tcp_input.c 173 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <net/dst.h>
  69. #include <net/tcp.h>
  70. #include <net/inet_common.h>
  71. #include <linux/ipsec.h>
  72. #include <asm/unaligned.h>
  73. #include <net/netdma.h>
  74. int sysctl_tcp_timestamps __read_mostly = 1;
  75. int sysctl_tcp_window_scaling __read_mostly = 1;
  76. int sysctl_tcp_sack __read_mostly = 1;
  77. int sysctl_tcp_fack __read_mostly = 1;
  78. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  79. EXPORT_SYMBOL(sysctl_tcp_reordering);
  80. int sysctl_tcp_ecn __read_mostly = 2;
  81. EXPORT_SYMBOL(sysctl_tcp_ecn);
  82. int sysctl_tcp_dsack __read_mostly = 1;
  83. int sysctl_tcp_app_win __read_mostly = 31;
  84. int sysctl_tcp_adv_win_scale __read_mostly = 2;
  85. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_frto_response __read_mostly;
  91. int sysctl_tcp_nometrics_save __read_mostly;
  92. int sysctl_tcp_thin_dupack __read_mostly;
  93. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  94. int sysctl_tcp_abc __read_mostly;
  95. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  96. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  97. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  98. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  99. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  100. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  101. #define FLAG_ECE 0x40 /* ECE in this ACK */
  102. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  103. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  104. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  105. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  106. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  107. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  108. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  109. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  110. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  111. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  112. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  113. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  114. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  115. /* Adapt the MSS value used to make delayed ack decision to the
  116. * real world.
  117. */
  118. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  119. {
  120. struct inet_connection_sock *icsk = inet_csk(sk);
  121. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  122. unsigned int len;
  123. icsk->icsk_ack.last_seg_size = 0;
  124. /* skb->len may jitter because of SACKs, even if peer
  125. * sends good full-sized frames.
  126. */
  127. len = skb_shinfo(skb)->gso_size ? : skb->len;
  128. if (len >= icsk->icsk_ack.rcv_mss) {
  129. icsk->icsk_ack.rcv_mss = len;
  130. } else {
  131. /* Otherwise, we make more careful check taking into account,
  132. * that SACKs block is variable.
  133. *
  134. * "len" is invariant segment length, including TCP header.
  135. */
  136. len += skb->data - skb_transport_header(skb);
  137. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  138. /* If PSH is not set, packet should be
  139. * full sized, provided peer TCP is not badly broken.
  140. * This observation (if it is correct 8)) allows
  141. * to handle super-low mtu links fairly.
  142. */
  143. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  144. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  145. /* Subtract also invariant (if peer is RFC compliant),
  146. * tcp header plus fixed timestamp option length.
  147. * Resulting "len" is MSS free of SACK jitter.
  148. */
  149. len -= tcp_sk(sk)->tcp_header_len;
  150. icsk->icsk_ack.last_seg_size = len;
  151. if (len == lss) {
  152. icsk->icsk_ack.rcv_mss = len;
  153. return;
  154. }
  155. }
  156. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  157. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  158. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  159. }
  160. }
  161. static void tcp_incr_quickack(struct sock *sk)
  162. {
  163. struct inet_connection_sock *icsk = inet_csk(sk);
  164. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  165. if (quickacks == 0)
  166. quickacks = 2;
  167. if (quickacks > icsk->icsk_ack.quick)
  168. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  169. }
  170. static void tcp_enter_quickack_mode(struct sock *sk)
  171. {
  172. struct inet_connection_sock *icsk = inet_csk(sk);
  173. tcp_incr_quickack(sk);
  174. icsk->icsk_ack.pingpong = 0;
  175. icsk->icsk_ack.ato = TCP_ATO_MIN;
  176. }
  177. /* Send ACKs quickly, if "quick" count is not exhausted
  178. * and the session is not interactive.
  179. */
  180. static inline int tcp_in_quickack_mode(const struct sock *sk)
  181. {
  182. const struct inet_connection_sock *icsk = inet_csk(sk);
  183. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  184. }
  185. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  186. {
  187. if (tp->ecn_flags & TCP_ECN_OK)
  188. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  189. }
  190. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  191. {
  192. if (tcp_hdr(skb)->cwr)
  193. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  194. }
  195. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  196. {
  197. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  198. }
  199. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  200. {
  201. if (!(tp->ecn_flags & TCP_ECN_OK))
  202. return;
  203. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  204. case INET_ECN_NOT_ECT:
  205. /* Funny extension: if ECT is not set on a segment,
  206. * and we already seen ECT on a previous segment,
  207. * it is probably a retransmit.
  208. */
  209. if (tp->ecn_flags & TCP_ECN_SEEN)
  210. tcp_enter_quickack_mode((struct sock *)tp);
  211. break;
  212. case INET_ECN_CE:
  213. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  214. /* fallinto */
  215. default:
  216. tp->ecn_flags |= TCP_ECN_SEEN;
  217. }
  218. }
  219. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  220. {
  221. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  222. tp->ecn_flags &= ~TCP_ECN_OK;
  223. }
  224. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  225. {
  226. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  227. tp->ecn_flags &= ~TCP_ECN_OK;
  228. }
  229. static inline int TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  230. {
  231. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  232. return 1;
  233. return 0;
  234. }
  235. /* Buffer size and advertised window tuning.
  236. *
  237. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  238. */
  239. static void tcp_fixup_sndbuf(struct sock *sk)
  240. {
  241. int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
  242. sndmem *= TCP_INIT_CWND;
  243. if (sk->sk_sndbuf < sndmem)
  244. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  245. }
  246. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  247. *
  248. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  249. * forward and advertised in receiver window (tp->rcv_wnd) and
  250. * "application buffer", required to isolate scheduling/application
  251. * latencies from network.
  252. * window_clamp is maximal advertised window. It can be less than
  253. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  254. * is reserved for "application" buffer. The less window_clamp is
  255. * the smoother our behaviour from viewpoint of network, but the lower
  256. * throughput and the higher sensitivity of the connection to losses. 8)
  257. *
  258. * rcv_ssthresh is more strict window_clamp used at "slow start"
  259. * phase to predict further behaviour of this connection.
  260. * It is used for two goals:
  261. * - to enforce header prediction at sender, even when application
  262. * requires some significant "application buffer". It is check #1.
  263. * - to prevent pruning of receive queue because of misprediction
  264. * of receiver window. Check #2.
  265. *
  266. * The scheme does not work when sender sends good segments opening
  267. * window and then starts to feed us spaghetti. But it should work
  268. * in common situations. Otherwise, we have to rely on queue collapsing.
  269. */
  270. /* Slow part of check#2. */
  271. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  272. {
  273. struct tcp_sock *tp = tcp_sk(sk);
  274. /* Optimize this! */
  275. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  276. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  277. while (tp->rcv_ssthresh <= window) {
  278. if (truesize <= skb->len)
  279. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  280. truesize >>= 1;
  281. window >>= 1;
  282. }
  283. return 0;
  284. }
  285. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  286. {
  287. struct tcp_sock *tp = tcp_sk(sk);
  288. /* Check #1 */
  289. if (tp->rcv_ssthresh < tp->window_clamp &&
  290. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  291. !sk_under_memory_pressure(sk)) {
  292. int incr;
  293. /* Check #2. Increase window, if skb with such overhead
  294. * will fit to rcvbuf in future.
  295. */
  296. if (tcp_win_from_space(skb->truesize) <= skb->len)
  297. incr = 2 * tp->advmss;
  298. else
  299. incr = __tcp_grow_window(sk, skb);
  300. if (incr) {
  301. incr = max_t(int, incr, 2 * skb->len);
  302. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  303. tp->window_clamp);
  304. inet_csk(sk)->icsk_ack.quick |= 1;
  305. }
  306. }
  307. }
  308. /* 3. Tuning rcvbuf, when connection enters established state. */
  309. static void tcp_fixup_rcvbuf(struct sock *sk)
  310. {
  311. u32 mss = tcp_sk(sk)->advmss;
  312. u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
  313. int rcvmem;
  314. /* Limit to 10 segments if mss <= 1460,
  315. * or 14600/mss segments, with a minimum of two segments.
  316. */
  317. if (mss > 1460)
  318. icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
  319. rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
  320. while (tcp_win_from_space(rcvmem) < mss)
  321. rcvmem += 128;
  322. rcvmem *= icwnd;
  323. if (sk->sk_rcvbuf < rcvmem)
  324. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  325. }
  326. /* 4. Try to fixup all. It is made immediately after connection enters
  327. * established state.
  328. */
  329. static void tcp_init_buffer_space(struct sock *sk)
  330. {
  331. struct tcp_sock *tp = tcp_sk(sk);
  332. int maxwin;
  333. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  334. tcp_fixup_rcvbuf(sk);
  335. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  336. tcp_fixup_sndbuf(sk);
  337. tp->rcvq_space.space = tp->rcv_wnd;
  338. maxwin = tcp_full_space(sk);
  339. if (tp->window_clamp >= maxwin) {
  340. tp->window_clamp = maxwin;
  341. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  342. tp->window_clamp = max(maxwin -
  343. (maxwin >> sysctl_tcp_app_win),
  344. 4 * tp->advmss);
  345. }
  346. /* Force reservation of one segment. */
  347. if (sysctl_tcp_app_win &&
  348. tp->window_clamp > 2 * tp->advmss &&
  349. tp->window_clamp + tp->advmss > maxwin)
  350. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  351. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  352. tp->snd_cwnd_stamp = tcp_time_stamp;
  353. }
  354. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  355. static void tcp_clamp_window(struct sock *sk)
  356. {
  357. struct tcp_sock *tp = tcp_sk(sk);
  358. struct inet_connection_sock *icsk = inet_csk(sk);
  359. icsk->icsk_ack.quick = 0;
  360. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  361. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  362. !sk_under_memory_pressure(sk) &&
  363. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  364. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  365. sysctl_tcp_rmem[2]);
  366. }
  367. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  368. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  369. }
  370. /* Initialize RCV_MSS value.
  371. * RCV_MSS is an our guess about MSS used by the peer.
  372. * We haven't any direct information about the MSS.
  373. * It's better to underestimate the RCV_MSS rather than overestimate.
  374. * Overestimations make us ACKing less frequently than needed.
  375. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  376. */
  377. void tcp_initialize_rcv_mss(struct sock *sk)
  378. {
  379. const struct tcp_sock *tp = tcp_sk(sk);
  380. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  381. hint = min(hint, tp->rcv_wnd / 2);
  382. hint = min(hint, TCP_MSS_DEFAULT);
  383. hint = max(hint, TCP_MIN_MSS);
  384. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  385. }
  386. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  387. /* Receiver "autotuning" code.
  388. *
  389. * The algorithm for RTT estimation w/o timestamps is based on
  390. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  391. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  392. *
  393. * More detail on this code can be found at
  394. * <http://staff.psc.edu/jheffner/>,
  395. * though this reference is out of date. A new paper
  396. * is pending.
  397. */
  398. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  399. {
  400. u32 new_sample = tp->rcv_rtt_est.rtt;
  401. long m = sample;
  402. if (m == 0)
  403. m = 1;
  404. if (new_sample != 0) {
  405. /* If we sample in larger samples in the non-timestamp
  406. * case, we could grossly overestimate the RTT especially
  407. * with chatty applications or bulk transfer apps which
  408. * are stalled on filesystem I/O.
  409. *
  410. * Also, since we are only going for a minimum in the
  411. * non-timestamp case, we do not smooth things out
  412. * else with timestamps disabled convergence takes too
  413. * long.
  414. */
  415. if (!win_dep) {
  416. m -= (new_sample >> 3);
  417. new_sample += m;
  418. } else {
  419. m <<= 3;
  420. if (m < new_sample)
  421. new_sample = m;
  422. }
  423. } else {
  424. /* No previous measure. */
  425. new_sample = m << 3;
  426. }
  427. if (tp->rcv_rtt_est.rtt != new_sample)
  428. tp->rcv_rtt_est.rtt = new_sample;
  429. }
  430. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  431. {
  432. if (tp->rcv_rtt_est.time == 0)
  433. goto new_measure;
  434. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  435. return;
  436. tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
  437. new_measure:
  438. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  439. tp->rcv_rtt_est.time = tcp_time_stamp;
  440. }
  441. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  442. const struct sk_buff *skb)
  443. {
  444. struct tcp_sock *tp = tcp_sk(sk);
  445. if (tp->rx_opt.rcv_tsecr &&
  446. (TCP_SKB_CB(skb)->end_seq -
  447. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  448. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  449. }
  450. /*
  451. * This function should be called every time data is copied to user space.
  452. * It calculates the appropriate TCP receive buffer space.
  453. */
  454. void tcp_rcv_space_adjust(struct sock *sk)
  455. {
  456. struct tcp_sock *tp = tcp_sk(sk);
  457. int time;
  458. int space;
  459. if (tp->rcvq_space.time == 0)
  460. goto new_measure;
  461. time = tcp_time_stamp - tp->rcvq_space.time;
  462. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  463. return;
  464. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  465. space = max(tp->rcvq_space.space, space);
  466. if (tp->rcvq_space.space != space) {
  467. int rcvmem;
  468. tp->rcvq_space.space = space;
  469. if (sysctl_tcp_moderate_rcvbuf &&
  470. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  471. int new_clamp = space;
  472. /* Receive space grows, normalize in order to
  473. * take into account packet headers and sk_buff
  474. * structure overhead.
  475. */
  476. space /= tp->advmss;
  477. if (!space)
  478. space = 1;
  479. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  480. while (tcp_win_from_space(rcvmem) < tp->advmss)
  481. rcvmem += 128;
  482. space *= rcvmem;
  483. space = min(space, sysctl_tcp_rmem[2]);
  484. if (space > sk->sk_rcvbuf) {
  485. sk->sk_rcvbuf = space;
  486. /* Make the window clamp follow along. */
  487. tp->window_clamp = new_clamp;
  488. }
  489. }
  490. }
  491. new_measure:
  492. tp->rcvq_space.seq = tp->copied_seq;
  493. tp->rcvq_space.time = tcp_time_stamp;
  494. }
  495. /* There is something which you must keep in mind when you analyze the
  496. * behavior of the tp->ato delayed ack timeout interval. When a
  497. * connection starts up, we want to ack as quickly as possible. The
  498. * problem is that "good" TCP's do slow start at the beginning of data
  499. * transmission. The means that until we send the first few ACK's the
  500. * sender will sit on his end and only queue most of his data, because
  501. * he can only send snd_cwnd unacked packets at any given time. For
  502. * each ACK we send, he increments snd_cwnd and transmits more of his
  503. * queue. -DaveM
  504. */
  505. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  506. {
  507. struct tcp_sock *tp = tcp_sk(sk);
  508. struct inet_connection_sock *icsk = inet_csk(sk);
  509. u32 now;
  510. inet_csk_schedule_ack(sk);
  511. tcp_measure_rcv_mss(sk, skb);
  512. tcp_rcv_rtt_measure(tp);
  513. now = tcp_time_stamp;
  514. if (!icsk->icsk_ack.ato) {
  515. /* The _first_ data packet received, initialize
  516. * delayed ACK engine.
  517. */
  518. tcp_incr_quickack(sk);
  519. icsk->icsk_ack.ato = TCP_ATO_MIN;
  520. } else {
  521. int m = now - icsk->icsk_ack.lrcvtime;
  522. if (m <= TCP_ATO_MIN / 2) {
  523. /* The fastest case is the first. */
  524. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  525. } else if (m < icsk->icsk_ack.ato) {
  526. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  527. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  528. icsk->icsk_ack.ato = icsk->icsk_rto;
  529. } else if (m > icsk->icsk_rto) {
  530. /* Too long gap. Apparently sender failed to
  531. * restart window, so that we send ACKs quickly.
  532. */
  533. tcp_incr_quickack(sk);
  534. sk_mem_reclaim(sk);
  535. }
  536. }
  537. icsk->icsk_ack.lrcvtime = now;
  538. TCP_ECN_check_ce(tp, skb);
  539. if (skb->len >= 128)
  540. tcp_grow_window(sk, skb);
  541. }
  542. /* Called to compute a smoothed rtt estimate. The data fed to this
  543. * routine either comes from timestamps, or from segments that were
  544. * known _not_ to have been retransmitted [see Karn/Partridge
  545. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  546. * piece by Van Jacobson.
  547. * NOTE: the next three routines used to be one big routine.
  548. * To save cycles in the RFC 1323 implementation it was better to break
  549. * it up into three procedures. -- erics
  550. */
  551. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  552. {
  553. struct tcp_sock *tp = tcp_sk(sk);
  554. long m = mrtt; /* RTT */
  555. /* The following amusing code comes from Jacobson's
  556. * article in SIGCOMM '88. Note that rtt and mdev
  557. * are scaled versions of rtt and mean deviation.
  558. * This is designed to be as fast as possible
  559. * m stands for "measurement".
  560. *
  561. * On a 1990 paper the rto value is changed to:
  562. * RTO = rtt + 4 * mdev
  563. *
  564. * Funny. This algorithm seems to be very broken.
  565. * These formulae increase RTO, when it should be decreased, increase
  566. * too slowly, when it should be increased quickly, decrease too quickly
  567. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  568. * does not matter how to _calculate_ it. Seems, it was trap
  569. * that VJ failed to avoid. 8)
  570. */
  571. if (m == 0)
  572. m = 1;
  573. if (tp->srtt != 0) {
  574. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  575. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  576. if (m < 0) {
  577. m = -m; /* m is now abs(error) */
  578. m -= (tp->mdev >> 2); /* similar update on mdev */
  579. /* This is similar to one of Eifel findings.
  580. * Eifel blocks mdev updates when rtt decreases.
  581. * This solution is a bit different: we use finer gain
  582. * for mdev in this case (alpha*beta).
  583. * Like Eifel it also prevents growth of rto,
  584. * but also it limits too fast rto decreases,
  585. * happening in pure Eifel.
  586. */
  587. if (m > 0)
  588. m >>= 3;
  589. } else {
  590. m -= (tp->mdev >> 2); /* similar update on mdev */
  591. }
  592. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  593. if (tp->mdev > tp->mdev_max) {
  594. tp->mdev_max = tp->mdev;
  595. if (tp->mdev_max > tp->rttvar)
  596. tp->rttvar = tp->mdev_max;
  597. }
  598. if (after(tp->snd_una, tp->rtt_seq)) {
  599. if (tp->mdev_max < tp->rttvar)
  600. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  601. tp->rtt_seq = tp->snd_nxt;
  602. tp->mdev_max = tcp_rto_min(sk);
  603. }
  604. } else {
  605. /* no previous measure. */
  606. tp->srtt = m << 3; /* take the measured time to be rtt */
  607. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  608. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  609. tp->rtt_seq = tp->snd_nxt;
  610. }
  611. }
  612. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  613. * routine referred to above.
  614. */
  615. static inline void tcp_set_rto(struct sock *sk)
  616. {
  617. const struct tcp_sock *tp = tcp_sk(sk);
  618. /* Old crap is replaced with new one. 8)
  619. *
  620. * More seriously:
  621. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  622. * It cannot be less due to utterly erratic ACK generation made
  623. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  624. * to do with delayed acks, because at cwnd>2 true delack timeout
  625. * is invisible. Actually, Linux-2.4 also generates erratic
  626. * ACKs in some circumstances.
  627. */
  628. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  629. /* 2. Fixups made earlier cannot be right.
  630. * If we do not estimate RTO correctly without them,
  631. * all the algo is pure shit and should be replaced
  632. * with correct one. It is exactly, which we pretend to do.
  633. */
  634. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  635. * guarantees that rto is higher.
  636. */
  637. tcp_bound_rto(sk);
  638. }
  639. /* Save metrics learned by this TCP session.
  640. This function is called only, when TCP finishes successfully
  641. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  642. */
  643. void tcp_update_metrics(struct sock *sk)
  644. {
  645. struct tcp_sock *tp = tcp_sk(sk);
  646. struct dst_entry *dst = __sk_dst_get(sk);
  647. if (sysctl_tcp_nometrics_save)
  648. return;
  649. dst_confirm(dst);
  650. if (dst && (dst->flags & DST_HOST)) {
  651. const struct inet_connection_sock *icsk = inet_csk(sk);
  652. int m;
  653. unsigned long rtt;
  654. if (icsk->icsk_backoff || !tp->srtt) {
  655. /* This session failed to estimate rtt. Why?
  656. * Probably, no packets returned in time.
  657. * Reset our results.
  658. */
  659. if (!(dst_metric_locked(dst, RTAX_RTT)))
  660. dst_metric_set(dst, RTAX_RTT, 0);
  661. return;
  662. }
  663. rtt = dst_metric_rtt(dst, RTAX_RTT);
  664. m = rtt - tp->srtt;
  665. /* If newly calculated rtt larger than stored one,
  666. * store new one. Otherwise, use EWMA. Remember,
  667. * rtt overestimation is always better than underestimation.
  668. */
  669. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  670. if (m <= 0)
  671. set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
  672. else
  673. set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
  674. }
  675. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  676. unsigned long var;
  677. if (m < 0)
  678. m = -m;
  679. /* Scale deviation to rttvar fixed point */
  680. m >>= 1;
  681. if (m < tp->mdev)
  682. m = tp->mdev;
  683. var = dst_metric_rtt(dst, RTAX_RTTVAR);
  684. if (m >= var)
  685. var = m;
  686. else
  687. var -= (var - m) >> 2;
  688. set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
  689. }
  690. if (tcp_in_initial_slowstart(tp)) {
  691. /* Slow start still did not finish. */
  692. if (dst_metric(dst, RTAX_SSTHRESH) &&
  693. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  694. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  695. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
  696. if (!dst_metric_locked(dst, RTAX_CWND) &&
  697. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  698. dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
  699. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  700. icsk->icsk_ca_state == TCP_CA_Open) {
  701. /* Cong. avoidance phase, cwnd is reliable. */
  702. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  703. dst_metric_set(dst, RTAX_SSTHRESH,
  704. max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
  705. if (!dst_metric_locked(dst, RTAX_CWND))
  706. dst_metric_set(dst, RTAX_CWND,
  707. (dst_metric(dst, RTAX_CWND) +
  708. tp->snd_cwnd) >> 1);
  709. } else {
  710. /* Else slow start did not finish, cwnd is non-sense,
  711. ssthresh may be also invalid.
