ste_dma40.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940
  1. /*
  2. * Copyright (C) ST-Ericsson SA 2007-2010
  3. * Author: Per Friden <per.friden@stericsson.com> for ST-Ericsson
  4. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  5. * License terms: GNU General Public License (GPL) version 2
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/slab.h>
  9. #include <linux/dmaengine.h>
  10. #include <linux/platform_device.h>
  11. #include <linux/clk.h>
  12. #include <linux/delay.h>
  13. #include <linux/err.h>
  14. #include <plat/ste_dma40.h>
  15. #include "ste_dma40_ll.h"
  16. #define D40_NAME "dma40"
  17. #define D40_PHY_CHAN -1
  18. /* For masking out/in 2 bit channel positions */
  19. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  20. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  21. /* Maximum iterations taken before giving up suspending a channel */
  22. #define D40_SUSPEND_MAX_IT 500
  23. /* Hardware requirement on LCLA alignment */
  24. #define LCLA_ALIGNMENT 0x40000
  25. /* Max number of links per event group */
  26. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  27. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  28. /* Attempts before giving up to trying to get pages that are aligned */
  29. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  30. /* Bit markings for allocation map */
  31. #define D40_ALLOC_FREE (1 << 31)
  32. #define D40_ALLOC_PHY (1 << 30)
  33. #define D40_ALLOC_LOG_FREE 0
  34. /* Hardware designer of the block */
  35. #define D40_HW_DESIGNER 0x8
  36. /**
  37. * enum 40_command - The different commands and/or statuses.
  38. *
  39. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  40. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  41. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  42. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  43. */
  44. enum d40_command {
  45. D40_DMA_STOP = 0,
  46. D40_DMA_RUN = 1,
  47. D40_DMA_SUSPEND_REQ = 2,
  48. D40_DMA_SUSPENDED = 3
  49. };
  50. /**
  51. * struct d40_lli_pool - Structure for keeping LLIs in memory
  52. *
  53. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  54. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  55. * pre_alloc_lli is used.
  56. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  57. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  58. * one buffer to one buffer.
  59. */
  60. struct d40_lli_pool {
  61. void *base;
  62. int size;
  63. /* Space for dst and src, plus an extra for padding */
  64. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  65. };
  66. /**
  67. * struct d40_desc - A descriptor is one DMA job.
  68. *
  69. * @lli_phy: LLI settings for physical channel. Both src and dst=
  70. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  71. * lli_len equals one.
  72. * @lli_log: Same as above but for logical channels.
  73. * @lli_pool: The pool with two entries pre-allocated.
  74. * @lli_len: Number of llis of current descriptor.
  75. * @lli_current: Number of transfered llis.
  76. * @lcla_alloc: Number of LCLA entries allocated.
  77. * @txd: DMA engine struct. Used for among other things for communication
  78. * during a transfer.
  79. * @node: List entry.
  80. * @is_in_client_list: true if the client owns this descriptor.
  81. * @is_hw_linked: true if this job will automatically be continued for
  82. * the previous one.
  83. *
  84. * This descriptor is used for both logical and physical transfers.
  85. */
  86. struct d40_desc {
  87. /* LLI physical */
  88. struct d40_phy_lli_bidir lli_phy;
  89. /* LLI logical */
  90. struct d40_log_lli_bidir lli_log;
  91. struct d40_lli_pool lli_pool;
  92. int lli_len;
  93. int lli_current;
  94. int lcla_alloc;
  95. struct dma_async_tx_descriptor txd;
  96. struct list_head node;
  97. bool is_in_client_list;
  98. bool is_hw_linked;
  99. };
  100. /**
  101. * struct d40_lcla_pool - LCLA pool settings and data.
  102. *
  103. * @base: The virtual address of LCLA. 18 bit aligned.
  104. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  105. * This pointer is only there for clean-up on error.
  106. * @pages: The number of pages needed for all physical channels.
  107. * Only used later for clean-up on error
  108. * @lock: Lock to protect the content in this struct.
  109. * @alloc_map: big map over which LCLA entry is own by which job.
  110. */
  111. struct d40_lcla_pool {
  112. void *base;
  113. void *base_unaligned;
  114. int pages;
  115. spinlock_t lock;
  116. struct d40_desc **alloc_map;
  117. };
  118. /**
  119. * struct d40_phy_res - struct for handling eventlines mapped to physical
  120. * channels.
  121. *
  122. * @lock: A lock protection this entity.
  123. * @num: The physical channel number of this entity.
  124. * @allocated_src: Bit mapped to show which src event line's are mapped to
  125. * this physical channel. Can also be free or physically allocated.
  126. * @allocated_dst: Same as for src but is dst.
  127. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  128. * event line number.
  129. */
  130. struct d40_phy_res {
  131. spinlock_t lock;
  132. int num;
  133. u32 allocated_src;
  134. u32 allocated_dst;
  135. };
  136. struct d40_base;
  137. /**
  138. * struct d40_chan - Struct that describes a channel.
  139. *
  140. * @lock: A spinlock to protect this struct.
  141. * @log_num: The logical number, if any of this channel.
  142. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  143. * current cookie.
  144. * @pending_tx: The number of pending transfers. Used between interrupt handler
  145. * and tasklet.
  146. * @busy: Set to true when transfer is ongoing on this channel.
  147. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  148. * point is NULL, then the channel is not allocated.
  149. * @chan: DMA engine handle.
  150. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  151. * transfer and call client callback.
  152. * @client: Cliented owned descriptor list.
  153. * @active: Active descriptor.
  154. * @queue: Queued jobs.
  155. * @dma_cfg: The client configuration of this dma channel.
  156. * @base: Pointer to the device instance struct.
  157. * @src_def_cfg: Default cfg register setting for src.
  158. * @dst_def_cfg: Default cfg register setting for dst.
  159. * @log_def: Default logical channel settings.
  160. * @lcla: Space for one dst src pair for logical channel transfers.
  161. * @lcpa: Pointer to dst and src lcpa settings.
  162. *
  163. * This struct can either "be" a logical or a physical channel.
  164. */
  165. struct d40_chan {
  166. spinlock_t lock;
  167. int log_num;
  168. /* ID of the most recent completed transfer */
  169. int completed;
  170. int pending_tx;
  171. bool busy;
  172. struct d40_phy_res *phy_chan;
  173. struct dma_chan chan;
  174. struct tasklet_struct tasklet;
  175. struct list_head client;
  176. struct list_head active;
  177. struct list_head queue;
  178. struct stedma40_chan_cfg dma_cfg;
  179. struct d40_base *base;
  180. /* Default register configurations */
  181. u32 src_def_cfg;
  182. u32 dst_def_cfg;
  183. struct d40_def_lcsp log_def;
  184. struct d40_log_lli_full *lcpa;
  185. /* Runtime reconfiguration */
  186. dma_addr_t runtime_addr;
  187. enum dma_data_direction runtime_direction;
  188. };
  189. /**
  190. * struct d40_base - The big global struct, one for each probe'd instance.
  191. *
  192. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  193. * @execmd_lock: Lock for execute command usage since several channels share
  194. * the same physical register.
  195. * @dev: The device structure.
  196. * @virtbase: The virtual base address of the DMA's register.
  197. * @rev: silicon revision detected.
  198. * @clk: Pointer to the DMA clock structure.
  199. * @phy_start: Physical memory start of the DMA registers.
  200. * @phy_size: Size of the DMA register map.
  201. * @irq: The IRQ number.
  202. * @num_phy_chans: The number of physical channels. Read from HW. This
  203. * is the number of available channels for this driver, not counting "Secure
  204. * mode" allocated physical channels.
  205. * @num_log_chans: The number of logical channels. Calculated from
  206. * num_phy_chans.
  207. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  208. * @dma_slave: dma_device channels that can do only do slave transfers.
  209. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  210. * @log_chans: Room for all possible logical channels in system.
  211. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  212. * to log_chans entries.
  213. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  214. * to phy_chans entries.
  215. * @plat_data: Pointer to provided platform_data which is the driver
  216. * configuration.
  217. * @phy_res: Vector containing all physical channels.
  218. * @lcla_pool: lcla pool settings and data.
  219. * @lcpa_base: The virtual mapped address of LCPA.
  220. * @phy_lcpa: The physical address of the LCPA.
  221. * @lcpa_size: The size of the LCPA area.
  222. * @desc_slab: cache for descriptors.
  223. */
  224. struct d40_base {
  225. spinlock_t interrupt_lock;
  226. spinlock_t execmd_lock;
  227. struct device *dev;
  228. void __iomem *virtbase;
  229. u8 rev:4;
  230. struct clk *clk;
  231. phys_addr_t phy_start;
  232. resource_size_t phy_size;
  233. int irq;
  234. int num_phy_chans;
  235. int num_log_chans;
  236. struct dma_device dma_both;
  237. struct dma_device dma_slave;
  238. struct dma_device dma_memcpy;
  239. struct d40_chan *phy_chans;
  240. struct d40_chan *log_chans;
  241. struct d40_chan **lookup_log_chans;
  242. struct d40_chan **lookup_phy_chans;
  243. struct stedma40_platform_data *plat_data;
  244. /* Physical half channels */
  245. struct d40_phy_res *phy_res;
  246. struct d40_lcla_pool lcla_pool;
  247. void *lcpa_base;
  248. dma_addr_t phy_lcpa;
  249. resource_size_t lcpa_size;
  250. struct kmem_cache *desc_slab;
  251. };
  252. /**
  253. * struct d40_interrupt_lookup - lookup table for interrupt handler
  254. *
  255. * @src: Interrupt mask register.
  256. * @clr: Interrupt clear register.
  257. * @is_error: true if this is an error interrupt.
  258. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  259. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  260. */
  261. struct d40_interrupt_lookup {
  262. u32 src;
  263. u32 clr;
  264. bool is_error;
  265. int offset;
  266. };
  267. /**
  268. * struct d40_reg_val - simple lookup struct
  269. *
  270. * @reg: The register.
  271. * @val: The value that belongs to the register in reg.
  272. */
  273. struct d40_reg_val {
  274. unsigned int reg;
  275. unsigned int val;
  276. };
  277. static int d40_pool_lli_alloc(struct d40_desc *d40d,
  278. int lli_len, bool is_log)
  279. {
  280. u32 align;
  281. void *base;
  282. if (is_log)
  283. align = sizeof(struct d40_log_lli);
  284. else
  285. align = sizeof(struct d40_phy_lli);
  286. if (lli_len == 1) {
  287. base = d40d->lli_pool.pre_alloc_lli;
  288. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  289. d40d->lli_pool.base = NULL;
  290. } else {
  291. d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
  292. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  293. d40d->lli_pool.base = base;
  294. if (d40d->lli_pool.base == NULL)
  295. return -ENOMEM;
  296. }
  297. if (is_log) {
  298. d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
  299. align);
  300. d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
  301. align);
  302. } else {
  303. d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
  304. align);
  305. d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
  306. align);
  307. }
  308. return 0;
  309. }
  310. static void d40_pool_lli_free(struct d40_desc *d40d)
  311. {
  312. kfree(d40d->lli_pool.base);
  313. d40d->lli_pool.base = NULL;
  314. d40d->lli_pool.size = 0;
  315. d40d->lli_log.src = NULL;
  316. d40d->lli_log.dst = NULL;
  317. d40d->lli_phy.src = NULL;
  318. d40d->lli_phy.dst = NULL;
  319. }
  320. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  321. struct d40_desc *d40d)
  322. {
  323. unsigned long flags;
  324. int i;
  325. int ret = -EINVAL;
  326. int p;
  327. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  328. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  329. /*
  330. * Allocate both src and dst at the same time, therefore the half
  331. * start on 1 since 0 can't be used since zero is used as end marker.
