np->estats.rx_crc_errors +
  1343. np->estats.rx_over_errors +
  1344. np->estats.rx_frame_error +
  1345. (np->estats.rx_frame_align_error - np->estats.rx_extra_byte) +
  1346. np->estats.rx_late_collision +
  1347. np->estats.rx_runt +
  1348. np->estats.rx_frame_too_long;
  1349. np->estats.tx_errors_total =
  1350. np->estats.tx_late_collision +
  1351. np->estats.tx_fifo_errors +
  1352. np->estats.tx_carrier_errors +
  1353. np->estats.tx_excess_deferral +
  1354. np->estats.tx_retry_error;
  1355. if (np->driver_data & DEV_HAS_STATISTICS_V2) {
  1356. np->estats.tx_deferral += readl(base + NvRegTxDef);
  1357. np->estats.tx_packets += readl(base + NvRegTxFrame);
  1358. np->estats.rx_bytes += readl(base + NvRegRxCnt);
  1359. np->estats.tx_pause += readl(base + NvRegTxPause);
  1360. np->estats.rx_pause += readl(base + NvRegRxPause);
  1361. np->estats.rx_drop_frame += readl(base + NvRegRxDropFrame);
  1362. }
  1363. }
  1364. /*
  1365. * nv_get_stats: dev->get_stats function
  1366. * Get latest stats value from the nic.
  1367. * Called with read_lock(&dev_base_lock) held for read -
  1368. * only synchronized against unregister_netdevice.
  1369. */
  1370. static struct net_device_stats *nv_get_stats(struct net_device *dev)
  1371. {
  1372. struct fe_priv *np = netdev_priv(dev);
  1373. /* If the nic supports hw counters then retrieve latest values */
  1374. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2)) {
  1375. nv_get_hw_stats(dev);
  1376. /* copy to net_device stats */
  1377. dev->stats.tx_bytes = np->estats.tx_bytes;
  1378. dev->stats.tx_fifo_errors = np->estats.tx_fifo_errors;
  1379. dev->stats.tx_carrier_errors = np->estats.tx_carrier_errors;
  1380. dev->stats.rx_crc_errors = np->estats.rx_crc_errors;
  1381. dev->stats.rx_over_errors = np->estats.rx_over_errors;
  1382. dev->stats.rx_errors = np->estats.rx_errors_total;
  1383. dev->stats.tx_errors = np->estats.tx_errors_total;
  1384. }
  1385. return &dev->stats;
  1386. }
  1387. /*
  1388. * nv_alloc_rx: fill rx ring entries.
  1389. * Return 1 if the allocations for the skbs failed and the
  1390. * rx engine is without Available descriptors
  1391. */
  1392. static int nv_alloc_rx(struct net_device *dev)
  1393. {
  1394. struct fe_priv *np = netdev_priv(dev);
  1395. struct ring_desc* less_rx;
  1396. less_rx = np->get_rx.orig;
  1397. if (less_rx-- == np->first_rx.orig)
  1398. less_rx = np->last_rx.orig;
  1399. while (np->put_rx.orig != less_rx) {
  1400. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1401. if (skb) {
  1402. np->put_rx_ctx->skb = skb;
  1403. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1404. skb->data,
  1405. skb_tailroom(skb),
  1406. PCI_DMA_FROMDEVICE);
  1407. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1408. np->put_rx.orig->buf = cpu_to_le32(np->put_rx_ctx->dma);
  1409. wmb();
  1410. np->put_rx.orig->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX_AVAIL);
  1411. if (unlikely(np->put_rx.orig++ == np->last_rx.orig))
  1412. np->put_rx.orig = np->first_rx.orig;
  1413. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1414. np->put_rx_ctx = np->first_rx_ctx;
  1415. } else {
  1416. return 1;
  1417. }
  1418. }
  1419. return 0;
  1420. }
  1421. static int nv_alloc_rx_optimized(struct net_device *dev)
  1422. {
  1423. struct fe_priv *np = netdev_priv(dev);
  1424. struct ring_desc_ex* less_rx;
  1425. less_rx = np->get_rx.ex;
  1426. if (less_rx-- == np->first_rx.ex)
  1427. less_rx = np->last_rx.ex;
  1428. while (np->put_rx.ex != less_rx) {
  1429. struct sk_buff *skb = dev_alloc_skb(np->rx_buf_sz + NV_RX_ALLOC_PAD);
  1430. if (skb) {
  1431. np->put_rx_ctx->skb = skb;
  1432. np->put_rx_ctx->dma = pci_map_single(np->pci_dev,
  1433. skb->data,
  1434. skb_tailroom(skb),
  1435. PCI_DMA_FROMDEVICE);
  1436. np->put_rx_ctx->dma_len = skb_tailroom(skb);
  1437. np->put_rx.ex->bufhigh = cpu_to_le32(dma_high(np->put_rx_ctx->dma));
  1438. np->put_rx.ex->buflow = cpu_to_le32(dma_low(np->put_rx_ctx->dma));
  1439. wmb();
  1440. np->put_rx.ex->flaglen = cpu_to_le32(np->rx_buf_sz | NV_RX2_AVAIL);
  1441. if (unlikely(np->put_rx.ex++ == np->last_rx.ex))
  1442. np->put_rx.ex = np->first_rx.ex;
  1443. if (unlikely(np->put_rx_ctx++ == np->last_rx_ctx))
  1444. np->put_rx_ctx = np->first_rx_ctx;
  1445. } else {
  1446. return 1;
  1447. }
  1448. }
  1449. return 0;
  1450. }
  1451. /* If rx bufs are exhausted called after 50ms to attempt to refresh */
  1452. #ifdef CONFIG_FORCEDETH_NAPI
  1453. static void nv_do_rx_refill(unsigned long data)
  1454. {
  1455. struct net_device *dev = (struct net_device *) data;
  1456. struct fe_priv *np = netdev_priv(dev);
  1457. /* Just reschedule NAPI rx processing */
  1458. netif_rx_schedule(dev, &np->napi);
  1459. }
  1460. #else
  1461. static void nv_do_rx_refill(unsigned long data)
  1462. {
  1463. struct net_device *dev = (struct net_device *) data;
  1464. struct fe_priv *np = netdev_priv(dev);
  1465. int retcode;
  1466. if (!using_multi_irqs(dev)) {
  1467. if (np->msi_flags & NV_MSI_X_ENABLED)
  1468. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1469. else
  1470. disable_irq(np->pci_dev->irq);
  1471. } else {
  1472. disable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1473. }
  1474. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1475. retcode = nv_alloc_rx(dev);
  1476. else
  1477. retcode = nv_alloc_rx_optimized(dev);
  1478. if (retcode) {
  1479. spin_lock_irq(&np->lock);
  1480. if (!np->in_shutdown)
  1481. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  1482. spin_unlock_irq(&np->lock);
  1483. }
  1484. if (!using_multi_irqs(dev)) {
  1485. if (np->msi_flags & NV_MSI_X_ENABLED)
  1486. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  1487. else
  1488. enable_irq(np->pci_dev->irq);
  1489. } else {
  1490. enable_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  1491. }
  1492. }
  1493. #endif
  1494. static void nv_init_rx(struct net_device *dev)
  1495. {
  1496. struct fe_priv *np = netdev_priv(dev);
  1497. int i;
  1498. np->get_rx = np->put_rx = np->first_rx = np->rx_ring;
  1499. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1500. np->last_rx.orig = &np->rx_ring.orig[np->rx_ring_size-1];
  1501. else
  1502. np->last_rx.ex = &np->rx_ring.ex[np->rx_ring_size-1];
  1503. np->get_rx_ctx = np->put_rx_ctx = np->first_rx_ctx = np->rx_skb;
  1504. np->last_rx_ctx = &np->rx_skb[np->rx_ring_size-1];
  1505. for (i = 0; i < np->rx_ring_size; i++) {
  1506. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1507. np->rx_ring.orig[i].flaglen = 0;
  1508. np->rx_ring.orig[i].buf = 0;
  1509. } else {
  1510. np->rx_ring.ex[i].flaglen = 0;
  1511. np->rx_ring.ex[i].txvlan = 0;
  1512. np->rx_ring.ex[i].bufhigh = 0;
  1513. np->rx_ring.ex[i].buflow = 0;
  1514. }
  1515. np->rx_skb[i].skb = NULL;
  1516. np->rx_skb[i].dma = 0;
  1517. }
  1518. }
  1519. static void nv_init_tx(struct net_device *dev)
  1520. {
  1521. struct fe_priv *np = netdev_priv(dev);
  1522. int i;
  1523. np->get_tx = np->put_tx = np->first_tx = np->tx_ring;
  1524. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1525. np->last_tx.orig = &np->tx_ring.orig[np->tx_ring_size-1];
  1526. else
  1527. np->last_tx.ex = &np->tx_ring.ex[np->tx_ring_size-1];
  1528. np->get_tx_ctx = np->put_tx_ctx = np->first_tx_ctx = np->tx_skb;
  1529. np->last_tx_ctx = &np->tx_skb[np->tx_ring_size-1];
  1530. for (i = 0; i < np->tx_ring_size; i++) {
  1531. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1532. np->tx_ring.orig[i].flaglen = 0;
  1533. np->tx_ring.orig[i].buf = 0;
  1534. } else {
  1535. np->tx_ring.ex[i].flaglen = 0;
  1536. np->tx_ring.ex[i].txvlan = 0;
  1537. np->tx_ring.ex[i].bufhigh = 0;
  1538. np->tx_ring.ex[i].buflow = 0;
  1539. }
  1540. np->tx_skb[i].skb = NULL;
  1541. np->tx_skb[i].dma = 0;
  1542. }
  1543. }
  1544. static int nv_init_ring(struct net_device *dev)
  1545. {
  1546. struct fe_priv *np = netdev_priv(dev);
  1547. nv_init_tx(dev);
  1548. nv_init_rx(dev);
  1549. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1550. return nv_alloc_rx(dev);
  1551. else
  1552. return nv_alloc_rx_optimized(dev);
  1553. }
  1554. static int nv_release_txskb(struct net_device *dev, struct nv_skb_map* tx_skb)
  1555. {
  1556. struct fe_priv *np = netdev_priv(dev);
  1557. if (tx_skb->dma) {
  1558. pci_unmap_page(np->pci_dev, tx_skb->dma,
  1559. tx_skb->dma_len,
  1560. PCI_DMA_TODEVICE);
  1561. tx_skb->dma = 0;
  1562. }
  1563. if (tx_skb->skb) {
  1564. dev_kfree_skb_any(tx_skb->skb);
  1565. tx_skb->skb = NULL;
  1566. return 1;
  1567. } else {
  1568. return 0;
  1569. }
  1570. }
  1571. static void nv_drain_tx(struct net_device *dev)
  1572. {
  1573. struct fe_priv *np = netdev_priv(dev);
  1574. unsigned int i;
  1575. for (i = 0; i < np->tx_ring_size; i++) {
  1576. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1577. np->tx_ring.orig[i].flaglen = 0;
  1578. np->tx_ring.orig[i].buf = 0;
  1579. } else {
  1580. np->tx_ring.ex[i].flaglen = 0;
  1581. np->tx_ring.ex[i].txvlan = 0;
  1582. np->tx_ring.ex[i].bufhigh = 0;
  1583. np->tx_ring.ex[i].buflow = 0;
  1584. }
  1585. if (nv_release_txskb(dev, &np->tx_skb[i]))
  1586. dev->stats.tx_dropped++;
  1587. }
  1588. }
  1589. static void nv_drain_rx(struct net_device *dev)
  1590. {
  1591. struct fe_priv *np = netdev_priv(dev);
  1592. int i;
  1593. for (i = 0; i < np->rx_ring_size; i++) {
  1594. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1595. np->rx_ring.orig[i].flaglen = 0;
  1596. np->rx_ring.orig[i].buf = 0;
  1597. } else {
  1598. np->rx_ring.ex[i].flaglen = 0;
  1599. np->rx_ring.ex[i].txvlan = 0;
  1600. np->rx_ring.ex[i].bufhigh = 0;
  1601. np->rx_ring.ex[i].buflow = 0;
  1602. }
  1603. wmb();
  1604. if (np->rx_skb[i].skb) {
  1605. pci_unmap_single(np->pci_dev, np->rx_skb[i].dma,
  1606. (skb_end_pointer(np->rx_skb[i].skb) -
  1607. np->rx_skb[i].skb->data),
  1608. PCI_DMA_FROMDEVICE);
  1609. dev_kfree_skb(np->rx_skb[i].skb);
  1610. np->rx_skb[i].skb = NULL;
  1611. }
  1612. }
  1613. }
  1614. static void drain_ring(struct net_device *dev)
  1615. {
  1616. nv_drain_tx(dev);
  1617. nv_drain_rx(dev);
  1618. }
  1619. static inline u32 nv_get_empty_tx_slots(struct fe_priv *np)
  1620. {
  1621. return (u32)(np->tx_ring_size - ((np->tx_ring_size + (np->put_tx_ctx - np->get_tx_ctx)) % np->tx_ring_size));
  1622. }
  1623. /*
  1624. * nv_start_xmit: dev->hard_start_xmit function
  1625. * Called with netif_tx_lock held.
  1626. */
  1627. static int nv_start_xmit(struct sk_buff *skb, struct net_device *dev)
  1628. {
  1629. struct fe_priv *np = netdev_priv(dev);
  1630. u32 tx_flags = 0;
  1631. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  1632. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1633. unsigned int i;
  1634. u32 offset = 0;
  1635. u32 bcnt;
  1636. u32 size = skb->len-skb->data_len;
  1637. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1638. u32 empty_slots;
  1639. struct ring_desc* put_tx;
  1640. struct ring_desc* start_tx;
  1641. struct ring_desc* prev_tx;
  1642. struct nv_skb_map* prev_tx_ctx;
  1643. /* add fragments to entries count */
  1644. for (i = 0; i < fragments; i++) {
  1645. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1646. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1647. }
  1648. empty_slots = nv_get_empty_tx_slots(np);
  1649. if (unlikely(empty_slots <= entries)) {
  1650. spin_lock_irq(&np->lock);
  1651. netif_stop_queue(dev);
  1652. np->tx_stop = 1;
  1653. spin_unlock_irq(&np->lock);
  1654. return NETDEV_TX_BUSY;
  1655. }
  1656. start_tx = put_tx = np->put_tx.orig;
  1657. /* setup the header buffer */
  1658. do {
  1659. prev_tx = put_tx;
  1660. prev_tx_ctx = np->put_tx_ctx;
  1661. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1662. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1663. PCI_DMA_TODEVICE);
  1664. np->put_tx_ctx->dma_len = bcnt;
  1665. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1666. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1667. tx_flags = np->tx_flags;
  1668. offset += bcnt;
  1669. size -= bcnt;
  1670. if (unlikely(put_tx++ == np->last_tx.orig))
  1671. put_tx = np->first_tx.orig;
  1672. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1673. np->put_tx_ctx = np->first_tx_ctx;
  1674. } while (size);
  1675. /* setup the fragments */
  1676. for (i = 0; i < fragments; i++) {
  1677. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1678. u32 size = frag->size;
  1679. offset = 0;
  1680. do {
  1681. prev_tx = put_tx;
  1682. prev_tx_ctx = np->put_tx_ctx;
  1683. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1684. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1685. PCI_DMA_TODEVICE);
  1686. np->put_tx_ctx->dma_len = bcnt;
  1687. put_tx->buf = cpu_to_le32(np->put_tx_ctx->dma);
  1688. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1689. offset += bcnt;
  1690. size -= bcnt;
  1691. if (unlikely(put_tx++ == np->last_tx.orig))
  1692. put_tx = np->first_tx.orig;
  1693. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1694. np->put_tx_ctx = np->first_tx_ctx;
  1695. } while (size);
  1696. }
  1697. /* set last fragment flag */
  1698. prev_tx->flaglen |= cpu_to_le32(tx_flags_extra);
  1699. /* save skb in this slot's context area */
  1700. prev_tx_ctx->skb = skb;
  1701. if (skb_is_gso(skb))
  1702. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1703. else
  1704. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1705. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1706. spin_lock_irq(&np->lock);
  1707. /* set tx flags */
  1708. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1709. np->put_tx.orig = put_tx;
  1710. spin_unlock_irq(&np->lock);
  1711. dprintk(KERN_DEBUG "%s: nv_start_xmit: entries %d queued for transmission. tx_flags_extra: %x\n",
  1712. dev->name, entries, tx_flags_extra);
  1713. {
  1714. int j;
  1715. for (j=0; j<64; j++) {
  1716. if ((j%16) == 0)
  1717. dprintk("\n%03x:", j);
  1718. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1719. }
  1720. dprintk("\n");
  1721. }
  1722. dev->trans_start = jiffies;
  1723. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1724. return NETDEV_TX_OK;
  1725. }
  1726. static int nv_start_xmit_optimized(struct sk_buff *skb, struct net_device *dev)
  1727. {
  1728. struct fe_priv *np = netdev_priv(dev);
  1729. u32 tx_flags = 0;
  1730. u32 tx_flags_extra;
  1731. unsigned int fragments = skb_shinfo(skb)->nr_frags;
  1732. unsigned int i;
  1733. u32 offset = 0;
  1734. u32 bcnt;
  1735. u32 size = skb->len-skb->data_len;
  1736. u32 entries = (size >> NV_TX2_TSO_MAX_SHIFT) + ((size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1737. u32 empty_slots;
  1738. struct ring_desc_ex* put_tx;
  1739. struct ring_desc_ex* start_tx;
  1740. struct ring_desc_ex* prev_tx;
  1741. struct nv_skb_map* prev_tx_ctx;
  1742. /* add fragments to entries count */
  1743. for (i = 0; i < fragments; i++) {
  1744. entries += (skb_shinfo(skb)->frags[i].size >> NV_TX2_TSO_MAX_SHIFT) +
  1745. ((skb_shinfo(skb)->frags[i].size & (NV_TX2_TSO_MAX_SIZE-1)) ? 1 : 0);
  1746. }
  1747. empty_slots = nv_get_empty_tx_slots(np);
  1748. if (unlikely(empty_slots <= entries)) {
  1749. spin_lock_irq(&np->lock);
  1750. netif_stop_queue(dev);
  1751. np->tx_stop = 1;
  1752. spin_unlock_irq(&np->lock);
  1753. return NETDEV_TX_BUSY;
  1754. }
  1755. start_tx = put_tx = np->put_tx.ex;
  1756. /* setup the header buffer */
  1757. do {
  1758. prev_tx = put_tx;
  1759. prev_tx_ctx = np->put_tx_ctx;
  1760. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1761. np->put_tx_ctx->dma = pci_map_single(np->pci_dev, skb->data + offset, bcnt,
  1762. PCI_DMA_TODEVICE);
  1763. np->put_tx_ctx->dma_len = bcnt;
  1764. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  1765. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  1766. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1767. tx_flags = NV_TX2_VALID;
  1768. offset += bcnt;
  1769. size -= bcnt;
  1770. if (unlikely(put_tx++ == np->last_tx.ex))
  1771. put_tx = np->first_tx.ex;
  1772. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1773. np->put_tx_ctx = np->first_tx_ctx;
  1774. } while (size);
  1775. /* setup the fragments */
  1776. for (i = 0; i < fragments; i++) {
  1777. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1778. u32 size = frag->size;
  1779. offset = 0;
  1780. do {
  1781. prev_tx = put_tx;
  1782. prev_tx_ctx = np->put_tx_ctx;
  1783. bcnt = (size > NV_TX2_TSO_MAX_SIZE) ? NV_TX2_TSO_MAX_SIZE : size;
  1784. np->put_tx_ctx->dma = pci_map_page(np->pci_dev, frag->page, frag->page_offset+offset, bcnt,
  1785. PCI_DMA_TODEVICE);
  1786. np->put_tx_ctx->dma_len = bcnt;
  1787. put_tx->bufhigh = cpu_to_le32(dma_high(np->put_tx_ctx->dma));
  1788. put_tx->buflow = cpu_to_le32(dma_low(np->put_tx_ctx->dma));
  1789. put_tx->flaglen = cpu_to_le32((bcnt-1) | tx_flags);
  1790. offset += bcnt;
  1791. size -= bcnt;
  1792. if (unlikely(put_tx++ == np->last_tx.ex))
  1793. put_tx = np->first_tx.ex;
  1794. if (unlikely(np->put_tx_ctx++ == np->last_tx_ctx))
  1795. np->put_tx_ctx = np->first_tx_ctx;
  1796. } while (size);
  1797. }
  1798. /* set last fragment flag */
  1799. prev_tx->flaglen |= cpu_to_le32(NV_TX2_LASTPACKET);
  1800. /* save skb in this slot's context area */
  1801. prev_tx_ctx->skb = skb;
  1802. if (skb_is_gso(skb))
  1803. tx_flags_extra = NV_TX2_TSO | (skb_shinfo(skb)->gso_size << NV_TX2_TSO_SHIFT);
  1804. else
  1805. tx_flags_extra = skb->ip_summed == CHECKSUM_PARTIAL ?