  712. */
  713. if (!dst_metric_locked(dst, RTAX_CWND))
  714. dst_metric_set(dst, RTAX_CWND,
  715. (dst_metric(dst, RTAX_CWND) +
  716. tp->snd_ssthresh) >> 1);
  717. if (dst_metric(dst, RTAX_SSTHRESH) &&
  718. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  719. tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
  720. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
  721. }
  722. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  723. if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
  724. tp->reordering != sysctl_tcp_reordering)
  725. dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
  726. }
  727. }
  728. }
  729. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  730. {
  731. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  732. if (!cwnd)
  733. cwnd = TCP_INIT_CWND;
  734. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  735. }
  736. /* Set slow start threshold and cwnd not falling to slow start */
  737. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  738. {
  739. struct tcp_sock *tp = tcp_sk(sk);
  740. const struct inet_connection_sock *icsk = inet_csk(sk);
  741. tp->prior_ssthresh = 0;
  742. tp->bytes_acked = 0;
  743. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  744. tp->undo_marker = 0;
  745. if (set_ssthresh)
  746. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  747. tp->snd_cwnd = min(tp->snd_cwnd,
  748. tcp_packets_in_flight(tp) + 1U);
  749. tp->snd_cwnd_cnt = 0;
  750. tp->high_seq = tp->snd_nxt;
  751. tp->snd_cwnd_stamp = tcp_time_stamp;
  752. TCP_ECN_queue_cwr(tp);
  753. tcp_set_ca_state(sk, TCP_CA_CWR);
  754. }
  755. }
  756. /*
  757. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  758. * disables it when reordering is detected
  759. */
  760. static void tcp_disable_fack(struct tcp_sock *tp)
  761. {
  762. /* RFC3517 uses different metric in lost marker => reset on change */
  763. if (tcp_is_fack(tp))
  764. tp->lost_skb_hint = NULL;
  765. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  766. }
  767. /* Take a notice that peer is sending D-SACKs */
  768. static void tcp_dsack_seen(struct tcp_sock *tp)
  769. {
  770. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  771. }
  772. /* Initialize metrics on socket. */
  773. static void tcp_init_metrics(struct sock *sk)
  774. {
  775. struct tcp_sock *tp = tcp_sk(sk);
  776. struct dst_entry *dst = __sk_dst_get(sk);
  777. if (dst == NULL)
  778. goto reset;
  779. dst_confirm(dst);
  780. if (dst_metric_locked(dst, RTAX_CWND))
  781. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  782. if (dst_metric(dst, RTAX_SSTHRESH)) {
  783. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  784. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  785. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  786. } else {
  787. /* ssthresh may have been reduced unnecessarily during.
  788. * 3WHS. Restore it back to its initial default.
  789. */
  790. tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
  791. }
  792. if (dst_metric(dst, RTAX_REORDERING) &&
  793. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  794. tcp_disable_fack(tp);
  795. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  796. }
  797. if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
  798. goto reset;
  799. /* Initial rtt is determined from SYN,SYN-ACK.
  800. * The segment is small and rtt may appear much
  801. * less than real one. Use per-dst memory
  802. * to make it more realistic.
  803. *
  804. * A bit of theory. RTT is time passed after "normal" sized packet
  805. * is sent until it is ACKed. In normal circumstances sending small
  806. * packets force peer to delay ACKs and calculation is correct too.
  807. * The algorithm is adaptive and, provided we follow specs, it
  808. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  809. * tricks sort of "quick acks" for time long enough to decrease RTT
  810. * to low value, and then abruptly stops to do it and starts to delay
  811. * ACKs, wait for troubles.
  812. */
  813. if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
  814. tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
  815. tp->rtt_seq = tp->snd_nxt;
  816. }
  817. if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
  818. tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
  819. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  820. }
  821. tcp_set_rto(sk);
  822. reset:
  823. if (tp->srtt == 0) {
  824. /* RFC6298: 5.7 We've failed to get a valid RTT sample from
  825. * 3WHS. This is most likely due to retransmission,
  826. * including spurious one. Reset the RTO back to 3secs
  827. * from the more aggressive 1sec to avoid more spurious
  828. * retransmission.
  829. */
  830. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
  831. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
  832. }
  833. /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
  834. * retransmitted. In light of RFC6298 more aggressive 1sec
  835. * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
  836. * retransmission has occurred.
  837. */
  838. if (tp->total_retrans > 1)
  839. tp->snd_cwnd = 1;
  840. else
  841. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  842. tp->snd_cwnd_stamp = tcp_time_stamp;
  843. }
  844. static void tcp_update_reordering(struct sock *sk, const int metric,
  845. const int ts)
  846. {
  847. struct tcp_sock *tp = tcp_sk(sk);
  848. if (metric > tp->reordering) {
  849. int mib_idx;
  850. tp->reordering = min(TCP_MAX_REORDERING, metric);
  851. /* This exciting event is worth to be remembered. 8) */
  852. if (ts)
  853. mib_idx = LINUX_MIB_TCPTSREORDER;
  854. else if (tcp_is_reno(tp))
  855. mib_idx = LINUX_MIB_TCPRENOREORDER;
  856. else if (tcp_is_fack(tp))
  857. mib_idx = LINUX_MIB_TCPFACKREORDER;
  858. else
  859. mib_idx = LINUX_MIB_TCPSACKREORDER;
  860. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  861. #if FASTRETRANS_DEBUG > 1
  862. printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
  863. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  864. tp->reordering,
  865. tp->fackets_out,
  866. tp->sacked_out,
  867. tp->undo_marker ? tp->undo_retrans : 0);
  868. #endif
  869. tcp_disable_fack(tp);
  870. }
  871. }
  872. /* This must be called before lost_out is incremented */
  873. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  874. {
  875. if ((tp->retransmit_skb_hint == NULL) ||
  876. before(TCP_SKB_CB(skb)->seq,
  877. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  878. tp->retransmit_skb_hint = skb;
  879. if (!tp->lost_out ||
  880. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  881. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  882. }
  883. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  884. {
  885. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  886. tcp_verify_retransmit_hint(tp, skb);
  887. tp->lost_out += tcp_skb_pcount(skb);
  888. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  889. }
  890. }
  891. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  892. struct sk_buff *skb)
  893. {
  894. tcp_verify_retransmit_hint(tp, skb);
  895. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  896. tp->lost_out += tcp_skb_pcount(skb);
  897. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  898. }
  899. }
  900. /* This procedure tags the retransmission queue when SACKs arrive.
  901. *
  902. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  903. * Packets in queue with these bits set are counted in variables
  904. * sacked_out, retrans_out and lost_out, correspondingly.
  905. *
  906. * Valid combinations are:
  907. * Tag InFlight Description
  908. * 0 1 - orig segment is in flight.
  909. * S 0 - nothing flies, orig reached receiver.
  910. * L 0 - nothing flies, orig lost by net.
  911. * R 2 - both orig and retransmit are in flight.
  912. * L|R 1 - orig is lost, retransmit is in flight.
  913. * S|R 1 - orig reached receiver, retrans is still in flight.
  914. * (L|S|R is logically valid, it could occur when L|R is sacked,
  915. * but it is equivalent to plain S and code short-curcuits it to S.
  916. * L|S is logically invalid, it would mean -1 packet in flight 8))
  917. *
  918. * These 6 states form finite state machine, controlled by the following events:
  919. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  920. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  921. * 3. Loss detection event of two flavors:
  922. * A. Scoreboard estimator decided the packet is lost.
  923. * A'. Reno "three dupacks" marks head of queue lost.
  924. * A''. Its FACK modification, head until snd.fack is lost.
  925. * B. SACK arrives sacking SND.NXT at the moment, when the
  926. * segment was retransmitted.
  927. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  928. *
  929. * It is pleasant to note, that state diagram turns out to be commutative,
  930. * so that we are allowed not to be bothered by order of our actions,
  931. * when multiple events arrive simultaneously. (see the function below).
  932. *
  933. * Reordering detection.
  934. * --------------------
  935. * Reordering metric is maximal distance, which a packet can be displaced
  936. * in packet stream. With SACKs we can estimate it:
  937. *
  938. * 1. SACK fills old hole and the corresponding segment was not
  939. * ever retransmitted -> reordering. Alas, we cannot use it
  940. * when segment was retransmitted.
  941. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  942. * for retransmitted and already SACKed segment -> reordering..
  943. * Both of these heuristics are not used in Loss state, when we cannot
  944. * account for retransmits accurately.
  945. *
  946. * SACK block validation.
  947. * ----------------------
  948. *
  949. * SACK block range validation checks that the received SACK block fits to
  950. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  951. * Note that SND.UNA is not included to the range though being valid because
  952. * it means that the receiver is rather inconsistent with itself reporting
  953. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  954. * perfectly valid, however, in light of RFC2018 which explicitly states
  955. * that "SACK block MUST reflect the newest segment. Even if the newest
  956. * segment is going to be discarded ...", not that it looks very clever
  957. * in case of head skb. Due to potentional receiver driven attacks, we
  958. * choose to avoid immediate execution of a walk in write queue due to
  959. * reneging and defer head skb's loss recovery to standard loss recovery
  960. * procedure that will eventually trigger (nothing forbids us doing this).
  961. *
  962. * Implements also blockage to start_seq wrap-around. Problem lies in the
  963. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  964. * there's no guarantee that it will be before snd_nxt (n). The problem
  965. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  966. * wrap (s_w):
  967. *
  968. * <- outs wnd -> <- wrapzone ->
  969. * u e n u_w e_w s n_w
  970. * | | | | | | |
  971. * |<------------+------+----- TCP seqno space --------------+---------->|
  972. * ...-- <2^31 ->| |<--------...
  973. * ...---- >2^31 ------>| |<--------...
  974. *
  975. * Current code wouldn't be vulnerable but it's better still to discard such
  976. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  977. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  978. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  979. * equal to the ideal case (infinite seqno space without wrap caused issues).
  980. *
  981. * With D-SACK the lower bound is extended to cover sequence space below
  982. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  983. * again, D-SACK block must not to go across snd_una (for the same reason as
  984. * for the normal SACK blocks, explained above). But there all simplicity
  985. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  986. * fully below undo_marker they do not affect behavior in anyway and can
  987. * therefore be safely ignored. In rare cases (which are more or less
  988. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  989. * fragmentation and packet reordering past skb's retransmission. To consider
  990. * them correctly, the acceptable range must be extended even more though
  991. * the exact amount is rather hard to quantify. However, tp->max_window can
  992. * be used as an exaggerated estimate.
  993. */
  994. static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
  995. u32 start_seq, u32 end_seq)
  996. {
  997. /* Too far in future, or reversed (interpretation is ambiguous) */
  998. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  999. return 0;
  1000. /* Nasty start_seq wrap-around check (see comments above) */
  1001. if (!before(start_seq, tp->snd_nxt))
  1002. return 0;
  1003. /* In outstanding window? ...This is valid exit for D-SACKs too.
  1004. * start_seq == snd_una is non-sensical (see comments above)
  1005. */
  1006. if (after(start_seq, tp->snd_una))
  1007. return 1;
  1008. if (!is_dsack || !tp->undo_marker)
  1009. return 0;
  1010. /* ...Then it's D-SACK, and must reside below snd_una completely */
  1011. if (after(end_seq, tp->snd_una))
  1012. return 0;
  1013. if (!before(start_seq, tp->undo_marker))
  1014. return 1;
  1015. /* Too old */
  1016. if (!after(end_seq, tp->undo_marker))
  1017. return 0;
  1018. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  1019. * start_seq < undo_marker and end_seq >= undo_marker.
  1020. */
  1021. return !before(start_seq, end_seq - tp->max_window);
  1022. }
  1023. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  1024. * Event "B". Later note: FACK people cheated me again 8), we have to account
  1025. * for reordering! Ugly, but should help.
  1026. *
  1027. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  1028. * less than what is now known to be received by the other end (derived from
  1029. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  1030. * retransmitted skbs to avoid some costly processing per ACKs.
  1031. */
  1032. static void tcp_mark_lost_retrans(struct sock *sk)
  1033. {
  1034. const struct inet_connection_sock *icsk = inet_csk(sk);
  1035. struct tcp_sock *tp = tcp_sk(sk);
  1036. struct sk_buff *skb;
  1037. int cnt = 0;
  1038. u32 new_low_seq = tp->snd_nxt;
  1039. u32 received_upto = tcp_highest_sack_seq(tp);
  1040. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  1041. !after(received_upto, tp->lost_retrans_low) ||
  1042. icsk->icsk_ca_state != TCP_CA_Recovery)
  1043. return;
  1044. tcp_for_write_queue(skb, sk) {
  1045. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  1046. if (skb == tcp_send_head(sk))
  1047. break;
  1048. if (cnt == tp->retrans_out)
  1049. break;
  1050. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1051. continue;
  1052. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  1053. continue;
  1054. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  1055. * constraint here (see above) but figuring out that at
  1056. * least tp->reordering SACK blocks reside between ack_seq
  1057. * and received_upto is not easy task to do cheaply with
  1058. * the available datastructures.
  1059. *
  1060. * Whether FACK should check here for tp->reordering segs
  1061. * in-between one could argue for either way (it would be
  1062. * rather simple to implement as we could count fack_count
  1063. * during the walk and do tp->fackets_out - fack_count).
  1064. */
  1065. if (after(received_upto, ack_seq)) {
  1066. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1067. tp->retrans_out -= tcp_skb_pcount(skb);
  1068. tcp_skb_mark_lost_uncond_verify(tp, skb);
  1069. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  1070. } else {
  1071. if (before(ack_seq, new_low_seq))
  1072. new_low_seq = ack_seq;
  1073. cnt += tcp_skb_pcount(skb);
  1074. }
  1075. }
  1076. if (tp->retrans_out)
  1077. tp->lost_retrans_low = new_low_seq;
  1078. }
  1079. static int tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  1080. struct tcp_sack_block_wire *sp, int num_sacks,
  1081. u32 prior_snd_una)
  1082. {
  1083. struct tcp_sock *tp = tcp_sk(sk);
  1084. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  1085. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  1086. int dup_sack = 0;
  1087. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  1088. dup_sack = 1;
  1089. tcp_dsack_seen(tp);
  1090. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  1091. } else if (num_sacks > 1) {
  1092. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  1093. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  1094. if (!after(end_seq_0, end_seq_1) &&
  1095. !before(start_seq_0, start_seq_1)) {
  1096. dup_sack = 1;
  1097. tcp_dsack_seen(tp);
  1098. NET_INC_STATS_BH(sock_net(sk),
  1099. LINUX_MIB_TCPDSACKOFORECV);
  1100. }
  1101. }
  1102. /* D-SACK for already forgotten data... Do dumb counting. */
  1103. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  1104. !after(end_seq_0, prior_snd_una) &&
  1105. after(end_seq_0, tp->undo_marker))
  1106. tp->undo_retrans--;
  1107. return dup_sack;
  1108. }
  1109. struct tcp_sacktag_state {
  1110. int reord;
  1111. int fack_count;
  1112. int flag;
  1113. };
  1114. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1115. * the incoming SACK may not exactly match but we can find smaller MSS
  1116. * aligned portion of it that matches. Therefore we might need to fragment
  1117. * which may fail and creates some hassle (caller must handle error case
  1118. * returns).
  1119. *
  1120. * FIXME: this could be merged to shift decision code
  1121. */
  1122. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1123. u32 start_seq, u32 end_seq)
  1124. {
  1125. int in_sack, err;
  1126. unsigned int pkt_len;
  1127. unsigned int mss;
  1128. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1129. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1130. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1131. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1132. mss = tcp_skb_mss(skb);
  1133. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1134. if (!in_sack) {
  1135. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1136. if (pkt_len < mss)
  1137. pkt_len = mss;
  1138. } else {
  1139. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1140. if (pkt_len < mss)
  1141. return -EINVAL;
  1142. }
  1143. /* Round if necessary so that SACKs cover only full MSSes
  1144. * and/or the remaining small portion (if present)
  1145. */
  1146. if (pkt_len > mss) {
  1147. unsigned int new_len = (pkt_len / mss) * mss;
  1148. if (!in_sack && new_len < pkt_len) {
  1149. new_len += mss;
  1150. if (new_len > skb->len)
  1151. return 0;
  1152. }
  1153. pkt_len = new_len;
  1154. }
  1155. err = tcp_fragment(sk, skb, pkt_len, mss);
  1156. if (err < 0)
  1157. return err;
  1158. }
  1159. return in_sack;
  1160. }
  1161. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1162. static u8 tcp_sacktag_one(struct sock *sk,
  1163. struct tcp_sacktag_state *state, u8 sacked,
  1164. u32 start_seq, u32 end_seq,
  1165. int dup_sack, int pcount)
  1166. {
  1167. struct tcp_sock *tp = tcp_sk(sk);
  1168. int fack_count = state->fack_count;
  1169. /* Account D-SACK for retransmitted packet. */
  1170. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1171. if (tp->undo_marker && tp->undo_retrans &&
  1172. after(end_seq, tp->undo_marker))
  1173. tp->undo_retrans--;
  1174. if (sacked & TCPCB_SACKED_ACKED)
  1175. state->reord = min(fack_count, state->reord);
  1176. }
  1177. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1178. if (!after(end_seq, tp->snd_una))
  1179. return sacked;
  1180. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1181. if (sacked & TCPCB_SACKED_RETRANS) {
  1182. /* If the segment is not tagged as lost,
  1183. * we do not clear RETRANS, believing
  1184. * that retransmission is still in flight.
  1185. */
  1186. if (sacked & TCPCB_LOST) {
  1187. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1188. tp->lost_out -= pcount;
  1189. tp->retrans_out -= pcount;
  1190. }
  1191. } else {
  1192. if (!(sacked & TCPCB_RETRANS)) {
  1193. /* New sack for not retransmitted frame,
  1194. * which was in hole. It is reordering.
  1195. */
  1196. if (before(start_seq,
  1197. tcp_highest_sack_seq(tp)))
  1198. state->reord = min(fack_count,
  1199. state->reord);
  1200. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1201. if (!after(end_seq, tp->frto_highmark))
  1202. state->flag |= FLAG_ONLY_ORIG_SACKED;
  1203. }
  1204. if (sacked & TCPCB_LOST) {
  1205. sacked &= ~TCPCB_LOST;
  1206. tp->lost_out -= pcount;
  1207. }
  1208. }
  1209. sacked |= TCPCB_SACKED_ACKED;
  1210. state->flag |= FLAG_DATA_SACKED;
  1211. tp->sacked_out += pcount;
  1212. fack_count += pcount;
  1213. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1214. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1215. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1216. tp->lost_cnt_hint += pcount;
  1217. if (fack_count > tp->fackets_out)
  1218. tp->fackets_out = fack_count;
  1219. }
  1220. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1221. * frames and clear it. undo_retrans is decreased above, L|R frames
  1222. * are accounted above as well.
  1223. */
  1224. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1225. sacked &= ~TCPCB_SACKED_RETRANS;
  1226. tp->retrans_out -= pcount;
  1227. }
  1228. return sacked;
  1229. }
  1230. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1231. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1232. */
  1233. static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1234. struct tcp_sacktag_state *state,
  1235. unsigned int pcount, int shifted, int mss,
  1236. int dup_sack)
  1237. {
  1238. struct tcp_sock *tp = tcp_sk(sk);
  1239. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1240. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1241. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1242. BUG_ON(!pcount);
  1243. /* Adjust counters and hints for the newly sacked sequence
  1244. * range but discard the return value since prev is already
  1245. * marked. We must tag the range first because the seq
  1246. * advancement below implicitly advances
  1247. * tcp_highest_sack_seq() when skb is highest_sack.
  1248. */
  1249. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1250. start_seq, end_seq, dup_sack, pcount);
  1251. if (skb == tp->lost_skb_hint)
  1252. tp->lost_cnt_hint += pcount;
  1253. TCP_SKB_CB(prev)->end_seq += shifted;
  1254. TCP_SKB_CB(skb)->seq += shifted;
  1255. skb_shinfo(prev)->gso_segs += pcount;
  1256. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1257. skb_shinfo(skb)->gso_segs -= pcount;
  1258. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1259. * in theory this shouldn't be necessary but as long as DSACK
  1260. * code can come after this skb later on it's better to keep
  1261. * setting gso_size to something.
  1262. */
  1263. if (!skb_shinfo(prev)->gso_size) {
  1264. skb_shinfo(prev)->gso_size = mss;
  1265. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1266. }
  1267. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1268. if (skb_shinfo(skb)->gso_segs <= 1) {
  1269. skb_shinfo(skb)->gso_size = 0;
  1270. skb_shinfo(skb)->gso_type = 0;
  1271. }
  1272. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1273. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1274. if (skb->len > 0) {
  1275. BUG_ON(!tcp_skb_pcount(skb));
  1276. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1277. return 0;
  1278. }
  1279. /* Whole SKB was eaten :-) */
  1280. if (skb == tp->retransmit_skb_hint)
  1281. tp->retransmit_skb_hint = prev;
  1282. if (skb == tp->scoreboard_skb_hint)
  1283. tp->scoreboard_skb_hint = prev;
  1284. if (skb == tp->lost_skb_hint) {
  1285. tp->lost_skb_hint = prev;
  1286. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1287. }
  1288. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
  1289. if (skb == tcp_highest_sack(sk))
  1290. tcp_advance_highest_sack(sk, skb);
  1291. tcp_unlink_write_queue(skb, sk);
  1292. sk_wmem_free_skb(sk, skb);
  1293. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1294. return 1;
  1295. }
  1296. /* I wish gso_size would have a bit more sane initialization than
  1297. * something-or-zero which complicates things
  1298. */
  1299. static int tcp_skb_seglen(const struct sk_buff *skb)
  1300. {
  1301. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1302. }
  1303. /* Shifting pages past head area doesn't work */
  1304. static int skb_can_shift(const struct sk_buff *skb)
  1305. {
  1306. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1307. }
  1308. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1309. * skb.
  1310. */
  1311. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1312. struct tcp_sacktag_state *state,
  1313. u32 start_seq, u32 end_seq,
  1314. int dup_sack)
  1315. {
  1316. struct tcp_sock *tp = tcp_sk(sk);
  1317. struct sk_buff *prev;
  1318. int mss;
  1319. int pcount = 0;
  1320. int len;
  1321. int in_sack;
  1322. if (!sk_can_gso(sk))
  1323. goto fallback;
  1324. /* Normally R but no L won't result in plain S */
  1325. if (!dup_sack &&
  1326. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1327. goto fallback;
  1328. if (!skb_can_shift(skb))
  1329. goto fallback;
  1330. /* This frame is about to be dropped (was ACKed). */
  1331. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1332. goto fallback;
  1333. /* Can only happen with delayed DSACK + discard craziness */
  1334. if (unlikely(skb == tcp_write_queue_head(sk)))
  1335. goto fallback;
  1336. prev = tcp_write_queue_prev(sk, skb);
  1337. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1338. goto fallback;
  1339. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1340. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1341. if (in_sack) {
  1342. len = skb->len;
  1343. pcount = tcp_skb_pcount(skb);
  1344. mss = tcp_skb_seglen(skb);
  1345. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1346. * drop this restriction as unnecessary
  1347. */
  1348. if (mss != tcp_skb_seglen(prev))
  1349. goto fallback;
  1350. } else {
  1351. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1352. goto noop;
  1353. /* CHECKME: This is non-MSS split case only?, this will
  1354. * cause skipped skbs due to advancing loop btw, original
  1355. * has that feature too
  1356. */
  1357. if (tcp_skb_pcount(skb) <= 1)
  1358. goto noop;
  1359. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1360. if (!in_sack) {
  1361. /* TODO: head merge to next could be attempted here
  1362. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1363. * though it might not be worth of the additional hassle
  1364. *
  1365. * ...we can probably just fallback to what was done
  1366. * previously. We could try merging non-SACKed ones
  1367. * as well but it probably isn't going to buy off
  1368. * because later SACKs might again split them, and
  1369. * it would make skb timestamp tracking considerably
  1370. * harder problem.
  1371. */
  1372. goto fallback;
  1373. }
  1374. len = end_seq - TCP_SKB_CB(skb)->seq;
  1375. BUG_ON(len < 0);
  1376. BUG_ON(len > skb->len);
  1377. /* MSS boundaries should be honoured or else pcount will
  1378. * severely break even though it makes things bit trickier.