  332. */
  333. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  334. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  335. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  336. d40d->lcla_alloc++;
  337. ret = i;
  338. break;
  339. }
  340. }
  341. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  342. return ret;
  343. }
  344. static int d40_lcla_free_all(struct d40_chan *d40c,
  345. struct d40_desc *d40d)
  346. {
  347. unsigned long flags;
  348. int i;
  349. int ret = -EINVAL;
  350. if (d40c->log_num == D40_PHY_CHAN)
  351. return 0;
  352. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  353. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  354. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  355. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  356. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  357. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  358. d40d->lcla_alloc--;
  359. if (d40d->lcla_alloc == 0) {
  360. ret = 0;
  361. break;
  362. }
  363. }
  364. }
  365. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  366. return ret;
  367. }
  368. static void d40_desc_remove(struct d40_desc *d40d)
  369. {
  370. list_del(&d40d->node);
  371. }
  372. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  373. {
  374. struct d40_desc *desc = NULL;
  375. if (!list_empty(&d40c->client)) {
  376. struct d40_desc *d;
  377. struct d40_desc *_d;
  378. list_for_each_entry_safe(d, _d, &d40c->client, node)
  379. if (async_tx_test_ack(&d->txd)) {
  380. d40_pool_lli_free(d);
  381. d40_desc_remove(d);
  382. desc = d;
  383. memset(desc, 0, sizeof(*desc));
  384. break;
  385. }
  386. }
  387. if (!desc)
  388. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  389. if (desc)
  390. INIT_LIST_HEAD(&desc->node);
  391. return desc;
  392. }
  393. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  394. {
  395. d40_lcla_free_all(d40c, d40d);
  396. kmem_cache_free(d40c->base->desc_slab, d40d);
  397. }
  398. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  399. {
  400. list_add_tail(&desc->node, &d40c->active);
  401. }
  402. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  403. {
  404. int curr_lcla = -EINVAL, next_lcla;
  405. if (d40c->log_num == D40_PHY_CHAN) {
  406. d40_phy_lli_write(d40c->base->virtbase,
  407. d40c->phy_chan->num,
  408. d40d->lli_phy.dst,
  409. d40d->lli_phy.src);
  410. d40d->lli_current = d40d->lli_len;
  411. } else {
  412. if ((d40d->lli_len - d40d->lli_current) > 1)
  413. curr_lcla = d40_lcla_alloc_one(d40c, d40d);
  414. d40_log_lli_lcpa_write(d40c->lcpa,
  415. &d40d->lli_log.dst[d40d->lli_current],
  416. &d40d->lli_log.src[d40d->lli_current],
  417. curr_lcla);
  418. d40d->lli_current++;
  419. for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
  420. struct d40_log_lli *lcla;
  421. if (d40d->lli_current + 1 < d40d->lli_len)
  422. next_lcla = d40_lcla_alloc_one(d40c, d40d);
  423. else
  424. next_lcla = -EINVAL;
  425. lcla = d40c->base->lcla_pool.base +
  426. d40c->phy_chan->num * 1024 +
  427. 8 * curr_lcla * 2;
  428. d40_log_lli_lcla_write(lcla,
  429. &d40d->lli_log.dst[d40d->lli_current],
  430. &d40d->lli_log.src[d40d->lli_current],
  431. next_lcla);
  432. (void) dma_map_single(d40c->base->dev, lcla,
  433. 2 * sizeof(struct d40_log_lli),
  434. DMA_TO_DEVICE);
  435. curr_lcla = next_lcla;
  436. if (curr_lcla == -EINVAL) {
  437. d40d->lli_current++;
  438. break;
  439. }
  440. }
  441. }
  442. }
  443. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  444. {
  445. struct d40_desc *d;
  446. if (list_empty(&d40c->active))
  447. return NULL;
  448. d = list_first_entry(&d40c->active,
  449. struct d40_desc,
  450. node);
  451. return d;
  452. }
  453. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  454. {
  455. list_add_tail(&desc->node, &d40c->queue);
  456. }
  457. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  458. {
  459. struct d40_desc *d;
  460. if (list_empty(&d40c->queue))
  461. return NULL;
  462. d = list_first_entry(&d40c->queue,
  463. struct d40_desc,
  464. node);
  465. return d;
  466. }
  467. static struct d40_desc *d40_last_queued(struct d40_chan *d40c)
  468. {
  469. struct d40_desc *d;
  470. if (list_empty(&d40c->queue))
  471. return NULL;
  472. list_for_each_entry(d, &d40c->queue, node)
  473. if (list_is_last(&d->node, &d40c->queue))
  474. break;
  475. return d;
  476. }
  477. /* Support functions for logical channels */
  478. static int d40_channel_execute_command(struct d40_chan *d40c,
  479. enum d40_command command)
  480. {
  481. u32 status;
  482. int i;
  483. void __iomem *active_reg;
  484. int ret = 0;
  485. unsigned long flags;
  486. u32 wmask;
  487. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  488. if (d40c->phy_chan->num % 2 == 0)
  489. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  490. else
  491. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  492. if (command == D40_DMA_SUSPEND_REQ) {
  493. status = (readl(active_reg) &
  494. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  495. D40_CHAN_POS(d40c->phy_chan->num);
  496. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  497. goto done;
  498. }
  499. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  500. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  501. active_reg);
  502. if (command == D40_DMA_SUSPEND_REQ) {
  503. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  504. status = (readl(active_reg) &
  505. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  506. D40_CHAN_POS(d40c->phy_chan->num);
  507. cpu_relax();
  508. /*
  509. * Reduce the number of bus accesses while
  510. * waiting for the DMA to suspend.
  511. */
  512. udelay(3);
  513. if (status == D40_DMA_STOP ||
  514. status == D40_DMA_SUSPENDED)
  515. break;
  516. }
  517. if (i == D40_SUSPEND_MAX_IT) {
  518. dev_err(&d40c->chan.dev->device,
  519. "[%s]: unable to suspend the chl %d (log: %d) status %x\n",
  520. __func__, d40c->phy_chan->num, d40c->log_num,
  521. status);
  522. dump_stack();
  523. ret = -EBUSY;
  524. }
  525. }
  526. done:
  527. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  528. return ret;
  529. }
  530. static void d40_term_all(struct d40_chan *d40c)
  531. {
  532. struct d40_desc *d40d;
  533. /* Release active descriptors */
  534. while ((d40d = d40_first_active_get(d40c))) {
  535. d40_desc_remove(d40d);
  536. d40_desc_free(d40c, d40d);
  537. }
  538. /* Release queued descriptors waiting for transfer */
  539. while ((d40d = d40_first_queued(d40c))) {
  540. d40_desc_remove(d40d);
  541. d40_desc_free(d40c, d40d);
  542. }
  543. d40c->pending_tx = 0;
  544. d40c->busy = false;
  545. }
  546. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  547. {
  548. u32 val;
  549. unsigned long flags;
  550. /* Notice, that disable requires the physical channel to be stopped */
  551. if (do_enable)
  552. val = D40_ACTIVATE_EVENTLINE;
  553. else
  554. val = D40_DEACTIVATE_EVENTLINE;
  555. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  556. /* Enable event line connected to device (or memcpy) */
  557. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  558. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  559. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  560. writel((val << D40_EVENTLINE_POS(event)) |
  561. ~D40_EVENTLINE_MASK(event),
  562. d40c->base->virtbase + D40_DREG_PCBASE +
  563. d40c->phy_chan->num * D40_DREG_PCDELTA +
  564. D40_CHAN_REG_SSLNK);
  565. }
  566. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  567. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  568. writel((val << D40_EVENTLINE_POS(event)) |
  569. ~D40_EVENTLINE_MASK(event),
  570. d40c->base->virtbase + D40_DREG_PCBASE +
  571. d40c->phy_chan->num * D40_DREG_PCDELTA +
  572. D40_CHAN_REG_SDLNK);
  573. }
  574. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  575. }
  576. static u32 d40_chan_has_events(struct d40_chan *d40c)
  577. {
  578. u32 val;
  579. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  580. d40c->phy_chan->num * D40_DREG_PCDELTA +
  581. D40_CHAN_REG_SSLNK);
  582. val |= readl(d40c->base->virtbase + D40_DREG_PCBASE +
  583. d40c->phy_chan->num * D40_DREG_PCDELTA +
  584. D40_CHAN_REG_SDLNK);
  585. return val;
  586. }
  587. static void d40_config_write(struct d40_chan *d40c)
  588. {
  589. u32 addr_base;
  590. u32 var;
  591. /* Odd addresses are even addresses + 4 */
  592. addr_base = (d40c->phy_chan->num % 2) * 4;
  593. /* Setup channel mode to logical or physical */
  594. var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
  595. D40_CHAN_POS(d40c->phy_chan->num);
  596. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  597. /* Setup operational mode option register */
  598. var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) &