  1806. NV_TX2_CHECKSUM_L3 | NV_TX2_CHECKSUM_L4 : 0;
  1807. /* vlan tag */
  1808. if (likely(!np->vlangrp)) {
  1809. start_tx->txvlan = 0;
  1810. } else {
  1811. if (vlan_tx_tag_present(skb))
  1812. start_tx->txvlan = cpu_to_le32(NV_TX3_VLAN_TAG_PRESENT | vlan_tx_tag_get(skb));
  1813. else
  1814. start_tx->txvlan = 0;
  1815. }
  1816. spin_lock_irq(&np->lock);
  1817. /* set tx flags */
  1818. start_tx->flaglen |= cpu_to_le32(tx_flags | tx_flags_extra);
  1819. np->put_tx.ex = put_tx;
  1820. spin_unlock_irq(&np->lock);
  1821. dprintk(KERN_DEBUG "%s: nv_start_xmit_optimized: entries %d queued for transmission. tx_flags_extra: %x\n",
  1822. dev->name, entries, tx_flags_extra);
  1823. {
  1824. int j;
  1825. for (j=0; j<64; j++) {
  1826. if ((j%16) == 0)
  1827. dprintk("\n%03x:", j);
  1828. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  1829. }
  1830. dprintk("\n");
  1831. }
  1832. dev->trans_start = jiffies;
  1833. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  1834. return NETDEV_TX_OK;
  1835. }
  1836. /*
  1837. * nv_tx_done: check for completed packets, release the skbs.
  1838. *
  1839. * Caller must own np->lock.
  1840. */
  1841. static void nv_tx_done(struct net_device *dev)
  1842. {
  1843. struct fe_priv *np = netdev_priv(dev);
  1844. u32 flags;
  1845. struct ring_desc* orig_get_tx = np->get_tx.orig;
  1846. while ((np->get_tx.orig != np->put_tx.orig) &&
  1847. !((flags = le32_to_cpu(np->get_tx.orig->flaglen)) & NV_TX_VALID)) {
  1848. dprintk(KERN_DEBUG "%s: nv_tx_done: flags 0x%x.\n",
  1849. dev->name, flags);
  1850. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1851. np->get_tx_ctx->dma_len,
  1852. PCI_DMA_TODEVICE);
  1853. np->get_tx_ctx->dma = 0;
  1854. if (np->desc_ver == DESC_VER_1) {
  1855. if (flags & NV_TX_LASTPACKET) {
  1856. if (flags & NV_TX_ERROR) {
  1857. if (flags & NV_TX_UNDERFLOW)
  1858. dev->stats.tx_fifo_errors++;
  1859. if (flags & NV_TX_CARRIERLOST)
  1860. dev->stats.tx_carrier_errors++;
  1861. dev->stats.tx_errors++;
  1862. } else {
  1863. dev->stats.tx_packets++;
  1864. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1865. }
  1866. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1867. np->get_tx_ctx->skb = NULL;
  1868. }
  1869. } else {
  1870. if (flags & NV_TX2_LASTPACKET) {
  1871. if (flags & NV_TX2_ERROR) {
  1872. if (flags & NV_TX2_UNDERFLOW)
  1873. dev->stats.tx_fifo_errors++;
  1874. if (flags & NV_TX2_CARRIERLOST)
  1875. dev->stats.tx_carrier_errors++;
  1876. dev->stats.tx_errors++;
  1877. } else {
  1878. dev->stats.tx_packets++;
  1879. dev->stats.tx_bytes += np->get_tx_ctx->skb->len;
  1880. }
  1881. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1882. np->get_tx_ctx->skb = NULL;
  1883. }
  1884. }
  1885. if (unlikely(np->get_tx.orig++ == np->last_tx.orig))
  1886. np->get_tx.orig = np->first_tx.orig;
  1887. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1888. np->get_tx_ctx = np->first_tx_ctx;
  1889. }
  1890. if (unlikely((np->tx_stop == 1) && (np->get_tx.orig != orig_get_tx))) {
  1891. np->tx_stop = 0;
  1892. netif_wake_queue(dev);
  1893. }
  1894. }
  1895. static void nv_tx_done_optimized(struct net_device *dev, int limit)
  1896. {
  1897. struct fe_priv *np = netdev_priv(dev);
  1898. u32 flags;
  1899. struct ring_desc_ex* orig_get_tx = np->get_tx.ex;
  1900. while ((np->get_tx.ex != np->put_tx.ex) &&
  1901. !((flags = le32_to_cpu(np->get_tx.ex->flaglen)) & NV_TX_VALID) &&
  1902. (limit-- > 0)) {
  1903. dprintk(KERN_DEBUG "%s: nv_tx_done_optimized: flags 0x%x.\n",
  1904. dev->name, flags);
  1905. pci_unmap_page(np->pci_dev, np->get_tx_ctx->dma,
  1906. np->get_tx_ctx->dma_len,
  1907. PCI_DMA_TODEVICE);
  1908. np->get_tx_ctx->dma = 0;
  1909. if (flags & NV_TX2_LASTPACKET) {
  1910. if (!(flags & NV_TX2_ERROR))
  1911. dev->stats.tx_packets++;
  1912. dev_kfree_skb_any(np->get_tx_ctx->skb);
  1913. np->get_tx_ctx->skb = NULL;
  1914. }
  1915. if (unlikely(np->get_tx.ex++ == np->last_tx.ex))
  1916. np->get_tx.ex = np->first_tx.ex;
  1917. if (unlikely(np->get_tx_ctx++ == np->last_tx_ctx))
  1918. np->get_tx_ctx = np->first_tx_ctx;
  1919. }
  1920. if (unlikely((np->tx_stop == 1) && (np->get_tx.ex != orig_get_tx))) {
  1921. np->tx_stop = 0;
  1922. netif_wake_queue(dev);
  1923. }
  1924. }
  1925. /*
  1926. * nv_tx_timeout: dev->tx_timeout function
  1927. * Called with netif_tx_lock held.
  1928. */
  1929. static void nv_tx_timeout(struct net_device *dev)
  1930. {
  1931. struct fe_priv *np = netdev_priv(dev);
  1932. u8 __iomem *base = get_hwbase(dev);
  1933. u32 status;
  1934. if (np->msi_flags & NV_MSI_X_ENABLED)
  1935. status = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  1936. else
  1937. status = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  1938. printk(KERN_INFO "%s: Got tx_timeout. irq: %08x\n", dev->name, status);
  1939. {
  1940. int i;
  1941. printk(KERN_INFO "%s: Ring at %lx\n",
  1942. dev->name, (unsigned long)np->ring_addr);
  1943. printk(KERN_INFO "%s: Dumping tx registers\n", dev->name);
  1944. for (i=0;i<=np->register_size;i+= 32) {
  1945. printk(KERN_INFO "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n",
  1946. i,
  1947. readl(base + i + 0), readl(base + i + 4),
  1948. readl(base + i + 8), readl(base + i + 12),
  1949. readl(base + i + 16), readl(base + i + 20),
  1950. readl(base + i + 24), readl(base + i + 28));
  1951. }
  1952. printk(KERN_INFO "%s: Dumping tx ring\n", dev->name);
  1953. for (i=0;i<np->tx_ring_size;i+= 4) {
  1954. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  1955. printk(KERN_INFO "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n",
  1956. i,
  1957. le32_to_cpu(np->tx_ring.orig[i].buf),
  1958. le32_to_cpu(np->tx_ring.orig[i].flaglen),
  1959. le32_to_cpu(np->tx_ring.orig[i+1].buf),
  1960. le32_to_cpu(np->tx_ring.orig[i+1].flaglen),
  1961. le32_to_cpu(np->tx_ring.orig[i+2].buf),
  1962. le32_to_cpu(np->tx_ring.orig[i+2].flaglen),
  1963. le32_to_cpu(np->tx_ring.orig[i+3].buf),
  1964. le32_to_cpu(np->tx_ring.orig[i+3].flaglen));
  1965. } else {
  1966. printk(KERN_INFO "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n",
  1967. i,
  1968. le32_to_cpu(np->tx_ring.ex[i].bufhigh),
  1969. le32_to_cpu(np->tx_ring.ex[i].buflow),
  1970. le32_to_cpu(np->tx_ring.ex[i].flaglen),
  1971. le32_to_cpu(np->tx_ring.ex[i+1].bufhigh),
  1972. le32_to_cpu(np->tx_ring.ex[i+1].buflow),
  1973. le32_to_cpu(np->tx_ring.ex[i+1].flaglen),
  1974. le32_to_cpu(np->tx_ring.ex[i+2].bufhigh),
  1975. le32_to_cpu(np->tx_ring.ex[i+2].buflow),
  1976. le32_to_cpu(np->tx_ring.ex[i+2].flaglen),
  1977. le32_to_cpu(np->tx_ring.ex[i+3].bufhigh),
  1978. le32_to_cpu(np->tx_ring.ex[i+3].buflow),
  1979. le32_to_cpu(np->tx_ring.ex[i+3].flaglen));
  1980. }
  1981. }
  1982. }
  1983. spin_lock_irq(&np->lock);
  1984. /* 1) stop tx engine */
  1985. nv_stop_tx(dev);
  1986. /* 2) check that the packets were not sent already: */
  1987. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  1988. nv_tx_done(dev);
  1989. else
  1990. nv_tx_done_optimized(dev, np->tx_ring_size);
  1991. /* 3) if there are dead entries: clear everything */
  1992. if (np->get_tx_ctx != np->put_tx_ctx) {
  1993. printk(KERN_DEBUG "%s: tx_timeout: dead entries!\n", dev->name);
  1994. nv_drain_tx(dev);
  1995. nv_init_tx(dev);
  1996. setup_hw_rings(dev, NV_SETUP_TX_RING);
  1997. }
  1998. netif_wake_queue(dev);
  1999. /* 4) restart tx engine */
  2000. nv_start_tx(dev);
  2001. spin_unlock_irq(&np->lock);
  2002. }
  2003. /*
  2004. * Called when the nic notices a mismatch between the actual data len on the
  2005. * wire and the len indicated in the 802 header
  2006. */
  2007. static int nv_getlen(struct net_device *dev, void *packet, int datalen)
  2008. {
  2009. int hdrlen; /* length of the 802 header */
  2010. int protolen; /* length as stored in the proto field */
  2011. /* 1) calculate len according to header */
  2012. if ( ((struct vlan_ethhdr *)packet)->h_vlan_proto == htons(ETH_P_8021Q)) {
  2013. protolen = ntohs( ((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto );
  2014. hdrlen = VLAN_HLEN;
  2015. } else {
  2016. protolen = ntohs( ((struct ethhdr *)packet)->h_proto);
  2017. hdrlen = ETH_HLEN;
  2018. }
  2019. dprintk(KERN_DEBUG "%s: nv_getlen: datalen %d, protolen %d, hdrlen %d\n",
  2020. dev->name, datalen, protolen, hdrlen);
  2021. if (protolen > ETH_DATA_LEN)
  2022. return datalen; /* Value in proto field not a len, no checks possible */
  2023. protolen += hdrlen;
  2024. /* consistency checks: */
  2025. if (datalen > ETH_ZLEN) {
  2026. if (datalen >= protolen) {
  2027. /* more data on wire than in 802 header, trim of
  2028. * additional data.
  2029. */
  2030. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2031. dev->name, protolen);
  2032. return protolen;
  2033. } else {
  2034. /* less data on wire than mentioned in header.
  2035. * Discard the packet.
  2036. */
  2037. dprintk(KERN_DEBUG "%s: nv_getlen: discarding long packet.\n",
  2038. dev->name);
  2039. return -1;
  2040. }
  2041. } else {
  2042. /* short packet. Accept only if 802 values are also short */
  2043. if (protolen > ETH_ZLEN) {
  2044. dprintk(KERN_DEBUG "%s: nv_getlen: discarding short packet.\n",
  2045. dev->name);
  2046. return -1;
  2047. }
  2048. dprintk(KERN_DEBUG "%s: nv_getlen: accepting %d bytes.\n",
  2049. dev->name, datalen);
  2050. return datalen;
  2051. }
  2052. }
  2053. static int nv_rx_process(struct net_device *dev, int limit)
  2054. {
  2055. struct fe_priv *np = netdev_priv(dev);
  2056. u32 flags;
  2057. int rx_work = 0;
  2058. struct sk_buff *skb;
  2059. int len;
  2060. while((np->get_rx.orig != np->put_rx.orig) &&
  2061. !((flags = le32_to_cpu(np->get_rx.orig->flaglen)) & NV_RX_AVAIL) &&
  2062. (rx_work < limit)) {
  2063. dprintk(KERN_DEBUG "%s: nv_rx_process: flags 0x%x.\n",
  2064. dev->name, flags);
  2065. /*
  2066. * the packet is for us - immediately tear down the pci mapping.
  2067. * TODO: check if a prefetch of the first cacheline improves
  2068. * the performance.
  2069. */
  2070. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2071. np->get_rx_ctx->dma_len,
  2072. PCI_DMA_FROMDEVICE);
  2073. skb = np->get_rx_ctx->skb;
  2074. np->get_rx_ctx->skb = NULL;
  2075. {
  2076. int j;
  2077. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2078. for (j=0; j<64; j++) {
  2079. if ((j%16) == 0)
  2080. dprintk("\n%03x:", j);
  2081. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2082. }
  2083. dprintk("\n");
  2084. }
  2085. /* look at what we actually got: */
  2086. if (np->desc_ver == DESC_VER_1) {
  2087. if (likely(flags & NV_RX_DESCRIPTORVALID)) {
  2088. len = flags & LEN_MASK_V1;
  2089. if (unlikely(flags & NV_RX_ERROR)) {
  2090. if (flags & NV_RX_ERROR4) {
  2091. len = nv_getlen(dev, skb->data, len);
  2092. if (len < 0) {
  2093. dev->stats.rx_errors++;
  2094. dev_kfree_skb(skb);
  2095. goto next_pkt;
  2096. }
  2097. }
  2098. /* framing errors are soft errors */
  2099. else if (flags & NV_RX_FRAMINGERR) {
  2100. if (flags & NV_RX_SUBSTRACT1) {
  2101. len--;
  2102. }
  2103. }
  2104. /* the rest are hard errors */
  2105. else {
  2106. if (flags & NV_RX_MISSEDFRAME)
  2107. dev->stats.rx_missed_errors++;
  2108. if (flags & NV_RX_CRCERR)
  2109. dev->stats.rx_crc_errors++;
  2110. if (flags & NV_RX_OVERFLOW)
  2111. dev->stats.rx_over_errors++;
  2112. dev->stats.rx_errors++;
  2113. dev_kfree_skb(skb);
  2114. goto next_pkt;
  2115. }
  2116. }
  2117. } else {
  2118. dev_kfree_skb(skb);
  2119. goto next_pkt;
  2120. }
  2121. } else {
  2122. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2123. len = flags & LEN_MASK_V2;
  2124. if (unlikely(flags & NV_RX2_ERROR)) {
  2125. if (flags & NV_RX2_ERROR4) {
  2126. len = nv_getlen(dev, skb->data, len);
  2127. if (len < 0) {
  2128. dev->stats.rx_errors++;
  2129. dev_kfree_skb(skb);
  2130. goto next_pkt;
  2131. }
  2132. }
  2133. /* framing errors are soft errors */
  2134. else if (flags & NV_RX2_FRAMINGERR) {
  2135. if (flags & NV_RX2_SUBSTRACT1) {
  2136. len--;
  2137. }
  2138. }
  2139. /* the rest are hard errors */
  2140. else {
  2141. if (flags & NV_RX2_CRCERR)
  2142. dev->stats.rx_crc_errors++;
  2143. if (flags & NV_RX2_OVERFLOW)
  2144. dev->stats.rx_over_errors++;
  2145. dev->stats.rx_errors++;
  2146. dev_kfree_skb(skb);
  2147. goto next_pkt;
  2148. }
  2149. }
  2150. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2151. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2152. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2153. } else {
  2154. dev_kfree_skb(skb);
  2155. goto next_pkt;
  2156. }
  2157. }
  2158. /* got a valid packet - forward it to the network core */
  2159. skb_put(skb, len);
  2160. skb->protocol = eth_type_trans(skb, dev);
  2161. dprintk(KERN_DEBUG "%s: nv_rx_process: %d bytes, proto %d accepted.\n",
  2162. dev->name, len, skb->protocol);
  2163. #ifdef CONFIG_FORCEDETH_NAPI
  2164. netif_receive_skb(skb);
  2165. #else
  2166. netif_rx(skb);
  2167. #endif
  2168. dev->last_rx = jiffies;
  2169. dev->stats.rx_packets++;
  2170. dev->stats.rx_bytes += len;
  2171. next_pkt:
  2172. if (unlikely(np->get_rx.orig++ == np->last_rx.orig))
  2173. np->get_rx.orig = np->first_rx.orig;
  2174. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2175. np->get_rx_ctx = np->first_rx_ctx;
  2176. rx_work++;
  2177. }
  2178. return rx_work;
  2179. }
  2180. static int nv_rx_process_optimized(struct net_device *dev, int limit)
  2181. {
  2182. struct fe_priv *np = netdev_priv(dev);
  2183. u32 flags;
  2184. u32 vlanflags = 0;
  2185. int rx_work = 0;
  2186. struct sk_buff *skb;
  2187. int len;
  2188. while((np->get_rx.ex != np->put_rx.ex) &&
  2189. !((flags = le32_to_cpu(np->get_rx.ex->flaglen)) & NV_RX2_AVAIL) &&
  2190. (rx_work < limit)) {
  2191. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: flags 0x%x.\n",
  2192. dev->name, flags);
  2193. /*
  2194. * the packet is for us - immediately tear down the pci mapping.
  2195. * TODO: check if a prefetch of the first cacheline improves
  2196. * the performance.
  2197. */
  2198. pci_unmap_single(np->pci_dev, np->get_rx_ctx->dma,
  2199. np->get_rx_ctx->dma_len,
  2200. PCI_DMA_FROMDEVICE);
  2201. skb = np->get_rx_ctx->skb;
  2202. np->get_rx_ctx->skb = NULL;
  2203. {
  2204. int j;
  2205. dprintk(KERN_DEBUG "Dumping packet (flags 0x%x).",flags);
  2206. for (j=0; j<64; j++) {
  2207. if ((j%16) == 0)
  2208. dprintk("\n%03x:", j);
  2209. dprintk(" %02x", ((unsigned char*)skb->data)[j]);
  2210. }
  2211. dprintk("\n");
  2212. }
  2213. /* look at what we actually got: */
  2214. if (likely(flags & NV_RX2_DESCRIPTORVALID)) {
  2215. len = flags & LEN_MASK_V2;
  2216. if (unlikely(flags & NV_RX2_ERROR)) {
  2217. if (flags & NV_RX2_ERROR4) {
  2218. len = nv_getlen(dev, skb->data, len);
  2219. if (len < 0) {
  2220. dev_kfree_skb(skb);
  2221. goto next_pkt;
  2222. }
  2223. }
  2224. /* framing errors are soft errors */
  2225. else if (flags & NV_RX2_FRAMINGERR) {
  2226. if (flags & NV_RX2_SUBSTRACT1) {
  2227. len--;
  2228. }
  2229. }
  2230. /* the rest are hard errors */
  2231. else {
  2232. dev_kfree_skb(skb);
  2233. goto next_pkt;
  2234. }
  2235. }
  2236. if (((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_TCP) || /*ip and tcp */
  2237. ((flags & NV_RX2_CHECKSUMMASK) == NV_RX2_CHECKSUM_IP_UDP)) /*ip and udp */
  2238. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2239. /* got a valid packet - forward it to the network core */
  2240. skb_put(skb, len);
  2241. skb->protocol = eth_type_trans(skb, dev);
  2242. prefetch(skb->data);
  2243. dprintk(KERN_DEBUG "%s: nv_rx_process_optimized: %d bytes, proto %d accepted.\n",
  2244. dev->name, len, skb->protocol);
  2245. if (likely(!np->vlangrp)) {
  2246. #ifdef CONFIG_FORCEDETH_NAPI
  2247. netif_receive_skb(skb);
  2248. #else
  2249. netif_rx(skb);
  2250. #endif
  2251. } else {
  2252. vlanflags = le32_to_cpu(np->get_rx.ex->buflow);
  2253. if (vlanflags & NV_RX3_VLAN_TAG_PRESENT) {
  2254. #ifdef CONFIG_FORCEDETH_NAPI
  2255. vlan_hwaccel_receive_skb(skb, np->vlangrp,
  2256. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2257. #else
  2258. vlan_hwaccel_rx(skb, np->vlangrp,
  2259. vlanflags & NV_RX3_VLAN_TAG_MASK);
  2260. #endif
  2261. } else {
  2262. #ifdef CONFIG_FORCEDETH_NAPI
  2263. netif_receive_skb(skb);
  2264. #else
  2265. netif_rx(skb);
  2266. #endif
  2267. }
  2268. }
  2269. dev->last_rx = jiffies;
  2270. dev->stats.rx_packets++;
  2271. dev->stats.rx_bytes += len;
  2272. } else {
  2273. dev_kfree_skb(skb);
  2274. }
  2275. next_pkt:
  2276. if (unlikely(np->get_rx.ex++ == np->last_rx.ex))
  2277. np->get_rx.ex = np->first_rx.ex;
  2278. if (unlikely(np->get_rx_ctx++ == np->last_rx_ctx))
  2279. np->get_rx_ctx = np->first_rx_ctx;
  2280. rx_work++;
  2281. }
  2282. return rx_work;
  2283. }
  2284. static void set_bufsize(struct net_device *dev)
  2285. {
  2286. struct fe_priv *np = netdev_priv(dev);
  2287. if (dev->mtu <= ETH_DATA_LEN)
  2288. np->rx_buf_sz = ETH_DATA_LEN + NV_RX_HEADERS;
  2289. else
  2290. np->rx_buf_sz = dev->mtu + NV_RX_HEADERS;
  2291. }
  2292. /*
  2293. * nv_change_mtu: dev->change_mtu function
  2294. * Called with dev_base_lock held for read.