  1379. * Optimize common case to avoid most of the divides
  1380. */
  1381. mss = tcp_skb_mss(skb);
  1382. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1383. * drop this restriction as unnecessary
  1384. */
  1385. if (mss != tcp_skb_seglen(prev))
  1386. goto fallback;
  1387. if (len == mss) {
  1388. pcount = 1;
  1389. } else if (len < mss) {
  1390. goto noop;
  1391. } else {
  1392. pcount = len / mss;
  1393. len = pcount * mss;
  1394. }
  1395. }
  1396. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1397. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1398. goto fallback;
  1399. if (!skb_shift(prev, skb, len))
  1400. goto fallback;
  1401. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1402. goto out;
  1403. /* Hole filled allows collapsing with the next as well, this is very
  1404. * useful when hole on every nth skb pattern happens
  1405. */
  1406. if (prev == tcp_write_queue_tail(sk))
  1407. goto out;
  1408. skb = tcp_write_queue_next(sk, prev);
  1409. if (!skb_can_shift(skb) ||
  1410. (skb == tcp_send_head(sk)) ||
  1411. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1412. (mss != tcp_skb_seglen(skb)))
  1413. goto out;
  1414. len = skb->len;
  1415. if (skb_shift(prev, skb, len)) {
  1416. pcount += tcp_skb_pcount(skb);
  1417. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1418. }
  1419. out:
  1420. state->fack_count += pcount;
  1421. return prev;
  1422. noop:
  1423. return skb;
  1424. fallback:
  1425. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1426. return NULL;
  1427. }
  1428. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1429. struct tcp_sack_block *next_dup,
  1430. struct tcp_sacktag_state *state,
  1431. u32 start_seq, u32 end_seq,
  1432. int dup_sack_in)
  1433. {
  1434. struct tcp_sock *tp = tcp_sk(sk);
  1435. struct sk_buff *tmp;
  1436. tcp_for_write_queue_from(skb, sk) {
  1437. int in_sack = 0;
  1438. int dup_sack = dup_sack_in;
  1439. if (skb == tcp_send_head(sk))
  1440. break;
  1441. /* queue is in-order => we can short-circuit the walk early */
  1442. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1443. break;
  1444. if ((next_dup != NULL) &&
  1445. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1446. in_sack = tcp_match_skb_to_sack(sk, skb,
  1447. next_dup->start_seq,
  1448. next_dup->end_seq);
  1449. if (in_sack > 0)
  1450. dup_sack = 1;
  1451. }
  1452. /* skb reference here is a bit tricky to get right, since
  1453. * shifting can eat and free both this skb and the next,
  1454. * so not even _safe variant of the loop is enough.
  1455. */
  1456. if (in_sack <= 0) {
  1457. tmp = tcp_shift_skb_data(sk, skb, state,
  1458. start_seq, end_seq, dup_sack);
  1459. if (tmp != NULL) {
  1460. if (tmp != skb) {
  1461. skb = tmp;
  1462. continue;
  1463. }
  1464. in_sack = 0;
  1465. } else {
  1466. in_sack = tcp_match_skb_to_sack(sk, skb,
  1467. start_seq,
  1468. end_seq);
  1469. }
  1470. }
  1471. if (unlikely(in_sack < 0))
  1472. break;
  1473. if (in_sack) {
  1474. TCP_SKB_CB(skb)->sacked =
  1475. tcp_sacktag_one(sk,
  1476. state,
  1477. TCP_SKB_CB(skb)->sacked,
  1478. TCP_SKB_CB(skb)->seq,
  1479. TCP_SKB_CB(skb)->end_seq,
  1480. dup_sack,
  1481. tcp_skb_pcount(skb));
  1482. if (!before(TCP_SKB_CB(skb)->seq,
  1483. tcp_highest_sack_seq(tp)))
  1484. tcp_advance_highest_sack(sk, skb);
  1485. }
  1486. state->fack_count += tcp_skb_pcount(skb);
  1487. }
  1488. return skb;
  1489. }
  1490. /* Avoid all extra work that is being done by sacktag while walking in
  1491. * a normal way
  1492. */
  1493. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1494. struct tcp_sacktag_state *state,
  1495. u32 skip_to_seq)
  1496. {
  1497. tcp_for_write_queue_from(skb, sk) {
  1498. if (skb == tcp_send_head(sk))
  1499. break;
  1500. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1501. break;
  1502. state->fack_count += tcp_skb_pcount(skb);
  1503. }
  1504. return skb;
  1505. }
  1506. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1507. struct sock *sk,
  1508. struct tcp_sack_block *next_dup,
  1509. struct tcp_sacktag_state *state,
  1510. u32 skip_to_seq)
  1511. {
  1512. if (next_dup == NULL)
  1513. return skb;
  1514. if (before(next_dup->start_seq, skip_to_seq)) {
  1515. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1516. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1517. next_dup->start_seq, next_dup->end_seq,
  1518. 1);
  1519. }
  1520. return skb;
  1521. }
  1522. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1523. {
  1524. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1525. }
  1526. static int
  1527. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1528. u32 prior_snd_una)
  1529. {
  1530. const struct inet_connection_sock *icsk = inet_csk(sk);
  1531. struct tcp_sock *tp = tcp_sk(sk);
  1532. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1533. TCP_SKB_CB(ack_skb)->sacked);
  1534. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1535. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1536. struct tcp_sack_block *cache;
  1537. struct tcp_sacktag_state state;
  1538. struct sk_buff *skb;
  1539. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1540. int used_sacks;
  1541. int found_dup_sack = 0;
  1542. int i, j;
  1543. int first_sack_index;
  1544. state.flag = 0;
  1545. state.reord = tp->packets_out;
  1546. if (!tp->sacked_out) {
  1547. if (WARN_ON(tp->fackets_out))
  1548. tp->fackets_out = 0;
  1549. tcp_highest_sack_reset(sk);
  1550. }
  1551. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1552. num_sacks, prior_snd_una);
  1553. if (found_dup_sack)
  1554. state.flag |= FLAG_DSACKING_ACK;
  1555. /* Eliminate too old ACKs, but take into
  1556. * account more or less fresh ones, they can
  1557. * contain valid SACK info.
  1558. */
  1559. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1560. return 0;
  1561. if (!tp->packets_out)
  1562. goto out;
  1563. used_sacks = 0;
  1564. first_sack_index = 0;
  1565. for (i = 0; i < num_sacks; i++) {
  1566. int dup_sack = !i && found_dup_sack;
  1567. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1568. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1569. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1570. sp[used_sacks].start_seq,
  1571. sp[used_sacks].end_seq)) {
  1572. int mib_idx;
  1573. if (dup_sack) {
  1574. if (!tp->undo_marker)
  1575. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1576. else
  1577. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1578. } else {
  1579. /* Don't count olds caused by ACK reordering */
  1580. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1581. !after(sp[used_sacks].end_seq, tp->snd_una))
  1582. continue;
  1583. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1584. }
  1585. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1586. if (i == 0)
  1587. first_sack_index = -1;
  1588. continue;
  1589. }
  1590. /* Ignore very old stuff early */
  1591. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1592. continue;
  1593. used_sacks++;
  1594. }
  1595. /* order SACK blocks to allow in order walk of the retrans queue */
  1596. for (i = used_sacks - 1; i > 0; i--) {
  1597. for (j = 0; j < i; j++) {
  1598. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1599. swap(sp[j], sp[j + 1]);
  1600. /* Track where the first SACK block goes to */
  1601. if (j == first_sack_index)
  1602. first_sack_index = j + 1;
  1603. }
  1604. }
  1605. }
  1606. skb = tcp_write_queue_head(sk);
  1607. state.fack_count = 0;
  1608. i = 0;
  1609. if (!tp->sacked_out) {
  1610. /* It's already past, so skip checking against it */
  1611. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1612. } else {
  1613. cache = tp->recv_sack_cache;
  1614. /* Skip empty blocks in at head of the cache */
  1615. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1616. !cache->end_seq)
  1617. cache++;
  1618. }
  1619. while (i < used_sacks) {
  1620. u32 start_seq = sp[i].start_seq;
  1621. u32 end_seq = sp[i].end_seq;
  1622. int dup_sack = (found_dup_sack && (i == first_sack_index));
  1623. struct tcp_sack_block *next_dup = NULL;
  1624. if (found_dup_sack && ((i + 1) == first_sack_index))
  1625. next_dup = &sp[i + 1];
  1626. /* Skip too early cached blocks */
  1627. while (tcp_sack_cache_ok(tp, cache) &&
  1628. !before(start_seq, cache->end_seq))
  1629. cache++;
  1630. /* Can skip some work by looking recv_sack_cache? */
  1631. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1632. after(end_seq, cache->start_seq)) {
  1633. /* Head todo? */
  1634. if (before(start_seq, cache->start_seq)) {
  1635. skb = tcp_sacktag_skip(skb, sk, &state,
  1636. start_seq);
  1637. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1638. &state,
  1639. start_seq,
  1640. cache->start_seq,
  1641. dup_sack);
  1642. }
  1643. /* Rest of the block already fully processed? */
  1644. if (!after(end_seq, cache->end_seq))
  1645. goto advance_sp;
  1646. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1647. &state,
  1648. cache->end_seq);
  1649. /* ...tail remains todo... */
  1650. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1651. /* ...but better entrypoint exists! */
  1652. skb = tcp_highest_sack(sk);
  1653. if (skb == NULL)
  1654. break;
  1655. state.fack_count = tp->fackets_out;
  1656. cache++;
  1657. goto walk;
  1658. }
  1659. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1660. /* Check overlap against next cached too (past this one already) */
  1661. cache++;
  1662. continue;
  1663. }
  1664. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1665. skb = tcp_highest_sack(sk);
  1666. if (skb == NULL)
  1667. break;
  1668. state.fack_count = tp->fackets_out;
  1669. }
  1670. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1671. walk:
  1672. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1673. start_seq, end_seq, dup_sack);
  1674. advance_sp:
  1675. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1676. * due to in-order walk
  1677. */
  1678. if (after(end_seq, tp->frto_highmark))
  1679. state.flag &= ~FLAG_ONLY_ORIG_SACKED;
  1680. i++;
  1681. }
  1682. /* Clear the head of the cache sack blocks so we can skip it next time */
  1683. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1684. tp->recv_sack_cache[i].start_seq = 0;
  1685. tp->recv_sack_cache[i].end_seq = 0;
  1686. }
  1687. for (j = 0; j < used_sacks; j++)
  1688. tp->recv_sack_cache[i++] = sp[j];
  1689. tcp_mark_lost_retrans(sk);
  1690. tcp_verify_left_out(tp);
  1691. if ((state.reord < tp->fackets_out) &&
  1692. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1693. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1694. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1695. out:
  1696. #if FASTRETRANS_DEBUG > 0
  1697. WARN_ON((int)tp->sacked_out < 0);
  1698. WARN_ON((int)tp->lost_out < 0);
  1699. WARN_ON((int)tp->retrans_out < 0);
  1700. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1701. #endif
  1702. return state.flag;
  1703. }
  1704. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1705. * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
  1706. */
  1707. static int tcp_limit_reno_sacked(struct tcp_sock *tp)
  1708. {
  1709. u32 holes;
  1710. holes = max(tp->lost_out, 1U);
  1711. holes = min(holes, tp->packets_out);
  1712. if ((tp->sacked_out + holes) > tp->packets_out) {
  1713. tp->sacked_out = tp->packets_out - holes;
  1714. return 1;
  1715. }
  1716. return 0;
  1717. }
  1718. /* If we receive more dupacks than we expected counting segments
  1719. * in assumption of absent reordering, interpret this as reordering.
  1720. * The only another reason could be bug in receiver TCP.
  1721. */
  1722. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1723. {
  1724. struct tcp_sock *tp = tcp_sk(sk);
  1725. if (tcp_limit_reno_sacked(tp))
  1726. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1727. }
  1728. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1729. static void tcp_add_reno_sack(struct sock *sk)
  1730. {
  1731. struct tcp_sock *tp = tcp_sk(sk);
  1732. tp->sacked_out++;
  1733. tcp_check_reno_reordering(sk, 0);
  1734. tcp_verify_left_out(tp);
  1735. }
  1736. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1737. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1738. {
  1739. struct tcp_sock *tp = tcp_sk(sk);
  1740. if (acked > 0) {
  1741. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1742. if (acked - 1 >= tp->sacked_out)
  1743. tp->sacked_out = 0;
  1744. else
  1745. tp->sacked_out -= acked - 1;
  1746. }
  1747. tcp_check_reno_reordering(sk, acked);
  1748. tcp_verify_left_out(tp);
  1749. }
  1750. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1751. {
  1752. tp->sacked_out = 0;
  1753. }
  1754. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1755. {
  1756. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1757. }
  1758. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1759. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1760. */
  1761. int tcp_use_frto(struct sock *sk)
  1762. {
  1763. const struct tcp_sock *tp = tcp_sk(sk);
  1764. const struct inet_connection_sock *icsk = inet_csk(sk);
  1765. struct sk_buff *skb;
  1766. if (!sysctl_tcp_frto)
  1767. return 0;
  1768. /* MTU probe and F-RTO won't really play nicely along currently */
  1769. if (icsk->icsk_mtup.probe_size)
  1770. return 0;
  1771. if (tcp_is_sackfrto(tp))
  1772. return 1;
  1773. /* Avoid expensive walking of rexmit queue if possible */
  1774. if (tp->retrans_out > 1)
  1775. return 0;
  1776. skb = tcp_write_queue_head(sk);
  1777. if (tcp_skb_is_last(sk, skb))
  1778. return 1;
  1779. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1780. tcp_for_write_queue_from(skb, sk) {
  1781. if (skb == tcp_send_head(sk))
  1782. break;
  1783. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1784. return 0;
  1785. /* Short-circuit when first non-SACKed skb has been checked */
  1786. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1787. break;
  1788. }
  1789. return 1;
  1790. }
  1791. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1792. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1793. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1794. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1795. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1796. * bits are handled if the Loss state is really to be entered (in
  1797. * tcp_enter_frto_loss).
  1798. *
  1799. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1800. * does:
  1801. * "Reduce ssthresh if it has not yet been made inside this window."
  1802. */
  1803. void tcp_enter_frto(struct sock *sk)
  1804. {
  1805. const struct inet_connection_sock *icsk = inet_csk(sk);
  1806. struct tcp_sock *tp = tcp_sk(sk);
  1807. struct sk_buff *skb;
  1808. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1809. tp->snd_una == tp->high_seq ||
  1810. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1811. !icsk->icsk_retransmits)) {
  1812. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1813. /* Our state is too optimistic in ssthresh() call because cwnd
  1814. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1815. * recovery has not yet completed. Pattern would be this: RTO,
  1816. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1817. * up here twice).
  1818. * RFC4138 should be more specific on what to do, even though
  1819. * RTO is quite unlikely to occur after the first Cumulative ACK
  1820. * due to back-off and complexity of triggering events ...
  1821. */
  1822. if (tp->frto_counter) {
  1823. u32 stored_cwnd;
  1824. stored_cwnd = tp->snd_cwnd;
  1825. tp->snd_cwnd = 2;
  1826. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1827. tp->snd_cwnd = stored_cwnd;
  1828. } else {
  1829. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1830. }
  1831. /* ... in theory, cong.control module could do "any tricks" in
  1832. * ssthresh(), which means that ca_state, lost bits and lost_out
  1833. * counter would have to be faked before the call occurs. We
  1834. * consider that too expensive, unlikely and hacky, so modules
  1835. * using these in ssthresh() must deal these incompatibility
  1836. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1837. */
  1838. tcp_ca_event(sk, CA_EVENT_FRTO);
  1839. }
  1840. tp->undo_marker = tp->snd_una;
  1841. tp->undo_retrans = 0;
  1842. skb = tcp_write_queue_head(sk);
  1843. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1844. tp->undo_marker = 0;
  1845. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1846. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1847. tp->retrans_out -= tcp_skb_pcount(skb);
  1848. }
  1849. tcp_verify_left_out(tp);
  1850. /* Too bad if TCP was application limited */
  1851. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1852. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1853. * The last condition is necessary at least in tp->frto_counter case.
  1854. */
  1855. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1856. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1857. after(tp->high_seq, tp->snd_una)) {
  1858. tp->frto_highmark = tp->high_seq;
  1859. } else {
  1860. tp->frto_highmark = tp->snd_nxt;
  1861. }
  1862. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1863. tp->high_seq = tp->snd_nxt;
  1864. tp->frto_counter = 1;
  1865. }
  1866. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1867. * which indicates that we should follow the traditional RTO recovery,
  1868. * i.e. mark everything lost and do go-back-N retransmission.
  1869. */
  1870. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1871. {
  1872. struct tcp_sock *tp = tcp_sk(sk);
  1873. struct sk_buff *skb;
  1874. tp->lost_out = 0;
  1875. tp->retrans_out = 0;
  1876. if (tcp_is_reno(tp))
  1877. tcp_reset_reno_sack(tp);
  1878. tcp_for_write_queue(skb, sk) {
  1879. if (skb == tcp_send_head(sk))
  1880. break;
  1881. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1882. /*
  1883. * Count the retransmission made on RTO correctly (only when
  1884. * waiting for the first ACK and did not get it)...
  1885. */
  1886. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1887. /* For some reason this R-bit might get cleared? */
  1888. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1889. tp->retrans_out += tcp_skb_pcount(skb);
  1890. /* ...enter this if branch just for the first segment */
  1891. flag |= FLAG_DATA_ACKED;
  1892. } else {
  1893. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1894. tp->undo_marker = 0;
  1895. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1896. }
  1897. /* Marking forward transmissions that were made after RTO lost
  1898. * can cause unnecessary retransmissions in some scenarios,
  1899. * SACK blocks will mitigate that in some but not in all cases.
  1900. * We used to not mark them but it was causing break-ups with
  1901. * receivers that do only in-order receival.
  1902. *
  1903. * TODO: we could detect presence of such receiver and select
  1904. * different behavior per flow.
  1905. */
  1906. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1907. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1908. tp->lost_out += tcp_skb_pcount(skb);
  1909. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1910. }
  1911. }
  1912. tcp_verify_left_out(tp);
  1913. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1914. tp->snd_cwnd_cnt = 0;
  1915. tp->snd_cwnd_stamp = tcp_time_stamp;
  1916. tp->frto_counter = 0;
  1917. tp->bytes_acked = 0;
  1918. tp->reordering = min_t(unsigned int, tp->reordering,
  1919. sysctl_tcp_reordering);
  1920. tcp_set_ca_state(sk, TCP_CA_Loss);
  1921. tp->high_seq = tp->snd_nxt;
  1922. TCP_ECN_queue_cwr(tp);
  1923. tcp_clear_all_retrans_hints(tp);
  1924. }
  1925. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1926. {
  1927. tp->retrans_out = 0;
  1928. tp->lost_out = 0;
  1929. tp->undo_marker = 0;
  1930. tp->undo_retrans = 0;
  1931. }
  1932. void tcp_clear_retrans(struct tcp_sock *tp)
  1933. {
  1934. tcp_clear_retrans_partial(tp);
  1935. tp->fackets_out = 0;
  1936. tp->sacked_out = 0;
  1937. }
  1938. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1939. * and reset tags completely, otherwise preserve SACKs. If receiver
  1940. * dropped its ofo queue, we will know this due to reneging detection.
  1941. */
  1942. void tcp_enter_loss(struct sock *sk, int how)
  1943. {
  1944. const struct inet_connection_sock *icsk = inet_csk(sk);
  1945. struct tcp_sock *tp = tcp_sk(sk);
  1946. struct sk_buff *skb;
  1947. /* Reduce ssthresh if it has not yet been made inside this window. */
  1948. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1949. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1950. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1951. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1952. tcp_ca_event(sk, CA_EVENT_LOSS);
  1953. }
  1954. tp->snd_cwnd = 1;
  1955. tp->snd_cwnd_cnt = 0;
  1956. tp->snd_cwnd_stamp = tcp_time_stamp;
  1957. tp->bytes_acked = 0;
  1958. tcp_clear_retrans_partial(tp);
  1959. if (tcp_is_reno(tp))
  1960. tcp_reset_reno_sack(tp);
  1961. if (!how) {
  1962. /* Push undo marker, if it was plain RTO and nothing
  1963. * was retransmitted. */
  1964. tp->undo_marker = tp->snd_una;
  1965. } else {
  1966. tp->sacked_out = 0;
  1967. tp->fackets_out = 0;
  1968. }
  1969. tcp_clear_all_retrans_hints(tp);
  1970. tcp_for_write_queue(skb, sk) {
  1971. if (skb == tcp_send_head(sk))
  1972. break;
  1973. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1974. tp->undo_marker = 0;
  1975. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1976. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1977. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1978. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1979. tp->lost_out += tcp_skb_pcount(skb);
  1980. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1981. }
  1982. }
  1983. tcp_verify_left_out(tp);
  1984. tp->reordering = min_t(unsigned int, tp->reordering,
  1985. sysctl_tcp_reordering);
  1986. tcp_set_ca_state(sk, TCP_CA_Loss);
  1987. tp->high_seq = tp->snd_nxt;
  1988. TCP_ECN_queue_cwr(tp);
  1989. /* Abort F-RTO algorithm if one is in progress */
  1990. tp->frto_counter = 0;
  1991. }
  1992. /* If ACK arrived pointing to a remembered SACK, it means that our
  1993. * remembered SACKs do not reflect real state of receiver i.e.
  1994. * receiver _host_ is heavily congested (or buggy).
  1995. *
  1996. * Do processing similar to RTO timeout.
  1997. */
  1998. static int tcp_check_sack_reneging(struct sock *sk, int flag)
  1999. {
  2000. if (flag & FLAG_SACK_RENEGING) {
  2001. struct inet_connection_sock *icsk = inet_csk(sk);
  2002. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  2003. tcp_enter_loss(sk, 1);
  2004. icsk->icsk_retransmits++;
  2005. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  2006. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2007. icsk->icsk_rto, TCP_RTO_MAX);
  2008. return 1;
  2009. }
  2010. return 0;
  2011. }
  2012. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  2013. {
  2014. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  2015. }
  2016. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  2017. * counter when SACK is enabled (without SACK, sacked_out is used for
  2018. * that purpose).
  2019. *
  2020. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  2021. * segments up to the highest received SACK block so far and holes in
  2022. * between them.
  2023. *
  2024. * With reordering, holes may still be in flight, so RFC3517 recovery
  2025. * uses pure sacked_out (total number of SACKed segments) even though
  2026. * it violates the RFC that uses duplicate ACKs, often these are equal
  2027. * but when e.g. out-of-window ACKs or packet duplication occurs,
  2028. * they differ. Since neither occurs due to loss, TCP should really
  2029. * ignore them.
  2030. */
  2031. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  2032. {
  2033. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  2034. }
  2035. static inline int tcp_skb_timedout(const struct sock *sk,
  2036. const struct sk_buff *skb)
  2037. {
  2038. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  2039. }
  2040. static inline int tcp_head_timedout(const struct sock *sk)
  2041. {
  2042. const struct tcp_sock *tp = tcp_sk(sk);
  2043. return tp->packets_out &&
  2044. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  2045. }
  2046. /* Linux NewReno/SACK/FACK/ECN state machine.
  2047. * --------------------------------------
  2048. *
  2049. * "Open" Normal state, no dubious events, fast path.
  2050. * "Disorder" In all the respects it is "Open",
  2051. * but requires a bit more attention. It is entered when
  2052. * we see some SACKs or dupacks. It is split of "Open"
  2053. * mainly to move some processing from fast path to slow one.
