intel_display.c 297 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include <drm/drmP.h>
  35. #include "intel_drv.h"
  36. #include <drm/i915_drm.h>
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include <drm/drm_dp_helper.h>
  40. #include <drm/drm_crtc_helper.h>
  41. #include <linux/dma_remapping.h>
  42. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  43. static void intel_increase_pllclock(struct drm_crtc *crtc);
  44. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  45. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  46. struct intel_crtc_config *pipe_config);
  47. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  48. struct intel_crtc_config *pipe_config);
  49. static int intel_set_mode(struct drm_crtc *crtc, struct drm_display_mode *mode,
  50. int x, int y, struct drm_framebuffer *old_fb);
  51. typedef struct {
  52. int min, max;
  53. } intel_range_t;
  54. typedef struct {
  55. int dot_limit;
  56. int p2_slow, p2_fast;
  57. } intel_p2_t;
  58. typedef struct intel_limit intel_limit_t;
  59. struct intel_limit {
  60. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  61. intel_p2_t p2;
  62. };
  63. int
  64. intel_pch_rawclk(struct drm_device *dev)
  65. {
  66. struct drm_i915_private *dev_priv = dev->dev_private;
  67. WARN_ON(!HAS_PCH_SPLIT(dev));
  68. return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
  69. }
  70. static inline u32 /* units of 100MHz */
  71. intel_fdi_link_freq(struct drm_device *dev)
  72. {
  73. if (IS_GEN5(dev)) {
  74. struct drm_i915_private *dev_priv = dev->dev_private;
  75. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  76. } else
  77. return 27;
  78. }
  79. static const intel_limit_t intel_limits_i8xx_dac = {
  80. .dot = { .min = 25000, .max = 350000 },
  81. .vco = { .min = 930000, .max = 1400000 },
  82. .n = { .min = 3, .max = 16 },
  83. .m = { .min = 96, .max = 140 },
  84. .m1 = { .min = 18, .max = 26 },
  85. .m2 = { .min = 6, .max = 16 },
  86. .p = { .min = 4, .max = 128 },
  87. .p1 = { .min = 2, .max = 33 },
  88. .p2 = { .dot_limit = 165000,
  89. .p2_slow = 4, .p2_fast = 2 },
  90. };
  91. static const intel_limit_t intel_limits_i8xx_dvo = {
  92. .dot = { .min = 25000, .max = 350000 },
  93. .vco = { .min = 930000, .max = 1400000 },
  94. .n = { .min = 3, .max = 16 },
  95. .m = { .min = 96, .max = 140 },
  96. .m1 = { .min = 18, .max = 26 },
  97. .m2 = { .min = 6, .max = 16 },
  98. .p = { .min = 4, .max = 128 },
  99. .p1 = { .min = 2, .max = 33 },
  100. .p2 = { .dot_limit = 165000,
  101. .p2_slow = 4, .p2_fast = 4 },
  102. };
  103. static const intel_limit_t intel_limits_i8xx_lvds = {
  104. .dot = { .min = 25000, .max = 350000 },
  105. .vco = { .min = 930000, .max = 1400000 },
  106. .n = { .min = 3, .max = 16 },
  107. .m = { .min = 96, .max = 140 },
  108. .m1 = { .min = 18, .max = 26 },
  109. .m2 = { .min = 6, .max = 16 },
  110. .p = { .min = 4, .max = 128 },
  111. .p1 = { .min = 1, .max = 6 },
  112. .p2 = { .dot_limit = 165000,
  113. .p2_slow = 14, .p2_fast = 7 },
  114. };
  115. static const intel_limit_t intel_limits_i9xx_sdvo = {
  116. .dot = { .min = 20000, .max = 400000 },
  117. .vco = { .min = 1400000, .max = 2800000 },
  118. .n = { .min = 1, .max = 6 },
  119. .m = { .min = 70, .max = 120 },
  120. .m1 = { .min = 8, .max = 18 },
  121. .m2 = { .min = 3, .max = 7 },
  122. .p = { .min = 5, .max = 80 },
  123. .p1 = { .min = 1, .max = 8 },
  124. .p2 = { .dot_limit = 200000,
  125. .p2_slow = 10, .p2_fast = 5 },
  126. };
  127. static const intel_limit_t intel_limits_i9xx_lvds = {
  128. .dot = { .min = 20000, .max = 400000 },
  129. .vco = { .min = 1400000, .max = 2800000 },
  130. .n = { .min = 1, .max = 6 },
  131. .m = { .min = 70, .max = 120 },
  132. .m1 = { .min = 8, .max = 18 },
  133. .m2 = { .min = 3, .max = 7 },
  134. .p = { .min = 7, .max = 98 },
  135. .p1 = { .min = 1, .max = 8 },
  136. .p2 = { .dot_limit = 112000,
  137. .p2_slow = 14, .p2_fast = 7 },
  138. };
  139. static const intel_limit_t intel_limits_g4x_sdvo = {
  140. .dot = { .min = 25000, .max = 270000 },
  141. .vco = { .min = 1750000, .max = 3500000},
  142. .n = { .min = 1, .max = 4 },
  143. .m = { .min = 104, .max = 138 },
  144. .m1 = { .min = 17, .max = 23 },
  145. .m2 = { .min = 5, .max = 11 },
  146. .p = { .min = 10, .max = 30 },
  147. .p1 = { .min = 1, .max = 3},
  148. .p2 = { .dot_limit = 270000,
  149. .p2_slow = 10,
  150. .p2_fast = 10
  151. },
  152. };
  153. static const intel_limit_t intel_limits_g4x_hdmi = {
  154. .dot = { .min = 22000, .max = 400000 },
  155. .vco = { .min = 1750000, .max = 3500000},
  156. .n = { .min = 1, .max = 4 },
  157. .m = { .min = 104, .max = 138 },
  158. .m1 = { .min = 16, .max = 23 },
  159. .m2 = { .min = 5, .max = 11 },
  160. .p = { .min = 5, .max = 80 },
  161. .p1 = { .min = 1, .max = 8},
  162. .p2 = { .dot_limit = 165000,
  163. .p2_slow = 10, .p2_fast = 5 },
  164. };
  165. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  166. .dot = { .min = 20000, .max = 115000 },
  167. .vco = { .min = 1750000, .max = 3500000 },
  168. .n = { .min = 1, .max = 3 },
  169. .m = { .min = 104, .max = 138 },
  170. .m1 = { .min = 17, .max = 23 },
  171. .m2 = { .min = 5, .max = 11 },
  172. .p = { .min = 28, .max = 112 },
  173. .p1 = { .min = 2, .max = 8 },
  174. .p2 = { .dot_limit = 0,
  175. .p2_slow = 14, .p2_fast = 14
  176. },
  177. };
  178. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  179. .dot = { .min = 80000, .max = 224000 },
  180. .vco = { .min = 1750000, .max = 3500000 },
  181. .n = { .min = 1, .max = 3 },
  182. .m = { .min = 104, .max = 138 },
  183. .m1 = { .min = 17, .max = 23 },
  184. .m2 = { .min = 5, .max = 11 },
  185. .p = { .min = 14, .max = 42 },
  186. .p1 = { .min = 2, .max = 6 },
  187. .p2 = { .dot_limit = 0,
  188. .p2_slow = 7, .p2_fast = 7
  189. },
  190. };
  191. static const intel_limit_t intel_limits_pineview_sdvo = {
  192. .dot = { .min = 20000, .max = 400000},
  193. .vco = { .min = 1700000, .max = 3500000 },
  194. /* Pineview's Ncounter is a ring counter */
  195. .n = { .min = 3, .max = 6 },
  196. .m = { .min = 2, .max = 256 },
  197. /* Pineview only has one combined m divider, which we treat as m2. */
  198. .m1 = { .min = 0, .max = 0 },
  199. .m2 = { .min = 0, .max = 254 },
  200. .p = { .min = 5, .max = 80 },
  201. .p1 = { .min = 1, .max = 8 },
  202. .p2 = { .dot_limit = 200000,
  203. .p2_slow = 10, .p2_fast = 5 },
  204. };
  205. static const intel_limit_t intel_limits_pineview_lvds = {
  206. .dot = { .min = 20000, .max = 400000 },
  207. .vco = { .min = 1700000, .max = 3500000 },
  208. .n = { .min = 3, .max = 6 },
  209. .m = { .min = 2, .max = 256 },
  210. .m1 = { .min = 0, .max = 0 },
  211. .m2 = { .min = 0, .max = 254 },
  212. .p = { .min = 7, .max = 112 },
  213. .p1 = { .min = 1, .max = 8 },
  214. .p2 = { .dot_limit = 112000,
  215. .p2_slow = 14, .p2_fast = 14 },
  216. };
  217. /* Ironlake / Sandybridge
  218. *
  219. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  220. * the range value for them is (actual_value - 2).
  221. */
  222. static const intel_limit_t intel_limits_ironlake_dac = {
  223. .dot = { .min = 25000, .max = 350000 },
  224. .vco = { .min = 1760000, .max = 3510000 },
  225. .n = { .min = 1, .max = 5 },
  226. .m = { .min = 79, .max = 127 },
  227. .m1 = { .min = 12, .max = 22 },
  228. .m2 = { .min = 5, .max = 9 },
  229. .p = { .min = 5, .max = 80 },
  230. .p1 = { .min = 1, .max = 8 },
  231. .p2 = { .dot_limit = 225000,
  232. .p2_slow = 10, .p2_fast = 5 },
  233. };
  234. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  235. .dot = { .min = 25000, .max = 350000 },
  236. .vco = { .min = 1760000, .max = 3510000 },
  237. .n = { .min = 1, .max = 3 },
  238. .m = { .min = 79, .max = 118 },
  239. .m1 = { .min = 12, .max = 22 },
  240. .m2 = { .min = 5, .max = 9 },
  241. .p = { .min = 28, .max = 112 },
  242. .p1 = { .min = 2, .max = 8 },
  243. .p2 = { .dot_limit = 225000,
  244. .p2_slow = 14, .p2_fast = 14 },
  245. };
  246. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  247. .dot = { .min = 25000, .max = 350000 },
  248. .vco = { .min = 1760000, .max = 3510000 },
  249. .n = { .min = 1, .max = 3 },
  250. .m = { .min = 79, .max = 127 },
  251. .m1 = { .min = 12, .max = 22 },
  252. .m2 = { .min = 5, .max = 9 },
  253. .p = { .min = 14, .max = 56 },
  254. .p1 = { .min = 2, .max = 8 },
  255. .p2 = { .dot_limit = 225000,
  256. .p2_slow = 7, .p2_fast = 7 },
  257. };
  258. /* LVDS 100mhz refclk limits. */
  259. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  260. .dot = { .min = 25000, .max = 350000 },
  261. .vco = { .min = 1760000, .max = 3510000 },
  262. .n = { .min = 1, .max = 2 },
  263. .m = { .min = 79, .max = 126 },
  264. .m1 = { .min = 12, .max = 22 },
  265. .m2 = { .min = 5, .max = 9 },
  266. .p = { .min = 28, .max = 112 },
  267. .p1 = { .min = 2, .max = 8 },
  268. .p2 = { .dot_limit = 225000,
  269. .p2_slow = 14, .p2_fast = 14 },
  270. };
  271. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  272. .dot = { .min = 25000, .max = 350000 },
  273. .vco = { .min = 1760000, .max = 3510000 },
  274. .n = { .min = 1, .max = 3 },
  275. .m = { .min = 79, .max = 126 },
  276. .m1 = { .min = 12, .max = 22 },
  277. .m2 = { .min = 5, .max = 9 },
  278. .p = { .min = 14, .max = 42 },
  279. .p1 = { .min = 2, .max = 6 },
  280. .p2 = { .dot_limit = 225000,
  281. .p2_slow = 7, .p2_fast = 7 },
  282. };
  283. static const intel_limit_t intel_limits_vlv_dac = {
  284. .dot = { .min = 25000, .max = 270000 },
  285. .vco = { .min = 4000000, .max = 6000000 },
  286. .n = { .min = 1, .max = 7 },
  287. .m = { .min = 22, .max = 450 }, /* guess */
  288. .m1 = { .min = 2, .max = 3 },
  289. .m2 = { .min = 11, .max = 156 },
  290. .p = { .min = 10, .max = 30 },
  291. .p1 = { .min = 1, .max = 3 },
  292. .p2 = { .dot_limit = 270000,
  293. .p2_slow = 2, .p2_fast = 20 },
  294. };
  295. static const intel_limit_t intel_limits_vlv_hdmi = {
  296. .dot = { .min = 25000, .max = 270000 },
  297. .vco = { .min = 4000000, .max = 6000000 },
  298. .n = { .min = 1, .max = 7 },
  299. .m = { .min = 60, .max = 300 }, /* guess */
  300. .m1 = { .min = 2, .max = 3 },
  301. .m2 = { .min = 11, .max = 156 },
  302. .p = { .min = 10, .max = 30 },
  303. .p1 = { .min = 2, .max = 3 },
  304. .p2 = { .dot_limit = 270000,
  305. .p2_slow = 2, .p2_fast = 20 },
  306. };
  307. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  308. int refclk)
  309. {
  310. struct drm_device *dev = crtc->dev;
  311. const intel_limit_t *limit;
  312. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  313. if (intel_is_dual_link_lvds(dev)) {
  314. if (refclk == 100000)
  315. limit = &intel_limits_ironlake_dual_lvds_100m;
  316. else
  317. limit = &intel_limits_ironlake_dual_lvds;
  318. } else {
  319. if (refclk == 100000)
  320. limit = &intel_limits_ironlake_single_lvds_100m;
  321. else
  322. limit = &intel_limits_ironlake_single_lvds;
  323. }
  324. } else
  325. limit = &intel_limits_ironlake_dac;
  326. return limit;
  327. }
  328. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  329. {
  330. struct drm_device *dev = crtc->dev;
  331. const intel_limit_t *limit;
  332. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  333. if (intel_is_dual_link_lvds(dev))
  334. limit = &intel_limits_g4x_dual_channel_lvds;
  335. else
  336. limit = &intel_limits_g4x_single_channel_lvds;
  337. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  338. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  339. limit = &intel_limits_g4x_hdmi;
  340. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  341. limit = &intel_limits_g4x_sdvo;
  342. } else /* The option is for other outputs */
  343. limit = &intel_limits_i9xx_sdvo;
  344. return limit;
  345. }
  346. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  347. {
  348. struct drm_device *dev = crtc->dev;
  349. const intel_limit_t *limit;
  350. if (HAS_PCH_SPLIT(dev))
  351. limit = intel_ironlake_limit(crtc, refclk);
  352. else if (IS_G4X(dev)) {
  353. limit = intel_g4x_limit(crtc);
  354. } else if (IS_PINEVIEW(dev)) {
  355. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  356. limit = &intel_limits_pineview_lvds;
  357. else
  358. limit = &intel_limits_pineview_sdvo;
  359. } else if (IS_VALLEYVIEW(dev)) {
  360. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  361. limit = &intel_limits_vlv_dac;
  362. else
  363. limit = &intel_limits_vlv_hdmi;
  364. } else if (!IS_GEN2(dev)) {
  365. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  366. limit = &intel_limits_i9xx_lvds;
  367. else
  368. limit = &intel_limits_i9xx_sdvo;
  369. } else {
  370. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  371. limit = &intel_limits_i8xx_lvds;
  372. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO))
  373. limit = &intel_limits_i8xx_dvo;
  374. else
  375. limit = &intel_limits_i8xx_dac;
  376. }
  377. return limit;
  378. }
  379. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  380. static void pineview_clock(int refclk, intel_clock_t *clock)
  381. {
  382. clock->m = clock->m2 + 2;
  383. clock->p = clock->p1 * clock->p2;
  384. clock->vco = refclk * clock->m / clock->n;
  385. clock->dot = clock->vco / clock->p;
  386. }
  387. static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  388. {
  389. return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  390. }
  391. static void i9xx_clock(int refclk, intel_clock_t *clock)
  392. {
  393. clock->m = i9xx_dpll_compute_m(clock);
  394. clock->p = clock->p1 * clock->p2;
  395. clock->vco = refclk * clock->m / (clock->n + 2);
  396. clock->dot = clock->vco / clock->p;
  397. }
  398. /**
  399. * Returns whether any output on the specified pipe is of the specified type
  400. */
  401. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  402. {
  403. struct drm_device *dev = crtc->dev;
  404. struct intel_encoder *encoder;
  405. for_each_encoder_on_crtc(dev, crtc, encoder)
  406. if (encoder->type == type)
  407. return true;
  408. return false;
  409. }
  410. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  411. /**
  412. * Returns whether the given set of divisors are valid for a given refclk with
  413. * the given connectors.
  414. */
  415. static bool intel_PLL_is_valid(struct drm_device *dev,
  416. const intel_limit_t *limit,
  417. const intel_clock_t *clock)
  418. {
  419. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  420. INTELPllInvalid("p1 out of range\n");
  421. if (clock->p < limit->p.min || limit->p.max < clock->p)
  422. INTELPllInvalid("p out of range\n");
  423. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  424. INTELPllInvalid("m2 out of range\n");
  425. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  426. INTELPllInvalid("m1 out of range\n");
  427. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  428. INTELPllInvalid("m1 <= m2\n");
  429. if (clock->m < limit->m.min || limit->m.max < clock->m)
  430. INTELPllInvalid("m out of range\n");
  431. if (clock->n < limit->n.min || limit->n.max < clock->n)
  432. INTELPllInvalid("n out of range\n");
  433. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  434. INTELPllInvalid("vco out of range\n");
  435. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  436. * connector, etc., rather than just a single range.
  437. */
  438. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  439. INTELPllInvalid("dot out of range\n");
  440. return true;
  441. }
  442. static bool
  443. i9xx_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  444. int target, int refclk, intel_clock_t *match_clock,
  445. intel_clock_t *best_clock)
  446. {
  447. struct drm_device *dev = crtc->dev;
  448. intel_clock_t clock;
  449. int err = target;
  450. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  451. /*
  452. * For LVDS just rely on its current settings for dual-channel.
  453. * We haven't figured out how to reliably set up different
  454. * single/dual channel state, if we even can.
  455. */
  456. if (intel_is_dual_link_lvds(dev))
  457. clock.p2 = limit->p2.p2_fast;
  458. else
  459. clock.p2 = limit->p2.p2_slow;
  460. } else {
  461. if (target < limit->p2.dot_limit)
  462. clock.p2 = limit->p2.p2_slow;
  463. else
  464. clock.p2 = limit->p2.p2_fast;
  465. }
  466. memset(best_clock, 0, sizeof(*best_clock));
  467. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  468. clock.m1++) {
  469. for (clock.m2 = limit->m2.min;
  470. clock.m2 <= limit->m2.max; clock.m2++) {
  471. if (clock.m2 >= clock.m1)
  472. break;
  473. for (clock.n = limit->n.min;
  474. clock.n <= limit->n.max; clock.n++) {
  475. for (clock.p1 = limit->p1.min;
  476. clock.p1 <= limit->p1.max; clock.p1++) {
  477. int this_err;
  478. i9xx_clock(refclk, &clock);
  479. if (!intel_PLL_is_valid(dev, limit,
  480. &clock))
  481. continue;
  482. if (match_clock &&
  483. clock.p != match_clock->p)
  484. continue;
  485. this_err = abs(clock.dot - target);
  486. if (this_err < err) {
  487. *best_clock = clock;
  488. err = this_err;
  489. }
  490. }
  491. }
  492. }
  493. }
  494. return (err != target);
  495. }
  496. static bool
  497. pnv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  498. int target, int refclk, intel_clock_t *match_clock,
  499. intel_clock_t *best_clock)
  500. {
  501. struct drm_device *dev = crtc->dev;
  502. intel_clock_t clock;
  503. int err = target;
  504. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  505. /*
  506. * For LVDS just rely on its current settings for dual-channel.
  507. * We haven't figured out how to reliably set up different
  508. * single/dual channel state, if we even can.
  509. */
  510. if (intel_is_dual_link_lvds(dev))
  511. clock.p2 = limit->p2.p2_fast;
  512. else
  513. clock.p2 = limit->p2.p2_slow;
  514. } else {
  515. if (target < limit->p2.dot_limit)
  516. clock.p2 = limit->p2.p2_slow;
  517. else
  518. clock.p2 = limit->p2.p2_fast;
  519. }
  520. memset(best_clock, 0, sizeof(*best_clock));
  521. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  522. clock.m1++) {
  523. for (clock.m2 = limit->m2.min;
  524. clock.m2 <= limit->m2.max; clock.m2++) {
  525. for (clock.n = limit->n.min;
  526. clock.n <= limit->n.max; clock.n++) {
  527. for (clock.p1 = limit->p1.min;
  528. clock.p1 <= limit->p1.max; clock.p1++) {
  529. int this_err;
  530. pineview_clock(refclk, &clock);
  531. if (!intel_PLL_is_valid(dev, limit,
  532. &clock))
  533. continue;
  534. if (match_clock &&
  535. clock.p != match_clock->p)
  536. continue;
  537. this_err = abs(clock.dot - target);
  538. if (this_err < err) {
  539. *best_clock = clock;
  540. err = this_err;
  541. }
  542. }
  543. }
  544. }
  545. }
  546. return (err != target);
  547. }
  548. static bool
  549. g4x_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  550. int target, int refclk, intel_clock_t *match_clock,
  551. intel_clock_t *best_clock)
  552. {
  553. struct drm_device *dev = crtc->dev;
  554. intel_clock_t clock;
  555. int max_n;
  556. bool found;
  557. /* approximately equals target * 0.00585 */
  558. int err_most = (target >> 8) + (target >> 9);
  559. found = false;
  560. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  561. if (intel_is_dual_link_lvds(dev))
  562. clock.p2 = limit->p2.p2_fast;
  563. else
  564. clock.p2 = limit->p2.p2_slow;
  565. } else {
  566. if (target < limit->p2.dot_limit)
  567. clock.p2 = limit->p2.p2_slow;
  568. else
  569. clock.p2 = limit->p2.p2_fast;
  570. }
  571. memset(best_clock, 0, sizeof(*best_clock));
  572. max_n = limit->n.max;
  573. /* based on hardware requirement, prefer smaller n to precision */
  574. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  575. /* based on hardware requirement, prefere larger m1,m2 */
  576. for (clock.m1 = limit->m1.max;
  577. clock.m1 >= limit->m1.min; clock.m1--) {
  578. for (clock.m2 = limit->m2.max;
  579. clock.m2 >= limit->m2.min; clock.m2--) {
  580. for (clock.p1 = limit->p1.max;
  581. clock.p1 >= limit->p1.min; clock.p1--) {
  582. int this_err;
  583. i9xx_clock(refclk, &clock);
  584. if (!intel_PLL_is_valid(dev, limit,
  585. &clock))
  586. continue;
  587. this_err = abs(clock.dot - target);
  588. if (this_err < err_most) {
  589. *best_clock = clock;
  590. err_most = this_err;
  591. max_n = clock.n;
  592. found = true;
  593. }
  594. }
  595. }
  596. }
  597. }
  598. return found;
  599. }
  600. static bool
  601. vlv_find_best_dpll(const intel_limit_t *limit, struct drm_crtc *crtc,
  602. int target, int refclk, intel_clock_t *match_clock,
  603. intel_clock_t *best_clock)
  604. {
  605. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  606. u32 m, n, fastclk;
  607. u32 updrate, minupdate, p;
  608. unsigned long bestppm, ppm, absppm;
  609. int dotclk, flag;
  610. flag = 0;
  611. dotclk = target * 1000;
  612. bestppm = 1000000;
  613. ppm = absppm = 0;
  614. fastclk = dotclk / (2*100);
  615. updrate = 0;
  616. minupdate = 19200;
  617. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  618. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  619. /* based on hardware requirement, prefer smaller n to precision */
  620. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  621. updrate = refclk / n;
  622. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  623. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  624. if (p2 > 10)
  625. p2 = p2 - 1;
  626. p = p1 * p2;
  627. /* based on hardware requirement, prefer bigger m1,m2 values */
  628. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  629. m2 = (((2*(fastclk * p * n / m1 )) +
  630. refclk) / (2*refclk));
  631. m = m1 * m2;
  632. vco = updrate * m;
  633. if (vco >= limit->vco.min && vco < limit->vco.max) {
  634. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  635. absppm = (ppm > 0) ? ppm : (-ppm);
  636. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  637. bestppm = 0;
  638. flag = 1;
  639. }
  640. if (absppm < bestppm - 10) {
  641. bestppm = absppm;
  642. flag = 1;
  643. }
  644. if (flag) {
  645. bestn = n;
  646. bestm1 = m1;
  647. bestm2 = m2;
  648. bestp1 = p1;
  649. bestp2 = p2;
  650. flag = 0;
  651. }
  652. }
  653. }
  654. }
  655. }
  656. }
  657. best_clock->n = bestn;
  658. best_clock->m1 = bestm1;
  659. best_clock->m2 = bestm2;
  660. best_clock->p1 = bestp1;
  661. best_clock->p2 = bestp2;
  662. return true;
  663. }
  664. enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
  665. enum pipe pipe)
  666. {
  667. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  668. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  669. return intel_crtc->config.cpu_transcoder;
  670. }
  671. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  672. {
  673. struct drm_i915_private *dev_priv = dev->dev_private;
  674. u32 frame, frame_reg = PIPEFRAME(pipe);
  675. frame = I915_READ(frame_reg);
  676. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  677. DRM_DEBUG_KMS("vblank wait timed out\n");
  678. }
  679. /**
  680. * intel_wait_for_vblank - wait for vblank on a given pipe
  681. * @dev: drm device
  682. * @pipe: pipe to wait for
  683. *
  684. * Wait for vblank to occur on a given pipe. Needed for various bits of
  685. * mode setting code.
  686. */
  687. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  688. {
  689. struct drm_i915_private *dev_priv = dev->dev_private;
  690. int pipestat_reg = PIPESTAT(pipe);
  691. if (INTEL_INFO(dev)->gen >= 5) {
  692. ironlake_wait_for_vblank(dev, pipe);
  693. return;
  694. }
  695. /* Clear existing vblank status. Note this will clear any other
  696. * sticky status fields as well.
  697. *
  698. * This races with i915_driver_irq_handler() with the result
  699. * that either function could miss a vblank event. Here it is not
  700. * fatal, as we will either wait upon the next vblank interrupt or
  701. * timeout. Generally speaking intel_wait_for_vblank() is only
  702. * called during modeset at which time the GPU should be idle and
  703. * should *not* be performing page flips and thus not waiting on
  704. * vblanks...
  705. * Currently, the result of us stealing a vblank from the irq
  706. * handler is that a single frame will be skipped during swapbuffers.
  707. */
  708. I915_WRITE(pipestat_reg,
  709. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  710. /* Wait for vblank interrupt bit to set */
  711. if (wait_for(I915_READ(pipestat_reg) &
  712. PIPE_VBLANK_INTERRUPT_STATUS,
  713. 50))
  714. DRM_DEBUG_KMS("vblank wait timed out\n");
  715. }
  716. /*
  717. * intel_wait_for_pipe_off - wait for pipe to turn off
  718. * @dev: drm device
  719. * @pipe: pipe to wait for
  720. *
  721. * After disabling a pipe, we can't wait for vblank in the usual way,
  722. * spinning on the vblank interrupt status bit, since we won't actually
  723. * see an interrupt when the pipe is disabled.
  724. *
  725. * On Gen4 and above:
  726. * wait for the pipe register state bit to turn off
  727. *
  728. * Otherwise:
  729. * wait for the display line value to settle (it usually
  730. * ends up stopping at the start of the next frame).
  731. *
  732. */
  733. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  734. {
  735. struct drm_i915_private *dev_priv = dev->dev_private;
  736. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  737. pipe);
  738. if (INTEL_INFO(dev)->gen >= 4) {
  739. int reg = PIPECONF(cpu_transcoder);
  740. /* Wait for the Pipe State to go off */
  741. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  742. 100))
  743. WARN(1, "pipe_off wait timed out\n");
  744. } else {
  745. u32 last_line, line_mask;
  746. int reg = PIPEDSL(pipe);
  747. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  748. if (IS_GEN2(dev))
  749. line_mask = DSL_LINEMASK_GEN2;
  750. else
  751. line_mask = DSL_LINEMASK_GEN3;
  752. /* Wait for the display line to settle */
  753. do {
  754. last_line = I915_READ(reg) & line_mask;
  755. mdelay(5);
  756. } while (((I915_READ(reg) & line_mask) != last_line) &&
  757. time_after(timeout, jiffies));
  758. if (time_after(jiffies, timeout))
  759. WARN(1, "pipe_off wait timed out\n");
  760. }
  761. }
  762. /*
  763. * ibx_digital_port_connected - is the specified port connected?
  764. * @dev_priv: i915 private structure
  765. * @port: the port to test
  766. *
  767. * Returns true if @port is connected, false otherwise.
  768. */
  769. bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
  770. struct intel_digital_port *port)
  771. {
  772. u32 bit;
  773. if (HAS_PCH_IBX(dev_priv->dev)) {
  774. switch(port->port) {
  775. case PORT_B:
  776. bit = SDE_PORTB_HOTPLUG;
  777. break;
  778. case PORT_C:
  779. bit = SDE_PORTC_HOTPLUG;
  780. break;
  781. case PORT_D:
  782. bit = SDE_PORTD_HOTPLUG;
  783. break;
  784. default:
  785. return true;
  786. }
  787. } else {
  788. switch(port->port) {
  789. case PORT_B:
  790. bit = SDE_PORTB_HOTPLUG_CPT;
  791. break;
  792. case PORT_C:
  793. bit = SDE_PORTC_HOTPLUG_CPT;
  794. break;
  795. case PORT_D:
  796. bit = SDE_PORTD_HOTPLUG_CPT;
  797. break;
  798. default:
  799. return true;
  800. }
  801. }
  802. return I915_READ(SDEISR) & bit;
  803. }
  804. static const char *state_string(bool enabled)
  805. {
  806. return enabled ? "on" : "off";
  807. }
  808. /* Only for pre-ILK configs */
  809. void assert_pll(struct drm_i915_private *dev_priv,
  810. enum pipe pipe, bool state)
  811. {
  812. int reg;
  813. u32 val;
  814. bool cur_state;
  815. reg = DPLL(pipe);
  816. val = I915_READ(reg);
  817. cur_state = !!(val & DPLL_VCO_ENABLE);
  818. WARN(cur_state != state,
  819. "PLL state assertion failure (expected %s, current %s)\n",
  820. state_string(state), state_string(cur_state));
  821. }
  822. /* XXX: the dsi pll is shared between MIPI DSI ports */
  823. static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
  824. {
  825. u32 val;
  826. bool cur_state;
  827. mutex_lock(&dev_priv->dpio_lock);
  828. val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
  829. mutex_unlock(&dev_priv->dpio_lock);
  830. cur_state = val & DSI_PLL_VCO_EN;
  831. WARN(cur_state != state,
  832. "DSI PLL state assertion failure (expected %s, current %s)\n",
  833. state_string(state), state_string(cur_state));
  834. }
  835. #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
  836. #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
  837. struct intel_shared_dpll *
  838. intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
  839. {
  840. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  841. if (crtc->config.shared_dpll < 0)
  842. return NULL;
  843. return &dev_priv->shared_dplls[crtc->config.shared_dpll];
  844. }
  845. /* For ILK+ */
  846. void assert_shared_dpll(struct drm_i915_private *dev_priv,
  847. struct intel_shared_dpll *pll,
  848. bool state)
  849. {
  850. bool cur_state;
  851. struct intel_dpll_hw_state hw_state;
  852. if (HAS_PCH_LPT(dev_priv->dev)) {
  853. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  854. return;
  855. }
  856. if (WARN (!pll,
  857. "asserting DPLL %s with no DPLL\n", state_string(state)))
  858. return;
  859. cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
  860. WARN(cur_state != state,
  861. "%s assertion failure (expected %s, current %s)\n",
  862. pll->name, state_string(state), state_string(cur_state));
  863. }
  864. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  865. enum pipe pipe, bool state)
  866. {
  867. int reg;
  868. u32 val;
  869. bool cur_state;
  870. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  871. pipe);
  872. if (HAS_DDI(dev_priv->dev)) {
  873. /* DDI does not have a specific FDI_TX register */
  874. reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  875. val = I915_READ(reg);
  876. cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
  877. } else {
  878. reg = FDI_TX_CTL(pipe);
  879. val = I915_READ(reg);
  880. cur_state = !!(val & FDI_TX_ENABLE);
  881. }
  882. WARN(cur_state != state,
  883. "FDI TX state assertion failure (expected %s, current %s)\n",
  884. state_string(state), state_string(cur_state));
  885. }
  886. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  887. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  888. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  889. enum pipe pipe, bool state)
  890. {
  891. int reg;
  892. u32 val;
  893. bool cur_state;
  894. reg = FDI_RX_CTL(pipe);
  895. val = I915_READ(reg);
  896. cur_state = !!(val & FDI_RX_ENABLE);
  897. WARN(cur_state != state,
  898. "FDI RX state assertion failure (expected %s, current %s)\n",
  899. state_string(state), state_string(cur_state));
  900. }
  901. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  902. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  903. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  904. enum pipe pipe)
  905. {
  906. int reg;
  907. u32 val;
  908. /* ILK FDI PLL is always enabled */
  909. if (dev_priv->info->gen == 5)
  910. return;
  911. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  912. if (HAS_DDI(dev_priv->dev))
  913. return;
  914. reg = FDI_TX_CTL(pipe);
  915. val = I915_READ(reg);
  916. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  917. }
  918. void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
  919. enum pipe pipe, bool state)
  920. {
  921. int reg;
  922. u32 val;
  923. bool cur_state;
  924. reg = FDI_RX_CTL(pipe);
  925. val = I915_READ(reg);
  926. cur_state = !!(val & FDI_RX_PLL_ENABLE);
  927. WARN(cur_state != state,
  928. "FDI RX PLL assertion failure (expected %s, current %s)\n",
  929. state_string(state), state_string(cur_state));
  930. }
  931. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  932. enum pipe pipe)
  933. {
  934. int pp_reg, lvds_reg;
  935. u32 val;
  936. enum pipe panel_pipe = PIPE_A;
  937. bool locked = true;
  938. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  939. pp_reg = PCH_PP_CONTROL;
  940. lvds_reg = PCH_LVDS;
  941. } else {
  942. pp_reg = PP_CONTROL;
  943. lvds_reg = LVDS;
  944. }
  945. val = I915_READ(pp_reg);
  946. if (!(val & PANEL_POWER_ON) ||
  947. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  948. locked = false;
  949. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  950. panel_pipe = PIPE_B;
  951. WARN(panel_pipe == pipe && locked,
  952. "panel assertion failure, pipe %c regs locked\n",
  953. pipe_name(pipe));
  954. }
  955. static void assert_cursor(struct drm_i915_private *dev_priv,
  956. enum pipe pipe, bool state)
  957. {
  958. struct drm_device *dev = dev_priv->dev;
  959. bool cur_state;
  960. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  961. cur_state = I915_READ(CURCNTR_IVB(pipe)) & CURSOR_MODE;
  962. else if (IS_845G(dev) || IS_I865G(dev))
  963. cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
  964. else
  965. cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
  966. WARN(cur_state != state,
  967. "cursor on pipe %c assertion failure (expected %s, current %s)\n",
  968. pipe_name(pipe), state_string(state), state_string(cur_state));
  969. }
  970. #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
  971. #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
  972. void assert_pipe(struct drm_i915_private *dev_priv,
  973. enum pipe pipe, bool state)
  974. {
  975. int reg;
  976. u32 val;
  977. bool cur_state;
  978. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  979. pipe);
  980. /* if we need the pipe A quirk it must be always on */
  981. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  982. state = true;
  983. if (!intel_display_power_enabled(dev_priv->dev,
  984. POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
  985. cur_state = false;
  986. } else {
  987. reg = PIPECONF(cpu_transcoder);
  988. val = I915_READ(reg);
  989. cur_state = !!(val & PIPECONF_ENABLE);
  990. }
  991. WARN(cur_state != state,
  992. "pipe %c assertion failure (expected %s, current %s)\n",
  993. pipe_name(pipe), state_string(state), state_string(cur_state));
  994. }
  995. static void assert_plane(struct drm_i915_private *dev_priv,
  996. enum plane plane, bool state)
  997. {
  998. int reg;
  999. u32 val;
  1000. bool cur_state;
  1001. reg = DSPCNTR(plane);
  1002. val = I915_READ(reg);
  1003. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1004. WARN(cur_state != state,
  1005. "plane %c assertion failure (expected %s, current %s)\n",
  1006. plane_name(plane), state_string(state), state_string(cur_state));
  1007. }
  1008. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1009. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1010. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1011. enum pipe pipe)
  1012. {
  1013. struct drm_device *dev = dev_priv->dev;
  1014. int reg, i;
  1015. u32 val;
  1016. int cur_pipe;
  1017. /* Primary planes are fixed to pipes on gen4+ */
  1018. if (INTEL_INFO(dev)->gen >= 4) {
  1019. reg = DSPCNTR(pipe);
  1020. val = I915_READ(reg);
  1021. WARN((val & DISPLAY_PLANE_ENABLE),
  1022. "plane %c assertion failure, should be disabled but not\n",
  1023. plane_name(pipe));
  1024. return;
  1025. }
  1026. /* Need to check both planes against the pipe */
  1027. for_each_pipe(i) {
  1028. reg = DSPCNTR(i);
  1029. val = I915_READ(reg);
  1030. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1031. DISPPLANE_SEL_PIPE_SHIFT;
  1032. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1033. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1034. plane_name(i), pipe_name(pipe));
  1035. }
  1036. }
  1037. static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
  1038. enum pipe pipe)
  1039. {
  1040. struct drm_device *dev = dev_priv->dev;
  1041. int reg, i;
  1042. u32 val;
  1043. if (IS_VALLEYVIEW(dev)) {
  1044. for (i = 0; i < dev_priv->num_plane; i++) {
  1045. reg = SPCNTR(pipe, i);
  1046. val = I915_READ(reg);
  1047. WARN((val & SP_ENABLE),
  1048. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1049. sprite_name(pipe, i), pipe_name(pipe));
  1050. }
  1051. } else if (INTEL_INFO(dev)->gen >= 7) {
  1052. reg = SPRCTL(pipe);
  1053. val = I915_READ(reg);
  1054. WARN((val & SPRITE_ENABLE),
  1055. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1056. plane_name(pipe), pipe_name(pipe));
  1057. } else if (INTEL_INFO(dev)->gen >= 5) {
  1058. reg = DVSCNTR(pipe);
  1059. val = I915_READ(reg);
  1060. WARN((val & DVS_ENABLE),
  1061. "sprite %c assertion failure, should be off on pipe %c but is still active\n",
  1062. plane_name(pipe), pipe_name(pipe));
  1063. }
  1064. }
  1065. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1066. {
  1067. u32 val;
  1068. bool enabled;
  1069. if (HAS_PCH_LPT(dev_priv->dev)) {
  1070. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1071. return;
  1072. }
  1073. val = I915_READ(PCH_DREF_CONTROL);
  1074. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1075. DREF_SUPERSPREAD_SOURCE_MASK));
  1076. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1077. }
  1078. static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
  1079. enum pipe pipe)
  1080. {
  1081. int reg;
  1082. u32 val;
  1083. bool enabled;
  1084. reg = PCH_TRANSCONF(pipe);
  1085. val = I915_READ(reg);
  1086. enabled = !!(val & TRANS_ENABLE);
  1087. WARN(enabled,
  1088. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1089. pipe_name(pipe));
  1090. }
  1091. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1092. enum pipe pipe, u32 port_sel, u32 val)
  1093. {
  1094. if ((val & DP_PORT_EN) == 0)
  1095. return false;
  1096. if (HAS_PCH_CPT(dev_priv->dev)) {
  1097. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1098. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1099. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1100. return false;
  1101. } else {
  1102. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1103. return false;
  1104. }
  1105. return true;
  1106. }
  1107. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1108. enum pipe pipe, u32 val)
  1109. {
  1110. if ((val & SDVO_ENABLE) == 0)
  1111. return false;
  1112. if (HAS_PCH_CPT(dev_priv->dev)) {
  1113. if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
  1114. return false;
  1115. } else {
  1116. if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
  1117. return false;
  1118. }
  1119. return true;
  1120. }
  1121. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1122. enum pipe pipe, u32 val)
  1123. {
  1124. if ((val & LVDS_PORT_EN) == 0)
  1125. return false;
  1126. if (HAS_PCH_CPT(dev_priv->dev)) {
  1127. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1128. return false;
  1129. } else {
  1130. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1131. return false;
  1132. }
  1133. return true;
  1134. }
  1135. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1136. enum pipe pipe, u32 val)
  1137. {
  1138. if ((val & ADPA_DAC_ENABLE) == 0)
  1139. return false;
  1140. if (HAS_PCH_CPT(dev_priv->dev)) {
  1141. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1142. return false;
  1143. } else {
  1144. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1145. return false;
  1146. }
  1147. return true;
  1148. }
  1149. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1150. enum pipe pipe, int reg, u32 port_sel)
  1151. {
  1152. u32 val = I915_READ(reg);
  1153. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1154. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1155. reg, pipe_name(pipe));
  1156. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
  1157. && (val & DP_PIPEB_SELECT),
  1158. "IBX PCH dp port still using transcoder B\n");
  1159. }
  1160. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1161. enum pipe pipe, int reg)
  1162. {
  1163. u32 val = I915_READ(reg);
  1164. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1165. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1166. reg, pipe_name(pipe));
  1167. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
  1168. && (val & SDVO_PIPE_B_SELECT),
  1169. "IBX PCH hdmi port still using transcoder B\n");
  1170. }
  1171. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1172. enum pipe pipe)
  1173. {
  1174. int reg;
  1175. u32 val;
  1176. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1177. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1178. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1179. reg = PCH_ADPA;
  1180. val = I915_READ(reg);
  1181. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1182. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1183. pipe_name(pipe));
  1184. reg = PCH_LVDS;
  1185. val = I915_READ(reg);
  1186. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1187. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1188. pipe_name(pipe));
  1189. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
  1190. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
  1191. assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
  1192. }
  1193. static void vlv_enable_pll(struct intel_crtc *crtc)
  1194. {
  1195. struct drm_device *dev = crtc->base.dev;
  1196. struct drm_i915_private *dev_priv = dev->dev_private;
  1197. int reg = DPLL(crtc->pipe);
  1198. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1199. assert_pipe_disabled(dev_priv, crtc->pipe);
  1200. /* No really, not for ILK+ */
  1201. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
  1202. /* PLL is protected by panel, make sure we can write it */
  1203. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1204. assert_panel_unlocked(dev_priv, crtc->pipe);
  1205. I915_WRITE(reg, dpll);
  1206. POSTING_READ(reg);
  1207. udelay(150);
  1208. if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  1209. DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
  1210. I915_WRITE(DPLL_MD(crtc->pipe), crtc->config.dpll_hw_state.dpll_md);
  1211. POSTING_READ(DPLL_MD(crtc->pipe));
  1212. /* We do this three times for luck */
  1213. I915_WRITE(reg, dpll);
  1214. POSTING_READ(reg);
  1215. udelay(150); /* wait for warmup */
  1216. I915_WRITE(reg, dpll);
  1217. POSTING_READ(reg);
  1218. udelay(150); /* wait for warmup */
  1219. I915_WRITE(reg, dpll);
  1220. POSTING_READ(reg);
  1221. udelay(150); /* wait for warmup */
  1222. }
  1223. static void i9xx_enable_pll(struct intel_crtc *crtc)
  1224. {
  1225. struct drm_device *dev = crtc->base.dev;
  1226. struct drm_i915_private *dev_priv = dev->dev_private;
  1227. int reg = DPLL(crtc->pipe);
  1228. u32 dpll = crtc->config.dpll_hw_state.dpll;
  1229. assert_pipe_disabled(dev_priv, crtc->pipe);
  1230. /* No really, not for ILK+ */
  1231. BUG_ON(dev_priv->info->gen >= 5);
  1232. /* PLL is protected by panel, make sure we can write it */
  1233. if (IS_MOBILE(dev) && !IS_I830(dev))
  1234. assert_panel_unlocked(dev_priv, crtc->pipe);
  1235. I915_WRITE(reg, dpll);
  1236. /* Wait for the clocks to stabilize. */
  1237. POSTING_READ(reg);
  1238. udelay(150);
  1239. if (INTEL_INFO(dev)->gen >= 4) {
  1240. I915_WRITE(DPLL_MD(crtc->pipe),
  1241. crtc->config.dpll_hw_state.dpll_md);
  1242. } else {
  1243. /* The pixel multiplier can only be updated once the
  1244. * DPLL is enabled and the clocks are stable.