  2295. */
  2296. static int nv_change_mtu(struct net_device *dev, int new_mtu)
  2297. {
  2298. struct fe_priv *np = netdev_priv(dev);
  2299. int old_mtu;
  2300. if (new_mtu < 64 || new_mtu > np->pkt_limit)
  2301. return -EINVAL;
  2302. old_mtu = dev->mtu;
  2303. dev->mtu = new_mtu;
  2304. /* return early if the buffer sizes will not change */
  2305. if (old_mtu <= ETH_DATA_LEN && new_mtu <= ETH_DATA_LEN)
  2306. return 0;
  2307. if (old_mtu == new_mtu)
  2308. return 0;
  2309. /* synchronized against open : rtnl_lock() held by caller */
  2310. if (netif_running(dev)) {
  2311. u8 __iomem *base = get_hwbase(dev);
  2312. /*
  2313. * It seems that the nic preloads valid ring entries into an
  2314. * internal buffer. The procedure for flushing everything is
  2315. * guessed, there is probably a simpler approach.
  2316. * Changing the MTU is a rare event, it shouldn't matter.
  2317. */
  2318. nv_disable_irq(dev);
  2319. netif_tx_lock_bh(dev);
  2320. spin_lock(&np->lock);
  2321. /* stop engines */
  2322. nv_stop_rx(dev);
  2323. nv_stop_tx(dev);
  2324. nv_txrx_reset(dev);
  2325. /* drain rx queue */
  2326. nv_drain_rx(dev);
  2327. nv_drain_tx(dev);
  2328. /* reinit driver view of the rx queue */
  2329. set_bufsize(dev);
  2330. if (nv_init_ring(dev)) {
  2331. if (!np->in_shutdown)
  2332. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2333. }
  2334. /* reinit nic view of the rx queue */
  2335. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  2336. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  2337. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  2338. base + NvRegRingSizes);
  2339. pci_push(base);
  2340. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  2341. pci_push(base);
  2342. /* restart rx engine */
  2343. nv_start_rx(dev);
  2344. nv_start_tx(dev);
  2345. spin_unlock(&np->lock);
  2346. netif_tx_unlock_bh(dev);
  2347. nv_enable_irq(dev);
  2348. }
  2349. return 0;
  2350. }
  2351. static void nv_copy_mac_to_hw(struct net_device *dev)
  2352. {
  2353. u8 __iomem *base = get_hwbase(dev);
  2354. u32 mac[2];
  2355. mac[0] = (dev->dev_addr[0] << 0) + (dev->dev_addr[1] << 8) +
  2356. (dev->dev_addr[2] << 16) + (dev->dev_addr[3] << 24);
  2357. mac[1] = (dev->dev_addr[4] << 0) + (dev->dev_addr[5] << 8);
  2358. writel(mac[0], base + NvRegMacAddrA);
  2359. writel(mac[1], base + NvRegMacAddrB);
  2360. }
  2361. /*
  2362. * nv_set_mac_address: dev->set_mac_address function
  2363. * Called with rtnl_lock() held.
  2364. */
  2365. static int nv_set_mac_address(struct net_device *dev, void *addr)
  2366. {
  2367. struct fe_priv *np = netdev_priv(dev);
  2368. struct sockaddr *macaddr = (struct sockaddr*)addr;
  2369. if (!is_valid_ether_addr(macaddr->sa_data))
  2370. return -EADDRNOTAVAIL;
  2371. /* synchronized against open : rtnl_lock() held by caller */
  2372. memcpy(dev->dev_addr, macaddr->sa_data, ETH_ALEN);
  2373. if (netif_running(dev)) {
  2374. netif_tx_lock_bh(dev);
  2375. spin_lock_irq(&np->lock);
  2376. /* stop rx engine */
  2377. nv_stop_rx(dev);
  2378. /* set mac address */
  2379. nv_copy_mac_to_hw(dev);
  2380. /* restart rx engine */
  2381. nv_start_rx(dev);
  2382. spin_unlock_irq(&np->lock);
  2383. netif_tx_unlock_bh(dev);
  2384. } else {
  2385. nv_copy_mac_to_hw(dev);
  2386. }
  2387. return 0;
  2388. }
  2389. /*
  2390. * nv_set_multicast: dev->set_multicast function
  2391. * Called with netif_tx_lock held.
  2392. */
  2393. static void nv_set_multicast(struct net_device *dev)
  2394. {
  2395. struct fe_priv *np = netdev_priv(dev);
  2396. u8 __iomem *base = get_hwbase(dev);
  2397. u32 addr[2];
  2398. u32 mask[2];
  2399. u32 pff = readl(base + NvRegPacketFilterFlags) & NVREG_PFF_PAUSE_RX;
  2400. memset(addr, 0, sizeof(addr));
  2401. memset(mask, 0, sizeof(mask));
  2402. if (dev->flags & IFF_PROMISC) {
  2403. pff |= NVREG_PFF_PROMISC;
  2404. } else {
  2405. pff |= NVREG_PFF_MYADDR;
  2406. if (dev->flags & IFF_ALLMULTI || dev->mc_list) {
  2407. u32 alwaysOff[2];
  2408. u32 alwaysOn[2];
  2409. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0xffffffff;
  2410. if (dev->flags & IFF_ALLMULTI) {
  2411. alwaysOn[0] = alwaysOn[1] = alwaysOff[0] = alwaysOff[1] = 0;
  2412. } else {
  2413. struct dev_mc_list *walk;
  2414. walk = dev->mc_list;
  2415. while (walk != NULL) {
  2416. u32 a, b;
  2417. a = le32_to_cpu(*(__le32 *) walk->dmi_addr);
  2418. b = le16_to_cpu(*(__le16 *) (&walk->dmi_addr[4]));
  2419. alwaysOn[0] &= a;
  2420. alwaysOff[0] &= ~a;
  2421. alwaysOn[1] &= b;
  2422. alwaysOff[1] &= ~b;
  2423. walk = walk->next;
  2424. }
  2425. }
  2426. addr[0] = alwaysOn[0];
  2427. addr[1] = alwaysOn[1];
  2428. mask[0] = alwaysOn[0] | alwaysOff[0];
  2429. mask[1] = alwaysOn[1] | alwaysOff[1];
  2430. } else {
  2431. mask[0] = NVREG_MCASTMASKA_NONE;
  2432. mask[1] = NVREG_MCASTMASKB_NONE;
  2433. }
  2434. }
  2435. addr[0] |= NVREG_MCASTADDRA_FORCE;
  2436. pff |= NVREG_PFF_ALWAYS;
  2437. spin_lock_irq(&np->lock);
  2438. nv_stop_rx(dev);
  2439. writel(addr[0], base + NvRegMulticastAddrA);
  2440. writel(addr[1], base + NvRegMulticastAddrB);
  2441. writel(mask[0], base + NvRegMulticastMaskA);
  2442. writel(mask[1], base + NvRegMulticastMaskB);
  2443. writel(pff, base + NvRegPacketFilterFlags);
  2444. dprintk(KERN_INFO "%s: reconfiguration for multicast lists.\n",
  2445. dev->name);
  2446. nv_start_rx(dev);
  2447. spin_unlock_irq(&np->lock);
  2448. }
  2449. static void nv_update_pause(struct net_device *dev, u32 pause_flags)
  2450. {
  2451. struct fe_priv *np = netdev_priv(dev);
  2452. u8 __iomem *base = get_hwbase(dev);
  2453. np->pause_flags &= ~(NV_PAUSEFRAME_TX_ENABLE | NV_PAUSEFRAME_RX_ENABLE);
  2454. if (np->pause_flags & NV_PAUSEFRAME_RX_CAPABLE) {
  2455. u32 pff = readl(base + NvRegPacketFilterFlags) & ~NVREG_PFF_PAUSE_RX;
  2456. if (pause_flags & NV_PAUSEFRAME_RX_ENABLE) {
  2457. writel(pff|NVREG_PFF_PAUSE_RX, base + NvRegPacketFilterFlags);
  2458. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2459. } else {
  2460. writel(pff, base + NvRegPacketFilterFlags);
  2461. }
  2462. }
  2463. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE) {
  2464. u32 regmisc = readl(base + NvRegMisc1) & ~NVREG_MISC1_PAUSE_TX;
  2465. if (pause_flags & NV_PAUSEFRAME_TX_ENABLE) {
  2466. writel(NVREG_TX_PAUSEFRAME_ENABLE, base + NvRegTxPauseFrame);
  2467. writel(regmisc|NVREG_MISC1_PAUSE_TX, base + NvRegMisc1);
  2468. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2469. } else {
  2470. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  2471. writel(regmisc, base + NvRegMisc1);
  2472. }
  2473. }
  2474. }
  2475. /**
  2476. * nv_update_linkspeed: Setup the MAC according to the link partner
  2477. * @dev: Network device to be configured
  2478. *
  2479. * The function queries the PHY and checks if there is a link partner.
  2480. * If yes, then it sets up the MAC accordingly. Otherwise, the MAC is
  2481. * set to 10 MBit HD.
  2482. *
  2483. * The function returns 0 if there is no link partner and 1 if there is
  2484. * a good link partner.
  2485. */
  2486. static int nv_update_linkspeed(struct net_device *dev)
  2487. {
  2488. struct fe_priv *np = netdev_priv(dev);
  2489. u8 __iomem *base = get_hwbase(dev);
  2490. int adv = 0;
  2491. int lpa = 0;
  2492. int adv_lpa, adv_pause, lpa_pause;
  2493. int newls = np->linkspeed;
  2494. int newdup = np->duplex;
  2495. int mii_status;
  2496. int retval = 0;
  2497. u32 control_1000, status_1000, phyreg, pause_flags, txreg;
  2498. /* BMSR_LSTATUS is latched, read it twice:
  2499. * we want the current value.
  2500. */
  2501. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2502. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  2503. if (!(mii_status & BMSR_LSTATUS)) {
  2504. dprintk(KERN_DEBUG "%s: no link detected by phy - falling back to 10HD.\n",
  2505. dev->name);
  2506. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2507. newdup = 0;
  2508. retval = 0;
  2509. goto set_speed;
  2510. }
  2511. if (np->autoneg == 0) {
  2512. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: autoneg off, PHY set to 0x%04x.\n",
  2513. dev->name, np->fixed_mode);
  2514. if (np->fixed_mode & LPA_100FULL) {
  2515. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2516. newdup = 1;
  2517. } else if (np->fixed_mode & LPA_100HALF) {
  2518. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2519. newdup = 0;
  2520. } else if (np->fixed_mode & LPA_10FULL) {
  2521. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2522. newdup = 1;
  2523. } else {
  2524. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2525. newdup = 0;
  2526. }
  2527. retval = 1;
  2528. goto set_speed;
  2529. }
  2530. /* check auto negotiation is complete */
  2531. if (!(mii_status & BMSR_ANEGCOMPLETE)) {
  2532. /* still in autonegotiation - configure nic for 10 MBit HD and wait. */
  2533. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2534. newdup = 0;
  2535. retval = 0;
  2536. dprintk(KERN_DEBUG "%s: autoneg not completed - falling back to 10HD.\n", dev->name);
  2537. goto set_speed;
  2538. }
  2539. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  2540. lpa = mii_rw(dev, np->phyaddr, MII_LPA, MII_READ);
  2541. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: PHY advertises 0x%04x, lpa 0x%04x.\n",
  2542. dev->name, adv, lpa);
  2543. retval = 1;
  2544. if (np->gigabit == PHY_GIGABIT) {
  2545. control_1000 = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  2546. status_1000 = mii_rw(dev, np->phyaddr, MII_STAT1000, MII_READ);
  2547. if ((control_1000 & ADVERTISE_1000FULL) &&
  2548. (status_1000 & LPA_1000FULL)) {
  2549. dprintk(KERN_DEBUG "%s: nv_update_linkspeed: GBit ethernet detected.\n",
  2550. dev->name);
  2551. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_1000;
  2552. newdup = 1;
  2553. goto set_speed;
  2554. }
  2555. }
  2556. /* FIXME: handle parallel detection properly */
  2557. adv_lpa = lpa & adv;
  2558. if (adv_lpa & LPA_100FULL) {
  2559. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2560. newdup = 1;
  2561. } else if (adv_lpa & LPA_100HALF) {
  2562. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_100;
  2563. newdup = 0;
  2564. } else if (adv_lpa & LPA_10FULL) {
  2565. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2566. newdup = 1;
  2567. } else if (adv_lpa & LPA_10HALF) {
  2568. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2569. newdup = 0;
  2570. } else {
  2571. dprintk(KERN_DEBUG "%s: bad ability %04x - falling back to 10HD.\n", dev->name, adv_lpa);
  2572. newls = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  2573. newdup = 0;
  2574. }
  2575. set_speed:
  2576. if (np->duplex == newdup && np->linkspeed == newls)
  2577. return retval;
  2578. dprintk(KERN_INFO "%s: changing link setting from %d/%d to %d/%d.\n",
  2579. dev->name, np->linkspeed, np->duplex, newls, newdup);
  2580. np->duplex = newdup;
  2581. np->linkspeed = newls;
  2582. if (np->gigabit == PHY_GIGABIT) {
  2583. phyreg = readl(base + NvRegRandomSeed);
  2584. phyreg &= ~(0x3FF00);
  2585. if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_10)
  2586. phyreg |= NVREG_RNDSEED_FORCE3;
  2587. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_100)
  2588. phyreg |= NVREG_RNDSEED_FORCE2;
  2589. else if ((np->linkspeed & 0xFFF) == NVREG_LINKSPEED_1000)
  2590. phyreg |= NVREG_RNDSEED_FORCE;
  2591. writel(phyreg, base + NvRegRandomSeed);
  2592. }
  2593. phyreg = readl(base + NvRegPhyInterface);
  2594. phyreg &= ~(PHY_HALF|PHY_100|PHY_1000);
  2595. if (np->duplex == 0)
  2596. phyreg |= PHY_HALF;
  2597. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_100)
  2598. phyreg |= PHY_100;
  2599. else if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2600. phyreg |= PHY_1000;
  2601. writel(phyreg, base + NvRegPhyInterface);
  2602. if (phyreg & PHY_RGMII) {
  2603. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2604. txreg = NVREG_TX_DEFERRAL_RGMII_1000;
  2605. else
  2606. txreg = NVREG_TX_DEFERRAL_RGMII_10_100;
  2607. } else {
  2608. txreg = NVREG_TX_DEFERRAL_DEFAULT;
  2609. }
  2610. writel(txreg, base + NvRegTxDeferral);
  2611. if (np->desc_ver == DESC_VER_1) {
  2612. txreg = NVREG_TX_WM_DESC1_DEFAULT;
  2613. } else {
  2614. if ((np->linkspeed & NVREG_LINKSPEED_MASK) == NVREG_LINKSPEED_1000)
  2615. txreg = NVREG_TX_WM_DESC2_3_1000;
  2616. else
  2617. txreg = NVREG_TX_WM_DESC2_3_DEFAULT;
  2618. }
  2619. writel(txreg, base + NvRegTxWatermark);
  2620. writel(NVREG_MISC1_FORCE | ( np->duplex ? 0 : NVREG_MISC1_HD),
  2621. base + NvRegMisc1);
  2622. pci_push(base);
  2623. writel(np->linkspeed, base + NvRegLinkSpeed);
  2624. pci_push(base);
  2625. pause_flags = 0;
  2626. /* setup pause frame */
  2627. if (np->duplex != 0) {
  2628. if (np->autoneg && np->pause_flags & NV_PAUSEFRAME_AUTONEG) {
  2629. adv_pause = adv & (ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM);
  2630. lpa_pause = lpa & (LPA_PAUSE_CAP| LPA_PAUSE_ASYM);
  2631. switch (adv_pause) {
  2632. case ADVERTISE_PAUSE_CAP:
  2633. if (lpa_pause & LPA_PAUSE_CAP) {
  2634. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2635. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2636. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2637. }
  2638. break;
  2639. case ADVERTISE_PAUSE_ASYM:
  2640. if (lpa_pause == (LPA_PAUSE_CAP| LPA_PAUSE_ASYM))
  2641. {
  2642. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2643. }
  2644. break;
  2645. case ADVERTISE_PAUSE_CAP| ADVERTISE_PAUSE_ASYM:
  2646. if (lpa_pause & LPA_PAUSE_CAP)
  2647. {
  2648. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2649. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  2650. pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  2651. }
  2652. if (lpa_pause == LPA_PAUSE_ASYM)
  2653. {
  2654. pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  2655. }
  2656. break;
  2657. }
  2658. } else {
  2659. pause_flags = np->pause_flags;
  2660. }
  2661. }
  2662. nv_update_pause(dev, pause_flags);
  2663. return retval;
  2664. }
  2665. static void nv_linkchange(struct net_device *dev)
  2666. {
  2667. if (nv_update_linkspeed(dev)) {
  2668. if (!netif_carrier_ok(dev)) {
  2669. netif_carrier_on(dev);
  2670. printk(KERN_INFO "%s: link up.\n", dev->name);
  2671. nv_start_rx(dev);
  2672. }
  2673. } else {
  2674. if (netif_carrier_ok(dev)) {
  2675. netif_carrier_off(dev);
  2676. printk(KERN_INFO "%s: link down.\n", dev->name);
  2677. nv_stop_rx(dev);
  2678. }
  2679. }
  2680. }
  2681. static void nv_link_irq(struct net_device *dev)
  2682. {
  2683. u8 __iomem *base = get_hwbase(dev);
  2684. u32 miistat;
  2685. miistat = readl(base + NvRegMIIStatus);
  2686. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  2687. dprintk(KERN_INFO "%s: link change irq, status 0x%x.\n", dev->name, miistat);
  2688. if (miistat & (NVREG_MIISTAT_LINKCHANGE))
  2689. nv_linkchange(dev);
  2690. dprintk(KERN_DEBUG "%s: link change notification done.\n", dev->name);
  2691. }
  2692. static irqreturn_t nv_nic_irq(int foo, void *data)
  2693. {
  2694. struct net_device *dev = (struct net_device *) data;
  2695. struct fe_priv *np = netdev_priv(dev);
  2696. u8 __iomem *base = get_hwbase(dev);
  2697. u32 events;
  2698. int i;
  2699. dprintk(KERN_DEBUG "%s: nv_nic_irq\n", dev->name);
  2700. for (i=0; ; i++) {
  2701. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2702. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2703. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2704. } else {
  2705. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2706. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2707. }
  2708. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2709. if (!(events & np->irqmask))
  2710. break;
  2711. spin_lock(&np->lock);
  2712. nv_tx_done(dev);
  2713. spin_unlock(&np->lock);
  2714. #ifdef CONFIG_FORCEDETH_NAPI
  2715. if (events & NVREG_IRQ_RX_ALL) {
  2716. netif_rx_schedule(dev, &np->napi);
  2717. /* Disable furthur receive irq's */
  2718. spin_lock(&np->lock);
  2719. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2720. if (np->msi_flags & NV_MSI_X_ENABLED)
  2721. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2722. else
  2723. writel(np->irqmask, base + NvRegIrqMask);
  2724. spin_unlock(&np->lock);
  2725. }
  2726. #else
  2727. if (nv_rx_process(dev, RX_WORK_PER_LOOP)) {
  2728. if (unlikely(nv_alloc_rx(dev))) {
  2729. spin_lock(&np->lock);
  2730. if (!np->in_shutdown)
  2731. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2732. spin_unlock(&np->lock);
  2733. }
  2734. }
  2735. #endif
  2736. if (unlikely(events & NVREG_IRQ_LINK)) {
  2737. spin_lock(&np->lock);
  2738. nv_link_irq(dev);
  2739. spin_unlock(&np->lock);
  2740. }
  2741. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2742. spin_lock(&np->lock);
  2743. nv_linkchange(dev);
  2744. spin_unlock(&np->lock);
  2745. np->link_timeout = jiffies + LINK_TIMEOUT;
  2746. }
  2747. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2748. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2749. dev->name, events);
  2750. }
  2751. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2752. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2753. dev->name, events);
  2754. }
  2755. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2756. spin_lock(&np->lock);
  2757. /* disable interrupts on the nic */
  2758. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2759. writel(0, base + NvRegIrqMask);
  2760. else
  2761. writel(np->irqmask, base + NvRegIrqMask);
  2762. pci_push(base);
  2763. if (!np->in_shutdown) {
  2764. np->nic_poll_irq = np->irqmask;
  2765. np->recover_error = 1;
  2766. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2767. }
  2768. spin_unlock(&np->lock);
  2769. break;
  2770. }
  2771. if (unlikely(i > max_interrupt_work)) {
  2772. spin_lock(&np->lock);
  2773. /* disable interrupts on the nic */
  2774. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2775. writel(0, base + NvRegIrqMask);
  2776. else
  2777. writel(np->irqmask, base + NvRegIrqMask);
  2778. pci_push(base);
  2779. if (!np->in_shutdown) {
  2780. np->nic_poll_irq = np->irqmask;
  2781. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2782. }
  2783. spin_unlock(&np->lock);
  2784. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2785. break;
  2786. }
  2787. }
  2788. dprintk(KERN_DEBUG "%s: nv_nic_irq completed\n", dev->name);
  2789. return IRQ_RETVAL(i);
  2790. }
  2791. /**
  2792. * All _optimized functions are used to help increase performance
  2793. * (reduce CPU and increase throughput). They use descripter version 3,
  2794. * compiler directives, and reduce memory accesses.