  2054. * "CWR" CWND was reduced due to some Congestion Notification event.
  2055. * It can be ECN, ICMP source quench, local device congestion.
  2056. * "Recovery" CWND was reduced, we are fast-retransmitting.
  2057. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  2058. *
  2059. * tcp_fastretrans_alert() is entered:
  2060. * - each incoming ACK, if state is not "Open"
  2061. * - when arrived ACK is unusual, namely:
  2062. * * SACK
  2063. * * Duplicate ACK.
  2064. * * ECN ECE.
  2065. *
  2066. * Counting packets in flight is pretty simple.
  2067. *
  2068. * in_flight = packets_out - left_out + retrans_out
  2069. *
  2070. * packets_out is SND.NXT-SND.UNA counted in packets.
  2071. *
  2072. * retrans_out is number of retransmitted segments.
  2073. *
  2074. * left_out is number of segments left network, but not ACKed yet.
  2075. *
  2076. * left_out = sacked_out + lost_out
  2077. *
  2078. * sacked_out: Packets, which arrived to receiver out of order
  2079. * and hence not ACKed. With SACKs this number is simply
  2080. * amount of SACKed data. Even without SACKs
  2081. * it is easy to give pretty reliable estimate of this number,
  2082. * counting duplicate ACKs.
  2083. *
  2084. * lost_out: Packets lost by network. TCP has no explicit
  2085. * "loss notification" feedback from network (for now).
  2086. * It means that this number can be only _guessed_.
  2087. * Actually, it is the heuristics to predict lossage that
  2088. * distinguishes different algorithms.
  2089. *
  2090. * F.e. after RTO, when all the queue is considered as lost,
  2091. * lost_out = packets_out and in_flight = retrans_out.
  2092. *
  2093. * Essentially, we have now two algorithms counting
  2094. * lost packets.
  2095. *
  2096. * FACK: It is the simplest heuristics. As soon as we decided
  2097. * that something is lost, we decide that _all_ not SACKed
  2098. * packets until the most forward SACK are lost. I.e.
  2099. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  2100. * It is absolutely correct estimate, if network does not reorder
  2101. * packets. And it loses any connection to reality when reordering
  2102. * takes place. We use FACK by default until reordering
  2103. * is suspected on the path to this destination.
  2104. *
  2105. * NewReno: when Recovery is entered, we assume that one segment
  2106. * is lost (classic Reno). While we are in Recovery and
  2107. * a partial ACK arrives, we assume that one more packet
  2108. * is lost (NewReno). This heuristics are the same in NewReno
  2109. * and SACK.
  2110. *
  2111. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  2112. * deflation etc. CWND is real congestion window, never inflated, changes
  2113. * only according to classic VJ rules.
  2114. *
  2115. * Really tricky (and requiring careful tuning) part of algorithm
  2116. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  2117. * The first determines the moment _when_ we should reduce CWND and,
  2118. * hence, slow down forward transmission. In fact, it determines the moment
  2119. * when we decide that hole is caused by loss, rather than by a reorder.
  2120. *
  2121. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  2122. * holes, caused by lost packets.
  2123. *
  2124. * And the most logically complicated part of algorithm is undo
  2125. * heuristics. We detect false retransmits due to both too early
  2126. * fast retransmit (reordering) and underestimated RTO, analyzing
  2127. * timestamps and D-SACKs. When we detect that some segments were
  2128. * retransmitted by mistake and CWND reduction was wrong, we undo
  2129. * window reduction and abort recovery phase. This logic is hidden
  2130. * inside several functions named tcp_try_undo_<something>.
  2131. */
  2132. /* This function decides, when we should leave Disordered state
  2133. * and enter Recovery phase, reducing congestion window.
  2134. *
  2135. * Main question: may we further continue forward transmission
  2136. * with the same cwnd?
  2137. */
  2138. static int tcp_time_to_recover(struct sock *sk)
  2139. {
  2140. struct tcp_sock *tp = tcp_sk(sk);
  2141. __u32 packets_out;
  2142. /* Do not perform any recovery during F-RTO algorithm */
  2143. if (tp->frto_counter)
  2144. return 0;
  2145. /* Trick#1: The loss is proven. */
  2146. if (tp->lost_out)
  2147. return 1;
  2148. /* Not-A-Trick#2 : Classic rule... */
  2149. if (tcp_dupack_heuristics(tp) > tp->reordering)
  2150. return 1;
  2151. /* Trick#3 : when we use RFC2988 timer restart, fast
  2152. * retransmit can be triggered by timeout of queue head.
  2153. */
  2154. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  2155. return 1;
  2156. /* Trick#4: It is still not OK... But will it be useful to delay
  2157. * recovery more?
  2158. */
  2159. packets_out = tp->packets_out;
  2160. if (packets_out <= tp->reordering &&
  2161. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  2162. !tcp_may_send_now(sk)) {
  2163. /* We have nothing to send. This connection is limited
  2164. * either by receiver window or by application.
  2165. */
  2166. return 1;
  2167. }
  2168. /* If a thin stream is detected, retransmit after first
  2169. * received dupack. Employ only if SACK is supported in order
  2170. * to avoid possible corner-case series of spurious retransmissions
  2171. * Use only if there are no unsent data.
  2172. */
  2173. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  2174. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  2175. tcp_is_sack(tp) && !tcp_send_head(sk))
  2176. return 1;
  2177. return 0;
  2178. }
  2179. /* New heuristics: it is possible only after we switched to restart timer
  2180. * each time when something is ACKed. Hence, we can detect timed out packets
  2181. * during fast retransmit without falling to slow start.
  2182. *
  2183. * Usefulness of this as is very questionable, since we should know which of
  2184. * the segments is the next to timeout which is relatively expensive to find
  2185. * in general case unless we add some data structure just for that. The
  2186. * current approach certainly won't find the right one too often and when it
  2187. * finally does find _something_ it usually marks large part of the window
  2188. * right away (because a retransmission with a larger timestamp blocks the
  2189. * loop from advancing). -ij
  2190. */
  2191. static void tcp_timeout_skbs(struct sock *sk)
  2192. {
  2193. struct tcp_sock *tp = tcp_sk(sk);
  2194. struct sk_buff *skb;
  2195. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  2196. return;
  2197. skb = tp->scoreboard_skb_hint;
  2198. if (tp->scoreboard_skb_hint == NULL)
  2199. skb = tcp_write_queue_head(sk);
  2200. tcp_for_write_queue_from(skb, sk) {
  2201. if (skb == tcp_send_head(sk))
  2202. break;
  2203. if (!tcp_skb_timedout(sk, skb))
  2204. break;
  2205. tcp_skb_mark_lost(tp, skb);
  2206. }
  2207. tp->scoreboard_skb_hint = skb;
  2208. tcp_verify_left_out(tp);
  2209. }
  2210. /* Detect loss in event "A" above by marking head of queue up as lost.
  2211. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  2212. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  2213. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  2214. * the maximum SACKed segments to pass before reaching this limit.
  2215. */
  2216. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  2217. {
  2218. struct tcp_sock *tp = tcp_sk(sk);
  2219. struct sk_buff *skb;
  2220. int cnt, oldcnt;
  2221. int err;
  2222. unsigned int mss;
  2223. /* Use SACK to deduce losses of new sequences sent during recovery */
  2224. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  2225. WARN_ON(packets > tp->packets_out);
  2226. if (tp->lost_skb_hint) {
  2227. skb = tp->lost_skb_hint;
  2228. cnt = tp->lost_cnt_hint;
  2229. /* Head already handled? */
  2230. if (mark_head && skb != tcp_write_queue_head(sk))
  2231. return;
  2232. } else {
  2233. skb = tcp_write_queue_head(sk);
  2234. cnt = 0;
  2235. }
  2236. tcp_for_write_queue_from(skb, sk) {
  2237. if (skb == tcp_send_head(sk))
  2238. break;
  2239. /* TODO: do this better */
  2240. /* this is not the most efficient way to do this... */
  2241. tp->lost_skb_hint = skb;
  2242. tp->lost_cnt_hint = cnt;
  2243. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  2244. break;
  2245. oldcnt = cnt;
  2246. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  2247. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2248. cnt += tcp_skb_pcount(skb);
  2249. if (cnt > packets) {
  2250. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  2251. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  2252. (oldcnt >= packets))
  2253. break;
  2254. mss = skb_shinfo(skb)->gso_size;
  2255. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  2256. if (err < 0)
  2257. break;
  2258. cnt = packets;
  2259. }
  2260. tcp_skb_mark_lost(tp, skb);
  2261. if (mark_head)
  2262. break;
  2263. }
  2264. tcp_verify_left_out(tp);
  2265. }
  2266. /* Account newly detected lost packet(s) */
  2267. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  2268. {
  2269. struct tcp_sock *tp = tcp_sk(sk);
  2270. if (tcp_is_reno(tp)) {
  2271. tcp_mark_head_lost(sk, 1, 1);
  2272. } else if (tcp_is_fack(tp)) {
  2273. int lost = tp->fackets_out - tp->reordering;
  2274. if (lost <= 0)
  2275. lost = 1;
  2276. tcp_mark_head_lost(sk, lost, 0);
  2277. } else {
  2278. int sacked_upto = tp->sacked_out - tp->reordering;
  2279. if (sacked_upto >= 0)
  2280. tcp_mark_head_lost(sk, sacked_upto, 0);
  2281. else if (fast_rexmit)
  2282. tcp_mark_head_lost(sk, 1, 1);
  2283. }
  2284. tcp_timeout_skbs(sk);
  2285. }
  2286. /* CWND moderation, preventing bursts due to too big ACKs
  2287. * in dubious situations.
  2288. */
  2289. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2290. {
  2291. tp->snd_cwnd = min(tp->snd_cwnd,
  2292. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2293. tp->snd_cwnd_stamp = tcp_time_stamp;
  2294. }
  2295. /* Lower bound on congestion window is slow start threshold
  2296. * unless congestion avoidance choice decides to overide it.
  2297. */
  2298. static inline u32 tcp_cwnd_min(const struct sock *sk)
  2299. {
  2300. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  2301. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  2302. }
  2303. /* Decrease cwnd each second ack. */
  2304. static void tcp_cwnd_down(struct sock *sk, int flag)
  2305. {
  2306. struct tcp_sock *tp = tcp_sk(sk);
  2307. int decr = tp->snd_cwnd_cnt + 1;
  2308. if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
  2309. (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
  2310. tp->snd_cwnd_cnt = decr & 1;
  2311. decr >>= 1;
  2312. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  2313. tp->snd_cwnd -= decr;
  2314. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  2315. tp->snd_cwnd_stamp = tcp_time_stamp;
  2316. }
  2317. }
  2318. /* Nothing was retransmitted or returned timestamp is less
  2319. * than timestamp of the first retransmission.
  2320. */
  2321. static inline int tcp_packet_delayed(const struct tcp_sock *tp)
  2322. {
  2323. return !tp->retrans_stamp ||
  2324. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2325. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2326. }
  2327. /* Undo procedures. */
  2328. #if FASTRETRANS_DEBUG > 1
  2329. static void DBGUNDO(struct sock *sk, const char *msg)
  2330. {
  2331. struct tcp_sock *tp = tcp_sk(sk);
  2332. struct inet_sock *inet = inet_sk(sk);
  2333. if (sk->sk_family == AF_INET) {
  2334. printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2335. msg,
  2336. &inet->inet_daddr, ntohs(inet->inet_dport),
  2337. tp->snd_cwnd, tcp_left_out(tp),
  2338. tp->snd_ssthresh, tp->prior_ssthresh,
  2339. tp->packets_out);
  2340. }
  2341. #if IS_ENABLED(CONFIG_IPV6)
  2342. else if (sk->sk_family == AF_INET6) {
  2343. struct ipv6_pinfo *np = inet6_sk(sk);
  2344. printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2345. msg,
  2346. &np->daddr, ntohs(inet->inet_dport),
  2347. tp->snd_cwnd, tcp_left_out(tp),
  2348. tp->snd_ssthresh, tp->prior_ssthresh,
  2349. tp->packets_out);
  2350. }
  2351. #endif
  2352. }
  2353. #else
  2354. #define DBGUNDO(x...) do { } while (0)
  2355. #endif
  2356. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  2357. {
  2358. struct tcp_sock *tp = tcp_sk(sk);
  2359. if (tp->prior_ssthresh) {
  2360. const struct inet_connection_sock *icsk = inet_csk(sk);
  2361. if (icsk->icsk_ca_ops->undo_cwnd)
  2362. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2363. else
  2364. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2365. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2366. tp->snd_ssthresh = tp->prior_ssthresh;
  2367. TCP_ECN_withdraw_cwr(tp);
  2368. }
  2369. } else {
  2370. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2371. }
  2372. tp->snd_cwnd_stamp = tcp_time_stamp;
  2373. }
  2374. static inline int tcp_may_undo(const struct tcp_sock *tp)
  2375. {
  2376. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2377. }
  2378. /* People celebrate: "We love our President!" */
  2379. static int tcp_try_undo_recovery(struct sock *sk)
  2380. {
  2381. struct tcp_sock *tp = tcp_sk(sk);
  2382. if (tcp_may_undo(tp)) {
  2383. int mib_idx;
  2384. /* Happy end! We did not retransmit anything
  2385. * or our original transmission succeeded.
  2386. */
  2387. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2388. tcp_undo_cwr(sk, true);
  2389. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2390. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2391. else
  2392. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2393. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2394. tp->undo_marker = 0;
  2395. }
  2396. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2397. /* Hold old state until something *above* high_seq
  2398. * is ACKed. For Reno it is MUST to prevent false
  2399. * fast retransmits (RFC2582). SACK TCP is safe. */
  2400. tcp_moderate_cwnd(tp);
  2401. return 1;
  2402. }
  2403. tcp_set_ca_state(sk, TCP_CA_Open);
  2404. return 0;
  2405. }
  2406. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2407. static void tcp_try_undo_dsack(struct sock *sk)
  2408. {
  2409. struct tcp_sock *tp = tcp_sk(sk);
  2410. if (tp->undo_marker && !tp->undo_retrans) {
  2411. DBGUNDO(sk, "D-SACK");
  2412. tcp_undo_cwr(sk, true);
  2413. tp->undo_marker = 0;
  2414. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2415. }
  2416. }
  2417. /* We can clear retrans_stamp when there are no retransmissions in the
  2418. * window. It would seem that it is trivially available for us in
  2419. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2420. * what will happen if errors occur when sending retransmission for the
  2421. * second time. ...It could the that such segment has only
  2422. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2423. * the head skb is enough except for some reneging corner cases that
  2424. * are not worth the effort.
  2425. *
  2426. * Main reason for all this complexity is the fact that connection dying
  2427. * time now depends on the validity of the retrans_stamp, in particular,
  2428. * that successive retransmissions of a segment must not advance
  2429. * retrans_stamp under any conditions.
  2430. */
  2431. static int tcp_any_retrans_done(const struct sock *sk)
  2432. {
  2433. const struct tcp_sock *tp = tcp_sk(sk);
  2434. struct sk_buff *skb;
  2435. if (tp->retrans_out)
  2436. return 1;
  2437. skb = tcp_write_queue_head(sk);
  2438. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2439. return 1;
  2440. return 0;
  2441. }
  2442. /* Undo during fast recovery after partial ACK. */
  2443. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2444. {
  2445. struct tcp_sock *tp = tcp_sk(sk);
  2446. /* Partial ACK arrived. Force Hoe's retransmit. */
  2447. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2448. if (tcp_may_undo(tp)) {
  2449. /* Plain luck! Hole if filled with delayed
  2450. * packet, rather than with a retransmit.
  2451. */
  2452. if (!tcp_any_retrans_done(sk))
  2453. tp->retrans_stamp = 0;
  2454. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2455. DBGUNDO(sk, "Hoe");
  2456. tcp_undo_cwr(sk, false);
  2457. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2458. /* So... Do not make Hoe's retransmit yet.
  2459. * If the first packet was delayed, the rest
  2460. * ones are most probably delayed as well.
  2461. */
  2462. failed = 0;
  2463. }
  2464. return failed;
  2465. }
  2466. /* Undo during loss recovery after partial ACK. */
  2467. static int tcp_try_undo_loss(struct sock *sk)
  2468. {
  2469. struct tcp_sock *tp = tcp_sk(sk);
  2470. if (tcp_may_undo(tp)) {
  2471. struct sk_buff *skb;
  2472. tcp_for_write_queue(skb, sk) {
  2473. if (skb == tcp_send_head(sk))
  2474. break;
  2475. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2476. }
  2477. tcp_clear_all_retrans_hints(tp);
  2478. DBGUNDO(sk, "partial loss");
  2479. tp->lost_out = 0;
  2480. tcp_undo_cwr(sk, true);
  2481. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2482. inet_csk(sk)->icsk_retransmits = 0;
  2483. tp->undo_marker = 0;
  2484. if (tcp_is_sack(tp))
  2485. tcp_set_ca_state(sk, TCP_CA_Open);
  2486. return 1;
  2487. }
  2488. return 0;
  2489. }
  2490. static inline void tcp_complete_cwr(struct sock *sk)
  2491. {
  2492. struct tcp_sock *tp = tcp_sk(sk);
  2493. /* Do not moderate cwnd if it's already undone in cwr or recovery. */
  2494. if (tp->undo_marker) {
  2495. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR)
  2496. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2497. else /* PRR */
  2498. tp->snd_cwnd = tp->snd_ssthresh;
  2499. tp->snd_cwnd_stamp = tcp_time_stamp;
  2500. }
  2501. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2502. }
  2503. static void tcp_try_keep_open(struct sock *sk)
  2504. {
  2505. struct tcp_sock *tp = tcp_sk(sk);
  2506. int state = TCP_CA_Open;
  2507. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2508. state = TCP_CA_Disorder;
  2509. if (inet_csk(sk)->icsk_ca_state != state) {
  2510. tcp_set_ca_state(sk, state);
  2511. tp->high_seq = tp->snd_nxt;
  2512. }
  2513. }
  2514. static void tcp_try_to_open(struct sock *sk, int flag)
  2515. {
  2516. struct tcp_sock *tp = tcp_sk(sk);
  2517. tcp_verify_left_out(tp);
  2518. if (!tp->frto_counter && !tcp_any_retrans_done(sk))
  2519. tp->retrans_stamp = 0;
  2520. if (flag & FLAG_ECE)
  2521. tcp_enter_cwr(sk, 1);
  2522. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2523. tcp_try_keep_open(sk);
  2524. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  2525. tcp_moderate_cwnd(tp);
  2526. } else {
  2527. tcp_cwnd_down(sk, flag);
  2528. }
  2529. }
  2530. static void tcp_mtup_probe_failed(struct sock *sk)
  2531. {
  2532. struct inet_connection_sock *icsk = inet_csk(sk);
  2533. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2534. icsk->icsk_mtup.probe_size = 0;
  2535. }
  2536. static void tcp_mtup_probe_success(struct sock *sk)
  2537. {
  2538. struct tcp_sock *tp = tcp_sk(sk);
  2539. struct inet_connection_sock *icsk = inet_csk(sk);
  2540. /* FIXME: breaks with very large cwnd */
  2541. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2542. tp->snd_cwnd = tp->snd_cwnd *
  2543. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2544. icsk->icsk_mtup.probe_size;
  2545. tp->snd_cwnd_cnt = 0;
  2546. tp->snd_cwnd_stamp = tcp_time_stamp;
  2547. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2548. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2549. icsk->icsk_mtup.probe_size = 0;
  2550. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2551. }
  2552. /* Do a simple retransmit without using the backoff mechanisms in
  2553. * tcp_timer. This is used for path mtu discovery.
  2554. * The socket is already locked here.
  2555. */
  2556. void tcp_simple_retransmit(struct sock *sk)
  2557. {
  2558. const struct inet_connection_sock *icsk = inet_csk(sk);
  2559. struct tcp_sock *tp = tcp_sk(sk);
  2560. struct sk_buff *skb;
  2561. unsigned int mss = tcp_current_mss(sk);
  2562. u32 prior_lost = tp->lost_out;
  2563. tcp_for_write_queue(skb, sk) {
  2564. if (skb == tcp_send_head(sk))
  2565. break;
  2566. if (tcp_skb_seglen(skb) > mss &&
  2567. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2568. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2569. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2570. tp->retrans_out -= tcp_skb_pcount(skb);
  2571. }
  2572. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2573. }
  2574. }
  2575. tcp_clear_retrans_hints_partial(tp);
  2576. if (prior_lost == tp->lost_out)
  2577. return;
  2578. if (tcp_is_reno(tp))
  2579. tcp_limit_reno_sacked(tp);
  2580. tcp_verify_left_out(tp);
  2581. /* Don't muck with the congestion window here.
  2582. * Reason is that we do not increase amount of _data_
  2583. * in network, but units changed and effective
  2584. * cwnd/ssthresh really reduced now.
  2585. */
  2586. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2587. tp->high_seq = tp->snd_nxt;
  2588. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2589. tp->prior_ssthresh = 0;
  2590. tp->undo_marker = 0;
  2591. tcp_set_ca_state(sk, TCP_CA_Loss);
  2592. }
  2593. tcp_xmit_retransmit_queue(sk);
  2594. }
  2595. EXPORT_SYMBOL(tcp_simple_retransmit);
  2596. /* This function implements the PRR algorithm, specifcally the PRR-SSRB
  2597. * (proportional rate reduction with slow start reduction bound) as described in
  2598. * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
  2599. * It computes the number of packets to send (sndcnt) based on packets newly
  2600. * delivered:
  2601. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2602. * cwnd reductions across a full RTT.
  2603. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2604. * losses and/or application stalls), do not perform any further cwnd
  2605. * reductions, but instead slow start up to ssthresh.
  2606. */
  2607. static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
  2608. int fast_rexmit, int flag)
  2609. {
  2610. struct tcp_sock *tp = tcp_sk(sk);
  2611. int sndcnt = 0;
  2612. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2613. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2614. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2615. tp->prior_cwnd - 1;
  2616. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2617. } else {
  2618. sndcnt = min_t(int, delta,
  2619. max_t(int, tp->prr_delivered - tp->prr_out,
  2620. newly_acked_sacked) + 1);
  2621. }
  2622. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2623. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2624. }
  2625. /* Process an event, which can update packets-in-flight not trivially.
  2626. * Main goal of this function is to calculate new estimate for left_out,
  2627. * taking into account both packets sitting in receiver's buffer and
  2628. * packets lost by network.
  2629. *
  2630. * Besides that it does CWND reduction, when packet loss is detected
  2631. * and changes state of machine.
  2632. *
  2633. * It does _not_ decide what to send, it is made in function
  2634. * tcp_xmit_retransmit_queue().
  2635. */
  2636. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
  2637. int newly_acked_sacked, bool is_dupack,
  2638. int flag)
  2639. {
  2640. struct inet_connection_sock *icsk = inet_csk(sk);
  2641. struct tcp_sock *tp = tcp_sk(sk);
  2642. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2643. (tcp_fackets_out(tp) > tp->reordering));
  2644. int fast_rexmit = 0, mib_idx;
  2645. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2646. tp->sacked_out = 0;
  2647. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2648. tp->fackets_out = 0;
  2649. /* Now state machine starts.