  1245. *
  1246. * So write it again.
  1247. */
  1248. I915_WRITE(reg, dpll);
  1249. }
  1250. /* We do this three times for luck */
  1251. I915_WRITE(reg, dpll);
  1252. POSTING_READ(reg);
  1253. udelay(150); /* wait for warmup */
  1254. I915_WRITE(reg, dpll);
  1255. POSTING_READ(reg);
  1256. udelay(150); /* wait for warmup */
  1257. I915_WRITE(reg, dpll);
  1258. POSTING_READ(reg);
  1259. udelay(150); /* wait for warmup */
  1260. }
  1261. /**
  1262. * i9xx_disable_pll - disable a PLL
  1263. * @dev_priv: i915 private structure
  1264. * @pipe: pipe PLL to disable
  1265. *
  1266. * Disable the PLL for @pipe, making sure the pipe is off first.
  1267. *
  1268. * Note! This is for pre-ILK only.
  1269. */
  1270. static void i9xx_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1271. {
  1272. /* Don't disable pipe A or pipe A PLLs if needed */
  1273. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1274. return;
  1275. /* Make sure the pipe isn't still relying on us */
  1276. assert_pipe_disabled(dev_priv, pipe);
  1277. I915_WRITE(DPLL(pipe), 0);
  1278. POSTING_READ(DPLL(pipe));
  1279. }
  1280. void vlv_wait_port_ready(struct drm_i915_private *dev_priv, int port)
  1281. {
  1282. u32 port_mask;
  1283. if (!port)
  1284. port_mask = DPLL_PORTB_READY_MASK;
  1285. else
  1286. port_mask = DPLL_PORTC_READY_MASK;
  1287. if (wait_for((I915_READ(DPLL(0)) & port_mask) == 0, 1000))
  1288. WARN(1, "timed out waiting for port %c ready: 0x%08x\n",
  1289. 'B' + port, I915_READ(DPLL(0)));
  1290. }
  1291. /**
  1292. * ironlake_enable_shared_dpll - enable PCH PLL
  1293. * @dev_priv: i915 private structure
  1294. * @pipe: pipe PLL to enable
  1295. *
  1296. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1297. * drives the transcoder clock.
  1298. */
  1299. static void ironlake_enable_shared_dpll(struct intel_crtc *crtc)
  1300. {
  1301. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1302. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1303. /* PCH PLLs only available on ILK, SNB and IVB */
  1304. BUG_ON(dev_priv->info->gen < 5);
  1305. if (WARN_ON(pll == NULL))
  1306. return;
  1307. if (WARN_ON(pll->refcount == 0))
  1308. return;
  1309. DRM_DEBUG_KMS("enable %s (active %d, on? %d)for crtc %d\n",
  1310. pll->name, pll->active, pll->on,
  1311. crtc->base.base.id);
  1312. if (pll->active++) {
  1313. WARN_ON(!pll->on);
  1314. assert_shared_dpll_enabled(dev_priv, pll);
  1315. return;
  1316. }
  1317. WARN_ON(pll->on);
  1318. DRM_DEBUG_KMS("enabling %s\n", pll->name);
  1319. pll->enable(dev_priv, pll);
  1320. pll->on = true;
  1321. }
  1322. static void intel_disable_shared_dpll(struct intel_crtc *crtc)
  1323. {
  1324. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  1325. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  1326. /* PCH only available on ILK+ */
  1327. BUG_ON(dev_priv->info->gen < 5);
  1328. if (WARN_ON(pll == NULL))
  1329. return;
  1330. if (WARN_ON(pll->refcount == 0))
  1331. return;
  1332. DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
  1333. pll->name, pll->active, pll->on,
  1334. crtc->base.base.id);
  1335. if (WARN_ON(pll->active == 0)) {
  1336. assert_shared_dpll_disabled(dev_priv, pll);
  1337. return;
  1338. }
  1339. assert_shared_dpll_enabled(dev_priv, pll);
  1340. WARN_ON(!pll->on);
  1341. if (--pll->active)
  1342. return;
  1343. DRM_DEBUG_KMS("disabling %s\n", pll->name);
  1344. pll->disable(dev_priv, pll);
  1345. pll->on = false;
  1346. }
  1347. static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1348. enum pipe pipe)
  1349. {
  1350. struct drm_device *dev = dev_priv->dev;
  1351. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1352. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1353. uint32_t reg, val, pipeconf_val;
  1354. /* PCH only available on ILK+ */
  1355. BUG_ON(dev_priv->info->gen < 5);
  1356. /* Make sure PCH DPLL is enabled */
  1357. assert_shared_dpll_enabled(dev_priv,
  1358. intel_crtc_to_shared_dpll(intel_crtc));
  1359. /* FDI must be feeding us bits for PCH ports */
  1360. assert_fdi_tx_enabled(dev_priv, pipe);
  1361. assert_fdi_rx_enabled(dev_priv, pipe);
  1362. if (HAS_PCH_CPT(dev)) {
  1363. /* Workaround: Set the timing override bit before enabling the
  1364. * pch transcoder. */
  1365. reg = TRANS_CHICKEN2(pipe);
  1366. val = I915_READ(reg);
  1367. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1368. I915_WRITE(reg, val);
  1369. }
  1370. reg = PCH_TRANSCONF(pipe);
  1371. val = I915_READ(reg);
  1372. pipeconf_val = I915_READ(PIPECONF(pipe));
  1373. if (HAS_PCH_IBX(dev_priv->dev)) {
  1374. /*
  1375. * make the BPC in transcoder be consistent with
  1376. * that in pipeconf reg.
  1377. */
  1378. val &= ~PIPECONF_BPC_MASK;
  1379. val |= pipeconf_val & PIPECONF_BPC_MASK;
  1380. }
  1381. val &= ~TRANS_INTERLACE_MASK;
  1382. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1383. if (HAS_PCH_IBX(dev_priv->dev) &&
  1384. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1385. val |= TRANS_LEGACY_INTERLACED_ILK;
  1386. else
  1387. val |= TRANS_INTERLACED;
  1388. else
  1389. val |= TRANS_PROGRESSIVE;
  1390. I915_WRITE(reg, val | TRANS_ENABLE);
  1391. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1392. DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
  1393. }
  1394. static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
  1395. enum transcoder cpu_transcoder)
  1396. {
  1397. u32 val, pipeconf_val;
  1398. /* PCH only available on ILK+ */
  1399. BUG_ON(dev_priv->info->gen < 5);
  1400. /* FDI must be feeding us bits for PCH ports */
  1401. assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
  1402. assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
  1403. /* Workaround: set timing override bit. */
  1404. val = I915_READ(_TRANSA_CHICKEN2);
  1405. val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
  1406. I915_WRITE(_TRANSA_CHICKEN2, val);
  1407. val = TRANS_ENABLE;
  1408. pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
  1409. if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
  1410. PIPECONF_INTERLACED_ILK)
  1411. val |= TRANS_INTERLACED;
  1412. else
  1413. val |= TRANS_PROGRESSIVE;
  1414. I915_WRITE(LPT_TRANSCONF, val);
  1415. if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
  1416. DRM_ERROR("Failed to enable PCH transcoder\n");
  1417. }
  1418. static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
  1419. enum pipe pipe)
  1420. {
  1421. struct drm_device *dev = dev_priv->dev;
  1422. uint32_t reg, val;
  1423. /* FDI relies on the transcoder */
  1424. assert_fdi_tx_disabled(dev_priv, pipe);
  1425. assert_fdi_rx_disabled(dev_priv, pipe);
  1426. /* Ports must be off as well */
  1427. assert_pch_ports_disabled(dev_priv, pipe);
  1428. reg = PCH_TRANSCONF(pipe);
  1429. val = I915_READ(reg);
  1430. val &= ~TRANS_ENABLE;
  1431. I915_WRITE(reg, val);
  1432. /* wait for PCH transcoder off, transcoder state */
  1433. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1434. DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
  1435. if (!HAS_PCH_IBX(dev)) {
  1436. /* Workaround: Clear the timing override chicken bit again. */
  1437. reg = TRANS_CHICKEN2(pipe);
  1438. val = I915_READ(reg);
  1439. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1440. I915_WRITE(reg, val);
  1441. }
  1442. }
  1443. static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
  1444. {
  1445. u32 val;
  1446. val = I915_READ(LPT_TRANSCONF);
  1447. val &= ~TRANS_ENABLE;
  1448. I915_WRITE(LPT_TRANSCONF, val);
  1449. /* wait for PCH transcoder off, transcoder state */
  1450. if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
  1451. DRM_ERROR("Failed to disable PCH transcoder\n");
  1452. /* Workaround: clear timing override bit. */
  1453. val = I915_READ(_TRANSA_CHICKEN2);
  1454. val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
  1455. I915_WRITE(_TRANSA_CHICKEN2, val);
  1456. }
  1457. /**
  1458. * intel_enable_pipe - enable a pipe, asserting requirements
  1459. * @dev_priv: i915 private structure
  1460. * @pipe: pipe to enable
  1461. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1462. *
  1463. * Enable @pipe, making sure that various hardware specific requirements
  1464. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1465. *
  1466. * @pipe should be %PIPE_A or %PIPE_B.
  1467. *
  1468. * Will wait until the pipe is actually running (i.e. first vblank) before
  1469. * returning.
  1470. */
  1471. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1472. bool pch_port, bool dsi)
  1473. {
  1474. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1475. pipe);
  1476. enum pipe pch_transcoder;
  1477. int reg;
  1478. u32 val;
  1479. assert_planes_disabled(dev_priv, pipe);
  1480. assert_cursor_disabled(dev_priv, pipe);
  1481. assert_sprites_disabled(dev_priv, pipe);
  1482. if (HAS_PCH_LPT(dev_priv->dev))
  1483. pch_transcoder = TRANSCODER_A;
  1484. else
  1485. pch_transcoder = pipe;
  1486. /*
  1487. * A pipe without a PLL won't actually be able to drive bits from
  1488. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1489. * need the check.
  1490. */
  1491. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1492. if (dsi)
  1493. assert_dsi_pll_enabled(dev_priv);
  1494. else
  1495. assert_pll_enabled(dev_priv, pipe);
  1496. else {
  1497. if (pch_port) {
  1498. /* if driving the PCH, we need FDI enabled */
  1499. assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
  1500. assert_fdi_tx_pll_enabled(dev_priv,
  1501. (enum pipe) cpu_transcoder);
  1502. }
  1503. /* FIXME: assert CPU port conditions for SNB+ */
  1504. }
  1505. reg = PIPECONF(cpu_transcoder);
  1506. val = I915_READ(reg);
  1507. if (val & PIPECONF_ENABLE)
  1508. return;
  1509. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1510. intel_wait_for_vblank(dev_priv->dev, pipe);
  1511. }
  1512. /**
  1513. * intel_disable_pipe - disable a pipe, asserting requirements
  1514. * @dev_priv: i915 private structure
  1515. * @pipe: pipe to disable
  1516. *
  1517. * Disable @pipe, making sure that various hardware specific requirements
  1518. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1519. *
  1520. * @pipe should be %PIPE_A or %PIPE_B.
  1521. *
  1522. * Will wait until the pipe has shut down before returning.
  1523. */
  1524. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1525. enum pipe pipe)
  1526. {
  1527. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  1528. pipe);
  1529. int reg;
  1530. u32 val;
  1531. /*
  1532. * Make sure planes won't keep trying to pump pixels to us,
  1533. * or we might hang the display.
  1534. */
  1535. assert_planes_disabled(dev_priv, pipe);
  1536. assert_cursor_disabled(dev_priv, pipe);
  1537. assert_sprites_disabled(dev_priv, pipe);
  1538. /* Don't disable pipe A or pipe A PLLs if needed */
  1539. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1540. return;
  1541. reg = PIPECONF(cpu_transcoder);
  1542. val = I915_READ(reg);
  1543. if ((val & PIPECONF_ENABLE) == 0)
  1544. return;
  1545. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1546. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1547. }
  1548. /*
  1549. * Plane regs are double buffered, going from enabled->disabled needs a
  1550. * trigger in order to latch. The display address reg provides this.
  1551. */
  1552. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1553. enum plane plane)
  1554. {
  1555. if (dev_priv->info->gen >= 4)
  1556. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1557. else
  1558. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1559. }
  1560. /**
  1561. * intel_enable_plane - enable a display plane on a given pipe
  1562. * @dev_priv: i915 private structure
  1563. * @plane: plane to enable
  1564. * @pipe: pipe being fed
  1565. *
  1566. * Enable @plane on @pipe, making sure that @pipe is running first.
  1567. */
  1568. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1569. enum plane plane, enum pipe pipe)
  1570. {
  1571. int reg;
  1572. u32 val;
  1573. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1574. assert_pipe_enabled(dev_priv, pipe);
  1575. reg = DSPCNTR(plane);
  1576. val = I915_READ(reg);
  1577. if (val & DISPLAY_PLANE_ENABLE)
  1578. return;
  1579. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1580. intel_flush_display_plane(dev_priv, plane);
  1581. intel_wait_for_vblank(dev_priv->dev, pipe);
  1582. }
  1583. /**
  1584. * intel_disable_plane - disable a display plane
  1585. * @dev_priv: i915 private structure
  1586. * @plane: plane to disable
  1587. * @pipe: pipe consuming the data
  1588. *
  1589. * Disable @plane; should be an independent operation.
  1590. */
  1591. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1592. enum plane plane, enum pipe pipe)
  1593. {
  1594. int reg;
  1595. u32 val;
  1596. reg = DSPCNTR(plane);
  1597. val = I915_READ(reg);
  1598. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1599. return;
  1600. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1601. intel_flush_display_plane(dev_priv, plane);
  1602. intel_wait_for_vblank(dev_priv->dev, pipe);
  1603. }
  1604. static bool need_vtd_wa(struct drm_device *dev)
  1605. {
  1606. #ifdef CONFIG_INTEL_IOMMU
  1607. if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
  1608. return true;
  1609. #endif
  1610. return false;
  1611. }
  1612. int
  1613. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1614. struct drm_i915_gem_object *obj,
  1615. struct intel_ring_buffer *pipelined)
  1616. {
  1617. struct drm_i915_private *dev_priv = dev->dev_private;
  1618. u32 alignment;
  1619. int ret;
  1620. switch (obj->tiling_mode) {
  1621. case I915_TILING_NONE:
  1622. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1623. alignment = 128 * 1024;
  1624. else if (INTEL_INFO(dev)->gen >= 4)
  1625. alignment = 4 * 1024;
  1626. else
  1627. alignment = 64 * 1024;
  1628. break;
  1629. case I915_TILING_X:
  1630. /* pin() will align the object as required by fence */
  1631. alignment = 0;
  1632. break;
  1633. case I915_TILING_Y:
  1634. /* Despite that we check this in framebuffer_init userspace can
  1635. * screw us over and change the tiling after the fact. Only
  1636. * pinned buffers can't change their tiling. */
  1637. DRM_DEBUG_DRIVER("Y tiled not allowed for scan out buffers\n");
  1638. return -EINVAL;
  1639. default:
  1640. BUG();
  1641. }
  1642. /* Note that the w/a also requires 64 PTE of padding following the
  1643. * bo. We currently fill all unused PTE with the shadow page and so
  1644. * we should always have valid PTE following the scanout preventing
  1645. * the VT-d warning.
  1646. */
  1647. if (need_vtd_wa(dev) && alignment < 256 * 1024)
  1648. alignment = 256 * 1024;
  1649. dev_priv->mm.interruptible = false;
  1650. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1651. if (ret)
  1652. goto err_interruptible;
  1653. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1654. * fence, whereas 965+ only requires a fence if using
  1655. * framebuffer compression. For simplicity, we always install
  1656. * a fence as the cost is not that onerous.
  1657. */
  1658. ret = i915_gem_object_get_fence(obj);
  1659. if (ret)
  1660. goto err_unpin;
  1661. i915_gem_object_pin_fence(obj);
  1662. dev_priv->mm.interruptible = true;
  1663. return 0;
  1664. err_unpin:
  1665. i915_gem_object_unpin_from_display_plane(obj);
  1666. err_interruptible:
  1667. dev_priv->mm.interruptible = true;
  1668. return ret;
  1669. }
  1670. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1671. {
  1672. i915_gem_object_unpin_fence(obj);
  1673. i915_gem_object_unpin_from_display_plane(obj);
  1674. }
  1675. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1676. * is assumed to be a power-of-two. */
  1677. unsigned long intel_gen4_compute_page_offset(int *x, int *y,
  1678. unsigned int tiling_mode,
  1679. unsigned int cpp,
  1680. unsigned int pitch)
  1681. {
  1682. if (tiling_mode != I915_TILING_NONE) {
  1683. unsigned int tile_rows, tiles;
  1684. tile_rows = *y / 8;
  1685. *y %= 8;
  1686. tiles = *x / (512/cpp);
  1687. *x %= 512/cpp;
  1688. return tile_rows * pitch * 8 + tiles * 4096;
  1689. } else {
  1690. unsigned int offset;
  1691. offset = *y * pitch + *x * cpp;
  1692. *y = 0;
  1693. *x = (offset & 4095) / cpp;
  1694. return offset & -4096;
  1695. }
  1696. }
  1697. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1698. int x, int y)
  1699. {
  1700. struct drm_device *dev = crtc->dev;
  1701. struct drm_i915_private *dev_priv = dev->dev_private;
  1702. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1703. struct intel_framebuffer *intel_fb;
  1704. struct drm_i915_gem_object *obj;
  1705. int plane = intel_crtc->plane;
  1706. unsigned long linear_offset;
  1707. u32 dspcntr;
  1708. u32 reg;
  1709. switch (plane) {
  1710. case 0:
  1711. case 1:
  1712. break;
  1713. default:
  1714. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1715. return -EINVAL;
  1716. }
  1717. intel_fb = to_intel_framebuffer(fb);
  1718. obj = intel_fb->obj;
  1719. reg = DSPCNTR(plane);
  1720. dspcntr = I915_READ(reg);
  1721. /* Mask out pixel format bits in case we change it */
  1722. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1723. switch (fb->pixel_format) {
  1724. case DRM_FORMAT_C8:
  1725. dspcntr |= DISPPLANE_8BPP;
  1726. break;
  1727. case DRM_FORMAT_XRGB1555:
  1728. case DRM_FORMAT_ARGB1555:
  1729. dspcntr |= DISPPLANE_BGRX555;
  1730. break;
  1731. case DRM_FORMAT_RGB565:
  1732. dspcntr |= DISPPLANE_BGRX565;
  1733. break;
  1734. case DRM_FORMAT_XRGB8888:
  1735. case DRM_FORMAT_ARGB8888:
  1736. dspcntr |= DISPPLANE_BGRX888;
  1737. break;
  1738. case DRM_FORMAT_XBGR8888:
  1739. case DRM_FORMAT_ABGR8888:
  1740. dspcntr |= DISPPLANE_RGBX888;
  1741. break;
  1742. case DRM_FORMAT_XRGB2101010:
  1743. case DRM_FORMAT_ARGB2101010:
  1744. dspcntr |= DISPPLANE_BGRX101010;
  1745. break;
  1746. case DRM_FORMAT_XBGR2101010:
  1747. case DRM_FORMAT_ABGR2101010:
  1748. dspcntr |= DISPPLANE_RGBX101010;
  1749. break;
  1750. default:
  1751. BUG();
  1752. }
  1753. if (INTEL_INFO(dev)->gen >= 4) {
  1754. if (obj->tiling_mode != I915_TILING_NONE)
  1755. dspcntr |= DISPPLANE_TILED;
  1756. else
  1757. dspcntr &= ~DISPPLANE_TILED;
  1758. }
  1759. if (IS_G4X(dev))
  1760. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1761. I915_WRITE(reg, dspcntr);
  1762. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1763. if (INTEL_INFO(dev)->gen >= 4) {
  1764. intel_crtc->dspaddr_offset =
  1765. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1766. fb->bits_per_pixel / 8,
  1767. fb->pitches[0]);
  1768. linear_offset -= intel_crtc->dspaddr_offset;
  1769. } else {
  1770. intel_crtc->dspaddr_offset = linear_offset;
  1771. }
  1772. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1773. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1774. fb->pitches[0]);
  1775. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1776. if (INTEL_INFO(dev)->gen >= 4) {
  1777. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1778. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1779. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1780. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1781. } else
  1782. I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
  1783. POSTING_READ(reg);
  1784. return 0;
  1785. }
  1786. static int ironlake_update_plane(struct drm_crtc *crtc,
  1787. struct drm_framebuffer *fb, int x, int y)
  1788. {
  1789. struct drm_device *dev = crtc->dev;
  1790. struct drm_i915_private *dev_priv = dev->dev_private;
  1791. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1792. struct intel_framebuffer *intel_fb;
  1793. struct drm_i915_gem_object *obj;
  1794. int plane = intel_crtc->plane;
  1795. unsigned long linear_offset;
  1796. u32 dspcntr;
  1797. u32 reg;
  1798. switch (plane) {
  1799. case 0:
  1800. case 1:
  1801. case 2:
  1802. break;
  1803. default:
  1804. DRM_ERROR("Can't update plane %c in SAREA\n", plane_name(plane));
  1805. return -EINVAL;
  1806. }
  1807. intel_fb = to_intel_framebuffer(fb);
  1808. obj = intel_fb->obj;
  1809. reg = DSPCNTR(plane);
  1810. dspcntr = I915_READ(reg);
  1811. /* Mask out pixel format bits in case we change it */
  1812. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1813. switch (fb->pixel_format) {
  1814. case DRM_FORMAT_C8:
  1815. dspcntr |= DISPPLANE_8BPP;
  1816. break;
  1817. case DRM_FORMAT_RGB565:
  1818. dspcntr |= DISPPLANE_BGRX565;
  1819. break;
  1820. case DRM_FORMAT_XRGB8888:
  1821. case DRM_FORMAT_ARGB8888:
  1822. dspcntr |= DISPPLANE_BGRX888;
  1823. break;
  1824. case DRM_FORMAT_XBGR8888:
  1825. case DRM_FORMAT_ABGR8888:
  1826. dspcntr |= DISPPLANE_RGBX888;
  1827. break;
  1828. case DRM_FORMAT_XRGB2101010:
  1829. case DRM_FORMAT_ARGB2101010:
  1830. dspcntr |= DISPPLANE_BGRX101010;
  1831. break;
  1832. case DRM_FORMAT_XBGR2101010:
  1833. case DRM_FORMAT_ABGR2101010:
  1834. dspcntr |= DISPPLANE_RGBX101010;
  1835. break;
  1836. default:
  1837. BUG();
  1838. }
  1839. if (obj->tiling_mode != I915_TILING_NONE)
  1840. dspcntr |= DISPPLANE_TILED;
  1841. else
  1842. dspcntr &= ~DISPPLANE_TILED;
  1843. if (IS_HASWELL(dev))
  1844. dspcntr &= ~DISPPLANE_TRICKLE_FEED_DISABLE;
  1845. else
  1846. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1847. I915_WRITE(reg, dspcntr);
  1848. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1849. intel_crtc->dspaddr_offset =
  1850. intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
  1851. fb->bits_per_pixel / 8,
  1852. fb->pitches[0]);
  1853. linear_offset -= intel_crtc->dspaddr_offset;
  1854. DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
  1855. i915_gem_obj_ggtt_offset(obj), linear_offset, x, y,
  1856. fb->pitches[0]);
  1857. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1858. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1859. i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  1860. if (IS_HASWELL(dev)) {
  1861. I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
  1862. } else {
  1863. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1864. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1865. }
  1866. POSTING_READ(reg);
  1867. return 0;
  1868. }
  1869. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1870. static int
  1871. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1872. int x, int y, enum mode_set_atomic state)
  1873. {
  1874. struct drm_device *dev = crtc->dev;
  1875. struct drm_i915_private *dev_priv = dev->dev_private;
  1876. if (dev_priv->display.disable_fbc)
  1877. dev_priv->display.disable_fbc(dev);
  1878. intel_increase_pllclock(crtc);
  1879. return dev_priv->display.update_plane(crtc, fb, x, y);
  1880. }
  1881. void intel_display_handle_reset(struct drm_device *dev)
  1882. {
  1883. struct drm_i915_private *dev_priv = dev->dev_private;
  1884. struct drm_crtc *crtc;
  1885. /*
  1886. * Flips in the rings have been nuked by the reset,
  1887. * so complete all pending flips so that user space
  1888. * will get its events and not get stuck.
  1889. *
  1890. * Also update the base address of all primary
  1891. * planes to the the last fb to make sure we're
  1892. * showing the correct fb after a reset.
  1893. *
  1894. * Need to make two loops over the crtcs so that we
  1895. * don't try to grab a crtc mutex before the
  1896. * pending_flip_queue really got woken up.
  1897. */
  1898. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1899. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1900. enum plane plane = intel_crtc->plane;
  1901. intel_prepare_page_flip(dev, plane);
  1902. intel_finish_page_flip_plane(dev, plane);
  1903. }
  1904. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  1905. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1906. mutex_lock(&crtc->mutex);
  1907. if (intel_crtc->active)
  1908. dev_priv->display.update_plane(crtc, crtc->fb,
  1909. crtc->x, crtc->y);
  1910. mutex_unlock(&crtc->mutex);
  1911. }
  1912. }
  1913. static int
  1914. intel_finish_fb(struct drm_framebuffer *old_fb)
  1915. {
  1916. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1917. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1918. bool was_interruptible = dev_priv->mm.interruptible;
  1919. int ret;
  1920. /* Big Hammer, we also need to ensure that any pending
  1921. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1922. * current scanout is retired before unpinning the old
  1923. * framebuffer.
  1924. *
  1925. * This should only fail upon a hung GPU, in which case we
  1926. * can safely continue.
  1927. */
  1928. dev_priv->mm.interruptible = false;
  1929. ret = i915_gem_object_finish_gpu(obj);
  1930. dev_priv->mm.interruptible = was_interruptible;
  1931. return ret;
  1932. }
  1933. static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
  1934. {
  1935. struct drm_device *dev = crtc->dev;
  1936. struct drm_i915_master_private *master_priv;
  1937. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1938. if (!dev->primary->master)
  1939. return;
  1940. master_priv = dev->primary->master->driver_priv;
  1941. if (!master_priv->sarea_priv)
  1942. return;
  1943. switch (intel_crtc->pipe) {
  1944. case 0:
  1945. master_priv->sarea_priv->pipeA_x = x;
  1946. master_priv->sarea_priv->pipeA_y = y;
  1947. break;
  1948. case 1:
  1949. master_priv->sarea_priv->pipeB_x = x;
  1950. master_priv->sarea_priv->pipeB_y = y;
  1951. break;
  1952. default:
  1953. break;
  1954. }
  1955. }
  1956. static int
  1957. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1958. struct drm_framebuffer *fb)
  1959. {
  1960. struct drm_device *dev = crtc->dev;
  1961. struct drm_i915_private *dev_priv = dev->dev_private;
  1962. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1963. struct drm_framebuffer *old_fb;
  1964. int ret;
  1965. /* no fb bound */
  1966. if (!fb) {
  1967. DRM_ERROR("No FB bound\n");
  1968. return 0;
  1969. }
  1970. if (intel_crtc->plane > INTEL_INFO(dev)->num_pipes) {
  1971. DRM_ERROR("no plane for crtc: plane %c, num_pipes %d\n",
  1972. plane_name(intel_crtc->plane),
  1973. INTEL_INFO(dev)->num_pipes);
  1974. return -EINVAL;
  1975. }
  1976. mutex_lock(&dev->struct_mutex);
  1977. ret = intel_pin_and_fence_fb_obj(dev,
  1978. to_intel_framebuffer(fb)->obj,
  1979. NULL);
  1980. if (ret != 0) {
  1981. mutex_unlock(&dev->struct_mutex);
  1982. DRM_ERROR("pin & fence failed\n");
  1983. return ret;
  1984. }
  1985. /* Update pipe size and adjust fitter if needed */
  1986. if (i915_fastboot) {
  1987. I915_WRITE(PIPESRC(intel_crtc->pipe),
  1988. ((crtc->mode.hdisplay - 1) << 16) |
  1989. (crtc->mode.vdisplay - 1));
  1990. if (!intel_crtc->config.pch_pfit.size &&
  1991. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
  1992. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  1993. I915_WRITE(PF_CTL(intel_crtc->pipe), 0);
  1994. I915_WRITE(PF_WIN_POS(intel_crtc->pipe), 0);
  1995. I915_WRITE(PF_WIN_SZ(intel_crtc->pipe), 0);
  1996. }
  1997. }
  1998. ret = dev_priv->display.update_plane(crtc, fb, x, y);
  1999. if (ret) {
  2000. intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
  2001. mutex_unlock(&dev->struct_mutex);
  2002. DRM_ERROR("failed to update base address\n");
  2003. return ret;
  2004. }
  2005. old_fb = crtc->fb;
  2006. crtc->fb = fb;
  2007. crtc->x = x;
  2008. crtc->y = y;
  2009. if (old_fb) {
  2010. if (intel_crtc->active && old_fb != fb)
  2011. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2012. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  2013. }
  2014. intel_update_fbc(dev);
  2015. intel_edp_psr_update(dev);
  2016. mutex_unlock(&dev->struct_mutex);
  2017. intel_crtc_update_sarea_pos(crtc, x, y);
  2018. return 0;
  2019. }
  2020. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2021. {
  2022. struct drm_device *dev = crtc->dev;
  2023. struct drm_i915_private *dev_priv = dev->dev_private;
  2024. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2025. int pipe = intel_crtc->pipe;
  2026. u32 reg, temp;
  2027. /* enable normal train */
  2028. reg = FDI_TX_CTL(pipe);
  2029. temp = I915_READ(reg);
  2030. if (IS_IVYBRIDGE(dev)) {
  2031. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2032. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2033. } else {
  2034. temp &= ~FDI_LINK_TRAIN_NONE;
  2035. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2036. }
  2037. I915_WRITE(reg, temp);
  2038. reg = FDI_RX_CTL(pipe);
  2039. temp = I915_READ(reg);
  2040. if (HAS_PCH_CPT(dev)) {
  2041. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2042. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2043. } else {
  2044. temp &= ~FDI_LINK_TRAIN_NONE;
  2045. temp |= FDI_LINK_TRAIN_NONE;
  2046. }
  2047. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2048. /* wait one idle pattern time */
  2049. POSTING_READ(reg);
  2050. udelay(1000);
  2051. /* IVB wants error correction enabled */
  2052. if (IS_IVYBRIDGE(dev))
  2053. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2054. FDI_FE_ERRC_ENABLE);
  2055. }
  2056. static bool pipe_has_enabled_pch(struct intel_crtc *intel_crtc)
  2057. {
  2058. return intel_crtc->base.enabled && intel_crtc->config.has_pch_encoder;
  2059. }
  2060. static void ivb_modeset_global_resources(struct drm_device *dev)
  2061. {
  2062. struct drm_i915_private *dev_priv = dev->dev_private;
  2063. struct intel_crtc *pipe_B_crtc =
  2064. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  2065. struct intel_crtc *pipe_C_crtc =
  2066. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
  2067. uint32_t temp;
  2068. /*
  2069. * When everything is off disable fdi C so that we could enable fdi B
  2070. * with all lanes. Note that we don't care about enabled pipes without
  2071. * an enabled pch encoder.
  2072. */
  2073. if (!pipe_has_enabled_pch(pipe_B_crtc) &&
  2074. !pipe_has_enabled_pch(pipe_C_crtc)) {
  2075. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  2076. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  2077. temp = I915_READ(SOUTH_CHICKEN1);
  2078. temp &= ~FDI_BC_BIFURCATION_SELECT;
  2079. DRM_DEBUG_KMS("disabling fdi C rx\n");
  2080. I915_WRITE(SOUTH_CHICKEN1, temp);
  2081. }
  2082. }
  2083. /* The FDI link training functions for ILK/Ibexpeak. */
  2084. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2085. {
  2086. struct drm_device *dev = crtc->dev;
  2087. struct drm_i915_private *dev_priv = dev->dev_private;
  2088. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2089. int pipe = intel_crtc->pipe;
  2090. int plane = intel_crtc->plane;
  2091. u32 reg, temp, tries;
  2092. /* FDI needs bits from pipe & plane first */
  2093. assert_pipe_enabled(dev_priv, pipe);
  2094. assert_plane_enabled(dev_priv, plane);
  2095. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2096. for train result */
  2097. reg = FDI_RX_IMR(pipe);
  2098. temp = I915_READ(reg);
  2099. temp &= ~FDI_RX_SYMBOL_LOCK;
  2100. temp &= ~FDI_RX_BIT_LOCK;
  2101. I915_WRITE(reg, temp);
  2102. I915_READ(reg);
  2103. udelay(150);
  2104. /* enable CPU FDI TX and PCH FDI RX */
  2105. reg = FDI_TX_CTL(pipe);
  2106. temp = I915_READ(reg);
  2107. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2108. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2109. temp &= ~FDI_LINK_TRAIN_NONE;
  2110. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2111. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2112. reg = FDI_RX_CTL(pipe);
  2113. temp = I915_READ(reg);
  2114. temp &= ~FDI_LINK_TRAIN_NONE;
  2115. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2116. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2117. POSTING_READ(reg);
  2118. udelay(150);
  2119. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2120. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2121. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2122. FDI_RX_PHASE_SYNC_POINTER_EN);
  2123. reg = FDI_RX_IIR(pipe);
  2124. for (tries = 0; tries < 5; tries++) {
  2125. temp = I915_READ(reg);
  2126. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2127. if ((temp & FDI_RX_BIT_LOCK)) {
  2128. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2129. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2130. break;
  2131. }
  2132. }
  2133. if (tries == 5)
  2134. DRM_ERROR("FDI train 1 fail!\n");
  2135. /* Train 2 */
  2136. reg = FDI_TX_CTL(pipe);
  2137. temp = I915_READ(reg);
  2138. temp &= ~FDI_LINK_TRAIN_NONE;
  2139. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2140. I915_WRITE(reg, temp);
  2141. reg = FDI_RX_CTL(pipe);
  2142. temp = I915_READ(reg);
  2143. temp &= ~FDI_LINK_TRAIN_NONE;
  2144. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2145. I915_WRITE(reg, temp);
  2146. POSTING_READ(reg);
  2147. udelay(150);
  2148. reg = FDI_RX_IIR(pipe);
  2149. for (tries = 0; tries < 5; tries++) {
  2150. temp = I915_READ(reg);
  2151. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2152. if (temp & FDI_RX_SYMBOL_LOCK) {
  2153. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2154. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2155. break;
  2156. }
  2157. }
  2158. if (tries == 5)
  2159. DRM_ERROR("FDI train 2 fail!\n");
  2160. DRM_DEBUG_KMS("FDI train done\n");
  2161. }
  2162. static const int snb_b_fdi_train_param[] = {
  2163. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2164. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2165. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2166. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2167. };
  2168. /* The FDI link training functions for SNB/Cougarpoint. */
  2169. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2170. {
  2171. struct drm_device *dev = crtc->dev;
  2172. struct drm_i915_private *dev_priv = dev->dev_private;
  2173. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2174. int pipe = intel_crtc->pipe;
  2175. u32 reg, temp, i, retry;
  2176. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2177. for train result */
  2178. reg = FDI_RX_IMR(pipe);
  2179. temp = I915_READ(reg);
  2180. temp &= ~FDI_RX_SYMBOL_LOCK;
  2181. temp &= ~FDI_RX_BIT_LOCK;
  2182. I915_WRITE(reg, temp);
  2183. POSTING_READ(reg);
  2184. udelay(150);
  2185. /* enable CPU FDI TX and PCH FDI RX */
  2186. reg = FDI_TX_CTL(pipe);
  2187. temp = I915_READ(reg);
  2188. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2189. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2190. temp &= ~FDI_LINK_TRAIN_NONE;
  2191. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2192. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2193. /* SNB-B */
  2194. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2195. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2196. I915_WRITE(FDI_RX_MISC(pipe),
  2197. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2198. reg = FDI_RX_CTL(pipe);
  2199. temp = I915_READ(reg);
  2200. if (HAS_PCH_CPT(dev)) {
  2201. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2202. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2203. } else {
  2204. temp &= ~FDI_LINK_TRAIN_NONE;
  2205. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2206. }
  2207. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2208. POSTING_READ(reg);
  2209. udelay(150);
  2210. for (i = 0; i < 4; i++) {
  2211. reg = FDI_TX_CTL(pipe);
  2212. temp = I915_READ(reg);
  2213. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2214. temp |= snb_b_fdi_train_param[i];
  2215. I915_WRITE(reg, temp);
  2216. POSTING_READ(reg);
  2217. udelay(500);
  2218. for (retry = 0; retry < 5; retry++) {
  2219. reg = FDI_RX_IIR(pipe);
  2220. temp = I915_READ(reg);
  2221. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2222. if (temp & FDI_RX_BIT_LOCK) {
  2223. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2224. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2225. break;
  2226. }
  2227. udelay(50);
  2228. }
  2229. if (retry < 5)
  2230. break;
  2231. }
  2232. if (i == 4)
  2233. DRM_ERROR("FDI train 1 fail!\n");
  2234. /* Train 2 */
  2235. reg = FDI_TX_CTL(pipe);
  2236. temp = I915_READ(reg);
  2237. temp &= ~FDI_LINK_TRAIN_NONE;
  2238. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2239. if (IS_GEN6(dev)) {
  2240. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2241. /* SNB-B */
  2242. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2243. }
  2244. I915_WRITE(reg, temp);
  2245. reg = FDI_RX_CTL(pipe);
  2246. temp = I915_READ(reg);
  2247. if (HAS_PCH_CPT(dev)) {
  2248. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2249. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2250. } else {
  2251. temp &= ~FDI_LINK_TRAIN_NONE;
  2252. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2253. }
  2254. I915_WRITE(reg, temp);
  2255. POSTING_READ(reg);
  2256. udelay(150);
  2257. for (i = 0; i < 4; i++) {
  2258. reg = FDI_TX_CTL(pipe);
  2259. temp = I915_READ(reg);
  2260. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2261. temp |= snb_b_fdi_train_param[i];
  2262. I915_WRITE(reg, temp);
  2263. POSTING_READ(reg);
  2264. udelay(500);
  2265. for (retry = 0; retry < 5; retry++) {
  2266. reg = FDI_RX_IIR(pipe);
  2267. temp = I915_READ(reg);
  2268. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2269. if (temp & FDI_RX_SYMBOL_LOCK) {
  2270. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2271. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2272. break;
  2273. }
  2274. udelay(50);
  2275. }
  2276. if (retry < 5)
  2277. break;
  2278. }
  2279. if (i == 4)
  2280. DRM_ERROR("FDI train 2 fail!\n");
  2281. DRM_DEBUG_KMS("FDI train done.\n");
  2282. }
  2283. /* Manual link training for Ivy Bridge A0 parts */
  2284. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2285. {
  2286. struct drm_device *dev = crtc->dev;
  2287. struct drm_i915_private *dev_priv = dev->dev_private;
  2288. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2289. int pipe = intel_crtc->pipe;
  2290. u32 reg, temp, i, j;
  2291. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2292. for train result */
  2293. reg = FDI_RX_IMR(pipe);
  2294. temp = I915_READ(reg);
  2295. temp &= ~FDI_RX_SYMBOL_LOCK;
  2296. temp &= ~FDI_RX_BIT_LOCK;
  2297. I915_WRITE(reg, temp);
  2298. POSTING_READ(reg);
  2299. udelay(150);
  2300. DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
  2301. I915_READ(FDI_RX_IIR(pipe)));
  2302. /* Try each vswing and preemphasis setting twice before moving on */
  2303. for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
  2304. /* disable first in case we need to retry */
  2305. reg = FDI_TX_CTL(pipe);
  2306. temp = I915_READ(reg);
  2307. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2308. temp &= ~FDI_TX_ENABLE;
  2309. I915_WRITE(reg, temp);
  2310. reg = FDI_RX_CTL(pipe);
  2311. temp = I915_READ(reg);
  2312. temp &= ~FDI_LINK_TRAIN_AUTO;
  2313. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2314. temp &= ~FDI_RX_ENABLE;
  2315. I915_WRITE(reg, temp);
  2316. /* enable CPU FDI TX and PCH FDI RX */
  2317. reg = FDI_TX_CTL(pipe);
  2318. temp = I915_READ(reg);
  2319. temp &= ~FDI_DP_PORT_WIDTH_MASK;
  2320. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2321. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2322. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2323. temp |= snb_b_fdi_train_param[j/2];
  2324. temp |= FDI_COMPOSITE_SYNC;
  2325. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2326. I915_WRITE(FDI_RX_MISC(pipe),
  2327. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  2328. reg = FDI_RX_CTL(pipe);
  2329. temp = I915_READ(reg);
  2330. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2331. temp |= FDI_COMPOSITE_SYNC;
  2332. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2333. POSTING_READ(reg);
  2334. udelay(1); /* should be 0.5us */
  2335. for (i = 0; i < 4; i++) {
  2336. reg = FDI_RX_IIR(pipe);
  2337. temp = I915_READ(reg);
  2338. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2339. if (temp & FDI_RX_BIT_LOCK ||
  2340. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2341. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2342. DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
  2343. i);
  2344. break;
  2345. }
  2346. udelay(1); /* should be 0.5us */
  2347. }
  2348. if (i == 4) {
  2349. DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
  2350. continue;
  2351. }
  2352. /* Train 2 */
  2353. reg = FDI_TX_CTL(pipe);
  2354. temp = I915_READ(reg);
  2355. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2356. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2357. I915_WRITE(reg, temp);
  2358. reg = FDI_RX_CTL(pipe);
  2359. temp = I915_READ(reg);
  2360. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2361. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2362. I915_WRITE(reg, temp);
  2363. POSTING_READ(reg);
  2364. udelay(2); /* should be 1.5us */
  2365. for (i = 0; i < 4; i++) {
  2366. reg = FDI_RX_IIR(pipe);
  2367. temp = I915_READ(reg);
  2368. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2369. if (temp & FDI_RX_SYMBOL_LOCK ||
  2370. (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
  2371. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2372. DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
  2373. i);
  2374. goto train_done;
  2375. }
  2376. udelay(2); /* should be 1.5us */
  2377. }
  2378. if (i == 4)
  2379. DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
  2380. }
  2381. train_done:
  2382. DRM_DEBUG_KMS("FDI train done.\n");
  2383. }
  2384. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2385. {
  2386. struct drm_device *dev = intel_crtc->base.dev;
  2387. struct drm_i915_private *dev_priv = dev->dev_private;
  2388. int pipe = intel_crtc->pipe;
  2389. u32 reg, temp;
  2390. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2391. reg = FDI_RX_CTL(pipe);
  2392. temp = I915_READ(reg);
  2393. temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
  2394. temp |= FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  2395. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2396. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2397. POSTING_READ(reg);
  2398. udelay(200);
  2399. /* Switch from Rawclk to PCDclk */
  2400. temp = I915_READ(reg);
  2401. I915_WRITE(reg, temp | FDI_PCDCLK);
  2402. POSTING_READ(reg);
  2403. udelay(200);
  2404. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2405. reg = FDI_TX_CTL(pipe);
  2406. temp = I915_READ(reg);
  2407. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2408. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2409. POSTING_READ(reg);
  2410. udelay(100);
  2411. }
  2412. }
  2413. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2414. {
  2415. struct drm_device *dev = intel_crtc->base.dev;
  2416. struct drm_i915_private *dev_priv = dev->dev_private;
  2417. int pipe = intel_crtc->pipe;
  2418. u32 reg, temp;
  2419. /* Switch from PCDclk to Rawclk */
  2420. reg = FDI_RX_CTL(pipe);
  2421. temp = I915_READ(reg);
  2422. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2423. /* Disable CPU FDI TX PLL */
  2424. reg = FDI_TX_CTL(pipe);
  2425. temp = I915_READ(reg);
  2426. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2427. POSTING_READ(reg);
  2428. udelay(100);
  2429. reg = FDI_RX_CTL(pipe);
  2430. temp = I915_READ(reg);
  2431. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2432. /* Wait for the clocks to turn off. */
  2433. POSTING_READ(reg);
  2434. udelay(100);
  2435. }
  2436. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2437. {
  2438. struct drm_device *dev = crtc->dev;
  2439. struct drm_i915_private *dev_priv = dev->dev_private;
  2440. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2441. int pipe = intel_crtc->pipe;
  2442. u32 reg, temp;
  2443. /* disable CPU FDI tx and PCH FDI rx */
  2444. reg = FDI_TX_CTL(pipe);
  2445. temp = I915_READ(reg);
  2446. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2447. POSTING_READ(reg);
  2448. reg = FDI_RX_CTL(pipe);
  2449. temp = I915_READ(reg);
  2450. temp &= ~(0x7 << 16);
  2451. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2452. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2453. POSTING_READ(reg);
  2454. udelay(100);
  2455. /* Ironlake workaround, disable clock pointer after downing FDI */
  2456. if (HAS_PCH_IBX(dev)) {
  2457. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2458. }
  2459. /* still set train pattern 1 */
  2460. reg = FDI_TX_CTL(pipe);
  2461. temp = I915_READ(reg);
  2462. temp &= ~FDI_LINK_TRAIN_NONE;
  2463. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2464. I915_WRITE(reg, temp);
  2465. reg = FDI_RX_CTL(pipe);
  2466. temp = I915_READ(reg);
  2467. if (HAS_PCH_CPT(dev)) {
  2468. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2469. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2470. } else {
  2471. temp &= ~FDI_LINK_TRAIN_NONE;
  2472. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2473. }
  2474. /* BPC in FDI rx is consistent with that in PIPECONF */
  2475. temp &= ~(0x07 << 16);
  2476. temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
  2477. I915_WRITE(reg, temp);
  2478. POSTING_READ(reg);
  2479. udelay(100);
  2480. }
  2481. static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
  2482. {
  2483. struct drm_device *dev = crtc->dev;
  2484. struct drm_i915_private *dev_priv = dev->dev_private;
  2485. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2486. unsigned long flags;
  2487. bool pending;
  2488. if (i915_reset_in_progress(&dev_priv->gpu_error) ||
  2489. intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
  2490. return false;
  2491. spin_lock_irqsave(&dev->event_lock, flags);
  2492. pending = to_intel_crtc(crtc)->unpin_work != NULL;
  2493. spin_unlock_irqrestore(&dev->event_lock, flags);
  2494. return pending;
  2495. }
  2496. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2497. {
  2498. struct drm_device *dev = crtc->dev;
  2499. struct drm_i915_private *dev_priv = dev->dev_private;
  2500. if (crtc->fb == NULL)
  2501. return;
  2502. WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
  2503. wait_event(dev_priv->pending_flip_queue,
  2504. !intel_crtc_has_pending_flip(crtc));
  2505. mutex_lock(&dev->struct_mutex);
  2506. intel_finish_fb(crtc->fb);
  2507. mutex_unlock(&dev->struct_mutex);
  2508. }
  2509. /* Program iCLKIP clock to the desired frequency */
  2510. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2511. {
  2512. struct drm_device *dev = crtc->dev;
  2513. struct drm_i915_private *dev_priv = dev->dev_private;
  2514. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2515. u32 temp;
  2516. mutex_lock(&dev_priv->dpio_lock);
  2517. /* It is necessary to ungate the pixclk gate prior to programming
  2518. * the divisors, and gate it back when it is done.