  2795. */
  2796. static irqreturn_t nv_nic_irq_optimized(int foo, void *data)
  2797. {
  2798. struct net_device *dev = (struct net_device *) data;
  2799. struct fe_priv *np = netdev_priv(dev);
  2800. u8 __iomem *base = get_hwbase(dev);
  2801. u32 events;
  2802. int i;
  2803. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized\n", dev->name);
  2804. for (i=0; ; i++) {
  2805. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  2806. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  2807. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  2808. } else {
  2809. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  2810. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  2811. }
  2812. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  2813. if (!(events & np->irqmask))
  2814. break;
  2815. spin_lock(&np->lock);
  2816. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  2817. spin_unlock(&np->lock);
  2818. #ifdef CONFIG_FORCEDETH_NAPI
  2819. if (events & NVREG_IRQ_RX_ALL) {
  2820. netif_rx_schedule(dev, &np->napi);
  2821. /* Disable furthur receive irq's */
  2822. spin_lock(&np->lock);
  2823. np->irqmask &= ~NVREG_IRQ_RX_ALL;
  2824. if (np->msi_flags & NV_MSI_X_ENABLED)
  2825. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2826. else
  2827. writel(np->irqmask, base + NvRegIrqMask);
  2828. spin_unlock(&np->lock);
  2829. }
  2830. #else
  2831. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  2832. if (unlikely(nv_alloc_rx_optimized(dev))) {
  2833. spin_lock(&np->lock);
  2834. if (!np->in_shutdown)
  2835. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2836. spin_unlock(&np->lock);
  2837. }
  2838. }
  2839. #endif
  2840. if (unlikely(events & NVREG_IRQ_LINK)) {
  2841. spin_lock(&np->lock);
  2842. nv_link_irq(dev);
  2843. spin_unlock(&np->lock);
  2844. }
  2845. if (unlikely(np->need_linktimer && time_after(jiffies, np->link_timeout))) {
  2846. spin_lock(&np->lock);
  2847. nv_linkchange(dev);
  2848. spin_unlock(&np->lock);
  2849. np->link_timeout = jiffies + LINK_TIMEOUT;
  2850. }
  2851. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2852. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2853. dev->name, events);
  2854. }
  2855. if (unlikely(events & (NVREG_IRQ_UNKNOWN))) {
  2856. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  2857. dev->name, events);
  2858. }
  2859. if (unlikely(events & NVREG_IRQ_RECOVER_ERROR)) {
  2860. spin_lock(&np->lock);
  2861. /* disable interrupts on the nic */
  2862. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2863. writel(0, base + NvRegIrqMask);
  2864. else
  2865. writel(np->irqmask, base + NvRegIrqMask);
  2866. pci_push(base);
  2867. if (!np->in_shutdown) {
  2868. np->nic_poll_irq = np->irqmask;
  2869. np->recover_error = 1;
  2870. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2871. }
  2872. spin_unlock(&np->lock);
  2873. break;
  2874. }
  2875. if (unlikely(i > max_interrupt_work)) {
  2876. spin_lock(&np->lock);
  2877. /* disable interrupts on the nic */
  2878. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  2879. writel(0, base + NvRegIrqMask);
  2880. else
  2881. writel(np->irqmask, base + NvRegIrqMask);
  2882. pci_push(base);
  2883. if (!np->in_shutdown) {
  2884. np->nic_poll_irq = np->irqmask;
  2885. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2886. }
  2887. spin_unlock(&np->lock);
  2888. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq.\n", dev->name, i);
  2889. break;
  2890. }
  2891. }
  2892. dprintk(KERN_DEBUG "%s: nv_nic_irq_optimized completed\n", dev->name);
  2893. return IRQ_RETVAL(i);
  2894. }
  2895. static irqreturn_t nv_nic_irq_tx(int foo, void *data)
  2896. {
  2897. struct net_device *dev = (struct net_device *) data;
  2898. struct fe_priv *np = netdev_priv(dev);
  2899. u8 __iomem *base = get_hwbase(dev);
  2900. u32 events;
  2901. int i;
  2902. unsigned long flags;
  2903. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx\n", dev->name);
  2904. for (i=0; ; i++) {
  2905. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_TX_ALL;
  2906. writel(NVREG_IRQ_TX_ALL, base + NvRegMSIXIrqStatus);
  2907. dprintk(KERN_DEBUG "%s: tx irq: %08x\n", dev->name, events);
  2908. if (!(events & np->irqmask))
  2909. break;
  2910. spin_lock_irqsave(&np->lock, flags);
  2911. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  2912. spin_unlock_irqrestore(&np->lock, flags);
  2913. if (unlikely(events & (NVREG_IRQ_TX_ERR))) {
  2914. dprintk(KERN_DEBUG "%s: received irq with events 0x%x. Probably TX fail.\n",
  2915. dev->name, events);
  2916. }
  2917. if (unlikely(i > max_interrupt_work)) {
  2918. spin_lock_irqsave(&np->lock, flags);
  2919. /* disable interrupts on the nic */
  2920. writel(NVREG_IRQ_TX_ALL, base + NvRegIrqMask);
  2921. pci_push(base);
  2922. if (!np->in_shutdown) {
  2923. np->nic_poll_irq |= NVREG_IRQ_TX_ALL;
  2924. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  2925. }
  2926. spin_unlock_irqrestore(&np->lock, flags);
  2927. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_tx.\n", dev->name, i);
  2928. break;
  2929. }
  2930. }
  2931. dprintk(KERN_DEBUG "%s: nv_nic_irq_tx completed\n", dev->name);
  2932. return IRQ_RETVAL(i);
  2933. }
  2934. #ifdef CONFIG_FORCEDETH_NAPI
  2935. static int nv_napi_poll(struct napi_struct *napi, int budget)
  2936. {
  2937. struct fe_priv *np = container_of(napi, struct fe_priv, napi);
  2938. struct net_device *dev = np->dev;
  2939. u8 __iomem *base = get_hwbase(dev);
  2940. unsigned long flags;
  2941. int pkts, retcode;
  2942. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  2943. pkts = nv_rx_process(dev, budget);
  2944. retcode = nv_alloc_rx(dev);
  2945. } else {
  2946. pkts = nv_rx_process_optimized(dev, budget);
  2947. retcode = nv_alloc_rx_optimized(dev);
  2948. }
  2949. if (retcode) {
  2950. spin_lock_irqsave(&np->lock, flags);
  2951. if (!np->in_shutdown)
  2952. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  2953. spin_unlock_irqrestore(&np->lock, flags);
  2954. }
  2955. if (pkts < budget) {
  2956. /* re-enable receive interrupts */
  2957. spin_lock_irqsave(&np->lock, flags);
  2958. __netif_rx_complete(dev, napi);
  2959. np->irqmask |= NVREG_IRQ_RX_ALL;
  2960. if (np->msi_flags & NV_MSI_X_ENABLED)
  2961. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2962. else
  2963. writel(np->irqmask, base + NvRegIrqMask);
  2964. spin_unlock_irqrestore(&np->lock, flags);
  2965. }
  2966. return pkts;
  2967. }
  2968. #endif
  2969. #ifdef CONFIG_FORCEDETH_NAPI
  2970. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2971. {
  2972. struct net_device *dev = (struct net_device *) data;
  2973. struct fe_priv *np = netdev_priv(dev);
  2974. u8 __iomem *base = get_hwbase(dev);
  2975. u32 events;
  2976. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2977. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2978. if (events) {
  2979. netif_rx_schedule(dev, &np->napi);
  2980. /* disable receive interrupts on the nic */
  2981. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  2982. pci_push(base);
  2983. }
  2984. return IRQ_HANDLED;
  2985. }
  2986. #else
  2987. static irqreturn_t nv_nic_irq_rx(int foo, void *data)
  2988. {
  2989. struct net_device *dev = (struct net_device *) data;
  2990. struct fe_priv *np = netdev_priv(dev);
  2991. u8 __iomem *base = get_hwbase(dev);
  2992. u32 events;
  2993. int i;
  2994. unsigned long flags;
  2995. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx\n", dev->name);
  2996. for (i=0; ; i++) {
  2997. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_RX_ALL;
  2998. writel(NVREG_IRQ_RX_ALL, base + NvRegMSIXIrqStatus);
  2999. dprintk(KERN_DEBUG "%s: rx irq: %08x\n", dev->name, events);
  3000. if (!(events & np->irqmask))
  3001. break;
  3002. if (nv_rx_process_optimized(dev, RX_WORK_PER_LOOP)) {
  3003. if (unlikely(nv_alloc_rx_optimized(dev))) {
  3004. spin_lock_irqsave(&np->lock, flags);
  3005. if (!np->in_shutdown)
  3006. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3007. spin_unlock_irqrestore(&np->lock, flags);
  3008. }
  3009. }
  3010. if (unlikely(i > max_interrupt_work)) {
  3011. spin_lock_irqsave(&np->lock, flags);
  3012. /* disable interrupts on the nic */
  3013. writel(NVREG_IRQ_RX_ALL, base + NvRegIrqMask);
  3014. pci_push(base);
  3015. if (!np->in_shutdown) {
  3016. np->nic_poll_irq |= NVREG_IRQ_RX_ALL;
  3017. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3018. }
  3019. spin_unlock_irqrestore(&np->lock, flags);
  3020. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_rx.\n", dev->name, i);
  3021. break;
  3022. }
  3023. }
  3024. dprintk(KERN_DEBUG "%s: nv_nic_irq_rx completed\n", dev->name);
  3025. return IRQ_RETVAL(i);
  3026. }
  3027. #endif
  3028. static irqreturn_t nv_nic_irq_other(int foo, void *data)
  3029. {
  3030. struct net_device *dev = (struct net_device *) data;
  3031. struct fe_priv *np = netdev_priv(dev);
  3032. u8 __iomem *base = get_hwbase(dev);
  3033. u32 events;
  3034. int i;
  3035. unsigned long flags;
  3036. dprintk(KERN_DEBUG "%s: nv_nic_irq_other\n", dev->name);
  3037. for (i=0; ; i++) {
  3038. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQ_OTHER;
  3039. writel(NVREG_IRQ_OTHER, base + NvRegMSIXIrqStatus);
  3040. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3041. if (!(events & np->irqmask))
  3042. break;
  3043. /* check tx in case we reached max loop limit in tx isr */
  3044. spin_lock_irqsave(&np->lock, flags);
  3045. nv_tx_done_optimized(dev, TX_WORK_PER_LOOP);
  3046. spin_unlock_irqrestore(&np->lock, flags);
  3047. if (events & NVREG_IRQ_LINK) {
  3048. spin_lock_irqsave(&np->lock, flags);
  3049. nv_link_irq(dev);
  3050. spin_unlock_irqrestore(&np->lock, flags);
  3051. }
  3052. if (np->need_linktimer && time_after(jiffies, np->link_timeout)) {
  3053. spin_lock_irqsave(&np->lock, flags);
  3054. nv_linkchange(dev);
  3055. spin_unlock_irqrestore(&np->lock, flags);
  3056. np->link_timeout = jiffies + LINK_TIMEOUT;
  3057. }
  3058. if (events & NVREG_IRQ_RECOVER_ERROR) {
  3059. spin_lock_irq(&np->lock);
  3060. /* disable interrupts on the nic */
  3061. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3062. pci_push(base);
  3063. if (!np->in_shutdown) {
  3064. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3065. np->recover_error = 1;
  3066. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3067. }
  3068. spin_unlock_irq(&np->lock);
  3069. break;
  3070. }
  3071. if (events & (NVREG_IRQ_UNKNOWN)) {
  3072. printk(KERN_DEBUG "%s: received irq with unknown events 0x%x. Please report\n",
  3073. dev->name, events);
  3074. }
  3075. if (unlikely(i > max_interrupt_work)) {
  3076. spin_lock_irqsave(&np->lock, flags);
  3077. /* disable interrupts on the nic */
  3078. writel(NVREG_IRQ_OTHER, base + NvRegIrqMask);
  3079. pci_push(base);
  3080. if (!np->in_shutdown) {
  3081. np->nic_poll_irq |= NVREG_IRQ_OTHER;
  3082. mod_timer(&np->nic_poll, jiffies + POLL_WAIT);
  3083. }
  3084. spin_unlock_irqrestore(&np->lock, flags);
  3085. printk(KERN_DEBUG "%s: too many iterations (%d) in nv_nic_irq_other.\n", dev->name, i);
  3086. break;
  3087. }
  3088. }
  3089. dprintk(KERN_DEBUG "%s: nv_nic_irq_other completed\n", dev->name);
  3090. return IRQ_RETVAL(i);
  3091. }
  3092. static irqreturn_t nv_nic_irq_test(int foo, void *data)
  3093. {
  3094. struct net_device *dev = (struct net_device *) data;
  3095. struct fe_priv *np = netdev_priv(dev);
  3096. u8 __iomem *base = get_hwbase(dev);
  3097. u32 events;
  3098. dprintk(KERN_DEBUG "%s: nv_nic_irq_test\n", dev->name);
  3099. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  3100. events = readl(base + NvRegIrqStatus) & NVREG_IRQSTAT_MASK;
  3101. writel(NVREG_IRQ_TIMER, base + NvRegIrqStatus);
  3102. } else {
  3103. events = readl(base + NvRegMSIXIrqStatus) & NVREG_IRQSTAT_MASK;
  3104. writel(NVREG_IRQ_TIMER, base + NvRegMSIXIrqStatus);
  3105. }
  3106. pci_push(base);
  3107. dprintk(KERN_DEBUG "%s: irq: %08x\n", dev->name, events);
  3108. if (!(events & NVREG_IRQ_TIMER))
  3109. return IRQ_RETVAL(0);
  3110. spin_lock(&np->lock);
  3111. np->intr_test = 1;
  3112. spin_unlock(&np->lock);
  3113. dprintk(KERN_DEBUG "%s: nv_nic_irq_test completed\n", dev->name);
  3114. return IRQ_RETVAL(1);
  3115. }
  3116. static void set_msix_vector_map(struct net_device *dev, u32 vector, u32 irqmask)
  3117. {
  3118. u8 __iomem *base = get_hwbase(dev);
  3119. int i;
  3120. u32 msixmap = 0;
  3121. /* Each interrupt bit can be mapped to a MSIX vector (4 bits).
  3122. * MSIXMap0 represents the first 8 interrupts and MSIXMap1 represents
  3123. * the remaining 8 interrupts.