  2650. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2651. if (flag & FLAG_ECE)
  2652. tp->prior_ssthresh = 0;
  2653. /* B. In all the states check for reneging SACKs. */
  2654. if (tcp_check_sack_reneging(sk, flag))
  2655. return;
  2656. /* C. Check consistency of the current state. */
  2657. tcp_verify_left_out(tp);
  2658. /* D. Check state exit conditions. State can be terminated
  2659. * when high_seq is ACKed. */
  2660. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2661. WARN_ON(tp->retrans_out != 0);
  2662. tp->retrans_stamp = 0;
  2663. } else if (!before(tp->snd_una, tp->high_seq)) {
  2664. switch (icsk->icsk_ca_state) {
  2665. case TCP_CA_Loss:
  2666. icsk->icsk_retransmits = 0;
  2667. if (tcp_try_undo_recovery(sk))
  2668. return;
  2669. break;
  2670. case TCP_CA_CWR:
  2671. /* CWR is to be held something *above* high_seq
  2672. * is ACKed for CWR bit to reach receiver. */
  2673. if (tp->snd_una != tp->high_seq) {
  2674. tcp_complete_cwr(sk);
  2675. tcp_set_ca_state(sk, TCP_CA_Open);
  2676. }
  2677. break;
  2678. case TCP_CA_Recovery:
  2679. if (tcp_is_reno(tp))
  2680. tcp_reset_reno_sack(tp);
  2681. if (tcp_try_undo_recovery(sk))
  2682. return;
  2683. tcp_complete_cwr(sk);
  2684. break;
  2685. }
  2686. }
  2687. /* E. Process state. */
  2688. switch (icsk->icsk_ca_state) {
  2689. case TCP_CA_Recovery:
  2690. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2691. if (tcp_is_reno(tp) && is_dupack)
  2692. tcp_add_reno_sack(sk);
  2693. } else
  2694. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2695. break;
  2696. case TCP_CA_Loss:
  2697. if (flag & FLAG_DATA_ACKED)
  2698. icsk->icsk_retransmits = 0;
  2699. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2700. tcp_reset_reno_sack(tp);
  2701. if (!tcp_try_undo_loss(sk)) {
  2702. tcp_moderate_cwnd(tp);
  2703. tcp_xmit_retransmit_queue(sk);
  2704. return;
  2705. }
  2706. if (icsk->icsk_ca_state != TCP_CA_Open)
  2707. return;
  2708. /* Loss is undone; fall through to processing in Open state. */
  2709. default:
  2710. if (tcp_is_reno(tp)) {
  2711. if (flag & FLAG_SND_UNA_ADVANCED)
  2712. tcp_reset_reno_sack(tp);
  2713. if (is_dupack)
  2714. tcp_add_reno_sack(sk);
  2715. }
  2716. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2717. tcp_try_undo_dsack(sk);
  2718. if (!tcp_time_to_recover(sk)) {
  2719. tcp_try_to_open(sk, flag);
  2720. return;
  2721. }
  2722. /* MTU probe failure: don't reduce cwnd */
  2723. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2724. icsk->icsk_mtup.probe_size &&
  2725. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2726. tcp_mtup_probe_failed(sk);
  2727. /* Restores the reduction we did in tcp_mtup_probe() */
  2728. tp->snd_cwnd++;
  2729. tcp_simple_retransmit(sk);
  2730. return;
  2731. }
  2732. /* Otherwise enter Recovery state */
  2733. if (tcp_is_reno(tp))
  2734. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2735. else
  2736. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2737. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2738. tp->high_seq = tp->snd_nxt;
  2739. tp->prior_ssthresh = 0;
  2740. tp->undo_marker = tp->snd_una;
  2741. tp->undo_retrans = tp->retrans_out;
  2742. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  2743. if (!(flag & FLAG_ECE))
  2744. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2745. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  2746. TCP_ECN_queue_cwr(tp);
  2747. }
  2748. tp->bytes_acked = 0;
  2749. tp->snd_cwnd_cnt = 0;
  2750. tp->prior_cwnd = tp->snd_cwnd;
  2751. tp->prr_delivered = 0;
  2752. tp->prr_out = 0;
  2753. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2754. fast_rexmit = 1;
  2755. }
  2756. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2757. tcp_update_scoreboard(sk, fast_rexmit);
  2758. tp->prr_delivered += newly_acked_sacked;
  2759. tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
  2760. tcp_xmit_retransmit_queue(sk);
  2761. }
  2762. void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2763. {
  2764. tcp_rtt_estimator(sk, seq_rtt);
  2765. tcp_set_rto(sk);
  2766. inet_csk(sk)->icsk_backoff = 0;
  2767. }
  2768. EXPORT_SYMBOL(tcp_valid_rtt_meas);
  2769. /* Read draft-ietf-tcplw-high-performance before mucking
  2770. * with this code. (Supersedes RFC1323)
  2771. */
  2772. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2773. {
  2774. /* RTTM Rule: A TSecr value received in a segment is used to
  2775. * update the averaged RTT measurement only if the segment
  2776. * acknowledges some new data, i.e., only if it advances the
  2777. * left edge of the send window.
  2778. *
  2779. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2780. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2781. *
  2782. * Changed: reset backoff as soon as we see the first valid sample.
  2783. * If we do not, we get strongly overestimated rto. With timestamps
  2784. * samples are accepted even from very old segments: f.e., when rtt=1
  2785. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2786. * answer arrives rto becomes 120 seconds! If at least one of segments
  2787. * in window is lost... Voila. --ANK (010210)
  2788. */
  2789. struct tcp_sock *tp = tcp_sk(sk);
  2790. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2791. }
  2792. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2793. {
  2794. /* We don't have a timestamp. Can only use
  2795. * packets that are not retransmitted to determine
  2796. * rtt estimates. Also, we must not reset the
  2797. * backoff for rto until we get a non-retransmitted
  2798. * packet. This allows us to deal with a situation
  2799. * where the network delay has increased suddenly.
  2800. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2801. */
  2802. if (flag & FLAG_RETRANS_DATA_ACKED)
  2803. return;
  2804. tcp_valid_rtt_meas(sk, seq_rtt);
  2805. }
  2806. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2807. const s32 seq_rtt)
  2808. {
  2809. const struct tcp_sock *tp = tcp_sk(sk);
  2810. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2811. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2812. tcp_ack_saw_tstamp(sk, flag);
  2813. else if (seq_rtt >= 0)
  2814. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2815. }
  2816. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2817. {
  2818. const struct inet_connection_sock *icsk = inet_csk(sk);
  2819. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2820. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2821. }
  2822. /* Restart timer after forward progress on connection.
  2823. * RFC2988 recommends to restart timer to now+rto.
  2824. */
  2825. static void tcp_rearm_rto(struct sock *sk)
  2826. {
  2827. const struct tcp_sock *tp = tcp_sk(sk);
  2828. if (!tp->packets_out) {
  2829. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2830. } else {
  2831. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2832. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2833. }
  2834. }
  2835. /* If we get here, the whole TSO packet has not been acked. */
  2836. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2837. {
  2838. struct tcp_sock *tp = tcp_sk(sk);
  2839. u32 packets_acked;
  2840. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2841. packets_acked = tcp_skb_pcount(skb);
  2842. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2843. return 0;
  2844. packets_acked -= tcp_skb_pcount(skb);
  2845. if (packets_acked) {
  2846. BUG_ON(tcp_skb_pcount(skb) == 0);
  2847. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2848. }
  2849. return packets_acked;
  2850. }
  2851. /* Remove acknowledged frames from the retransmission queue. If our packet
  2852. * is before the ack sequence we can discard it as it's confirmed to have
  2853. * arrived at the other end.
  2854. */
  2855. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2856. u32 prior_snd_una)
  2857. {
  2858. struct tcp_sock *tp = tcp_sk(sk);
  2859. const struct inet_connection_sock *icsk = inet_csk(sk);
  2860. struct sk_buff *skb;
  2861. u32 now = tcp_time_stamp;
  2862. int fully_acked = 1;
  2863. int flag = 0;
  2864. u32 pkts_acked = 0;
  2865. u32 reord = tp->packets_out;
  2866. u32 prior_sacked = tp->sacked_out;
  2867. s32 seq_rtt = -1;
  2868. s32 ca_seq_rtt = -1;
  2869. ktime_t last_ackt = net_invalid_timestamp();
  2870. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2871. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2872. u32 acked_pcount;
  2873. u8 sacked = scb->sacked;
  2874. /* Determine how many packets and what bytes were acked, tso and else */
  2875. if (after(scb->end_seq, tp->snd_una)) {
  2876. if (tcp_skb_pcount(skb) == 1 ||
  2877. !after(tp->snd_una, scb->seq))
  2878. break;
  2879. acked_pcount = tcp_tso_acked(sk, skb);
  2880. if (!acked_pcount)
  2881. break;
  2882. fully_acked = 0;
  2883. } else {
  2884. acked_pcount = tcp_skb_pcount(skb);
  2885. }
  2886. if (sacked & TCPCB_RETRANS) {
  2887. if (sacked & TCPCB_SACKED_RETRANS)
  2888. tp->retrans_out -= acked_pcount;
  2889. flag |= FLAG_RETRANS_DATA_ACKED;
  2890. ca_seq_rtt = -1;
  2891. seq_rtt = -1;
  2892. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2893. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2894. } else {
  2895. ca_seq_rtt = now - scb->when;
  2896. last_ackt = skb->tstamp;
  2897. if (seq_rtt < 0) {
  2898. seq_rtt = ca_seq_rtt;
  2899. }
  2900. if (!(sacked & TCPCB_SACKED_ACKED))
  2901. reord = min(pkts_acked, reord);
  2902. }
  2903. if (sacked & TCPCB_SACKED_ACKED)
  2904. tp->sacked_out -= acked_pcount;
  2905. if (sacked & TCPCB_LOST)
  2906. tp->lost_out -= acked_pcount;
  2907. tp->packets_out -= acked_pcount;
  2908. pkts_acked += acked_pcount;
  2909. /* Initial outgoing SYN's get put onto the write_queue
  2910. * just like anything else we transmit. It is not
  2911. * true data, and if we misinform our callers that
  2912. * this ACK acks real data, we will erroneously exit
  2913. * connection startup slow start one packet too
  2914. * quickly. This is severely frowned upon behavior.
  2915. */
  2916. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2917. flag |= FLAG_DATA_ACKED;
  2918. } else {
  2919. flag |= FLAG_SYN_ACKED;
  2920. tp->retrans_stamp = 0;
  2921. }
  2922. if (!fully_acked)
  2923. break;
  2924. tcp_unlink_write_queue(skb, sk);
  2925. sk_wmem_free_skb(sk, skb);
  2926. tp->scoreboard_skb_hint = NULL;
  2927. if (skb == tp->retransmit_skb_hint)
  2928. tp->retransmit_skb_hint = NULL;
  2929. if (skb == tp->lost_skb_hint)
  2930. tp->lost_skb_hint = NULL;
  2931. }
  2932. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2933. tp->snd_up = tp->snd_una;
  2934. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2935. flag |= FLAG_SACK_RENEGING;
  2936. if (flag & FLAG_ACKED) {
  2937. const struct tcp_congestion_ops *ca_ops
  2938. = inet_csk(sk)->icsk_ca_ops;
  2939. if (unlikely(icsk->icsk_mtup.probe_size &&
  2940. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2941. tcp_mtup_probe_success(sk);
  2942. }
  2943. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2944. tcp_rearm_rto(sk);
  2945. if (tcp_is_reno(tp)) {
  2946. tcp_remove_reno_sacks(sk, pkts_acked);
  2947. } else {
  2948. int delta;
  2949. /* Non-retransmitted hole got filled? That's reordering */
  2950. if (reord < prior_fackets)
  2951. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2952. delta = tcp_is_fack(tp) ? pkts_acked :
  2953. prior_sacked - tp->sacked_out;
  2954. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2955. }
  2956. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2957. if (ca_ops->pkts_acked) {
  2958. s32 rtt_us = -1;
  2959. /* Is the ACK triggering packet unambiguous? */
  2960. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2961. /* High resolution needed and available? */
  2962. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2963. !ktime_equal(last_ackt,
  2964. net_invalid_timestamp()))
  2965. rtt_us = ktime_us_delta(ktime_get_real(),
  2966. last_ackt);
  2967. else if (ca_seq_rtt >= 0)
  2968. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2969. }
  2970. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2971. }
  2972. }
  2973. #if FASTRETRANS_DEBUG > 0
  2974. WARN_ON((int)tp->sacked_out < 0);
  2975. WARN_ON((int)tp->lost_out < 0);
  2976. WARN_ON((int)tp->retrans_out < 0);
  2977. if (!tp->packets_out && tcp_is_sack(tp)) {
  2978. icsk = inet_csk(sk);
  2979. if (tp->lost_out) {
  2980. printk(KERN_DEBUG "Leak l=%u %d\n",
  2981. tp->lost_out, icsk->icsk_ca_state);
  2982. tp->lost_out = 0;
  2983. }
  2984. if (tp->sacked_out) {
  2985. printk(KERN_DEBUG "Leak s=%u %d\n",
  2986. tp->sacked_out, icsk->icsk_ca_state);
  2987. tp->sacked_out = 0;
  2988. }
  2989. if (tp->retrans_out) {
  2990. printk(KERN_DEBUG "Leak r=%u %d\n",
  2991. tp->retrans_out, icsk->icsk_ca_state);
  2992. tp->retrans_out = 0;
  2993. }
  2994. }
  2995. #endif
  2996. return flag;
  2997. }
  2998. static void tcp_ack_probe(struct sock *sk)
  2999. {
  3000. const struct tcp_sock *tp = tcp_sk(sk);
  3001. struct inet_connection_sock *icsk = inet_csk(sk);
  3002. /* Was it a usable window open? */
  3003. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  3004. icsk->icsk_backoff = 0;
  3005. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  3006. /* Socket must be waked up by subsequent tcp_data_snd_check().
  3007. * This function is not for random using!
  3008. */
  3009. } else {
  3010. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  3011. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  3012. TCP_RTO_MAX);
  3013. }
  3014. }
  3015. static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
  3016. {
  3017. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  3018. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  3019. }
  3020. static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  3021. {
  3022. const struct tcp_sock *tp = tcp_sk(sk);
  3023. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  3024. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  3025. }
  3026. /* Check that window update is acceptable.
  3027. * The function assumes that snd_una<=ack<=snd_next.
  3028. */
  3029. static inline int tcp_may_update_window(const struct tcp_sock *tp,
  3030. const u32 ack, const u32 ack_seq,
  3031. const u32 nwin)
  3032. {
  3033. return after(ack, tp->snd_una) ||
  3034. after(ack_seq, tp->snd_wl1) ||
  3035. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  3036. }
  3037. /* Update our send window.
  3038. *
  3039. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  3040. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  3041. */
  3042. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  3043. u32 ack_seq)
  3044. {
  3045. struct tcp_sock *tp = tcp_sk(sk);
  3046. int flag = 0;
  3047. u32 nwin = ntohs(tcp_hdr(skb)->window);
  3048. if (likely(!tcp_hdr(skb)->syn))
  3049. nwin <<= tp->rx_opt.snd_wscale;
  3050. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  3051. flag |= FLAG_WIN_UPDATE;
  3052. tcp_update_wl(tp, ack_seq);
  3053. if (tp->snd_wnd != nwin) {
  3054. tp->snd_wnd = nwin;
  3055. /* Note, it is the only place, where
  3056. * fast path is recovered for sending TCP.
  3057. */
  3058. tp->pred_flags = 0;
  3059. tcp_fast_path_check(sk);
  3060. if (nwin > tp->max_window) {
  3061. tp->max_window = nwin;
  3062. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  3063. }
  3064. }
  3065. }
  3066. tp->snd_una = ack;
  3067. return flag;
  3068. }
  3069. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  3070. * continue in congestion avoidance.
  3071. */
  3072. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  3073. {
  3074. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  3075. tp->snd_cwnd_cnt = 0;
  3076. tp->bytes_acked = 0;
  3077. TCP_ECN_queue_cwr(tp);
  3078. tcp_moderate_cwnd(tp);
  3079. }
  3080. /* A conservative spurious RTO response algorithm: reduce cwnd using
  3081. * rate halving and continue in congestion avoidance.
  3082. */
  3083. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  3084. {
  3085. tcp_enter_cwr(sk, 0);
  3086. }
  3087. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  3088. {
  3089. if (flag & FLAG_ECE)
  3090. tcp_ratehalving_spur_to_response(sk);
  3091. else
  3092. tcp_undo_cwr(sk, true);
  3093. }
  3094. /* F-RTO spurious RTO detection algorithm (RFC4138)
  3095. *
  3096. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  3097. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  3098. * window (but not to or beyond highest sequence sent before RTO):
  3099. * On First ACK, send two new segments out.
  3100. * On Second ACK, RTO was likely spurious. Do spurious response (response
  3101. * algorithm is not part of the F-RTO detection algorithm
  3102. * given in RFC4138 but can be selected separately).
  3103. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  3104. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  3105. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  3106. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  3107. *
  3108. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  3109. * original window even after we transmit two new data segments.
  3110. *
  3111. * SACK version:
  3112. * on first step, wait until first cumulative ACK arrives, then move to
  3113. * the second step. In second step, the next ACK decides.
  3114. *
  3115. * F-RTO is implemented (mainly) in four functions:
  3116. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  3117. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  3118. * called when tcp_use_frto() showed green light
  3119. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  3120. * - tcp_enter_frto_loss() is called if there is not enough evidence
  3121. * to prove that the RTO is indeed spurious. It transfers the control
  3122. * from F-RTO to the conventional RTO recovery
  3123. */
  3124. static int tcp_process_frto(struct sock *sk, int flag)
  3125. {
  3126. struct tcp_sock *tp = tcp_sk(sk);
  3127. tcp_verify_left_out(tp);
  3128. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  3129. if (flag & FLAG_DATA_ACKED)
  3130. inet_csk(sk)->icsk_retransmits = 0;
  3131. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  3132. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  3133. tp->undo_marker = 0;
  3134. if (!before(tp->snd_una, tp->frto_highmark)) {
  3135. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  3136. return 1;
  3137. }
  3138. if (!tcp_is_sackfrto(tp)) {
  3139. /* RFC4138 shortcoming in step 2; should also have case c):
  3140. * ACK isn't duplicate nor advances window, e.g., opposite dir
  3141. * data, winupdate
  3142. */
  3143. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  3144. return 1;
  3145. if (!(flag & FLAG_DATA_ACKED)) {
  3146. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  3147. flag);
  3148. return 1;
  3149. }
  3150. } else {
  3151. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  3152. /* Prevent sending of new data. */
  3153. tp->snd_cwnd = min(tp->snd_cwnd,
  3154. tcp_packets_in_flight(tp));
  3155. return 1;
  3156. }
  3157. if ((tp->frto_counter >= 2) &&
  3158. (!(flag & FLAG_FORWARD_PROGRESS) ||
  3159. ((flag & FLAG_DATA_SACKED) &&
  3160. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  3161. /* RFC4138 shortcoming (see comment above) */
  3162. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  3163. (flag & FLAG_NOT_DUP))
  3164. return 1;
  3165. tcp_enter_frto_loss(sk, 3, flag);
  3166. return 1;
  3167. }
  3168. }
  3169. if (tp->frto_counter == 1) {
  3170. /* tcp_may_send_now needs to see updated state */
  3171. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  3172. tp->frto_counter = 2;
  3173. if (!tcp_may_send_now(sk))
  3174. tcp_enter_frto_loss(sk, 2, flag);
  3175. return 1;
  3176. } else {
  3177. switch (sysctl_tcp_frto_response) {
  3178. case 2:
  3179. tcp_undo_spur_to_response(sk, flag);
  3180. break;
  3181. case 1:
  3182. tcp_conservative_spur_to_response(tp);
  3183. break;
  3184. default:
  3185. tcp_ratehalving_spur_to_response(sk);
  3186. break;
  3187. }
  3188. tp->frto_counter = 0;
  3189. tp->undo_marker = 0;
  3190. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  3191. }
  3192. return 0;
  3193. }
  3194. /* This routine deals with incoming acks, but not outgoing ones. */
  3195. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3196. {
  3197. struct inet_connection_sock *icsk = inet_csk(sk);
  3198. struct tcp_sock *tp = tcp_sk(sk);
  3199. u32 prior_snd_una = tp->snd_una;
  3200. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3201. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3202. bool is_dupack = false;
  3203. u32 prior_in_flight;
  3204. u32 prior_fackets;
  3205. int prior_packets;
  3206. int prior_sacked = tp->sacked_out;
  3207. int pkts_acked = 0;
  3208. int newly_acked_sacked = 0;
  3209. int frto_cwnd = 0;
  3210. /* If the ack is older than previous acks
  3211. * then we can probably ignore it.
  3212. */
  3213. if (before(ack, prior_snd_una))
  3214. goto old_ack;
  3215. /* If the ack includes data we haven't sent yet, discard
  3216. * this segment (RFC793 Section 3.9).
  3217. */
  3218. if (after(ack, tp->snd_nxt))
  3219. goto invalid_ack;
  3220. if (after(ack, prior_snd_una))
  3221. flag |= FLAG_SND_UNA_ADVANCED;
  3222. if (sysctl_tcp_abc) {
  3223. if (icsk->icsk_ca_state < TCP_CA_CWR)
  3224. tp->bytes_acked += ack - prior_snd_una;
  3225. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  3226. /* we assume just one segment left network */
  3227. tp->bytes_acked += min(ack - prior_snd_una,
  3228. tp->mss_cache);
  3229. }
  3230. prior_fackets = tp->fackets_out;
  3231. prior_in_flight = tcp_packets_in_flight(tp);
  3232. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3233. /* Window is constant, pure forward advance.
  3234. * No more checks are required.
  3235. * Note, we use the fact that SND.UNA>=SND.WL2.
  3236. */
  3237. tcp_update_wl(tp, ack_seq);
  3238. tp->snd_una = ack;
  3239. flag |= FLAG_WIN_UPDATE;
  3240. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  3241. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3242. } else {
  3243. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3244. flag |= FLAG_DATA;
  3245. else
  3246. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3247. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3248. if (TCP_SKB_CB(skb)->sacked)
  3249. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3250. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  3251. flag |= FLAG_ECE;
  3252. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  3253. }
  3254. /* We passed data and got it acked, remove any soft error
  3255. * log. Something worked...
  3256. */
  3257. sk->sk_err_soft = 0;
  3258. icsk->icsk_probes_out = 0;
  3259. tp->rcv_tstamp = tcp_time_stamp;
  3260. prior_packets = tp->packets_out;
  3261. if (!prior_packets)
  3262. goto no_queue;
  3263. /* See if we can take anything off of the retransmit queue. */
  3264. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  3265. pkts_acked = prior_packets - tp->packets_out;
  3266. newly_acked_sacked = (prior_packets - prior_sacked) -
  3267. (tp->packets_out - tp->sacked_out);
  3268. if (tp->frto_counter)
  3269. frto_cwnd = tcp_process_frto(sk, flag);
  3270. /* Guarantee sacktag reordering detection against wrap-arounds */
  3271. if (before(tp->frto_highmark, tp->snd_una))
  3272. tp->frto_highmark = 0;
  3273. if (tcp_ack_is_dubious(sk, flag)) {
  3274. /* Advance CWND, if state allows this. */
  3275. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  3276. tcp_may_raise_cwnd(sk, flag))
  3277. tcp_cong_avoid(sk, ack, prior_in_flight);
  3278. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3279. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3280. is_dupack, flag);
  3281. } else {
  3282. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  3283. tcp_cong_avoid(sk, ack, prior_in_flight);
  3284. }
  3285. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3286. dst_confirm(__sk_dst_get(sk));
  3287. return 1;
  3288. no_queue:
  3289. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3290. if (flag & FLAG_DSACKING_ACK)
  3291. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3292. is_dupack, flag);
  3293. /* If this ack opens up a zero window, clear backoff. It was
  3294. * being used to time the probes, and is probably far higher than
  3295. * it needs to be for normal retransmission.