  2519. */
  2520. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2521. /* Disable SSCCTL */
  2522. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2523. intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
  2524. SBI_SSCCTL_DISABLE,
  2525. SBI_ICLK);
  2526. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2527. if (crtc->mode.clock == 20000) {
  2528. auxdiv = 1;
  2529. divsel = 0x41;
  2530. phaseinc = 0x20;
  2531. } else {
  2532. /* The iCLK virtual clock root frequency is in MHz,
  2533. * but the crtc->mode.clock in in KHz. To get the divisors,
  2534. * it is necessary to divide one by another, so we
  2535. * convert the virtual clock precision to KHz here for higher
  2536. * precision.
  2537. */
  2538. u32 iclk_virtual_root_freq = 172800 * 1000;
  2539. u32 iclk_pi_range = 64;
  2540. u32 desired_divisor, msb_divisor_value, pi_value;
  2541. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2542. msb_divisor_value = desired_divisor / iclk_pi_range;
  2543. pi_value = desired_divisor % iclk_pi_range;
  2544. auxdiv = 0;
  2545. divsel = msb_divisor_value - 2;
  2546. phaseinc = pi_value;
  2547. }
  2548. /* This should not happen with any sane values */
  2549. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2550. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2551. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2552. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2553. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2554. crtc->mode.clock,
  2555. auxdiv,
  2556. divsel,
  2557. phasedir,
  2558. phaseinc);
  2559. /* Program SSCDIVINTPHASE6 */
  2560. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
  2561. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2562. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2563. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2564. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2565. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2566. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2567. intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
  2568. /* Program SSCAUXDIV */
  2569. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
  2570. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2571. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2572. intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
  2573. /* Enable modulator and associated divider */
  2574. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
  2575. temp &= ~SBI_SSCCTL_DISABLE;
  2576. intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
  2577. /* Wait for initialization time */
  2578. udelay(24);
  2579. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2580. mutex_unlock(&dev_priv->dpio_lock);
  2581. }
  2582. static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
  2583. enum pipe pch_transcoder)
  2584. {
  2585. struct drm_device *dev = crtc->base.dev;
  2586. struct drm_i915_private *dev_priv = dev->dev_private;
  2587. enum transcoder cpu_transcoder = crtc->config.cpu_transcoder;
  2588. I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
  2589. I915_READ(HTOTAL(cpu_transcoder)));
  2590. I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
  2591. I915_READ(HBLANK(cpu_transcoder)));
  2592. I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
  2593. I915_READ(HSYNC(cpu_transcoder)));
  2594. I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
  2595. I915_READ(VTOTAL(cpu_transcoder)));
  2596. I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
  2597. I915_READ(VBLANK(cpu_transcoder)));
  2598. I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
  2599. I915_READ(VSYNC(cpu_transcoder)));
  2600. I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
  2601. I915_READ(VSYNCSHIFT(cpu_transcoder)));
  2602. }
  2603. /*
  2604. * Enable PCH resources required for PCH ports:
  2605. * - PCH PLLs
  2606. * - FDI training & RX/TX
  2607. * - update transcoder timings
  2608. * - DP transcoding bits
  2609. * - transcoder
  2610. */
  2611. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2612. {
  2613. struct drm_device *dev = crtc->dev;
  2614. struct drm_i915_private *dev_priv = dev->dev_private;
  2615. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2616. int pipe = intel_crtc->pipe;
  2617. u32 reg, temp;
  2618. assert_pch_transcoder_disabled(dev_priv, pipe);
  2619. /* Write the TU size bits before fdi link training, so that error
  2620. * detection works. */
  2621. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2622. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2623. /* For PCH output, training FDI link */
  2624. dev_priv->display.fdi_link_train(crtc);
  2625. /* We need to program the right clock selection before writing the pixel
  2626. * mutliplier into the DPLL. */
  2627. if (HAS_PCH_CPT(dev)) {
  2628. u32 sel;
  2629. temp = I915_READ(PCH_DPLL_SEL);
  2630. temp |= TRANS_DPLL_ENABLE(pipe);
  2631. sel = TRANS_DPLLB_SEL(pipe);
  2632. if (intel_crtc->config.shared_dpll == DPLL_ID_PCH_PLL_B)
  2633. temp |= sel;
  2634. else
  2635. temp &= ~sel;
  2636. I915_WRITE(PCH_DPLL_SEL, temp);
  2637. }
  2638. /* XXX: pch pll's can be enabled any time before we enable the PCH
  2639. * transcoder, and we actually should do this to not upset any PCH
  2640. * transcoder that already use the clock when we share it.
  2641. *
  2642. * Note that enable_shared_dpll tries to do the right thing, but
  2643. * get_shared_dpll unconditionally resets the pll - we need that to have
  2644. * the right LVDS enable sequence. */
  2645. ironlake_enable_shared_dpll(intel_crtc);
  2646. /* set transcoder timing, panel must allow it */
  2647. assert_panel_unlocked(dev_priv, pipe);
  2648. ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
  2649. intel_fdi_normal_train(crtc);
  2650. /* For PCH DP, enable TRANS_DP_CTL */
  2651. if (HAS_PCH_CPT(dev) &&
  2652. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2653. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2654. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
  2655. reg = TRANS_DP_CTL(pipe);
  2656. temp = I915_READ(reg);
  2657. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2658. TRANS_DP_SYNC_MASK |
  2659. TRANS_DP_BPC_MASK);
  2660. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2661. TRANS_DP_ENH_FRAMING);
  2662. temp |= bpc << 9; /* same format but at 11:9 */
  2663. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2664. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2665. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2666. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2667. switch (intel_trans_dp_port_sel(crtc)) {
  2668. case PCH_DP_B:
  2669. temp |= TRANS_DP_PORT_SEL_B;
  2670. break;
  2671. case PCH_DP_C:
  2672. temp |= TRANS_DP_PORT_SEL_C;
  2673. break;
  2674. case PCH_DP_D:
  2675. temp |= TRANS_DP_PORT_SEL_D;
  2676. break;
  2677. default:
  2678. BUG();
  2679. }
  2680. I915_WRITE(reg, temp);
  2681. }
  2682. ironlake_enable_pch_transcoder(dev_priv, pipe);
  2683. }
  2684. static void lpt_pch_enable(struct drm_crtc *crtc)
  2685. {
  2686. struct drm_device *dev = crtc->dev;
  2687. struct drm_i915_private *dev_priv = dev->dev_private;
  2688. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2689. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  2690. assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
  2691. lpt_program_iclkip(crtc);
  2692. /* Set transcoder timing. */
  2693. ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
  2694. lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
  2695. }
  2696. static void intel_put_shared_dpll(struct intel_crtc *crtc)
  2697. {
  2698. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2699. if (pll == NULL)
  2700. return;
  2701. if (pll->refcount == 0) {
  2702. WARN(1, "bad %s refcount\n", pll->name);
  2703. return;
  2704. }
  2705. if (--pll->refcount == 0) {
  2706. WARN_ON(pll->on);
  2707. WARN_ON(pll->active);
  2708. }
  2709. crtc->config.shared_dpll = DPLL_ID_PRIVATE;
  2710. }
  2711. static struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc)
  2712. {
  2713. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2714. struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
  2715. enum intel_dpll_id i;
  2716. if (pll) {
  2717. DRM_DEBUG_KMS("CRTC:%d dropping existing %s\n",
  2718. crtc->base.base.id, pll->name);
  2719. intel_put_shared_dpll(crtc);
  2720. }
  2721. if (HAS_PCH_IBX(dev_priv->dev)) {
  2722. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2723. i = (enum intel_dpll_id) crtc->pipe;
  2724. pll = &dev_priv->shared_dplls[i];
  2725. DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
  2726. crtc->base.base.id, pll->name);
  2727. goto found;
  2728. }
  2729. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2730. pll = &dev_priv->shared_dplls[i];
  2731. /* Only want to check enabled timings first */
  2732. if (pll->refcount == 0)
  2733. continue;
  2734. if (memcmp(&crtc->config.dpll_hw_state, &pll->hw_state,
  2735. sizeof(pll->hw_state)) == 0) {
  2736. DRM_DEBUG_KMS("CRTC:%d sharing existing %s (refcount %d, ative %d)\n",
  2737. crtc->base.base.id,
  2738. pll->name, pll->refcount, pll->active);
  2739. goto found;
  2740. }
  2741. }
  2742. /* Ok no matching timings, maybe there's a free one? */
  2743. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  2744. pll = &dev_priv->shared_dplls[i];
  2745. if (pll->refcount == 0) {
  2746. DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
  2747. crtc->base.base.id, pll->name);
  2748. goto found;
  2749. }
  2750. }
  2751. return NULL;
  2752. found:
  2753. crtc->config.shared_dpll = i;
  2754. DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
  2755. pipe_name(crtc->pipe));
  2756. if (pll->active == 0) {
  2757. memcpy(&pll->hw_state, &crtc->config.dpll_hw_state,
  2758. sizeof(pll->hw_state));
  2759. DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
  2760. WARN_ON(pll->on);
  2761. assert_shared_dpll_disabled(dev_priv, pll);
  2762. pll->mode_set(dev_priv, pll);
  2763. }
  2764. pll->refcount++;
  2765. return pll;
  2766. }
  2767. static void cpt_verify_modeset(struct drm_device *dev, int pipe)
  2768. {
  2769. struct drm_i915_private *dev_priv = dev->dev_private;
  2770. int dslreg = PIPEDSL(pipe);
  2771. u32 temp;
  2772. temp = I915_READ(dslreg);
  2773. udelay(500);
  2774. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2775. if (wait_for(I915_READ(dslreg) != temp, 5))
  2776. DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
  2777. }
  2778. }
  2779. static void ironlake_pfit_enable(struct intel_crtc *crtc)
  2780. {
  2781. struct drm_device *dev = crtc->base.dev;
  2782. struct drm_i915_private *dev_priv = dev->dev_private;
  2783. int pipe = crtc->pipe;
  2784. if (crtc->config.pch_pfit.size) {
  2785. /* Force use of hard-coded filter coefficients
  2786. * as some pre-programmed values are broken,
  2787. * e.g. x201.
  2788. */
  2789. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  2790. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
  2791. PF_PIPE_SEL_IVB(pipe));
  2792. else
  2793. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2794. I915_WRITE(PF_WIN_POS(pipe), crtc->config.pch_pfit.pos);
  2795. I915_WRITE(PF_WIN_SZ(pipe), crtc->config.pch_pfit.size);
  2796. }
  2797. }
  2798. static void intel_enable_planes(struct drm_crtc *crtc)
  2799. {
  2800. struct drm_device *dev = crtc->dev;
  2801. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2802. struct intel_plane *intel_plane;
  2803. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2804. if (intel_plane->pipe == pipe)
  2805. intel_plane_restore(&intel_plane->base);
  2806. }
  2807. static void intel_disable_planes(struct drm_crtc *crtc)
  2808. {
  2809. struct drm_device *dev = crtc->dev;
  2810. enum pipe pipe = to_intel_crtc(crtc)->pipe;
  2811. struct intel_plane *intel_plane;
  2812. list_for_each_entry(intel_plane, &dev->mode_config.plane_list, base.head)
  2813. if (intel_plane->pipe == pipe)
  2814. intel_plane_disable(&intel_plane->base);
  2815. }
  2816. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2817. {
  2818. struct drm_device *dev = crtc->dev;
  2819. struct drm_i915_private *dev_priv = dev->dev_private;
  2820. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2821. struct intel_encoder *encoder;
  2822. int pipe = intel_crtc->pipe;
  2823. int plane = intel_crtc->plane;
  2824. WARN_ON(!crtc->enabled);
  2825. if (intel_crtc->active)
  2826. return;
  2827. intel_crtc->active = true;
  2828. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2829. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  2830. for_each_encoder_on_crtc(dev, crtc, encoder)
  2831. if (encoder->pre_enable)
  2832. encoder->pre_enable(encoder);
  2833. if (intel_crtc->config.has_pch_encoder) {
  2834. /* Note: FDI PLL enabling _must_ be done before we enable the
  2835. * cpu pipes, hence this is separate from all the other fdi/pch
  2836. * enabling. */
  2837. ironlake_fdi_pll_enable(intel_crtc);
  2838. } else {
  2839. assert_fdi_tx_disabled(dev_priv, pipe);
  2840. assert_fdi_rx_disabled(dev_priv, pipe);
  2841. }
  2842. ironlake_pfit_enable(intel_crtc);
  2843. /*
  2844. * On ILK+ LUT must be loaded before the pipe is running but with
  2845. * clocks enabled
  2846. */
  2847. intel_crtc_load_lut(crtc);
  2848. intel_update_watermarks(crtc);
  2849. intel_enable_pipe(dev_priv, pipe,
  2850. intel_crtc->config.has_pch_encoder, false);
  2851. intel_enable_plane(dev_priv, plane, pipe);
  2852. intel_enable_planes(crtc);
  2853. intel_crtc_update_cursor(crtc, true);
  2854. if (intel_crtc->config.has_pch_encoder)
  2855. ironlake_pch_enable(crtc);
  2856. mutex_lock(&dev->struct_mutex);
  2857. intel_update_fbc(dev);
  2858. mutex_unlock(&dev->struct_mutex);
  2859. for_each_encoder_on_crtc(dev, crtc, encoder)
  2860. encoder->enable(encoder);
  2861. if (HAS_PCH_CPT(dev))
  2862. cpt_verify_modeset(dev, intel_crtc->pipe);
  2863. /*
  2864. * There seems to be a race in PCH platform hw (at least on some
  2865. * outputs) where an enabled pipe still completes any pageflip right
  2866. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2867. * as the first vblank happend, everything works as expected. Hence just
  2868. * wait for one vblank before returning to avoid strange things
  2869. * happening.
  2870. */
  2871. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2872. }
  2873. /* IPS only exists on ULT machines and is tied to pipe A. */
  2874. static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
  2875. {
  2876. return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
  2877. }
  2878. static void hsw_enable_ips(struct intel_crtc *crtc)
  2879. {
  2880. struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
  2881. if (!crtc->config.ips_enabled)
  2882. return;
  2883. /* We can only enable IPS after we enable a plane and wait for a vblank.
  2884. * We guarantee that the plane is enabled by calling intel_enable_ips
  2885. * only after intel_enable_plane. And intel_enable_plane already waits
  2886. * for a vblank, so all we need to do here is to enable the IPS bit. */
  2887. assert_plane_enabled(dev_priv, crtc->plane);
  2888. I915_WRITE(IPS_CTL, IPS_ENABLE);
  2889. }
  2890. static void hsw_disable_ips(struct intel_crtc *crtc)
  2891. {
  2892. struct drm_device *dev = crtc->base.dev;
  2893. struct drm_i915_private *dev_priv = dev->dev_private;
  2894. if (!crtc->config.ips_enabled)
  2895. return;
  2896. assert_plane_enabled(dev_priv, crtc->plane);
  2897. I915_WRITE(IPS_CTL, 0);
  2898. /* We need to wait for a vblank before we can disable the plane. */
  2899. intel_wait_for_vblank(dev, crtc->pipe);
  2900. }
  2901. static void haswell_crtc_enable(struct drm_crtc *crtc)
  2902. {
  2903. struct drm_device *dev = crtc->dev;
  2904. struct drm_i915_private *dev_priv = dev->dev_private;
  2905. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2906. struct intel_encoder *encoder;
  2907. int pipe = intel_crtc->pipe;
  2908. int plane = intel_crtc->plane;
  2909. WARN_ON(!crtc->enabled);
  2910. if (intel_crtc->active)
  2911. return;
  2912. intel_crtc->active = true;
  2913. intel_set_cpu_fifo_underrun_reporting(dev, pipe, true);
  2914. if (intel_crtc->config.has_pch_encoder)
  2915. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  2916. if (intel_crtc->config.has_pch_encoder)
  2917. dev_priv->display.fdi_link_train(crtc);
  2918. for_each_encoder_on_crtc(dev, crtc, encoder)
  2919. if (encoder->pre_enable)
  2920. encoder->pre_enable(encoder);
  2921. intel_ddi_enable_pipe_clock(intel_crtc);
  2922. ironlake_pfit_enable(intel_crtc);
  2923. /*
  2924. * On ILK+ LUT must be loaded before the pipe is running but with
  2925. * clocks enabled
  2926. */
  2927. intel_crtc_load_lut(crtc);
  2928. intel_ddi_set_pipe_settings(crtc);
  2929. intel_ddi_enable_transcoder_func(crtc);
  2930. intel_update_watermarks(crtc);
  2931. intel_enable_pipe(dev_priv, pipe,
  2932. intel_crtc->config.has_pch_encoder, false);
  2933. intel_enable_plane(dev_priv, plane, pipe);
  2934. intel_enable_planes(crtc);
  2935. intel_crtc_update_cursor(crtc, true);
  2936. hsw_enable_ips(intel_crtc);
  2937. if (intel_crtc->config.has_pch_encoder)
  2938. lpt_pch_enable(crtc);
  2939. mutex_lock(&dev->struct_mutex);
  2940. intel_update_fbc(dev);
  2941. mutex_unlock(&dev->struct_mutex);
  2942. for_each_encoder_on_crtc(dev, crtc, encoder) {
  2943. encoder->enable(encoder);
  2944. intel_opregion_notify_encoder(encoder, true);
  2945. }
  2946. /*
  2947. * There seems to be a race in PCH platform hw (at least on some
  2948. * outputs) where an enabled pipe still completes any pageflip right
  2949. * away (as if the pipe is off) instead of waiting for vblank. As soon
  2950. * as the first vblank happend, everything works as expected. Hence just
  2951. * wait for one vblank before returning to avoid strange things
  2952. * happening.
  2953. */
  2954. intel_wait_for_vblank(dev, intel_crtc->pipe);
  2955. }
  2956. static void ironlake_pfit_disable(struct intel_crtc *crtc)
  2957. {
  2958. struct drm_device *dev = crtc->base.dev;
  2959. struct drm_i915_private *dev_priv = dev->dev_private;
  2960. int pipe = crtc->pipe;
  2961. /* To avoid upsetting the power well on haswell only disable the pfit if
  2962. * it's in use. The hw state code will make sure we get this right. */
  2963. if (crtc->config.pch_pfit.size) {
  2964. I915_WRITE(PF_CTL(pipe), 0);
  2965. I915_WRITE(PF_WIN_POS(pipe), 0);
  2966. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2967. }
  2968. }
  2969. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2970. {
  2971. struct drm_device *dev = crtc->dev;
  2972. struct drm_i915_private *dev_priv = dev->dev_private;
  2973. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2974. struct intel_encoder *encoder;
  2975. int pipe = intel_crtc->pipe;
  2976. int plane = intel_crtc->plane;
  2977. u32 reg, temp;
  2978. if (!intel_crtc->active)
  2979. return;
  2980. for_each_encoder_on_crtc(dev, crtc, encoder)
  2981. encoder->disable(encoder);
  2982. intel_crtc_wait_for_pending_flips(crtc);
  2983. drm_vblank_off(dev, pipe);
  2984. if (dev_priv->fbc.plane == plane)
  2985. intel_disable_fbc(dev);
  2986. intel_crtc_update_cursor(crtc, false);
  2987. intel_disable_planes(crtc);
  2988. intel_disable_plane(dev_priv, plane, pipe);
  2989. if (intel_crtc->config.has_pch_encoder)
  2990. intel_set_pch_fifo_underrun_reporting(dev, pipe, false);
  2991. intel_disable_pipe(dev_priv, pipe);
  2992. ironlake_pfit_disable(intel_crtc);
  2993. for_each_encoder_on_crtc(dev, crtc, encoder)
  2994. if (encoder->post_disable)
  2995. encoder->post_disable(encoder);
  2996. if (intel_crtc->config.has_pch_encoder) {
  2997. ironlake_fdi_disable(crtc);
  2998. ironlake_disable_pch_transcoder(dev_priv, pipe);
  2999. intel_set_pch_fifo_underrun_reporting(dev, pipe, true);
  3000. if (HAS_PCH_CPT(dev)) {
  3001. /* disable TRANS_DP_CTL */
  3002. reg = TRANS_DP_CTL(pipe);
  3003. temp = I915_READ(reg);
  3004. temp &= ~(TRANS_DP_OUTPUT_ENABLE |
  3005. TRANS_DP_PORT_SEL_MASK);
  3006. temp |= TRANS_DP_PORT_SEL_NONE;
  3007. I915_WRITE(reg, temp);
  3008. /* disable DPLL_SEL */
  3009. temp = I915_READ(PCH_DPLL_SEL);
  3010. temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
  3011. I915_WRITE(PCH_DPLL_SEL, temp);
  3012. }
  3013. /* disable PCH DPLL */
  3014. intel_disable_shared_dpll(intel_crtc);
  3015. ironlake_fdi_pll_disable(intel_crtc);
  3016. }
  3017. intel_crtc->active = false;
  3018. intel_update_watermarks(crtc);
  3019. mutex_lock(&dev->struct_mutex);
  3020. intel_update_fbc(dev);
  3021. mutex_unlock(&dev->struct_mutex);
  3022. }
  3023. static void haswell_crtc_disable(struct drm_crtc *crtc)
  3024. {
  3025. struct drm_device *dev = crtc->dev;
  3026. struct drm_i915_private *dev_priv = dev->dev_private;
  3027. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3028. struct intel_encoder *encoder;
  3029. int pipe = intel_crtc->pipe;
  3030. int plane = intel_crtc->plane;
  3031. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3032. if (!intel_crtc->active)
  3033. return;
  3034. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3035. intel_opregion_notify_encoder(encoder, false);
  3036. encoder->disable(encoder);
  3037. }
  3038. intel_crtc_wait_for_pending_flips(crtc);
  3039. drm_vblank_off(dev, pipe);
  3040. /* FBC must be disabled before disabling the plane on HSW. */
  3041. if (dev_priv->fbc.plane == plane)
  3042. intel_disable_fbc(dev);
  3043. hsw_disable_ips(intel_crtc);
  3044. intel_crtc_update_cursor(crtc, false);
  3045. intel_disable_planes(crtc);
  3046. intel_disable_plane(dev_priv, plane, pipe);
  3047. if (intel_crtc->config.has_pch_encoder)
  3048. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, false);
  3049. intel_disable_pipe(dev_priv, pipe);
  3050. intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
  3051. ironlake_pfit_disable(intel_crtc);
  3052. intel_ddi_disable_pipe_clock(intel_crtc);
  3053. for_each_encoder_on_crtc(dev, crtc, encoder)
  3054. if (encoder->post_disable)
  3055. encoder->post_disable(encoder);
  3056. if (intel_crtc->config.has_pch_encoder) {
  3057. lpt_disable_pch_transcoder(dev_priv);
  3058. intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A, true);
  3059. intel_ddi_fdi_disable(crtc);
  3060. }
  3061. intel_crtc->active = false;
  3062. intel_update_watermarks(crtc);
  3063. mutex_lock(&dev->struct_mutex);
  3064. intel_update_fbc(dev);
  3065. mutex_unlock(&dev->struct_mutex);
  3066. }
  3067. static void ironlake_crtc_off(struct drm_crtc *crtc)
  3068. {
  3069. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3070. intel_put_shared_dpll(intel_crtc);
  3071. }
  3072. static void haswell_crtc_off(struct drm_crtc *crtc)
  3073. {
  3074. intel_ddi_put_crtc_pll(crtc);
  3075. }
  3076. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  3077. {
  3078. if (!enable && intel_crtc->overlay) {
  3079. struct drm_device *dev = intel_crtc->base.dev;
  3080. struct drm_i915_private *dev_priv = dev->dev_private;
  3081. mutex_lock(&dev->struct_mutex);
  3082. dev_priv->mm.interruptible = false;
  3083. (void) intel_overlay_switch_off(intel_crtc->overlay);
  3084. dev_priv->mm.interruptible = true;
  3085. mutex_unlock(&dev->struct_mutex);
  3086. }
  3087. /* Let userspace switch the overlay on again. In most cases userspace
  3088. * has to recompute where to put it anyway.
  3089. */
  3090. }
  3091. /**
  3092. * i9xx_fixup_plane - ugly workaround for G45 to fire up the hardware
  3093. * cursor plane briefly if not already running after enabling the display
  3094. * plane.
  3095. * This workaround avoids occasional blank screens when self refresh is
  3096. * enabled.
  3097. */
  3098. static void
  3099. g4x_fixup_plane(struct drm_i915_private *dev_priv, enum pipe pipe)
  3100. {
  3101. u32 cntl = I915_READ(CURCNTR(pipe));
  3102. if ((cntl & CURSOR_MODE) == 0) {
  3103. u32 fw_bcl_self = I915_READ(FW_BLC_SELF);
  3104. I915_WRITE(FW_BLC_SELF, fw_bcl_self & ~FW_BLC_SELF_EN);
  3105. I915_WRITE(CURCNTR(pipe), CURSOR_MODE_64_ARGB_AX);
  3106. intel_wait_for_vblank(dev_priv->dev, pipe);
  3107. I915_WRITE(CURCNTR(pipe), cntl);
  3108. I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
  3109. I915_WRITE(FW_BLC_SELF, fw_bcl_self);
  3110. }
  3111. }
  3112. static void i9xx_pfit_enable(struct intel_crtc *crtc)
  3113. {
  3114. struct drm_device *dev = crtc->base.dev;
  3115. struct drm_i915_private *dev_priv = dev->dev_private;
  3116. struct intel_crtc_config *pipe_config = &crtc->config;
  3117. if (!crtc->config.gmch_pfit.control)
  3118. return;
  3119. /*
  3120. * The panel fitter should only be adjusted whilst the pipe is disabled,
  3121. * according to register description and PRM.
  3122. */
  3123. WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
  3124. assert_pipe_disabled(dev_priv, crtc->pipe);
  3125. I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
  3126. I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
  3127. /* Border color in case we don't scale up to the full screen. Black by
  3128. * default, change to something else for debugging. */
  3129. I915_WRITE(BCLRPAT(crtc->pipe), 0);
  3130. }
  3131. static void valleyview_crtc_enable(struct drm_crtc *crtc)
  3132. {
  3133. struct drm_device *dev = crtc->dev;
  3134. struct drm_i915_private *dev_priv = dev->dev_private;
  3135. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3136. struct intel_encoder *encoder;
  3137. int pipe = intel_crtc->pipe;
  3138. int plane = intel_crtc->plane;
  3139. bool is_dsi;
  3140. WARN_ON(!crtc->enabled);
  3141. if (intel_crtc->active)
  3142. return;
  3143. intel_crtc->active = true;
  3144. for_each_encoder_on_crtc(dev, crtc, encoder)
  3145. if (encoder->pre_pll_enable)
  3146. encoder->pre_pll_enable(encoder);
  3147. is_dsi = intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI);
  3148. if (!is_dsi)
  3149. vlv_enable_pll(intel_crtc);
  3150. for_each_encoder_on_crtc(dev, crtc, encoder)
  3151. if (encoder->pre_enable)
  3152. encoder->pre_enable(encoder);
  3153. i9xx_pfit_enable(intel_crtc);
  3154. intel_crtc_load_lut(crtc);
  3155. intel_update_watermarks(crtc);
  3156. intel_enable_pipe(dev_priv, pipe, false, is_dsi);
  3157. intel_enable_plane(dev_priv, plane, pipe);
  3158. intel_enable_planes(crtc);
  3159. intel_crtc_update_cursor(crtc, true);
  3160. intel_update_fbc(dev);
  3161. for_each_encoder_on_crtc(dev, crtc, encoder)
  3162. encoder->enable(encoder);
  3163. }
  3164. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  3165. {
  3166. struct drm_device *dev = crtc->dev;
  3167. struct drm_i915_private *dev_priv = dev->dev_private;
  3168. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3169. struct intel_encoder *encoder;
  3170. int pipe = intel_crtc->pipe;
  3171. int plane = intel_crtc->plane;
  3172. WARN_ON(!crtc->enabled);
  3173. if (intel_crtc->active)
  3174. return;
  3175. intel_crtc->active = true;
  3176. for_each_encoder_on_crtc(dev, crtc, encoder)
  3177. if (encoder->pre_enable)
  3178. encoder->pre_enable(encoder);
  3179. i9xx_enable_pll(intel_crtc);
  3180. i9xx_pfit_enable(intel_crtc);
  3181. intel_crtc_load_lut(crtc);
  3182. intel_update_watermarks(crtc);
  3183. intel_enable_pipe(dev_priv, pipe, false, false);
  3184. intel_enable_plane(dev_priv, plane, pipe);
  3185. intel_enable_planes(crtc);
  3186. /* The fixup needs to happen before cursor is enabled */
  3187. if (IS_G4X(dev))
  3188. g4x_fixup_plane(dev_priv, pipe);
  3189. intel_crtc_update_cursor(crtc, true);
  3190. /* Give the overlay scaler a chance to enable if it's on this pipe */
  3191. intel_crtc_dpms_overlay(intel_crtc, true);
  3192. intel_update_fbc(dev);
  3193. for_each_encoder_on_crtc(dev, crtc, encoder)
  3194. encoder->enable(encoder);
  3195. }
  3196. static void i9xx_pfit_disable(struct intel_crtc *crtc)
  3197. {
  3198. struct drm_device *dev = crtc->base.dev;
  3199. struct drm_i915_private *dev_priv = dev->dev_private;
  3200. if (!crtc->config.gmch_pfit.control)
  3201. return;
  3202. assert_pipe_disabled(dev_priv, crtc->pipe);
  3203. DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
  3204. I915_READ(PFIT_CONTROL));
  3205. I915_WRITE(PFIT_CONTROL, 0);
  3206. }
  3207. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  3208. {
  3209. struct drm_device *dev = crtc->dev;
  3210. struct drm_i915_private *dev_priv = dev->dev_private;
  3211. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3212. struct intel_encoder *encoder;
  3213. int pipe = intel_crtc->pipe;
  3214. int plane = intel_crtc->plane;
  3215. if (!intel_crtc->active)
  3216. return;
  3217. for_each_encoder_on_crtc(dev, crtc, encoder)
  3218. encoder->disable(encoder);
  3219. /* Give the overlay scaler a chance to disable if it's on this pipe */
  3220. intel_crtc_wait_for_pending_flips(crtc);
  3221. drm_vblank_off(dev, pipe);
  3222. if (dev_priv->fbc.plane == plane)
  3223. intel_disable_fbc(dev);
  3224. intel_crtc_dpms_overlay(intel_crtc, false);
  3225. intel_crtc_update_cursor(crtc, false);
  3226. intel_disable_planes(crtc);
  3227. intel_disable_plane(dev_priv, plane, pipe);
  3228. intel_disable_pipe(dev_priv, pipe);
  3229. i9xx_pfit_disable(intel_crtc);
  3230. for_each_encoder_on_crtc(dev, crtc, encoder)
  3231. if (encoder->post_disable)
  3232. encoder->post_disable(encoder);
  3233. if (!intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  3234. i9xx_disable_pll(dev_priv, pipe);
  3235. intel_crtc->active = false;
  3236. intel_update_watermarks(crtc);
  3237. intel_update_fbc(dev);
  3238. }
  3239. static void i9xx_crtc_off(struct drm_crtc *crtc)
  3240. {
  3241. }
  3242. static void intel_crtc_update_sarea(struct drm_crtc *crtc,
  3243. bool enabled)
  3244. {
  3245. struct drm_device *dev = crtc->dev;
  3246. struct drm_i915_master_private *master_priv;
  3247. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3248. int pipe = intel_crtc->pipe;
  3249. if (!dev->primary->master)
  3250. return;
  3251. master_priv = dev->primary->master->driver_priv;
  3252. if (!master_priv->sarea_priv)
  3253. return;
  3254. switch (pipe) {
  3255. case 0:
  3256. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3257. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3258. break;
  3259. case 1:
  3260. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3261. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3262. break;
  3263. default:
  3264. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3265. break;
  3266. }
  3267. }
  3268. /**
  3269. * Sets the power management mode of the pipe and plane.