  3124. */
  3125. for (i = 0; i < 8; i++) {
  3126. if ((irqmask >> i) & 0x1) {
  3127. msixmap |= vector << (i << 2);
  3128. }
  3129. }
  3130. writel(readl(base + NvRegMSIXMap0) | msixmap, base + NvRegMSIXMap0);
  3131. msixmap = 0;
  3132. for (i = 0; i < 8; i++) {
  3133. if ((irqmask >> (i + 8)) & 0x1) {
  3134. msixmap |= vector << (i << 2);
  3135. }
  3136. }
  3137. writel(readl(base + NvRegMSIXMap1) | msixmap, base + NvRegMSIXMap1);
  3138. }
  3139. static int nv_request_irq(struct net_device *dev, int intr_test)
  3140. {
  3141. struct fe_priv *np = get_nvpriv(dev);
  3142. u8 __iomem *base = get_hwbase(dev);
  3143. int ret = 1;
  3144. int i;
  3145. irqreturn_t (*handler)(int foo, void *data);
  3146. if (intr_test) {
  3147. handler = nv_nic_irq_test;
  3148. } else {
  3149. if (np->desc_ver == DESC_VER_3)
  3150. handler = nv_nic_irq_optimized;
  3151. else
  3152. handler = nv_nic_irq;
  3153. }
  3154. if (np->msi_flags & NV_MSI_X_CAPABLE) {
  3155. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3156. np->msi_x_entry[i].entry = i;
  3157. }
  3158. if ((ret = pci_enable_msix(np->pci_dev, np->msi_x_entry, (np->msi_flags & NV_MSI_X_VECTORS_MASK))) == 0) {
  3159. np->msi_flags |= NV_MSI_X_ENABLED;
  3160. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT && !intr_test) {
  3161. /* Request irq for rx handling */
  3162. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, &nv_nic_irq_rx, IRQF_SHARED, dev->name, dev) != 0) {
  3163. printk(KERN_INFO "forcedeth: request_irq failed for rx %d\n", ret);
  3164. pci_disable_msix(np->pci_dev);
  3165. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3166. goto out_err;
  3167. }
  3168. /* Request irq for tx handling */
  3169. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, &nv_nic_irq_tx, IRQF_SHARED, dev->name, dev) != 0) {
  3170. printk(KERN_INFO "forcedeth: request_irq failed for tx %d\n", ret);
  3171. pci_disable_msix(np->pci_dev);
  3172. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3173. goto out_free_rx;
  3174. }
  3175. /* Request irq for link and timer handling */
  3176. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector, &nv_nic_irq_other, IRQF_SHARED, dev->name, dev) != 0) {
  3177. printk(KERN_INFO "forcedeth: request_irq failed for link %d\n", ret);
  3178. pci_disable_msix(np->pci_dev);
  3179. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3180. goto out_free_tx;
  3181. }
  3182. /* map interrupts to their respective vector */
  3183. writel(0, base + NvRegMSIXMap0);
  3184. writel(0, base + NvRegMSIXMap1);
  3185. set_msix_vector_map(dev, NV_MSI_X_VECTOR_RX, NVREG_IRQ_RX_ALL);
  3186. set_msix_vector_map(dev, NV_MSI_X_VECTOR_TX, NVREG_IRQ_TX_ALL);
  3187. set_msix_vector_map(dev, NV_MSI_X_VECTOR_OTHER, NVREG_IRQ_OTHER);
  3188. } else {
  3189. /* Request irq for all interrupts */
  3190. if (request_irq(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3191. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3192. pci_disable_msix(np->pci_dev);
  3193. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3194. goto out_err;
  3195. }
  3196. /* map interrupts to vector 0 */
  3197. writel(0, base + NvRegMSIXMap0);
  3198. writel(0, base + NvRegMSIXMap1);
  3199. }
  3200. }
  3201. }
  3202. if (ret != 0 && np->msi_flags & NV_MSI_CAPABLE) {
  3203. if ((ret = pci_enable_msi(np->pci_dev)) == 0) {
  3204. np->msi_flags |= NV_MSI_ENABLED;
  3205. dev->irq = np->pci_dev->irq;
  3206. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0) {
  3207. printk(KERN_INFO "forcedeth: request_irq failed %d\n", ret);
  3208. pci_disable_msi(np->pci_dev);
  3209. np->msi_flags &= ~NV_MSI_ENABLED;
  3210. dev->irq = np->pci_dev->irq;
  3211. goto out_err;
  3212. }
  3213. /* map interrupts to vector 0 */
  3214. writel(0, base + NvRegMSIMap0);
  3215. writel(0, base + NvRegMSIMap1);
  3216. /* enable msi vector 0 */
  3217. writel(NVREG_MSI_VECTOR_0_ENABLED, base + NvRegMSIIrqMask);
  3218. }
  3219. }
  3220. if (ret != 0) {
  3221. if (request_irq(np->pci_dev->irq, handler, IRQF_SHARED, dev->name, dev) != 0)
  3222. goto out_err;
  3223. }
  3224. return 0;
  3225. out_free_tx:
  3226. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector, dev);
  3227. out_free_rx:
  3228. free_irq(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector, dev);
  3229. out_err:
  3230. return 1;
  3231. }
  3232. static void nv_free_irq(struct net_device *dev)
  3233. {
  3234. struct fe_priv *np = get_nvpriv(dev);
  3235. int i;
  3236. if (np->msi_flags & NV_MSI_X_ENABLED) {
  3237. for (i = 0; i < (np->msi_flags & NV_MSI_X_VECTORS_MASK); i++) {
  3238. free_irq(np->msi_x_entry[i].vector, dev);
  3239. }
  3240. pci_disable_msix(np->pci_dev);
  3241. np->msi_flags &= ~NV_MSI_X_ENABLED;
  3242. } else {
  3243. free_irq(np->pci_dev->irq, dev);
  3244. if (np->msi_flags & NV_MSI_ENABLED) {
  3245. pci_disable_msi(np->pci_dev);
  3246. np->msi_flags &= ~NV_MSI_ENABLED;
  3247. }
  3248. }
  3249. }
  3250. static void nv_do_nic_poll(unsigned long data)
  3251. {
  3252. struct net_device *dev = (struct net_device *) data;
  3253. struct fe_priv *np = netdev_priv(dev);
  3254. u8 __iomem *base = get_hwbase(dev);
  3255. u32 mask = 0;
  3256. /*
  3257. * First disable irq(s) and then
  3258. * reenable interrupts on the nic, we have to do this before calling
  3259. * nv_nic_irq because that may decide to do otherwise
  3260. */
  3261. if (!using_multi_irqs(dev)) {
  3262. if (np->msi_flags & NV_MSI_X_ENABLED)
  3263. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3264. else
  3265. disable_irq_lockdep(np->pci_dev->irq);
  3266. mask = np->irqmask;
  3267. } else {
  3268. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3269. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3270. mask |= NVREG_IRQ_RX_ALL;
  3271. }
  3272. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3273. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3274. mask |= NVREG_IRQ_TX_ALL;
  3275. }
  3276. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3277. disable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3278. mask |= NVREG_IRQ_OTHER;
  3279. }
  3280. }
  3281. np->nic_poll_irq = 0;
  3282. /* disable_irq() contains synchronize_irq, thus no irq handler can run now */
  3283. if (np->recover_error) {
  3284. np->recover_error = 0;
  3285. printk(KERN_INFO "forcedeth: MAC in recoverable error state\n");
  3286. if (netif_running(dev)) {
  3287. netif_tx_lock_bh(dev);
  3288. spin_lock(&np->lock);
  3289. /* stop engines */
  3290. nv_stop_rx(dev);
  3291. nv_stop_tx(dev);
  3292. nv_txrx_reset(dev);
  3293. /* drain rx queue */
  3294. nv_drain_rx(dev);
  3295. nv_drain_tx(dev);
  3296. /* reinit driver view of the rx queue */
  3297. set_bufsize(dev);
  3298. if (nv_init_ring(dev)) {
  3299. if (!np->in_shutdown)
  3300. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3301. }
  3302. /* reinit nic view of the rx queue */
  3303. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3304. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3305. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3306. base + NvRegRingSizes);
  3307. pci_push(base);
  3308. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3309. pci_push(base);
  3310. /* restart rx engine */
  3311. nv_start_rx(dev);
  3312. nv_start_tx(dev);
  3313. spin_unlock(&np->lock);
  3314. netif_tx_unlock_bh(dev);
  3315. }
  3316. }
  3317. writel(mask, base + NvRegIrqMask);
  3318. pci_push(base);
  3319. if (!using_multi_irqs(dev)) {
  3320. if (np->desc_ver == DESC_VER_3)
  3321. nv_nic_irq_optimized(0, dev);
  3322. else
  3323. nv_nic_irq(0, dev);
  3324. if (np->msi_flags & NV_MSI_X_ENABLED)
  3325. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_ALL].vector);
  3326. else
  3327. enable_irq_lockdep(np->pci_dev->irq);
  3328. } else {
  3329. if (np->nic_poll_irq & NVREG_IRQ_RX_ALL) {
  3330. nv_nic_irq_rx(0, dev);
  3331. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_RX].vector);
  3332. }
  3333. if (np->nic_poll_irq & NVREG_IRQ_TX_ALL) {
  3334. nv_nic_irq_tx(0, dev);
  3335. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_TX].vector);
  3336. }
  3337. if (np->nic_poll_irq & NVREG_IRQ_OTHER) {
  3338. nv_nic_irq_other(0, dev);
  3339. enable_irq_lockdep(np->msi_x_entry[NV_MSI_X_VECTOR_OTHER].vector);
  3340. }
  3341. }
  3342. }
  3343. #ifdef CONFIG_NET_POLL_CONTROLLER
  3344. static void nv_poll_controller(struct net_device *dev)
  3345. {
  3346. nv_do_nic_poll((unsigned long) dev);
  3347. }
  3348. #endif
  3349. static void nv_do_stats_poll(unsigned long data)
  3350. {
  3351. struct net_device *dev = (struct net_device *) data;
  3352. struct fe_priv *np = netdev_priv(dev);
  3353. nv_get_hw_stats(dev);
  3354. if (!np->in_shutdown)
  3355. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  3356. }
  3357. static void nv_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  3358. {
  3359. struct fe_priv *np = netdev_priv(dev);
  3360. strcpy(info->driver, DRV_NAME);
  3361. strcpy(info->version, FORCEDETH_VERSION);
  3362. strcpy(info->bus_info, pci_name(np->pci_dev));
  3363. }
  3364. static void nv_get_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3365. {
  3366. struct fe_priv *np = netdev_priv(dev);
  3367. wolinfo->supported = WAKE_MAGIC;
  3368. spin_lock_irq(&np->lock);
  3369. if (np->wolenabled)
  3370. wolinfo->wolopts = WAKE_MAGIC;
  3371. spin_unlock_irq(&np->lock);
  3372. }
  3373. static int nv_set_wol(struct net_device *dev, struct ethtool_wolinfo *wolinfo)
  3374. {
  3375. struct fe_priv *np = netdev_priv(dev);
  3376. u8 __iomem *base = get_hwbase(dev);
  3377. u32 flags = 0;
  3378. if (wolinfo->wolopts == 0) {
  3379. np->wolenabled = 0;
  3380. } else if (wolinfo->wolopts & WAKE_MAGIC) {
  3381. np->wolenabled = 1;
  3382. flags = NVREG_WAKEUPFLAGS_ENABLE;
  3383. }
  3384. if (netif_running(dev)) {
  3385. spin_lock_irq(&np->lock);
  3386. writel(flags, base + NvRegWakeUpFlags);
  3387. spin_unlock_irq(&np->lock);
  3388. }
  3389. return 0;
  3390. }
  3391. static int nv_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3392. {
  3393. struct fe_priv *np = netdev_priv(dev);
  3394. int adv;
  3395. spin_lock_irq(&np->lock);
  3396. ecmd->port = PORT_MII;
  3397. if (!netif_running(dev)) {
  3398. /* We do not track link speed / duplex setting if the
  3399. * interface is disabled. Force a link check */
  3400. if (nv_update_linkspeed(dev)) {
  3401. if (!netif_carrier_ok(dev))
  3402. netif_carrier_on(dev);
  3403. } else {
  3404. if (netif_carrier_ok(dev))
  3405. netif_carrier_off(dev);
  3406. }
  3407. }
  3408. if (netif_carrier_ok(dev)) {
  3409. switch(np->linkspeed & (NVREG_LINKSPEED_MASK)) {
  3410. case NVREG_LINKSPEED_10:
  3411. ecmd->speed = SPEED_10;
  3412. break;
  3413. case NVREG_LINKSPEED_100:
  3414. ecmd->speed = SPEED_100;
  3415. break;
  3416. case NVREG_LINKSPEED_1000:
  3417. ecmd->speed = SPEED_1000;
  3418. break;
  3419. }
  3420. ecmd->duplex = DUPLEX_HALF;
  3421. if (np->duplex)
  3422. ecmd->duplex = DUPLEX_FULL;
  3423. } else {
  3424. ecmd->speed = -1;
  3425. ecmd->duplex = -1;
  3426. }
  3427. ecmd->autoneg = np->autoneg;
  3428. ecmd->advertising = ADVERTISED_MII;
  3429. if (np->autoneg) {
  3430. ecmd->advertising |= ADVERTISED_Autoneg;
  3431. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3432. if (adv & ADVERTISE_10HALF)
  3433. ecmd->advertising |= ADVERTISED_10baseT_Half;
  3434. if (adv & ADVERTISE_10FULL)
  3435. ecmd->advertising |= ADVERTISED_10baseT_Full;
  3436. if (adv & ADVERTISE_100HALF)
  3437. ecmd->advertising |= ADVERTISED_100baseT_Half;
  3438. if (adv & ADVERTISE_100FULL)
  3439. ecmd->advertising |= ADVERTISED_100baseT_Full;
  3440. if (np->gigabit == PHY_GIGABIT) {
  3441. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3442. if (adv & ADVERTISE_1000FULL)
  3443. ecmd->advertising |= ADVERTISED_1000baseT_Full;
  3444. }
  3445. }
  3446. ecmd->supported = (SUPPORTED_Autoneg |
  3447. SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
  3448. SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
  3449. SUPPORTED_MII);
  3450. if (np->gigabit == PHY_GIGABIT)
  3451. ecmd->supported |= SUPPORTED_1000baseT_Full;
  3452. ecmd->phy_address = np->phyaddr;
  3453. ecmd->transceiver = XCVR_EXTERNAL;
  3454. /* ignore maxtxpkt, maxrxpkt for now */
  3455. spin_unlock_irq(&np->lock);
  3456. return 0;
  3457. }
  3458. static int nv_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  3459. {
  3460. struct fe_priv *np = netdev_priv(dev);
  3461. if (ecmd->port != PORT_MII)
  3462. return -EINVAL;
  3463. if (ecmd->transceiver != XCVR_EXTERNAL)
  3464. return -EINVAL;
  3465. if (ecmd->phy_address != np->phyaddr) {
  3466. /* TODO: support switching between multiple phys. Should be
  3467. * trivial, but not enabled due to lack of test hardware. */
  3468. return -EINVAL;
  3469. }
  3470. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3471. u32 mask;
  3472. mask = ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full |
  3473. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full;
  3474. if (np->gigabit == PHY_GIGABIT)
  3475. mask |= ADVERTISED_1000baseT_Full;
  3476. if ((ecmd->advertising & mask) == 0)
  3477. return -EINVAL;
  3478. } else if (ecmd->autoneg == AUTONEG_DISABLE) {
  3479. /* Note: autonegotiation disable, speed 1000 intentionally
  3480. * forbidden - noone should need that. */
  3481. if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
  3482. return -EINVAL;
  3483. if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
  3484. return -EINVAL;
  3485. } else {
  3486. return -EINVAL;
  3487. }
  3488. netif_carrier_off(dev);
  3489. if (netif_running(dev)) {
  3490. nv_disable_irq(dev);
  3491. netif_tx_lock_bh(dev);
  3492. spin_lock(&np->lock);
  3493. /* stop engines */
  3494. nv_stop_rx(dev);
  3495. nv_stop_tx(dev);
  3496. spin_unlock(&np->lock);
  3497. netif_tx_unlock_bh(dev);
  3498. }
  3499. if (ecmd->autoneg == AUTONEG_ENABLE) {
  3500. int adv, bmcr;
  3501. np->autoneg = 1;
  3502. /* advertise only what has been requested */
  3503. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3504. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3505. if (ecmd->advertising & ADVERTISED_10baseT_Half)
  3506. adv |= ADVERTISE_10HALF;
  3507. if (ecmd->advertising & ADVERTISED_10baseT_Full)
  3508. adv |= ADVERTISE_10FULL;
  3509. if (ecmd->advertising & ADVERTISED_100baseT_Half)
  3510. adv |= ADVERTISE_100HALF;
  3511. if (ecmd->advertising & ADVERTISED_100baseT_Full)
  3512. adv |= ADVERTISE_100FULL;
  3513. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3514. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3515. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3516. adv |= ADVERTISE_PAUSE_ASYM;
  3517. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3518. if (np->gigabit == PHY_GIGABIT) {
  3519. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3520. adv &= ~ADVERTISE_1000FULL;
  3521. if (ecmd->advertising & ADVERTISED_1000baseT_Full)
  3522. adv |= ADVERTISE_1000FULL;
  3523. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3524. }
  3525. if (netif_running(dev))
  3526. printk(KERN_INFO "%s: link down.\n", dev->name);
  3527. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3528. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3529. bmcr |= BMCR_ANENABLE;
  3530. /* reset the phy in order for settings to stick,
  3531. * and cause autoneg to start */
  3532. if (phy_reset(dev, bmcr)) {
  3533. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3534. return -EINVAL;
  3535. }
  3536. } else {
  3537. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3538. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3539. }
  3540. } else {
  3541. int adv, bmcr;
  3542. np->autoneg = 0;
  3543. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3544. adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4 | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3545. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_HALF)
  3546. adv |= ADVERTISE_10HALF;
  3547. if (ecmd->speed == SPEED_10 && ecmd->duplex == DUPLEX_FULL)
  3548. adv |= ADVERTISE_10FULL;
  3549. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_HALF)
  3550. adv |= ADVERTISE_100HALF;
  3551. if (ecmd->speed == SPEED_100 && ecmd->duplex == DUPLEX_FULL)
  3552. adv |= ADVERTISE_100FULL;
  3553. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3554. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) {/* for rx we set both advertisments but disable tx pause */
  3555. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3556. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3557. }
  3558. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ) {
  3559. adv |= ADVERTISE_PAUSE_ASYM;
  3560. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3561. }
  3562. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3563. np->fixed_mode = adv;
  3564. if (np->gigabit == PHY_GIGABIT) {
  3565. adv = mii_rw(dev, np->phyaddr, MII_CTRL1000, MII_READ);
  3566. adv &= ~ADVERTISE_1000FULL;
  3567. mii_rw(dev, np->phyaddr, MII_CTRL1000, adv);
  3568. }
  3569. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3570. bmcr &= ~(BMCR_ANENABLE|BMCR_SPEED100|BMCR_SPEED1000|BMCR_FULLDPLX);
  3571. if (np->fixed_mode & (ADVERTISE_10FULL|ADVERTISE_100FULL))
  3572. bmcr |= BMCR_FULLDPLX;
  3573. if (np->fixed_mode & (ADVERTISE_100HALF|ADVERTISE_100FULL))
  3574. bmcr |= BMCR_SPEED100;
  3575. if (np->phy_oui == PHY_OUI_MARVELL) {
  3576. /* reset the phy in order for forced mode settings to stick */
  3577. if (phy_reset(dev, bmcr)) {
  3578. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3579. return -EINVAL;
  3580. }
  3581. } else {
  3582. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3583. if (netif_running(dev)) {
  3584. /* Wait a bit and then reconfigure the nic. */
  3585. udelay(10);
  3586. nv_linkchange(dev);
  3587. }
  3588. }
  3589. }
  3590. if (netif_running(dev)) {
  3591. nv_start_rx(dev);
  3592. nv_start_tx(dev);
  3593. nv_enable_irq(dev);
  3594. }
  3595. return 0;
  3596. }
  3597. #define FORCEDETH_REGS_VER 1
  3598. static int nv_get_regs_len(struct net_device *dev)
  3599. {
  3600. struct fe_priv *np = netdev_priv(dev);
  3601. return np->register_size;
  3602. }
  3603. static void nv_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
  3604. {
  3605. struct fe_priv *np = netdev_priv(dev);
  3606. u8 __iomem *base = get_hwbase(dev);
  3607. u32 *rbuf = buf;
  3608. int i;
  3609. regs->version = FORCEDETH_REGS_VER;
  3610. spin_lock_irq(&np->lock);
  3611. for (i = 0;i <= np->register_size/sizeof(u32); i++)
  3612. rbuf[i] = readl(base + i*sizeof(u32));
  3613. spin_unlock_irq(&np->lock);
  3614. }
  3615. static int nv_nway_reset(struct net_device *dev)
  3616. {
  3617. struct fe_priv *np = netdev_priv(dev);
  3618. int ret;
  3619. if (np->autoneg) {
  3620. int bmcr;
  3621. netif_carrier_off(dev);
  3622. if (netif_running(dev)) {