  599. 0x3) << D40_CHAN_POS(d40c->phy_chan->num);
  600. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  601. if (d40c->log_num != D40_PHY_CHAN) {
  602. /* Set default config for CFG reg */
  603. writel(d40c->src_def_cfg,
  604. d40c->base->virtbase + D40_DREG_PCBASE +
  605. d40c->phy_chan->num * D40_DREG_PCDELTA +
  606. D40_CHAN_REG_SSCFG);
  607. writel(d40c->dst_def_cfg,
  608. d40c->base->virtbase + D40_DREG_PCBASE +
  609. d40c->phy_chan->num * D40_DREG_PCDELTA +
  610. D40_CHAN_REG_SDCFG);
  611. /* Set LIDX for lcla */
  612. writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
  613. D40_SREG_ELEM_LOG_LIDX_MASK,
  614. d40c->base->virtbase + D40_DREG_PCBASE +
  615. d40c->phy_chan->num * D40_DREG_PCDELTA +
  616. D40_CHAN_REG_SDELT);
  617. writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
  618. D40_SREG_ELEM_LOG_LIDX_MASK,
  619. d40c->base->virtbase + D40_DREG_PCBASE +
  620. d40c->phy_chan->num * D40_DREG_PCDELTA +
  621. D40_CHAN_REG_SSELT);
  622. }
  623. }
  624. static u32 d40_residue(struct d40_chan *d40c)
  625. {
  626. u32 num_elt;
  627. if (d40c->log_num != D40_PHY_CHAN)
  628. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  629. >> D40_MEM_LCSP2_ECNT_POS;
  630. else
  631. num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
  632. d40c->phy_chan->num * D40_DREG_PCDELTA +
  633. D40_CHAN_REG_SDELT) &
  634. D40_SREG_ELEM_PHY_ECNT_MASK) >>
  635. D40_SREG_ELEM_PHY_ECNT_POS;
  636. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  637. }
  638. static bool d40_tx_is_linked(struct d40_chan *d40c)
  639. {
  640. bool is_link;
  641. if (d40c->log_num != D40_PHY_CHAN)
  642. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  643. else
  644. is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  645. d40c->phy_chan->num * D40_DREG_PCDELTA +
  646. D40_CHAN_REG_SDLNK) &
  647. D40_SREG_LNK_PHYS_LNK_MASK;
  648. return is_link;
  649. }
  650. static int d40_pause(struct dma_chan *chan)
  651. {
  652. struct d40_chan *d40c =
  653. container_of(chan, struct d40_chan, chan);
  654. int res = 0;
  655. unsigned long flags;
  656. if (!d40c->busy)
  657. return 0;
  658. spin_lock_irqsave(&d40c->lock, flags);
  659. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  660. if (res == 0) {
  661. if (d40c->log_num != D40_PHY_CHAN) {
  662. d40_config_set_event(d40c, false);
  663. /* Resume the other logical channels if any */
  664. if (d40_chan_has_events(d40c))
  665. res = d40_channel_execute_command(d40c,
  666. D40_DMA_RUN);
  667. }
  668. }
  669. spin_unlock_irqrestore(&d40c->lock, flags);
  670. return res;
  671. }
  672. static int d40_resume(struct dma_chan *chan)
  673. {
  674. struct d40_chan *d40c =
  675. container_of(chan, struct d40_chan, chan);
  676. int res = 0;
  677. unsigned long flags;
  678. if (!d40c->busy)
  679. return 0;
  680. spin_lock_irqsave(&d40c->lock, flags);
  681. if (d40c->base->rev == 0)
  682. if (d40c->log_num != D40_PHY_CHAN) {
  683. res = d40_channel_execute_command(d40c,
  684. D40_DMA_SUSPEND_REQ);
  685. goto no_suspend;
  686. }
  687. /* If bytes left to transfer or linked tx resume job */
  688. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  689. if (d40c->log_num != D40_PHY_CHAN)
  690. d40_config_set_event(d40c, true);
  691. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  692. }
  693. no_suspend:
  694. spin_unlock_irqrestore(&d40c->lock, flags);
  695. return res;
  696. }
  697. static void d40_tx_submit_log(struct d40_chan *d40c, struct d40_desc *d40d)
  698. {
  699. /* TODO: Write */
  700. }
  701. static void d40_tx_submit_phy(struct d40_chan *d40c, struct d40_desc *d40d)
  702. {
  703. struct d40_desc *d40d_prev = NULL;
  704. int i;
  705. u32 val;
  706. if (!list_empty(&d40c->queue))
  707. d40d_prev = d40_last_queued(d40c);
  708. else if (!list_empty(&d40c->active))
  709. d40d_prev = d40_first_active_get(d40c);
  710. if (!d40d_prev)
  711. return;
  712. /* Here we try to join this job with previous jobs */
  713. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  714. d40c->phy_chan->num * D40_DREG_PCDELTA +
  715. D40_CHAN_REG_SSLNK);
  716. /* Figure out which link we're currently transmitting */
  717. for (i = 0; i < d40d_prev->lli_len; i++)
  718. if (val == d40d_prev->lli_phy.src[i].reg_lnk)
  719. break;
  720. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  721. d40c->phy_chan->num * D40_DREG_PCDELTA +
  722. D40_CHAN_REG_SSELT) >> D40_SREG_ELEM_LOG_ECNT_POS;
  723. if (i == (d40d_prev->lli_len - 1) && val > 0) {
  724. /* Change the current one */
  725. writel(virt_to_phys(d40d->lli_phy.src),
  726. d40c->base->virtbase + D40_DREG_PCBASE +
  727. d40c->phy_chan->num * D40_DREG_PCDELTA +
  728. D40_CHAN_REG_SSLNK);
  729. writel(virt_to_phys(d40d->lli_phy.dst),
  730. d40c->base->virtbase + D40_DREG_PCBASE +
  731. d40c->phy_chan->num * D40_DREG_PCDELTA +
  732. D40_CHAN_REG_SDLNK);
  733. d40d->is_hw_linked = true;
  734. } else if (i < d40d_prev->lli_len) {
  735. (void) dma_unmap_single(d40c->base->dev,
  736. virt_to_phys(d40d_prev->lli_phy.src),
  737. d40d_prev->lli_pool.size,
  738. DMA_TO_DEVICE);
  739. /* Keep the settings */
  740. val = d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk &
  741. ~D40_SREG_LNK_PHYS_LNK_MASK;
  742. d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk =
  743. val | virt_to_phys(d40d->lli_phy.src);
  744. val = d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk &
  745. ~D40_SREG_LNK_PHYS_LNK_MASK;
  746. d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk =
  747. val | virt_to_phys(d40d->lli_phy.dst);
  748. (void) dma_map_single(d40c->base->dev,
  749. d40d_prev->lli_phy.src,
  750. d40d_prev->lli_pool.size,
  751. DMA_TO_DEVICE);
  752. d40d->is_hw_linked = true;
  753. }
  754. }
  755. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  756. {
  757. struct d40_chan *d40c = container_of(tx->chan,
  758. struct d40_chan,
  759. chan);
  760. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  761. unsigned long flags;
  762. (void) d40_pause(&d40c->chan);
  763. spin_lock_irqsave(&d40c->lock, flags);
  764. d40c->chan.cookie++;
  765. if (d40c->chan.cookie < 0)
  766. d40c->chan.cookie = 1;
  767. d40d->txd.cookie = d40c->chan.cookie;
  768. if (d40c->log_num == D40_PHY_CHAN)
  769. d40_tx_submit_phy(d40c, d40d);
  770. else
  771. d40_tx_submit_log(d40c, d40d);
  772. d40_desc_queue(d40c, d40d);
  773. spin_unlock_irqrestore(&d40c->lock, flags);
  774. (void) d40_resume(&d40c->chan);
  775. return tx->cookie;
  776. }
  777. static int d40_start(struct d40_chan *d40c)
  778. {
  779. if (d40c->base->rev == 0) {
  780. int err;
  781. if (d40c->log_num != D40_PHY_CHAN) {
  782. err = d40_channel_execute_command(d40c,
  783. D40_DMA_SUSPEND_REQ);
  784. if (err)
  785. return err;
  786. }
  787. }
  788. if (d40c->log_num != D40_PHY_CHAN)
  789. d40_config_set_event(d40c, true);
  790. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  791. }
  792. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  793. {
  794. struct d40_desc *d40d;
  795. int err;
  796. /* Start queued jobs, if any */
  797. d40d = d40_first_queued(d40c);
  798. if (d40d != NULL) {
  799. d40c->busy = true;
  800. /* Remove from queue */
  801. d40_desc_remove(d40d);
  802. /* Add to active queue */
  803. d40_desc_submit(d40c, d40d);
  804. /*
  805. * If this job is already linked in hw,
  806. * do not submit it.
  807. */
  808. if (!d40d->is_hw_linked) {
  809. /* Initiate DMA job */
  810. d40_desc_load(d40c, d40d);
  811. /* Start dma job */
  812. err = d40_start(d40c);
  813. if (err)
  814. return NULL;
  815. }
  816. }
  817. return d40d;
  818. }
  819. /* called from interrupt context */
  820. static void dma_tc_handle(struct d40_chan *d40c)
  821. {
  822. struct d40_desc *d40d;
  823. /* Get first active entry from list */
  824. d40d = d40_first_active_get(d40c);
  825. if (d40d == NULL)
  826. return;
  827. d40_lcla_free_all(d40c, d40d);
  828. if (d40d->lli_current < d40d->lli_len) {
  829. d40_desc_load(d40c, d40d);
  830. /* Start dma job */
  831. (void) d40_start(d40c);
  832. return;
  833. }
  834. if (d40_queue_start(d40c) == NULL)
  835. d40c->busy = false;
  836. d40c->pending_tx++;
  837. tasklet_schedule(&d40c->tasklet);
  838. }
  839. static void dma_tasklet(unsigned long data)
  840. {
  841. struct d40_chan *d40c = (struct d40_chan *) data;
  842. struct d40_desc *d40d;
  843. unsigned long flags;
  844. dma_async_tx_callback callback;
  845. void *callback_param;
  846. spin_lock_irqsave(&d40c->lock, flags);
  847. /* Get first active entry from list */
  848. d40d = d40_first_active_get(d40c);
  849. if (d40d == NULL)
  850. goto err;
  851. d40c->completed = d40d->txd.cookie;
  852. /*
  853. * If terminating a channel pending_tx is set to zero.
  854. * This prevents any finished active jobs to return to the client.