  3296. */
  3297. if (tcp_send_head(sk))
  3298. tcp_ack_probe(sk);
  3299. return 1;
  3300. invalid_ack:
  3301. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3302. return -1;
  3303. old_ack:
  3304. /* If data was SACKed, tag it and see if we should send more data.
  3305. * If data was DSACKed, see if we can undo a cwnd reduction.
  3306. */
  3307. if (TCP_SKB_CB(skb)->sacked) {
  3308. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3309. newly_acked_sacked = tp->sacked_out - prior_sacked;
  3310. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3311. is_dupack, flag);
  3312. }
  3313. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3314. return 0;
  3315. }
  3316. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3317. * But, this can also be called on packets in the established flow when
  3318. * the fast version below fails.
  3319. */
  3320. void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
  3321. const u8 **hvpp, int estab)
  3322. {
  3323. const unsigned char *ptr;
  3324. const struct tcphdr *th = tcp_hdr(skb);
  3325. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3326. ptr = (const unsigned char *)(th + 1);
  3327. opt_rx->saw_tstamp = 0;
  3328. while (length > 0) {
  3329. int opcode = *ptr++;
  3330. int opsize;
  3331. switch (opcode) {
  3332. case TCPOPT_EOL:
  3333. return;
  3334. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3335. length--;
  3336. continue;
  3337. default:
  3338. opsize = *ptr++;
  3339. if (opsize < 2) /* "silly options" */
  3340. return;
  3341. if (opsize > length)
  3342. return; /* don't parse partial options */
  3343. switch (opcode) {
  3344. case TCPOPT_MSS:
  3345. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3346. u16 in_mss = get_unaligned_be16(ptr);
  3347. if (in_mss) {
  3348. if (opt_rx->user_mss &&
  3349. opt_rx->user_mss < in_mss)
  3350. in_mss = opt_rx->user_mss;
  3351. opt_rx->mss_clamp = in_mss;
  3352. }
  3353. }
  3354. break;
  3355. case TCPOPT_WINDOW:
  3356. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3357. !estab && sysctl_tcp_window_scaling) {
  3358. __u8 snd_wscale = *(__u8 *)ptr;
  3359. opt_rx->wscale_ok = 1;
  3360. if (snd_wscale > 14) {
  3361. if (net_ratelimit())
  3362. pr_info("%s: Illegal window scaling value %d >14 received\n",
  3363. __func__,
  3364. snd_wscale);
  3365. snd_wscale = 14;
  3366. }
  3367. opt_rx->snd_wscale = snd_wscale;
  3368. }
  3369. break;
  3370. case TCPOPT_TIMESTAMP:
  3371. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3372. ((estab && opt_rx->tstamp_ok) ||
  3373. (!estab && sysctl_tcp_timestamps))) {
  3374. opt_rx->saw_tstamp = 1;
  3375. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3376. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3377. }
  3378. break;
  3379. case TCPOPT_SACK_PERM:
  3380. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3381. !estab && sysctl_tcp_sack) {
  3382. opt_rx->sack_ok = TCP_SACK_SEEN;
  3383. tcp_sack_reset(opt_rx);
  3384. }
  3385. break;
  3386. case TCPOPT_SACK:
  3387. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3388. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3389. opt_rx->sack_ok) {
  3390. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3391. }
  3392. break;
  3393. #ifdef CONFIG_TCP_MD5SIG
  3394. case TCPOPT_MD5SIG:
  3395. /*
  3396. * The MD5 Hash has already been
  3397. * checked (see tcp_v{4,6}_do_rcv()).
  3398. */
  3399. break;
  3400. #endif
  3401. case TCPOPT_COOKIE:
  3402. /* This option is variable length.
  3403. */
  3404. switch (opsize) {
  3405. case TCPOLEN_COOKIE_BASE:
  3406. /* not yet implemented */
  3407. break;
  3408. case TCPOLEN_COOKIE_PAIR:
  3409. /* not yet implemented */
  3410. break;
  3411. case TCPOLEN_COOKIE_MIN+0:
  3412. case TCPOLEN_COOKIE_MIN+2:
  3413. case TCPOLEN_COOKIE_MIN+4:
  3414. case TCPOLEN_COOKIE_MIN+6:
  3415. case TCPOLEN_COOKIE_MAX:
  3416. /* 16-bit multiple */
  3417. opt_rx->cookie_plus = opsize;
  3418. *hvpp = ptr;
  3419. break;
  3420. default:
  3421. /* ignore option */
  3422. break;
  3423. }
  3424. break;
  3425. }
  3426. ptr += opsize-2;
  3427. length -= opsize;
  3428. }
  3429. }
  3430. }
  3431. EXPORT_SYMBOL(tcp_parse_options);
  3432. static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3433. {
  3434. const __be32 *ptr = (const __be32 *)(th + 1);
  3435. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3436. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3437. tp->rx_opt.saw_tstamp = 1;
  3438. ++ptr;
  3439. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3440. ++ptr;
  3441. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3442. return 1;
  3443. }
  3444. return 0;
  3445. }
  3446. /* Fast parse options. This hopes to only see timestamps.
  3447. * If it is wrong it falls back on tcp_parse_options().
  3448. */
  3449. static int tcp_fast_parse_options(const struct sk_buff *skb,
  3450. const struct tcphdr *th,
  3451. struct tcp_sock *tp, const u8 **hvpp)
  3452. {
  3453. /* In the spirit of fast parsing, compare doff directly to constant
  3454. * values. Because equality is used, short doff can be ignored here.
  3455. */
  3456. if (th->doff == (sizeof(*th) / 4)) {
  3457. tp->rx_opt.saw_tstamp = 0;
  3458. return 0;
  3459. } else if (tp->rx_opt.tstamp_ok &&
  3460. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3461. if (tcp_parse_aligned_timestamp(tp, th))
  3462. return 1;
  3463. }
  3464. tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
  3465. return 1;
  3466. }
  3467. #ifdef CONFIG_TCP_MD5SIG
  3468. /*
  3469. * Parse MD5 Signature option
  3470. */
  3471. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3472. {
  3473. int length = (th->doff << 2) - sizeof(*th);
  3474. const u8 *ptr = (const u8 *)(th + 1);
  3475. /* If the TCP option is too short, we can short cut */
  3476. if (length < TCPOLEN_MD5SIG)
  3477. return NULL;
  3478. while (length > 0) {
  3479. int opcode = *ptr++;
  3480. int opsize;
  3481. switch(opcode) {
  3482. case TCPOPT_EOL:
  3483. return NULL;
  3484. case TCPOPT_NOP:
  3485. length--;
  3486. continue;
  3487. default:
  3488. opsize = *ptr++;
  3489. if (opsize < 2 || opsize > length)
  3490. return NULL;
  3491. if (opcode == TCPOPT_MD5SIG)
  3492. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3493. }
  3494. ptr += opsize - 2;
  3495. length -= opsize;
  3496. }
  3497. return NULL;
  3498. }
  3499. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3500. #endif
  3501. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3502. {
  3503. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3504. tp->rx_opt.ts_recent_stamp = get_seconds();
  3505. }
  3506. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3507. {
  3508. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3509. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3510. * extra check below makes sure this can only happen
  3511. * for pure ACK frames. -DaveM
  3512. *
  3513. * Not only, also it occurs for expired timestamps.
  3514. */
  3515. if (tcp_paws_check(&tp->rx_opt, 0))
  3516. tcp_store_ts_recent(tp);
  3517. }
  3518. }
  3519. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3520. *
  3521. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3522. * it can pass through stack. So, the following predicate verifies that
  3523. * this segment is not used for anything but congestion avoidance or
  3524. * fast retransmit. Moreover, we even are able to eliminate most of such
  3525. * second order effects, if we apply some small "replay" window (~RTO)
  3526. * to timestamp space.
  3527. *
  3528. * All these measures still do not guarantee that we reject wrapped ACKs
  3529. * on networks with high bandwidth, when sequence space is recycled fastly,
  3530. * but it guarantees that such events will be very rare and do not affect
  3531. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3532. * buggy extension.
  3533. *
  3534. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3535. * states that events when retransmit arrives after original data are rare.
  3536. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3537. * the biggest problem on large power networks even with minor reordering.
  3538. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3539. * up to bandwidth of 18Gigabit/sec. 8) ]
  3540. */
  3541. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3542. {
  3543. const struct tcp_sock *tp = tcp_sk(sk);
  3544. const struct tcphdr *th = tcp_hdr(skb);
  3545. u32 seq = TCP_SKB_CB(skb)->seq;
  3546. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3547. return (/* 1. Pure ACK with correct sequence number. */
  3548. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3549. /* 2. ... and duplicate ACK. */
  3550. ack == tp->snd_una &&
  3551. /* 3. ... and does not update window. */
  3552. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3553. /* 4. ... and sits in replay window. */
  3554. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3555. }
  3556. static inline int tcp_paws_discard(const struct sock *sk,
  3557. const struct sk_buff *skb)
  3558. {
  3559. const struct tcp_sock *tp = tcp_sk(sk);
  3560. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3561. !tcp_disordered_ack(sk, skb);
  3562. }
  3563. /* Check segment sequence number for validity.
  3564. *
  3565. * Segment controls are considered valid, if the segment
  3566. * fits to the window after truncation to the window. Acceptability
  3567. * of data (and SYN, FIN, of course) is checked separately.
  3568. * See tcp_data_queue(), for example.
  3569. *
  3570. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3571. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3572. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3573. * (borrowed from freebsd)
  3574. */
  3575. static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3576. {
  3577. return !before(end_seq, tp->rcv_wup) &&
  3578. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3579. }
  3580. /* When we get a reset we do this. */
  3581. static void tcp_reset(struct sock *sk)
  3582. {
  3583. /* We want the right error as BSD sees it (and indeed as we do). */
  3584. switch (sk->sk_state) {
  3585. case TCP_SYN_SENT:
  3586. sk->sk_err = ECONNREFUSED;
  3587. break;
  3588. case TCP_CLOSE_WAIT:
  3589. sk->sk_err = EPIPE;
  3590. break;
  3591. case TCP_CLOSE:
  3592. return;
  3593. default:
  3594. sk->sk_err = ECONNRESET;
  3595. }
  3596. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3597. smp_wmb();
  3598. if (!sock_flag(sk, SOCK_DEAD))
  3599. sk->sk_error_report(sk);
  3600. tcp_done(sk);
  3601. }
  3602. /*
  3603. * Process the FIN bit. This now behaves as it is supposed to work
  3604. * and the FIN takes effect when it is validly part of sequence
  3605. * space. Not before when we get holes.
  3606. *
  3607. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3608. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3609. * TIME-WAIT)
  3610. *
  3611. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3612. * close and we go into CLOSING (and later onto TIME-WAIT)
  3613. *
  3614. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3615. */
  3616. static void tcp_fin(struct sock *sk)
  3617. {
  3618. struct tcp_sock *tp = tcp_sk(sk);
  3619. inet_csk_schedule_ack(sk);
  3620. sk->sk_shutdown |= RCV_SHUTDOWN;
  3621. sock_set_flag(sk, SOCK_DONE);
  3622. switch (sk->sk_state) {
  3623. case TCP_SYN_RECV:
  3624. case TCP_ESTABLISHED:
  3625. /* Move to CLOSE_WAIT */
  3626. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3627. inet_csk(sk)->icsk_ack.pingpong = 1;
  3628. break;
  3629. case TCP_CLOSE_WAIT:
  3630. case TCP_CLOSING:
  3631. /* Received a retransmission of the FIN, do
  3632. * nothing.
  3633. */
  3634. break;
  3635. case TCP_LAST_ACK:
  3636. /* RFC793: Remain in the LAST-ACK state. */
  3637. break;
  3638. case TCP_FIN_WAIT1:
  3639. /* This case occurs when a simultaneous close
  3640. * happens, we must ack the received FIN and
  3641. * enter the CLOSING state.
  3642. */
  3643. tcp_send_ack(sk);
  3644. tcp_set_state(sk, TCP_CLOSING);
  3645. break;
  3646. case TCP_FIN_WAIT2:
  3647. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3648. tcp_send_ack(sk);
  3649. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3650. break;
  3651. default:
  3652. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3653. * cases we should never reach this piece of code.
  3654. */
  3655. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3656. __func__, sk->sk_state);
  3657. break;
  3658. }
  3659. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3660. * Probably, we should reset in this case. For now drop them.
  3661. */
  3662. __skb_queue_purge(&tp->out_of_order_queue);
  3663. if (tcp_is_sack(tp))
  3664. tcp_sack_reset(&tp->rx_opt);
  3665. sk_mem_reclaim(sk);
  3666. if (!sock_flag(sk, SOCK_DEAD)) {
  3667. sk->sk_state_change(sk);
  3668. /* Do not send POLL_HUP for half duplex close. */
  3669. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3670. sk->sk_state == TCP_CLOSE)
  3671. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3672. else
  3673. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3674. }
  3675. }
  3676. static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3677. u32 end_seq)
  3678. {
  3679. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3680. if (before(seq, sp->start_seq))
  3681. sp->start_seq = seq;
  3682. if (after(end_seq, sp->end_seq))
  3683. sp->end_seq = end_seq;
  3684. return 1;
  3685. }
  3686. return 0;
  3687. }
  3688. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3689. {
  3690. struct tcp_sock *tp = tcp_sk(sk);
  3691. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3692. int mib_idx;
  3693. if (before(seq, tp->rcv_nxt))
  3694. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3695. else
  3696. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3697. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3698. tp->rx_opt.dsack = 1;
  3699. tp->duplicate_sack[0].start_seq = seq;
  3700. tp->duplicate_sack[0].end_seq = end_seq;
  3701. }
  3702. }
  3703. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3704. {
  3705. struct tcp_sock *tp = tcp_sk(sk);
  3706. if (!tp->rx_opt.dsack)
  3707. tcp_dsack_set(sk, seq, end_seq);
  3708. else
  3709. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3710. }
  3711. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3712. {
  3713. struct tcp_sock *tp = tcp_sk(sk);
  3714. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3715. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3716. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3717. tcp_enter_quickack_mode(sk);
  3718. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3719. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3720. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3721. end_seq = tp->rcv_nxt;
  3722. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3723. }
  3724. }
  3725. tcp_send_ack(sk);
  3726. }
  3727. /* These routines update the SACK block as out-of-order packets arrive or
  3728. * in-order packets close up the sequence space.
  3729. */
  3730. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3731. {
  3732. int this_sack;
  3733. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3734. struct tcp_sack_block *swalk = sp + 1;
  3735. /* See if the recent change to the first SACK eats into
  3736. * or hits the sequence space of other SACK blocks, if so coalesce.
  3737. */
  3738. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3739. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3740. int i;
  3741. /* Zap SWALK, by moving every further SACK up by one slot.
  3742. * Decrease num_sacks.
  3743. */
  3744. tp->rx_opt.num_sacks--;
  3745. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3746. sp[i] = sp[i + 1];
  3747. continue;
  3748. }
  3749. this_sack++, swalk++;
  3750. }
  3751. }
  3752. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3753. {
  3754. struct tcp_sock *tp = tcp_sk(sk);
  3755. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3756. int cur_sacks = tp->rx_opt.num_sacks;
  3757. int this_sack;
  3758. if (!cur_sacks)
  3759. goto new_sack;
  3760. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3761. if (tcp_sack_extend(sp, seq, end_seq)) {
  3762. /* Rotate this_sack to the first one. */
  3763. for (; this_sack > 0; this_sack--, sp--)
  3764. swap(*sp, *(sp - 1));
  3765. if (cur_sacks > 1)
  3766. tcp_sack_maybe_coalesce(tp);
  3767. return;
  3768. }
  3769. }
  3770. /* Could not find an adjacent existing SACK, build a new one,
  3771. * put it at the front, and shift everyone else down. We
  3772. * always know there is at least one SACK present already here.
  3773. *
  3774. * If the sack array is full, forget about the last one.
  3775. */
  3776. if (this_sack >= TCP_NUM_SACKS) {
  3777. this_sack--;
  3778. tp->rx_opt.num_sacks--;
  3779. sp--;
  3780. }
  3781. for (; this_sack > 0; this_sack--, sp--)
  3782. *sp = *(sp - 1);
  3783. new_sack:
  3784. /* Build the new head SACK, and we're done. */
  3785. sp->start_seq = seq;
  3786. sp->end_seq = end_seq;
  3787. tp->rx_opt.num_sacks++;
  3788. }
  3789. /* RCV.NXT advances, some SACKs should be eaten. */
  3790. static void tcp_sack_remove(struct tcp_sock *tp)
  3791. {
  3792. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3793. int num_sacks = tp->rx_opt.num_sacks;
  3794. int this_sack;
  3795. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3796. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3797. tp->rx_opt.num_sacks = 0;
  3798. return;
  3799. }
  3800. for (this_sack = 0; this_sack < num_sacks;) {
  3801. /* Check if the start of the sack is covered by RCV.NXT. */
  3802. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3803. int i;
  3804. /* RCV.NXT must cover all the block! */
  3805. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3806. /* Zap this SACK, by moving forward any other SACKS. */
  3807. for (i=this_sack+1; i < num_sacks; i++)
  3808. tp->selective_acks[i-1] = tp->selective_acks[i];
  3809. num_sacks--;
  3810. continue;
  3811. }
  3812. this_sack++;
  3813. sp++;
  3814. }
  3815. tp->rx_opt.num_sacks = num_sacks;
  3816. }
  3817. /* This one checks to see if we can put data from the
  3818. * out_of_order queue into the receive_queue.
  3819. */
  3820. static void tcp_ofo_queue(struct sock *sk)
  3821. {
  3822. struct tcp_sock *tp = tcp_sk(sk);
  3823. __u32 dsack_high = tp->rcv_nxt;
  3824. struct sk_buff *skb;
  3825. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3826. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3827. break;
  3828. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3829. __u32 dsack = dsack_high;
  3830. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3831. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3832. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3833. }
  3834. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3835. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3836. __skb_unlink(skb, &tp->out_of_order_queue);
  3837. __kfree_skb(skb);
  3838. continue;
  3839. }
  3840. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3841. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3842. TCP_SKB_CB(skb)->end_seq);
  3843. __skb_unlink(skb, &tp->out_of_order_queue);
  3844. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3845. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3846. if (tcp_hdr(skb)->fin)
  3847. tcp_fin(sk);
  3848. }
  3849. }
  3850. static int tcp_prune_ofo_queue(struct sock *sk);
  3851. static int tcp_prune_queue(struct sock *sk);
  3852. static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
  3853. {
  3854. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3855. !sk_rmem_schedule(sk, size)) {
  3856. if (tcp_prune_queue(sk) < 0)
  3857. return -1;
  3858. if (!sk_rmem_schedule(sk, size)) {
  3859. if (!tcp_prune_ofo_queue(sk))
  3860. return -1;
  3861. if (!sk_rmem_schedule(sk, size))
  3862. return -1;
  3863. }
  3864. }
  3865. return 0;
  3866. }
  3867. /**
  3868. * tcp_try_coalesce - try to merge skb to prior one
  3869. * @sk: socket
  3870. * @to: prior buffer
  3871. * @from: buffer to add in queue
  3872. *
  3873. * Before queueing skb @from after @to, try to merge them
  3874. * to reduce overall memory use and queue lengths, if cost is small.
  3875. * Packets in ofo or receive queues can stay a long time.
  3876. * Better try to coalesce them right now to avoid future collapses.
  3877. * Returns true if caller should free @from instead of queueing it
  3878. */
  3879. static bool tcp_try_coalesce(struct sock *sk,
  3880. struct sk_buff *to,
  3881. struct sk_buff *from)
  3882. {
  3883. int len = from->len;
  3884. if (tcp_hdr(from)->fin)
  3885. return false;
  3886. if (len <= skb_tailroom(to)) {
  3887. BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
  3888. merge:
  3889. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3890. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3891. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3892. return true;
  3893. }
  3894. if (skb_headlen(from) == 0 &&
  3895. !skb_has_frag_list(to) &&
  3896. !skb_has_frag_list(from) &&
  3897. (skb_shinfo(to)->nr_frags +
  3898. skb_shinfo(from)->nr_frags <= MAX_SKB_FRAGS)) {
  3899. int delta = from->truesize - ksize(from->head) -
  3900. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  3901. WARN_ON_ONCE(delta < len);
  3902. memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
  3903. skb_shinfo(from)->frags,
  3904. skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
  3905. skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
  3906. skb_shinfo(from)->nr_frags = 0;
  3907. to->truesize += delta;
  3908. atomic_add(delta, &sk->sk_rmem_alloc);
  3909. sk_mem_charge(sk, delta);
  3910. to->len += len;
  3911. to->data_len += len;
  3912. goto merge;
  3913. }
  3914. return false;
  3915. }
  3916. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3917. {
  3918. struct tcp_sock *tp = tcp_sk(sk);
  3919. struct sk_buff *skb1;
  3920. u32 seq, end_seq;
  3921. TCP_ECN_check_ce(tp, skb);
  3922. if (tcp_try_rmem_schedule(sk, skb->truesize)) {
  3923. /* TODO: should increment a counter */
  3924. __kfree_skb(skb);
  3925. return;
  3926. }
  3927. /* Disable header prediction. */
  3928. tp->pred_flags = 0;
  3929. inet_csk_schedule_ack(sk);
  3930. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3931. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3932. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3933. if (!skb1) {
  3934. /* Initial out of order segment, build 1 SACK. */
  3935. if (tcp_is_sack(tp)) {
  3936. tp->rx_opt.num_sacks = 1;
  3937. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3938. tp->selective_acks[0].end_seq =
  3939. TCP_SKB_CB(skb)->end_seq;
  3940. }
  3941. __skb_queue_head(&tp->out_of_order_queue, skb);
  3942. goto end;
  3943. }
  3944. seq = TCP_SKB_CB(skb)->seq;
  3945. end_seq = TCP_SKB_CB(skb)->end_seq;
  3946. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3947. if (!tcp_try_coalesce(sk, skb1, skb)) {
  3948. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3949. } else {
  3950. __kfree_skb(skb);
  3951. skb = NULL;
  3952. }
  3953. if (!tp->rx_opt.num_sacks ||
  3954. tp->selective_acks[0].end_seq != seq)
  3955. goto add_sack;
  3956. /* Common case: data arrive in order after hole. */
  3957. tp->selective_acks[0].end_seq = end_seq;
  3958. goto end;
  3959. }
  3960. /* Find place to insert this segment. */
  3961. while (1) {
  3962. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3963. break;
  3964. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3965. skb1 = NULL;
  3966. break;
  3967. }
  3968. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3969. }
  3970. /* Do skb overlap to previous one? */
  3971. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3972. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3973. /* All the bits are present. Drop. */
  3974. __kfree_skb(skb);
  3975. skb = NULL;
  3976. tcp_dsack_set(sk, seq, end_seq);
  3977. goto add_sack;
  3978. }
  3979. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3980. /* Partial overlap. */
  3981. tcp_dsack_set(sk, seq,
  3982. TCP_SKB_CB(skb1)->end_seq);
  3983. } else {
  3984. if (skb_queue_is_first(&tp->out_of_order_queue,
  3985. skb1))
  3986. skb1 = NULL;
  3987. else
  3988. skb1 = skb_queue_prev(
  3989. &tp->out_of_order_queue,
  3990. skb1);
  3991. }
  3992. }
  3993. if (!skb1)
  3994. __skb_queue_head(&tp->out_of_order_queue, skb);
  3995. else
  3996. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3997. /* And clean segments covered by new one as whole. */
  3998. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3999. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  4000. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  4001. break;
  4002. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  4003. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  4004. end_seq);
  4005. break;
  4006. }
  4007. __skb_unlink(skb1, &tp->out_of_order_queue);
  4008. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  4009. TCP_SKB_CB(skb1)->end_seq);
  4010. __kfree_skb(skb1);
  4011. }
  4012. add_sack:
  4013. if (tcp_is_sack(tp))
  4014. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  4015. end:
  4016. if (skb)
  4017. skb_set_owner_r(skb, sk);
  4018. }
  4019. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  4020. {
  4021. const struct tcphdr *th = tcp_hdr(skb);
  4022. struct tcp_sock *tp = tcp_sk(sk);
  4023. int eaten = -1;
  4024. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  4025. goto drop;
  4026. skb_dst_drop(skb);
  4027. __skb_pull(skb, th->doff * 4);
  4028. TCP_ECN_accept_cwr(tp, skb);
  4029. tp->rx_opt.dsack = 0;
  4030. /* Queue data for delivery to the user.