  3270. */
  3271. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  3272. {
  3273. struct drm_device *dev = crtc->dev;
  3274. struct drm_i915_private *dev_priv = dev->dev_private;
  3275. struct intel_encoder *intel_encoder;
  3276. bool enable = false;
  3277. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  3278. enable |= intel_encoder->connectors_active;
  3279. if (enable)
  3280. dev_priv->display.crtc_enable(crtc);
  3281. else
  3282. dev_priv->display.crtc_disable(crtc);
  3283. intel_crtc_update_sarea(crtc, enable);
  3284. }
  3285. static void intel_crtc_disable(struct drm_crtc *crtc)
  3286. {
  3287. struct drm_device *dev = crtc->dev;
  3288. struct drm_connector *connector;
  3289. struct drm_i915_private *dev_priv = dev->dev_private;
  3290. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3291. /* crtc should still be enabled when we disable it. */
  3292. WARN_ON(!crtc->enabled);
  3293. dev_priv->display.crtc_disable(crtc);
  3294. intel_crtc->eld_vld = false;
  3295. intel_crtc_update_sarea(crtc, false);
  3296. dev_priv->display.off(crtc);
  3297. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3298. assert_cursor_disabled(dev_priv, to_intel_crtc(crtc)->pipe);
  3299. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3300. if (crtc->fb) {
  3301. mutex_lock(&dev->struct_mutex);
  3302. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3303. mutex_unlock(&dev->struct_mutex);
  3304. crtc->fb = NULL;
  3305. }
  3306. /* Update computed state. */
  3307. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  3308. if (!connector->encoder || !connector->encoder->crtc)
  3309. continue;
  3310. if (connector->encoder->crtc != crtc)
  3311. continue;
  3312. connector->dpms = DRM_MODE_DPMS_OFF;
  3313. to_intel_encoder(connector->encoder)->connectors_active = false;
  3314. }
  3315. }
  3316. void intel_encoder_destroy(struct drm_encoder *encoder)
  3317. {
  3318. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3319. drm_encoder_cleanup(encoder);
  3320. kfree(intel_encoder);
  3321. }
  3322. /* Simple dpms helper for encoders with just one connector, no cloning and only
  3323. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3324. * state of the entire output pipe. */
  3325. static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3326. {
  3327. if (mode == DRM_MODE_DPMS_ON) {
  3328. encoder->connectors_active = true;
  3329. intel_crtc_update_dpms(encoder->base.crtc);
  3330. } else {
  3331. encoder->connectors_active = false;
  3332. intel_crtc_update_dpms(encoder->base.crtc);
  3333. }
  3334. }
  3335. /* Cross check the actual hw state with our own modeset state tracking (and it's
  3336. * internal consistency). */
  3337. static void intel_connector_check_state(struct intel_connector *connector)
  3338. {
  3339. if (connector->get_hw_state(connector)) {
  3340. struct intel_encoder *encoder = connector->encoder;
  3341. struct drm_crtc *crtc;
  3342. bool encoder_enabled;
  3343. enum pipe pipe;
  3344. DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
  3345. connector->base.base.id,
  3346. drm_get_connector_name(&connector->base));
  3347. WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
  3348. "wrong connector dpms state\n");
  3349. WARN(connector->base.encoder != &encoder->base,
  3350. "active connector not linked to encoder\n");
  3351. WARN(!encoder->connectors_active,
  3352. "encoder->connectors_active not set\n");
  3353. encoder_enabled = encoder->get_hw_state(encoder, &pipe);
  3354. WARN(!encoder_enabled, "encoder not enabled\n");
  3355. if (WARN_ON(!encoder->base.crtc))
  3356. return;
  3357. crtc = encoder->base.crtc;
  3358. WARN(!crtc->enabled, "crtc not enabled\n");
  3359. WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
  3360. WARN(pipe != to_intel_crtc(crtc)->pipe,
  3361. "encoder active on the wrong pipe\n");
  3362. }
  3363. }
  3364. /* Even simpler default implementation, if there's really no special case to
  3365. * consider. */
  3366. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3367. {
  3368. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3369. /* All the simple cases only support two dpms states. */
  3370. if (mode != DRM_MODE_DPMS_ON)
  3371. mode = DRM_MODE_DPMS_OFF;
  3372. if (mode == connector->dpms)
  3373. return;
  3374. connector->dpms = mode;
  3375. /* Only need to change hw state when actually enabled */
  3376. if (encoder->base.crtc)
  3377. intel_encoder_dpms(encoder, mode);
  3378. else
  3379. WARN_ON(encoder->connectors_active != false);
  3380. intel_modeset_check_state(connector->dev);
  3381. }
  3382. /* Simple connector->get_hw_state implementation for encoders that support only
  3383. * one connector and no cloning and hence the encoder state determines the state
  3384. * of the connector. */
  3385. bool intel_connector_get_hw_state(struct intel_connector *connector)
  3386. {
  3387. enum pipe pipe = 0;
  3388. struct intel_encoder *encoder = connector->encoder;
  3389. return encoder->get_hw_state(encoder, &pipe);
  3390. }
  3391. static bool ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
  3392. struct intel_crtc_config *pipe_config)
  3393. {
  3394. struct drm_i915_private *dev_priv = dev->dev_private;
  3395. struct intel_crtc *pipe_B_crtc =
  3396. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
  3397. DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
  3398. pipe_name(pipe), pipe_config->fdi_lanes);
  3399. if (pipe_config->fdi_lanes > 4) {
  3400. DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
  3401. pipe_name(pipe), pipe_config->fdi_lanes);
  3402. return false;
  3403. }
  3404. if (IS_HASWELL(dev)) {
  3405. if (pipe_config->fdi_lanes > 2) {
  3406. DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
  3407. pipe_config->fdi_lanes);
  3408. return false;
  3409. } else {
  3410. return true;
  3411. }
  3412. }
  3413. if (INTEL_INFO(dev)->num_pipes == 2)
  3414. return true;
  3415. /* Ivybridge 3 pipe is really complicated */
  3416. switch (pipe) {
  3417. case PIPE_A:
  3418. return true;
  3419. case PIPE_B:
  3420. if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
  3421. pipe_config->fdi_lanes > 2) {
  3422. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3423. pipe_name(pipe), pipe_config->fdi_lanes);
  3424. return false;
  3425. }
  3426. return true;
  3427. case PIPE_C:
  3428. if (!pipe_has_enabled_pch(pipe_B_crtc) ||
  3429. pipe_B_crtc->config.fdi_lanes <= 2) {
  3430. if (pipe_config->fdi_lanes > 2) {
  3431. DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
  3432. pipe_name(pipe), pipe_config->fdi_lanes);
  3433. return false;
  3434. }
  3435. } else {
  3436. DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
  3437. return false;
  3438. }
  3439. return true;
  3440. default:
  3441. BUG();
  3442. }
  3443. }
  3444. #define RETRY 1
  3445. static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
  3446. struct intel_crtc_config *pipe_config)
  3447. {
  3448. struct drm_device *dev = intel_crtc->base.dev;
  3449. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3450. int lane, link_bw, fdi_dotclock;
  3451. bool setup_ok, needs_recompute = false;
  3452. retry:
  3453. /* FDI is a binary signal running at ~2.7GHz, encoding
  3454. * each output octet as 10 bits. The actual frequency
  3455. * is stored as a divider into a 100MHz clock, and the
  3456. * mode pixel clock is stored in units of 1KHz.
  3457. * Hence the bw of each lane in terms of the mode signal
  3458. * is:
  3459. */
  3460. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  3461. fdi_dotclock = adjusted_mode->clock;
  3462. lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
  3463. pipe_config->pipe_bpp);
  3464. pipe_config->fdi_lanes = lane;
  3465. intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
  3466. link_bw, &pipe_config->fdi_m_n);
  3467. setup_ok = ironlake_check_fdi_lanes(intel_crtc->base.dev,
  3468. intel_crtc->pipe, pipe_config);
  3469. if (!setup_ok && pipe_config->pipe_bpp > 6*3) {
  3470. pipe_config->pipe_bpp -= 2*3;
  3471. DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
  3472. pipe_config->pipe_bpp);
  3473. needs_recompute = true;
  3474. pipe_config->bw_constrained = true;
  3475. goto retry;
  3476. }
  3477. if (needs_recompute)
  3478. return RETRY;
  3479. return setup_ok ? 0 : -EINVAL;
  3480. }
  3481. static void hsw_compute_ips_config(struct intel_crtc *crtc,
  3482. struct intel_crtc_config *pipe_config)
  3483. {
  3484. pipe_config->ips_enabled = i915_enable_ips &&
  3485. hsw_crtc_supports_ips(crtc) &&
  3486. pipe_config->pipe_bpp <= 24;
  3487. }
  3488. static int intel_crtc_compute_config(struct intel_crtc *crtc,
  3489. struct intel_crtc_config *pipe_config)
  3490. {
  3491. struct drm_device *dev = crtc->base.dev;
  3492. struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
  3493. /* Cantiga+ cannot handle modes with a hsync front porch of 0.
  3494. * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
  3495. */
  3496. if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
  3497. adjusted_mode->hsync_start == adjusted_mode->hdisplay)
  3498. return -EINVAL;
  3499. if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) && pipe_config->pipe_bpp > 10*3) {
  3500. pipe_config->pipe_bpp = 10*3; /* 12bpc is gen5+ */
  3501. } else if (INTEL_INFO(dev)->gen <= 4 && pipe_config->pipe_bpp > 8*3) {
  3502. /* only a 8bpc pipe, with 6bpc dither through the panel fitter
  3503. * for lvds. */
  3504. pipe_config->pipe_bpp = 8*3;
  3505. }
  3506. if (HAS_IPS(dev))
  3507. hsw_compute_ips_config(crtc, pipe_config);
  3508. /* XXX: PCH clock sharing is done in ->mode_set, so make sure the old
  3509. * clock survives for now. */
  3510. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  3511. pipe_config->shared_dpll = crtc->config.shared_dpll;
  3512. if (pipe_config->has_pch_encoder)
  3513. return ironlake_fdi_compute_config(crtc, pipe_config);
  3514. return 0;
  3515. }
  3516. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3517. {
  3518. return 400000; /* FIXME */
  3519. }
  3520. static int i945_get_display_clock_speed(struct drm_device *dev)
  3521. {
  3522. return 400000;
  3523. }
  3524. static int i915_get_display_clock_speed(struct drm_device *dev)
  3525. {
  3526. return 333000;
  3527. }
  3528. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3529. {
  3530. return 200000;
  3531. }
  3532. static int pnv_get_display_clock_speed(struct drm_device *dev)
  3533. {
  3534. u16 gcfgc = 0;
  3535. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3536. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3537. case GC_DISPLAY_CLOCK_267_MHZ_PNV:
  3538. return 267000;
  3539. case GC_DISPLAY_CLOCK_333_MHZ_PNV:
  3540. return 333000;
  3541. case GC_DISPLAY_CLOCK_444_MHZ_PNV:
  3542. return 444000;
  3543. case GC_DISPLAY_CLOCK_200_MHZ_PNV:
  3544. return 200000;
  3545. default:
  3546. DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
  3547. case GC_DISPLAY_CLOCK_133_MHZ_PNV:
  3548. return 133000;
  3549. case GC_DISPLAY_CLOCK_167_MHZ_PNV:
  3550. return 167000;
  3551. }
  3552. }
  3553. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3554. {
  3555. u16 gcfgc = 0;
  3556. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3557. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3558. return 133000;
  3559. else {
  3560. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3561. case GC_DISPLAY_CLOCK_333_MHZ:
  3562. return 333000;
  3563. default:
  3564. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3565. return 190000;
  3566. }
  3567. }
  3568. }
  3569. static int i865_get_display_clock_speed(struct drm_device *dev)
  3570. {
  3571. return 266000;
  3572. }
  3573. static int i855_get_display_clock_speed(struct drm_device *dev)
  3574. {
  3575. u16 hpllcc = 0;
  3576. /* Assume that the hardware is in the high speed state. This
  3577. * should be the default.
  3578. */
  3579. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3580. case GC_CLOCK_133_200:
  3581. case GC_CLOCK_100_200:
  3582. return 200000;
  3583. case GC_CLOCK_166_250:
  3584. return 250000;
  3585. case GC_CLOCK_100_133:
  3586. return 133000;
  3587. }
  3588. /* Shouldn't happen */
  3589. return 0;
  3590. }
  3591. static int i830_get_display_clock_speed(struct drm_device *dev)
  3592. {
  3593. return 133000;
  3594. }
  3595. static void
  3596. intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
  3597. {
  3598. while (*num > DATA_LINK_M_N_MASK ||
  3599. *den > DATA_LINK_M_N_MASK) {
  3600. *num >>= 1;
  3601. *den >>= 1;
  3602. }
  3603. }
  3604. static void compute_m_n(unsigned int m, unsigned int n,
  3605. uint32_t *ret_m, uint32_t *ret_n)
  3606. {
  3607. *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
  3608. *ret_m = div_u64((uint64_t) m * *ret_n, n);
  3609. intel_reduce_m_n_ratio(ret_m, ret_n);
  3610. }
  3611. void
  3612. intel_link_compute_m_n(int bits_per_pixel, int nlanes,
  3613. int pixel_clock, int link_clock,
  3614. struct intel_link_m_n *m_n)
  3615. {
  3616. m_n->tu = 64;
  3617. compute_m_n(bits_per_pixel * pixel_clock,
  3618. link_clock * nlanes * 8,
  3619. &m_n->gmch_m, &m_n->gmch_n);
  3620. compute_m_n(pixel_clock, link_clock,
  3621. &m_n->link_m, &m_n->link_n);
  3622. }
  3623. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3624. {
  3625. if (i915_panel_use_ssc >= 0)
  3626. return i915_panel_use_ssc != 0;
  3627. return dev_priv->vbt.lvds_use_ssc
  3628. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3629. }
  3630. static int vlv_get_refclk(struct drm_crtc *crtc)
  3631. {
  3632. struct drm_device *dev = crtc->dev;
  3633. struct drm_i915_private *dev_priv = dev->dev_private;
  3634. int refclk = 27000; /* for DP & HDMI */
  3635. return 100000; /* only one validated so far */
  3636. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3637. refclk = 96000;
  3638. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3639. if (intel_panel_use_ssc(dev_priv))
  3640. refclk = 100000;
  3641. else
  3642. refclk = 96000;
  3643. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3644. refclk = 100000;
  3645. }
  3646. return refclk;
  3647. }
  3648. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3649. {
  3650. struct drm_device *dev = crtc->dev;
  3651. struct drm_i915_private *dev_priv = dev->dev_private;
  3652. int refclk;
  3653. if (IS_VALLEYVIEW(dev)) {
  3654. refclk = vlv_get_refclk(crtc);
  3655. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3656. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3657. refclk = dev_priv->vbt.lvds_ssc_freq * 1000;
  3658. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3659. refclk / 1000);
  3660. } else if (!IS_GEN2(dev)) {
  3661. refclk = 96000;
  3662. } else {
  3663. refclk = 48000;
  3664. }
  3665. return refclk;
  3666. }
  3667. static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
  3668. {
  3669. return (1 << dpll->n) << 16 | dpll->m2;
  3670. }
  3671. static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
  3672. {
  3673. return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
  3674. }
  3675. static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
  3676. intel_clock_t *reduced_clock)
  3677. {
  3678. struct drm_device *dev = crtc->base.dev;
  3679. struct drm_i915_private *dev_priv = dev->dev_private;
  3680. int pipe = crtc->pipe;
  3681. u32 fp, fp2 = 0;
  3682. if (IS_PINEVIEW(dev)) {
  3683. fp = pnv_dpll_compute_fp(&crtc->config.dpll);
  3684. if (reduced_clock)
  3685. fp2 = pnv_dpll_compute_fp(reduced_clock);
  3686. } else {
  3687. fp = i9xx_dpll_compute_fp(&crtc->config.dpll);
  3688. if (reduced_clock)
  3689. fp2 = i9xx_dpll_compute_fp(reduced_clock);
  3690. }
  3691. I915_WRITE(FP0(pipe), fp);
  3692. crtc->config.dpll_hw_state.fp0 = fp;
  3693. crtc->lowfreq_avail = false;
  3694. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3695. reduced_clock && i915_powersave) {
  3696. I915_WRITE(FP1(pipe), fp2);
  3697. crtc->config.dpll_hw_state.fp1 = fp2;
  3698. crtc->lowfreq_avail = true;
  3699. } else {
  3700. I915_WRITE(FP1(pipe), fp);
  3701. crtc->config.dpll_hw_state.fp1 = fp;
  3702. }
  3703. }
  3704. static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
  3705. pipe)
  3706. {
  3707. u32 reg_val;
  3708. /*
  3709. * PLLB opamp always calibrates to max value of 0x3f, force enable it
  3710. * and set it to a reasonable value instead.
  3711. */
  3712. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3713. reg_val &= 0xffffff00;
  3714. reg_val |= 0x00000030;
  3715. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3716. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3717. reg_val &= 0x8cffffff;
  3718. reg_val = 0x8c000000;
  3719. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3720. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF(1));
  3721. reg_val &= 0xffffff00;
  3722. vlv_dpio_write(dev_priv, pipe, DPIO_IREF(1), reg_val);
  3723. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_CALIBRATION);
  3724. reg_val &= 0x00ffffff;
  3725. reg_val |= 0xb0000000;
  3726. vlv_dpio_write(dev_priv, pipe, DPIO_CALIBRATION, reg_val);
  3727. }
  3728. static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
  3729. struct intel_link_m_n *m_n)
  3730. {
  3731. struct drm_device *dev = crtc->base.dev;
  3732. struct drm_i915_private *dev_priv = dev->dev_private;
  3733. int pipe = crtc->pipe;
  3734. I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3735. I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
  3736. I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
  3737. I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
  3738. }
  3739. static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  3740. struct intel_link_m_n *m_n)
  3741. {
  3742. struct drm_device *dev = crtc->base.dev;
  3743. struct drm_i915_private *dev_priv = dev->dev_private;
  3744. int pipe = crtc->pipe;
  3745. enum transcoder transcoder = crtc->config.cpu_transcoder;
  3746. if (INTEL_INFO(dev)->gen >= 5) {
  3747. I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3748. I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
  3749. I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
  3750. I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
  3751. } else {
  3752. I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
  3753. I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
  3754. I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
  3755. I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
  3756. }
  3757. }
  3758. static void intel_dp_set_m_n(struct intel_crtc *crtc)
  3759. {
  3760. if (crtc->config.has_pch_encoder)
  3761. intel_pch_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3762. else
  3763. intel_cpu_transcoder_set_m_n(crtc, &crtc->config.dp_m_n);
  3764. }
  3765. static void vlv_update_pll(struct intel_crtc *crtc)
  3766. {
  3767. struct drm_device *dev = crtc->base.dev;
  3768. struct drm_i915_private *dev_priv = dev->dev_private;
  3769. int pipe = crtc->pipe;
  3770. u32 dpll, mdiv;
  3771. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3772. u32 coreclk, reg_val, dpll_md;
  3773. mutex_lock(&dev_priv->dpio_lock);
  3774. bestn = crtc->config.dpll.n;
  3775. bestm1 = crtc->config.dpll.m1;
  3776. bestm2 = crtc->config.dpll.m2;
  3777. bestp1 = crtc->config.dpll.p1;
  3778. bestp2 = crtc->config.dpll.p2;
  3779. /* See eDP HDMI DPIO driver vbios notes doc */
  3780. /* PLL B needs special handling */
  3781. if (pipe)
  3782. vlv_pllb_recal_opamp(dev_priv, pipe);
  3783. /* Set up Tx target for periodic Rcomp update */
  3784. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_BCAST, 0x0100000f);
  3785. /* Disable target IRef on PLL */
  3786. reg_val = vlv_dpio_read(dev_priv, pipe, DPIO_IREF_CTL(pipe));
  3787. reg_val &= 0x00ffffff;
  3788. vlv_dpio_write(dev_priv, pipe, DPIO_IREF_CTL(pipe), reg_val);
  3789. /* Disable fast lock */
  3790. vlv_dpio_write(dev_priv, pipe, DPIO_FASTCLK_DISABLE, 0x610);
  3791. /* Set idtafcrecal before PLL is enabled */
  3792. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3793. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3794. mdiv |= ((bestn << DPIO_N_SHIFT));
  3795. mdiv |= (1 << DPIO_K_SHIFT);
  3796. /*
  3797. * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
  3798. * but we don't support that).
  3799. * Note: don't use the DAC post divider as it seems unstable.
  3800. */
  3801. mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
  3802. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3803. mdiv |= DPIO_ENABLE_CALIBRATION;
  3804. vlv_dpio_write(dev_priv, pipe, DPIO_DIV(pipe), mdiv);
  3805. /* Set HBR and RBR LPF coefficients */
  3806. if (crtc->config.port_clock == 162000 ||
  3807. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_ANALOG) ||
  3808. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI))
  3809. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3810. 0x009f0003);
  3811. else
  3812. vlv_dpio_write(dev_priv, pipe, DPIO_LPF_COEFF(pipe),
  3813. 0x00d0000f);
  3814. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP) ||
  3815. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT)) {
  3816. /* Use SSC source */
  3817. if (!pipe)
  3818. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3819. 0x0df40000);
  3820. else
  3821. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3822. 0x0df70000);
  3823. } else { /* HDMI or VGA */
  3824. /* Use bend source */
  3825. if (!pipe)
  3826. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3827. 0x0df70000);
  3828. else
  3829. vlv_dpio_write(dev_priv, pipe, DPIO_REFSFR(pipe),
  3830. 0x0df40000);
  3831. }
  3832. coreclk = vlv_dpio_read(dev_priv, pipe, DPIO_CORE_CLK(pipe));
  3833. coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
  3834. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT) ||
  3835. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_EDP))
  3836. coreclk |= 0x01000000;
  3837. vlv_dpio_write(dev_priv, pipe, DPIO_CORE_CLK(pipe), coreclk);
  3838. vlv_dpio_write(dev_priv, pipe, DPIO_PLL_CML(pipe), 0x87871000);
  3839. /* Enable DPIO clock input */
  3840. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3841. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3842. if (pipe)
  3843. dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
  3844. dpll |= DPLL_VCO_ENABLE;
  3845. crtc->config.dpll_hw_state.dpll = dpll;
  3846. dpll_md = (crtc->config.pixel_multiplier - 1)
  3847. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3848. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3849. if (crtc->config.has_dp_encoder)
  3850. intel_dp_set_m_n(crtc);
  3851. mutex_unlock(&dev_priv->dpio_lock);
  3852. }
  3853. static void i9xx_update_pll(struct intel_crtc *crtc,
  3854. intel_clock_t *reduced_clock,
  3855. int num_connectors)
  3856. {
  3857. struct drm_device *dev = crtc->base.dev;
  3858. struct drm_i915_private *dev_priv = dev->dev_private;
  3859. u32 dpll;
  3860. bool is_sdvo;
  3861. struct dpll *clock = &crtc->config.dpll;
  3862. i9xx_update_pll_dividers(crtc, reduced_clock);
  3863. is_sdvo = intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_SDVO) ||
  3864. intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_HDMI);
  3865. dpll = DPLL_VGA_MODE_DIS;
  3866. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS))
  3867. dpll |= DPLLB_MODE_LVDS;
  3868. else
  3869. dpll |= DPLLB_MODE_DAC_SERIAL;
  3870. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  3871. dpll |= (crtc->config.pixel_multiplier - 1)
  3872. << SDVO_MULTIPLIER_SHIFT_HIRES;
  3873. }
  3874. if (is_sdvo)
  3875. dpll |= DPLL_SDVO_HIGH_SPEED;
  3876. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DISPLAYPORT))
  3877. dpll |= DPLL_SDVO_HIGH_SPEED;
  3878. /* compute bitmask from p1 value */
  3879. if (IS_PINEVIEW(dev))
  3880. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3881. else {
  3882. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3883. if (IS_G4X(dev) && reduced_clock)
  3884. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3885. }
  3886. switch (clock->p2) {
  3887. case 5:
  3888. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3889. break;
  3890. case 7:
  3891. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3892. break;
  3893. case 10:
  3894. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3895. break;
  3896. case 14:
  3897. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3898. break;
  3899. }
  3900. if (INTEL_INFO(dev)->gen >= 4)
  3901. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3902. if (crtc->config.sdvo_tv_clock)
  3903. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3904. else if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3905. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3906. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3907. else
  3908. dpll |= PLL_REF_INPUT_DREFCLK;
  3909. dpll |= DPLL_VCO_ENABLE;
  3910. crtc->config.dpll_hw_state.dpll = dpll;
  3911. if (INTEL_INFO(dev)->gen >= 4) {
  3912. u32 dpll_md = (crtc->config.pixel_multiplier - 1)
  3913. << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3914. crtc->config.dpll_hw_state.dpll_md = dpll_md;
  3915. }
  3916. if (crtc->config.has_dp_encoder)
  3917. intel_dp_set_m_n(crtc);
  3918. }
  3919. static void i8xx_update_pll(struct intel_crtc *crtc,
  3920. intel_clock_t *reduced_clock,
  3921. int num_connectors)
  3922. {
  3923. struct drm_device *dev = crtc->base.dev;
  3924. struct drm_i915_private *dev_priv = dev->dev_private;
  3925. u32 dpll;
  3926. struct dpll *clock = &crtc->config.dpll;
  3927. i9xx_update_pll_dividers(crtc, reduced_clock);
  3928. dpll = DPLL_VGA_MODE_DIS;
  3929. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS)) {
  3930. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3931. } else {
  3932. if (clock->p1 == 2)
  3933. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3934. else
  3935. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3936. if (clock->p2 == 4)
  3937. dpll |= PLL_P2_DIVIDE_BY_4;
  3938. }
  3939. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_DVO))
  3940. dpll |= DPLL_DVO_2X_MODE;
  3941. if (intel_pipe_has_type(&crtc->base, INTEL_OUTPUT_LVDS) &&
  3942. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3943. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3944. else
  3945. dpll |= PLL_REF_INPUT_DREFCLK;
  3946. dpll |= DPLL_VCO_ENABLE;
  3947. crtc->config.dpll_hw_state.dpll = dpll;
  3948. }
  3949. static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
  3950. {
  3951. struct drm_device *dev = intel_crtc->base.dev;
  3952. struct drm_i915_private *dev_priv = dev->dev_private;
  3953. enum pipe pipe = intel_crtc->pipe;
  3954. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  3955. struct drm_display_mode *adjusted_mode =
  3956. &intel_crtc->config.adjusted_mode;
  3957. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  3958. uint32_t vsyncshift, crtc_vtotal, crtc_vblank_end;
  3959. /* We need to be careful not to changed the adjusted mode, for otherwise
  3960. * the hw state checker will get angry at the mismatch. */
  3961. crtc_vtotal = adjusted_mode->crtc_vtotal;
  3962. crtc_vblank_end = adjusted_mode->crtc_vblank_end;
  3963. if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3964. /* the chip adds 2 halflines automatically */
  3965. crtc_vtotal -= 1;
  3966. crtc_vblank_end -= 1;
  3967. vsyncshift = adjusted_mode->crtc_hsync_start
  3968. - adjusted_mode->crtc_htotal / 2;
  3969. } else {
  3970. vsyncshift = 0;
  3971. }
  3972. if (INTEL_INFO(dev)->gen > 3)
  3973. I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
  3974. I915_WRITE(HTOTAL(cpu_transcoder),
  3975. (adjusted_mode->crtc_hdisplay - 1) |
  3976. ((adjusted_mode->crtc_htotal - 1) << 16));
  3977. I915_WRITE(HBLANK(cpu_transcoder),
  3978. (adjusted_mode->crtc_hblank_start - 1) |
  3979. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3980. I915_WRITE(HSYNC(cpu_transcoder),
  3981. (adjusted_mode->crtc_hsync_start - 1) |
  3982. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3983. I915_WRITE(VTOTAL(cpu_transcoder),
  3984. (adjusted_mode->crtc_vdisplay - 1) |
  3985. ((crtc_vtotal - 1) << 16));
  3986. I915_WRITE(VBLANK(cpu_transcoder),
  3987. (adjusted_mode->crtc_vblank_start - 1) |
  3988. ((crtc_vblank_end - 1) << 16));
  3989. I915_WRITE(VSYNC(cpu_transcoder),
  3990. (adjusted_mode->crtc_vsync_start - 1) |
  3991. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3992. /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
  3993. * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
  3994. * documented on the DDI_FUNC_CTL register description, EDP Input Select
  3995. * bits. */
  3996. if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
  3997. (pipe == PIPE_B || pipe == PIPE_C))
  3998. I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
  3999. /* pipesrc controls the size that is scaled from, which should
  4000. * always be the user's requested size.
  4001. */
  4002. I915_WRITE(PIPESRC(pipe),
  4003. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4004. }
  4005. static void intel_get_pipe_timings(struct intel_crtc *crtc,
  4006. struct intel_crtc_config *pipe_config)
  4007. {
  4008. struct drm_device *dev = crtc->base.dev;
  4009. struct drm_i915_private *dev_priv = dev->dev_private;
  4010. enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
  4011. uint32_t tmp;
  4012. tmp = I915_READ(HTOTAL(cpu_transcoder));
  4013. pipe_config->adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
  4014. pipe_config->adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
  4015. tmp = I915_READ(HBLANK(cpu_transcoder));
  4016. pipe_config->adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
  4017. pipe_config->adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
  4018. tmp = I915_READ(HSYNC(cpu_transcoder));
  4019. pipe_config->adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
  4020. pipe_config->adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
  4021. tmp = I915_READ(VTOTAL(cpu_transcoder));
  4022. pipe_config->adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
  4023. pipe_config->adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
  4024. tmp = I915_READ(VBLANK(cpu_transcoder));
  4025. pipe_config->adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
  4026. pipe_config->adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
  4027. tmp = I915_READ(VSYNC(cpu_transcoder));
  4028. pipe_config->adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
  4029. pipe_config->adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
  4030. if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
  4031. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
  4032. pipe_config->adjusted_mode.crtc_vtotal += 1;
  4033. pipe_config->adjusted_mode.crtc_vblank_end += 1;
  4034. }
  4035. tmp = I915_READ(PIPESRC(crtc->pipe));
  4036. pipe_config->requested_mode.vdisplay = (tmp & 0xffff) + 1;
  4037. pipe_config->requested_mode.hdisplay = ((tmp >> 16) & 0xffff) + 1;
  4038. }
  4039. static void intel_crtc_mode_from_pipe_config(struct intel_crtc *intel_crtc,
  4040. struct intel_crtc_config *pipe_config)
  4041. {
  4042. struct drm_crtc *crtc = &intel_crtc->base;
  4043. crtc->mode.hdisplay = pipe_config->adjusted_mode.crtc_hdisplay;
  4044. crtc->mode.htotal = pipe_config->adjusted_mode.crtc_htotal;
  4045. crtc->mode.hsync_start = pipe_config->adjusted_mode.crtc_hsync_start;
  4046. crtc->mode.hsync_end = pipe_config->adjusted_mode.crtc_hsync_end;
  4047. crtc->mode.vdisplay = pipe_config->adjusted_mode.crtc_vdisplay;
  4048. crtc->mode.vtotal = pipe_config->adjusted_mode.crtc_vtotal;
  4049. crtc->mode.vsync_start = pipe_config->adjusted_mode.crtc_vsync_start;
  4050. crtc->mode.vsync_end = pipe_config->adjusted_mode.crtc_vsync_end;
  4051. crtc->mode.flags = pipe_config->adjusted_mode.flags;
  4052. crtc->mode.clock = pipe_config->adjusted_mode.clock;
  4053. crtc->mode.flags |= pipe_config->adjusted_mode.flags;
  4054. }
  4055. static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
  4056. {
  4057. struct drm_device *dev = intel_crtc->base.dev;
  4058. struct drm_i915_private *dev_priv = dev->dev_private;
  4059. uint32_t pipeconf;
  4060. pipeconf = 0;
  4061. if (intel_crtc->pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  4062. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  4063. * core speed.
  4064. *
  4065. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  4066. * pipe == 0 check?
  4067. */
  4068. if (intel_crtc->config.adjusted_mode.clock >
  4069. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  4070. pipeconf |= PIPECONF_DOUBLE_WIDE;
  4071. }
  4072. /* only g4x and later have fancy bpc/dither controls */
  4073. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4074. /* Bspec claims that we can't use dithering for 30bpp pipes. */
  4075. if (intel_crtc->config.dither && intel_crtc->config.pipe_bpp != 30)
  4076. pipeconf |= PIPECONF_DITHER_EN |
  4077. PIPECONF_DITHER_TYPE_SP;
  4078. switch (intel_crtc->config.pipe_bpp) {
  4079. case 18:
  4080. pipeconf |= PIPECONF_6BPC;
  4081. break;
  4082. case 24:
  4083. pipeconf |= PIPECONF_8BPC;
  4084. break;
  4085. case 30:
  4086. pipeconf |= PIPECONF_10BPC;
  4087. break;
  4088. default:
  4089. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4090. BUG();
  4091. }
  4092. }
  4093. if (HAS_PIPE_CXSR(dev)) {
  4094. if (intel_crtc->lowfreq_avail) {
  4095. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  4096. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  4097. } else {
  4098. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  4099. }
  4100. }
  4101. if (!IS_GEN2(dev) &&
  4102. intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4103. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  4104. else
  4105. pipeconf |= PIPECONF_PROGRESSIVE;
  4106. if (IS_VALLEYVIEW(dev) && intel_crtc->config.limited_color_range)
  4107. pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
  4108. I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
  4109. POSTING_READ(PIPECONF(intel_crtc->pipe));
  4110. }
  4111. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  4112. int x, int y,
  4113. struct drm_framebuffer *fb)
  4114. {
  4115. struct drm_device *dev = crtc->dev;
  4116. struct drm_i915_private *dev_priv = dev->dev_private;
  4117. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4118. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  4119. int pipe = intel_crtc->pipe;
  4120. int plane = intel_crtc->plane;
  4121. int refclk, num_connectors = 0;
  4122. intel_clock_t clock, reduced_clock;
  4123. u32 dspcntr;
  4124. bool ok, has_reduced_clock = false;
  4125. bool is_lvds = false, is_dsi = false;
  4126. struct intel_encoder *encoder;
  4127. const intel_limit_t *limit;
  4128. int ret;
  4129. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4130. switch (encoder->type) {
  4131. case INTEL_OUTPUT_LVDS:
  4132. is_lvds = true;
  4133. break;
  4134. case INTEL_OUTPUT_DSI:
  4135. is_dsi = true;
  4136. break;
  4137. }
  4138. num_connectors++;
  4139. }
  4140. refclk = i9xx_get_refclk(crtc, num_connectors);
  4141. if (!is_dsi && !intel_crtc->config.clock_set) {
  4142. /*
  4143. * Returns a set of divisors for the desired target clock with
  4144. * the given refclk, or FALSE. The returned values represent
  4145. * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
  4146. * 2) / p1 / p2.
  4147. */
  4148. limit = intel_limit(crtc, refclk);
  4149. ok = dev_priv->display.find_dpll(limit, crtc,
  4150. intel_crtc->config.port_clock,
  4151. refclk, NULL, &clock);
  4152. if (!ok && !intel_crtc->config.clock_set) {
  4153. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4154. return -EINVAL;
  4155. }
  4156. }
  4157. /* Ensure that the cursor is valid for the new mode before changing... */
  4158. intel_crtc_update_cursor(crtc, true);
  4159. if (!is_dsi && is_lvds && dev_priv->lvds_downclock_avail) {
  4160. /*
  4161. * Ensure we match the reduced clock's P to the target clock.
  4162. * If the clocks don't match, we can't switch the display clock
  4163. * by using the FP0/FP1. In such case we will disable the LVDS
  4164. * downclock feature.
  4165. */
  4166. limit = intel_limit(crtc, refclk);
  4167. has_reduced_clock =
  4168. dev_priv->display.find_dpll(limit, crtc,
  4169. dev_priv->lvds_downclock,
  4170. refclk, &clock,
  4171. &reduced_clock);
  4172. }
  4173. /* Compat-code for transition, will disappear. */
  4174. if (!intel_crtc->config.clock_set) {
  4175. intel_crtc->config.dpll.n = clock.n;
  4176. intel_crtc->config.dpll.m1 = clock.m1;
  4177. intel_crtc->config.dpll.m2 = clock.m2;
  4178. intel_crtc->config.dpll.p1 = clock.p1;
  4179. intel_crtc->config.dpll.p2 = clock.p2;
  4180. }
  4181. if (IS_GEN2(dev)) {
  4182. i8xx_update_pll(intel_crtc,
  4183. has_reduced_clock ? &reduced_clock : NULL,
  4184. num_connectors);
  4185. } else if (IS_VALLEYVIEW(dev)) {
  4186. if (!is_dsi)
  4187. vlv_update_pll(intel_crtc);
  4188. } else {
  4189. i9xx_update_pll(intel_crtc,
  4190. has_reduced_clock ? &reduced_clock : NULL,
  4191. num_connectors);
  4192. }
  4193. /* Set up the display plane register */
  4194. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4195. if (!IS_VALLEYVIEW(dev)) {
  4196. if (pipe == 0)
  4197. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  4198. else
  4199. dspcntr |= DISPPLANE_SEL_PIPE_B;
  4200. }
  4201. intel_set_pipe_timings(intel_crtc);
  4202. /* pipesrc and dspsize control the size that is scaled from,
  4203. * which should always be the user's requested size.
  4204. */
  4205. I915_WRITE(DSPSIZE(plane),
  4206. ((mode->vdisplay - 1) << 16) |
  4207. (mode->hdisplay - 1));
  4208. I915_WRITE(DSPPOS(plane), 0);
  4209. i9xx_set_pipeconf(intel_crtc);
  4210. I915_WRITE(DSPCNTR(plane), dspcntr);
  4211. POSTING_READ(DSPCNTR(plane));
  4212. ret = intel_pipe_set_base(crtc, x, y, fb);
  4213. return ret;
  4214. }
  4215. static void i9xx_get_pfit_config(struct intel_crtc *crtc,
  4216. struct intel_crtc_config *pipe_config)
  4217. {
  4218. struct drm_device *dev = crtc->base.dev;
  4219. struct drm_i915_private *dev_priv = dev->dev_private;
  4220. uint32_t tmp;
  4221. tmp = I915_READ(PFIT_CONTROL);
  4222. if (!(tmp & PFIT_ENABLE))
  4223. return;
  4224. /* Check whether the pfit is attached to our pipe. */
  4225. if (INTEL_INFO(dev)->gen < 4) {
  4226. if (crtc->pipe != PIPE_B)
  4227. return;
  4228. } else {
  4229. if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
  4230. return;
  4231. }
  4232. pipe_config->gmch_pfit.control = tmp;
  4233. pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
  4234. if (INTEL_INFO(dev)->gen < 5)
  4235. pipe_config->gmch_pfit.lvds_border_bits =
  4236. I915_READ(LVDS) & LVDS_BORDER_ENABLE;
  4237. }
  4238. static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
  4239. struct intel_crtc_config *pipe_config)
  4240. {
  4241. struct drm_device *dev = crtc->base.dev;
  4242. struct drm_i915_private *dev_priv = dev->dev_private;
  4243. uint32_t tmp;
  4244. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  4245. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  4246. tmp = I915_READ(PIPECONF(crtc->pipe));
  4247. if (!(tmp & PIPECONF_ENABLE))
  4248. return false;
  4249. if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
  4250. switch (tmp & PIPECONF_BPC_MASK) {
  4251. case PIPECONF_6BPC:
  4252. pipe_config->pipe_bpp = 18;
  4253. break;
  4254. case PIPECONF_8BPC:
  4255. pipe_config->pipe_bpp = 24;
  4256. break;
  4257. case PIPECONF_10BPC:
  4258. pipe_config->pipe_bpp = 30;
  4259. break;
  4260. default:
  4261. break;
  4262. }
  4263. }
  4264. intel_get_pipe_timings(crtc, pipe_config);
  4265. i9xx_get_pfit_config(crtc, pipe_config);
  4266. if (INTEL_INFO(dev)->gen >= 4) {
  4267. tmp = I915_READ(DPLL_MD(crtc->pipe));
  4268. pipe_config->pixel_multiplier =
  4269. ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
  4270. >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
  4271. pipe_config->dpll_hw_state.dpll_md = tmp;
  4272. } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
  4273. tmp = I915_READ(DPLL(crtc->pipe));
  4274. pipe_config->pixel_multiplier =
  4275. ((tmp & SDVO_MULTIPLIER_MASK)
  4276. >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
  4277. } else {
  4278. /* Note that on i915G/GM the pixel multiplier is in the sdvo
  4279. * port and will be fixed up in the encoder->get_config
  4280. * function. */
  4281. pipe_config->pixel_multiplier = 1;
  4282. }
  4283. pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
  4284. if (!IS_VALLEYVIEW(dev)) {
  4285. pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
  4286. pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
  4287. } else {
  4288. /* Mask out read-only status bits. */
  4289. pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
  4290. DPLL_PORTC_READY_MASK |
  4291. DPLL_PORTB_READY_MASK);
  4292. }
  4293. i9xx_crtc_clock_get(crtc, pipe_config);
  4294. return true;
  4295. }
  4296. static void ironlake_init_pch_refclk(struct drm_device *dev)
  4297. {
  4298. struct drm_i915_private *dev_priv = dev->dev_private;
  4299. struct drm_mode_config *mode_config = &dev->mode_config;
  4300. struct intel_encoder *encoder;
  4301. u32 val, final;
  4302. bool has_lvds = false;
  4303. bool has_cpu_edp = false;
  4304. bool has_panel = false;
  4305. bool has_ck505 = false;
  4306. bool can_ssc = false;
  4307. /* We need to take the global config into account */
  4308. list_for_each_entry(encoder, &mode_config->encoder_list,
  4309. base.head) {
  4310. switch (encoder->type) {
  4311. case INTEL_OUTPUT_LVDS:
  4312. has_panel = true;
  4313. has_lvds = true;
  4314. break;
  4315. case INTEL_OUTPUT_EDP:
  4316. has_panel = true;
  4317. if (enc_to_dig_port(&encoder->base)->port == PORT_A)
  4318. has_cpu_edp = true;
  4319. break;
  4320. }
  4321. }
  4322. if (HAS_PCH_IBX(dev)) {
  4323. has_ck505 = dev_priv->vbt.display_clock_mode;
  4324. can_ssc = has_ck505;
  4325. } else {
  4326. has_ck505 = false;
  4327. can_ssc = true;
  4328. }
  4329. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
  4330. has_panel, has_lvds, has_ck505);
  4331. /* Ironlake: try to setup display ref clock before DPLL
  4332. * enabling. This is only under driver's control after
  4333. * PCH B stepping, previous chipset stepping should be
  4334. * ignoring this setting.
  4335. */
  4336. val = I915_READ(PCH_DREF_CONTROL);
  4337. /* As we must carefully and slowly disable/enable each source in turn,
  4338. * compute the final state we want first and check if we need to
  4339. * make any changes at all.