  855. */
  856. if (d40c->pending_tx == 0) {
  857. spin_unlock_irqrestore(&d40c->lock, flags);
  858. return;
  859. }
  860. /* Callback to client */
  861. callback = d40d->txd.callback;
  862. callback_param = d40d->txd.callback_param;
  863. if (async_tx_test_ack(&d40d->txd)) {
  864. d40_pool_lli_free(d40d);
  865. d40_desc_remove(d40d);
  866. d40_desc_free(d40c, d40d);
  867. } else {
  868. if (!d40d->is_in_client_list) {
  869. d40_desc_remove(d40d);
  870. d40_lcla_free_all(d40c, d40d);
  871. list_add_tail(&d40d->node, &d40c->client);
  872. d40d->is_in_client_list = true;
  873. }
  874. }
  875. d40c->pending_tx--;
  876. if (d40c->pending_tx)
  877. tasklet_schedule(&d40c->tasklet);
  878. spin_unlock_irqrestore(&d40c->lock, flags);
  879. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  880. callback(callback_param);
  881. return;
  882. err:
  883. /* Rescue manouver if receiving double interrupts */
  884. if (d40c->pending_tx > 0)
  885. d40c->pending_tx--;
  886. spin_unlock_irqrestore(&d40c->lock, flags);
  887. }
  888. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  889. {
  890. static const struct d40_interrupt_lookup il[] = {
  891. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  892. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  893. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  894. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  895. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  896. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  897. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  898. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  899. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  900. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  901. };
  902. int i;
  903. u32 regs[ARRAY_SIZE(il)];
  904. u32 idx;
  905. u32 row;
  906. long chan = -1;
  907. struct d40_chan *d40c;
  908. unsigned long flags;
  909. struct d40_base *base = data;
  910. spin_lock_irqsave(&base->interrupt_lock, flags);
  911. /* Read interrupt status of both logical and physical channels */
  912. for (i = 0; i < ARRAY_SIZE(il); i++)
  913. regs[i] = readl(base->virtbase + il[i].src);
  914. for (;;) {
  915. chan = find_next_bit((unsigned long *)regs,
  916. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  917. /* No more set bits found? */
  918. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  919. break;
  920. row = chan / BITS_PER_LONG;
  921. idx = chan & (BITS_PER_LONG - 1);
  922. /* ACK interrupt */
  923. writel(1 << idx, base->virtbase + il[row].clr);
  924. if (il[row].offset == D40_PHY_CHAN)
  925. d40c = base->lookup_phy_chans[idx];
  926. else
  927. d40c = base->lookup_log_chans[il[row].offset + idx];
  928. spin_lock(&d40c->lock);
  929. if (!il[row].is_error)
  930. dma_tc_handle(d40c);
  931. else
  932. dev_err(base->dev,
  933. "[%s] IRQ chan: %ld offset %d idx %d\n",
  934. __func__, chan, il[row].offset, idx);
  935. spin_unlock(&d40c->lock);
  936. }
  937. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  938. return IRQ_HANDLED;
  939. }
  940. static int d40_validate_conf(struct d40_chan *d40c,
  941. struct stedma40_chan_cfg *conf)
  942. {
  943. int res = 0;
  944. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  945. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  946. bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
  947. == STEDMA40_CHANNEL_IN_LOG_MODE;
  948. if (!conf->dir) {
  949. dev_err(&d40c->chan.dev->device, "[%s] Invalid direction.\n",
  950. __func__);
  951. res = -EINVAL;
  952. }
  953. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  954. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  955. d40c->runtime_addr == 0) {
  956. dev_err(&d40c->chan.dev->device,
  957. "[%s] Invalid TX channel address (%d)\n",
  958. __func__, conf->dst_dev_type);
  959. res = -EINVAL;
  960. }
  961. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  962. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  963. d40c->runtime_addr == 0) {
  964. dev_err(&d40c->chan.dev->device,
  965. "[%s] Invalid RX channel address (%d)\n",
  966. __func__, conf->src_dev_type);
  967. res = -EINVAL;
  968. }
  969. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  970. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  971. dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
  972. __func__);
  973. res = -EINVAL;
  974. }
  975. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  976. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  977. dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
  978. __func__);
  979. res = -EINVAL;
  980. }
  981. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  982. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  983. dev_err(&d40c->chan.dev->device,
  984. "[%s] No event line\n", __func__);
  985. res = -EINVAL;
  986. }
  987. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  988. (src_event_group != dst_event_group)) {
  989. dev_err(&d40c->chan.dev->device,
  990. "[%s] Invalid event group\n", __func__);
  991. res = -EINVAL;
  992. }
  993. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  994. /*
  995. * DMAC HW supports it. Will be added to this driver,
  996. * in case any dma client requires it.
  997. */
  998. dev_err(&d40c->chan.dev->device,
  999. "[%s] periph to periph not supported\n",
  1000. __func__);
  1001. res = -EINVAL;
  1002. }
  1003. return res;
  1004. }
  1005. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  1006. int log_event_line, bool is_log)
  1007. {
  1008. unsigned long flags;
  1009. spin_lock_irqsave(&phy->lock, flags);
  1010. if (!is_log) {
  1011. /* Physical interrupts are masked per physical full channel */
  1012. if (phy->allocated_src == D40_ALLOC_FREE &&
  1013. phy->allocated_dst == D40_ALLOC_FREE) {
  1014. phy->allocated_dst = D40_ALLOC_PHY;
  1015. phy->allocated_src = D40_ALLOC_PHY;
  1016. goto found;
  1017. } else
  1018. goto not_found;
  1019. }
  1020. /* Logical channel */
  1021. if (is_src) {
  1022. if (phy->allocated_src == D40_ALLOC_PHY)
  1023. goto not_found;
  1024. if (phy->allocated_src == D40_ALLOC_FREE)
  1025. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1026. if (!(phy->allocated_src & (1 << log_event_line))) {
  1027. phy->allocated_src |= 1 << log_event_line;
  1028. goto found;
  1029. } else
  1030. goto not_found;
  1031. } else {
  1032. if (phy->allocated_dst == D40_ALLOC_PHY)
  1033. goto not_found;
  1034. if (phy->allocated_dst == D40_ALLOC_FREE)
  1035. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1036. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1037. phy->allocated_dst |= 1 << log_event_line;
  1038. goto found;
  1039. } else
  1040. goto not_found;
  1041. }
  1042. not_found:
  1043. spin_unlock_irqrestore(&phy->lock, flags);
  1044. return false;
  1045. found:
  1046. spin_unlock_irqrestore(&phy->lock, flags);
  1047. return true;
  1048. }
  1049. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1050. int log_event_line)
  1051. {
  1052. unsigned long flags;
  1053. bool is_free = false;
  1054. spin_lock_irqsave(&phy->lock, flags);
  1055. if (!log_event_line) {
  1056. phy->allocated_dst = D40_ALLOC_FREE;
  1057. phy->allocated_src = D40_ALLOC_FREE;
  1058. is_free = true;
  1059. goto out;
  1060. }
  1061. /* Logical channel */
  1062. if (is_src) {
  1063. phy->allocated_src &= ~(1 << log_event_line);
  1064. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1065. phy->allocated_src = D40_ALLOC_FREE;
  1066. } else {
  1067. phy->allocated_dst &= ~(1 << log_event_line);
  1068. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1069. phy->allocated_dst = D40_ALLOC_FREE;
  1070. }
  1071. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1072. D40_ALLOC_FREE);
  1073. out:
  1074. spin_unlock_irqrestore(&phy->lock, flags);
  1075. return is_free;
  1076. }
  1077. static int d40_allocate_channel(struct d40_chan *d40c)
  1078. {
  1079. int dev_type;
  1080. int event_group;
  1081. int event_line;
  1082. struct d40_phy_res *phys;
  1083. int i;
  1084. int j;
  1085. int log_num;
  1086. bool is_src;
  1087. bool is_log = (d40c->dma_cfg.channel_type &
  1088. STEDMA40_CHANNEL_IN_OPER_MODE)
  1089. == STEDMA40_CHANNEL_IN_LOG_MODE;
  1090. phys = d40c->base->phy_res;
  1091. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1092. dev_type = d40c->dma_cfg.src_dev_type;
  1093. log_num = 2 * dev_type;
  1094. is_src = true;
  1095. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1096. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1097. /* dst event lines are used for logical memcpy */
  1098. dev_type = d40c->dma_cfg.dst_dev_type;
  1099. log_num = 2 * dev_type + 1;
  1100. is_src = false;
  1101. } else
  1102. return -EINVAL;
  1103. event_group = D40_TYPE_TO_GROUP(dev_type);
  1104. event_line = D40_TYPE_TO_EVENT(dev_type);
  1105. if (!is_log) {
  1106. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1107. /* Find physical half channel */
  1108. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1109. if (d40_alloc_mask_set(&phys[i], is_src,
  1110. 0, is_log))
  1111. goto found_phy;
  1112. }
  1113. } else
  1114. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1115. int phy_num = j + event_group * 2;
  1116. for (i = phy_num; i < phy_num + 2; i++) {
  1117. if (d40_alloc_mask_set(&phys[i],
  1118. is_src,
  1119. 0,
  1120. is_log))
  1121. goto found_phy;
  1122. }
  1123. }
  1124. return -EINVAL;
  1125. found_phy:
  1126. d40c->phy_chan = &phys[i];
  1127. d40c->log_num = D40_PHY_CHAN;
  1128. goto out;
  1129. }
  1130. if (dev_type == -1)
  1131. return -EINVAL;
  1132. /* Find logical channel */
  1133. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1134. int phy_num = j + event_group * 2;
  1135. /*
  1136. * Spread logical channels across all available physical rather
  1137. * than pack every logical channel at the first available phy
  1138. * channels.
  1139. */
  1140. if (is_src) {
  1141. for (i = phy_num; i < phy_num + 2; i++) {
  1142. if (d40_alloc_mask_set(&phys[i], is_src,
  1143. event_line, is_log))
  1144. goto found_log;
  1145. }
  1146. } else {
  1147. for (i = phy_num + 1; i >= phy_num; i--) {
  1148. if (d40_alloc_mask_set(&phys[i], is_src,
  1149. event_line, is_log))
  1150. goto found_log;
  1151. }
  1152. }
  1153. }
  1154. return -EINVAL;
  1155. found_log:
  1156. d40c->phy_chan = &phys[i];
  1157. d40c->log_num = log_num;
  1158. out:
  1159. if (is_log)
  1160. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1161. else
  1162. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1163. return 0;
  1164. }
  1165. static int d40_config_memcpy(struct d40_chan *d40c)
  1166. {
  1167. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1168. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1169. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1170. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1171. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1172. memcpy[d40c->chan.chan_id];
  1173. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1174. dma_has_cap(DMA_SLAVE, cap)) {
  1175. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1176. } else {
  1177. dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
  1178. __func__);
  1179. return -EINVAL;
  1180. }
  1181. return 0;
  1182. }
  1183. static int d40_free_dma(struct d40_chan *d40c)
  1184. {
  1185. int res = 0;
  1186. u32 event;
  1187. struct d40_phy_res *phy = d40c->phy_chan;
  1188. bool is_src;
  1189. struct d40_desc *d;
  1190. struct d40_desc *_d;
  1191. /* Terminate all queued and active transfers */
  1192. d40_term_all(d40c);
  1193. /* Release client owned descriptors */
  1194. if (!list_empty(&d40c->client))
  1195. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  1196. d40_pool_lli_free(d);
  1197. d40_desc_remove(d);
  1198. d40_desc_free(d40c, d);
  1199. }
  1200. if (phy == NULL) {
  1201. dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
  1202. __func__);
  1203. return -EINVAL;
  1204. }
  1205. if (phy->allocated_src == D40_ALLOC_FREE &&
  1206. phy->allocated_dst == D40_ALLOC_FREE) {
  1207. dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
  1208. __func__);
  1209. return -EINVAL;
  1210. }
  1211. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1212. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1213. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1214. is_src = false;
  1215. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1216. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1217. is_src = true;
  1218. } else {
  1219. dev_err(&d40c->chan.dev->device,
  1220. "[%s] Unknown direction\n", __func__);
  1221. return -EINVAL;
  1222. }
  1223. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1224. if (res) {
  1225. dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
  1226. __func__);
  1227. return res;
  1228. }
  1229. if (d40c->log_num != D40_PHY_CHAN) {
  1230. /* Release logical channel, deactivate the event line */
  1231. d40_config_set_event(d40c, false);
  1232. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1233. /*
  1234. * Check if there are more logical allocation
  1235. * on this phy channel.