  3623. nv_disable_irq(dev);
  3624. netif_tx_lock_bh(dev);
  3625. spin_lock(&np->lock);
  3626. /* stop engines */
  3627. nv_stop_rx(dev);
  3628. nv_stop_tx(dev);
  3629. spin_unlock(&np->lock);
  3630. netif_tx_unlock_bh(dev);
  3631. printk(KERN_INFO "%s: link down.\n", dev->name);
  3632. }
  3633. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3634. if (np->phy_model == PHY_MODEL_MARVELL_E3016) {
  3635. bmcr |= BMCR_ANENABLE;
  3636. /* reset the phy in order for settings to stick*/
  3637. if (phy_reset(dev, bmcr)) {
  3638. printk(KERN_INFO "%s: phy reset failed\n", dev->name);
  3639. return -EINVAL;
  3640. }
  3641. } else {
  3642. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3643. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3644. }
  3645. if (netif_running(dev)) {
  3646. nv_start_rx(dev);
  3647. nv_start_tx(dev);
  3648. nv_enable_irq(dev);
  3649. }
  3650. ret = 0;
  3651. } else {
  3652. ret = -EINVAL;
  3653. }
  3654. return ret;
  3655. }
  3656. static int nv_set_tso(struct net_device *dev, u32 value)
  3657. {
  3658. struct fe_priv *np = netdev_priv(dev);
  3659. if ((np->driver_data & DEV_HAS_CHECKSUM))
  3660. return ethtool_op_set_tso(dev, value);
  3661. else
  3662. return -EOPNOTSUPP;
  3663. }
  3664. static void nv_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3665. {
  3666. struct fe_priv *np = netdev_priv(dev);
  3667. ring->rx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3668. ring->rx_mini_max_pending = 0;
  3669. ring->rx_jumbo_max_pending = 0;
  3670. ring->tx_max_pending = (np->desc_ver == DESC_VER_1) ? RING_MAX_DESC_VER_1 : RING_MAX_DESC_VER_2_3;
  3671. ring->rx_pending = np->rx_ring_size;
  3672. ring->rx_mini_pending = 0;
  3673. ring->rx_jumbo_pending = 0;
  3674. ring->tx_pending = np->tx_ring_size;
  3675. }
  3676. static int nv_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
  3677. {
  3678. struct fe_priv *np = netdev_priv(dev);
  3679. u8 __iomem *base = get_hwbase(dev);
  3680. u8 *rxtx_ring, *rx_skbuff, *tx_skbuff;
  3681. dma_addr_t ring_addr;
  3682. if (ring->rx_pending < RX_RING_MIN ||
  3683. ring->tx_pending < TX_RING_MIN ||
  3684. ring->rx_mini_pending != 0 ||
  3685. ring->rx_jumbo_pending != 0 ||
  3686. (np->desc_ver == DESC_VER_1 &&
  3687. (ring->rx_pending > RING_MAX_DESC_VER_1 ||
  3688. ring->tx_pending > RING_MAX_DESC_VER_1)) ||
  3689. (np->desc_ver != DESC_VER_1 &&
  3690. (ring->rx_pending > RING_MAX_DESC_VER_2_3 ||
  3691. ring->tx_pending > RING_MAX_DESC_VER_2_3))) {
  3692. return -EINVAL;
  3693. }
  3694. /* allocate new rings */
  3695. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3696. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3697. sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3698. &ring_addr);
  3699. } else {
  3700. rxtx_ring = pci_alloc_consistent(np->pci_dev,
  3701. sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3702. &ring_addr);
  3703. }
  3704. rx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->rx_pending, GFP_KERNEL);
  3705. tx_skbuff = kmalloc(sizeof(struct nv_skb_map) * ring->tx_pending, GFP_KERNEL);
  3706. if (!rxtx_ring || !rx_skbuff || !tx_skbuff) {
  3707. /* fall back to old rings */
  3708. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3709. if (rxtx_ring)
  3710. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc) * (ring->rx_pending + ring->tx_pending),
  3711. rxtx_ring, ring_addr);
  3712. } else {
  3713. if (rxtx_ring)
  3714. pci_free_consistent(np->pci_dev, sizeof(struct ring_desc_ex) * (ring->rx_pending + ring->tx_pending),
  3715. rxtx_ring, ring_addr);
  3716. }
  3717. if (rx_skbuff)
  3718. kfree(rx_skbuff);
  3719. if (tx_skbuff)
  3720. kfree(tx_skbuff);
  3721. goto exit;
  3722. }
  3723. if (netif_running(dev)) {
  3724. nv_disable_irq(dev);
  3725. netif_tx_lock_bh(dev);
  3726. spin_lock(&np->lock);
  3727. /* stop engines */
  3728. nv_stop_rx(dev);
  3729. nv_stop_tx(dev);
  3730. nv_txrx_reset(dev);
  3731. /* drain queues */
  3732. nv_drain_rx(dev);
  3733. nv_drain_tx(dev);
  3734. /* delete queues */
  3735. free_rings(dev);
  3736. }
  3737. /* set new values */
  3738. np->rx_ring_size = ring->rx_pending;
  3739. np->tx_ring_size = ring->tx_pending;
  3740. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  3741. np->rx_ring.orig = (struct ring_desc*)rxtx_ring;
  3742. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  3743. } else {
  3744. np->rx_ring.ex = (struct ring_desc_ex*)rxtx_ring;
  3745. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  3746. }
  3747. np->rx_skb = (struct nv_skb_map*)rx_skbuff;
  3748. np->tx_skb = (struct nv_skb_map*)tx_skbuff;
  3749. np->ring_addr = ring_addr;
  3750. memset(np->rx_skb, 0, sizeof(struct nv_skb_map) * np->rx_ring_size);
  3751. memset(np->tx_skb, 0, sizeof(struct nv_skb_map) * np->tx_ring_size);
  3752. if (netif_running(dev)) {
  3753. /* reinit driver view of the queues */
  3754. set_bufsize(dev);
  3755. if (nv_init_ring(dev)) {
  3756. if (!np->in_shutdown)
  3757. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  3758. }
  3759. /* reinit nic view of the queues */
  3760. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  3761. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  3762. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  3763. base + NvRegRingSizes);
  3764. pci_push(base);
  3765. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  3766. pci_push(base);
  3767. /* restart engines */
  3768. nv_start_rx(dev);
  3769. nv_start_tx(dev);
  3770. spin_unlock(&np->lock);
  3771. netif_tx_unlock_bh(dev);
  3772. nv_enable_irq(dev);
  3773. }
  3774. return 0;
  3775. exit:
  3776. return -ENOMEM;
  3777. }
  3778. static void nv_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3779. {
  3780. struct fe_priv *np = netdev_priv(dev);
  3781. pause->autoneg = (np->pause_flags & NV_PAUSEFRAME_AUTONEG) != 0;
  3782. pause->rx_pause = (np->pause_flags & NV_PAUSEFRAME_RX_ENABLE) != 0;
  3783. pause->tx_pause = (np->pause_flags & NV_PAUSEFRAME_TX_ENABLE) != 0;
  3784. }
  3785. static int nv_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam* pause)
  3786. {
  3787. struct fe_priv *np = netdev_priv(dev);
  3788. int adv, bmcr;
  3789. if ((!np->autoneg && np->duplex == 0) ||
  3790. (np->autoneg && !pause->autoneg && np->duplex == 0)) {
  3791. printk(KERN_INFO "%s: can not set pause settings when forced link is in half duplex.\n",
  3792. dev->name);
  3793. return -EINVAL;
  3794. }
  3795. if (pause->tx_pause && !(np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)) {
  3796. printk(KERN_INFO "%s: hardware does not support tx pause frames.\n", dev->name);
  3797. return -EINVAL;
  3798. }
  3799. netif_carrier_off(dev);
  3800. if (netif_running(dev)) {
  3801. nv_disable_irq(dev);
  3802. netif_tx_lock_bh(dev);
  3803. spin_lock(&np->lock);
  3804. /* stop engines */
  3805. nv_stop_rx(dev);
  3806. nv_stop_tx(dev);
  3807. spin_unlock(&np->lock);
  3808. netif_tx_unlock_bh(dev);
  3809. }
  3810. np->pause_flags &= ~(NV_PAUSEFRAME_RX_REQ|NV_PAUSEFRAME_TX_REQ);
  3811. if (pause->rx_pause)
  3812. np->pause_flags |= NV_PAUSEFRAME_RX_REQ;
  3813. if (pause->tx_pause)
  3814. np->pause_flags |= NV_PAUSEFRAME_TX_REQ;
  3815. if (np->autoneg && pause->autoneg) {
  3816. np->pause_flags |= NV_PAUSEFRAME_AUTONEG;
  3817. adv = mii_rw(dev, np->phyaddr, MII_ADVERTISE, MII_READ);
  3818. adv &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
  3819. if (np->pause_flags & NV_PAUSEFRAME_RX_REQ) /* for rx we set both advertisments but disable tx pause */
  3820. adv |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  3821. if (np->pause_flags & NV_PAUSEFRAME_TX_REQ)
  3822. adv |= ADVERTISE_PAUSE_ASYM;
  3823. mii_rw(dev, np->phyaddr, MII_ADVERTISE, adv);
  3824. if (netif_running(dev))
  3825. printk(KERN_INFO "%s: link down.\n", dev->name);
  3826. bmcr = mii_rw(dev, np->phyaddr, MII_BMCR, MII_READ);
  3827. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  3828. mii_rw(dev, np->phyaddr, MII_BMCR, bmcr);
  3829. } else {
  3830. np->pause_flags &= ~(NV_PAUSEFRAME_AUTONEG|NV_PAUSEFRAME_RX_ENABLE|NV_PAUSEFRAME_TX_ENABLE);
  3831. if (pause->rx_pause)
  3832. np->pause_flags |= NV_PAUSEFRAME_RX_ENABLE;
  3833. if (pause->tx_pause)
  3834. np->pause_flags |= NV_PAUSEFRAME_TX_ENABLE;
  3835. if (!netif_running(dev))
  3836. nv_update_linkspeed(dev);
  3837. else
  3838. nv_update_pause(dev, np->pause_flags);
  3839. }
  3840. if (netif_running(dev)) {
  3841. nv_start_rx(dev);
  3842. nv_start_tx(dev);
  3843. nv_enable_irq(dev);
  3844. }
  3845. return 0;
  3846. }
  3847. static u32 nv_get_rx_csum(struct net_device *dev)
  3848. {
  3849. struct fe_priv *np = netdev_priv(dev);
  3850. return (np->rx_csum) != 0;
  3851. }
  3852. static int nv_set_rx_csum(struct net_device *dev, u32 data)
  3853. {
  3854. struct fe_priv *np = netdev_priv(dev);
  3855. u8 __iomem *base = get_hwbase(dev);
  3856. int retcode = 0;
  3857. if (np->driver_data & DEV_HAS_CHECKSUM) {
  3858. if (data) {
  3859. np->rx_csum = 1;
  3860. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  3861. } else {
  3862. np->rx_csum = 0;
  3863. /* vlan is dependent on rx checksum offload */
  3864. if (!(np->vlanctl_bits & NVREG_VLANCONTROL_ENABLE))
  3865. np->txrxctl_bits &= ~NVREG_TXRXCTL_RXCHECK;
  3866. }
  3867. if (netif_running(dev)) {
  3868. spin_lock_irq(&np->lock);
  3869. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  3870. spin_unlock_irq(&np->lock);
  3871. }
  3872. } else {
  3873. return -EINVAL;
  3874. }
  3875. return retcode;
  3876. }
  3877. static int nv_set_tx_csum(struct net_device *dev, u32 data)
  3878. {
  3879. struct fe_priv *np = netdev_priv(dev);
  3880. if (np->driver_data & DEV_HAS_CHECKSUM)
  3881. return ethtool_op_set_tx_hw_csum(dev, data);
  3882. else
  3883. return -EOPNOTSUPP;
  3884. }
  3885. static int nv_set_sg(struct net_device *dev, u32 data)
  3886. {
  3887. struct fe_priv *np = netdev_priv(dev);
  3888. if (np->driver_data & DEV_HAS_CHECKSUM)
  3889. return ethtool_op_set_sg(dev, data);
  3890. else
  3891. return -EOPNOTSUPP;
  3892. }
  3893. static int nv_get_sset_count(struct net_device *dev, int sset)
  3894. {
  3895. struct fe_priv *np = netdev_priv(dev);
  3896. switch (sset) {
  3897. case ETH_SS_TEST:
  3898. if (np->driver_data & DEV_HAS_TEST_EXTENDED)
  3899. return NV_TEST_COUNT_EXTENDED;
  3900. else
  3901. return NV_TEST_COUNT_BASE;
  3902. case ETH_SS_STATS:
  3903. if (np->driver_data & DEV_HAS_STATISTICS_V1)
  3904. return NV_DEV_STATISTICS_V1_COUNT;
  3905. else if (np->driver_data & DEV_HAS_STATISTICS_V2)
  3906. return NV_DEV_STATISTICS_V2_COUNT;
  3907. else
  3908. return 0;
  3909. default:
  3910. return -EOPNOTSUPP;
  3911. }
  3912. }
  3913. static void nv_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *buffer)
  3914. {
  3915. struct fe_priv *np = netdev_priv(dev);
  3916. /* update stats */
  3917. nv_do_stats_poll((unsigned long)dev);
  3918. memcpy(buffer, &np->estats, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(u64));
  3919. }
  3920. static int nv_link_test(struct net_device *dev)
  3921. {
  3922. struct fe_priv *np = netdev_priv(dev);
  3923. int mii_status;
  3924. mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3925. mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  3926. /* check phy link status */
  3927. if (!(mii_status & BMSR_LSTATUS))
  3928. return 0;
  3929. else
  3930. return 1;
  3931. }
  3932. static int nv_register_test(struct net_device *dev)
  3933. {
  3934. u8 __iomem *base = get_hwbase(dev);
  3935. int i = 0;
  3936. u32 orig_read, new_read;
  3937. do {
  3938. orig_read = readl(base + nv_registers_test[i].reg);
  3939. /* xor with mask to toggle bits */
  3940. orig_read ^= nv_registers_test[i].mask;
  3941. writel(orig_read, base + nv_registers_test[i].reg);
  3942. new_read = readl(base + nv_registers_test[i].reg);
  3943. if ((new_read & nv_registers_test[i].mask) != (orig_read & nv_registers_test[i].mask))
  3944. return 0;
  3945. /* restore original value */
  3946. orig_read ^= nv_registers_test[i].mask;
  3947. writel(orig_read, base + nv_registers_test[i].reg);
  3948. } while (nv_registers_test[++i].reg != 0);
  3949. return 1;
  3950. }
  3951. static int nv_interrupt_test(struct net_device *dev)
  3952. {
  3953. struct fe_priv *np = netdev_priv(dev);
  3954. u8 __iomem *base = get_hwbase(dev);
  3955. int ret = 1;
  3956. int testcnt;
  3957. u32 save_msi_flags, save_poll_interval = 0;
  3958. if (netif_running(dev)) {
  3959. /* free current irq */
  3960. nv_free_irq(dev);
  3961. save_poll_interval = readl(base+NvRegPollingInterval);
  3962. }
  3963. /* flag to test interrupt handler */
  3964. np->intr_test = 0;
  3965. /* setup test irq */
  3966. save_msi_flags = np->msi_flags;
  3967. np->msi_flags &= ~NV_MSI_X_VECTORS_MASK;
  3968. np->msi_flags |= 0x001; /* setup 1 vector */
  3969. if (nv_request_irq(dev, 1))
  3970. return 0;
  3971. /* setup timer interrupt */
  3972. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  3973. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3974. nv_enable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3975. /* wait for at least one interrupt */
  3976. msleep(100);
  3977. spin_lock_irq(&np->lock);
  3978. /* flag should be set within ISR */
  3979. testcnt = np->intr_test;
  3980. if (!testcnt)
  3981. ret = 2;
  3982. nv_disable_hw_interrupts(dev, NVREG_IRQ_TIMER);
  3983. if (!(np->msi_flags & NV_MSI_X_ENABLED))
  3984. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  3985. else
  3986. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  3987. spin_unlock_irq(&np->lock);
  3988. nv_free_irq(dev);
  3989. np->msi_flags = save_msi_flags;
  3990. if (netif_running(dev)) {
  3991. writel(save_poll_interval, base + NvRegPollingInterval);
  3992. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  3993. /* restore original irq */
  3994. if (nv_request_irq(dev, 0))
  3995. return 0;
  3996. }
  3997. return ret;
  3998. }
  3999. static int nv_loopback_test(struct net_device *dev)
  4000. {
  4001. struct fe_priv *np = netdev_priv(dev);
  4002. u8 __iomem *base = get_hwbase(dev);
  4003. struct sk_buff *tx_skb, *rx_skb;
  4004. dma_addr_t test_dma_addr;
  4005. u32 tx_flags_extra = (np->desc_ver == DESC_VER_1 ? NV_TX_LASTPACKET : NV_TX2_LASTPACKET);
  4006. u32 flags;
  4007. int len, i, pkt_len;
  4008. u8 *pkt_data;
  4009. u32 filter_flags = 0;
  4010. u32 misc1_flags = 0;
  4011. int ret = 1;
  4012. if (netif_running(dev)) {
  4013. nv_disable_irq(dev);
  4014. filter_flags = readl(base + NvRegPacketFilterFlags);
  4015. misc1_flags = readl(base + NvRegMisc1);
  4016. } else {
  4017. nv_txrx_reset(dev);
  4018. }
  4019. /* reinit driver view of the rx queue */
  4020. set_bufsize(dev);
  4021. nv_init_ring(dev);
  4022. /* setup hardware for loopback */
  4023. writel(NVREG_MISC1_FORCE, base + NvRegMisc1);
  4024. writel(NVREG_PFF_ALWAYS | NVREG_PFF_LOOPBACK, base + NvRegPacketFilterFlags);
  4025. /* reinit nic view of the rx queue */
  4026. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4027. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4028. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4029. base + NvRegRingSizes);
  4030. pci_push(base);
  4031. /* restart rx engine */
  4032. nv_start_rx(dev);
  4033. nv_start_tx(dev);
  4034. /* setup packet for tx */
  4035. pkt_len = ETH_DATA_LEN;
  4036. tx_skb = dev_alloc_skb(pkt_len);
  4037. if (!tx_skb) {
  4038. printk(KERN_ERR "dev_alloc_skb() failed during loopback test"
  4039. " of %s\n", dev->name);
  4040. ret = 0;
  4041. goto out;
  4042. }
  4043. test_dma_addr = pci_map_single(np->pci_dev, tx_skb->data,
  4044. skb_tailroom(tx_skb),
  4045. PCI_DMA_FROMDEVICE);
  4046. pkt_data = skb_put(tx_skb, pkt_len);
  4047. for (i = 0; i < pkt_len; i++)
  4048. pkt_data[i] = (u8)(i & 0xff);
  4049. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4050. np->tx_ring.orig[0].buf = cpu_to_le32(test_dma_addr);
  4051. np->tx_ring.orig[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4052. } else {
  4053. np->tx_ring.ex[0].bufhigh = cpu_to_le32(dma_high(test_dma_addr));
  4054. np->tx_ring.ex[0].buflow = cpu_to_le32(dma_low(test_dma_addr));
  4055. np->tx_ring.ex[0].flaglen = cpu_to_le32((pkt_len-1) | np->tx_flags | tx_flags_extra);
  4056. }
  4057. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4058. pci_push(get_hwbase(dev));
  4059. msleep(500);
  4060. /* check for rx of the packet */
  4061. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4062. flags = le32_to_cpu(np->rx_ring.orig[0].flaglen);
  4063. len = nv_descr_getlength(&np->rx_ring.orig[0], np->desc_ver);
  4064. } else {
  4065. flags = le32_to_cpu(np->rx_ring.ex[0].flaglen);
  4066. len = nv_descr_getlength_ex(&np->rx_ring.ex[0], np->desc_ver);
  4067. }
  4068. if (flags & NV_RX_AVAIL) {
  4069. ret = 0;
  4070. } else if (np->desc_ver == DESC_VER_1) {
  4071. if (flags & NV_RX_ERROR)
  4072. ret = 0;
  4073. } else {
  4074. if (flags & NV_RX2_ERROR) {
  4075. ret = 0;
  4076. }
  4077. }
  4078. if (ret) {
  4079. if (len != pkt_len) {
  4080. ret = 0;
  4081. dprintk(KERN_DEBUG "%s: loopback len mismatch %d vs %d\n",
  4082. dev->name, len, pkt_len);
  4083. } else {
  4084. rx_skb = np->rx_skb[0].skb;
  4085. for (i = 0; i < pkt_len; i++) {
  4086. if (rx_skb->data[i] != (u8)(i & 0xff)) {
  4087. ret = 0;
  4088. dprintk(KERN_DEBUG "%s: loopback pattern check failed on byte %d\n",
  4089. dev->name, i);
  4090. break;
  4091. }
  4092. }
  4093. }
  4094. } else {
  4095. dprintk(KERN_DEBUG "%s: loopback - did not receive test packet\n", dev->name);
  4096. }
  4097. pci_unmap_page(np->pci_dev, test_dma_addr,
  4098. (skb_end_pointer(tx_skb) - tx_skb->data),
  4099. PCI_DMA_TODEVICE);
  4100. dev_kfree_skb_any(tx_skb);
  4101. out:
  4102. /* stop engines */
  4103. nv_stop_rx(dev);
  4104. nv_stop_tx(dev);
  4105. nv_txrx_reset(dev);
  4106. /* drain rx queue */
  4107. nv_drain_rx(dev);
  4108. nv_drain_tx(dev);
  4109. if (netif_running(dev)) {
  4110. writel(misc1_flags, base + NvRegMisc1);
  4111. writel(filter_flags, base + NvRegPacketFilterFlags);
  4112. nv_enable_irq(dev);
  4113. }
  4114. return ret;
  4115. }
  4116. static void nv_self_test(struct net_device *dev, struct ethtool_test *test, u64 *buffer)
  4117. {
  4118. struct fe_priv *np = netdev_priv(dev);
  4119. u8 __iomem *base = get_hwbase(dev);
  4120. int result;
  4121. memset(buffer, 0, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(u64));
  4122. if (!nv_link_test(dev)) {
  4123. test->flags |= ETH_TEST_FL_FAILED;
  4124. buffer[0] = 1;
  4125. }
  4126. if (test->flags & ETH_TEST_FL_OFFLINE) {
  4127. if (netif_running(dev)) {
  4128. netif_stop_queue(dev);
  4129. #ifdef CONFIG_FORCEDETH_NAPI
  4130. napi_disable(&np->napi);
  4131. #endif
  4132. netif_tx_lock_bh(dev);
  4133. spin_lock_irq(&np->lock);
  4134. nv_disable_hw_interrupts(dev, np->irqmask);