  4031. * Packets in sequence go to the receive queue.
  4032. * Out of sequence packets to the out_of_order_queue.
  4033. */
  4034. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  4035. if (tcp_receive_window(tp) == 0)
  4036. goto out_of_window;
  4037. /* Ok. In sequence. In window. */
  4038. if (tp->ucopy.task == current &&
  4039. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  4040. sock_owned_by_user(sk) && !tp->urg_data) {
  4041. int chunk = min_t(unsigned int, skb->len,
  4042. tp->ucopy.len);
  4043. __set_current_state(TASK_RUNNING);
  4044. local_bh_enable();
  4045. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  4046. tp->ucopy.len -= chunk;
  4047. tp->copied_seq += chunk;
  4048. eaten = (chunk == skb->len);
  4049. tcp_rcv_space_adjust(sk);
  4050. }
  4051. local_bh_disable();
  4052. }
  4053. if (eaten <= 0) {
  4054. struct sk_buff *tail;
  4055. queue_and_out:
  4056. if (eaten < 0 &&
  4057. tcp_try_rmem_schedule(sk, skb->truesize))
  4058. goto drop;
  4059. tail = skb_peek_tail(&sk->sk_receive_queue);
  4060. eaten = (tail && tcp_try_coalesce(sk, tail, skb)) ? 1 : 0;
  4061. if (eaten <= 0) {
  4062. skb_set_owner_r(skb, sk);
  4063. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4064. }
  4065. }
  4066. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4067. if (skb->len)
  4068. tcp_event_data_recv(sk, skb);
  4069. if (th->fin)
  4070. tcp_fin(sk);
  4071. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4072. tcp_ofo_queue(sk);
  4073. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4074. * gap in queue is filled.
  4075. */
  4076. if (skb_queue_empty(&tp->out_of_order_queue))
  4077. inet_csk(sk)->icsk_ack.pingpong = 0;
  4078. }
  4079. if (tp->rx_opt.num_sacks)
  4080. tcp_sack_remove(tp);
  4081. tcp_fast_path_check(sk);
  4082. if (eaten > 0)
  4083. __kfree_skb(skb);
  4084. else if (!sock_flag(sk, SOCK_DEAD))
  4085. sk->sk_data_ready(sk, 0);
  4086. return;
  4087. }
  4088. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4089. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4090. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4091. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4092. out_of_window:
  4093. tcp_enter_quickack_mode(sk);
  4094. inet_csk_schedule_ack(sk);
  4095. drop:
  4096. __kfree_skb(skb);
  4097. return;
  4098. }
  4099. /* Out of window. F.e. zero window probe. */
  4100. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4101. goto out_of_window;
  4102. tcp_enter_quickack_mode(sk);
  4103. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4104. /* Partial packet, seq < rcv_next < end_seq */
  4105. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4106. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4107. TCP_SKB_CB(skb)->end_seq);
  4108. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4109. /* If window is closed, drop tail of packet. But after
  4110. * remembering D-SACK for its head made in previous line.
  4111. */
  4112. if (!tcp_receive_window(tp))
  4113. goto out_of_window;
  4114. goto queue_and_out;
  4115. }
  4116. tcp_data_queue_ofo(sk, skb);
  4117. }
  4118. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4119. struct sk_buff_head *list)
  4120. {
  4121. struct sk_buff *next = NULL;
  4122. if (!skb_queue_is_last(list, skb))
  4123. next = skb_queue_next(list, skb);
  4124. __skb_unlink(skb, list);
  4125. __kfree_skb(skb);
  4126. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4127. return next;
  4128. }
  4129. /* Collapse contiguous sequence of skbs head..tail with
  4130. * sequence numbers start..end.
  4131. *
  4132. * If tail is NULL, this means until the end of the list.
  4133. *
  4134. * Segments with FIN/SYN are not collapsed (only because this
  4135. * simplifies code)
  4136. */
  4137. static void
  4138. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  4139. struct sk_buff *head, struct sk_buff *tail,
  4140. u32 start, u32 end)
  4141. {
  4142. struct sk_buff *skb, *n;
  4143. bool end_of_skbs;
  4144. /* First, check that queue is collapsible and find
  4145. * the point where collapsing can be useful. */
  4146. skb = head;
  4147. restart:
  4148. end_of_skbs = true;
  4149. skb_queue_walk_from_safe(list, skb, n) {
  4150. if (skb == tail)
  4151. break;
  4152. /* No new bits? It is possible on ofo queue. */
  4153. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4154. skb = tcp_collapse_one(sk, skb, list);
  4155. if (!skb)
  4156. break;
  4157. goto restart;
  4158. }
  4159. /* The first skb to collapse is:
  4160. * - not SYN/FIN and
  4161. * - bloated or contains data before "start" or
  4162. * overlaps to the next one.
  4163. */
  4164. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  4165. (tcp_win_from_space(skb->truesize) > skb->len ||
  4166. before(TCP_SKB_CB(skb)->seq, start))) {
  4167. end_of_skbs = false;
  4168. break;
  4169. }
  4170. if (!skb_queue_is_last(list, skb)) {
  4171. struct sk_buff *next = skb_queue_next(list, skb);
  4172. if (next != tail &&
  4173. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4174. end_of_skbs = false;
  4175. break;
  4176. }
  4177. }
  4178. /* Decided to skip this, advance start seq. */
  4179. start = TCP_SKB_CB(skb)->end_seq;
  4180. }
  4181. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  4182. return;
  4183. while (before(start, end)) {
  4184. struct sk_buff *nskb;
  4185. unsigned int header = skb_headroom(skb);
  4186. int copy = SKB_MAX_ORDER(header, 0);
  4187. /* Too big header? This can happen with IPv6. */
  4188. if (copy < 0)
  4189. return;
  4190. if (end - start < copy)
  4191. copy = end - start;
  4192. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  4193. if (!nskb)
  4194. return;
  4195. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  4196. skb_set_network_header(nskb, (skb_network_header(skb) -
  4197. skb->head));
  4198. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  4199. skb->head));
  4200. skb_reserve(nskb, header);
  4201. memcpy(nskb->head, skb->head, header);
  4202. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4203. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4204. __skb_queue_before(list, skb, nskb);
  4205. skb_set_owner_r(nskb, sk);
  4206. /* Copy data, releasing collapsed skbs. */
  4207. while (copy > 0) {
  4208. int offset = start - TCP_SKB_CB(skb)->seq;
  4209. int size = TCP_SKB_CB(skb)->end_seq - start;
  4210. BUG_ON(offset < 0);
  4211. if (size > 0) {
  4212. size = min(copy, size);
  4213. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4214. BUG();
  4215. TCP_SKB_CB(nskb)->end_seq += size;
  4216. copy -= size;
  4217. start += size;
  4218. }
  4219. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4220. skb = tcp_collapse_one(sk, skb, list);
  4221. if (!skb ||
  4222. skb == tail ||
  4223. tcp_hdr(skb)->syn ||
  4224. tcp_hdr(skb)->fin)
  4225. return;
  4226. }
  4227. }
  4228. }
  4229. }
  4230. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4231. * and tcp_collapse() them until all the queue is collapsed.
  4232. */
  4233. static void tcp_collapse_ofo_queue(struct sock *sk)
  4234. {
  4235. struct tcp_sock *tp = tcp_sk(sk);
  4236. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4237. struct sk_buff *head;
  4238. u32 start, end;
  4239. if (skb == NULL)
  4240. return;
  4241. start = TCP_SKB_CB(skb)->seq;
  4242. end = TCP_SKB_CB(skb)->end_seq;
  4243. head = skb;
  4244. for (;;) {
  4245. struct sk_buff *next = NULL;
  4246. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4247. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4248. skb = next;
  4249. /* Segment is terminated when we see gap or when
  4250. * we are at the end of all the queue. */
  4251. if (!skb ||
  4252. after(TCP_SKB_CB(skb)->seq, end) ||
  4253. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4254. tcp_collapse(sk, &tp->out_of_order_queue,
  4255. head, skb, start, end);
  4256. head = skb;
  4257. if (!skb)
  4258. break;
  4259. /* Start new segment */
  4260. start = TCP_SKB_CB(skb)->seq;
  4261. end = TCP_SKB_CB(skb)->end_seq;
  4262. } else {
  4263. if (before(TCP_SKB_CB(skb)->seq, start))
  4264. start = TCP_SKB_CB(skb)->seq;
  4265. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4266. end = TCP_SKB_CB(skb)->end_seq;
  4267. }
  4268. }
  4269. }
  4270. /*
  4271. * Purge the out-of-order queue.
  4272. * Return true if queue was pruned.
  4273. */
  4274. static int tcp_prune_ofo_queue(struct sock *sk)
  4275. {
  4276. struct tcp_sock *tp = tcp_sk(sk);
  4277. int res = 0;
  4278. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4279. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4280. __skb_queue_purge(&tp->out_of_order_queue);
  4281. /* Reset SACK state. A conforming SACK implementation will
  4282. * do the same at a timeout based retransmit. When a connection
  4283. * is in a sad state like this, we care only about integrity
  4284. * of the connection not performance.
  4285. */
  4286. if (tp->rx_opt.sack_ok)
  4287. tcp_sack_reset(&tp->rx_opt);
  4288. sk_mem_reclaim(sk);
  4289. res = 1;
  4290. }
  4291. return res;
  4292. }
  4293. /* Reduce allocated memory if we can, trying to get
  4294. * the socket within its memory limits again.
  4295. *
  4296. * Return less than zero if we should start dropping frames
  4297. * until the socket owning process reads some of the data
  4298. * to stabilize the situation.
  4299. */
  4300. static int tcp_prune_queue(struct sock *sk)
  4301. {
  4302. struct tcp_sock *tp = tcp_sk(sk);
  4303. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4304. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4305. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4306. tcp_clamp_window(sk);
  4307. else if (sk_under_memory_pressure(sk))
  4308. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4309. tcp_collapse_ofo_queue(sk);
  4310. if (!skb_queue_empty(&sk->sk_receive_queue))
  4311. tcp_collapse(sk, &sk->sk_receive_queue,
  4312. skb_peek(&sk->sk_receive_queue),
  4313. NULL,
  4314. tp->copied_seq, tp->rcv_nxt);
  4315. sk_mem_reclaim(sk);
  4316. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4317. return 0;
  4318. /* Collapsing did not help, destructive actions follow.
  4319. * This must not ever occur. */
  4320. tcp_prune_ofo_queue(sk);
  4321. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4322. return 0;
  4323. /* If we are really being abused, tell the caller to silently
  4324. * drop receive data on the floor. It will get retransmitted
  4325. * and hopefully then we'll have sufficient space.
  4326. */
  4327. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4328. /* Massive buffer overcommit. */
  4329. tp->pred_flags = 0;
  4330. return -1;
  4331. }
  4332. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4333. * As additional protections, we do not touch cwnd in retransmission phases,
  4334. * and if application hit its sndbuf limit recently.
  4335. */
  4336. void tcp_cwnd_application_limited(struct sock *sk)
  4337. {
  4338. struct tcp_sock *tp = tcp_sk(sk);
  4339. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4340. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4341. /* Limited by application or receiver window. */
  4342. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4343. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4344. if (win_used < tp->snd_cwnd) {
  4345. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4346. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4347. }
  4348. tp->snd_cwnd_used = 0;
  4349. }
  4350. tp->snd_cwnd_stamp = tcp_time_stamp;
  4351. }
  4352. static int tcp_should_expand_sndbuf(const struct sock *sk)
  4353. {
  4354. const struct tcp_sock *tp = tcp_sk(sk);
  4355. /* If the user specified a specific send buffer setting, do
  4356. * not modify it.
  4357. */
  4358. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4359. return 0;
  4360. /* If we are under global TCP memory pressure, do not expand. */
  4361. if (sk_under_memory_pressure(sk))
  4362. return 0;
  4363. /* If we are under soft global TCP memory pressure, do not expand. */
  4364. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4365. return 0;
  4366. /* If we filled the congestion window, do not expand. */
  4367. if (tp->packets_out >= tp->snd_cwnd)
  4368. return 0;
  4369. return 1;
  4370. }
  4371. /* When incoming ACK allowed to free some skb from write_queue,
  4372. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4373. * on the exit from tcp input handler.
  4374. *
  4375. * PROBLEM: sndbuf expansion does not work well with largesend.
  4376. */
  4377. static void tcp_new_space(struct sock *sk)
  4378. {
  4379. struct tcp_sock *tp = tcp_sk(sk);
  4380. if (tcp_should_expand_sndbuf(sk)) {
  4381. int sndmem = SKB_TRUESIZE(max_t(u32,
  4382. tp->rx_opt.mss_clamp,
  4383. tp->mss_cache) +
  4384. MAX_TCP_HEADER);
  4385. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4386. tp->reordering + 1);
  4387. sndmem *= 2 * demanded;
  4388. if (sndmem > sk->sk_sndbuf)
  4389. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4390. tp->snd_cwnd_stamp = tcp_time_stamp;
  4391. }
  4392. sk->sk_write_space(sk);
  4393. }
  4394. static void tcp_check_space(struct sock *sk)
  4395. {
  4396. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4397. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4398. if (sk->sk_socket &&
  4399. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4400. tcp_new_space(sk);
  4401. }
  4402. }
  4403. static inline void tcp_data_snd_check(struct sock *sk)
  4404. {
  4405. tcp_push_pending_frames(sk);
  4406. tcp_check_space(sk);
  4407. }
  4408. /*
  4409. * Check if sending an ack is needed.
  4410. */
  4411. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4412. {
  4413. struct tcp_sock *tp = tcp_sk(sk);
  4414. /* More than one full frame received... */
  4415. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4416. /* ... and right edge of window advances far enough.
  4417. * (tcp_recvmsg() will send ACK otherwise). Or...
  4418. */
  4419. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4420. /* We ACK each frame or... */
  4421. tcp_in_quickack_mode(sk) ||
  4422. /* We have out of order data. */
  4423. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4424. /* Then ack it now */
  4425. tcp_send_ack(sk);
  4426. } else {
  4427. /* Else, send delayed ack. */
  4428. tcp_send_delayed_ack(sk);
  4429. }
  4430. }
  4431. static inline void tcp_ack_snd_check(struct sock *sk)
  4432. {
  4433. if (!inet_csk_ack_scheduled(sk)) {
  4434. /* We sent a data segment already. */
  4435. return;
  4436. }
  4437. __tcp_ack_snd_check(sk, 1);
  4438. }
  4439. /*
  4440. * This routine is only called when we have urgent data
  4441. * signaled. Its the 'slow' part of tcp_urg. It could be
  4442. * moved inline now as tcp_urg is only called from one
  4443. * place. We handle URGent data wrong. We have to - as
  4444. * BSD still doesn't use the correction from RFC961.
  4445. * For 1003.1g we should support a new option TCP_STDURG to permit
  4446. * either form (or just set the sysctl tcp_stdurg).
  4447. */
  4448. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4449. {
  4450. struct tcp_sock *tp = tcp_sk(sk);
  4451. u32 ptr = ntohs(th->urg_ptr);
  4452. if (ptr && !sysctl_tcp_stdurg)
  4453. ptr--;
  4454. ptr += ntohl(th->seq);
  4455. /* Ignore urgent data that we've already seen and read. */
  4456. if (after(tp->copied_seq, ptr))
  4457. return;
  4458. /* Do not replay urg ptr.
  4459. *
  4460. * NOTE: interesting situation not covered by specs.
  4461. * Misbehaving sender may send urg ptr, pointing to segment,
  4462. * which we already have in ofo queue. We are not able to fetch
  4463. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4464. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4465. * situations. But it is worth to think about possibility of some
  4466. * DoSes using some hypothetical application level deadlock.
  4467. */
  4468. if (before(ptr, tp->rcv_nxt))
  4469. return;
  4470. /* Do we already have a newer (or duplicate) urgent pointer? */
  4471. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4472. return;
  4473. /* Tell the world about our new urgent pointer. */
  4474. sk_send_sigurg(sk);
  4475. /* We may be adding urgent data when the last byte read was
  4476. * urgent. To do this requires some care. We cannot just ignore
  4477. * tp->copied_seq since we would read the last urgent byte again
  4478. * as data, nor can we alter copied_seq until this data arrives
  4479. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4480. *
  4481. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4482. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4483. * and expect that both A and B disappear from stream. This is _wrong_.
  4484. * Though this happens in BSD with high probability, this is occasional.
  4485. * Any application relying on this is buggy. Note also, that fix "works"
  4486. * only in this artificial test. Insert some normal data between A and B and we will
  4487. * decline of BSD again. Verdict: it is better to remove to trap
  4488. * buggy users.
  4489. */
  4490. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4491. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4492. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4493. tp->copied_seq++;
  4494. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4495. __skb_unlink(skb, &sk->sk_receive_queue);
  4496. __kfree_skb(skb);
  4497. }
  4498. }
  4499. tp->urg_data = TCP_URG_NOTYET;
  4500. tp->urg_seq = ptr;
  4501. /* Disable header prediction. */
  4502. tp->pred_flags = 0;
  4503. }
  4504. /* This is the 'fast' part of urgent handling. */
  4505. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4506. {
  4507. struct tcp_sock *tp = tcp_sk(sk);
  4508. /* Check if we get a new urgent pointer - normally not. */
  4509. if (th->urg)
  4510. tcp_check_urg(sk, th);
  4511. /* Do we wait for any urgent data? - normally not... */
  4512. if (tp->urg_data == TCP_URG_NOTYET) {
  4513. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4514. th->syn;
  4515. /* Is the urgent pointer pointing into this packet? */
  4516. if (ptr < skb->len) {
  4517. u8 tmp;
  4518. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4519. BUG();
  4520. tp->urg_data = TCP_URG_VALID | tmp;
  4521. if (!sock_flag(sk, SOCK_DEAD))
  4522. sk->sk_data_ready(sk, 0);
  4523. }
  4524. }
  4525. }
  4526. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4527. {
  4528. struct tcp_sock *tp = tcp_sk(sk);
  4529. int chunk = skb->len - hlen;
  4530. int err;
  4531. local_bh_enable();
  4532. if (skb_csum_unnecessary(skb))
  4533. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4534. else
  4535. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4536. tp->ucopy.iov);
  4537. if (!err) {
  4538. tp->ucopy.len -= chunk;
  4539. tp->copied_seq += chunk;
  4540. tcp_rcv_space_adjust(sk);
  4541. }
  4542. local_bh_disable();
  4543. return err;
  4544. }
  4545. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4546. struct sk_buff *skb)
  4547. {
  4548. __sum16 result;
  4549. if (sock_owned_by_user(sk)) {
  4550. local_bh_enable();
  4551. result = __tcp_checksum_complete(skb);
  4552. local_bh_disable();
  4553. } else {
  4554. result = __tcp_checksum_complete(skb);
  4555. }
  4556. return result;
  4557. }
  4558. static inline int tcp_checksum_complete_user(struct sock *sk,
  4559. struct sk_buff *skb)
  4560. {
  4561. return !skb_csum_unnecessary(skb) &&
  4562. __tcp_checksum_complete_user(sk, skb);
  4563. }
  4564. #ifdef CONFIG_NET_DMA
  4565. static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4566. int hlen)
  4567. {
  4568. struct tcp_sock *tp = tcp_sk(sk);
  4569. int chunk = skb->len - hlen;
  4570. int dma_cookie;
  4571. int copied_early = 0;
  4572. if (tp->ucopy.wakeup)
  4573. return 0;
  4574. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4575. tp->ucopy.dma_chan = net_dma_find_channel();
  4576. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4577. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4578. skb, hlen,
  4579. tp->ucopy.iov, chunk,
  4580. tp->ucopy.pinned_list);
  4581. if (dma_cookie < 0)
  4582. goto out;
  4583. tp->ucopy.dma_cookie = dma_cookie;
  4584. copied_early = 1;
  4585. tp->ucopy.len -= chunk;
  4586. tp->copied_seq += chunk;
  4587. tcp_rcv_space_adjust(sk);
  4588. if ((tp->ucopy.len == 0) ||
  4589. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4590. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4591. tp->ucopy.wakeup = 1;
  4592. sk->sk_data_ready(sk, 0);
  4593. }
  4594. } else if (chunk > 0) {
  4595. tp->ucopy.wakeup = 1;
  4596. sk->sk_data_ready(sk, 0);
  4597. }
  4598. out:
  4599. return copied_early;
  4600. }
  4601. #endif /* CONFIG_NET_DMA */
  4602. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4603. * play significant role here.
  4604. */
  4605. static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4606. const struct tcphdr *th, int syn_inerr)
  4607. {
  4608. const u8 *hash_location;
  4609. struct tcp_sock *tp = tcp_sk(sk);
  4610. /* RFC1323: H1. Apply PAWS check first. */
  4611. if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
  4612. tp->rx_opt.saw_tstamp &&
  4613. tcp_paws_discard(sk, skb)) {
  4614. if (!th->rst) {
  4615. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4616. tcp_send_dupack(sk, skb);
  4617. goto discard;
  4618. }
  4619. /* Reset is accepted even if it did not pass PAWS. */
  4620. }
  4621. /* Step 1: check sequence number */
  4622. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4623. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4624. * (RST) segments are validated by checking their SEQ-fields."
  4625. * And page 69: "If an incoming segment is not acceptable,
  4626. * an acknowledgment should be sent in reply (unless the RST
  4627. * bit is set, if so drop the segment and return)".
  4628. */
  4629. if (!th->rst)
  4630. tcp_send_dupack(sk, skb);
  4631. goto discard;
  4632. }
  4633. /* Step 2: check RST bit */
  4634. if (th->rst) {
  4635. tcp_reset(sk);
  4636. goto discard;
  4637. }
  4638. /* ts_recent update must be made after we are sure that the packet
  4639. * is in window.