  1236. */
  1237. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1238. /* Resume the other logical channels if any */
  1239. if (d40_chan_has_events(d40c)) {
  1240. res = d40_channel_execute_command(d40c,
  1241. D40_DMA_RUN);
  1242. if (res) {
  1243. dev_err(&d40c->chan.dev->device,
  1244. "[%s] Executing RUN command\n",
  1245. __func__);
  1246. return res;
  1247. }
  1248. }
  1249. return 0;
  1250. }
  1251. } else {
  1252. (void) d40_alloc_mask_free(phy, is_src, 0);
  1253. }
  1254. /* Release physical channel */
  1255. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1256. if (res) {
  1257. dev_err(&d40c->chan.dev->device,
  1258. "[%s] Failed to stop channel\n", __func__);
  1259. return res;
  1260. }
  1261. d40c->phy_chan = NULL;
  1262. /* Invalidate channel type */
  1263. d40c->dma_cfg.channel_type = 0;
  1264. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1265. return 0;
  1266. }
  1267. static bool d40_is_paused(struct d40_chan *d40c)
  1268. {
  1269. bool is_paused = false;
  1270. unsigned long flags;
  1271. void __iomem *active_reg;
  1272. u32 status;
  1273. u32 event;
  1274. spin_lock_irqsave(&d40c->lock, flags);
  1275. if (d40c->log_num == D40_PHY_CHAN) {
  1276. if (d40c->phy_chan->num % 2 == 0)
  1277. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1278. else
  1279. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1280. status = (readl(active_reg) &
  1281. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1282. D40_CHAN_POS(d40c->phy_chan->num);
  1283. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1284. is_paused = true;
  1285. goto _exit;
  1286. }
  1287. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1288. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1289. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1290. status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  1291. d40c->phy_chan->num * D40_DREG_PCDELTA +
  1292. D40_CHAN_REG_SDLNK);
  1293. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1294. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1295. status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  1296. d40c->phy_chan->num * D40_DREG_PCDELTA +
  1297. D40_CHAN_REG_SSLNK);
  1298. } else {
  1299. dev_err(&d40c->chan.dev->device,
  1300. "[%s] Unknown direction\n", __func__);
  1301. goto _exit;
  1302. }
  1303. status = (status & D40_EVENTLINE_MASK(event)) >>
  1304. D40_EVENTLINE_POS(event);
  1305. if (status != D40_DMA_RUN)
  1306. is_paused = true;
  1307. _exit:
  1308. spin_unlock_irqrestore(&d40c->lock, flags);
  1309. return is_paused;
  1310. }
  1311. static u32 stedma40_residue(struct dma_chan *chan)
  1312. {
  1313. struct d40_chan *d40c =
  1314. container_of(chan, struct d40_chan, chan);
  1315. u32 bytes_left;
  1316. unsigned long flags;
  1317. spin_lock_irqsave(&d40c->lock, flags);
  1318. bytes_left = d40_residue(d40c);
  1319. spin_unlock_irqrestore(&d40c->lock, flags);
  1320. return bytes_left;
  1321. }
  1322. /* Public DMA functions in addition to the DMA engine framework */
  1323. int stedma40_set_psize(struct dma_chan *chan,
  1324. int src_psize,
  1325. int dst_psize)
  1326. {
  1327. struct d40_chan *d40c =
  1328. container_of(chan, struct d40_chan, chan);
  1329. unsigned long flags;
  1330. spin_lock_irqsave(&d40c->lock, flags);
  1331. if (d40c->log_num != D40_PHY_CHAN) {
  1332. d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
  1333. d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
  1334. d40c->log_def.lcsp1 |= src_psize <<
  1335. D40_MEM_LCSP1_SCFG_PSIZE_POS;
  1336. d40c->log_def.lcsp3 |= dst_psize <<
  1337. D40_MEM_LCSP1_SCFG_PSIZE_POS;
  1338. goto out;
  1339. }
  1340. if (src_psize == STEDMA40_PSIZE_PHY_1)
  1341. d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
  1342. else {
  1343. d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
  1344. d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
  1345. D40_SREG_CFG_PSIZE_POS);
  1346. d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS;
  1347. }
  1348. if (dst_psize == STEDMA40_PSIZE_PHY_1)
  1349. d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
  1350. else {
  1351. d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
  1352. d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
  1353. D40_SREG_CFG_PSIZE_POS);
  1354. d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS;
  1355. }
  1356. out:
  1357. spin_unlock_irqrestore(&d40c->lock, flags);
  1358. return 0;
  1359. }
  1360. EXPORT_SYMBOL(stedma40_set_psize);
  1361. struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
  1362. struct scatterlist *sgl_dst,
  1363. struct scatterlist *sgl_src,
  1364. unsigned int sgl_len,
  1365. unsigned long dma_flags)
  1366. {
  1367. int res;
  1368. struct d40_desc *d40d;
  1369. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1370. chan);
  1371. unsigned long flags;
  1372. if (d40c->phy_chan == NULL) {
  1373. dev_err(&d40c->chan.dev->device,
  1374. "[%s] Unallocated channel.\n", __func__);
  1375. return ERR_PTR(-EINVAL);
  1376. }
  1377. spin_lock_irqsave(&d40c->lock, flags);
  1378. d40d = d40_desc_get(d40c);
  1379. if (d40d == NULL)
  1380. goto err;
  1381. d40d->lli_len = sgl_len;
  1382. d40d->lli_current = 0;
  1383. d40d->txd.flags = dma_flags;
  1384. if (d40c->log_num != D40_PHY_CHAN) {
  1385. if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
  1386. dev_err(&d40c->chan.dev->device,
  1387. "[%s] Out of memory\n", __func__);
  1388. goto err;
  1389. }
  1390. (void) d40_log_sg_to_lli(sgl_src,
  1391. sgl_len,
  1392. d40d->lli_log.src,
  1393. d40c->log_def.lcsp1,
  1394. d40c->dma_cfg.src_info.data_width);
  1395. (void) d40_log_sg_to_lli(sgl_dst,
  1396. sgl_len,
  1397. d40d->lli_log.dst,
  1398. d40c->log_def.lcsp3,
  1399. d40c->dma_cfg.dst_info.data_width);
  1400. } else {
  1401. if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
  1402. dev_err(&d40c->chan.dev->device,
  1403. "[%s] Out of memory\n", __func__);
  1404. goto err;
  1405. }
  1406. res = d40_phy_sg_to_lli(sgl_src,
  1407. sgl_len,
  1408. 0,
  1409. d40d->lli_phy.src,
  1410. virt_to_phys(d40d->lli_phy.src),
  1411. d40c->src_def_cfg,
  1412. d40c->dma_cfg.src_info.data_width,
  1413. d40c->dma_cfg.src_info.psize);
  1414. if (res < 0)
  1415. goto err;
  1416. res = d40_phy_sg_to_lli(sgl_dst,
  1417. sgl_len,
  1418. 0,
  1419. d40d->lli_phy.dst,
  1420. virt_to_phys(d40d->lli_phy.dst),
  1421. d40c->dst_def_cfg,
  1422. d40c->dma_cfg.dst_info.data_width,
  1423. d40c->dma_cfg.dst_info.psize);
  1424. if (res < 0)
  1425. goto err;
  1426. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1427. d40d->lli_pool.size, DMA_TO_DEVICE);
  1428. }
  1429. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1430. d40d->txd.tx_submit = d40_tx_submit;
  1431. spin_unlock_irqrestore(&d40c->lock, flags);
  1432. return &d40d->txd;
  1433. err:
  1434. spin_unlock_irqrestore(&d40c->lock, flags);
  1435. return NULL;
  1436. }
  1437. EXPORT_SYMBOL(stedma40_memcpy_sg);
  1438. bool stedma40_filter(struct dma_chan *chan, void *data)
  1439. {
  1440. struct stedma40_chan_cfg *info = data;
  1441. struct d40_chan *d40c =
  1442. container_of(chan, struct d40_chan, chan);
  1443. int err;
  1444. if (data) {
  1445. err = d40_validate_conf(d40c, info);
  1446. if (!err)
  1447. d40c->dma_cfg = *info;
  1448. } else
  1449. err = d40_config_memcpy(d40c);
  1450. return err == 0;
  1451. }
  1452. EXPORT_SYMBOL(stedma40_filter);
  1453. /* DMA ENGINE functions */
  1454. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1455. {
  1456. int err;
  1457. unsigned long flags;
  1458. struct d40_chan *d40c =
  1459. container_of(chan, struct d40_chan, chan);
  1460. bool is_free_phy;
  1461. spin_lock_irqsave(&d40c->lock, flags);
  1462. d40c->completed = chan->cookie = 1;
  1463. /*
  1464. * If no dma configuration is set (channel_type == 0)
  1465. * use default configuration (memcpy)
  1466. */
  1467. if (d40c->dma_cfg.channel_type == 0) {
  1468. err = d40_config_memcpy(d40c);
  1469. if (err) {
  1470. dev_err(&d40c->chan.dev->device,
  1471. "[%s] Failed to configure memcpy channel\n",
  1472. __func__);
  1473. goto fail;
  1474. }
  1475. }
  1476. is_free_phy = (d40c->phy_chan == NULL);
  1477. err = d40_allocate_channel(d40c);
  1478. if (err) {
  1479. dev_err(&d40c->chan.dev->device,
  1480. "[%s] Failed to allocate channel\n", __func__);
  1481. goto fail;
  1482. }
  1483. /* Fill in basic CFG register values */
  1484. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1485. &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
  1486. if (d40c->log_num != D40_PHY_CHAN) {
  1487. d40_log_cfg(&d40c->dma_cfg,
  1488. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1489. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1490. d40c->lcpa = d40c->base->lcpa_base +
  1491. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1492. else
  1493. d40c->lcpa = d40c->base->lcpa_base +
  1494. d40c->dma_cfg.dst_dev_type *
  1495. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1496. }
  1497. /*
  1498. * Only write channel configuration to the DMA if the physical
  1499. * resource is free. In case of multiple logical channels
  1500. * on the same physical resource, only the first write is necessary.