  4340. */
  4341. final = val;
  4342. final &= ~DREF_NONSPREAD_SOURCE_MASK;
  4343. if (has_ck505)
  4344. final |= DREF_NONSPREAD_CK505_ENABLE;
  4345. else
  4346. final |= DREF_NONSPREAD_SOURCE_ENABLE;
  4347. final &= ~DREF_SSC_SOURCE_MASK;
  4348. final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4349. final &= ~DREF_SSC1_ENABLE;
  4350. if (has_panel) {
  4351. final |= DREF_SSC_SOURCE_ENABLE;
  4352. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4353. final |= DREF_SSC1_ENABLE;
  4354. if (has_cpu_edp) {
  4355. if (intel_panel_use_ssc(dev_priv) && can_ssc)
  4356. final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4357. else
  4358. final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4359. } else
  4360. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4361. } else {
  4362. final |= DREF_SSC_SOURCE_DISABLE;
  4363. final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4364. }
  4365. if (final == val)
  4366. return;
  4367. /* Always enable nonspread source */
  4368. val &= ~DREF_NONSPREAD_SOURCE_MASK;
  4369. if (has_ck505)
  4370. val |= DREF_NONSPREAD_CK505_ENABLE;
  4371. else
  4372. val |= DREF_NONSPREAD_SOURCE_ENABLE;
  4373. if (has_panel) {
  4374. val &= ~DREF_SSC_SOURCE_MASK;
  4375. val |= DREF_SSC_SOURCE_ENABLE;
  4376. /* SSC must be turned on before enabling the CPU output */
  4377. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4378. DRM_DEBUG_KMS("Using SSC on panel\n");
  4379. val |= DREF_SSC1_ENABLE;
  4380. } else
  4381. val &= ~DREF_SSC1_ENABLE;
  4382. /* Get SSC going before enabling the outputs */
  4383. I915_WRITE(PCH_DREF_CONTROL, val);
  4384. POSTING_READ(PCH_DREF_CONTROL);
  4385. udelay(200);
  4386. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4387. /* Enable CPU source on CPU attached eDP */
  4388. if (has_cpu_edp) {
  4389. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  4390. DRM_DEBUG_KMS("Using SSC on eDP\n");
  4391. val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  4392. }
  4393. else
  4394. val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  4395. } else
  4396. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4397. I915_WRITE(PCH_DREF_CONTROL, val);
  4398. POSTING_READ(PCH_DREF_CONTROL);
  4399. udelay(200);
  4400. } else {
  4401. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  4402. val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  4403. /* Turn off CPU output */
  4404. val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  4405. I915_WRITE(PCH_DREF_CONTROL, val);
  4406. POSTING_READ(PCH_DREF_CONTROL);
  4407. udelay(200);
  4408. /* Turn off the SSC source */
  4409. val &= ~DREF_SSC_SOURCE_MASK;
  4410. val |= DREF_SSC_SOURCE_DISABLE;
  4411. /* Turn off SSC1 */
  4412. val &= ~DREF_SSC1_ENABLE;
  4413. I915_WRITE(PCH_DREF_CONTROL, val);
  4414. POSTING_READ(PCH_DREF_CONTROL);
  4415. udelay(200);
  4416. }
  4417. BUG_ON(val != final);
  4418. }
  4419. static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
  4420. {
  4421. uint32_t tmp;
  4422. tmp = I915_READ(SOUTH_CHICKEN2);
  4423. tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
  4424. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4425. if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
  4426. FDI_MPHY_IOSFSB_RESET_STATUS, 100))
  4427. DRM_ERROR("FDI mPHY reset assert timeout\n");
  4428. tmp = I915_READ(SOUTH_CHICKEN2);
  4429. tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
  4430. I915_WRITE(SOUTH_CHICKEN2, tmp);
  4431. if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
  4432. FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
  4433. DRM_ERROR("FDI mPHY reset de-assert timeout\n");
  4434. }
  4435. /* WaMPhyProgramming:hsw */
  4436. static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
  4437. {
  4438. uint32_t tmp;
  4439. tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
  4440. tmp &= ~(0xFF << 24);
  4441. tmp |= (0x12 << 24);
  4442. intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
  4443. tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
  4444. tmp |= (1 << 11);
  4445. intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
  4446. tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
  4447. tmp |= (1 << 11);
  4448. intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
  4449. tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
  4450. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4451. intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
  4452. tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
  4453. tmp |= (1 << 24) | (1 << 21) | (1 << 18);
  4454. intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
  4455. tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
  4456. tmp &= ~(7 << 13);
  4457. tmp |= (5 << 13);
  4458. intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
  4459. tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
  4460. tmp &= ~(7 << 13);
  4461. tmp |= (5 << 13);
  4462. intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
  4463. tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
  4464. tmp &= ~0xFF;
  4465. tmp |= 0x1C;
  4466. intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
  4467. tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
  4468. tmp &= ~0xFF;
  4469. tmp |= 0x1C;
  4470. intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
  4471. tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
  4472. tmp &= ~(0xFF << 16);
  4473. tmp |= (0x1C << 16);
  4474. intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
  4475. tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
  4476. tmp &= ~(0xFF << 16);
  4477. tmp |= (0x1C << 16);
  4478. intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
  4479. tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
  4480. tmp |= (1 << 27);
  4481. intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
  4482. tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
  4483. tmp |= (1 << 27);
  4484. intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
  4485. tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
  4486. tmp &= ~(0xF << 28);
  4487. tmp |= (4 << 28);
  4488. intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
  4489. tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
  4490. tmp &= ~(0xF << 28);
  4491. tmp |= (4 << 28);
  4492. intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
  4493. }
  4494. /* Implements 3 different sequences from BSpec chapter "Display iCLK
  4495. * Programming" based on the parameters passed:
  4496. * - Sequence to enable CLKOUT_DP
  4497. * - Sequence to enable CLKOUT_DP without spread
  4498. * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
  4499. */
  4500. static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
  4501. bool with_fdi)
  4502. {
  4503. struct drm_i915_private *dev_priv = dev->dev_private;
  4504. uint32_t reg, tmp;
  4505. if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
  4506. with_spread = true;
  4507. if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
  4508. with_fdi, "LP PCH doesn't have FDI\n"))
  4509. with_fdi = false;
  4510. mutex_lock(&dev_priv->dpio_lock);
  4511. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4512. tmp &= ~SBI_SSCCTL_DISABLE;
  4513. tmp |= SBI_SSCCTL_PATHALT;
  4514. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4515. udelay(24);
  4516. if (with_spread) {
  4517. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4518. tmp &= ~SBI_SSCCTL_PATHALT;
  4519. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4520. if (with_fdi) {
  4521. lpt_reset_fdi_mphy(dev_priv);
  4522. lpt_program_fdi_mphy(dev_priv);
  4523. }
  4524. }
  4525. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4526. SBI_GEN0 : SBI_DBUFF0;
  4527. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4528. tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4529. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4530. mutex_unlock(&dev_priv->dpio_lock);
  4531. }
  4532. /* Sequence to disable CLKOUT_DP */
  4533. static void lpt_disable_clkout_dp(struct drm_device *dev)
  4534. {
  4535. struct drm_i915_private *dev_priv = dev->dev_private;
  4536. uint32_t reg, tmp;
  4537. mutex_lock(&dev_priv->dpio_lock);
  4538. reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
  4539. SBI_GEN0 : SBI_DBUFF0;
  4540. tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
  4541. tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
  4542. intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
  4543. tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
  4544. if (!(tmp & SBI_SSCCTL_DISABLE)) {
  4545. if (!(tmp & SBI_SSCCTL_PATHALT)) {
  4546. tmp |= SBI_SSCCTL_PATHALT;
  4547. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4548. udelay(32);
  4549. }
  4550. tmp |= SBI_SSCCTL_DISABLE;
  4551. intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
  4552. }
  4553. mutex_unlock(&dev_priv->dpio_lock);
  4554. }
  4555. static void lpt_init_pch_refclk(struct drm_device *dev)
  4556. {
  4557. struct drm_mode_config *mode_config = &dev->mode_config;
  4558. struct intel_encoder *encoder;
  4559. bool has_vga = false;
  4560. list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
  4561. switch (encoder->type) {
  4562. case INTEL_OUTPUT_ANALOG:
  4563. has_vga = true;
  4564. break;
  4565. }
  4566. }
  4567. if (has_vga)
  4568. lpt_enable_clkout_dp(dev, true, true);
  4569. else
  4570. lpt_disable_clkout_dp(dev);
  4571. }
  4572. /*
  4573. * Initialize reference clocks when the driver loads
  4574. */
  4575. void intel_init_pch_refclk(struct drm_device *dev)
  4576. {
  4577. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  4578. ironlake_init_pch_refclk(dev);
  4579. else if (HAS_PCH_LPT(dev))
  4580. lpt_init_pch_refclk(dev);
  4581. }
  4582. static int ironlake_get_refclk(struct drm_crtc *crtc)
  4583. {
  4584. struct drm_device *dev = crtc->dev;
  4585. struct drm_i915_private *dev_priv = dev->dev_private;
  4586. struct intel_encoder *encoder;
  4587. int num_connectors = 0;
  4588. bool is_lvds = false;
  4589. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4590. switch (encoder->type) {
  4591. case INTEL_OUTPUT_LVDS:
  4592. is_lvds = true;
  4593. break;
  4594. }
  4595. num_connectors++;
  4596. }
  4597. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  4598. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  4599. dev_priv->vbt.lvds_ssc_freq);
  4600. return dev_priv->vbt.lvds_ssc_freq * 1000;
  4601. }
  4602. return 120000;
  4603. }
  4604. static void ironlake_set_pipeconf(struct drm_crtc *crtc)
  4605. {
  4606. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4607. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4608. int pipe = intel_crtc->pipe;
  4609. uint32_t val;
  4610. val = 0;
  4611. switch (intel_crtc->config.pipe_bpp) {
  4612. case 18:
  4613. val |= PIPECONF_6BPC;
  4614. break;
  4615. case 24:
  4616. val |= PIPECONF_8BPC;
  4617. break;
  4618. case 30:
  4619. val |= PIPECONF_10BPC;
  4620. break;
  4621. case 36:
  4622. val |= PIPECONF_12BPC;
  4623. break;
  4624. default:
  4625. /* Case prevented by intel_choose_pipe_bpp_dither. */
  4626. BUG();
  4627. }
  4628. if (intel_crtc->config.dither)
  4629. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4630. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4631. val |= PIPECONF_INTERLACED_ILK;
  4632. else
  4633. val |= PIPECONF_PROGRESSIVE;
  4634. if (intel_crtc->config.limited_color_range)
  4635. val |= PIPECONF_COLOR_RANGE_SELECT;
  4636. I915_WRITE(PIPECONF(pipe), val);
  4637. POSTING_READ(PIPECONF(pipe));
  4638. }
  4639. /*
  4640. * Set up the pipe CSC unit.
  4641. *
  4642. * Currently only full range RGB to limited range RGB conversion
  4643. * is supported, but eventually this should handle various
  4644. * RGB<->YCbCr scenarios as well.
  4645. */
  4646. static void intel_set_pipe_csc(struct drm_crtc *crtc)
  4647. {
  4648. struct drm_device *dev = crtc->dev;
  4649. struct drm_i915_private *dev_priv = dev->dev_private;
  4650. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4651. int pipe = intel_crtc->pipe;
  4652. uint16_t coeff = 0x7800; /* 1.0 */
  4653. /*
  4654. * TODO: Check what kind of values actually come out of the pipe
  4655. * with these coeff/postoff values and adjust to get the best
  4656. * accuracy. Perhaps we even need to take the bpc value into
  4657. * consideration.
  4658. */
  4659. if (intel_crtc->config.limited_color_range)
  4660. coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
  4661. /*
  4662. * GY/GU and RY/RU should be the other way around according
  4663. * to BSpec, but reality doesn't agree. Just set them up in
  4664. * a way that results in the correct picture.
  4665. */
  4666. I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
  4667. I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
  4668. I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
  4669. I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
  4670. I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
  4671. I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
  4672. I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
  4673. I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
  4674. I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
  4675. if (INTEL_INFO(dev)->gen > 6) {
  4676. uint16_t postoff = 0;
  4677. if (intel_crtc->config.limited_color_range)
  4678. postoff = (16 * (1 << 13) / 255) & 0x1fff;
  4679. I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
  4680. I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
  4681. I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
  4682. I915_WRITE(PIPE_CSC_MODE(pipe), 0);
  4683. } else {
  4684. uint32_t mode = CSC_MODE_YUV_TO_RGB;
  4685. if (intel_crtc->config.limited_color_range)
  4686. mode |= CSC_BLACK_SCREEN_OFFSET;
  4687. I915_WRITE(PIPE_CSC_MODE(pipe), mode);
  4688. }
  4689. }
  4690. static void haswell_set_pipeconf(struct drm_crtc *crtc)
  4691. {
  4692. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  4693. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4694. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  4695. uint32_t val;
  4696. val = 0;
  4697. if (intel_crtc->config.dither)
  4698. val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
  4699. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
  4700. val |= PIPECONF_INTERLACED_ILK;
  4701. else
  4702. val |= PIPECONF_PROGRESSIVE;
  4703. I915_WRITE(PIPECONF(cpu_transcoder), val);
  4704. POSTING_READ(PIPECONF(cpu_transcoder));
  4705. I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
  4706. POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
  4707. }
  4708. static bool ironlake_compute_clocks(struct drm_crtc *crtc,
  4709. intel_clock_t *clock,
  4710. bool *has_reduced_clock,
  4711. intel_clock_t *reduced_clock)
  4712. {
  4713. struct drm_device *dev = crtc->dev;
  4714. struct drm_i915_private *dev_priv = dev->dev_private;
  4715. struct intel_encoder *intel_encoder;
  4716. int refclk;
  4717. const intel_limit_t *limit;
  4718. bool ret, is_lvds = false;
  4719. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4720. switch (intel_encoder->type) {
  4721. case INTEL_OUTPUT_LVDS:
  4722. is_lvds = true;
  4723. break;
  4724. }
  4725. }
  4726. refclk = ironlake_get_refclk(crtc);
  4727. /*
  4728. * Returns a set of divisors for the desired target clock with the given
  4729. * refclk, or FALSE. The returned values represent the clock equation:
  4730. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  4731. */
  4732. limit = intel_limit(crtc, refclk);
  4733. ret = dev_priv->display.find_dpll(limit, crtc,
  4734. to_intel_crtc(crtc)->config.port_clock,
  4735. refclk, NULL, clock);
  4736. if (!ret)
  4737. return false;
  4738. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4739. /*
  4740. * Ensure we match the reduced clock's P to the target clock.
  4741. * If the clocks don't match, we can't switch the display clock
  4742. * by using the FP0/FP1. In such case we will disable the LVDS
  4743. * downclock feature.
  4744. */
  4745. *has_reduced_clock =
  4746. dev_priv->display.find_dpll(limit, crtc,
  4747. dev_priv->lvds_downclock,
  4748. refclk, clock,
  4749. reduced_clock);
  4750. }
  4751. return true;
  4752. }
  4753. static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
  4754. {
  4755. struct drm_i915_private *dev_priv = dev->dev_private;
  4756. uint32_t temp;
  4757. temp = I915_READ(SOUTH_CHICKEN1);
  4758. if (temp & FDI_BC_BIFURCATION_SELECT)
  4759. return;
  4760. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
  4761. WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
  4762. temp |= FDI_BC_BIFURCATION_SELECT;
  4763. DRM_DEBUG_KMS("enabling fdi C rx\n");
  4764. I915_WRITE(SOUTH_CHICKEN1, temp);
  4765. POSTING_READ(SOUTH_CHICKEN1);
  4766. }
  4767. static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
  4768. {
  4769. struct drm_device *dev = intel_crtc->base.dev;
  4770. struct drm_i915_private *dev_priv = dev->dev_private;
  4771. switch (intel_crtc->pipe) {
  4772. case PIPE_A:
  4773. break;
  4774. case PIPE_B:
  4775. if (intel_crtc->config.fdi_lanes > 2)
  4776. WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
  4777. else
  4778. cpt_enable_fdi_bc_bifurcation(dev);
  4779. break;
  4780. case PIPE_C:
  4781. cpt_enable_fdi_bc_bifurcation(dev);
  4782. break;
  4783. default:
  4784. BUG();
  4785. }
  4786. }
  4787. int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
  4788. {
  4789. /*
  4790. * Account for spread spectrum to avoid
  4791. * oversubscribing the link. Max center spread
  4792. * is 2.5%; use 5% for safety's sake.
  4793. */
  4794. u32 bps = target_clock * bpp * 21 / 20;
  4795. return bps / (link_bw * 8) + 1;
  4796. }
  4797. static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
  4798. {
  4799. return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
  4800. }
  4801. static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
  4802. u32 *fp,
  4803. intel_clock_t *reduced_clock, u32 *fp2)
  4804. {
  4805. struct drm_crtc *crtc = &intel_crtc->base;
  4806. struct drm_device *dev = crtc->dev;
  4807. struct drm_i915_private *dev_priv = dev->dev_private;
  4808. struct intel_encoder *intel_encoder;
  4809. uint32_t dpll;
  4810. int factor, num_connectors = 0;
  4811. bool is_lvds = false, is_sdvo = false;
  4812. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  4813. switch (intel_encoder->type) {
  4814. case INTEL_OUTPUT_LVDS:
  4815. is_lvds = true;
  4816. break;
  4817. case INTEL_OUTPUT_SDVO:
  4818. case INTEL_OUTPUT_HDMI:
  4819. is_sdvo = true;
  4820. break;
  4821. }
  4822. num_connectors++;
  4823. }
  4824. /* Enable autotuning of the PLL clock (if permissible) */
  4825. factor = 21;
  4826. if (is_lvds) {
  4827. if ((intel_panel_use_ssc(dev_priv) &&
  4828. dev_priv->vbt.lvds_ssc_freq == 100) ||
  4829. (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
  4830. factor = 25;
  4831. } else if (intel_crtc->config.sdvo_tv_clock)
  4832. factor = 20;
  4833. if (ironlake_needs_fb_cb_tune(&intel_crtc->config.dpll, factor))
  4834. *fp |= FP_CB_TUNE;
  4835. if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
  4836. *fp2 |= FP_CB_TUNE;
  4837. dpll = 0;
  4838. if (is_lvds)
  4839. dpll |= DPLLB_MODE_LVDS;
  4840. else
  4841. dpll |= DPLLB_MODE_DAC_SERIAL;
  4842. dpll |= (intel_crtc->config.pixel_multiplier - 1)
  4843. << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4844. if (is_sdvo)
  4845. dpll |= DPLL_SDVO_HIGH_SPEED;
  4846. if (intel_crtc->config.has_dp_encoder)
  4847. dpll |= DPLL_SDVO_HIGH_SPEED;
  4848. /* compute bitmask from p1 value */
  4849. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4850. /* also FPA1 */
  4851. dpll |= (1 << (intel_crtc->config.dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4852. switch (intel_crtc->config.dpll.p2) {
  4853. case 5:
  4854. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4855. break;
  4856. case 7:
  4857. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4858. break;
  4859. case 10:
  4860. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4861. break;
  4862. case 14:
  4863. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4864. break;
  4865. }
  4866. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4867. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4868. else
  4869. dpll |= PLL_REF_INPUT_DREFCLK;
  4870. return dpll | DPLL_VCO_ENABLE;
  4871. }
  4872. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  4873. int x, int y,
  4874. struct drm_framebuffer *fb)
  4875. {
  4876. struct drm_device *dev = crtc->dev;
  4877. struct drm_i915_private *dev_priv = dev->dev_private;
  4878. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4879. int pipe = intel_crtc->pipe;
  4880. int plane = intel_crtc->plane;
  4881. int num_connectors = 0;
  4882. intel_clock_t clock, reduced_clock;
  4883. u32 dpll = 0, fp = 0, fp2 = 0;
  4884. bool ok, has_reduced_clock = false;
  4885. bool is_lvds = false;
  4886. struct intel_encoder *encoder;
  4887. struct intel_shared_dpll *pll;
  4888. int ret;
  4889. for_each_encoder_on_crtc(dev, crtc, encoder) {
  4890. switch (encoder->type) {
  4891. case INTEL_OUTPUT_LVDS:
  4892. is_lvds = true;
  4893. break;
  4894. }
  4895. num_connectors++;
  4896. }
  4897. WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
  4898. "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
  4899. ok = ironlake_compute_clocks(crtc, &clock,
  4900. &has_reduced_clock, &reduced_clock);
  4901. if (!ok && !intel_crtc->config.clock_set) {
  4902. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4903. return -EINVAL;
  4904. }
  4905. /* Compat-code for transition, will disappear. */
  4906. if (!intel_crtc->config.clock_set) {
  4907. intel_crtc->config.dpll.n = clock.n;
  4908. intel_crtc->config.dpll.m1 = clock.m1;
  4909. intel_crtc->config.dpll.m2 = clock.m2;
  4910. intel_crtc->config.dpll.p1 = clock.p1;
  4911. intel_crtc->config.dpll.p2 = clock.p2;
  4912. }
  4913. /* Ensure that the cursor is valid for the new mode before changing... */
  4914. intel_crtc_update_cursor(crtc, true);
  4915. /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
  4916. if (intel_crtc->config.has_pch_encoder) {
  4917. fp = i9xx_dpll_compute_fp(&intel_crtc->config.dpll);
  4918. if (has_reduced_clock)
  4919. fp2 = i9xx_dpll_compute_fp(&reduced_clock);
  4920. dpll = ironlake_compute_dpll(intel_crtc,
  4921. &fp, &reduced_clock,
  4922. has_reduced_clock ? &fp2 : NULL);
  4923. intel_crtc->config.dpll_hw_state.dpll = dpll;
  4924. intel_crtc->config.dpll_hw_state.fp0 = fp;
  4925. if (has_reduced_clock)
  4926. intel_crtc->config.dpll_hw_state.fp1 = fp2;
  4927. else
  4928. intel_crtc->config.dpll_hw_state.fp1 = fp;
  4929. pll = intel_get_shared_dpll(intel_crtc);
  4930. if (pll == NULL) {
  4931. DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
  4932. pipe_name(pipe));
  4933. return -EINVAL;
  4934. }
  4935. } else
  4936. intel_put_shared_dpll(intel_crtc);
  4937. if (intel_crtc->config.has_dp_encoder)
  4938. intel_dp_set_m_n(intel_crtc);
  4939. if (is_lvds && has_reduced_clock && i915_powersave)
  4940. intel_crtc->lowfreq_avail = true;
  4941. else
  4942. intel_crtc->lowfreq_avail = false;
  4943. if (intel_crtc->config.has_pch_encoder) {
  4944. pll = intel_crtc_to_shared_dpll(intel_crtc);
  4945. }
  4946. intel_set_pipe_timings(intel_crtc);
  4947. if (intel_crtc->config.has_pch_encoder) {
  4948. intel_cpu_transcoder_set_m_n(intel_crtc,
  4949. &intel_crtc->config.fdi_m_n);
  4950. }
  4951. if (IS_IVYBRIDGE(dev))
  4952. ivybridge_update_fdi_bc_bifurcation(intel_crtc);
  4953. ironlake_set_pipeconf(crtc);
  4954. /* Set up the display plane register */
  4955. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
  4956. POSTING_READ(DSPCNTR(plane));
  4957. ret = intel_pipe_set_base(crtc, x, y, fb);
  4958. return ret;
  4959. }
  4960. static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
  4961. struct intel_link_m_n *m_n)
  4962. {
  4963. struct drm_device *dev = crtc->base.dev;
  4964. struct drm_i915_private *dev_priv = dev->dev_private;
  4965. enum pipe pipe = crtc->pipe;
  4966. m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
  4967. m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
  4968. m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
  4969. & ~TU_SIZE_MASK;
  4970. m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
  4971. m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
  4972. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4973. }
  4974. static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
  4975. enum transcoder transcoder,
  4976. struct intel_link_m_n *m_n)
  4977. {
  4978. struct drm_device *dev = crtc->base.dev;
  4979. struct drm_i915_private *dev_priv = dev->dev_private;
  4980. enum pipe pipe = crtc->pipe;
  4981. if (INTEL_INFO(dev)->gen >= 5) {
  4982. m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
  4983. m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
  4984. m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
  4985. & ~TU_SIZE_MASK;
  4986. m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
  4987. m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
  4988. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4989. } else {
  4990. m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
  4991. m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
  4992. m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
  4993. & ~TU_SIZE_MASK;
  4994. m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
  4995. m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
  4996. & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
  4997. }
  4998. }
  4999. void intel_dp_get_m_n(struct intel_crtc *crtc,
  5000. struct intel_crtc_config *pipe_config)
  5001. {
  5002. if (crtc->config.has_pch_encoder)
  5003. intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
  5004. else
  5005. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5006. &pipe_config->dp_m_n);
  5007. }
  5008. static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
  5009. struct intel_crtc_config *pipe_config)
  5010. {
  5011. intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
  5012. &pipe_config->fdi_m_n);
  5013. }
  5014. static void ironlake_get_pfit_config(struct intel_crtc *crtc,
  5015. struct intel_crtc_config *pipe_config)
  5016. {
  5017. struct drm_device *dev = crtc->base.dev;
  5018. struct drm_i915_private *dev_priv = dev->dev_private;
  5019. uint32_t tmp;
  5020. tmp = I915_READ(PF_CTL(crtc->pipe));
  5021. if (tmp & PF_ENABLE) {
  5022. pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
  5023. pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
  5024. /* We currently do not free assignements of panel fitters on
  5025. * ivb/hsw (since we don't use the higher upscaling modes which
  5026. * differentiates them) so just WARN about this case for now. */
  5027. if (IS_GEN7(dev)) {
  5028. WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
  5029. PF_PIPE_SEL_IVB(crtc->pipe));
  5030. }
  5031. }
  5032. }
  5033. static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
  5034. struct intel_crtc_config *pipe_config)
  5035. {
  5036. struct drm_device *dev = crtc->base.dev;
  5037. struct drm_i915_private *dev_priv = dev->dev_private;
  5038. uint32_t tmp;
  5039. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5040. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5041. tmp = I915_READ(PIPECONF(crtc->pipe));
  5042. if (!(tmp & PIPECONF_ENABLE))
  5043. return false;
  5044. switch (tmp & PIPECONF_BPC_MASK) {
  5045. case PIPECONF_6BPC:
  5046. pipe_config->pipe_bpp = 18;
  5047. break;
  5048. case PIPECONF_8BPC:
  5049. pipe_config->pipe_bpp = 24;
  5050. break;
  5051. case PIPECONF_10BPC:
  5052. pipe_config->pipe_bpp = 30;
  5053. break;
  5054. case PIPECONF_12BPC:
  5055. pipe_config->pipe_bpp = 36;
  5056. break;
  5057. default:
  5058. break;
  5059. }
  5060. if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
  5061. struct intel_shared_dpll *pll;
  5062. pipe_config->has_pch_encoder = true;
  5063. tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
  5064. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5065. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5066. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5067. if (HAS_PCH_IBX(dev_priv->dev)) {
  5068. pipe_config->shared_dpll =
  5069. (enum intel_dpll_id) crtc->pipe;
  5070. } else {
  5071. tmp = I915_READ(PCH_DPLL_SEL);
  5072. if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
  5073. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
  5074. else
  5075. pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
  5076. }
  5077. pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
  5078. WARN_ON(!pll->get_hw_state(dev_priv, pll,
  5079. &pipe_config->dpll_hw_state));
  5080. tmp = pipe_config->dpll_hw_state.dpll;
  5081. pipe_config->pixel_multiplier =
  5082. ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
  5083. >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
  5084. ironlake_pch_clock_get(crtc, pipe_config);
  5085. } else {
  5086. pipe_config->pixel_multiplier = 1;
  5087. }
  5088. intel_get_pipe_timings(crtc, pipe_config);
  5089. ironlake_get_pfit_config(crtc, pipe_config);
  5090. return true;
  5091. }
  5092. static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
  5093. {
  5094. struct drm_device *dev = dev_priv->dev;
  5095. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  5096. struct intel_crtc *crtc;
  5097. unsigned long irqflags;
  5098. uint32_t val;
  5099. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5100. WARN(crtc->base.enabled, "CRTC for pipe %c enabled\n",
  5101. pipe_name(crtc->pipe));
  5102. WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
  5103. WARN(plls->spll_refcount, "SPLL enabled\n");
  5104. WARN(plls->wrpll1_refcount, "WRPLL1 enabled\n");
  5105. WARN(plls->wrpll2_refcount, "WRPLL2 enabled\n");
  5106. WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
  5107. WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
  5108. "CPU PWM1 enabled\n");
  5109. WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
  5110. "CPU PWM2 enabled\n");
  5111. WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
  5112. "PCH PWM1 enabled\n");
  5113. WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
  5114. "Utility pin enabled\n");
  5115. WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
  5116. spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
  5117. val = I915_READ(DEIMR);
  5118. WARN((val & ~DE_PCH_EVENT_IVB) != val,
  5119. "Unexpected DEIMR bits enabled: 0x%x\n", val);
  5120. val = I915_READ(SDEIMR);
  5121. WARN((val | SDE_HOTPLUG_MASK_CPT) != 0xffffffff,
  5122. "Unexpected SDEIMR bits enabled: 0x%x\n", val);
  5123. spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
  5124. }
  5125. /*
  5126. * This function implements pieces of two sequences from BSpec:
  5127. * - Sequence for display software to disable LCPLL
  5128. * - Sequence for display software to allow package C8+
  5129. * The steps implemented here are just the steps that actually touch the LCPLL
  5130. * register. Callers should take care of disabling all the display engine
  5131. * functions, doing the mode unset, fixing interrupts, etc.
  5132. */
  5133. void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
  5134. bool switch_to_fclk, bool allow_power_down)
  5135. {
  5136. uint32_t val;
  5137. assert_can_disable_lcpll(dev_priv);
  5138. val = I915_READ(LCPLL_CTL);
  5139. if (switch_to_fclk) {
  5140. val |= LCPLL_CD_SOURCE_FCLK;
  5141. I915_WRITE(LCPLL_CTL, val);
  5142. if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
  5143. LCPLL_CD_SOURCE_FCLK_DONE, 1))
  5144. DRM_ERROR("Switching to FCLK failed\n");
  5145. val = I915_READ(LCPLL_CTL);
  5146. }
  5147. val |= LCPLL_PLL_DISABLE;
  5148. I915_WRITE(LCPLL_CTL, val);
  5149. POSTING_READ(LCPLL_CTL);
  5150. if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
  5151. DRM_ERROR("LCPLL still locked\n");
  5152. val = I915_READ(D_COMP);
  5153. val |= D_COMP_COMP_DISABLE;
  5154. I915_WRITE(D_COMP, val);
  5155. POSTING_READ(D_COMP);
  5156. ndelay(100);
  5157. if (wait_for((I915_READ(D_COMP) & D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
  5158. DRM_ERROR("D_COMP RCOMP still in progress\n");
  5159. if (allow_power_down) {
  5160. val = I915_READ(LCPLL_CTL);
  5161. val |= LCPLL_POWER_DOWN_ALLOW;
  5162. I915_WRITE(LCPLL_CTL, val);
  5163. POSTING_READ(LCPLL_CTL);
  5164. }
  5165. }
  5166. /*
  5167. * Fully restores LCPLL, disallowing power down and switching back to LCPLL
  5168. * source.
  5169. */
  5170. void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
  5171. {
  5172. uint32_t val;
  5173. val = I915_READ(LCPLL_CTL);
  5174. if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
  5175. LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
  5176. return;
  5177. /* Make sure we're not on PC8 state before disabling PC8, otherwise
  5178. * we'll hang the machine! */
  5179. dev_priv->uncore.funcs.force_wake_get(dev_priv);
  5180. if (val & LCPLL_POWER_DOWN_ALLOW) {
  5181. val &= ~LCPLL_POWER_DOWN_ALLOW;
  5182. I915_WRITE(LCPLL_CTL, val);
  5183. POSTING_READ(LCPLL_CTL);
  5184. }
  5185. val = I915_READ(D_COMP);
  5186. val |= D_COMP_COMP_FORCE;
  5187. val &= ~D_COMP_COMP_DISABLE;
  5188. I915_WRITE(D_COMP, val);
  5189. POSTING_READ(D_COMP);
  5190. val = I915_READ(LCPLL_CTL);
  5191. val &= ~LCPLL_PLL_DISABLE;
  5192. I915_WRITE(LCPLL_CTL, val);
  5193. if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
  5194. DRM_ERROR("LCPLL not locked yet\n");
  5195. if (val & LCPLL_CD_SOURCE_FCLK) {
  5196. val = I915_READ(LCPLL_CTL);
  5197. val &= ~LCPLL_CD_SOURCE_FCLK;
  5198. I915_WRITE(LCPLL_CTL, val);
  5199. if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
  5200. LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
  5201. DRM_ERROR("Switching back to LCPLL failed\n");
  5202. }
  5203. dev_priv->uncore.funcs.force_wake_put(dev_priv);
  5204. }
  5205. void hsw_enable_pc8_work(struct work_struct *__work)
  5206. {
  5207. struct drm_i915_private *dev_priv =
  5208. container_of(to_delayed_work(__work), struct drm_i915_private,
  5209. pc8.enable_work);
  5210. struct drm_device *dev = dev_priv->dev;
  5211. uint32_t val;
  5212. if (dev_priv->pc8.enabled)
  5213. return;
  5214. DRM_DEBUG_KMS("Enabling package C8+\n");
  5215. dev_priv->pc8.enabled = true;
  5216. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5217. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5218. val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
  5219. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5220. }
  5221. lpt_disable_clkout_dp(dev);
  5222. hsw_pc8_disable_interrupts(dev);
  5223. hsw_disable_lcpll(dev_priv, true, true);
  5224. }
  5225. static void __hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5226. {
  5227. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5228. WARN(dev_priv->pc8.disable_count < 1,
  5229. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5230. dev_priv->pc8.disable_count--;
  5231. if (dev_priv->pc8.disable_count != 0)
  5232. return;
  5233. schedule_delayed_work(&dev_priv->pc8.enable_work,
  5234. msecs_to_jiffies(i915_pc8_timeout));
  5235. }
  5236. static void __hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5237. {
  5238. struct drm_device *dev = dev_priv->dev;
  5239. uint32_t val;
  5240. WARN_ON(!mutex_is_locked(&dev_priv->pc8.lock));
  5241. WARN(dev_priv->pc8.disable_count < 0,
  5242. "pc8.disable_count: %d\n", dev_priv->pc8.disable_count);
  5243. dev_priv->pc8.disable_count++;
  5244. if (dev_priv->pc8.disable_count != 1)
  5245. return;
  5246. cancel_delayed_work_sync(&dev_priv->pc8.enable_work);
  5247. if (!dev_priv->pc8.enabled)
  5248. return;
  5249. DRM_DEBUG_KMS("Disabling package C8+\n");
  5250. hsw_restore_lcpll(dev_priv);
  5251. hsw_pc8_restore_interrupts(dev);
  5252. lpt_init_pch_refclk(dev);
  5253. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
  5254. val = I915_READ(SOUTH_DSPCLK_GATE_D);
  5255. val |= PCH_LP_PARTITION_LEVEL_DISABLE;
  5256. I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
  5257. }
  5258. intel_prepare_ddi(dev);
  5259. i915_gem_init_swizzling(dev);
  5260. mutex_lock(&dev_priv->rps.hw_lock);
  5261. gen6_update_ring_freq(dev);
  5262. mutex_unlock(&dev_priv->rps.hw_lock);
  5263. dev_priv->pc8.enabled = false;
  5264. }
  5265. void hsw_enable_package_c8(struct drm_i915_private *dev_priv)
  5266. {
  5267. mutex_lock(&dev_priv->pc8.lock);
  5268. __hsw_enable_package_c8(dev_priv);
  5269. mutex_unlock(&dev_priv->pc8.lock);
  5270. }
  5271. void hsw_disable_package_c8(struct drm_i915_private *dev_priv)
  5272. {
  5273. mutex_lock(&dev_priv->pc8.lock);
  5274. __hsw_disable_package_c8(dev_priv);
  5275. mutex_unlock(&dev_priv->pc8.lock);
  5276. }
  5277. static bool hsw_can_enable_package_c8(struct drm_i915_private *dev_priv)
  5278. {
  5279. struct drm_device *dev = dev_priv->dev;
  5280. struct intel_crtc *crtc;
  5281. uint32_t val;
  5282. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head)
  5283. if (crtc->base.enabled)
  5284. return false;
  5285. /* This case is still possible since we have the i915.disable_power_well
  5286. * parameter and also the KVMr or something else might be requesting the
  5287. * power well. */
  5288. val = I915_READ(HSW_PWR_WELL_DRIVER);
  5289. if (val != 0) {
  5290. DRM_DEBUG_KMS("Not enabling PC8: power well on\n");
  5291. return false;
  5292. }
  5293. return true;
  5294. }
  5295. /* Since we're called from modeset_global_resources there's no way to
  5296. * symmetrically increase and decrease the refcount, so we use
  5297. * dev_priv->pc8.requirements_met to track whether we already have the refcount
  5298. * or not.
  5299. */
  5300. static void hsw_update_package_c8(struct drm_device *dev)
  5301. {
  5302. struct drm_i915_private *dev_priv = dev->dev_private;
  5303. bool allow;
  5304. if (!i915_enable_pc8)
  5305. return;
  5306. mutex_lock(&dev_priv->pc8.lock);
  5307. allow = hsw_can_enable_package_c8(dev_priv);
  5308. if (allow == dev_priv->pc8.requirements_met)
  5309. goto done;
  5310. dev_priv->pc8.requirements_met = allow;
  5311. if (allow)
  5312. __hsw_enable_package_c8(dev_priv);
  5313. else
  5314. __hsw_disable_package_c8(dev_priv);
  5315. done:
  5316. mutex_unlock(&dev_priv->pc8.lock);
  5317. }
  5318. static void hsw_package_c8_gpu_idle(struct drm_i915_private *dev_priv)
  5319. {
  5320. if (!dev_priv->pc8.gpu_idle) {
  5321. dev_priv->pc8.gpu_idle = true;
  5322. hsw_enable_package_c8(dev_priv);
  5323. }
  5324. }
  5325. static void hsw_package_c8_gpu_busy(struct drm_i915_private *dev_priv)
  5326. {
  5327. if (dev_priv->pc8.gpu_idle) {
  5328. dev_priv->pc8.gpu_idle = false;
  5329. hsw_disable_package_c8(dev_priv);
  5330. }
  5331. }
  5332. static void haswell_modeset_global_resources(struct drm_device *dev)
  5333. {
  5334. bool enable = false;
  5335. struct intel_crtc *crtc;
  5336. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  5337. if (!crtc->base.enabled)
  5338. continue;
  5339. if (crtc->pipe != PIPE_A || crtc->config.pch_pfit.size ||
  5340. crtc->config.cpu_transcoder != TRANSCODER_EDP)
  5341. enable = true;
  5342. }
  5343. intel_set_power_well(dev, enable);
  5344. hsw_update_package_c8(dev);
  5345. }
  5346. static int haswell_crtc_mode_set(struct drm_crtc *crtc,
  5347. int x, int y,
  5348. struct drm_framebuffer *fb)
  5349. {
  5350. struct drm_device *dev = crtc->dev;
  5351. struct drm_i915_private *dev_priv = dev->dev_private;
  5352. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5353. int plane = intel_crtc->plane;
  5354. int ret;
  5355. if (!intel_ddi_pll_mode_set(crtc))
  5356. return -EINVAL;
  5357. /* Ensure that the cursor is valid for the new mode before changing... */
  5358. intel_crtc_update_cursor(crtc, true);
  5359. if (intel_crtc->config.has_dp_encoder)
  5360. intel_dp_set_m_n(intel_crtc);
  5361. intel_crtc->lowfreq_avail = false;
  5362. intel_set_pipe_timings(intel_crtc);
  5363. if (intel_crtc->config.has_pch_encoder) {
  5364. intel_cpu_transcoder_set_m_n(intel_crtc,
  5365. &intel_crtc->config.fdi_m_n);
  5366. }
  5367. haswell_set_pipeconf(crtc);
  5368. intel_set_pipe_csc(crtc);
  5369. /* Set up the display plane register */
  5370. I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE | DISPPLANE_PIPE_CSC_ENABLE);
  5371. POSTING_READ(DSPCNTR(plane));
  5372. ret = intel_pipe_set_base(crtc, x, y, fb);
  5373. return ret;
  5374. }
  5375. static bool haswell_get_pipe_config(struct intel_crtc *crtc,
  5376. struct intel_crtc_config *pipe_config)
  5377. {
  5378. struct drm_device *dev = crtc->base.dev;
  5379. struct drm_i915_private *dev_priv = dev->dev_private;
  5380. enum intel_display_power_domain pfit_domain;
  5381. uint32_t tmp;
  5382. pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
  5383. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  5384. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  5385. if (tmp & TRANS_DDI_FUNC_ENABLE) {
  5386. enum pipe trans_edp_pipe;
  5387. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  5388. default:
  5389. WARN(1, "unknown pipe linked to edp transcoder\n");
  5390. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  5391. case TRANS_DDI_EDP_INPUT_A_ON:
  5392. trans_edp_pipe = PIPE_A;
  5393. break;
  5394. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  5395. trans_edp_pipe = PIPE_B;
  5396. break;
  5397. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  5398. trans_edp_pipe = PIPE_C;
  5399. break;
  5400. }
  5401. if (trans_edp_pipe == crtc->pipe)
  5402. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  5403. }
  5404. if (!intel_display_power_enabled(dev,
  5405. POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
  5406. return false;
  5407. tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
  5408. if (!(tmp & PIPECONF_ENABLE))
  5409. return false;
  5410. /*
  5411. * Haswell has only FDI/PCH transcoder A. It is which is connected to
  5412. * DDI E. So just check whether this pipe is wired to DDI E and whether
  5413. * the PCH transcoder is on.