  4135. if (!(np->msi_flags & NV_MSI_X_ENABLED)) {
  4136. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4137. } else {
  4138. writel(NVREG_IRQSTAT_MASK, base + NvRegMSIXIrqStatus);
  4139. }
  4140. /* stop engines */
  4141. nv_stop_rx(dev);
  4142. nv_stop_tx(dev);
  4143. nv_txrx_reset(dev);
  4144. /* drain rx queue */
  4145. nv_drain_rx(dev);
  4146. nv_drain_tx(dev);
  4147. spin_unlock_irq(&np->lock);
  4148. netif_tx_unlock_bh(dev);
  4149. }
  4150. if (!nv_register_test(dev)) {
  4151. test->flags |= ETH_TEST_FL_FAILED;
  4152. buffer[1] = 1;
  4153. }
  4154. result = nv_interrupt_test(dev);
  4155. if (result != 1) {
  4156. test->flags |= ETH_TEST_FL_FAILED;
  4157. buffer[2] = 1;
  4158. }
  4159. if (result == 0) {
  4160. /* bail out */
  4161. return;
  4162. }
  4163. if (!nv_loopback_test(dev)) {
  4164. test->flags |= ETH_TEST_FL_FAILED;
  4165. buffer[3] = 1;
  4166. }
  4167. if (netif_running(dev)) {
  4168. /* reinit driver view of the rx queue */
  4169. set_bufsize(dev);
  4170. if (nv_init_ring(dev)) {
  4171. if (!np->in_shutdown)
  4172. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4173. }
  4174. /* reinit nic view of the rx queue */
  4175. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4176. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4177. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4178. base + NvRegRingSizes);
  4179. pci_push(base);
  4180. writel(NVREG_TXRXCTL_KICK|np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4181. pci_push(base);
  4182. /* restart rx engine */
  4183. nv_start_rx(dev);
  4184. nv_start_tx(dev);
  4185. netif_start_queue(dev);
  4186. #ifdef CONFIG_FORCEDETH_NAPI
  4187. napi_enable(&np->napi);
  4188. #endif
  4189. nv_enable_hw_interrupts(dev, np->irqmask);
  4190. }
  4191. }
  4192. }
  4193. static void nv_get_strings(struct net_device *dev, u32 stringset, u8 *buffer)
  4194. {
  4195. switch (stringset) {
  4196. case ETH_SS_STATS:
  4197. memcpy(buffer, &nv_estats_str, nv_get_sset_count(dev, ETH_SS_STATS)*sizeof(struct nv_ethtool_str));
  4198. break;
  4199. case ETH_SS_TEST:
  4200. memcpy(buffer, &nv_etests_str, nv_get_sset_count(dev, ETH_SS_TEST)*sizeof(struct nv_ethtool_str));
  4201. break;
  4202. }
  4203. }
  4204. static const struct ethtool_ops ops = {
  4205. .get_drvinfo = nv_get_drvinfo,
  4206. .get_link = ethtool_op_get_link,
  4207. .get_wol = nv_get_wol,
  4208. .set_wol = nv_set_wol,
  4209. .get_settings = nv_get_settings,
  4210. .set_settings = nv_set_settings,
  4211. .get_regs_len = nv_get_regs_len,
  4212. .get_regs = nv_get_regs,
  4213. .nway_reset = nv_nway_reset,
  4214. .set_tso = nv_set_tso,
  4215. .get_ringparam = nv_get_ringparam,
  4216. .set_ringparam = nv_set_ringparam,
  4217. .get_pauseparam = nv_get_pauseparam,
  4218. .set_pauseparam = nv_set_pauseparam,
  4219. .get_rx_csum = nv_get_rx_csum,
  4220. .set_rx_csum = nv_set_rx_csum,
  4221. .set_tx_csum = nv_set_tx_csum,
  4222. .set_sg = nv_set_sg,
  4223. .get_strings = nv_get_strings,
  4224. .get_ethtool_stats = nv_get_ethtool_stats,
  4225. .get_sset_count = nv_get_sset_count,
  4226. .self_test = nv_self_test,
  4227. };
  4228. static void nv_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
  4229. {
  4230. struct fe_priv *np = get_nvpriv(dev);
  4231. spin_lock_irq(&np->lock);
  4232. /* save vlan group */
  4233. np->vlangrp = grp;
  4234. if (grp) {
  4235. /* enable vlan on MAC */
  4236. np->txrxctl_bits |= NVREG_TXRXCTL_VLANSTRIP | NVREG_TXRXCTL_VLANINS;
  4237. } else {
  4238. /* disable vlan on MAC */
  4239. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANSTRIP;
  4240. np->txrxctl_bits &= ~NVREG_TXRXCTL_VLANINS;
  4241. }
  4242. writel(np->txrxctl_bits, get_hwbase(dev) + NvRegTxRxControl);
  4243. spin_unlock_irq(&np->lock);
  4244. }
  4245. /* The mgmt unit and driver use a semaphore to access the phy during init */
  4246. static int nv_mgmt_acquire_sema(struct net_device *dev)
  4247. {
  4248. u8 __iomem *base = get_hwbase(dev);
  4249. int i;
  4250. u32 tx_ctrl, mgmt_sema;
  4251. for (i = 0; i < 10; i++) {
  4252. mgmt_sema = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_SEMA_MASK;
  4253. if (mgmt_sema == NVREG_XMITCTL_MGMT_SEMA_FREE)
  4254. break;
  4255. msleep(500);
  4256. }
  4257. if (mgmt_sema != NVREG_XMITCTL_MGMT_SEMA_FREE)
  4258. return 0;
  4259. for (i = 0; i < 2; i++) {
  4260. tx_ctrl = readl(base + NvRegTransmitterControl);
  4261. tx_ctrl |= NVREG_XMITCTL_HOST_SEMA_ACQ;
  4262. writel(tx_ctrl, base + NvRegTransmitterControl);
  4263. /* verify that semaphore was acquired */
  4264. tx_ctrl = readl(base + NvRegTransmitterControl);
  4265. if (((tx_ctrl & NVREG_XMITCTL_HOST_SEMA_MASK) == NVREG_XMITCTL_HOST_SEMA_ACQ) &&
  4266. ((tx_ctrl & NVREG_XMITCTL_MGMT_SEMA_MASK) == NVREG_XMITCTL_MGMT_SEMA_FREE))
  4267. return 1;
  4268. else
  4269. udelay(50);
  4270. }
  4271. return 0;
  4272. }
  4273. static int nv_open(struct net_device *dev)
  4274. {
  4275. struct fe_priv *np = netdev_priv(dev);
  4276. u8 __iomem *base = get_hwbase(dev);
  4277. int ret = 1;
  4278. int oom, i;
  4279. dprintk(KERN_DEBUG "nv_open: begin\n");
  4280. /* erase previous misconfiguration */
  4281. if (np->driver_data & DEV_HAS_POWER_CNTRL)
  4282. nv_mac_reset(dev);
  4283. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4284. writel(0, base + NvRegMulticastAddrB);
  4285. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4286. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4287. writel(0, base + NvRegPacketFilterFlags);
  4288. writel(0, base + NvRegTransmitterControl);
  4289. writel(0, base + NvRegReceiverControl);
  4290. writel(0, base + NvRegAdapterControl);
  4291. if (np->pause_flags & NV_PAUSEFRAME_TX_CAPABLE)
  4292. writel(NVREG_TX_PAUSEFRAME_DISABLE, base + NvRegTxPauseFrame);
  4293. /* initialize descriptor rings */
  4294. set_bufsize(dev);
  4295. oom = nv_init_ring(dev);
  4296. writel(0, base + NvRegLinkSpeed);
  4297. writel(readl(base + NvRegTransmitPoll) & NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4298. nv_txrx_reset(dev);
  4299. writel(0, base + NvRegUnknownSetupReg6);
  4300. np->in_shutdown = 0;
  4301. /* give hw rings */
  4302. setup_hw_rings(dev, NV_SETUP_RX_RING | NV_SETUP_TX_RING);
  4303. writel( ((np->rx_ring_size-1) << NVREG_RINGSZ_RXSHIFT) + ((np->tx_ring_size-1) << NVREG_RINGSZ_TXSHIFT),
  4304. base + NvRegRingSizes);
  4305. writel(np->linkspeed, base + NvRegLinkSpeed);
  4306. if (np->desc_ver == DESC_VER_1)
  4307. writel(NVREG_TX_WM_DESC1_DEFAULT, base + NvRegTxWatermark);
  4308. else
  4309. writel(NVREG_TX_WM_DESC2_3_DEFAULT, base + NvRegTxWatermark);
  4310. writel(np->txrxctl_bits, base + NvRegTxRxControl);
  4311. writel(np->vlanctl_bits, base + NvRegVlanControl);
  4312. pci_push(base);
  4313. writel(NVREG_TXRXCTL_BIT1|np->txrxctl_bits, base + NvRegTxRxControl);
  4314. reg_delay(dev, NvRegUnknownSetupReg5, NVREG_UNKSETUP5_BIT31, NVREG_UNKSETUP5_BIT31,
  4315. NV_SETUP5_DELAY, NV_SETUP5_DELAYMAX,
  4316. KERN_INFO "open: SetupReg5, Bit 31 remained off\n");
  4317. writel(0, base + NvRegMIIMask);
  4318. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4319. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  4320. writel(NVREG_MISC1_FORCE | NVREG_MISC1_HD, base + NvRegMisc1);
  4321. writel(readl(base + NvRegTransmitterStatus), base + NvRegTransmitterStatus);
  4322. writel(NVREG_PFF_ALWAYS, base + NvRegPacketFilterFlags);
  4323. writel(np->rx_buf_sz, base + NvRegOffloadConfig);
  4324. writel(readl(base + NvRegReceiverStatus), base + NvRegReceiverStatus);
  4325. get_random_bytes(&i, sizeof(i));
  4326. writel(NVREG_RNDSEED_FORCE | (i&NVREG_RNDSEED_MASK), base + NvRegRandomSeed);
  4327. writel(NVREG_TX_DEFERRAL_DEFAULT, base + NvRegTxDeferral);
  4328. writel(NVREG_RX_DEFERRAL_DEFAULT, base + NvRegRxDeferral);
  4329. if (poll_interval == -1) {
  4330. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT)
  4331. writel(NVREG_POLL_DEFAULT_THROUGHPUT, base + NvRegPollingInterval);
  4332. else
  4333. writel(NVREG_POLL_DEFAULT_CPU, base + NvRegPollingInterval);
  4334. }
  4335. else
  4336. writel(poll_interval & 0xFFFF, base + NvRegPollingInterval);
  4337. writel(NVREG_UNKSETUP6_VAL, base + NvRegUnknownSetupReg6);
  4338. writel((np->phyaddr << NVREG_ADAPTCTL_PHYSHIFT)|NVREG_ADAPTCTL_PHYVALID|NVREG_ADAPTCTL_RUNNING,
  4339. base + NvRegAdapterControl);
  4340. writel(NVREG_MIISPEED_BIT8|NVREG_MIIDELAY, base + NvRegMIISpeed);
  4341. writel(NVREG_MII_LINKCHANGE, base + NvRegMIIMask);
  4342. if (np->wolenabled)
  4343. writel(NVREG_WAKEUPFLAGS_ENABLE , base + NvRegWakeUpFlags);
  4344. i = readl(base + NvRegPowerState);
  4345. if ( (i & NVREG_POWERSTATE_POWEREDUP) == 0)
  4346. writel(NVREG_POWERSTATE_POWEREDUP|i, base + NvRegPowerState);
  4347. pci_push(base);
  4348. udelay(10);
  4349. writel(readl(base + NvRegPowerState) | NVREG_POWERSTATE_VALID, base + NvRegPowerState);
  4350. nv_disable_hw_interrupts(dev, np->irqmask);
  4351. pci_push(base);
  4352. writel(NVREG_MIISTAT_MASK2, base + NvRegMIIStatus);
  4353. writel(NVREG_IRQSTAT_MASK, base + NvRegIrqStatus);
  4354. pci_push(base);
  4355. if (nv_request_irq(dev, 0)) {
  4356. goto out_drain;
  4357. }
  4358. /* ask for interrupts */
  4359. nv_enable_hw_interrupts(dev, np->irqmask);
  4360. spin_lock_irq(&np->lock);
  4361. writel(NVREG_MCASTADDRA_FORCE, base + NvRegMulticastAddrA);
  4362. writel(0, base + NvRegMulticastAddrB);
  4363. writel(NVREG_MCASTMASKA_NONE, base + NvRegMulticastMaskA);
  4364. writel(NVREG_MCASTMASKB_NONE, base + NvRegMulticastMaskB);
  4365. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4366. /* One manual link speed update: Interrupts are enabled, future link
  4367. * speed changes cause interrupts and are handled by nv_link_irq().
  4368. */
  4369. {
  4370. u32 miistat;
  4371. miistat = readl(base + NvRegMIIStatus);
  4372. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  4373. dprintk(KERN_INFO "startup: got 0x%08x.\n", miistat);
  4374. }
  4375. /* set linkspeed to invalid value, thus force nv_update_linkspeed
  4376. * to init hw */
  4377. np->linkspeed = 0;
  4378. ret = nv_update_linkspeed(dev);
  4379. nv_start_rx(dev);
  4380. nv_start_tx(dev);
  4381. netif_start_queue(dev);
  4382. #ifdef CONFIG_FORCEDETH_NAPI
  4383. napi_enable(&np->napi);
  4384. #endif
  4385. if (ret) {
  4386. netif_carrier_on(dev);
  4387. } else {
  4388. printk(KERN_INFO "%s: no link during initialization.\n", dev->name);
  4389. netif_carrier_off(dev);
  4390. }
  4391. if (oom)
  4392. mod_timer(&np->oom_kick, jiffies + OOM_REFILL);
  4393. /* start statistics timer */
  4394. if (np->driver_data & (DEV_HAS_STATISTICS_V1|DEV_HAS_STATISTICS_V2))
  4395. mod_timer(&np->stats_poll, jiffies + STATS_INTERVAL);
  4396. spin_unlock_irq(&np->lock);
  4397. return 0;
  4398. out_drain:
  4399. drain_ring(dev);
  4400. return ret;
  4401. }
  4402. static int nv_close(struct net_device *dev)
  4403. {
  4404. struct fe_priv *np = netdev_priv(dev);
  4405. u8 __iomem *base;
  4406. spin_lock_irq(&np->lock);
  4407. np->in_shutdown = 1;
  4408. spin_unlock_irq(&np->lock);
  4409. #ifdef CONFIG_FORCEDETH_NAPI
  4410. napi_disable(&np->napi);
  4411. #endif
  4412. synchronize_irq(np->pci_dev->irq);
  4413. del_timer_sync(&np->oom_kick);
  4414. del_timer_sync(&np->nic_poll);
  4415. del_timer_sync(&np->stats_poll);
  4416. netif_stop_queue(dev);
  4417. spin_lock_irq(&np->lock);
  4418. nv_stop_tx(dev);
  4419. nv_stop_rx(dev);
  4420. nv_txrx_reset(dev);
  4421. /* disable interrupts on the nic or we will lock up */
  4422. base = get_hwbase(dev);
  4423. nv_disable_hw_interrupts(dev, np->irqmask);
  4424. pci_push(base);
  4425. dprintk(KERN_INFO "%s: Irqmask is zero again\n", dev->name);
  4426. spin_unlock_irq(&np->lock);
  4427. nv_free_irq(dev);
  4428. drain_ring(dev);
  4429. if (np->wolenabled) {
  4430. writel(NVREG_PFF_ALWAYS|NVREG_PFF_MYADDR, base + NvRegPacketFilterFlags);
  4431. nv_start_rx(dev);
  4432. }
  4433. /* FIXME: power down nic */
  4434. return 0;
  4435. }
  4436. static int __devinit nv_probe(struct pci_dev *pci_dev, const struct pci_device_id *id)
  4437. {
  4438. struct net_device *dev;
  4439. struct fe_priv *np;
  4440. unsigned long addr;
  4441. u8 __iomem *base;
  4442. int err, i;
  4443. u32 powerstate, txreg;
  4444. u32 phystate_orig = 0, phystate;
  4445. int phyinitialized = 0;
  4446. DECLARE_MAC_BUF(mac);
  4447. static int printed_version;
  4448. if (!printed_version++)
  4449. printk(KERN_INFO "%s: Reverse Engineered nForce ethernet"
  4450. " driver. Version %s.\n", DRV_NAME, FORCEDETH_VERSION);
  4451. dev = alloc_etherdev(sizeof(struct fe_priv));
  4452. err = -ENOMEM;
  4453. if (!dev)
  4454. goto out;
  4455. np = netdev_priv(dev);
  4456. np->dev = dev;
  4457. np->pci_dev = pci_dev;
  4458. spin_lock_init(&np->lock);
  4459. SET_NETDEV_DEV(dev, &pci_dev->dev);
  4460. init_timer(&np->oom_kick);
  4461. np->oom_kick.data = (unsigned long) dev;
  4462. np->oom_kick.function = &nv_do_rx_refill; /* timer handler */
  4463. init_timer(&np->nic_poll);
  4464. np->nic_poll.data = (unsigned long) dev;
  4465. np->nic_poll.function = &nv_do_nic_poll; /* timer handler */
  4466. init_timer(&np->stats_poll);
  4467. np->stats_poll.data = (unsigned long) dev;
  4468. np->stats_poll.function = &nv_do_stats_poll; /* timer handler */
  4469. err = pci_enable_device(pci_dev);
  4470. if (err)
  4471. goto out_free;
  4472. pci_set_master(pci_dev);
  4473. err = pci_request_regions(pci_dev, DRV_NAME);
  4474. if (err < 0)
  4475. goto out_disable;
  4476. if (id->driver_data & (DEV_HAS_VLAN|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V2))
  4477. np->register_size = NV_PCI_REGSZ_VER3;
  4478. else if (id->driver_data & DEV_HAS_STATISTICS_V1)
  4479. np->register_size = NV_PCI_REGSZ_VER2;
  4480. else
  4481. np->register_size = NV_PCI_REGSZ_VER1;
  4482. err = -EINVAL;
  4483. addr = 0;
  4484. for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
  4485. dprintk(KERN_DEBUG "%s: resource %d start %p len %ld flags 0x%08lx.\n",
  4486. pci_name(pci_dev), i, (void*)pci_resource_start(pci_dev, i),
  4487. pci_resource_len(pci_dev, i),
  4488. pci_resource_flags(pci_dev, i));
  4489. if (pci_resource_flags(pci_dev, i) & IORESOURCE_MEM &&
  4490. pci_resource_len(pci_dev, i) >= np->register_size) {
  4491. addr = pci_resource_start(pci_dev, i);
  4492. break;
  4493. }
  4494. }
  4495. if (i == DEVICE_COUNT_RESOURCE) {
  4496. dev_printk(KERN_INFO, &pci_dev->dev,
  4497. "Couldn't find register window\n");
  4498. goto out_relreg;
  4499. }
  4500. /* copy of driver data */
  4501. np->driver_data = id->driver_data;
  4502. /* handle different descriptor versions */
  4503. if (id->driver_data & DEV_HAS_HIGH_DMA) {
  4504. /* packet format 3: supports 40-bit addressing */
  4505. np->desc_ver = DESC_VER_3;
  4506. np->txrxctl_bits = NVREG_TXRXCTL_DESC_3;
  4507. if (dma_64bit) {
  4508. if (pci_set_dma_mask(pci_dev, DMA_39BIT_MASK))
  4509. dev_printk(KERN_INFO, &pci_dev->dev,
  4510. "64-bit DMA failed, using 32-bit addressing\n");
  4511. else
  4512. dev->features |= NETIF_F_HIGHDMA;
  4513. if (pci_set_consistent_dma_mask(pci_dev, DMA_39BIT_MASK)) {
  4514. dev_printk(KERN_INFO, &pci_dev->dev,
  4515. "64-bit DMA (consistent) failed, using 32-bit ring buffers\n");
  4516. }
  4517. }
  4518. } else if (id->driver_data & DEV_HAS_LARGEDESC) {
  4519. /* packet format 2: supports jumbo frames */
  4520. np->desc_ver = DESC_VER_2;
  4521. np->txrxctl_bits = NVREG_TXRXCTL_DESC_2;
  4522. } else {
  4523. /* original packet format */
  4524. np->desc_ver = DESC_VER_1;
  4525. np->txrxctl_bits = NVREG_TXRXCTL_DESC_1;
  4526. }
  4527. np->pkt_limit = NV_PKTLIMIT_1;
  4528. if (id->driver_data & DEV_HAS_LARGEDESC)
  4529. np->pkt_limit = NV_PKTLIMIT_2;
  4530. if (id->driver_data & DEV_HAS_CHECKSUM) {
  4531. np->rx_csum = 1;
  4532. np->txrxctl_bits |= NVREG_TXRXCTL_RXCHECK;
  4533. dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
  4534. dev->features |= NETIF_F_TSO;
  4535. }
  4536. np->vlanctl_bits = 0;
  4537. if (id->driver_data & DEV_HAS_VLAN) {
  4538. np->vlanctl_bits = NVREG_VLANCONTROL_ENABLE;
  4539. dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX;
  4540. dev->vlan_rx_register = nv_vlan_rx_register;
  4541. }
  4542. np->msi_flags = 0;
  4543. if ((id->driver_data & DEV_HAS_MSI) && msi) {
  4544. np->msi_flags |= NV_MSI_CAPABLE;
  4545. }
  4546. if ((id->driver_data & DEV_HAS_MSI_X) && msix) {
  4547. np->msi_flags |= NV_MSI_X_CAPABLE;
  4548. }
  4549. np->pause_flags = NV_PAUSEFRAME_RX_CAPABLE | NV_PAUSEFRAME_RX_REQ | NV_PAUSEFRAME_AUTONEG;
  4550. if (id->driver_data & DEV_HAS_PAUSEFRAME_TX) {
  4551. np->pause_flags |= NV_PAUSEFRAME_TX_CAPABLE | NV_PAUSEFRAME_TX_REQ;
  4552. }
  4553. err = -ENOMEM;
  4554. np->base = ioremap(addr, np->register_size);
  4555. if (!np->base)
  4556. goto out_relreg;
  4557. dev->base_addr = (unsigned long)np->base;
  4558. dev->irq = pci_dev->irq;
  4559. np->rx_ring_size = RX_RING_DEFAULT;
  4560. np->tx_ring_size = TX_RING_DEFAULT;
  4561. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2) {
  4562. np->rx_ring.orig = pci_alloc_consistent(pci_dev,
  4563. sizeof(struct ring_desc) * (np->rx_ring_size + np->tx_ring_size),
  4564. &np->ring_addr);
  4565. if (!np->rx_ring.orig)
  4566. goto out_unmap;
  4567. np->tx_ring.orig = &np->rx_ring.orig[np->rx_ring_size];
  4568. } else {
  4569. np->rx_ring.ex = pci_alloc_consistent(pci_dev,
  4570. sizeof(struct ring_desc_ex) * (np->rx_ring_size + np->tx_ring_size),
  4571. &np->ring_addr);
  4572. if (!np->rx_ring.ex)
  4573. goto out_unmap;
  4574. np->tx_ring.ex = &np->rx_ring.ex[np->rx_ring_size];
  4575. }
  4576. np->rx_skb = kcalloc(np->rx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4577. np->tx_skb = kcalloc(np->tx_ring_size, sizeof(struct nv_skb_map), GFP_KERNEL);
  4578. if (!np->rx_skb || !np->tx_skb)
  4579. goto out_freering;
  4580. dev->open = nv_open;
  4581. dev->stop = nv_close;
  4582. if (np->desc_ver == DESC_VER_1 || np->desc_ver == DESC_VER_2)
  4583. dev->hard_start_xmit = nv_start_xmit;
  4584. else
  4585. dev->hard_start_xmit = nv_start_xmit_optimized;
  4586. dev->get_stats = nv_get_stats;
  4587. dev->change_mtu = nv_change_mtu;
  4588. dev->set_mac_address = nv_set_mac_address;
  4589. dev->set_multicast_list = nv_set_multicast;
  4590. #ifdef CONFIG_NET_POLL_CONTROLLER
  4591. dev->poll_controller = nv_poll_controller;
  4592. #endif
  4593. #ifdef CONFIG_FORCEDETH_NAPI
  4594. netif_napi_add(dev, &np->napi, nv_napi_poll, RX_WORK_PER_LOOP);
  4595. #endif
  4596. SET_ETHTOOL_OPS(dev, &ops);
  4597. dev->tx_timeout = nv_tx_timeout;
  4598. dev->watchdog_timeo = NV_WATCHDOG_TIMEO;
  4599. pci_set_drvdata(pci_dev, dev);
  4600. /* read the mac address */
  4601. base = get_hwbase(dev);
  4602. np->orig_mac[0] = readl(base + NvRegMacAddrA);
  4603. np->orig_mac[1] = readl(base + NvRegMacAddrB);
  4604. /* check the workaround bit for correct mac address order */