  1501. */
  1502. if (is_free_phy)
  1503. d40_config_write(d40c);
  1504. fail:
  1505. spin_unlock_irqrestore(&d40c->lock, flags);
  1506. return err;
  1507. }
  1508. static void d40_free_chan_resources(struct dma_chan *chan)
  1509. {
  1510. struct d40_chan *d40c =
  1511. container_of(chan, struct d40_chan, chan);
  1512. int err;
  1513. unsigned long flags;
  1514. if (d40c->phy_chan == NULL) {
  1515. dev_err(&d40c->chan.dev->device,
  1516. "[%s] Cannot free unallocated channel\n", __func__);
  1517. return;
  1518. }
  1519. spin_lock_irqsave(&d40c->lock, flags);
  1520. err = d40_free_dma(d40c);
  1521. if (err)
  1522. dev_err(&d40c->chan.dev->device,
  1523. "[%s] Failed to free channel\n", __func__);
  1524. spin_unlock_irqrestore(&d40c->lock, flags);
  1525. }
  1526. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1527. dma_addr_t dst,
  1528. dma_addr_t src,
  1529. size_t size,
  1530. unsigned long dma_flags)
  1531. {
  1532. struct d40_desc *d40d;
  1533. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1534. chan);
  1535. unsigned long flags;
  1536. int err = 0;
  1537. if (d40c->phy_chan == NULL) {
  1538. dev_err(&d40c->chan.dev->device,
  1539. "[%s] Channel is not allocated.\n", __func__);
  1540. return ERR_PTR(-EINVAL);
  1541. }
  1542. spin_lock_irqsave(&d40c->lock, flags);
  1543. d40d = d40_desc_get(d40c);
  1544. if (d40d == NULL) {
  1545. dev_err(&d40c->chan.dev->device,
  1546. "[%s] Descriptor is NULL\n", __func__);
  1547. goto err;
  1548. }
  1549. d40d->txd.flags = dma_flags;
  1550. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1551. d40d->txd.tx_submit = d40_tx_submit;
  1552. if (d40c->log_num != D40_PHY_CHAN) {
  1553. if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
  1554. dev_err(&d40c->chan.dev->device,
  1555. "[%s] Out of memory\n", __func__);
  1556. goto err;
  1557. }
  1558. d40d->lli_len = 1;
  1559. d40d->lli_current = 0;
  1560. d40_log_fill_lli(d40d->lli_log.src,
  1561. src,
  1562. size,
  1563. d40c->log_def.lcsp1,
  1564. d40c->dma_cfg.src_info.data_width,
  1565. true);
  1566. d40_log_fill_lli(d40d->lli_log.dst,
  1567. dst,
  1568. size,
  1569. d40c->log_def.lcsp3,
  1570. d40c->dma_cfg.dst_info.data_width,
  1571. true);
  1572. } else {
  1573. if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
  1574. dev_err(&d40c->chan.dev->device,
  1575. "[%s] Out of memory\n", __func__);
  1576. goto err;
  1577. }
  1578. err = d40_phy_fill_lli(d40d->lli_phy.src,
  1579. src,
  1580. size,
  1581. d40c->dma_cfg.src_info.psize,
  1582. 0,
  1583. d40c->src_def_cfg,
  1584. true,
  1585. d40c->dma_cfg.src_info.data_width,
  1586. false);
  1587. if (err)
  1588. goto err_fill_lli;
  1589. err = d40_phy_fill_lli(d40d->lli_phy.dst,
  1590. dst,
  1591. size,
  1592. d40c->dma_cfg.dst_info.psize,
  1593. 0,
  1594. d40c->dst_def_cfg,
  1595. true,
  1596. d40c->dma_cfg.dst_info.data_width,
  1597. false);
  1598. if (err)
  1599. goto err_fill_lli;
  1600. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1601. d40d->lli_pool.size, DMA_TO_DEVICE);
  1602. }
  1603. spin_unlock_irqrestore(&d40c->lock, flags);
  1604. return &d40d->txd;
  1605. err_fill_lli:
  1606. dev_err(&d40c->chan.dev->device,
  1607. "[%s] Failed filling in PHY LLI\n", __func__);
  1608. d40_pool_lli_free(d40d);
  1609. err:
  1610. spin_unlock_irqrestore(&d40c->lock, flags);
  1611. return NULL;
  1612. }
  1613. static int d40_prep_slave_sg_log(struct d40_desc *d40d,
  1614. struct d40_chan *d40c,
  1615. struct scatterlist *sgl,
  1616. unsigned int sg_len,
  1617. enum dma_data_direction direction,
  1618. unsigned long dma_flags)
  1619. {
  1620. dma_addr_t dev_addr = 0;
  1621. int total_size;
  1622. if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
  1623. dev_err(&d40c->chan.dev->device,
  1624. "[%s] Out of memory\n", __func__);
  1625. return -ENOMEM;
  1626. }
  1627. d40d->lli_len = sg_len;
  1628. d40d->lli_current = 0;
  1629. if (direction == DMA_FROM_DEVICE)
  1630. if (d40c->runtime_addr)
  1631. dev_addr = d40c->runtime_addr;
  1632. else
  1633. dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1634. else if (direction == DMA_TO_DEVICE)
  1635. if (d40c->runtime_addr)
  1636. dev_addr = d40c->runtime_addr;
  1637. else
  1638. dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1639. else
  1640. return -EINVAL;
  1641. total_size = d40_log_sg_to_dev(sgl, sg_len,
  1642. &d40d->lli_log,
  1643. &d40c->log_def,
  1644. d40c->dma_cfg.src_info.data_width,
  1645. d40c->dma_cfg.dst_info.data_width,
  1646. direction,
  1647. dev_addr);
  1648. if (total_size < 0)
  1649. return -EINVAL;
  1650. return 0;
  1651. }
  1652. static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
  1653. struct d40_chan *d40c,
  1654. struct scatterlist *sgl,
  1655. unsigned int sgl_len,
  1656. enum dma_data_direction direction,
  1657. unsigned long dma_flags)
  1658. {
  1659. dma_addr_t src_dev_addr;
  1660. dma_addr_t dst_dev_addr;
  1661. int res;
  1662. if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
  1663. dev_err(&d40c->chan.dev->device,
  1664. "[%s] Out of memory\n", __func__);
  1665. return -ENOMEM;
  1666. }
  1667. d40d->lli_len = sgl_len;
  1668. d40d->lli_current = 0;
  1669. if (direction == DMA_FROM_DEVICE) {
  1670. dst_dev_addr = 0;
  1671. if (d40c->runtime_addr)
  1672. src_dev_addr = d40c->runtime_addr;
  1673. else
  1674. src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1675. } else if (direction == DMA_TO_DEVICE) {
  1676. if (d40c->runtime_addr)
  1677. dst_dev_addr = d40c->runtime_addr;
  1678. else
  1679. dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1680. src_dev_addr = 0;
  1681. } else
  1682. return -EINVAL;
  1683. res = d40_phy_sg_to_lli(sgl,
  1684. sgl_len,
  1685. src_dev_addr,
  1686. d40d->lli_phy.src,
  1687. virt_to_phys(d40d->lli_phy.src),
  1688. d40c->src_def_cfg,
  1689. d40c->dma_cfg.src_info.data_width,
  1690. d40c->dma_cfg.src_info.psize);
  1691. if (res < 0)
  1692. return res;
  1693. res = d40_phy_sg_to_lli(sgl,
  1694. sgl_len,
  1695. dst_dev_addr,
  1696. d40d->lli_phy.dst,
  1697. virt_to_phys(d40d->lli_phy.dst),
  1698. d40c->dst_def_cfg,
  1699. d40c->dma_cfg.dst_info.data_width,
  1700. d40c->dma_cfg.dst_info.psize);
  1701. if (res < 0)
  1702. return res;
  1703. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1704. d40d->lli_pool.size, DMA_TO_DEVICE);
  1705. return 0;
  1706. }
  1707. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1708. struct scatterlist *sgl,
  1709. unsigned int sg_len,
  1710. enum dma_data_direction direction,
  1711. unsigned long dma_flags)
  1712. {
  1713. struct d40_desc *d40d;
  1714. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1715. chan);
  1716. unsigned long flags;
  1717. int err;
  1718. if (d40c->phy_chan == NULL) {
  1719. dev_err(&d40c->chan.dev->device,
  1720. "[%s] Cannot prepare unallocated channel\n", __func__);
  1721. return ERR_PTR(-EINVAL);
  1722. }
  1723. if (d40c->dma_cfg.pre_transfer)
  1724. d40c->dma_cfg.pre_transfer(chan,
  1725. d40c->dma_cfg.pre_transfer_data,
  1726. sg_dma_len(sgl));
  1727. spin_lock_irqsave(&d40c->lock, flags);
  1728. d40d = d40_desc_get(d40c);
  1729. spin_unlock_irqrestore(&d40c->lock, flags);
  1730. if (d40d == NULL)
  1731. return NULL;
  1732. if (d40c->log_num != D40_PHY_CHAN)
  1733. err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
  1734. direction, dma_flags);
  1735. else
  1736. err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
  1737. direction, dma_flags);
  1738. if (err) {
  1739. dev_err(&d40c->chan.dev->device,
  1740. "[%s] Failed to prepare %s slave sg job: %d\n",
  1741. __func__,
  1742. d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
  1743. return NULL;
  1744. }
  1745. d40d->txd.flags = dma_flags;
  1746. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1747. d40d->txd.tx_submit = d40_tx_submit;
  1748. return &d40d->txd;
  1749. }
  1750. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1751. dma_cookie_t cookie,
  1752. struct dma_tx_state *txstate)
  1753. {
  1754. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1755. dma_cookie_t last_used;
  1756. dma_cookie_t last_complete;
  1757. int ret;
  1758. if (d40c->phy_chan == NULL) {
  1759. dev_err(&d40c->chan.dev->device,
  1760. "[%s] Cannot read status of unallocated channel\n",
  1761. __func__);
  1762. return -EINVAL;
  1763. }
  1764. last_complete = d40c->completed;
  1765. last_used = chan->cookie;
  1766. if (d40_is_paused(d40c))
  1767. ret = DMA_PAUSED;
  1768. else
  1769. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1770. dma_set_tx_state(txstate, last_complete, last_used,
  1771. stedma40_residue(chan));
  1772. return ret;
  1773. }
  1774. static void d40_issue_pending(struct dma_chan *chan)
  1775. {
  1776. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1777. unsigned long flags;
  1778. if (d40c->phy_chan == NULL) {
  1779. dev_err(&d40c->chan.dev->device,
  1780. "[%s] Channel is not allocated!\n", __func__);
  1781. return;
  1782. }
  1783. spin_lock_irqsave(&d40c->lock, flags);
  1784. /* Busy means that pending jobs are already being processed */
  1785. if (!d40c->busy)
  1786. (void) d40_queue_start(d40c);
  1787. spin_unlock_irqrestore(&d40c->lock, flags);
  1788. }
  1789. /* Runtime reconfiguration extension */
  1790. static void d40_set_runtime_config(struct dma_chan *chan,
  1791. struct dma_slave_config *config)
  1792. {
  1793. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1794. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1795. enum dma_slave_buswidth config_addr_width;
  1796. dma_addr_t config_addr;
  1797. u32 config_maxburst;
  1798. enum stedma40_periph_data_width addr_width;
  1799. int psize;
  1800. if (config->direction == DMA_FROM_DEVICE) {
  1801. dma_addr_t dev_addr_rx =
  1802. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  1803. config_addr = config->src_addr;
  1804. if (dev_addr_rx)
  1805. dev_dbg(d40c->base->dev,
  1806. "channel has a pre-wired RX address %08x "
  1807. "overriding with %08x\n",
  1808. dev_addr_rx, config_addr);
  1809. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  1810. dev_dbg(d40c->base->dev,
  1811. "channel was not configured for peripheral "
  1812. "to memory transfer (%d) overriding\n",
  1813. cfg->dir);
  1814. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  1815. config_addr_width = config->src_addr_width;
  1816. config_maxburst = config->src_maxburst;
  1817. } else if (config->direction == DMA_TO_DEVICE) {
  1818. dma_addr_t dev_addr_tx =
  1819. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  1820. config_addr = config->dst_addr;
  1821. if (dev_addr_tx)
  1822. dev_dbg(d40c->base->dev,
  1823. "channel has a pre-wired TX address %08x "
  1824. "overriding with %08x\n",
  1825. dev_addr_tx, config_addr);
  1826. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  1827. dev_dbg(d40c->base->dev,
  1828. "channel was not configured for memory "
  1829. "to peripheral transfer (%d) overriding\n",
  1830. cfg->dir);
  1831. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  1832. config_addr_width = config->dst_addr_width;