  5414. */
  5415. tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
  5416. if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(PORT_E) &&
  5417. I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
  5418. pipe_config->has_pch_encoder = true;
  5419. tmp = I915_READ(FDI_RX_CTL(PIPE_A));
  5420. pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
  5421. FDI_DP_PORT_WIDTH_SHIFT) + 1;
  5422. ironlake_get_fdi_m_n_config(crtc, pipe_config);
  5423. }
  5424. intel_get_pipe_timings(crtc, pipe_config);
  5425. pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
  5426. if (intel_display_power_enabled(dev, pfit_domain))
  5427. ironlake_get_pfit_config(crtc, pipe_config);
  5428. pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
  5429. (I915_READ(IPS_CTL) & IPS_ENABLE);
  5430. pipe_config->pixel_multiplier = 1;
  5431. return true;
  5432. }
  5433. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  5434. int x, int y,
  5435. struct drm_framebuffer *fb)
  5436. {
  5437. struct drm_device *dev = crtc->dev;
  5438. struct drm_i915_private *dev_priv = dev->dev_private;
  5439. struct intel_encoder *encoder;
  5440. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5441. struct drm_display_mode *mode = &intel_crtc->config.requested_mode;
  5442. int pipe = intel_crtc->pipe;
  5443. int ret;
  5444. drm_vblank_pre_modeset(dev, pipe);
  5445. ret = dev_priv->display.crtc_mode_set(crtc, x, y, fb);
  5446. drm_vblank_post_modeset(dev, pipe);
  5447. if (ret != 0)
  5448. return ret;
  5449. for_each_encoder_on_crtc(dev, crtc, encoder) {
  5450. DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
  5451. encoder->base.base.id,
  5452. drm_get_encoder_name(&encoder->base),
  5453. mode->base.id, mode->name);
  5454. encoder->mode_set(encoder);
  5455. }
  5456. return 0;
  5457. }
  5458. static bool intel_eld_uptodate(struct drm_connector *connector,
  5459. int reg_eldv, uint32_t bits_eldv,
  5460. int reg_elda, uint32_t bits_elda,
  5461. int reg_edid)
  5462. {
  5463. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5464. uint8_t *eld = connector->eld;
  5465. uint32_t i;
  5466. i = I915_READ(reg_eldv);
  5467. i &= bits_eldv;
  5468. if (!eld[0])
  5469. return !i;
  5470. if (!i)
  5471. return false;
  5472. i = I915_READ(reg_elda);
  5473. i &= ~bits_elda;
  5474. I915_WRITE(reg_elda, i);
  5475. for (i = 0; i < eld[2]; i++)
  5476. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  5477. return false;
  5478. return true;
  5479. }
  5480. static void g4x_write_eld(struct drm_connector *connector,
  5481. struct drm_crtc *crtc)
  5482. {
  5483. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5484. uint8_t *eld = connector->eld;
  5485. uint32_t eldv;
  5486. uint32_t len;
  5487. uint32_t i;
  5488. i = I915_READ(G4X_AUD_VID_DID);
  5489. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  5490. eldv = G4X_ELDV_DEVCL_DEVBLC;
  5491. else
  5492. eldv = G4X_ELDV_DEVCTG;
  5493. if (intel_eld_uptodate(connector,
  5494. G4X_AUD_CNTL_ST, eldv,
  5495. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  5496. G4X_HDMIW_HDMIEDID))
  5497. return;
  5498. i = I915_READ(G4X_AUD_CNTL_ST);
  5499. i &= ~(eldv | G4X_ELD_ADDR);
  5500. len = (i >> 9) & 0x1f; /* ELD buffer size */
  5501. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5502. if (!eld[0])
  5503. return;
  5504. len = min_t(uint8_t, eld[2], len);
  5505. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5506. for (i = 0; i < len; i++)
  5507. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  5508. i = I915_READ(G4X_AUD_CNTL_ST);
  5509. i |= eldv;
  5510. I915_WRITE(G4X_AUD_CNTL_ST, i);
  5511. }
  5512. static void haswell_write_eld(struct drm_connector *connector,
  5513. struct drm_crtc *crtc)
  5514. {
  5515. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5516. uint8_t *eld = connector->eld;
  5517. struct drm_device *dev = crtc->dev;
  5518. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5519. uint32_t eldv;
  5520. uint32_t i;
  5521. int len;
  5522. int pipe = to_intel_crtc(crtc)->pipe;
  5523. int tmp;
  5524. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  5525. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  5526. int aud_config = HSW_AUD_CFG(pipe);
  5527. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  5528. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  5529. /* Audio output enable */
  5530. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  5531. tmp = I915_READ(aud_cntrl_st2);
  5532. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  5533. I915_WRITE(aud_cntrl_st2, tmp);
  5534. /* Wait for 1 vertical blank */
  5535. intel_wait_for_vblank(dev, pipe);
  5536. /* Set ELD valid state */
  5537. tmp = I915_READ(aud_cntrl_st2);
  5538. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  5539. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  5540. I915_WRITE(aud_cntrl_st2, tmp);
  5541. tmp = I915_READ(aud_cntrl_st2);
  5542. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  5543. /* Enable HDMI mode */
  5544. tmp = I915_READ(aud_config);
  5545. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  5546. /* clear N_programing_enable and N_value_index */
  5547. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  5548. I915_WRITE(aud_config, tmp);
  5549. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5550. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  5551. intel_crtc->eld_vld = true;
  5552. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5553. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5554. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5555. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5556. } else
  5557. I915_WRITE(aud_config, 0);
  5558. if (intel_eld_uptodate(connector,
  5559. aud_cntrl_st2, eldv,
  5560. aud_cntl_st, IBX_ELD_ADDRESS,
  5561. hdmiw_hdmiedid))
  5562. return;
  5563. i = I915_READ(aud_cntrl_st2);
  5564. i &= ~eldv;
  5565. I915_WRITE(aud_cntrl_st2, i);
  5566. if (!eld[0])
  5567. return;
  5568. i = I915_READ(aud_cntl_st);
  5569. i &= ~IBX_ELD_ADDRESS;
  5570. I915_WRITE(aud_cntl_st, i);
  5571. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5572. DRM_DEBUG_DRIVER("port num:%d\n", i);
  5573. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5574. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5575. for (i = 0; i < len; i++)
  5576. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5577. i = I915_READ(aud_cntrl_st2);
  5578. i |= eldv;
  5579. I915_WRITE(aud_cntrl_st2, i);
  5580. }
  5581. static void ironlake_write_eld(struct drm_connector *connector,
  5582. struct drm_crtc *crtc)
  5583. {
  5584. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  5585. uint8_t *eld = connector->eld;
  5586. uint32_t eldv;
  5587. uint32_t i;
  5588. int len;
  5589. int hdmiw_hdmiedid;
  5590. int aud_config;
  5591. int aud_cntl_st;
  5592. int aud_cntrl_st2;
  5593. int pipe = to_intel_crtc(crtc)->pipe;
  5594. if (HAS_PCH_IBX(connector->dev)) {
  5595. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  5596. aud_config = IBX_AUD_CFG(pipe);
  5597. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  5598. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  5599. } else {
  5600. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  5601. aud_config = CPT_AUD_CFG(pipe);
  5602. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  5603. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  5604. }
  5605. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  5606. i = I915_READ(aud_cntl_st);
  5607. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  5608. if (!i) {
  5609. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  5610. /* operate blindly on all ports */
  5611. eldv = IBX_ELD_VALIDB;
  5612. eldv |= IBX_ELD_VALIDB << 4;
  5613. eldv |= IBX_ELD_VALIDB << 8;
  5614. } else {
  5615. DRM_DEBUG_DRIVER("ELD on port %c\n", port_name(i));
  5616. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  5617. }
  5618. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  5619. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  5620. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  5621. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  5622. } else
  5623. I915_WRITE(aud_config, 0);
  5624. if (intel_eld_uptodate(connector,
  5625. aud_cntrl_st2, eldv,
  5626. aud_cntl_st, IBX_ELD_ADDRESS,
  5627. hdmiw_hdmiedid))
  5628. return;
  5629. i = I915_READ(aud_cntrl_st2);
  5630. i &= ~eldv;
  5631. I915_WRITE(aud_cntrl_st2, i);
  5632. if (!eld[0])
  5633. return;
  5634. i = I915_READ(aud_cntl_st);
  5635. i &= ~IBX_ELD_ADDRESS;
  5636. I915_WRITE(aud_cntl_st, i);
  5637. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  5638. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  5639. for (i = 0; i < len; i++)
  5640. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  5641. i = I915_READ(aud_cntrl_st2);
  5642. i |= eldv;
  5643. I915_WRITE(aud_cntrl_st2, i);
  5644. }
  5645. void intel_write_eld(struct drm_encoder *encoder,
  5646. struct drm_display_mode *mode)
  5647. {
  5648. struct drm_crtc *crtc = encoder->crtc;
  5649. struct drm_connector *connector;
  5650. struct drm_device *dev = encoder->dev;
  5651. struct drm_i915_private *dev_priv = dev->dev_private;
  5652. connector = drm_select_eld(encoder, mode);
  5653. if (!connector)
  5654. return;
  5655. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  5656. connector->base.id,
  5657. drm_get_connector_name(connector),
  5658. connector->encoder->base.id,
  5659. drm_get_encoder_name(connector->encoder));
  5660. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  5661. if (dev_priv->display.write_eld)
  5662. dev_priv->display.write_eld(connector, crtc);
  5663. }
  5664. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  5665. void intel_crtc_load_lut(struct drm_crtc *crtc)
  5666. {
  5667. struct drm_device *dev = crtc->dev;
  5668. struct drm_i915_private *dev_priv = dev->dev_private;
  5669. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5670. enum pipe pipe = intel_crtc->pipe;
  5671. int palreg = PALETTE(pipe);
  5672. int i;
  5673. bool reenable_ips = false;
  5674. /* The clocks have to be on to load the palette. */
  5675. if (!crtc->enabled || !intel_crtc->active)
  5676. return;
  5677. if (!HAS_PCH_SPLIT(dev_priv->dev)) {
  5678. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
  5679. assert_dsi_pll_enabled(dev_priv);
  5680. else
  5681. assert_pll_enabled(dev_priv, pipe);
  5682. }
  5683. /* use legacy palette for Ironlake */
  5684. if (HAS_PCH_SPLIT(dev))
  5685. palreg = LGC_PALETTE(pipe);
  5686. /* Workaround : Do not read or write the pipe palette/gamma data while
  5687. * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
  5688. */
  5689. if (intel_crtc->config.ips_enabled &&
  5690. ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
  5691. GAMMA_MODE_MODE_SPLIT)) {
  5692. hsw_disable_ips(intel_crtc);
  5693. reenable_ips = true;
  5694. }
  5695. for (i = 0; i < 256; i++) {
  5696. I915_WRITE(palreg + 4 * i,
  5697. (intel_crtc->lut_r[i] << 16) |
  5698. (intel_crtc->lut_g[i] << 8) |
  5699. intel_crtc->lut_b[i]);
  5700. }
  5701. if (reenable_ips)
  5702. hsw_enable_ips(intel_crtc);
  5703. }
  5704. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  5705. {
  5706. struct drm_device *dev = crtc->dev;
  5707. struct drm_i915_private *dev_priv = dev->dev_private;
  5708. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5709. bool visible = base != 0;
  5710. u32 cntl;
  5711. if (intel_crtc->cursor_visible == visible)
  5712. return;
  5713. cntl = I915_READ(_CURACNTR);
  5714. if (visible) {
  5715. /* On these chipsets we can only modify the base whilst
  5716. * the cursor is disabled.
  5717. */
  5718. I915_WRITE(_CURABASE, base);
  5719. cntl &= ~(CURSOR_FORMAT_MASK);
  5720. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  5721. cntl |= CURSOR_ENABLE |
  5722. CURSOR_GAMMA_ENABLE |
  5723. CURSOR_FORMAT_ARGB;
  5724. } else
  5725. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  5726. I915_WRITE(_CURACNTR, cntl);
  5727. intel_crtc->cursor_visible = visible;
  5728. }
  5729. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  5730. {
  5731. struct drm_device *dev = crtc->dev;
  5732. struct drm_i915_private *dev_priv = dev->dev_private;
  5733. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5734. int pipe = intel_crtc->pipe;
  5735. bool visible = base != 0;
  5736. if (intel_crtc->cursor_visible != visible) {
  5737. uint32_t cntl = I915_READ(CURCNTR(pipe));
  5738. if (base) {
  5739. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  5740. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5741. cntl |= pipe << 28; /* Connect to correct pipe */
  5742. } else {
  5743. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5744. cntl |= CURSOR_MODE_DISABLE;
  5745. }
  5746. I915_WRITE(CURCNTR(pipe), cntl);
  5747. intel_crtc->cursor_visible = visible;
  5748. }
  5749. /* and commit changes on next vblank */
  5750. I915_WRITE(CURBASE(pipe), base);
  5751. }
  5752. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  5753. {
  5754. struct drm_device *dev = crtc->dev;
  5755. struct drm_i915_private *dev_priv = dev->dev_private;
  5756. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5757. int pipe = intel_crtc->pipe;
  5758. bool visible = base != 0;
  5759. if (intel_crtc->cursor_visible != visible) {
  5760. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  5761. if (base) {
  5762. cntl &= ~CURSOR_MODE;
  5763. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  5764. } else {
  5765. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  5766. cntl |= CURSOR_MODE_DISABLE;
  5767. }
  5768. if (IS_HASWELL(dev)) {
  5769. cntl |= CURSOR_PIPE_CSC_ENABLE;
  5770. cntl &= ~CURSOR_TRICKLE_FEED_DISABLE;
  5771. }
  5772. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  5773. intel_crtc->cursor_visible = visible;
  5774. }
  5775. /* and commit changes on next vblank */
  5776. I915_WRITE(CURBASE_IVB(pipe), base);
  5777. }
  5778. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  5779. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  5780. bool on)
  5781. {
  5782. struct drm_device *dev = crtc->dev;
  5783. struct drm_i915_private *dev_priv = dev->dev_private;
  5784. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5785. int pipe = intel_crtc->pipe;
  5786. int x = intel_crtc->cursor_x;
  5787. int y = intel_crtc->cursor_y;
  5788. u32 base, pos;
  5789. bool visible;
  5790. pos = 0;
  5791. if (on && crtc->enabled && crtc->fb) {
  5792. base = intel_crtc->cursor_addr;
  5793. if (x > (int) crtc->fb->width)
  5794. base = 0;
  5795. if (y > (int) crtc->fb->height)
  5796. base = 0;
  5797. } else
  5798. base = 0;
  5799. if (x < 0) {
  5800. if (x + intel_crtc->cursor_width < 0)
  5801. base = 0;
  5802. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  5803. x = -x;
  5804. }
  5805. pos |= x << CURSOR_X_SHIFT;
  5806. if (y < 0) {
  5807. if (y + intel_crtc->cursor_height < 0)
  5808. base = 0;
  5809. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  5810. y = -y;
  5811. }
  5812. pos |= y << CURSOR_Y_SHIFT;
  5813. visible = base != 0;
  5814. if (!visible && !intel_crtc->cursor_visible)
  5815. return;
  5816. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  5817. I915_WRITE(CURPOS_IVB(pipe), pos);
  5818. ivb_update_cursor(crtc, base);
  5819. } else {
  5820. I915_WRITE(CURPOS(pipe), pos);
  5821. if (IS_845G(dev) || IS_I865G(dev))
  5822. i845_update_cursor(crtc, base);
  5823. else
  5824. i9xx_update_cursor(crtc, base);
  5825. }
  5826. }
  5827. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  5828. struct drm_file *file,
  5829. uint32_t handle,
  5830. uint32_t width, uint32_t height)
  5831. {
  5832. struct drm_device *dev = crtc->dev;
  5833. struct drm_i915_private *dev_priv = dev->dev_private;
  5834. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5835. struct drm_i915_gem_object *obj;
  5836. uint32_t addr;
  5837. int ret;
  5838. /* if we want to turn off the cursor ignore width and height */
  5839. if (!handle) {
  5840. DRM_DEBUG_KMS("cursor off\n");
  5841. addr = 0;
  5842. obj = NULL;
  5843. mutex_lock(&dev->struct_mutex);
  5844. goto finish;
  5845. }
  5846. /* Currently we only support 64x64 cursors */
  5847. if (width != 64 || height != 64) {
  5848. DRM_ERROR("we currently only support 64x64 cursors\n");
  5849. return -EINVAL;
  5850. }
  5851. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  5852. if (&obj->base == NULL)
  5853. return -ENOENT;
  5854. if (obj->base.size < width * height * 4) {
  5855. DRM_ERROR("buffer is to small\n");
  5856. ret = -ENOMEM;
  5857. goto fail;
  5858. }
  5859. /* we only need to pin inside GTT if cursor is non-phy */
  5860. mutex_lock(&dev->struct_mutex);
  5861. if (!dev_priv->info->cursor_needs_physical) {
  5862. unsigned alignment;
  5863. if (obj->tiling_mode) {
  5864. DRM_ERROR("cursor cannot be tiled\n");
  5865. ret = -EINVAL;
  5866. goto fail_locked;
  5867. }
  5868. /* Note that the w/a also requires 2 PTE of padding following
  5869. * the bo. We currently fill all unused PTE with the shadow
  5870. * page and so we should always have valid PTE following the
  5871. * cursor preventing the VT-d warning.
  5872. */
  5873. alignment = 0;
  5874. if (need_vtd_wa(dev))
  5875. alignment = 64*1024;
  5876. ret = i915_gem_object_pin_to_display_plane(obj, alignment, NULL);
  5877. if (ret) {
  5878. DRM_ERROR("failed to move cursor bo into the GTT\n");
  5879. goto fail_locked;
  5880. }
  5881. ret = i915_gem_object_put_fence(obj);
  5882. if (ret) {
  5883. DRM_ERROR("failed to release fence for cursor");
  5884. goto fail_unpin;
  5885. }
  5886. addr = i915_gem_obj_ggtt_offset(obj);
  5887. } else {
  5888. int align = IS_I830(dev) ? 16 * 1024 : 256;
  5889. ret = i915_gem_attach_phys_object(dev, obj,
  5890. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  5891. align);
  5892. if (ret) {
  5893. DRM_ERROR("failed to attach phys object\n");
  5894. goto fail_locked;
  5895. }
  5896. addr = obj->phys_obj->handle->busaddr;
  5897. }
  5898. if (IS_GEN2(dev))
  5899. I915_WRITE(CURSIZE, (height << 12) | width);
  5900. finish:
  5901. if (intel_crtc->cursor_bo) {
  5902. if (dev_priv->info->cursor_needs_physical) {
  5903. if (intel_crtc->cursor_bo != obj)
  5904. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  5905. } else
  5906. i915_gem_object_unpin_from_display_plane(intel_crtc->cursor_bo);
  5907. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  5908. }
  5909. mutex_unlock(&dev->struct_mutex);
  5910. intel_crtc->cursor_addr = addr;
  5911. intel_crtc->cursor_bo = obj;
  5912. intel_crtc->cursor_width = width;
  5913. intel_crtc->cursor_height = height;
  5914. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5915. return 0;
  5916. fail_unpin:
  5917. i915_gem_object_unpin_from_display_plane(obj);
  5918. fail_locked:
  5919. mutex_unlock(&dev->struct_mutex);
  5920. fail:
  5921. drm_gem_object_unreference_unlocked(&obj->base);
  5922. return ret;
  5923. }
  5924. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  5925. {
  5926. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5927. intel_crtc->cursor_x = x;
  5928. intel_crtc->cursor_y = y;
  5929. intel_crtc_update_cursor(crtc, intel_crtc->cursor_bo != NULL);
  5930. return 0;
  5931. }
  5932. /** Sets the color ramps on behalf of RandR */
  5933. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  5934. u16 blue, int regno)
  5935. {
  5936. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5937. intel_crtc->lut_r[regno] = red >> 8;
  5938. intel_crtc->lut_g[regno] = green >> 8;
  5939. intel_crtc->lut_b[regno] = blue >> 8;
  5940. }
  5941. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  5942. u16 *blue, int regno)
  5943. {
  5944. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5945. *red = intel_crtc->lut_r[regno] << 8;
  5946. *green = intel_crtc->lut_g[regno] << 8;
  5947. *blue = intel_crtc->lut_b[regno] << 8;
  5948. }
  5949. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  5950. u16 *blue, uint32_t start, uint32_t size)
  5951. {
  5952. int end = (start + size > 256) ? 256 : start + size, i;
  5953. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5954. for (i = start; i < end; i++) {
  5955. intel_crtc->lut_r[i] = red[i] >> 8;
  5956. intel_crtc->lut_g[i] = green[i] >> 8;
  5957. intel_crtc->lut_b[i] = blue[i] >> 8;
  5958. }
  5959. intel_crtc_load_lut(crtc);
  5960. }
  5961. /* VESA 640x480x72Hz mode to set on the pipe */
  5962. static struct drm_display_mode load_detect_mode = {
  5963. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  5964. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  5965. };
  5966. static struct drm_framebuffer *
  5967. intel_framebuffer_create(struct drm_device *dev,
  5968. struct drm_mode_fb_cmd2 *mode_cmd,
  5969. struct drm_i915_gem_object *obj)
  5970. {
  5971. struct intel_framebuffer *intel_fb;
  5972. int ret;
  5973. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  5974. if (!intel_fb) {
  5975. drm_gem_object_unreference_unlocked(&obj->base);
  5976. return ERR_PTR(-ENOMEM);
  5977. }
  5978. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  5979. if (ret) {
  5980. drm_gem_object_unreference_unlocked(&obj->base);
  5981. kfree(intel_fb);
  5982. return ERR_PTR(ret);
  5983. }
  5984. return &intel_fb->base;
  5985. }
  5986. static u32
  5987. intel_framebuffer_pitch_for_width(int width, int bpp)
  5988. {
  5989. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  5990. return ALIGN(pitch, 64);
  5991. }
  5992. static u32
  5993. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  5994. {
  5995. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  5996. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  5997. }
  5998. static struct drm_framebuffer *
  5999. intel_framebuffer_create_for_mode(struct drm_device *dev,
  6000. struct drm_display_mode *mode,
  6001. int depth, int bpp)
  6002. {
  6003. struct drm_i915_gem_object *obj;
  6004. struct drm_mode_fb_cmd2 mode_cmd = { 0 };
  6005. obj = i915_gem_alloc_object(dev,
  6006. intel_framebuffer_size_for_mode(mode, bpp));
  6007. if (obj == NULL)
  6008. return ERR_PTR(-ENOMEM);
  6009. mode_cmd.width = mode->hdisplay;
  6010. mode_cmd.height = mode->vdisplay;
  6011. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  6012. bpp);
  6013. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  6014. return intel_framebuffer_create(dev, &mode_cmd, obj);
  6015. }
  6016. static struct drm_framebuffer *
  6017. mode_fits_in_fbdev(struct drm_device *dev,
  6018. struct drm_display_mode *mode)
  6019. {
  6020. struct drm_i915_private *dev_priv = dev->dev_private;
  6021. struct drm_i915_gem_object *obj;
  6022. struct drm_framebuffer *fb;
  6023. if (dev_priv->fbdev == NULL)
  6024. return NULL;
  6025. obj = dev_priv->fbdev->ifb.obj;
  6026. if (obj == NULL)
  6027. return NULL;
  6028. fb = &dev_priv->fbdev->ifb.base;
  6029. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  6030. fb->bits_per_pixel))
  6031. return NULL;
  6032. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  6033. return NULL;
  6034. return fb;
  6035. }
  6036. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  6037. struct drm_display_mode *mode,
  6038. struct intel_load_detect_pipe *old)
  6039. {
  6040. struct intel_crtc *intel_crtc;
  6041. struct intel_encoder *intel_encoder =
  6042. intel_attached_encoder(connector);
  6043. struct drm_crtc *possible_crtc;
  6044. struct drm_encoder *encoder = &intel_encoder->base;
  6045. struct drm_crtc *crtc = NULL;
  6046. struct drm_device *dev = encoder->dev;
  6047. struct drm_framebuffer *fb;
  6048. int i = -1;
  6049. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6050. connector->base.id, drm_get_connector_name(connector),
  6051. encoder->base.id, drm_get_encoder_name(encoder));
  6052. /*
  6053. * Algorithm gets a little messy:
  6054. *
  6055. * - if the connector already has an assigned crtc, use it (but make
  6056. * sure it's on first)
  6057. *
  6058. * - try to find the first unused crtc that can drive this connector,
  6059. * and use that if we find one
  6060. */
  6061. /* See if we already have a CRTC for this connector */
  6062. if (encoder->crtc) {
  6063. crtc = encoder->crtc;
  6064. mutex_lock(&crtc->mutex);
  6065. old->dpms_mode = connector->dpms;
  6066. old->load_detect_temp = false;
  6067. /* Make sure the crtc and connector are running */
  6068. if (connector->dpms != DRM_MODE_DPMS_ON)
  6069. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  6070. return true;
  6071. }
  6072. /* Find an unused one (if possible) */
  6073. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  6074. i++;
  6075. if (!(encoder->possible_crtcs & (1 << i)))
  6076. continue;
  6077. if (!possible_crtc->enabled) {
  6078. crtc = possible_crtc;
  6079. break;
  6080. }
  6081. }
  6082. /*
  6083. * If we didn't find an unused CRTC, don't use any.
  6084. */
  6085. if (!crtc) {
  6086. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  6087. return false;
  6088. }
  6089. mutex_lock(&crtc->mutex);
  6090. intel_encoder->new_crtc = to_intel_crtc(crtc);
  6091. to_intel_connector(connector)->new_encoder = intel_encoder;
  6092. intel_crtc = to_intel_crtc(crtc);
  6093. old->dpms_mode = connector->dpms;
  6094. old->load_detect_temp = true;
  6095. old->release_fb = NULL;
  6096. if (!mode)
  6097. mode = &load_detect_mode;
  6098. /* We need a framebuffer large enough to accommodate all accesses
  6099. * that the plane may generate whilst we perform load detection.
  6100. * We can not rely on the fbcon either being present (we get called
  6101. * during its initialisation to detect all boot displays, or it may
  6102. * not even exist) or that it is large enough to satisfy the
  6103. * requested mode.
  6104. */
  6105. fb = mode_fits_in_fbdev(dev, mode);
  6106. if (fb == NULL) {
  6107. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  6108. fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  6109. old->release_fb = fb;
  6110. } else
  6111. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  6112. if (IS_ERR(fb)) {
  6113. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  6114. mutex_unlock(&crtc->mutex);
  6115. return false;
  6116. }
  6117. if (intel_set_mode(crtc, mode, 0, 0, fb)) {
  6118. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  6119. if (old->release_fb)
  6120. old->release_fb->funcs->destroy(old->release_fb);
  6121. mutex_unlock(&crtc->mutex);
  6122. return false;
  6123. }
  6124. /* let the connector get through one full cycle before testing */
  6125. intel_wait_for_vblank(dev, intel_crtc->pipe);
  6126. return true;
  6127. }
  6128. void intel_release_load_detect_pipe(struct drm_connector *connector,
  6129. struct intel_load_detect_pipe *old)
  6130. {
  6131. struct intel_encoder *intel_encoder =
  6132. intel_attached_encoder(connector);
  6133. struct drm_encoder *encoder = &intel_encoder->base;
  6134. struct drm_crtc *crtc = encoder->crtc;
  6135. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  6136. connector->base.id, drm_get_connector_name(connector),
  6137. encoder->base.id, drm_get_encoder_name(encoder));
  6138. if (old->load_detect_temp) {
  6139. to_intel_connector(connector)->new_encoder = NULL;
  6140. intel_encoder->new_crtc = NULL;
  6141. intel_set_mode(crtc, NULL, 0, 0, NULL);
  6142. if (old->release_fb) {
  6143. drm_framebuffer_unregister_private(old->release_fb);
  6144. drm_framebuffer_unreference(old->release_fb);
  6145. }
  6146. mutex_unlock(&crtc->mutex);
  6147. return;
  6148. }
  6149. /* Switch crtc and encoder back off if necessary */
  6150. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  6151. connector->funcs->dpms(connector, old->dpms_mode);
  6152. mutex_unlock(&crtc->mutex);
  6153. }
  6154. static int i9xx_pll_refclk(struct drm_device *dev,
  6155. const struct intel_crtc_config *pipe_config)
  6156. {
  6157. struct drm_i915_private *dev_priv = dev->dev_private;
  6158. u32 dpll = pipe_config->dpll_hw_state.dpll;
  6159. if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
  6160. return dev_priv->vbt.lvds_ssc_freq * 1000;
  6161. else if (HAS_PCH_SPLIT(dev))
  6162. return 120000;
  6163. else if (!IS_GEN2(dev))
  6164. return 96000;
  6165. else
  6166. return 48000;
  6167. }
  6168. /* Returns the clock of the currently programmed mode of the given pipe. */
  6169. static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  6170. struct intel_crtc_config *pipe_config)
  6171. {
  6172. struct drm_device *dev = crtc->base.dev;
  6173. struct drm_i915_private *dev_priv = dev->dev_private;
  6174. int pipe = pipe_config->cpu_transcoder;
  6175. u32 dpll = pipe_config->dpll_hw_state.dpll;
  6176. u32 fp;
  6177. intel_clock_t clock;
  6178. int refclk = i9xx_pll_refclk(dev, pipe_config);
  6179. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  6180. fp = pipe_config->dpll_hw_state.fp0;
  6181. else
  6182. fp = pipe_config->dpll_hw_state.fp1;
  6183. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  6184. if (IS_PINEVIEW(dev)) {
  6185. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  6186. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6187. } else {
  6188. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  6189. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  6190. }
  6191. if (!IS_GEN2(dev)) {
  6192. if (IS_PINEVIEW(dev))
  6193. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  6194. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  6195. else
  6196. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  6197. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6198. switch (dpll & DPLL_MODE_MASK) {
  6199. case DPLLB_MODE_DAC_SERIAL:
  6200. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  6201. 5 : 10;
  6202. break;
  6203. case DPLLB_MODE_LVDS:
  6204. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  6205. 7 : 14;
  6206. break;
  6207. default:
  6208. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  6209. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  6210. return;
  6211. }
  6212. if (IS_PINEVIEW(dev))
  6213. pineview_clock(refclk, &clock);
  6214. else
  6215. i9xx_clock(refclk, &clock);
  6216. } else {
  6217. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  6218. if (is_lvds) {
  6219. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  6220. DPLL_FPA01_P1_POST_DIV_SHIFT);
  6221. clock.p2 = 14;
  6222. } else {
  6223. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  6224. clock.p1 = 2;
  6225. else {
  6226. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  6227. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  6228. }
  6229. if (dpll & PLL_P2_DIVIDE_BY_4)
  6230. clock.p2 = 4;
  6231. else
  6232. clock.p2 = 2;
  6233. }
  6234. i9xx_clock(refclk, &clock);
  6235. }
  6236. /*
  6237. * This value includes pixel_multiplier. We will use
  6238. * port_clock to compute adjusted_mode.clock in the
  6239. * encoder's get_config() function.
  6240. */
  6241. pipe_config->port_clock = clock.dot;
  6242. }
  6243. int intel_dotclock_calculate(int link_freq,
  6244. const struct intel_link_m_n *m_n)
  6245. {
  6246. /*
  6247. * The calculation for the data clock is:
  6248. * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
  6249. * But we want to avoid losing precison if possible, so:
  6250. * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
  6251. *
  6252. * and the link clock is simpler:
  6253. * link_clock = (m * link_clock) / n
  6254. */
  6255. if (!m_n->link_n)
  6256. return 0;
  6257. return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
  6258. }
  6259. static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  6260. struct intel_crtc_config *pipe_config)
  6261. {
  6262. struct drm_device *dev = crtc->base.dev;
  6263. /* read out port_clock from the DPLL */
  6264. i9xx_crtc_clock_get(crtc, pipe_config);
  6265. /*
  6266. * This value does not include pixel_multiplier.
  6267. * We will check that port_clock and adjusted_mode.clock
  6268. * agree once we know their relationship in the encoder's
  6269. * get_config() function.
  6270. */
  6271. pipe_config->adjusted_mode.clock =
  6272. intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
  6273. &pipe_config->fdi_m_n);
  6274. }
  6275. /** Returns the currently programmed mode of the given pipe. */
  6276. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  6277. struct drm_crtc *crtc)
  6278. {
  6279. struct drm_i915_private *dev_priv = dev->dev_private;
  6280. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6281. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  6282. struct drm_display_mode *mode;
  6283. struct intel_crtc_config pipe_config;
  6284. int htot = I915_READ(HTOTAL(cpu_transcoder));
  6285. int hsync = I915_READ(HSYNC(cpu_transcoder));
  6286. int vtot = I915_READ(VTOTAL(cpu_transcoder));
  6287. int vsync = I915_READ(VSYNC(cpu_transcoder));
  6288. enum pipe pipe = intel_crtc->pipe;
  6289. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  6290. if (!mode)
  6291. return NULL;
  6292. /*
  6293. * Construct a pipe_config sufficient for getting the clock info
  6294. * back out of crtc_clock_get.
  6295. *
  6296. * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
  6297. * to use a real value here instead.
  6298. */
  6299. pipe_config.cpu_transcoder = (enum transcoder) pipe;
  6300. pipe_config.pixel_multiplier = 1;
  6301. pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
  6302. pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
  6303. pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
  6304. i9xx_crtc_clock_get(intel_crtc, &pipe_config);
  6305. mode->clock = pipe_config.adjusted_mode.clock;
  6306. mode->hdisplay = (htot & 0xffff) + 1;
  6307. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  6308. mode->hsync_start = (hsync & 0xffff) + 1;
  6309. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  6310. mode->vdisplay = (vtot & 0xffff) + 1;
  6311. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  6312. mode->vsync_start = (vsync & 0xffff) + 1;
  6313. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  6314. drm_mode_set_name(mode);
  6315. return mode;
  6316. }
  6317. static void intel_increase_pllclock(struct drm_crtc *crtc)
  6318. {
  6319. struct drm_device *dev = crtc->dev;
  6320. drm_i915_private_t *dev_priv = dev->dev_private;
  6321. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6322. int pipe = intel_crtc->pipe;
  6323. int dpll_reg = DPLL(pipe);
  6324. int dpll;
  6325. if (HAS_PCH_SPLIT(dev))
  6326. return;
  6327. if (!dev_priv->lvds_downclock_avail)
  6328. return;
  6329. dpll = I915_READ(dpll_reg);
  6330. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  6331. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  6332. assert_panel_unlocked(dev_priv, pipe);
  6333. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  6334. I915_WRITE(dpll_reg, dpll);
  6335. intel_wait_for_vblank(dev, pipe);
  6336. dpll = I915_READ(dpll_reg);
  6337. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  6338. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  6339. }
  6340. }
  6341. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  6342. {
  6343. struct drm_device *dev = crtc->dev;
  6344. drm_i915_private_t *dev_priv = dev->dev_private;
  6345. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6346. if (HAS_PCH_SPLIT(dev))
  6347. return;
  6348. if (!dev_priv->lvds_downclock_avail)
  6349. return;
  6350. /*
  6351. * Since this is called by a timer, we should never get here in
  6352. * the manual case.
  6353. */
  6354. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  6355. int pipe = intel_crtc->pipe;
  6356. int dpll_reg = DPLL(pipe);
  6357. int dpll;
  6358. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  6359. assert_panel_unlocked(dev_priv, pipe);
  6360. dpll = I915_READ(dpll_reg);
  6361. dpll |= DISPLAY_RATE_SELECT_FPA1;
  6362. I915_WRITE(dpll_reg, dpll);
  6363. intel_wait_for_vblank(dev, pipe);
  6364. dpll = I915_READ(dpll_reg);
  6365. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  6366. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  6367. }
  6368. }
  6369. void intel_mark_busy(struct drm_device *dev)
  6370. {
  6371. struct drm_i915_private *dev_priv = dev->dev_private;
  6372. hsw_package_c8_gpu_busy(dev_priv);
  6373. i915_update_gfx_val(dev_priv);
  6374. }
  6375. void intel_mark_idle(struct drm_device *dev)
  6376. {
  6377. struct drm_i915_private *dev_priv = dev->dev_private;
  6378. struct drm_crtc *crtc;
  6379. hsw_package_c8_gpu_idle(dev_priv);
  6380. if (!i915_powersave)
  6381. return;
  6382. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6383. if (!crtc->fb)
  6384. continue;
  6385. intel_decrease_pllclock(crtc);
  6386. }
  6387. }
  6388. void intel_mark_fb_busy(struct drm_i915_gem_object *obj,
  6389. struct intel_ring_buffer *ring)
  6390. {
  6391. struct drm_device *dev = obj->base.dev;
  6392. struct drm_crtc *crtc;
  6393. if (!i915_powersave)
  6394. return;
  6395. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6396. if (!crtc->fb)
  6397. continue;
  6398. if (to_intel_framebuffer(crtc->fb)->obj != obj)
  6399. continue;
  6400. intel_increase_pllclock(crtc);
  6401. if (ring && intel_fbc_enabled(dev))
  6402. ring->fbc_dirty = true;
  6403. }
  6404. }
  6405. static void intel_crtc_destroy(struct drm_crtc *crtc)
  6406. {
  6407. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6408. struct drm_device *dev = crtc->dev;
  6409. struct intel_unpin_work *work;
  6410. unsigned long flags;
  6411. spin_lock_irqsave(&dev->event_lock, flags);
  6412. work = intel_crtc->unpin_work;
  6413. intel_crtc->unpin_work = NULL;
  6414. spin_unlock_irqrestore(&dev->event_lock, flags);
  6415. if (work) {
  6416. cancel_work_sync(&work->work);
  6417. kfree(work);
  6418. }
  6419. intel_crtc_cursor_set(crtc, NULL, 0, 0, 0);
  6420. drm_crtc_cleanup(crtc);
  6421. kfree(intel_crtc);
  6422. }
  6423. static void intel_unpin_work_fn(struct work_struct *__work)
  6424. {
  6425. struct intel_unpin_work *work =
  6426. container_of(__work, struct intel_unpin_work, work);
  6427. struct drm_device *dev = work->crtc->dev;
  6428. mutex_lock(&dev->struct_mutex);
  6429. intel_unpin_fb_obj(work->old_fb_obj);
  6430. drm_gem_object_unreference(&work->pending_flip_obj->base);
  6431. drm_gem_object_unreference(&work->old_fb_obj->base);
  6432. intel_update_fbc(dev);
  6433. mutex_unlock(&dev->struct_mutex);
  6434. BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
  6435. atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
  6436. kfree(work);
  6437. }
  6438. static void do_intel_finish_page_flip(struct drm_device *dev,
  6439. struct drm_crtc *crtc)
  6440. {
  6441. drm_i915_private_t *dev_priv = dev->dev_private;
  6442. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6443. struct intel_unpin_work *work;
  6444. unsigned long flags;
  6445. /* Ignore early vblank irqs */
  6446. if (intel_crtc == NULL)
  6447. return;
  6448. spin_lock_irqsave(&dev->event_lock, flags);
  6449. work = intel_crtc->unpin_work;
  6450. /* Ensure we don't miss a work->pending update ... */
  6451. smp_rmb();
  6452. if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
  6453. spin_unlock_irqrestore(&dev->event_lock, flags);
  6454. return;
  6455. }
  6456. /* and that the unpin work is consistent wrt ->pending. */
  6457. smp_rmb();
  6458. intel_crtc->unpin_work = NULL;
  6459. if (work->event)
  6460. drm_send_vblank_event(dev, intel_crtc->pipe, work->event);
  6461. drm_vblank_put(dev, intel_crtc->pipe);
  6462. spin_unlock_irqrestore(&dev->event_lock, flags);
  6463. wake_up_all(&dev_priv->pending_flip_queue);
  6464. queue_work(dev_priv->wq, &work->work);
  6465. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  6466. }
  6467. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  6468. {
  6469. drm_i915_private_t *dev_priv = dev->dev_private;
  6470. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  6471. do_intel_finish_page_flip(dev, crtc);
  6472. }
  6473. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  6474. {
  6475. drm_i915_private_t *dev_priv = dev->dev_private;
  6476. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  6477. do_intel_finish_page_flip(dev, crtc);
  6478. }
  6479. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  6480. {
  6481. drm_i915_private_t *dev_priv = dev->dev_private;
  6482. struct intel_crtc *intel_crtc =
  6483. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  6484. unsigned long flags;
  6485. /* NB: An MMIO update of the plane base pointer will also
  6486. * generate a page-flip completion irq, i.e. every modeset
  6487. * is also accompanied by a spurious intel_prepare_page_flip().
  6488. */
  6489. spin_lock_irqsave(&dev->event_lock, flags);
  6490. if (intel_crtc->unpin_work)
  6491. atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
  6492. spin_unlock_irqrestore(&dev->event_lock, flags);
  6493. }
  6494. inline static void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
  6495. {
  6496. /* Ensure that the work item is consistent when activating it ... */
  6497. smp_wmb();
  6498. atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
  6499. /* and that it is marked active as soon as the irq could fire. */
  6500. smp_wmb();
  6501. }
  6502. static int intel_gen2_queue_flip(struct drm_device *dev,
  6503. struct drm_crtc *crtc,
  6504. struct drm_framebuffer *fb,
  6505. struct drm_i915_gem_object *obj,
  6506. uint32_t flags)
  6507. {
  6508. struct drm_i915_private *dev_priv = dev->dev_private;
  6509. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6510. u32 flip_mask;
  6511. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6512. int ret;
  6513. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6514. if (ret)
  6515. goto err;
  6516. ret = intel_ring_begin(ring, 6);
  6517. if (ret)
  6518. goto err_unpin;
  6519. /* Can't queue multiple flips, so wait for the previous
  6520. * one to finish before executing the next.
  6521. */
  6522. if (intel_crtc->plane)
  6523. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6524. else
  6525. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6526. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6527. intel_ring_emit(ring, MI_NOOP);
  6528. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6529. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6530. intel_ring_emit(ring, fb->pitches[0]);
  6531. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6532. intel_ring_emit(ring, 0); /* aux display base address, unused */
  6533. intel_mark_page_flip_active(intel_crtc);
  6534. __intel_ring_advance(ring);
  6535. return 0;
  6536. err_unpin:
  6537. intel_unpin_fb_obj(obj);
  6538. err:
  6539. return ret;
  6540. }
  6541. static int intel_gen3_queue_flip(struct drm_device *dev,
  6542. struct drm_crtc *crtc,
  6543. struct drm_framebuffer *fb,
  6544. struct drm_i915_gem_object *obj,
  6545. uint32_t flags)
  6546. {
  6547. struct drm_i915_private *dev_priv = dev->dev_private;
  6548. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6549. u32 flip_mask;
  6550. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6551. int ret;
  6552. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6553. if (ret)
  6554. goto err;
  6555. ret = intel_ring_begin(ring, 6);
  6556. if (ret)
  6557. goto err_unpin;
  6558. if (intel_crtc->plane)
  6559. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  6560. else
  6561. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  6562. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  6563. intel_ring_emit(ring, MI_NOOP);
  6564. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  6565. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6566. intel_ring_emit(ring, fb->pitches[0]);
  6567. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6568. intel_ring_emit(ring, MI_NOOP);
  6569. intel_mark_page_flip_active(intel_crtc);
  6570. __intel_ring_advance(ring);
  6571. return 0;
  6572. err_unpin:
  6573. intel_unpin_fb_obj(obj);
  6574. err:
  6575. return ret;
  6576. }
  6577. static int intel_gen4_queue_flip(struct drm_device *dev,
  6578. struct drm_crtc *crtc,
  6579. struct drm_framebuffer *fb,
  6580. struct drm_i915_gem_object *obj,
  6581. uint32_t flags)
  6582. {
  6583. struct drm_i915_private *dev_priv = dev->dev_private;
  6584. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6585. uint32_t pf, pipesrc;
  6586. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6587. int ret;
  6588. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6589. if (ret)
  6590. goto err;
  6591. ret = intel_ring_begin(ring, 4);
  6592. if (ret)
  6593. goto err_unpin;
  6594. /* i965+ uses the linear or tiled offsets from the
  6595. * Display Registers (which do not change across a page-flip)
  6596. * so we need only reprogram the base address.
  6597. */
  6598. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6599. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6600. intel_ring_emit(ring, fb->pitches[0]);
  6601. intel_ring_emit(ring,
  6602. (i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset) |
  6603. obj->tiling_mode);
  6604. /* XXX Enabling the panel-fitter across page-flip is so far
  6605. * untested on non-native modes, so ignore it for now.
  6606. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  6607. */
  6608. pf = 0;
  6609. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6610. intel_ring_emit(ring, pf | pipesrc);
  6611. intel_mark_page_flip_active(intel_crtc);
  6612. __intel_ring_advance(ring);
  6613. return 0;
  6614. err_unpin:
  6615. intel_unpin_fb_obj(obj);
  6616. err:
  6617. return ret;
  6618. }
  6619. static int intel_gen6_queue_flip(struct drm_device *dev,
  6620. struct drm_crtc *crtc,
  6621. struct drm_framebuffer *fb,
  6622. struct drm_i915_gem_object *obj,
  6623. uint32_t flags)
  6624. {
  6625. struct drm_i915_private *dev_priv = dev->dev_private;
  6626. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6627. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  6628. uint32_t pf, pipesrc;
  6629. int ret;
  6630. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6631. if (ret)
  6632. goto err;
  6633. ret = intel_ring_begin(ring, 4);
  6634. if (ret)
  6635. goto err_unpin;
  6636. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  6637. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  6638. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  6639. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6640. /* Contrary to the suggestions in the documentation,
  6641. * "Enable Panel Fitter" does not seem to be required when page
  6642. * flipping with a non-native mode, and worse causes a normal
  6643. * modeset to fail.