  4640. */
  4641. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4642. /* step 3: check security and precedence [ignored] */
  4643. /* step 4: Check for a SYN in window. */
  4644. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4645. if (syn_inerr)
  4646. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4647. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
  4648. tcp_reset(sk);
  4649. return -1;
  4650. }
  4651. return 1;
  4652. discard:
  4653. __kfree_skb(skb);
  4654. return 0;
  4655. }
  4656. void tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen)
  4657. {
  4658. __skb_pull(skb, hdrlen);
  4659. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4660. skb_set_owner_r(skb, sk);
  4661. tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4662. }
  4663. /*
  4664. * TCP receive function for the ESTABLISHED state.
  4665. *
  4666. * It is split into a fast path and a slow path. The fast path is
  4667. * disabled when:
  4668. * - A zero window was announced from us - zero window probing
  4669. * is only handled properly in the slow path.
  4670. * - Out of order segments arrived.
  4671. * - Urgent data is expected.
  4672. * - There is no buffer space left
  4673. * - Unexpected TCP flags/window values/header lengths are received
  4674. * (detected by checking the TCP header against pred_flags)
  4675. * - Data is sent in both directions. Fast path only supports pure senders
  4676. * or pure receivers (this means either the sequence number or the ack
  4677. * value must stay constant)
  4678. * - Unexpected TCP option.
  4679. *
  4680. * When these conditions are not satisfied it drops into a standard
  4681. * receive procedure patterned after RFC793 to handle all cases.
  4682. * The first three cases are guaranteed by proper pred_flags setting,
  4683. * the rest is checked inline. Fast processing is turned on in
  4684. * tcp_data_queue when everything is OK.
  4685. */
  4686. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4687. const struct tcphdr *th, unsigned int len)
  4688. {
  4689. struct tcp_sock *tp = tcp_sk(sk);
  4690. int res;
  4691. /*
  4692. * Header prediction.
  4693. * The code loosely follows the one in the famous
  4694. * "30 instruction TCP receive" Van Jacobson mail.
  4695. *
  4696. * Van's trick is to deposit buffers into socket queue
  4697. * on a device interrupt, to call tcp_recv function
  4698. * on the receive process context and checksum and copy
  4699. * the buffer to user space. smart...
  4700. *
  4701. * Our current scheme is not silly either but we take the
  4702. * extra cost of the net_bh soft interrupt processing...
  4703. * We do checksum and copy also but from device to kernel.
  4704. */
  4705. tp->rx_opt.saw_tstamp = 0;
  4706. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4707. * if header_prediction is to be made
  4708. * 'S' will always be tp->tcp_header_len >> 2
  4709. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4710. * turn it off (when there are holes in the receive
  4711. * space for instance)
  4712. * PSH flag is ignored.
  4713. */
  4714. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4715. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4716. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4717. int tcp_header_len = tp->tcp_header_len;
  4718. /* Timestamp header prediction: tcp_header_len
  4719. * is automatically equal to th->doff*4 due to pred_flags
  4720. * match.
  4721. */
  4722. /* Check timestamp */
  4723. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4724. /* No? Slow path! */
  4725. if (!tcp_parse_aligned_timestamp(tp, th))
  4726. goto slow_path;
  4727. /* If PAWS failed, check it more carefully in slow path */
  4728. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4729. goto slow_path;
  4730. /* DO NOT update ts_recent here, if checksum fails
  4731. * and timestamp was corrupted part, it will result
  4732. * in a hung connection since we will drop all
  4733. * future packets due to the PAWS test.
  4734. */
  4735. }
  4736. if (len <= tcp_header_len) {
  4737. /* Bulk data transfer: sender */
  4738. if (len == tcp_header_len) {
  4739. /* Predicted packet is in window by definition.
  4740. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4741. * Hence, check seq<=rcv_wup reduces to:
  4742. */
  4743. if (tcp_header_len ==
  4744. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4745. tp->rcv_nxt == tp->rcv_wup)
  4746. tcp_store_ts_recent(tp);
  4747. /* We know that such packets are checksummed
  4748. * on entry.
  4749. */
  4750. tcp_ack(sk, skb, 0);
  4751. __kfree_skb(skb);
  4752. tcp_data_snd_check(sk);
  4753. return 0;
  4754. } else { /* Header too small */
  4755. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4756. goto discard;
  4757. }
  4758. } else {
  4759. int eaten = 0;
  4760. int copied_early = 0;
  4761. if (tp->copied_seq == tp->rcv_nxt &&
  4762. len - tcp_header_len <= tp->ucopy.len) {
  4763. #ifdef CONFIG_NET_DMA
  4764. if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4765. copied_early = 1;
  4766. eaten = 1;
  4767. }
  4768. #endif
  4769. if (tp->ucopy.task == current &&
  4770. sock_owned_by_user(sk) && !copied_early) {
  4771. __set_current_state(TASK_RUNNING);
  4772. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4773. eaten = 1;
  4774. }
  4775. if (eaten) {
  4776. /* Predicted packet is in window by definition.
  4777. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4778. * Hence, check seq<=rcv_wup reduces to:
  4779. */
  4780. if (tcp_header_len ==
  4781. (sizeof(struct tcphdr) +
  4782. TCPOLEN_TSTAMP_ALIGNED) &&
  4783. tp->rcv_nxt == tp->rcv_wup)
  4784. tcp_store_ts_recent(tp);
  4785. tcp_rcv_rtt_measure_ts(sk, skb);
  4786. __skb_pull(skb, tcp_header_len);
  4787. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4788. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4789. }
  4790. if (copied_early)
  4791. tcp_cleanup_rbuf(sk, skb->len);
  4792. }
  4793. if (!eaten) {
  4794. if (tcp_checksum_complete_user(sk, skb))
  4795. goto csum_error;
  4796. /* Predicted packet is in window by definition.
  4797. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4798. * Hence, check seq<=rcv_wup reduces to:
  4799. */
  4800. if (tcp_header_len ==
  4801. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4802. tp->rcv_nxt == tp->rcv_wup)
  4803. tcp_store_ts_recent(tp);
  4804. tcp_rcv_rtt_measure_ts(sk, skb);
  4805. if ((int)skb->truesize > sk->sk_forward_alloc)
  4806. goto step5;
  4807. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4808. /* Bulk data transfer: receiver */
  4809. tcp_queue_rcv(sk, skb, tcp_header_len);
  4810. }
  4811. tcp_event_data_recv(sk, skb);
  4812. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4813. /* Well, only one small jumplet in fast path... */
  4814. tcp_ack(sk, skb, FLAG_DATA);
  4815. tcp_data_snd_check(sk);
  4816. if (!inet_csk_ack_scheduled(sk))
  4817. goto no_ack;
  4818. }
  4819. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4820. __tcp_ack_snd_check(sk, 0);
  4821. no_ack:
  4822. #ifdef CONFIG_NET_DMA
  4823. if (copied_early)
  4824. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4825. else
  4826. #endif
  4827. if (eaten)
  4828. __kfree_skb(skb);
  4829. else
  4830. sk->sk_data_ready(sk, 0);
  4831. return 0;
  4832. }
  4833. }
  4834. slow_path:
  4835. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4836. goto csum_error;
  4837. /*
  4838. * Standard slow path.
  4839. */
  4840. res = tcp_validate_incoming(sk, skb, th, 1);
  4841. if (res <= 0)
  4842. return -res;
  4843. step5:
  4844. if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
  4845. goto discard;
  4846. tcp_rcv_rtt_measure_ts(sk, skb);
  4847. /* Process urgent data. */
  4848. tcp_urg(sk, skb, th);
  4849. /* step 7: process the segment text */
  4850. tcp_data_queue(sk, skb);
  4851. tcp_data_snd_check(sk);
  4852. tcp_ack_snd_check(sk);
  4853. return 0;
  4854. csum_error:
  4855. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4856. discard:
  4857. __kfree_skb(skb);
  4858. return 0;
  4859. }
  4860. EXPORT_SYMBOL(tcp_rcv_established);
  4861. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4862. {
  4863. struct tcp_sock *tp = tcp_sk(sk);
  4864. struct inet_connection_sock *icsk = inet_csk(sk);
  4865. tcp_set_state(sk, TCP_ESTABLISHED);
  4866. if (skb != NULL)
  4867. security_inet_conn_established(sk, skb);
  4868. /* Make sure socket is routed, for correct metrics. */
  4869. icsk->icsk_af_ops->rebuild_header(sk);
  4870. tcp_init_metrics(sk);
  4871. tcp_init_congestion_control(sk);
  4872. /* Prevent spurious tcp_cwnd_restart() on first data
  4873. * packet.
  4874. */
  4875. tp->lsndtime = tcp_time_stamp;
  4876. tcp_init_buffer_space(sk);
  4877. if (sock_flag(sk, SOCK_KEEPOPEN))
  4878. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4879. if (!tp->rx_opt.snd_wscale)
  4880. __tcp_fast_path_on(tp, tp->snd_wnd);
  4881. else
  4882. tp->pred_flags = 0;
  4883. if (!sock_flag(sk, SOCK_DEAD)) {
  4884. sk->sk_state_change(sk);
  4885. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4886. }
  4887. }
  4888. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4889. const struct tcphdr *th, unsigned int len)
  4890. {
  4891. const u8 *hash_location;
  4892. struct inet_connection_sock *icsk = inet_csk(sk);
  4893. struct tcp_sock *tp = tcp_sk(sk);
  4894. struct tcp_cookie_values *cvp = tp->cookie_values;
  4895. int saved_clamp = tp->rx_opt.mss_clamp;
  4896. tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
  4897. if (th->ack) {
  4898. /* rfc793:
  4899. * "If the state is SYN-SENT then
  4900. * first check the ACK bit
  4901. * If the ACK bit is set
  4902. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4903. * a reset (unless the RST bit is set, if so drop
  4904. * the segment and return)"
  4905. *
  4906. * We do not send data with SYN, so that RFC-correct
  4907. * test reduces to:
  4908. */
  4909. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  4910. goto reset_and_undo;
  4911. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4912. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4913. tcp_time_stamp)) {
  4914. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4915. goto reset_and_undo;
  4916. }
  4917. /* Now ACK is acceptable.
  4918. *
  4919. * "If the RST bit is set
  4920. * If the ACK was acceptable then signal the user "error:
  4921. * connection reset", drop the segment, enter CLOSED state,
  4922. * delete TCB, and return."
  4923. */
  4924. if (th->rst) {
  4925. tcp_reset(sk);
  4926. goto discard;
  4927. }
  4928. /* rfc793:
  4929. * "fifth, if neither of the SYN or RST bits is set then
  4930. * drop the segment and return."
  4931. *
  4932. * See note below!
  4933. * --ANK(990513)
  4934. */
  4935. if (!th->syn)
  4936. goto discard_and_undo;
  4937. /* rfc793:
  4938. * "If the SYN bit is on ...
  4939. * are acceptable then ...
  4940. * (our SYN has been ACKed), change the connection
  4941. * state to ESTABLISHED..."
  4942. */
  4943. TCP_ECN_rcv_synack(tp, th);
  4944. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4945. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4946. /* Ok.. it's good. Set up sequence numbers and
  4947. * move to established.
  4948. */
  4949. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4950. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4951. /* RFC1323: The window in SYN & SYN/ACK segments is
  4952. * never scaled.
  4953. */
  4954. tp->snd_wnd = ntohs(th->window);
  4955. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4956. if (!tp->rx_opt.wscale_ok) {
  4957. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4958. tp->window_clamp = min(tp->window_clamp, 65535U);
  4959. }
  4960. if (tp->rx_opt.saw_tstamp) {
  4961. tp->rx_opt.tstamp_ok = 1;
  4962. tp->tcp_header_len =
  4963. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4964. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4965. tcp_store_ts_recent(tp);
  4966. } else {
  4967. tp->tcp_header_len = sizeof(struct tcphdr);
  4968. }
  4969. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4970. tcp_enable_fack(tp);
  4971. tcp_mtup_init(sk);
  4972. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4973. tcp_initialize_rcv_mss(sk);
  4974. /* Remember, tcp_poll() does not lock socket!
  4975. * Change state from SYN-SENT only after copied_seq
  4976. * is initialized. */
  4977. tp->copied_seq = tp->rcv_nxt;
  4978. if (cvp != NULL &&
  4979. cvp->cookie_pair_size > 0 &&
  4980. tp->rx_opt.cookie_plus > 0) {
  4981. int cookie_size = tp->rx_opt.cookie_plus
  4982. - TCPOLEN_COOKIE_BASE;
  4983. int cookie_pair_size = cookie_size
  4984. + cvp->cookie_desired;
  4985. /* A cookie extension option was sent and returned.
  4986. * Note that each incoming SYNACK replaces the
  4987. * Responder cookie. The initial exchange is most
  4988. * fragile, as protection against spoofing relies
  4989. * entirely upon the sequence and timestamp (above).
  4990. * This replacement strategy allows the correct pair to
  4991. * pass through, while any others will be filtered via
  4992. * Responder verification later.
  4993. */
  4994. if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
  4995. memcpy(&cvp->cookie_pair[cvp->cookie_desired],
  4996. hash_location, cookie_size);
  4997. cvp->cookie_pair_size = cookie_pair_size;
  4998. }
  4999. }
  5000. smp_mb();
  5001. tcp_finish_connect(sk, skb);
  5002. if (sk->sk_write_pending ||
  5003. icsk->icsk_accept_queue.rskq_defer_accept ||
  5004. icsk->icsk_ack.pingpong) {
  5005. /* Save one ACK. Data will be ready after
  5006. * several ticks, if write_pending is set.
  5007. *
  5008. * It may be deleted, but with this feature tcpdumps
  5009. * look so _wonderfully_ clever, that I was not able
  5010. * to stand against the temptation 8) --ANK
  5011. */
  5012. inet_csk_schedule_ack(sk);
  5013. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  5014. tcp_enter_quickack_mode(sk);
  5015. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  5016. TCP_DELACK_MAX, TCP_RTO_MAX);
  5017. discard:
  5018. __kfree_skb(skb);
  5019. return 0;
  5020. } else {
  5021. tcp_send_ack(sk);
  5022. }
  5023. return -1;
  5024. }
  5025. /* No ACK in the segment */
  5026. if (th->rst) {
  5027. /* rfc793:
  5028. * "If the RST bit is set
  5029. *
  5030. * Otherwise (no ACK) drop the segment and return."
  5031. */
  5032. goto discard_and_undo;
  5033. }
  5034. /* PAWS check. */
  5035. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  5036. tcp_paws_reject(&tp->rx_opt, 0))
  5037. goto discard_and_undo;
  5038. if (th->syn) {
  5039. /* We see SYN without ACK. It is attempt of
  5040. * simultaneous connect with crossed SYNs.
  5041. * Particularly, it can be connect to self.
  5042. */
  5043. tcp_set_state(sk, TCP_SYN_RECV);
  5044. if (tp->rx_opt.saw_tstamp) {
  5045. tp->rx_opt.tstamp_ok = 1;
  5046. tcp_store_ts_recent(tp);
  5047. tp->tcp_header_len =
  5048. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  5049. } else {
  5050. tp->tcp_header_len = sizeof(struct tcphdr);
  5051. }
  5052. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5053. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5054. /* RFC1323: The window in SYN & SYN/ACK segments is
  5055. * never scaled.
  5056. */
  5057. tp->snd_wnd = ntohs(th->window);
  5058. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5059. tp->max_window = tp->snd_wnd;
  5060. TCP_ECN_rcv_syn(tp, th);
  5061. tcp_mtup_init(sk);
  5062. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5063. tcp_initialize_rcv_mss(sk);
  5064. tcp_send_synack(sk);
  5065. #if 0
  5066. /* Note, we could accept data and URG from this segment.
  5067. * There are no obstacles to make this.
  5068. *
  5069. * However, if we ignore data in ACKless segments sometimes,
  5070. * we have no reasons to accept it sometimes.
  5071. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  5072. * is not flawless. So, discard packet for sanity.
  5073. * Uncomment this return to process the data.
  5074. */
  5075. return -1;
  5076. #else
  5077. goto discard;
  5078. #endif
  5079. }
  5080. /* "fifth, if neither of the SYN or RST bits is set then
  5081. * drop the segment and return."
  5082. */
  5083. discard_and_undo:
  5084. tcp_clear_options(&tp->rx_opt);
  5085. tp->rx_opt.mss_clamp = saved_clamp;
  5086. goto discard;
  5087. reset_and_undo:
  5088. tcp_clear_options(&tp->rx_opt);
  5089. tp->rx_opt.mss_clamp = saved_clamp;
  5090. return 1;
  5091. }
  5092. /*
  5093. * This function implements the receiving procedure of RFC 793 for
  5094. * all states except ESTABLISHED and TIME_WAIT.
  5095. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5096. * address independent.
  5097. */
  5098. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  5099. const struct tcphdr *th, unsigned int len)
  5100. {
  5101. struct tcp_sock *tp = tcp_sk(sk);
  5102. struct inet_connection_sock *icsk = inet_csk(sk);
  5103. int queued = 0;
  5104. int res;
  5105. tp->rx_opt.saw_tstamp = 0;
  5106. switch (sk->sk_state) {
  5107. case TCP_CLOSE:
  5108. goto discard;
  5109. case TCP_LISTEN:
  5110. if (th->ack)
  5111. return 1;
  5112. if (th->rst)
  5113. goto discard;
  5114. if (th->syn) {
  5115. if (th->fin)
  5116. goto discard;
  5117. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  5118. return 1;
  5119. /* Now we have several options: In theory there is
  5120. * nothing else in the frame. KA9Q has an option to
  5121. * send data with the syn, BSD accepts data with the
  5122. * syn up to the [to be] advertised window and
  5123. * Solaris 2.1 gives you a protocol error. For now
  5124. * we just ignore it, that fits the spec precisely
  5125. * and avoids incompatibilities. It would be nice in
  5126. * future to drop through and process the data.
  5127. *
  5128. * Now that TTCP is starting to be used we ought to
  5129. * queue this data.
  5130. * But, this leaves one open to an easy denial of
  5131. * service attack, and SYN cookies can't defend
  5132. * against this problem. So, we drop the data
  5133. * in the interest of security over speed unless
  5134. * it's still in use.
  5135. */
  5136. kfree_skb(skb);
  5137. return 0;
  5138. }
  5139. goto discard;
  5140. case TCP_SYN_SENT:
  5141. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  5142. if (queued >= 0)
  5143. return queued;
  5144. /* Do step6 onward by hand. */
  5145. tcp_urg(sk, skb, th);
  5146. __kfree_skb(skb);
  5147. tcp_data_snd_check(sk);
  5148. return 0;
  5149. }
  5150. res = tcp_validate_incoming(sk, skb, th, 0);
  5151. if (res <= 0)
  5152. return -res;
  5153. /* step 5: check the ACK field */
  5154. if (th->ack) {
  5155. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
  5156. switch (sk->sk_state) {
  5157. case TCP_SYN_RECV:
  5158. if (acceptable) {
  5159. tp->copied_seq = tp->rcv_nxt;
  5160. smp_mb();
  5161. tcp_set_state(sk, TCP_ESTABLISHED);
  5162. sk->sk_state_change(sk);
  5163. /* Note, that this wakeup is only for marginal
  5164. * crossed SYN case. Passively open sockets
  5165. * are not waked up, because sk->sk_sleep ==
  5166. * NULL and sk->sk_socket == NULL.
  5167. */
  5168. if (sk->sk_socket)
  5169. sk_wake_async(sk,
  5170. SOCK_WAKE_IO, POLL_OUT);
  5171. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5172. tp->snd_wnd = ntohs(th->window) <<
  5173. tp->rx_opt.snd_wscale;
  5174. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5175. if (tp->rx_opt.tstamp_ok)
  5176. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5177. /* Make sure socket is routed, for
  5178. * correct metrics.
  5179. */
  5180. icsk->icsk_af_ops->rebuild_header(sk);
  5181. tcp_init_metrics(sk);
  5182. tcp_init_congestion_control(sk);
  5183. /* Prevent spurious tcp_cwnd_restart() on
  5184. * first data packet.
  5185. */
  5186. tp->lsndtime = tcp_time_stamp;
  5187. tcp_mtup_init(sk);
  5188. tcp_initialize_rcv_mss(sk);
  5189. tcp_init_buffer_space(sk);
  5190. tcp_fast_path_on(tp);
  5191. } else {
  5192. return 1;
  5193. }
  5194. break;
  5195. case TCP_FIN_WAIT1:
  5196. if (tp->snd_una == tp->write_seq) {
  5197. tcp_set_state(sk, TCP_FIN_WAIT2);
  5198. sk->sk_shutdown |= SEND_SHUTDOWN;
  5199. dst_confirm(__sk_dst_get(sk));
  5200. if (!sock_flag(sk, SOCK_DEAD))
  5201. /* Wake up lingering close() */
  5202. sk->sk_state_change(sk);
  5203. else {
  5204. int tmo;
  5205. if (tp->linger2 < 0 ||
  5206. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5207. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5208. tcp_done(sk);
  5209. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5210. return 1;
  5211. }
  5212. tmo = tcp_fin_time(sk);
  5213. if (tmo > TCP_TIMEWAIT_LEN) {
  5214. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5215. } else if (th->fin || sock_owned_by_user(sk)) {
  5216. /* Bad case. We could lose such FIN otherwise.
  5217. * It is not a big problem, but it looks confusing
  5218. * and not so rare event. We still can lose it now,
  5219. * if it spins in bh_lock_sock(), but it is really
  5220. * marginal case.
  5221. */
  5222. inet_csk_reset_keepalive_timer(sk, tmo);
  5223. } else {
  5224. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5225. goto discard;
  5226. }
  5227. }
  5228. }
  5229. break;
  5230. case TCP_CLOSING:
  5231. if (tp->snd_una == tp->write_seq) {
  5232. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5233. goto discard;
  5234. }
  5235. break;
  5236. case TCP_LAST_ACK:
  5237. if (tp->snd_una == tp->write_seq) {
  5238. tcp_update_metrics(sk);
  5239. tcp_done(sk);
  5240. goto discard;
  5241. }
  5242. break;
  5243. }
  5244. } else
  5245. goto discard;
  5246. /* step 6: check the URG bit */
  5247. tcp_urg(sk, skb, th);
  5248. /* step 7: process the segment text */
  5249. switch (sk->sk_state) {
  5250. case TCP_CLOSE_WAIT:
  5251. case TCP_CLOSING:
  5252. case TCP_LAST_ACK:
  5253. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5254. break;
  5255. case TCP_FIN_WAIT1:
  5256. case TCP_FIN_WAIT2:
  5257. /* RFC 793 says to queue data in these states,
  5258. * RFC 1122 says we MUST send a reset.
  5259. * BSD 4.4 also does reset.
  5260. */
  5261. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5262. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5263. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5264. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5265. tcp_reset(sk);
  5266. return 1;
  5267. }
  5268. }
  5269. /* Fall through */
  5270. case TCP_ESTABLISHED:
  5271. tcp_data_queue(sk, skb);
  5272. queued = 1;
  5273. break;
  5274. }
  5275. /* tcp_data could move socket to TIME-WAIT */
  5276. if (sk->sk_state != TCP_CLOSE) {
  5277. tcp_data_snd_check(sk);
  5278. tcp_ack_snd_check(sk);
  5279. }
  5280. if (!queued) {
  5281. discard:
  5282. __kfree_skb(skb);
  5283. }
  5284. return 0;
  5285. }
  5286. EXPORT_SYMBOL(tcp_rcv_state_process);