  1833. config_maxburst = config->dst_maxburst;
  1834. } else {
  1835. dev_err(d40c->base->dev,
  1836. "unrecognized channel direction %d\n",
  1837. config->direction);
  1838. return;
  1839. }
  1840. switch (config_addr_width) {
  1841. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1842. addr_width = STEDMA40_BYTE_WIDTH;
  1843. break;
  1844. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1845. addr_width = STEDMA40_HALFWORD_WIDTH;
  1846. break;
  1847. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1848. addr_width = STEDMA40_WORD_WIDTH;
  1849. break;
  1850. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1851. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1852. break;
  1853. default:
  1854. dev_err(d40c->base->dev,
  1855. "illegal peripheral address width "
  1856. "requested (%d)\n",
  1857. config->src_addr_width);
  1858. return;
  1859. }
  1860. if (config_maxburst >= 16)
  1861. psize = STEDMA40_PSIZE_LOG_16;
  1862. else if (config_maxburst >= 8)
  1863. psize = STEDMA40_PSIZE_LOG_8;
  1864. else if (config_maxburst >= 4)
  1865. psize = STEDMA40_PSIZE_LOG_4;
  1866. else
  1867. psize = STEDMA40_PSIZE_LOG_1;
  1868. /* Set up all the endpoint configs */
  1869. cfg->src_info.data_width = addr_width;
  1870. cfg->src_info.psize = psize;
  1871. cfg->src_info.endianess = STEDMA40_LITTLE_ENDIAN;
  1872. cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1873. cfg->dst_info.data_width = addr_width;
  1874. cfg->dst_info.psize = psize;
  1875. cfg->dst_info.endianess = STEDMA40_LITTLE_ENDIAN;
  1876. cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1877. /* These settings will take precedence later */
  1878. d40c->runtime_addr = config_addr;
  1879. d40c->runtime_direction = config->direction;
  1880. dev_dbg(d40c->base->dev,
  1881. "configured channel %s for %s, data width %d, "
  1882. "maxburst %d bytes, LE, no flow control\n",
  1883. dma_chan_name(chan),
  1884. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1885. config_addr_width,
  1886. config_maxburst);
  1887. }
  1888. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1889. unsigned long arg)
  1890. {
  1891. unsigned long flags;
  1892. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1893. if (d40c->phy_chan == NULL) {
  1894. dev_err(&d40c->chan.dev->device,
  1895. "[%s] Channel is not allocated!\n", __func__);
  1896. return -EINVAL;
  1897. }
  1898. switch (cmd) {
  1899. case DMA_TERMINATE_ALL:
  1900. spin_lock_irqsave(&d40c->lock, flags);
  1901. d40_term_all(d40c);
  1902. spin_unlock_irqrestore(&d40c->lock, flags);
  1903. return 0;
  1904. case DMA_PAUSE:
  1905. return d40_pause(chan);
  1906. case DMA_RESUME:
  1907. return d40_resume(chan);
  1908. case DMA_SLAVE_CONFIG:
  1909. d40_set_runtime_config(chan,
  1910. (struct dma_slave_config *) arg);
  1911. return 0;
  1912. default:
  1913. break;
  1914. }
  1915. /* Other commands are unimplemented */
  1916. return -ENXIO;
  1917. }
  1918. /* Initialization functions */
  1919. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  1920. struct d40_chan *chans, int offset,
  1921. int num_chans)
  1922. {
  1923. int i = 0;
  1924. struct d40_chan *d40c;
  1925. INIT_LIST_HEAD(&dma->channels);
  1926. for (i = offset; i < offset + num_chans; i++) {
  1927. d40c = &chans[i];
  1928. d40c->base = base;
  1929. d40c->chan.device = dma;
  1930. spin_lock_init(&d40c->lock);
  1931. d40c->log_num = D40_PHY_CHAN;
  1932. INIT_LIST_HEAD(&d40c->active);
  1933. INIT_LIST_HEAD(&d40c->queue);
  1934. INIT_LIST_HEAD(&d40c->client);
  1935. tasklet_init(&d40c->tasklet, dma_tasklet,
  1936. (unsigned long) d40c);
  1937. list_add_tail(&d40c->chan.device_node,
  1938. &dma->channels);
  1939. }
  1940. }
  1941. static int __init d40_dmaengine_init(struct d40_base *base,
  1942. int num_reserved_chans)
  1943. {
  1944. int err ;
  1945. d40_chan_init(base, &base->dma_slave, base->log_chans,
  1946. 0, base->num_log_chans);
  1947. dma_cap_zero(base->dma_slave.cap_mask);
  1948. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  1949. base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
  1950. base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
  1951. base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
  1952. base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
  1953. base->dma_slave.device_tx_status = d40_tx_status;
  1954. base->dma_slave.device_issue_pending = d40_issue_pending;
  1955. base->dma_slave.device_control = d40_control;
  1956. base->dma_slave.dev = base->dev;
  1957. err = dma_async_device_register(&base->dma_slave);
  1958. if (err) {
  1959. dev_err(base->dev,
  1960. "[%s] Failed to register slave channels\n",
  1961. __func__);
  1962. goto failure1;
  1963. }
  1964. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  1965. base->num_log_chans, base->plat_data->memcpy_len);
  1966. dma_cap_zero(base->dma_memcpy.cap_mask);
  1967. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  1968. base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
  1969. base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
  1970. base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
  1971. base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
  1972. base->dma_memcpy.device_tx_status = d40_tx_status;
  1973. base->dma_memcpy.device_issue_pending = d40_issue_pending;
  1974. base->dma_memcpy.device_control = d40_control;
  1975. base->dma_memcpy.dev = base->dev;
  1976. /*
  1977. * This controller can only access address at even
  1978. * 32bit boundaries, i.e. 2^2
  1979. */
  1980. base->dma_memcpy.copy_align = 2;
  1981. err = dma_async_device_register(&base->dma_memcpy);
  1982. if (err) {
  1983. dev_err(base->dev,
  1984. "[%s] Failed to regsiter memcpy only channels\n",
  1985. __func__);
  1986. goto failure2;
  1987. }
  1988. d40_chan_init(base, &base->dma_both, base->phy_chans,
  1989. 0, num_reserved_chans);
  1990. dma_cap_zero(base->dma_both.cap_mask);
  1991. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  1992. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  1993. base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
  1994. base->dma_both.device_free_chan_resources = d40_free_chan_resources;
  1995. base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
  1996. base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
  1997. base->dma_both.device_tx_status = d40_tx_status;
  1998. base->dma_both.device_issue_pending = d40_issue_pending;
  1999. base->dma_both.device_control = d40_control;
  2000. base->dma_both.dev = base->dev;
  2001. base->dma_both.copy_align = 2;
  2002. err = dma_async_device_register(&base->dma_both);
  2003. if (err) {
  2004. dev_err(base->dev,
  2005. "[%s] Failed to register logical and physical capable channels\n",
  2006. __func__);
  2007. goto failure3;
  2008. }
  2009. return 0;
  2010. failure3:
  2011. dma_async_device_unregister(&base->dma_memcpy);
  2012. failure2:
  2013. dma_async_device_unregister(&base->dma_slave);
  2014. failure1:
  2015. return err;
  2016. }
  2017. /* Initialization functions. */
  2018. static int __init d40_phy_res_init(struct d40_base *base)
  2019. {
  2020. int i;
  2021. int num_phy_chans_avail = 0;
  2022. u32 val[2];
  2023. int odd_even_bit = -2;
  2024. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2025. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2026. for (i = 0; i < base->num_phy_chans; i++) {
  2027. base->phy_res[i].num = i;
  2028. odd_even_bit += 2 * ((i % 2) == 0);
  2029. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2030. /* Mark security only channels as occupied */
  2031. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2032. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2033. } else {
  2034. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2035. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2036. num_phy_chans_avail++;
  2037. }
  2038. spin_lock_init(&base->phy_res[i].lock);
  2039. }
  2040. /* Mark disabled channels as occupied */
  2041. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2042. int chan = base->plat_data->disabled_channels[i];
  2043. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2044. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2045. num_phy_chans_avail--;
  2046. }
  2047. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2048. num_phy_chans_avail, base->num_phy_chans);
  2049. /* Verify settings extended vs standard */
  2050. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2051. for (i = 0; i < base->num_phy_chans; i++) {
  2052. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2053. (val[0] & 0x3) != 1)
  2054. dev_info(base->dev,
  2055. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2056. __func__, i, val[0] & 0x3);
  2057. val[0] = val[0] >> 2;
  2058. }
  2059. return num_phy_chans_avail;
  2060. }
  2061. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2062. {
  2063. static const struct d40_reg_val dma_id_regs[] = {
  2064. /* Peripheral Id */
  2065. { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
  2066. { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
  2067. /*
  2068. * D40_DREG_PERIPHID2 Depends on HW revision:
  2069. * MOP500/HREF ED has 0x0008,
  2070. * ? has 0x0018,
  2071. * HREF V1 has 0x0028
  2072. */
  2073. { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
  2074. /* PCell Id */
  2075. { .reg = D40_DREG_CELLID0, .val = 0x000d},
  2076. { .reg = D40_DREG_CELLID1, .val = 0x00f0},
  2077. { .reg = D40_DREG_CELLID2, .val = 0x0005},
  2078. { .reg = D40_DREG_CELLID3, .val = 0x00b1}
  2079. };
  2080. struct stedma40_platform_data *plat_data;
  2081. struct clk *clk = NULL;
  2082. void __iomem *virtbase = NULL;
  2083. struct resource *res = NULL;
  2084. struct d40_base *base = NULL;
  2085. int num_log_chans = 0;
  2086. int num_phy_chans;
  2087. int i;
  2088. u32 val;
  2089. u32 rev;
  2090. clk = clk_get(&pdev->dev, NULL);
  2091. if (IS_ERR(clk)) {
  2092. dev_err(&pdev->dev, "[%s] No matching clock found\n",
  2093. __func__);
  2094. goto failure;
  2095. }
  2096. clk_enable(clk);
  2097. /* Get IO for DMAC base address */
  2098. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2099. if (!res)
  2100. goto failure;
  2101. if (request_mem_region(res->start, resource_size(res),
  2102. D40_NAME " I/O base") == NULL)
  2103. goto failure;
  2104. virtbase = ioremap(res->start, resource_size(res));
  2105. if (!virtbase)
  2106. goto failure;
  2107. /* HW version check */
  2108. for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
  2109. if (dma_id_regs[i].val !=
  2110. readl(virtbase + dma_id_regs[i].reg)) {
  2111. dev_err(&pdev->dev,
  2112. "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
  2113. __func__,
  2114. dma_id_regs[i].val,
  2115. dma_id_regs[i].reg,
  2116. readl(virtbase + dma_id_regs[i].reg));
  2117. goto failure;
  2118. }
  2119. }
  2120. /* Get silicon revision and designer */
  2121. val = readl(virtbase + D40_DREG_PERIPHID2);
  2122. if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
  2123. D40_HW_DESIGNER) {