  6644. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  6645. */
  6646. pf = 0;
  6647. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  6648. intel_ring_emit(ring, pf | pipesrc);
  6649. intel_mark_page_flip_active(intel_crtc);
  6650. __intel_ring_advance(ring);
  6651. return 0;
  6652. err_unpin:
  6653. intel_unpin_fb_obj(obj);
  6654. err:
  6655. return ret;
  6656. }
  6657. static int intel_gen7_queue_flip(struct drm_device *dev,
  6658. struct drm_crtc *crtc,
  6659. struct drm_framebuffer *fb,
  6660. struct drm_i915_gem_object *obj,
  6661. uint32_t flags)
  6662. {
  6663. struct drm_i915_private *dev_priv = dev->dev_private;
  6664. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6665. struct intel_ring_buffer *ring;
  6666. uint32_t plane_bit = 0;
  6667. int len, ret;
  6668. ring = obj->ring;
  6669. if (ring == NULL || ring->id != RCS)
  6670. ring = &dev_priv->ring[BCS];
  6671. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  6672. if (ret)
  6673. goto err;
  6674. switch(intel_crtc->plane) {
  6675. case PLANE_A:
  6676. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  6677. break;
  6678. case PLANE_B:
  6679. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  6680. break;
  6681. case PLANE_C:
  6682. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  6683. break;
  6684. default:
  6685. WARN_ONCE(1, "unknown plane in flip command\n");
  6686. ret = -ENODEV;
  6687. goto err_unpin;
  6688. }
  6689. len = 4;
  6690. if (ring->id == RCS)
  6691. len += 6;
  6692. ret = intel_ring_begin(ring, len);
  6693. if (ret)
  6694. goto err_unpin;
  6695. /* Unmask the flip-done completion message. Note that the bspec says that
  6696. * we should do this for both the BCS and RCS, and that we must not unmask
  6697. * more than one flip event at any time (or ensure that one flip message
  6698. * can be sent by waiting for flip-done prior to queueing new flips).
  6699. * Experimentation says that BCS works despite DERRMR masking all
  6700. * flip-done completion events and that unmasking all planes at once
  6701. * for the RCS also doesn't appear to drop events. Setting the DERRMR
  6702. * to zero does lead to lockups within MI_DISPLAY_FLIP.
  6703. */
  6704. if (ring->id == RCS) {
  6705. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
  6706. intel_ring_emit(ring, DERRMR);
  6707. intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
  6708. DERRMR_PIPEB_PRI_FLIP_DONE |
  6709. DERRMR_PIPEC_PRI_FLIP_DONE));
  6710. intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1));
  6711. intel_ring_emit(ring, DERRMR);
  6712. intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
  6713. }
  6714. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  6715. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  6716. intel_ring_emit(ring, i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
  6717. intel_ring_emit(ring, (MI_NOOP));
  6718. intel_mark_page_flip_active(intel_crtc);
  6719. __intel_ring_advance(ring);
  6720. return 0;
  6721. err_unpin:
  6722. intel_unpin_fb_obj(obj);
  6723. err:
  6724. return ret;
  6725. }
  6726. static int intel_default_queue_flip(struct drm_device *dev,
  6727. struct drm_crtc *crtc,
  6728. struct drm_framebuffer *fb,
  6729. struct drm_i915_gem_object *obj,
  6730. uint32_t flags)
  6731. {
  6732. return -ENODEV;
  6733. }
  6734. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  6735. struct drm_framebuffer *fb,
  6736. struct drm_pending_vblank_event *event,
  6737. uint32_t page_flip_flags)
  6738. {
  6739. struct drm_device *dev = crtc->dev;
  6740. struct drm_i915_private *dev_priv = dev->dev_private;
  6741. struct drm_framebuffer *old_fb = crtc->fb;
  6742. struct drm_i915_gem_object *obj = to_intel_framebuffer(fb)->obj;
  6743. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  6744. struct intel_unpin_work *work;
  6745. unsigned long flags;
  6746. int ret;
  6747. /* Can't change pixel format via MI display flips. */
  6748. if (fb->pixel_format != crtc->fb->pixel_format)
  6749. return -EINVAL;
  6750. /*
  6751. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  6752. * Note that pitch changes could also affect these register.
  6753. */
  6754. if (INTEL_INFO(dev)->gen > 3 &&
  6755. (fb->offsets[0] != crtc->fb->offsets[0] ||
  6756. fb->pitches[0] != crtc->fb->pitches[0]))
  6757. return -EINVAL;
  6758. work = kzalloc(sizeof *work, GFP_KERNEL);
  6759. if (work == NULL)
  6760. return -ENOMEM;
  6761. work->event = event;
  6762. work->crtc = crtc;
  6763. work->old_fb_obj = to_intel_framebuffer(old_fb)->obj;
  6764. INIT_WORK(&work->work, intel_unpin_work_fn);
  6765. ret = drm_vblank_get(dev, intel_crtc->pipe);
  6766. if (ret)
  6767. goto free_work;
  6768. /* We borrow the event spin lock for protecting unpin_work */
  6769. spin_lock_irqsave(&dev->event_lock, flags);
  6770. if (intel_crtc->unpin_work) {
  6771. spin_unlock_irqrestore(&dev->event_lock, flags);
  6772. kfree(work);
  6773. drm_vblank_put(dev, intel_crtc->pipe);
  6774. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  6775. return -EBUSY;
  6776. }
  6777. intel_crtc->unpin_work = work;
  6778. spin_unlock_irqrestore(&dev->event_lock, flags);
  6779. if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
  6780. flush_workqueue(dev_priv->wq);
  6781. ret = i915_mutex_lock_interruptible(dev);
  6782. if (ret)
  6783. goto cleanup;
  6784. /* Reference the objects for the scheduled work. */
  6785. drm_gem_object_reference(&work->old_fb_obj->base);
  6786. drm_gem_object_reference(&obj->base);
  6787. crtc->fb = fb;
  6788. work->pending_flip_obj = obj;
  6789. work->enable_stall_check = true;
  6790. atomic_inc(&intel_crtc->unpin_work_count);
  6791. intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
  6792. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, page_flip_flags);
  6793. if (ret)
  6794. goto cleanup_pending;
  6795. intel_disable_fbc(dev);
  6796. intel_mark_fb_busy(obj, NULL);
  6797. mutex_unlock(&dev->struct_mutex);
  6798. trace_i915_flip_request(intel_crtc->plane, obj);
  6799. return 0;
  6800. cleanup_pending:
  6801. atomic_dec(&intel_crtc->unpin_work_count);
  6802. crtc->fb = old_fb;
  6803. drm_gem_object_unreference(&work->old_fb_obj->base);
  6804. drm_gem_object_unreference(&obj->base);
  6805. mutex_unlock(&dev->struct_mutex);
  6806. cleanup:
  6807. spin_lock_irqsave(&dev->event_lock, flags);
  6808. intel_crtc->unpin_work = NULL;
  6809. spin_unlock_irqrestore(&dev->event_lock, flags);
  6810. drm_vblank_put(dev, intel_crtc->pipe);
  6811. free_work:
  6812. kfree(work);
  6813. return ret;
  6814. }
  6815. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  6816. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  6817. .load_lut = intel_crtc_load_lut,
  6818. };
  6819. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  6820. struct drm_crtc *crtc)
  6821. {
  6822. struct drm_device *dev;
  6823. struct drm_crtc *tmp;
  6824. int crtc_mask = 1;
  6825. WARN(!crtc, "checking null crtc?\n");
  6826. dev = crtc->dev;
  6827. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  6828. if (tmp == crtc)
  6829. break;
  6830. crtc_mask <<= 1;
  6831. }
  6832. if (encoder->possible_crtcs & crtc_mask)
  6833. return true;
  6834. return false;
  6835. }
  6836. /**
  6837. * intel_modeset_update_staged_output_state
  6838. *
  6839. * Updates the staged output configuration state, e.g. after we've read out the
  6840. * current hw state.
  6841. */
  6842. static void intel_modeset_update_staged_output_state(struct drm_device *dev)
  6843. {
  6844. struct intel_encoder *encoder;
  6845. struct intel_connector *connector;
  6846. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6847. base.head) {
  6848. connector->new_encoder =
  6849. to_intel_encoder(connector->base.encoder);
  6850. }
  6851. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6852. base.head) {
  6853. encoder->new_crtc =
  6854. to_intel_crtc(encoder->base.crtc);
  6855. }
  6856. }
  6857. /**
  6858. * intel_modeset_commit_output_state
  6859. *
  6860. * This function copies the stage display pipe configuration to the real one.
  6861. */
  6862. static void intel_modeset_commit_output_state(struct drm_device *dev)
  6863. {
  6864. struct intel_encoder *encoder;
  6865. struct intel_connector *connector;
  6866. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6867. base.head) {
  6868. connector->base.encoder = &connector->new_encoder->base;
  6869. }
  6870. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  6871. base.head) {
  6872. encoder->base.crtc = &encoder->new_crtc->base;
  6873. }
  6874. }
  6875. static void
  6876. connected_sink_compute_bpp(struct intel_connector * connector,
  6877. struct intel_crtc_config *pipe_config)
  6878. {
  6879. int bpp = pipe_config->pipe_bpp;
  6880. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
  6881. connector->base.base.id,
  6882. drm_get_connector_name(&connector->base));
  6883. /* Don't use an invalid EDID bpc value */
  6884. if (connector->base.display_info.bpc &&
  6885. connector->base.display_info.bpc * 3 < bpp) {
  6886. DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
  6887. bpp, connector->base.display_info.bpc*3);
  6888. pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
  6889. }
  6890. /* Clamp bpp to 8 on screens without EDID 1.4 */
  6891. if (connector->base.display_info.bpc == 0 && bpp > 24) {
  6892. DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
  6893. bpp);
  6894. pipe_config->pipe_bpp = 24;
  6895. }
  6896. }
  6897. static int
  6898. compute_baseline_pipe_bpp(struct intel_crtc *crtc,
  6899. struct drm_framebuffer *fb,
  6900. struct intel_crtc_config *pipe_config)
  6901. {
  6902. struct drm_device *dev = crtc->base.dev;
  6903. struct intel_connector *connector;
  6904. int bpp;
  6905. switch (fb->pixel_format) {
  6906. case DRM_FORMAT_C8:
  6907. bpp = 8*3; /* since we go through a colormap */
  6908. break;
  6909. case DRM_FORMAT_XRGB1555:
  6910. case DRM_FORMAT_ARGB1555:
  6911. /* checked in intel_framebuffer_init already */
  6912. if (WARN_ON(INTEL_INFO(dev)->gen > 3))
  6913. return -EINVAL;
  6914. case DRM_FORMAT_RGB565:
  6915. bpp = 6*3; /* min is 18bpp */
  6916. break;
  6917. case DRM_FORMAT_XBGR8888:
  6918. case DRM_FORMAT_ABGR8888:
  6919. /* checked in intel_framebuffer_init already */
  6920. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6921. return -EINVAL;
  6922. case DRM_FORMAT_XRGB8888:
  6923. case DRM_FORMAT_ARGB8888:
  6924. bpp = 8*3;
  6925. break;
  6926. case DRM_FORMAT_XRGB2101010:
  6927. case DRM_FORMAT_ARGB2101010:
  6928. case DRM_FORMAT_XBGR2101010:
  6929. case DRM_FORMAT_ABGR2101010:
  6930. /* checked in intel_framebuffer_init already */
  6931. if (WARN_ON(INTEL_INFO(dev)->gen < 4))
  6932. return -EINVAL;
  6933. bpp = 10*3;
  6934. break;
  6935. /* TODO: gen4+ supports 16 bpc floating point, too. */
  6936. default:
  6937. DRM_DEBUG_KMS("unsupported depth\n");
  6938. return -EINVAL;
  6939. }
  6940. pipe_config->pipe_bpp = bpp;
  6941. /* Clamp display bpp to EDID value */
  6942. list_for_each_entry(connector, &dev->mode_config.connector_list,
  6943. base.head) {
  6944. if (!connector->new_encoder ||
  6945. connector->new_encoder->new_crtc != crtc)
  6946. continue;
  6947. connected_sink_compute_bpp(connector, pipe_config);
  6948. }
  6949. return bpp;
  6950. }
  6951. static void intel_dump_pipe_config(struct intel_crtc *crtc,
  6952. struct intel_crtc_config *pipe_config,
  6953. const char *context)
  6954. {
  6955. DRM_DEBUG_KMS("[CRTC:%d]%s config for pipe %c\n", crtc->base.base.id,
  6956. context, pipe_name(crtc->pipe));
  6957. DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
  6958. DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
  6959. pipe_config->pipe_bpp, pipe_config->dither);
  6960. DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6961. pipe_config->has_pch_encoder,
  6962. pipe_config->fdi_lanes,
  6963. pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
  6964. pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
  6965. pipe_config->fdi_m_n.tu);
  6966. DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
  6967. pipe_config->has_dp_encoder,
  6968. pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
  6969. pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
  6970. pipe_config->dp_m_n.tu);
  6971. DRM_DEBUG_KMS("requested mode:\n");
  6972. drm_mode_debug_printmodeline(&pipe_config->requested_mode);
  6973. DRM_DEBUG_KMS("adjusted mode:\n");
  6974. drm_mode_debug_printmodeline(&pipe_config->adjusted_mode);
  6975. DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
  6976. DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
  6977. pipe_config->gmch_pfit.control,
  6978. pipe_config->gmch_pfit.pgm_ratios,
  6979. pipe_config->gmch_pfit.lvds_border_bits);
  6980. DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x\n",
  6981. pipe_config->pch_pfit.pos,
  6982. pipe_config->pch_pfit.size);
  6983. DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
  6984. }
  6985. static bool check_encoder_cloning(struct drm_crtc *crtc)
  6986. {
  6987. int num_encoders = 0;
  6988. bool uncloneable_encoders = false;
  6989. struct intel_encoder *encoder;
  6990. list_for_each_entry(encoder, &crtc->dev->mode_config.encoder_list,
  6991. base.head) {
  6992. if (&encoder->new_crtc->base != crtc)
  6993. continue;
  6994. num_encoders++;
  6995. if (!encoder->cloneable)
  6996. uncloneable_encoders = true;
  6997. }
  6998. return !(num_encoders > 1 && uncloneable_encoders);
  6999. }
  7000. static struct intel_crtc_config *
  7001. intel_modeset_pipe_config(struct drm_crtc *crtc,
  7002. struct drm_framebuffer *fb,
  7003. struct drm_display_mode *mode)
  7004. {
  7005. struct drm_device *dev = crtc->dev;
  7006. struct intel_encoder *encoder;
  7007. struct intel_crtc_config *pipe_config;
  7008. int plane_bpp, ret = -EINVAL;
  7009. bool retry = true;
  7010. if (!check_encoder_cloning(crtc)) {
  7011. DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
  7012. return ERR_PTR(-EINVAL);
  7013. }
  7014. pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
  7015. if (!pipe_config)
  7016. return ERR_PTR(-ENOMEM);
  7017. drm_mode_copy(&pipe_config->adjusted_mode, mode);
  7018. drm_mode_copy(&pipe_config->requested_mode, mode);
  7019. pipe_config->cpu_transcoder =
  7020. (enum transcoder) to_intel_crtc(crtc)->pipe;
  7021. pipe_config->shared_dpll = DPLL_ID_PRIVATE;
  7022. /*
  7023. * Sanitize sync polarity flags based on requested ones. If neither
  7024. * positive or negative polarity is requested, treat this as meaning
  7025. * negative polarity.
  7026. */
  7027. if (!(pipe_config->adjusted_mode.flags &
  7028. (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
  7029. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
  7030. if (!(pipe_config->adjusted_mode.flags &
  7031. (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
  7032. pipe_config->adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
  7033. /* Compute a starting value for pipe_config->pipe_bpp taking the source
  7034. * plane pixel format and any sink constraints into account. Returns the
  7035. * source plane bpp so that dithering can be selected on mismatches
  7036. * after encoders and crtc also have had their say. */
  7037. plane_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
  7038. fb, pipe_config);
  7039. if (plane_bpp < 0)
  7040. goto fail;
  7041. encoder_retry:
  7042. /* Ensure the port clock defaults are reset when retrying. */
  7043. pipe_config->port_clock = 0;
  7044. pipe_config->pixel_multiplier = 1;
  7045. /* Fill in default crtc timings, allow encoders to overwrite them. */
  7046. drm_mode_set_crtcinfo(&pipe_config->adjusted_mode, 0);
  7047. /* Pass our mode to the connectors and the CRTC to give them a chance to
  7048. * adjust it according to limitations or connector properties, and also
  7049. * a chance to reject the mode entirely.
  7050. */
  7051. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7052. base.head) {
  7053. if (&encoder->new_crtc->base != crtc)
  7054. continue;
  7055. if (!(encoder->compute_config(encoder, pipe_config))) {
  7056. DRM_DEBUG_KMS("Encoder config failure\n");
  7057. goto fail;
  7058. }
  7059. }
  7060. /* Set default port clock if not overwritten by the encoder. Needs to be
  7061. * done afterwards in case the encoder adjusts the mode. */
  7062. if (!pipe_config->port_clock)
  7063. pipe_config->port_clock = pipe_config->adjusted_mode.clock *
  7064. pipe_config->pixel_multiplier;
  7065. ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
  7066. if (ret < 0) {
  7067. DRM_DEBUG_KMS("CRTC fixup failed\n");
  7068. goto fail;
  7069. }
  7070. if (ret == RETRY) {
  7071. if (WARN(!retry, "loop in pipe configuration computation\n")) {
  7072. ret = -EINVAL;
  7073. goto fail;
  7074. }
  7075. DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
  7076. retry = false;
  7077. goto encoder_retry;
  7078. }
  7079. pipe_config->dither = pipe_config->pipe_bpp != plane_bpp;
  7080. DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
  7081. plane_bpp, pipe_config->pipe_bpp, pipe_config->dither);
  7082. return pipe_config;
  7083. fail:
  7084. kfree(pipe_config);
  7085. return ERR_PTR(ret);
  7086. }
  7087. /* Computes which crtcs are affected and sets the relevant bits in the mask. For
  7088. * simplicity we use the crtc's pipe number (because it's easier to obtain). */
  7089. static void
  7090. intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
  7091. unsigned *prepare_pipes, unsigned *disable_pipes)
  7092. {
  7093. struct intel_crtc *intel_crtc;
  7094. struct drm_device *dev = crtc->dev;
  7095. struct intel_encoder *encoder;
  7096. struct intel_connector *connector;
  7097. struct drm_crtc *tmp_crtc;
  7098. *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
  7099. /* Check which crtcs have changed outputs connected to them, these need
  7100. * to be part of the prepare_pipes mask. We don't (yet) support global
  7101. * modeset across multiple crtcs, so modeset_pipes will only have one
  7102. * bit set at most. */
  7103. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7104. base.head) {
  7105. if (connector->base.encoder == &connector->new_encoder->base)
  7106. continue;
  7107. if (connector->base.encoder) {
  7108. tmp_crtc = connector->base.encoder->crtc;
  7109. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7110. }
  7111. if (connector->new_encoder)
  7112. *prepare_pipes |=
  7113. 1 << connector->new_encoder->new_crtc->pipe;
  7114. }
  7115. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7116. base.head) {
  7117. if (encoder->base.crtc == &encoder->new_crtc->base)
  7118. continue;
  7119. if (encoder->base.crtc) {
  7120. tmp_crtc = encoder->base.crtc;
  7121. *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
  7122. }
  7123. if (encoder->new_crtc)
  7124. *prepare_pipes |= 1 << encoder->new_crtc->pipe;
  7125. }
  7126. /* Check for any pipes that will be fully disabled ... */
  7127. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7128. base.head) {
  7129. bool used = false;
  7130. /* Don't try to disable disabled crtcs. */
  7131. if (!intel_crtc->base.enabled)
  7132. continue;
  7133. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7134. base.head) {
  7135. if (encoder->new_crtc == intel_crtc)
  7136. used = true;
  7137. }
  7138. if (!used)
  7139. *disable_pipes |= 1 << intel_crtc->pipe;
  7140. }
  7141. /* set_mode is also used to update properties on life display pipes. */
  7142. intel_crtc = to_intel_crtc(crtc);
  7143. if (crtc->enabled)
  7144. *prepare_pipes |= 1 << intel_crtc->pipe;
  7145. /*
  7146. * For simplicity do a full modeset on any pipe where the output routing
  7147. * changed. We could be more clever, but that would require us to be
  7148. * more careful with calling the relevant encoder->mode_set functions.
  7149. */
  7150. if (*prepare_pipes)
  7151. *modeset_pipes = *prepare_pipes;
  7152. /* ... and mask these out. */
  7153. *modeset_pipes &= ~(*disable_pipes);
  7154. *prepare_pipes &= ~(*disable_pipes);
  7155. /*
  7156. * HACK: We don't (yet) fully support global modesets. intel_set_config
  7157. * obies this rule, but the modeset restore mode of
  7158. * intel_modeset_setup_hw_state does not.
  7159. */
  7160. *modeset_pipes &= 1 << intel_crtc->pipe;
  7161. *prepare_pipes &= 1 << intel_crtc->pipe;
  7162. DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
  7163. *modeset_pipes, *prepare_pipes, *disable_pipes);
  7164. }
  7165. static bool intel_crtc_in_use(struct drm_crtc *crtc)
  7166. {
  7167. struct drm_encoder *encoder;
  7168. struct drm_device *dev = crtc->dev;
  7169. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
  7170. if (encoder->crtc == crtc)
  7171. return true;
  7172. return false;
  7173. }
  7174. static void
  7175. intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
  7176. {
  7177. struct intel_encoder *intel_encoder;
  7178. struct intel_crtc *intel_crtc;
  7179. struct drm_connector *connector;
  7180. list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
  7181. base.head) {
  7182. if (!intel_encoder->base.crtc)
  7183. continue;
  7184. intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
  7185. if (prepare_pipes & (1 << intel_crtc->pipe))
  7186. intel_encoder->connectors_active = false;
  7187. }
  7188. intel_modeset_commit_output_state(dev);
  7189. /* Update computed state. */
  7190. list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
  7191. base.head) {
  7192. intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
  7193. }
  7194. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7195. if (!connector->encoder || !connector->encoder->crtc)
  7196. continue;
  7197. intel_crtc = to_intel_crtc(connector->encoder->crtc);
  7198. if (prepare_pipes & (1 << intel_crtc->pipe)) {
  7199. struct drm_property *dpms_property =
  7200. dev->mode_config.dpms_property;
  7201. connector->dpms = DRM_MODE_DPMS_ON;
  7202. drm_object_property_set_value(&connector->base,
  7203. dpms_property,
  7204. DRM_MODE_DPMS_ON);
  7205. intel_encoder = to_intel_encoder(connector->encoder);
  7206. intel_encoder->connectors_active = true;
  7207. }
  7208. }
  7209. }
  7210. static bool intel_fuzzy_clock_check(int clock1, int clock2)
  7211. {
  7212. int diff;
  7213. if (clock1 == clock2)
  7214. return true;
  7215. if (!clock1 || !clock2)
  7216. return false;
  7217. diff = abs(clock1 - clock2);
  7218. if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
  7219. return true;
  7220. return false;
  7221. }
  7222. #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
  7223. list_for_each_entry((intel_crtc), \
  7224. &(dev)->mode_config.crtc_list, \
  7225. base.head) \
  7226. if (mask & (1 <<(intel_crtc)->pipe))
  7227. static bool
  7228. intel_pipe_config_compare(struct drm_device *dev,
  7229. struct intel_crtc_config *current_config,
  7230. struct intel_crtc_config *pipe_config)
  7231. {
  7232. #define PIPE_CONF_CHECK_X(name) \
  7233. if (current_config->name != pipe_config->name) { \
  7234. DRM_ERROR("mismatch in " #name " " \
  7235. "(expected 0x%08x, found 0x%08x)\n", \
  7236. current_config->name, \
  7237. pipe_config->name); \
  7238. return false; \
  7239. }
  7240. #define PIPE_CONF_CHECK_I(name) \
  7241. if (current_config->name != pipe_config->name) { \
  7242. DRM_ERROR("mismatch in " #name " " \
  7243. "(expected %i, found %i)\n", \
  7244. current_config->name, \
  7245. pipe_config->name); \
  7246. return false; \
  7247. }
  7248. #define PIPE_CONF_CHECK_FLAGS(name, mask) \
  7249. if ((current_config->name ^ pipe_config->name) & (mask)) { \
  7250. DRM_ERROR("mismatch in " #name "(" #mask ") " \
  7251. "(expected %i, found %i)\n", \
  7252. current_config->name & (mask), \
  7253. pipe_config->name & (mask)); \
  7254. return false; \
  7255. }
  7256. #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
  7257. if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
  7258. DRM_ERROR("mismatch in " #name " " \
  7259. "(expected %i, found %i)\n", \
  7260. current_config->name, \
  7261. pipe_config->name); \
  7262. return false; \
  7263. }
  7264. #define PIPE_CONF_QUIRK(quirk) \
  7265. ((current_config->quirks | pipe_config->quirks) & (quirk))
  7266. PIPE_CONF_CHECK_I(cpu_transcoder);
  7267. PIPE_CONF_CHECK_I(has_pch_encoder);
  7268. PIPE_CONF_CHECK_I(fdi_lanes);
  7269. PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
  7270. PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
  7271. PIPE_CONF_CHECK_I(fdi_m_n.link_m);
  7272. PIPE_CONF_CHECK_I(fdi_m_n.link_n);
  7273. PIPE_CONF_CHECK_I(fdi_m_n.tu);
  7274. PIPE_CONF_CHECK_I(has_dp_encoder);
  7275. PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
  7276. PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
  7277. PIPE_CONF_CHECK_I(dp_m_n.link_m);
  7278. PIPE_CONF_CHECK_I(dp_m_n.link_n);
  7279. PIPE_CONF_CHECK_I(dp_m_n.tu);
  7280. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hdisplay);
  7281. PIPE_CONF_CHECK_I(adjusted_mode.crtc_htotal);
  7282. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_start);
  7283. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hblank_end);
  7284. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_start);
  7285. PIPE_CONF_CHECK_I(adjusted_mode.crtc_hsync_end);
  7286. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vdisplay);
  7287. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vtotal);
  7288. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_start);
  7289. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vblank_end);
  7290. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_start);
  7291. PIPE_CONF_CHECK_I(adjusted_mode.crtc_vsync_end);
  7292. PIPE_CONF_CHECK_I(pixel_multiplier);
  7293. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7294. DRM_MODE_FLAG_INTERLACE);
  7295. if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
  7296. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7297. DRM_MODE_FLAG_PHSYNC);
  7298. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7299. DRM_MODE_FLAG_NHSYNC);
  7300. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7301. DRM_MODE_FLAG_PVSYNC);
  7302. PIPE_CONF_CHECK_FLAGS(adjusted_mode.flags,
  7303. DRM_MODE_FLAG_NVSYNC);
  7304. }
  7305. PIPE_CONF_CHECK_I(requested_mode.hdisplay);
  7306. PIPE_CONF_CHECK_I(requested_mode.vdisplay);
  7307. PIPE_CONF_CHECK_I(gmch_pfit.control);
  7308. /* pfit ratios are autocomputed by the hw on gen4+ */
  7309. if (INTEL_INFO(dev)->gen < 4)
  7310. PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
  7311. PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
  7312. PIPE_CONF_CHECK_I(pch_pfit.pos);
  7313. PIPE_CONF_CHECK_I(pch_pfit.size);
  7314. PIPE_CONF_CHECK_I(ips_enabled);
  7315. PIPE_CONF_CHECK_I(shared_dpll);
  7316. PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
  7317. PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
  7318. PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
  7319. PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
  7320. if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
  7321. PIPE_CONF_CHECK_I(pipe_bpp);
  7322. if (!IS_HASWELL(dev)) {
  7323. PIPE_CONF_CHECK_CLOCK_FUZZY(adjusted_mode.clock);
  7324. PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
  7325. }
  7326. #undef PIPE_CONF_CHECK_X
  7327. #undef PIPE_CONF_CHECK_I
  7328. #undef PIPE_CONF_CHECK_FLAGS
  7329. #undef PIPE_CONF_CHECK_CLOCK_FUZZY
  7330. #undef PIPE_CONF_QUIRK
  7331. return true;
  7332. }
  7333. static void
  7334. check_connector_state(struct drm_device *dev)
  7335. {
  7336. struct intel_connector *connector;
  7337. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7338. base.head) {
  7339. /* This also checks the encoder/connector hw state with the
  7340. * ->get_hw_state callbacks. */
  7341. intel_connector_check_state(connector);
  7342. WARN(&connector->new_encoder->base != connector->base.encoder,
  7343. "connector's staged encoder doesn't match current encoder\n");
  7344. }
  7345. }
  7346. static void
  7347. check_encoder_state(struct drm_device *dev)
  7348. {
  7349. struct intel_encoder *encoder;
  7350. struct intel_connector *connector;
  7351. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7352. base.head) {
  7353. bool enabled = false;
  7354. bool active = false;
  7355. enum pipe pipe, tracked_pipe;
  7356. DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
  7357. encoder->base.base.id,
  7358. drm_get_encoder_name(&encoder->base));
  7359. WARN(&encoder->new_crtc->base != encoder->base.crtc,
  7360. "encoder's stage crtc doesn't match current crtc\n");
  7361. WARN(encoder->connectors_active && !encoder->base.crtc,
  7362. "encoder's active_connectors set, but no crtc\n");
  7363. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7364. base.head) {
  7365. if (connector->base.encoder != &encoder->base)
  7366. continue;
  7367. enabled = true;
  7368. if (connector->base.dpms != DRM_MODE_DPMS_OFF)
  7369. active = true;
  7370. }
  7371. WARN(!!encoder->base.crtc != enabled,
  7372. "encoder's enabled state mismatch "
  7373. "(expected %i, found %i)\n",
  7374. !!encoder->base.crtc, enabled);
  7375. WARN(active && !encoder->base.crtc,
  7376. "active encoder with no crtc\n");
  7377. WARN(encoder->connectors_active != active,
  7378. "encoder's computed active state doesn't match tracked active state "
  7379. "(expected %i, found %i)\n", active, encoder->connectors_active);
  7380. active = encoder->get_hw_state(encoder, &pipe);
  7381. WARN(active != encoder->connectors_active,
  7382. "encoder's hw state doesn't match sw tracking "
  7383. "(expected %i, found %i)\n",
  7384. encoder->connectors_active, active);
  7385. if (!encoder->base.crtc)
  7386. continue;
  7387. tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
  7388. WARN(active && pipe != tracked_pipe,
  7389. "active encoder's pipe doesn't match"
  7390. "(expected %i, found %i)\n",
  7391. tracked_pipe, pipe);
  7392. }
  7393. }
  7394. static void
  7395. check_crtc_state(struct drm_device *dev)
  7396. {
  7397. drm_i915_private_t *dev_priv = dev->dev_private;
  7398. struct intel_crtc *crtc;
  7399. struct intel_encoder *encoder;
  7400. struct intel_crtc_config pipe_config;
  7401. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7402. base.head) {
  7403. bool enabled = false;
  7404. bool active = false;
  7405. memset(&pipe_config, 0, sizeof(pipe_config));
  7406. DRM_DEBUG_KMS("[CRTC:%d]\n",
  7407. crtc->base.base.id);
  7408. WARN(crtc->active && !crtc->base.enabled,
  7409. "active crtc, but not enabled in sw tracking\n");
  7410. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7411. base.head) {
  7412. if (encoder->base.crtc != &crtc->base)
  7413. continue;
  7414. enabled = true;
  7415. if (encoder->connectors_active)
  7416. active = true;
  7417. }
  7418. WARN(active != crtc->active,
  7419. "crtc's computed active state doesn't match tracked active state "
  7420. "(expected %i, found %i)\n", active, crtc->active);
  7421. WARN(enabled != crtc->base.enabled,
  7422. "crtc's computed enabled state doesn't match tracked enabled state "
  7423. "(expected %i, found %i)\n", enabled, crtc->base.enabled);
  7424. active = dev_priv->display.get_pipe_config(crtc,
  7425. &pipe_config);
  7426. /* hw state is inconsistent with the pipe A quirk */
  7427. if (crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  7428. active = crtc->active;
  7429. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7430. base.head) {
  7431. enum pipe pipe;
  7432. if (encoder->base.crtc != &crtc->base)
  7433. continue;
  7434. if (encoder->get_config &&
  7435. encoder->get_hw_state(encoder, &pipe))
  7436. encoder->get_config(encoder, &pipe_config);
  7437. }
  7438. WARN(crtc->active != active,
  7439. "crtc active state doesn't match with hw state "
  7440. "(expected %i, found %i)\n", crtc->active, active);
  7441. if (active &&
  7442. !intel_pipe_config_compare(dev, &crtc->config, &pipe_config)) {
  7443. WARN(1, "pipe state doesn't match!\n");
  7444. intel_dump_pipe_config(crtc, &pipe_config,
  7445. "[hw state]");
  7446. intel_dump_pipe_config(crtc, &crtc->config,
  7447. "[sw state]");
  7448. }
  7449. }
  7450. }
  7451. static void
  7452. check_shared_dpll_state(struct drm_device *dev)
  7453. {
  7454. drm_i915_private_t *dev_priv = dev->dev_private;
  7455. struct intel_crtc *crtc;
  7456. struct intel_dpll_hw_state dpll_hw_state;
  7457. int i;
  7458. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7459. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  7460. int enabled_crtcs = 0, active_crtcs = 0;
  7461. bool active;
  7462. memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
  7463. DRM_DEBUG_KMS("%s\n", pll->name);
  7464. active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
  7465. WARN(pll->active > pll->refcount,
  7466. "more active pll users than references: %i vs %i\n",
  7467. pll->active, pll->refcount);
  7468. WARN(pll->active && !pll->on,
  7469. "pll in active use but not on in sw tracking\n");
  7470. WARN(pll->on && !pll->active,
  7471. "pll in on but not on in use in sw tracking\n");
  7472. WARN(pll->on != active,
  7473. "pll on state mismatch (expected %i, found %i)\n",
  7474. pll->on, active);
  7475. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  7476. base.head) {
  7477. if (crtc->base.enabled && intel_crtc_to_shared_dpll(crtc) == pll)
  7478. enabled_crtcs++;
  7479. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  7480. active_crtcs++;
  7481. }
  7482. WARN(pll->active != active_crtcs,
  7483. "pll active crtcs mismatch (expected %i, found %i)\n",
  7484. pll->active, active_crtcs);
  7485. WARN(pll->refcount != enabled_crtcs,
  7486. "pll enabled crtcs mismatch (expected %i, found %i)\n",
  7487. pll->refcount, enabled_crtcs);
  7488. WARN(pll->on && memcmp(&pll->hw_state, &dpll_hw_state,
  7489. sizeof(dpll_hw_state)),
  7490. "pll hw state mismatch\n");
  7491. }
  7492. }
  7493. void
  7494. intel_modeset_check_state(struct drm_device *dev)
  7495. {
  7496. check_connector_state(dev);
  7497. check_encoder_state(dev);
  7498. check_crtc_state(dev);
  7499. check_shared_dpll_state(dev);
  7500. }
  7501. void ironlake_check_encoder_dotclock(const struct intel_crtc_config *pipe_config,
  7502. int dotclock)
  7503. {
  7504. /*
  7505. * FDI already provided one idea for the dotclock.
  7506. * Yell if the encoder disagrees.
  7507. */
  7508. WARN(!intel_fuzzy_clock_check(pipe_config->adjusted_mode.clock, dotclock),
  7509. "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
  7510. pipe_config->adjusted_mode.clock, dotclock);
  7511. }
  7512. static int __intel_set_mode(struct drm_crtc *crtc,
  7513. struct drm_display_mode *mode,
  7514. int x, int y, struct drm_framebuffer *fb)
  7515. {
  7516. struct drm_device *dev = crtc->dev;
  7517. drm_i915_private_t *dev_priv = dev->dev_private;
  7518. struct drm_display_mode *saved_mode, *saved_hwmode;
  7519. struct intel_crtc_config *pipe_config = NULL;
  7520. struct intel_crtc *intel_crtc;
  7521. unsigned disable_pipes, prepare_pipes, modeset_pipes;
  7522. int ret = 0;
  7523. saved_mode = kmalloc(2 * sizeof(*saved_mode), GFP_KERNEL);
  7524. if (!saved_mode)
  7525. return -ENOMEM;
  7526. saved_hwmode = saved_mode + 1;
  7527. intel_modeset_affected_pipes(crtc, &modeset_pipes,
  7528. &prepare_pipes, &disable_pipes);
  7529. *saved_hwmode = crtc->hwmode;
  7530. *saved_mode = crtc->mode;
  7531. /* Hack: Because we don't (yet) support global modeset on multiple
  7532. * crtcs, we don't keep track of the new mode for more than one crtc.
  7533. * Hence simply check whether any bit is set in modeset_pipes in all the
  7534. * pieces of code that are not yet converted to deal with mutliple crtcs
  7535. * changing their mode at the same time. */
  7536. if (modeset_pipes) {
  7537. pipe_config = intel_modeset_pipe_config(crtc, fb, mode);
  7538. if (IS_ERR(pipe_config)) {
  7539. ret = PTR_ERR(pipe_config);
  7540. pipe_config = NULL;
  7541. goto out;
  7542. }
  7543. intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
  7544. "[modeset]");
  7545. }
  7546. for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
  7547. intel_crtc_disable(&intel_crtc->base);
  7548. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
  7549. if (intel_crtc->base.enabled)
  7550. dev_priv->display.crtc_disable(&intel_crtc->base);
  7551. }
  7552. /* crtc->mode is already used by the ->mode_set callbacks, hence we need
  7553. * to set it here already despite that we pass it down the callchain.
  7554. */
  7555. if (modeset_pipes) {
  7556. crtc->mode = *mode;
  7557. /* mode_set/enable/disable functions rely on a correct pipe
  7558. * config. */
  7559. to_intel_crtc(crtc)->config = *pipe_config;
  7560. }
  7561. /* Only after disabling all output pipelines that will be changed can we
  7562. * update the the output configuration. */
  7563. intel_modeset_update_state(dev, prepare_pipes);
  7564. if (dev_priv->display.modeset_global_resources)
  7565. dev_priv->display.modeset_global_resources(dev);
  7566. /* Set up the DPLL and any encoders state that needs to adjust or depend
  7567. * on the DPLL.
  7568. */
  7569. for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
  7570. ret = intel_crtc_mode_set(&intel_crtc->base,
  7571. x, y, fb);
  7572. if (ret)
  7573. goto done;
  7574. }
  7575. /* Now enable the clocks, plane, pipe, and connectors that we set up. */
  7576. for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
  7577. dev_priv->display.crtc_enable(&intel_crtc->base);
  7578. if (modeset_pipes) {
  7579. /* Store real post-adjustment hardware mode. */
  7580. crtc->hwmode = pipe_config->adjusted_mode;
  7581. /* Calculate and store various constants which
  7582. * are later needed by vblank and swap-completion
  7583. * timestamping. They are derived from true hwmode.
  7584. */
  7585. drm_calc_timestamping_constants(crtc);
  7586. }
  7587. /* FIXME: add subpixel order */
  7588. done:
  7589. if (ret && crtc->enabled) {
  7590. crtc->hwmode = *saved_hwmode;
  7591. crtc->mode = *saved_mode;
  7592. }
  7593. out:
  7594. kfree(pipe_config);
  7595. kfree(saved_mode);
  7596. return ret;
  7597. }
  7598. static int intel_set_mode(struct drm_crtc *crtc,
  7599. struct drm_display_mode *mode,
  7600. int x, int y, struct drm_framebuffer *fb)
  7601. {
  7602. int ret;
  7603. ret = __intel_set_mode(crtc, mode, x, y, fb);
  7604. if (ret == 0)
  7605. intel_modeset_check_state(crtc->dev);
  7606. return ret;
  7607. }
  7608. void intel_crtc_restore_mode(struct drm_crtc *crtc)
  7609. {
  7610. intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y, crtc->fb);
  7611. }
  7612. #undef for_each_intel_crtc_masked
  7613. static void intel_set_config_free(struct intel_set_config *config)
  7614. {
  7615. if (!config)
  7616. return;
  7617. kfree(config->save_connector_encoders);
  7618. kfree(config->save_encoder_crtcs);
  7619. kfree(config);
  7620. }
  7621. static int intel_set_config_save_state(struct drm_device *dev,
  7622. struct intel_set_config *config)
  7623. {
  7624. struct drm_encoder *encoder;
  7625. struct drm_connector *connector;
  7626. int count;
  7627. config->save_encoder_crtcs =
  7628. kcalloc(dev->mode_config.num_encoder,
  7629. sizeof(struct drm_crtc *), GFP_KERNEL);
  7630. if (!config->save_encoder_crtcs)
  7631. return -ENOMEM;
  7632. config->save_connector_encoders =
  7633. kcalloc(dev->mode_config.num_connector,
  7634. sizeof(struct drm_encoder *), GFP_KERNEL);
  7635. if (!config->save_connector_encoders)
  7636. return -ENOMEM;
  7637. /* Copy data. Note that driver private data is not affected.
  7638. * Should anything bad happen only the expected state is
  7639. * restored, not the drivers personal bookkeeping.