  4605. txreg = readl(base + NvRegTransmitPoll);
  4606. if ((txreg & NVREG_TRANSMITPOLL_MAC_ADDR_REV) ||
  4607. (id->driver_data & DEV_HAS_CORRECT_MACADDR)) {
  4608. /* mac address is already in correct order */
  4609. dev->dev_addr[0] = (np->orig_mac[0] >> 0) & 0xff;
  4610. dev->dev_addr[1] = (np->orig_mac[0] >> 8) & 0xff;
  4611. dev->dev_addr[2] = (np->orig_mac[0] >> 16) & 0xff;
  4612. dev->dev_addr[3] = (np->orig_mac[0] >> 24) & 0xff;
  4613. dev->dev_addr[4] = (np->orig_mac[1] >> 0) & 0xff;
  4614. dev->dev_addr[5] = (np->orig_mac[1] >> 8) & 0xff;
  4615. } else {
  4616. /* need to reverse mac address to correct order */
  4617. dev->dev_addr[0] = (np->orig_mac[1] >> 8) & 0xff;
  4618. dev->dev_addr[1] = (np->orig_mac[1] >> 0) & 0xff;
  4619. dev->dev_addr[2] = (np->orig_mac[0] >> 24) & 0xff;
  4620. dev->dev_addr[3] = (np->orig_mac[0] >> 16) & 0xff;
  4621. dev->dev_addr[4] = (np->orig_mac[0] >> 8) & 0xff;
  4622. dev->dev_addr[5] = (np->orig_mac[0] >> 0) & 0xff;
  4623. writel(txreg|NVREG_TRANSMITPOLL_MAC_ADDR_REV, base + NvRegTransmitPoll);
  4624. }
  4625. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  4626. if (!is_valid_ether_addr(dev->perm_addr)) {
  4627. /*
  4628. * Bad mac address. At least one bios sets the mac address
  4629. * to 01:23:45:67:89:ab
  4630. */
  4631. dev_printk(KERN_ERR, &pci_dev->dev,
  4632. "Invalid Mac address detected: %s\n",
  4633. print_mac(mac, dev->dev_addr));
  4634. dev_printk(KERN_ERR, &pci_dev->dev,
  4635. "Please complain to your hardware vendor. Switching to a random MAC.\n");
  4636. dev->dev_addr[0] = 0x00;
  4637. dev->dev_addr[1] = 0x00;
  4638. dev->dev_addr[2] = 0x6c;
  4639. get_random_bytes(&dev->dev_addr[3], 3);
  4640. }
  4641. dprintk(KERN_DEBUG "%s: MAC Address %s\n",
  4642. pci_name(pci_dev), print_mac(mac, dev->dev_addr));
  4643. /* set mac address */
  4644. nv_copy_mac_to_hw(dev);
  4645. /* disable WOL */
  4646. writel(0, base + NvRegWakeUpFlags);
  4647. np->wolenabled = 0;
  4648. if (id->driver_data & DEV_HAS_POWER_CNTRL) {
  4649. /* take phy and nic out of low power mode */
  4650. powerstate = readl(base + NvRegPowerState2);
  4651. powerstate &= ~NVREG_POWERSTATE2_POWERUP_MASK;
  4652. if ((id->device == PCI_DEVICE_ID_NVIDIA_NVENET_12 ||
  4653. id->device == PCI_DEVICE_ID_NVIDIA_NVENET_13) &&
  4654. pci_dev->revision >= 0xA3)
  4655. powerstate |= NVREG_POWERSTATE2_POWERUP_REV_A3;
  4656. writel(powerstate, base + NvRegPowerState2);
  4657. }
  4658. if (np->desc_ver == DESC_VER_1) {
  4659. np->tx_flags = NV_TX_VALID;
  4660. } else {
  4661. np->tx_flags = NV_TX2_VALID;
  4662. }
  4663. if (optimization_mode == NV_OPTIMIZATION_MODE_THROUGHPUT) {
  4664. np->irqmask = NVREG_IRQMASK_THROUGHPUT;
  4665. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4666. np->msi_flags |= 0x0003;
  4667. } else {
  4668. np->irqmask = NVREG_IRQMASK_CPU;
  4669. if (np->msi_flags & NV_MSI_X_CAPABLE) /* set number of vectors */
  4670. np->msi_flags |= 0x0001;
  4671. }
  4672. if (id->driver_data & DEV_NEED_TIMERIRQ)
  4673. np->irqmask |= NVREG_IRQ_TIMER;
  4674. if (id->driver_data & DEV_NEED_LINKTIMER) {
  4675. dprintk(KERN_INFO "%s: link timer on.\n", pci_name(pci_dev));
  4676. np->need_linktimer = 1;
  4677. np->link_timeout = jiffies + LINK_TIMEOUT;
  4678. } else {
  4679. dprintk(KERN_INFO "%s: link timer off.\n", pci_name(pci_dev));
  4680. np->need_linktimer = 0;
  4681. }
  4682. /* clear phy state and temporarily halt phy interrupts */
  4683. writel(0, base + NvRegMIIMask);
  4684. phystate = readl(base + NvRegAdapterControl);
  4685. if (phystate & NVREG_ADAPTCTL_RUNNING) {
  4686. phystate_orig = 1;
  4687. phystate &= ~NVREG_ADAPTCTL_RUNNING;
  4688. writel(phystate, base + NvRegAdapterControl);
  4689. }
  4690. writel(NVREG_MIISTAT_MASK, base + NvRegMIIStatus);
  4691. if (id->driver_data & DEV_HAS_MGMT_UNIT) {
  4692. /* management unit running on the mac? */
  4693. if (readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_PHY_INIT) {
  4694. np->mac_in_use = readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_MGMT_ST;
  4695. dprintk(KERN_INFO "%s: mgmt unit is running. mac in use %x.\n", pci_name(pci_dev), np->mac_in_use);
  4696. if (nv_mgmt_acquire_sema(dev)) {
  4697. /* management unit setup the phy already? */
  4698. if ((readl(base + NvRegTransmitterControl) & NVREG_XMITCTL_SYNC_MASK) ==
  4699. NVREG_XMITCTL_SYNC_PHY_INIT) {
  4700. /* phy is inited by mgmt unit */
  4701. phyinitialized = 1;
  4702. dprintk(KERN_INFO "%s: Phy already initialized by mgmt unit.\n", pci_name(pci_dev));
  4703. } else {
  4704. /* we need to init the phy */
  4705. }
  4706. }
  4707. }
  4708. }
  4709. /* find a suitable phy */
  4710. for (i = 1; i <= 32; i++) {
  4711. int id1, id2;
  4712. int phyaddr = i & 0x1F;
  4713. spin_lock_irq(&np->lock);
  4714. id1 = mii_rw(dev, phyaddr, MII_PHYSID1, MII_READ);
  4715. spin_unlock_irq(&np->lock);
  4716. if (id1 < 0 || id1 == 0xffff)
  4717. continue;
  4718. spin_lock_irq(&np->lock);
  4719. id2 = mii_rw(dev, phyaddr, MII_PHYSID2, MII_READ);
  4720. spin_unlock_irq(&np->lock);
  4721. if (id2 < 0 || id2 == 0xffff)
  4722. continue;
  4723. np->phy_model = id2 & PHYID2_MODEL_MASK;
  4724. id1 = (id1 & PHYID1_OUI_MASK) << PHYID1_OUI_SHFT;
  4725. id2 = (id2 & PHYID2_OUI_MASK) >> PHYID2_OUI_SHFT;
  4726. dprintk(KERN_DEBUG "%s: open: Found PHY %04x:%04x at address %d.\n",
  4727. pci_name(pci_dev), id1, id2, phyaddr);
  4728. np->phyaddr = phyaddr;
  4729. np->phy_oui = id1 | id2;
  4730. break;
  4731. }
  4732. if (i == 33) {
  4733. dev_printk(KERN_INFO, &pci_dev->dev,
  4734. "open: Could not find a valid PHY.\n");
  4735. goto out_error;
  4736. }
  4737. if (!phyinitialized) {
  4738. /* reset it */
  4739. phy_init(dev);
  4740. } else {
  4741. /* see if it is a gigabit phy */
  4742. u32 mii_status = mii_rw(dev, np->phyaddr, MII_BMSR, MII_READ);
  4743. if (mii_status & PHY_GIGABIT) {
  4744. np->gigabit = PHY_GIGABIT;
  4745. }
  4746. }
  4747. /* set default link speed settings */
  4748. np->linkspeed = NVREG_LINKSPEED_FORCE|NVREG_LINKSPEED_10;
  4749. np->duplex = 0;
  4750. np->autoneg = 1;
  4751. err = register_netdev(dev);
  4752. if (err) {
  4753. dev_printk(KERN_INFO, &pci_dev->dev,
  4754. "unable to register netdev: %d\n", err);
  4755. goto out_error;
  4756. }
  4757. dev_printk(KERN_INFO, &pci_dev->dev, "ifname %s, PHY OUI 0x%x @ %d, "
  4758. "addr %2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
  4759. dev->name,
  4760. np->phy_oui,
  4761. np->phyaddr,
  4762. dev->dev_addr[0],
  4763. dev->dev_addr[1],
  4764. dev->dev_addr[2],
  4765. dev->dev_addr[3],
  4766. dev->dev_addr[4],
  4767. dev->dev_addr[5]);
  4768. dev_printk(KERN_INFO, &pci_dev->dev, "%s%s%s%s%s%s%s%s%s%sdesc-v%u\n",
  4769. dev->features & NETIF_F_HIGHDMA ? "highdma " : "",
  4770. dev->features & (NETIF_F_HW_CSUM | NETIF_F_SG) ?
  4771. "csum " : "",
  4772. dev->features & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX) ?
  4773. "vlan " : "",
  4774. id->driver_data & DEV_HAS_POWER_CNTRL ? "pwrctl " : "",
  4775. id->driver_data & DEV_HAS_MGMT_UNIT ? "mgmt " : "",
  4776. id->driver_data & DEV_NEED_TIMERIRQ ? "timirq " : "",
  4777. np->gigabit == PHY_GIGABIT ? "gbit " : "",
  4778. np->need_linktimer ? "lnktim " : "",
  4779. np->msi_flags & NV_MSI_CAPABLE ? "msi " : "",
  4780. np->msi_flags & NV_MSI_X_CAPABLE ? "msi-x " : "",
  4781. np->desc_ver);
  4782. return 0;
  4783. out_error:
  4784. if (phystate_orig)
  4785. writel(phystate|NVREG_ADAPTCTL_RUNNING, base + NvRegAdapterControl);
  4786. pci_set_drvdata(pci_dev, NULL);
  4787. out_freering:
  4788. free_rings(dev);
  4789. out_unmap:
  4790. iounmap(get_hwbase(dev));
  4791. out_relreg:
  4792. pci_release_regions(pci_dev);
  4793. out_disable:
  4794. pci_disable_device(pci_dev);
  4795. out_free:
  4796. free_netdev(dev);
  4797. out:
  4798. return err;
  4799. }
  4800. static void __devexit nv_remove(struct pci_dev *pci_dev)
  4801. {
  4802. struct net_device *dev = pci_get_drvdata(pci_dev);
  4803. struct fe_priv *np = netdev_priv(dev);
  4804. u8 __iomem *base = get_hwbase(dev);
  4805. unregister_netdev(dev);
  4806. /* special op: write back the misordered MAC address - otherwise
  4807. * the next nv_probe would see a wrong address.
  4808. */
  4809. writel(np->orig_mac[0], base + NvRegMacAddrA);
  4810. writel(np->orig_mac[1], base + NvRegMacAddrB);
  4811. writel(readl(base + NvRegTransmitPoll) & ~NVREG_TRANSMITPOLL_MAC_ADDR_REV,
  4812. base + NvRegTransmitPoll);
  4813. /* free all structures */
  4814. free_rings(dev);
  4815. iounmap(get_hwbase(dev));
  4816. pci_release_regions(pci_dev);
  4817. pci_disable_device(pci_dev);
  4818. free_netdev(dev);
  4819. pci_set_drvdata(pci_dev, NULL);
  4820. }
  4821. #ifdef CONFIG_PM
  4822. static int nv_suspend(struct pci_dev *pdev, pm_message_t state)
  4823. {
  4824. struct net_device *dev = pci_get_drvdata(pdev);
  4825. struct fe_priv *np = netdev_priv(dev);
  4826. if (!netif_running(dev))
  4827. goto out;
  4828. netif_device_detach(dev);
  4829. // Gross.
  4830. nv_close(dev);
  4831. pci_save_state(pdev);
  4832. pci_enable_wake(pdev, pci_choose_state(pdev, state), np->wolenabled);
  4833. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  4834. out:
  4835. return 0;
  4836. }
  4837. static int nv_resume(struct pci_dev *pdev)
  4838. {
  4839. struct net_device *dev = pci_get_drvdata(pdev);
  4840. int rc = 0;
  4841. if (!netif_running(dev))
  4842. goto out;
  4843. netif_device_attach(dev);
  4844. pci_set_power_state(pdev, PCI_D0);
  4845. pci_restore_state(pdev);
  4846. pci_enable_wake(pdev, PCI_D0, 0);
  4847. rc = nv_open(dev);
  4848. out:
  4849. return rc;
  4850. }
  4851. #else
  4852. #define nv_suspend NULL
  4853. #define nv_resume NULL
  4854. #endif /* CONFIG_PM */
  4855. static struct pci_device_id pci_tbl[] = {
  4856. { /* nForce Ethernet Controller */
  4857. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_1),
  4858. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4859. },
  4860. { /* nForce2 Ethernet Controller */
  4861. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_2),
  4862. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4863. },
  4864. { /* nForce3 Ethernet Controller */
  4865. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_3),
  4866. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER,
  4867. },
  4868. { /* nForce3 Ethernet Controller */
  4869. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_4),
  4870. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4871. },
  4872. { /* nForce3 Ethernet Controller */
  4873. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_5),
  4874. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4875. },
  4876. { /* nForce3 Ethernet Controller */
  4877. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_6),
  4878. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4879. },
  4880. { /* nForce3 Ethernet Controller */
  4881. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_7),
  4882. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM,
  4883. },
  4884. { /* CK804 Ethernet Controller */
  4885. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_8),
  4886. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4887. },
  4888. { /* CK804 Ethernet Controller */
  4889. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_9),
  4890. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4891. },
  4892. { /* MCP04 Ethernet Controller */
  4893. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_10),
  4894. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4895. },
  4896. { /* MCP04 Ethernet Controller */
  4897. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_11),
  4898. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_STATISTICS_V1,
  4899. },
  4900. { /* MCP51 Ethernet Controller */
  4901. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_12),
  4902. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  4903. },
  4904. { /* MCP51 Ethernet Controller */
  4905. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_13),
  4906. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_STATISTICS_V1,
  4907. },
  4908. { /* MCP55 Ethernet Controller */
  4909. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_14),
  4910. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4911. },
  4912. { /* MCP55 Ethernet Controller */
  4913. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_15),
  4914. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_VLAN|DEV_HAS_MSI|DEV_HAS_MSI_X|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT,
  4915. },
  4916. { /* MCP61 Ethernet Controller */
  4917. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_16),
  4918. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4919. },
  4920. { /* MCP61 Ethernet Controller */
  4921. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_17),
  4922. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4923. },
  4924. { /* MCP61 Ethernet Controller */
  4925. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_18),
  4926. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4927. },
  4928. { /* MCP61 Ethernet Controller */
  4929. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_19),
  4930. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4931. },
  4932. { /* MCP65 Ethernet Controller */
  4933. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_20),
  4934. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4935. },
  4936. { /* MCP65 Ethernet Controller */
  4937. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_21),
  4938. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4939. },
  4940. { /* MCP65 Ethernet Controller */
  4941. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_22),
  4942. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4943. },
  4944. { /* MCP65 Ethernet Controller */
  4945. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_23),
  4946. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_LARGEDESC|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4947. },
  4948. { /* MCP67 Ethernet Controller */
  4949. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_24),
  4950. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4951. },
  4952. { /* MCP67 Ethernet Controller */
  4953. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_25),
  4954. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4955. },
  4956. { /* MCP67 Ethernet Controller */
  4957. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_26),
  4958. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4959. },
  4960. { /* MCP67 Ethernet Controller */
  4961. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_27),
  4962. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4963. },
  4964. { /* MCP73 Ethernet Controller */
  4965. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_28),
  4966. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4967. },
  4968. { /* MCP73 Ethernet Controller */
  4969. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_29),
  4970. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4971. },
  4972. { /* MCP73 Ethernet Controller */
  4973. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_30),
  4974. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4975. },
  4976. { /* MCP73 Ethernet Controller */
  4977. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_31),
  4978. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_HIGH_DMA|DEV_HAS_POWER_CNTRL|DEV_HAS_MSI|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4979. },
  4980. { /* MCP77 Ethernet Controller */
  4981. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_32),
  4982. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4983. },
  4984. { /* MCP77 Ethernet Controller */
  4985. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_33),
  4986. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4987. },
  4988. { /* MCP77 Ethernet Controller */
  4989. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_34),
  4990. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4991. },
  4992. { /* MCP77 Ethernet Controller */
  4993. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_35),
  4994. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4995. },
  4996. { /* MCP79 Ethernet Controller */
  4997. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_36),
  4998. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  4999. },
  5000. { /* MCP79 Ethernet Controller */
  5001. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_37),
  5002. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5003. },
  5004. { /* MCP79 Ethernet Controller */
  5005. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_38),
  5006. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5007. },
  5008. { /* MCP79 Ethernet Controller */
  5009. PCI_DEVICE(PCI_VENDOR_ID_NVIDIA, PCI_DEVICE_ID_NVIDIA_NVENET_39),
  5010. .driver_data = DEV_NEED_TIMERIRQ|DEV_NEED_LINKTIMER|DEV_HAS_CHECKSUM|DEV_HAS_HIGH_DMA|DEV_HAS_MSI|DEV_HAS_POWER_CNTRL|DEV_HAS_PAUSEFRAME_TX|DEV_HAS_STATISTICS_V2|DEV_HAS_TEST_EXTENDED|DEV_HAS_MGMT_UNIT|DEV_HAS_CORRECT_MACADDR,
  5011. },
  5012. {0,},
  5013. };
  5014. static struct pci_driver driver = {
  5015. .name = DRV_NAME,
  5016. .id_table = pci_tbl,
  5017. .probe = nv_probe,
  5018. .remove = __devexit_p(nv_remove),
  5019. .suspend = nv_suspend,
  5020. .resume = nv_resume,
  5021. };
  5022. static int __init init_nic(void)
  5023. {
  5024. return pci_register_driver(&driver);
  5025. }
  5026. static void __exit exit_nic(void)
  5027. {
  5028. pci_unregister_driver(&driver);
  5029. }
  5030. module_param(max_interrupt_work, int, 0);
  5031. MODULE_PARM_DESC(max_interrupt_work, "forcedeth maximum events handled per interrupt");
  5032. module_param(optimization_mode, int, 0);
  5033. MODULE_PARM_DESC(optimization_mode, "In throughput mode (0), every tx & rx packet will generate an interrupt. In CPU mode (1), interrupts are controlled by a timer.");
  5034. module_param(poll_interval, int, 0);
  5035. MODULE_PARM_DESC(poll_interval, "Interval determines how frequent timer interrupt is generated by [(time_in_micro_secs * 100) / (2^10)]. Min is 0 and Max is 65535.");
  5036. module_param(msi, int, 0);
  5037. MODULE_PARM_DESC(msi, "MSI interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5038. module_param(msix, int, 0);
  5039. MODULE_PARM_DESC(msix, "MSIX interrupts are enabled by setting to 1 and disabled by setting to 0.");
  5040. module_param(dma_64bit, int, 0);
  5041. MODULE_PARM_DESC(dma_64bit, "High DMA is enabled by setting to 1 and disabled by setting to 0.");
  5042. MODULE_AUTHOR("Manfred Spraul <manfred@colorfullife.com>");
  5043. MODULE_DESCRIPTION("Reverse Engineered nForce ethernet driver");
  5044. MODULE_LICENSE("GPL");
  5045. MODULE_DEVICE_TABLE(pci, pci_tbl);
  5046. module_init(init_nic);
  5047. module_exit(exit_nic);