  2124. dev_err(&pdev->dev,
  2125. "[%s] Unknown designer! Got %x wanted %x\n",
  2126. __func__, val & D40_DREG_PERIPHID2_DESIGNER_MASK,
  2127. D40_HW_DESIGNER);
  2128. goto failure;
  2129. }
  2130. rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
  2131. D40_DREG_PERIPHID2_REV_POS;
  2132. /* The number of physical channels on this HW */
  2133. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2134. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2135. rev, res->start);
  2136. plat_data = pdev->dev.platform_data;
  2137. /* Count the number of logical channels in use */
  2138. for (i = 0; i < plat_data->dev_len; i++)
  2139. if (plat_data->dev_rx[i] != 0)
  2140. num_log_chans++;
  2141. for (i = 0; i < plat_data->dev_len; i++)
  2142. if (plat_data->dev_tx[i] != 0)
  2143. num_log_chans++;
  2144. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2145. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2146. sizeof(struct d40_chan), GFP_KERNEL);
  2147. if (base == NULL) {
  2148. dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
  2149. goto failure;
  2150. }
  2151. base->rev = rev;
  2152. base->clk = clk;
  2153. base->num_phy_chans = num_phy_chans;
  2154. base->num_log_chans = num_log_chans;
  2155. base->phy_start = res->start;
  2156. base->phy_size = resource_size(res);
  2157. base->virtbase = virtbase;
  2158. base->plat_data = plat_data;
  2159. base->dev = &pdev->dev;
  2160. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2161. base->log_chans = &base->phy_chans[num_phy_chans];
  2162. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2163. GFP_KERNEL);
  2164. if (!base->phy_res)
  2165. goto failure;
  2166. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2167. sizeof(struct d40_chan *),
  2168. GFP_KERNEL);
  2169. if (!base->lookup_phy_chans)
  2170. goto failure;
  2171. if (num_log_chans + plat_data->memcpy_len) {
  2172. /*
  2173. * The max number of logical channels are event lines for all
  2174. * src devices and dst devices
  2175. */
  2176. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2177. sizeof(struct d40_chan *),
  2178. GFP_KERNEL);
  2179. if (!base->lookup_log_chans)
  2180. goto failure;
  2181. }
  2182. base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
  2183. sizeof(struct d40_desc *) *
  2184. D40_LCLA_LINK_PER_EVENT_GRP,
  2185. GFP_KERNEL);
  2186. if (!base->lcla_pool.alloc_map)
  2187. goto failure;
  2188. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2189. 0, SLAB_HWCACHE_ALIGN,
  2190. NULL);
  2191. if (base->desc_slab == NULL)
  2192. goto failure;
  2193. return base;
  2194. failure:
  2195. if (!IS_ERR(clk)) {
  2196. clk_disable(clk);
  2197. clk_put(clk);
  2198. }
  2199. if (virtbase)
  2200. iounmap(virtbase);
  2201. if (res)
  2202. release_mem_region(res->start,
  2203. resource_size(res));
  2204. if (virtbase)
  2205. iounmap(virtbase);
  2206. if (base) {
  2207. kfree(base->lcla_pool.alloc_map);
  2208. kfree(base->lookup_log_chans);
  2209. kfree(base->lookup_phy_chans);
  2210. kfree(base->phy_res);
  2211. kfree(base);
  2212. }
  2213. return NULL;
  2214. }
  2215. static void __init d40_hw_init(struct d40_base *base)
  2216. {
  2217. static const struct d40_reg_val dma_init_reg[] = {
  2218. /* Clock every part of the DMA block from start */
  2219. { .reg = D40_DREG_GCC, .val = 0x0000ff01},
  2220. /* Interrupts on all logical channels */
  2221. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2222. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2223. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2224. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2225. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2226. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2227. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2228. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2229. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2230. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2231. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2232. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2233. };
  2234. int i;
  2235. u32 prmseo[2] = {0, 0};
  2236. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2237. u32 pcmis = 0;
  2238. u32 pcicr = 0;
  2239. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2240. writel(dma_init_reg[i].val,
  2241. base->virtbase + dma_init_reg[i].reg);
  2242. /* Configure all our dma channels to default settings */
  2243. for (i = 0; i < base->num_phy_chans; i++) {
  2244. activeo[i % 2] = activeo[i % 2] << 2;
  2245. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2246. == D40_ALLOC_PHY) {
  2247. activeo[i % 2] |= 3;
  2248. continue;
  2249. }
  2250. /* Enable interrupt # */
  2251. pcmis = (pcmis << 1) | 1;
  2252. /* Clear interrupt # */
  2253. pcicr = (pcicr << 1) | 1;
  2254. /* Set channel to physical mode */
  2255. prmseo[i % 2] = prmseo[i % 2] << 2;
  2256. prmseo[i % 2] |= 1;
  2257. }
  2258. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2259. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2260. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2261. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2262. /* Write which interrupt to enable */
  2263. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2264. /* Write which interrupt to clear */
  2265. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2266. }
  2267. static int __init d40_lcla_allocate(struct d40_base *base)
  2268. {
  2269. unsigned long *page_list;
  2270. int i, j;
  2271. int ret = 0;
  2272. /*
  2273. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2274. * To full fill this hardware requirement without wasting 256 kb
  2275. * we allocate pages until we get an aligned one.
  2276. */
  2277. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2278. GFP_KERNEL);
  2279. if (!page_list) {
  2280. ret = -ENOMEM;
  2281. goto failure;
  2282. }
  2283. /* Calculating how many pages that are required */
  2284. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2285. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2286. page_list[i] = __get_free_pages(GFP_KERNEL,
  2287. base->lcla_pool.pages);
  2288. if (!page_list[i]) {
  2289. dev_err(base->dev,
  2290. "[%s] Failed to allocate %d pages.\n",
  2291. __func__, base->lcla_pool.pages);
  2292. for (j = 0; j < i; j++)
  2293. free_pages(page_list[j], base->lcla_pool.pages);
  2294. goto failure;
  2295. }
  2296. if ((virt_to_phys((void *)page_list[i]) &
  2297. (LCLA_ALIGNMENT - 1)) == 0)
  2298. break;
  2299. }
  2300. for (j = 0; j < i; j++)
  2301. free_pages(page_list[j], base->lcla_pool.pages);
  2302. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2303. base->lcla_pool.base = (void *)page_list[i];
  2304. } else {
  2305. /*
  2306. * After many attempts and no succees with finding the correct
  2307. * alignment, try with allocating a big buffer.
  2308. */
  2309. dev_warn(base->dev,
  2310. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2311. __func__, base->lcla_pool.pages);
  2312. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2313. base->num_phy_chans +
  2314. LCLA_ALIGNMENT,
  2315. GFP_KERNEL);
  2316. if (!base->lcla_pool.base_unaligned) {
  2317. ret = -ENOMEM;
  2318. goto failure;
  2319. }
  2320. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2321. LCLA_ALIGNMENT);
  2322. }
  2323. writel(virt_to_phys(base->lcla_pool.base),
  2324. base->virtbase + D40_DREG_LCLA);
  2325. failure:
  2326. kfree(page_list);
  2327. return ret;
  2328. }
  2329. static int __init d40_probe(struct platform_device *pdev)
  2330. {
  2331. int err;
  2332. int ret = -ENOENT;
  2333. struct d40_base *base;
  2334. struct resource *res = NULL;
  2335. int num_reserved_chans;
  2336. u32 val;
  2337. base = d40_hw_detect_init(pdev);
  2338. if (!base)
  2339. goto failure;
  2340. num_reserved_chans = d40_phy_res_init(base);
  2341. platform_set_drvdata(pdev, base);
  2342. spin_lock_init(&base->interrupt_lock);
  2343. spin_lock_init(&base->execmd_lock);
  2344. /* Get IO for logical channel parameter address */
  2345. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2346. if (!res) {
  2347. ret = -ENOENT;
  2348. dev_err(&pdev->dev,
  2349. "[%s] No \"lcpa\" memory resource\n",
  2350. __func__);
  2351. goto failure;
  2352. }
  2353. base->lcpa_size = resource_size(res);
  2354. base->phy_lcpa = res->start;
  2355. if (request_mem_region(res->start, resource_size(res),
  2356. D40_NAME " I/O lcpa") == NULL) {
  2357. ret = -EBUSY;
  2358. dev_err(&pdev->dev,
  2359. "[%s] Failed to request LCPA region 0x%x-0x%x\n",
  2360. __func__, res->start, res->end);
  2361. goto failure;
  2362. }
  2363. /* We make use of ESRAM memory for this. */
  2364. val = readl(base->virtbase + D40_DREG_LCPA);
  2365. if (res->start != val && val != 0) {
  2366. dev_warn(&pdev->dev,
  2367. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2368. __func__, val, res->start);
  2369. } else
  2370. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2371. base->lcpa_base = ioremap(res->start, resource_size(res));
  2372. if (!base->lcpa_base) {
  2373. ret = -ENOMEM;
  2374. dev_err(&pdev->dev,
  2375. "[%s] Failed to ioremap LCPA region\n",
  2376. __func__);
  2377. goto failure;
  2378. }
  2379. ret = d40_lcla_allocate(base);
  2380. if (ret) {
  2381. dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
  2382. __func__);
  2383. goto failure;
  2384. }
  2385. spin_lock_init(&base->lcla_pool.lock);
  2386. base->irq = platform_get_irq(pdev, 0);
  2387. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2388. if (ret) {
  2389. dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
  2390. goto failure;
  2391. }
  2392. err = d40_dmaengine_init(base, num_reserved_chans);
  2393. if (err)
  2394. goto failure;
  2395. d40_hw_init(base);
  2396. dev_info(base->dev, "initialized\n");
  2397. return 0;
  2398. failure:
  2399. if (base) {
  2400. if (base->desc_slab)
  2401. kmem_cache_destroy(base->desc_slab);
  2402. if (base->virtbase)
  2403. iounmap(base->virtbase);
  2404. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2405. free_pages((unsigned long)base->lcla_pool.base,
  2406. base->lcla_pool.pages);
  2407. kfree(base->lcla_pool.base_unaligned);
  2408. if (base->phy_lcpa)
  2409. release_mem_region(base->phy_lcpa,
  2410. base->lcpa_size);
  2411. if (base->phy_start)
  2412. release_mem_region(base->phy_start,
  2413. base->phy_size);
  2414. if (base->clk) {
  2415. clk_disable(base->clk);
  2416. clk_put(base->clk);
  2417. }
  2418. kfree(base->lcla_pool.alloc_map);
  2419. kfree(base->lookup_log_chans);
  2420. kfree(base->lookup_phy_chans);
  2421. kfree(base->phy_res);
  2422. kfree(base);
  2423. }
  2424. dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
  2425. return ret;
  2426. }
  2427. static struct platform_driver d40_driver = {
  2428. .driver = {
  2429. .owner = THIS_MODULE,
  2430. .name = D40_NAME,
  2431. },
  2432. };
  2433. int __init stedma40_init(void)
  2434. {
  2435. return platform_driver_probe(&d40_driver, d40_probe);
  2436. }
  2437. arch_initcall(stedma40_init);