  7640. */
  7641. count = 0;
  7642. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  7643. config->save_encoder_crtcs[count++] = encoder->crtc;
  7644. }
  7645. count = 0;
  7646. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  7647. config->save_connector_encoders[count++] = connector->encoder;
  7648. }
  7649. return 0;
  7650. }
  7651. static void intel_set_config_restore_state(struct drm_device *dev,
  7652. struct intel_set_config *config)
  7653. {
  7654. struct intel_encoder *encoder;
  7655. struct intel_connector *connector;
  7656. int count;
  7657. count = 0;
  7658. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  7659. encoder->new_crtc =
  7660. to_intel_crtc(config->save_encoder_crtcs[count++]);
  7661. }
  7662. count = 0;
  7663. list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
  7664. connector->new_encoder =
  7665. to_intel_encoder(config->save_connector_encoders[count++]);
  7666. }
  7667. }
  7668. static bool
  7669. is_crtc_connector_off(struct drm_mode_set *set)
  7670. {
  7671. int i;
  7672. if (set->num_connectors == 0)
  7673. return false;
  7674. if (WARN_ON(set->connectors == NULL))
  7675. return false;
  7676. for (i = 0; i < set->num_connectors; i++)
  7677. if (set->connectors[i]->encoder &&
  7678. set->connectors[i]->encoder->crtc == set->crtc &&
  7679. set->connectors[i]->dpms != DRM_MODE_DPMS_ON)
  7680. return true;
  7681. return false;
  7682. }
  7683. static void
  7684. intel_set_config_compute_mode_changes(struct drm_mode_set *set,
  7685. struct intel_set_config *config)
  7686. {
  7687. /* We should be able to check here if the fb has the same properties
  7688. * and then just flip_or_move it */
  7689. if (is_crtc_connector_off(set)) {
  7690. config->mode_changed = true;
  7691. } else if (set->crtc->fb != set->fb) {
  7692. /* If we have no fb then treat it as a full mode set */
  7693. if (set->crtc->fb == NULL) {
  7694. struct intel_crtc *intel_crtc =
  7695. to_intel_crtc(set->crtc);
  7696. if (intel_crtc->active && i915_fastboot) {
  7697. DRM_DEBUG_KMS("crtc has no fb, will flip\n");
  7698. config->fb_changed = true;
  7699. } else {
  7700. DRM_DEBUG_KMS("inactive crtc, full mode set\n");
  7701. config->mode_changed = true;
  7702. }
  7703. } else if (set->fb == NULL) {
  7704. config->mode_changed = true;
  7705. } else if (set->fb->pixel_format !=
  7706. set->crtc->fb->pixel_format) {
  7707. config->mode_changed = true;
  7708. } else {
  7709. config->fb_changed = true;
  7710. }
  7711. }
  7712. if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
  7713. config->fb_changed = true;
  7714. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  7715. DRM_DEBUG_KMS("modes are different, full mode set\n");
  7716. drm_mode_debug_printmodeline(&set->crtc->mode);
  7717. drm_mode_debug_printmodeline(set->mode);
  7718. config->mode_changed = true;
  7719. }
  7720. DRM_DEBUG_KMS("computed changes for [CRTC:%d], mode_changed=%d, fb_changed=%d\n",
  7721. set->crtc->base.id, config->mode_changed, config->fb_changed);
  7722. }
  7723. static int
  7724. intel_modeset_stage_output_state(struct drm_device *dev,
  7725. struct drm_mode_set *set,
  7726. struct intel_set_config *config)
  7727. {
  7728. struct drm_crtc *new_crtc;
  7729. struct intel_connector *connector;
  7730. struct intel_encoder *encoder;
  7731. int ro;
  7732. /* The upper layers ensure that we either disable a crtc or have a list
  7733. * of connectors. For paranoia, double-check this. */
  7734. WARN_ON(!set->fb && (set->num_connectors != 0));
  7735. WARN_ON(set->fb && (set->num_connectors == 0));
  7736. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7737. base.head) {
  7738. /* Otherwise traverse passed in connector list and get encoders
  7739. * for them. */
  7740. for (ro = 0; ro < set->num_connectors; ro++) {
  7741. if (set->connectors[ro] == &connector->base) {
  7742. connector->new_encoder = connector->encoder;
  7743. break;
  7744. }
  7745. }
  7746. /* If we disable the crtc, disable all its connectors. Also, if
  7747. * the connector is on the changing crtc but not on the new
  7748. * connector list, disable it. */
  7749. if ((!set->fb || ro == set->num_connectors) &&
  7750. connector->base.encoder &&
  7751. connector->base.encoder->crtc == set->crtc) {
  7752. connector->new_encoder = NULL;
  7753. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  7754. connector->base.base.id,
  7755. drm_get_connector_name(&connector->base));
  7756. }
  7757. if (&connector->new_encoder->base != connector->base.encoder) {
  7758. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  7759. config->mode_changed = true;
  7760. }
  7761. }
  7762. /* connector->new_encoder is now updated for all connectors. */
  7763. /* Update crtc of enabled connectors. */
  7764. list_for_each_entry(connector, &dev->mode_config.connector_list,
  7765. base.head) {
  7766. if (!connector->new_encoder)
  7767. continue;
  7768. new_crtc = connector->new_encoder->base.crtc;
  7769. for (ro = 0; ro < set->num_connectors; ro++) {
  7770. if (set->connectors[ro] == &connector->base)
  7771. new_crtc = set->crtc;
  7772. }
  7773. /* Make sure the new CRTC will work with the encoder */
  7774. if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
  7775. new_crtc)) {
  7776. return -EINVAL;
  7777. }
  7778. connector->encoder->new_crtc = to_intel_crtc(new_crtc);
  7779. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  7780. connector->base.base.id,
  7781. drm_get_connector_name(&connector->base),
  7782. new_crtc->base.id);
  7783. }
  7784. /* Check for any encoders that needs to be disabled. */
  7785. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  7786. base.head) {
  7787. list_for_each_entry(connector,
  7788. &dev->mode_config.connector_list,
  7789. base.head) {
  7790. if (connector->new_encoder == encoder) {
  7791. WARN_ON(!connector->new_encoder->new_crtc);
  7792. goto next_encoder;
  7793. }
  7794. }
  7795. encoder->new_crtc = NULL;
  7796. next_encoder:
  7797. /* Only now check for crtc changes so we don't miss encoders
  7798. * that will be disabled. */
  7799. if (&encoder->new_crtc->base != encoder->base.crtc) {
  7800. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  7801. config->mode_changed = true;
  7802. }
  7803. }
  7804. /* Now we've also updated encoder->new_crtc for all encoders. */
  7805. return 0;
  7806. }
  7807. static int intel_crtc_set_config(struct drm_mode_set *set)
  7808. {
  7809. struct drm_device *dev;
  7810. struct drm_mode_set save_set;
  7811. struct intel_set_config *config;
  7812. int ret;
  7813. BUG_ON(!set);
  7814. BUG_ON(!set->crtc);
  7815. BUG_ON(!set->crtc->helper_private);
  7816. /* Enforce sane interface api - has been abused by the fb helper. */
  7817. BUG_ON(!set->mode && set->fb);
  7818. BUG_ON(set->fb && set->num_connectors == 0);
  7819. if (set->fb) {
  7820. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  7821. set->crtc->base.id, set->fb->base.id,
  7822. (int)set->num_connectors, set->x, set->y);
  7823. } else {
  7824. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  7825. }
  7826. dev = set->crtc->dev;
  7827. ret = -ENOMEM;
  7828. config = kzalloc(sizeof(*config), GFP_KERNEL);
  7829. if (!config)
  7830. goto out_config;
  7831. ret = intel_set_config_save_state(dev, config);
  7832. if (ret)
  7833. goto out_config;
  7834. save_set.crtc = set->crtc;
  7835. save_set.mode = &set->crtc->mode;
  7836. save_set.x = set->crtc->x;
  7837. save_set.y = set->crtc->y;
  7838. save_set.fb = set->crtc->fb;
  7839. /* Compute whether we need a full modeset, only an fb base update or no
  7840. * change at all. In the future we might also check whether only the
  7841. * mode changed, e.g. for LVDS where we only change the panel fitter in
  7842. * such cases. */
  7843. intel_set_config_compute_mode_changes(set, config);
  7844. ret = intel_modeset_stage_output_state(dev, set, config);
  7845. if (ret)
  7846. goto fail;
  7847. if (config->mode_changed) {
  7848. ret = intel_set_mode(set->crtc, set->mode,
  7849. set->x, set->y, set->fb);
  7850. } else if (config->fb_changed) {
  7851. intel_crtc_wait_for_pending_flips(set->crtc);
  7852. ret = intel_pipe_set_base(set->crtc,
  7853. set->x, set->y, set->fb);
  7854. }
  7855. if (ret) {
  7856. DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
  7857. set->crtc->base.id, ret);
  7858. fail:
  7859. intel_set_config_restore_state(dev, config);
  7860. /* Try to restore the config */
  7861. if (config->mode_changed &&
  7862. intel_set_mode(save_set.crtc, save_set.mode,
  7863. save_set.x, save_set.y, save_set.fb))
  7864. DRM_ERROR("failed to restore config after modeset failure\n");
  7865. }
  7866. out_config:
  7867. intel_set_config_free(config);
  7868. return ret;
  7869. }
  7870. static const struct drm_crtc_funcs intel_crtc_funcs = {
  7871. .cursor_set = intel_crtc_cursor_set,
  7872. .cursor_move = intel_crtc_cursor_move,
  7873. .gamma_set = intel_crtc_gamma_set,
  7874. .set_config = intel_crtc_set_config,
  7875. .destroy = intel_crtc_destroy,
  7876. .page_flip = intel_crtc_page_flip,
  7877. };
  7878. static void intel_cpu_pll_init(struct drm_device *dev)
  7879. {
  7880. if (HAS_DDI(dev))
  7881. intel_ddi_pll_init(dev);
  7882. }
  7883. static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
  7884. struct intel_shared_dpll *pll,
  7885. struct intel_dpll_hw_state *hw_state)
  7886. {
  7887. uint32_t val;
  7888. val = I915_READ(PCH_DPLL(pll->id));
  7889. hw_state->dpll = val;
  7890. hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
  7891. hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
  7892. return val & DPLL_VCO_ENABLE;
  7893. }
  7894. static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
  7895. struct intel_shared_dpll *pll)
  7896. {
  7897. I915_WRITE(PCH_FP0(pll->id), pll->hw_state.fp0);
  7898. I915_WRITE(PCH_FP1(pll->id), pll->hw_state.fp1);
  7899. }
  7900. static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
  7901. struct intel_shared_dpll *pll)
  7902. {
  7903. /* PCH refclock must be enabled first */
  7904. assert_pch_refclk_enabled(dev_priv);
  7905. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7906. /* Wait for the clocks to stabilize. */
  7907. POSTING_READ(PCH_DPLL(pll->id));
  7908. udelay(150);
  7909. /* The pixel multiplier can only be updated once the
  7910. * DPLL is enabled and the clocks are stable.
  7911. *
  7912. * So write it again.
  7913. */
  7914. I915_WRITE(PCH_DPLL(pll->id), pll->hw_state.dpll);
  7915. POSTING_READ(PCH_DPLL(pll->id));
  7916. udelay(200);
  7917. }
  7918. static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
  7919. struct intel_shared_dpll *pll)
  7920. {
  7921. struct drm_device *dev = dev_priv->dev;
  7922. struct intel_crtc *crtc;
  7923. /* Make sure no transcoder isn't still depending on us. */
  7924. list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
  7925. if (intel_crtc_to_shared_dpll(crtc) == pll)
  7926. assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
  7927. }
  7928. I915_WRITE(PCH_DPLL(pll->id), 0);
  7929. POSTING_READ(PCH_DPLL(pll->id));
  7930. udelay(200);
  7931. }
  7932. static char *ibx_pch_dpll_names[] = {
  7933. "PCH DPLL A",
  7934. "PCH DPLL B",
  7935. };
  7936. static void ibx_pch_dpll_init(struct drm_device *dev)
  7937. {
  7938. struct drm_i915_private *dev_priv = dev->dev_private;
  7939. int i;
  7940. dev_priv->num_shared_dpll = 2;
  7941. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  7942. dev_priv->shared_dplls[i].id = i;
  7943. dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
  7944. dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
  7945. dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
  7946. dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
  7947. dev_priv->shared_dplls[i].get_hw_state =
  7948. ibx_pch_dpll_get_hw_state;
  7949. }
  7950. }
  7951. static void intel_shared_dpll_init(struct drm_device *dev)
  7952. {
  7953. struct drm_i915_private *dev_priv = dev->dev_private;
  7954. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  7955. ibx_pch_dpll_init(dev);
  7956. else
  7957. dev_priv->num_shared_dpll = 0;
  7958. BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
  7959. DRM_DEBUG_KMS("%i shared PLLs initialized\n",
  7960. dev_priv->num_shared_dpll);
  7961. }
  7962. static void intel_crtc_init(struct drm_device *dev, int pipe)
  7963. {
  7964. drm_i915_private_t *dev_priv = dev->dev_private;
  7965. struct intel_crtc *intel_crtc;
  7966. int i;
  7967. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  7968. if (intel_crtc == NULL)
  7969. return;
  7970. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  7971. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  7972. for (i = 0; i < 256; i++) {
  7973. intel_crtc->lut_r[i] = i;
  7974. intel_crtc->lut_g[i] = i;
  7975. intel_crtc->lut_b[i] = i;
  7976. }
  7977. /* Swap pipes & planes for FBC on pre-965 */
  7978. intel_crtc->pipe = pipe;
  7979. intel_crtc->plane = pipe;
  7980. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  7981. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  7982. intel_crtc->plane = !pipe;
  7983. }
  7984. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  7985. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  7986. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  7987. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  7988. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  7989. }
  7990. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  7991. struct drm_file *file)
  7992. {
  7993. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  7994. struct drm_mode_object *drmmode_obj;
  7995. struct intel_crtc *crtc;
  7996. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  7997. return -ENODEV;
  7998. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  7999. DRM_MODE_OBJECT_CRTC);
  8000. if (!drmmode_obj) {
  8001. DRM_ERROR("no such CRTC id\n");
  8002. return -EINVAL;
  8003. }
  8004. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  8005. pipe_from_crtc_id->pipe = crtc->pipe;
  8006. return 0;
  8007. }
  8008. static int intel_encoder_clones(struct intel_encoder *encoder)
  8009. {
  8010. struct drm_device *dev = encoder->base.dev;
  8011. struct intel_encoder *source_encoder;
  8012. int index_mask = 0;
  8013. int entry = 0;
  8014. list_for_each_entry(source_encoder,
  8015. &dev->mode_config.encoder_list, base.head) {
  8016. if (encoder == source_encoder)
  8017. index_mask |= (1 << entry);
  8018. /* Intel hw has only one MUX where enocoders could be cloned. */
  8019. if (encoder->cloneable && source_encoder->cloneable)
  8020. index_mask |= (1 << entry);
  8021. entry++;
  8022. }
  8023. return index_mask;
  8024. }
  8025. static bool has_edp_a(struct drm_device *dev)
  8026. {
  8027. struct drm_i915_private *dev_priv = dev->dev_private;
  8028. if (!IS_MOBILE(dev))
  8029. return false;
  8030. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  8031. return false;
  8032. if (IS_GEN5(dev) &&
  8033. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  8034. return false;
  8035. return true;
  8036. }
  8037. static void intel_setup_outputs(struct drm_device *dev)
  8038. {
  8039. struct drm_i915_private *dev_priv = dev->dev_private;
  8040. struct intel_encoder *encoder;
  8041. bool dpd_is_edp = false;
  8042. intel_lvds_init(dev);
  8043. if (!IS_ULT(dev))
  8044. intel_crt_init(dev);
  8045. if (HAS_DDI(dev)) {
  8046. int found;
  8047. /* Haswell uses DDI functions to detect digital outputs */
  8048. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  8049. /* DDI A only supports eDP */
  8050. if (found)
  8051. intel_ddi_init(dev, PORT_A);
  8052. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  8053. * register */
  8054. found = I915_READ(SFUSE_STRAP);
  8055. if (found & SFUSE_STRAP_DDIB_DETECTED)
  8056. intel_ddi_init(dev, PORT_B);
  8057. if (found & SFUSE_STRAP_DDIC_DETECTED)
  8058. intel_ddi_init(dev, PORT_C);
  8059. if (found & SFUSE_STRAP_DDID_DETECTED)
  8060. intel_ddi_init(dev, PORT_D);
  8061. } else if (HAS_PCH_SPLIT(dev)) {
  8062. int found;
  8063. dpd_is_edp = intel_dpd_is_edp(dev);
  8064. if (has_edp_a(dev))
  8065. intel_dp_init(dev, DP_A, PORT_A);
  8066. if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
  8067. /* PCH SDVOB multiplex with HDMIB */
  8068. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  8069. if (!found)
  8070. intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
  8071. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  8072. intel_dp_init(dev, PCH_DP_B, PORT_B);
  8073. }
  8074. if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
  8075. intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
  8076. if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
  8077. intel_hdmi_init(dev, PCH_HDMID, PORT_D);
  8078. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  8079. intel_dp_init(dev, PCH_DP_C, PORT_C);
  8080. if (I915_READ(PCH_DP_D) & DP_DETECTED)
  8081. intel_dp_init(dev, PCH_DP_D, PORT_D);
  8082. } else if (IS_VALLEYVIEW(dev)) {
  8083. /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
  8084. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED) {
  8085. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
  8086. PORT_C);
  8087. if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED)
  8088. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C,
  8089. PORT_C);
  8090. }
  8091. if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED) {
  8092. intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
  8093. PORT_B);
  8094. if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED)
  8095. intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
  8096. }
  8097. intel_dsi_init(dev);
  8098. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  8099. bool found = false;
  8100. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8101. DRM_DEBUG_KMS("probing SDVOB\n");
  8102. found = intel_sdvo_init(dev, GEN3_SDVOB, true);
  8103. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  8104. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  8105. intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
  8106. }
  8107. if (!found && SUPPORTS_INTEGRATED_DP(dev))
  8108. intel_dp_init(dev, DP_B, PORT_B);
  8109. }
  8110. /* Before G4X SDVOC doesn't have its own detect register */
  8111. if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
  8112. DRM_DEBUG_KMS("probing SDVOC\n");
  8113. found = intel_sdvo_init(dev, GEN3_SDVOC, false);
  8114. }
  8115. if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
  8116. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  8117. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  8118. intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
  8119. }
  8120. if (SUPPORTS_INTEGRATED_DP(dev))
  8121. intel_dp_init(dev, DP_C, PORT_C);
  8122. }
  8123. if (SUPPORTS_INTEGRATED_DP(dev) &&
  8124. (I915_READ(DP_D) & DP_DETECTED))
  8125. intel_dp_init(dev, DP_D, PORT_D);
  8126. } else if (IS_GEN2(dev))
  8127. intel_dvo_init(dev);
  8128. if (SUPPORTS_TV(dev))
  8129. intel_tv_init(dev);
  8130. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  8131. encoder->base.possible_crtcs = encoder->crtc_mask;
  8132. encoder->base.possible_clones =
  8133. intel_encoder_clones(encoder);
  8134. }
  8135. intel_init_pch_refclk(dev);
  8136. drm_helper_move_panel_connectors_to_head(dev);
  8137. }
  8138. void intel_framebuffer_fini(struct intel_framebuffer *fb)
  8139. {
  8140. drm_framebuffer_cleanup(&fb->base);
  8141. drm_gem_object_unreference_unlocked(&fb->obj->base);
  8142. }
  8143. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  8144. {
  8145. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8146. intel_framebuffer_fini(intel_fb);
  8147. kfree(intel_fb);
  8148. }
  8149. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  8150. struct drm_file *file,
  8151. unsigned int *handle)
  8152. {
  8153. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  8154. struct drm_i915_gem_object *obj = intel_fb->obj;
  8155. return drm_gem_handle_create(file, &obj->base, handle);
  8156. }
  8157. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  8158. .destroy = intel_user_framebuffer_destroy,
  8159. .create_handle = intel_user_framebuffer_create_handle,
  8160. };
  8161. int intel_framebuffer_init(struct drm_device *dev,
  8162. struct intel_framebuffer *intel_fb,
  8163. struct drm_mode_fb_cmd2 *mode_cmd,
  8164. struct drm_i915_gem_object *obj)
  8165. {
  8166. int pitch_limit;
  8167. int ret;
  8168. if (obj->tiling_mode == I915_TILING_Y) {
  8169. DRM_DEBUG("hardware does not support tiling Y\n");
  8170. return -EINVAL;
  8171. }
  8172. if (mode_cmd->pitches[0] & 63) {
  8173. DRM_DEBUG("pitch (%d) must be at least 64 byte aligned\n",
  8174. mode_cmd->pitches[0]);
  8175. return -EINVAL;
  8176. }
  8177. if (INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev)) {
  8178. pitch_limit = 32*1024;
  8179. } else if (INTEL_INFO(dev)->gen >= 4) {
  8180. if (obj->tiling_mode)
  8181. pitch_limit = 16*1024;
  8182. else
  8183. pitch_limit = 32*1024;
  8184. } else if (INTEL_INFO(dev)->gen >= 3) {
  8185. if (obj->tiling_mode)
  8186. pitch_limit = 8*1024;
  8187. else
  8188. pitch_limit = 16*1024;
  8189. } else
  8190. /* XXX DSPC is limited to 4k tiled */
  8191. pitch_limit = 8*1024;
  8192. if (mode_cmd->pitches[0] > pitch_limit) {
  8193. DRM_DEBUG("%s pitch (%d) must be at less than %d\n",
  8194. obj->tiling_mode ? "tiled" : "linear",
  8195. mode_cmd->pitches[0], pitch_limit);
  8196. return -EINVAL;
  8197. }
  8198. if (obj->tiling_mode != I915_TILING_NONE &&
  8199. mode_cmd->pitches[0] != obj->stride) {
  8200. DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
  8201. mode_cmd->pitches[0], obj->stride);
  8202. return -EINVAL;
  8203. }
  8204. /* Reject formats not supported by any plane early. */
  8205. switch (mode_cmd->pixel_format) {
  8206. case DRM_FORMAT_C8:
  8207. case DRM_FORMAT_RGB565:
  8208. case DRM_FORMAT_XRGB8888:
  8209. case DRM_FORMAT_ARGB8888:
  8210. break;
  8211. case DRM_FORMAT_XRGB1555:
  8212. case DRM_FORMAT_ARGB1555:
  8213. if (INTEL_INFO(dev)->gen > 3) {
  8214. DRM_DEBUG("unsupported pixel format: %s\n",
  8215. drm_get_format_name(mode_cmd->pixel_format));
  8216. return -EINVAL;
  8217. }
  8218. break;
  8219. case DRM_FORMAT_XBGR8888:
  8220. case DRM_FORMAT_ABGR8888:
  8221. case DRM_FORMAT_XRGB2101010:
  8222. case DRM_FORMAT_ARGB2101010:
  8223. case DRM_FORMAT_XBGR2101010:
  8224. case DRM_FORMAT_ABGR2101010:
  8225. if (INTEL_INFO(dev)->gen < 4) {
  8226. DRM_DEBUG("unsupported pixel format: %s\n",
  8227. drm_get_format_name(mode_cmd->pixel_format));
  8228. return -EINVAL;
  8229. }
  8230. break;
  8231. case DRM_FORMAT_YUYV:
  8232. case DRM_FORMAT_UYVY:
  8233. case DRM_FORMAT_YVYU:
  8234. case DRM_FORMAT_VYUY:
  8235. if (INTEL_INFO(dev)->gen < 5) {
  8236. DRM_DEBUG("unsupported pixel format: %s\n",
  8237. drm_get_format_name(mode_cmd->pixel_format));
  8238. return -EINVAL;
  8239. }
  8240. break;
  8241. default:
  8242. DRM_DEBUG("unsupported pixel format: %s\n",
  8243. drm_get_format_name(mode_cmd->pixel_format));
  8244. return -EINVAL;
  8245. }
  8246. /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
  8247. if (mode_cmd->offsets[0] != 0)
  8248. return -EINVAL;
  8249. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  8250. intel_fb->obj = obj;
  8251. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  8252. if (ret) {
  8253. DRM_ERROR("framebuffer init failed %d\n", ret);
  8254. return ret;
  8255. }
  8256. return 0;
  8257. }
  8258. static struct drm_framebuffer *
  8259. intel_user_framebuffer_create(struct drm_device *dev,
  8260. struct drm_file *filp,
  8261. struct drm_mode_fb_cmd2 *mode_cmd)
  8262. {
  8263. struct drm_i915_gem_object *obj;
  8264. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  8265. mode_cmd->handles[0]));
  8266. if (&obj->base == NULL)
  8267. return ERR_PTR(-ENOENT);
  8268. return intel_framebuffer_create(dev, mode_cmd, obj);
  8269. }
  8270. static const struct drm_mode_config_funcs intel_mode_funcs = {
  8271. .fb_create = intel_user_framebuffer_create,
  8272. .output_poll_changed = intel_fb_output_poll_changed,
  8273. };
  8274. /* Set up chip specific display functions */
  8275. static void intel_init_display(struct drm_device *dev)
  8276. {
  8277. struct drm_i915_private *dev_priv = dev->dev_private;
  8278. if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
  8279. dev_priv->display.find_dpll = g4x_find_best_dpll;
  8280. else if (IS_VALLEYVIEW(dev))
  8281. dev_priv->display.find_dpll = vlv_find_best_dpll;
  8282. else if (IS_PINEVIEW(dev))
  8283. dev_priv->display.find_dpll = pnv_find_best_dpll;
  8284. else
  8285. dev_priv->display.find_dpll = i9xx_find_best_dpll;
  8286. if (HAS_DDI(dev)) {
  8287. dev_priv->display.get_pipe_config = haswell_get_pipe_config;
  8288. dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
  8289. dev_priv->display.crtc_enable = haswell_crtc_enable;
  8290. dev_priv->display.crtc_disable = haswell_crtc_disable;
  8291. dev_priv->display.off = haswell_crtc_off;
  8292. dev_priv->display.update_plane = ironlake_update_plane;
  8293. } else if (HAS_PCH_SPLIT(dev)) {
  8294. dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
  8295. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  8296. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  8297. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  8298. dev_priv->display.off = ironlake_crtc_off;
  8299. dev_priv->display.update_plane = ironlake_update_plane;
  8300. } else if (IS_VALLEYVIEW(dev)) {
  8301. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8302. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8303. dev_priv->display.crtc_enable = valleyview_crtc_enable;
  8304. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8305. dev_priv->display.off = i9xx_crtc_off;
  8306. dev_priv->display.update_plane = i9xx_update_plane;
  8307. } else {
  8308. dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
  8309. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  8310. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  8311. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  8312. dev_priv->display.off = i9xx_crtc_off;
  8313. dev_priv->display.update_plane = i9xx_update_plane;
  8314. }
  8315. /* Returns the core display clock speed */
  8316. if (IS_VALLEYVIEW(dev))
  8317. dev_priv->display.get_display_clock_speed =
  8318. valleyview_get_display_clock_speed;
  8319. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  8320. dev_priv->display.get_display_clock_speed =
  8321. i945_get_display_clock_speed;
  8322. else if (IS_I915G(dev))
  8323. dev_priv->display.get_display_clock_speed =
  8324. i915_get_display_clock_speed;
  8325. else if (IS_I945GM(dev) || IS_845G(dev))
  8326. dev_priv->display.get_display_clock_speed =
  8327. i9xx_misc_get_display_clock_speed;
  8328. else if (IS_PINEVIEW(dev))
  8329. dev_priv->display.get_display_clock_speed =
  8330. pnv_get_display_clock_speed;
  8331. else if (IS_I915GM(dev))
  8332. dev_priv->display.get_display_clock_speed =
  8333. i915gm_get_display_clock_speed;
  8334. else if (IS_I865G(dev))
  8335. dev_priv->display.get_display_clock_speed =
  8336. i865_get_display_clock_speed;
  8337. else if (IS_I85X(dev))
  8338. dev_priv->display.get_display_clock_speed =
  8339. i855_get_display_clock_speed;
  8340. else /* 852, 830 */
  8341. dev_priv->display.get_display_clock_speed =
  8342. i830_get_display_clock_speed;
  8343. if (HAS_PCH_SPLIT(dev)) {
  8344. if (IS_GEN5(dev)) {
  8345. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  8346. dev_priv->display.write_eld = ironlake_write_eld;
  8347. } else if (IS_GEN6(dev)) {
  8348. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  8349. dev_priv->display.write_eld = ironlake_write_eld;
  8350. } else if (IS_IVYBRIDGE(dev)) {
  8351. /* FIXME: detect B0+ stepping and use auto training */
  8352. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  8353. dev_priv->display.write_eld = ironlake_write_eld;
  8354. dev_priv->display.modeset_global_resources =
  8355. ivb_modeset_global_resources;
  8356. } else if (IS_HASWELL(dev)) {
  8357. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  8358. dev_priv->display.write_eld = haswell_write_eld;
  8359. dev_priv->display.modeset_global_resources =
  8360. haswell_modeset_global_resources;
  8361. }
  8362. } else if (IS_G4X(dev)) {
  8363. dev_priv->display.write_eld = g4x_write_eld;
  8364. }
  8365. /* Default just returns -ENODEV to indicate unsupported */
  8366. dev_priv->display.queue_flip = intel_default_queue_flip;
  8367. switch (INTEL_INFO(dev)->gen) {
  8368. case 2:
  8369. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  8370. break;
  8371. case 3:
  8372. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  8373. break;
  8374. case 4:
  8375. case 5:
  8376. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  8377. break;
  8378. case 6:
  8379. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  8380. break;
  8381. case 7:
  8382. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  8383. break;
  8384. }
  8385. }
  8386. /*
  8387. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  8388. * resume, or other times. This quirk makes sure that's the case for
  8389. * affected systems.
  8390. */
  8391. static void quirk_pipea_force(struct drm_device *dev)
  8392. {
  8393. struct drm_i915_private *dev_priv = dev->dev_private;
  8394. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  8395. DRM_INFO("applying pipe a force quirk\n");
  8396. }
  8397. /*
  8398. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  8399. */
  8400. static void quirk_ssc_force_disable(struct drm_device *dev)
  8401. {
  8402. struct drm_i915_private *dev_priv = dev->dev_private;
  8403. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  8404. DRM_INFO("applying lvds SSC disable quirk\n");
  8405. }
  8406. /*
  8407. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  8408. * brightness value
  8409. */
  8410. static void quirk_invert_brightness(struct drm_device *dev)
  8411. {
  8412. struct drm_i915_private *dev_priv = dev->dev_private;
  8413. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  8414. DRM_INFO("applying inverted panel brightness quirk\n");
  8415. }
  8416. /*
  8417. * Some machines (Dell XPS13) suffer broken backlight controls if
  8418. * BLM_PCH_PWM_ENABLE is set.
  8419. */
  8420. static void quirk_no_pcm_pwm_enable(struct drm_device *dev)
  8421. {
  8422. struct drm_i915_private *dev_priv = dev->dev_private;
  8423. dev_priv->quirks |= QUIRK_NO_PCH_PWM_ENABLE;
  8424. DRM_INFO("applying no-PCH_PWM_ENABLE quirk\n");
  8425. }
  8426. struct intel_quirk {
  8427. int device;
  8428. int subsystem_vendor;
  8429. int subsystem_device;
  8430. void (*hook)(struct drm_device *dev);
  8431. };
  8432. /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
  8433. struct intel_dmi_quirk {
  8434. void (*hook)(struct drm_device *dev);
  8435. const struct dmi_system_id (*dmi_id_list)[];
  8436. };
  8437. static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
  8438. {
  8439. DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
  8440. return 1;
  8441. }
  8442. static const struct intel_dmi_quirk intel_dmi_quirks[] = {
  8443. {
  8444. .dmi_id_list = &(const struct dmi_system_id[]) {
  8445. {
  8446. .callback = intel_dmi_reverse_brightness,
  8447. .ident = "NCR Corporation",
  8448. .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
  8449. DMI_MATCH(DMI_PRODUCT_NAME, ""),
  8450. },
  8451. },
  8452. { } /* terminating entry */
  8453. },
  8454. .hook = quirk_invert_brightness,
  8455. },
  8456. };
  8457. static struct intel_quirk intel_quirks[] = {
  8458. /* HP Mini needs pipe A force quirk (LP: #322104) */
  8459. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  8460. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  8461. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  8462. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  8463. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  8464. /* 830/845 need to leave pipe A & dpll A up */
  8465. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8466. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  8467. /* Lenovo U160 cannot use SSC on LVDS */
  8468. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  8469. /* Sony Vaio Y cannot use SSC on LVDS */
  8470. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  8471. /* Acer Aspire 5734Z must invert backlight brightness */
  8472. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  8473. /* Acer/eMachines G725 */
  8474. { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
  8475. /* Acer/eMachines e725 */
  8476. { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
  8477. /* Acer/Packard Bell NCL20 */
  8478. { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
  8479. /* Acer Aspire 4736Z */
  8480. { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
  8481. /* Dell XPS13 HD Sandy Bridge */
  8482. { 0x0116, 0x1028, 0x052e, quirk_no_pcm_pwm_enable },
  8483. /* Dell XPS13 HD and XPS13 FHD Ivy Bridge */
  8484. { 0x0166, 0x1028, 0x058b, quirk_no_pcm_pwm_enable },
  8485. };
  8486. static void intel_init_quirks(struct drm_device *dev)
  8487. {
  8488. struct pci_dev *d = dev->pdev;
  8489. int i;
  8490. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  8491. struct intel_quirk *q = &intel_quirks[i];
  8492. if (d->device == q->device &&
  8493. (d->subsystem_vendor == q->subsystem_vendor ||
  8494. q->subsystem_vendor == PCI_ANY_ID) &&
  8495. (d->subsystem_device == q->subsystem_device ||
  8496. q->subsystem_device == PCI_ANY_ID))
  8497. q->hook(dev);
  8498. }
  8499. for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
  8500. if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
  8501. intel_dmi_quirks[i].hook(dev);
  8502. }
  8503. }
  8504. /* Disable the VGA plane that we never use */
  8505. static void i915_disable_vga(struct drm_device *dev)
  8506. {
  8507. struct drm_i915_private *dev_priv = dev->dev_private;
  8508. u8 sr1;
  8509. u32 vga_reg = i915_vgacntrl_reg(dev);
  8510. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8511. outb(SR01, VGA_SR_INDEX);
  8512. sr1 = inb(VGA_SR_DATA);
  8513. outb(sr1 | 1<<5, VGA_SR_DATA);
  8514. /* Disable VGA memory on Intel HD */
  8515. if (HAS_PCH_SPLIT(dev)) {
  8516. outb(inb(VGA_MSR_READ) & ~VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8517. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8518. VGA_RSRC_NORMAL_IO |
  8519. VGA_RSRC_NORMAL_MEM);
  8520. }
  8521. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8522. udelay(300);
  8523. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  8524. POSTING_READ(vga_reg);
  8525. }
  8526. static void i915_enable_vga(struct drm_device *dev)
  8527. {
  8528. /* Enable VGA memory on Intel HD */
  8529. if (HAS_PCH_SPLIT(dev)) {
  8530. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  8531. outb(inb(VGA_MSR_READ) | VGA_MSR_MEM_EN, VGA_MSR_WRITE);
  8532. vga_set_legacy_decoding(dev->pdev, VGA_RSRC_LEGACY_IO |
  8533. VGA_RSRC_LEGACY_MEM |
  8534. VGA_RSRC_NORMAL_IO |
  8535. VGA_RSRC_NORMAL_MEM);
  8536. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  8537. }
  8538. }
  8539. void intel_modeset_init_hw(struct drm_device *dev)
  8540. {
  8541. intel_init_power_well(dev);
  8542. intel_prepare_ddi(dev);
  8543. intel_init_clock_gating(dev);
  8544. mutex_lock(&dev->struct_mutex);
  8545. intel_enable_gt_powersave(dev);
  8546. mutex_unlock(&dev->struct_mutex);
  8547. }
  8548. void intel_modeset_suspend_hw(struct drm_device *dev)
  8549. {
  8550. intel_suspend_hw(dev);
  8551. }
  8552. void intel_modeset_init(struct drm_device *dev)
  8553. {
  8554. struct drm_i915_private *dev_priv = dev->dev_private;
  8555. int i, j, ret;
  8556. drm_mode_config_init(dev);
  8557. dev->mode_config.min_width = 0;
  8558. dev->mode_config.min_height = 0;
  8559. dev->mode_config.preferred_depth = 24;
  8560. dev->mode_config.prefer_shadow = 1;
  8561. dev->mode_config.funcs = &intel_mode_funcs;
  8562. intel_init_quirks(dev);
  8563. intel_init_pm(dev);
  8564. if (INTEL_INFO(dev)->num_pipes == 0)
  8565. return;
  8566. intel_init_display(dev);
  8567. if (IS_GEN2(dev)) {
  8568. dev->mode_config.max_width = 2048;
  8569. dev->mode_config.max_height = 2048;
  8570. } else if (IS_GEN3(dev)) {
  8571. dev->mode_config.max_width = 4096;
  8572. dev->mode_config.max_height = 4096;
  8573. } else {
  8574. dev->mode_config.max_width = 8192;
  8575. dev->mode_config.max_height = 8192;
  8576. }
  8577. dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
  8578. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  8579. INTEL_INFO(dev)->num_pipes,
  8580. INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
  8581. for_each_pipe(i) {
  8582. intel_crtc_init(dev, i);
  8583. for (j = 0; j < dev_priv->num_plane; j++) {
  8584. ret = intel_plane_init(dev, i, j);
  8585. if (ret)
  8586. DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
  8587. pipe_name(i), sprite_name(i, j), ret);
  8588. }
  8589. }
  8590. intel_cpu_pll_init(dev);
  8591. intel_shared_dpll_init(dev);
  8592. /* Just disable it once at startup */
  8593. i915_disable_vga(dev);
  8594. intel_setup_outputs(dev);
  8595. /* Just in case the BIOS is doing something questionable. */
  8596. intel_disable_fbc(dev);
  8597. }
  8598. static void
  8599. intel_connector_break_all_links(struct intel_connector *connector)
  8600. {
  8601. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8602. connector->base.encoder = NULL;
  8603. connector->encoder->connectors_active = false;
  8604. connector->encoder->base.crtc = NULL;
  8605. }
  8606. static void intel_enable_pipe_a(struct drm_device *dev)
  8607. {
  8608. struct intel_connector *connector;
  8609. struct drm_connector *crt = NULL;
  8610. struct intel_load_detect_pipe load_detect_temp;
  8611. /* We can't just switch on the pipe A, we need to set things up with a
  8612. * proper mode and output configuration. As a gross hack, enable pipe A
  8613. * by enabling the load detect pipe once. */
  8614. list_for_each_entry(connector,
  8615. &dev->mode_config.connector_list,
  8616. base.head) {
  8617. if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
  8618. crt = &connector->base;
  8619. break;
  8620. }
  8621. }
  8622. if (!crt)
  8623. return;
  8624. if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
  8625. intel_release_load_detect_pipe(crt, &load_detect_temp);
  8626. }
  8627. static bool
  8628. intel_check_plane_mapping(struct intel_crtc *crtc)
  8629. {
  8630. struct drm_device *dev = crtc->base.dev;
  8631. struct drm_i915_private *dev_priv = dev->dev_private;
  8632. u32 reg, val;
  8633. if (INTEL_INFO(dev)->num_pipes == 1)
  8634. return true;
  8635. reg = DSPCNTR(!crtc->plane);
  8636. val = I915_READ(reg);
  8637. if ((val & DISPLAY_PLANE_ENABLE) &&
  8638. (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
  8639. return false;
  8640. return true;
  8641. }
  8642. static void intel_sanitize_crtc(struct intel_crtc *crtc)
  8643. {
  8644. struct drm_device *dev = crtc->base.dev;
  8645. struct drm_i915_private *dev_priv = dev->dev_private;
  8646. u32 reg;
  8647. /* Clear any frame start delays used for debugging left by the BIOS */
  8648. reg = PIPECONF(crtc->config.cpu_transcoder);
  8649. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  8650. /* We need to sanitize the plane -> pipe mapping first because this will
  8651. * disable the crtc (and hence change the state) if it is wrong. Note
  8652. * that gen4+ has a fixed plane -> pipe mapping. */
  8653. if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
  8654. struct intel_connector *connector;
  8655. bool plane;
  8656. DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
  8657. crtc->base.base.id);
  8658. /* Pipe has the wrong plane attached and the plane is active.
  8659. * Temporarily change the plane mapping and disable everything
  8660. * ... */
  8661. plane = crtc->plane;
  8662. crtc->plane = !plane;
  8663. dev_priv->display.crtc_disable(&crtc->base);
  8664. crtc->plane = plane;
  8665. /* ... and break all links. */
  8666. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8667. base.head) {
  8668. if (connector->encoder->base.crtc != &crtc->base)
  8669. continue;
  8670. intel_connector_break_all_links(connector);
  8671. }
  8672. WARN_ON(crtc->active);
  8673. crtc->base.enabled = false;
  8674. }
  8675. if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
  8676. crtc->pipe == PIPE_A && !crtc->active) {
  8677. /* BIOS forgot to enable pipe A, this mostly happens after
  8678. * resume. Force-enable the pipe to fix this, the update_dpms
  8679. * call below we restore the pipe to the right state, but leave
  8680. * the required bits on. */
  8681. intel_enable_pipe_a(dev);
  8682. }
  8683. /* Adjust the state of the output pipe according to whether we
  8684. * have active connectors/encoders. */
  8685. intel_crtc_update_dpms(&crtc->base);
  8686. if (crtc->active != crtc->base.enabled) {
  8687. struct intel_encoder *encoder;
  8688. /* This can happen either due to bugs in the get_hw_state
  8689. * functions or because the pipe is force-enabled due to the
  8690. * pipe A quirk. */
  8691. DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
  8692. crtc->base.base.id,
  8693. crtc->base.enabled ? "enabled" : "disabled",
  8694. crtc->active ? "enabled" : "disabled");
  8695. crtc->base.enabled = crtc->active;
  8696. /* Because we only establish the connector -> encoder ->
  8697. * crtc links if something is active, this means the
  8698. * crtc is now deactivated. Break the links. connector
  8699. * -> encoder links are only establish when things are
  8700. * actually up, hence no need to break them. */
  8701. WARN_ON(crtc->active);
  8702. for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
  8703. WARN_ON(encoder->connectors_active);
  8704. encoder->base.crtc = NULL;
  8705. }
  8706. }
  8707. }
  8708. static void intel_sanitize_encoder(struct intel_encoder *encoder)
  8709. {
  8710. struct intel_connector *connector;
  8711. struct drm_device *dev = encoder->base.dev;
  8712. /* We need to check both for a crtc link (meaning that the
  8713. * encoder is active and trying to read from a pipe) and the
  8714. * pipe itself being active. */
  8715. bool has_active_crtc = encoder->base.crtc &&
  8716. to_intel_crtc(encoder->base.crtc)->active;
  8717. if (encoder->connectors_active && !has_active_crtc) {
  8718. DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
  8719. encoder->base.base.id,
  8720. drm_get_encoder_name(&encoder->base));
  8721. /* Connector is active, but has no active pipe. This is
  8722. * fallout from our resume register restoring. Disable
  8723. * the encoder manually again. */
  8724. if (encoder->base.crtc) {
  8725. DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
  8726. encoder->base.base.id,
  8727. drm_get_encoder_name(&encoder->base));
  8728. encoder->disable(encoder);
  8729. }
  8730. /* Inconsistent output/port/pipe state happens presumably due to
  8731. * a bug in one of the get_hw_state functions. Or someplace else
  8732. * in our code, like the register restore mess on resume. Clamp
  8733. * things to off as a safer default. */
  8734. list_for_each_entry(connector,
  8735. &dev->mode_config.connector_list,
  8736. base.head) {
  8737. if (connector->encoder != encoder)
  8738. continue;
  8739. intel_connector_break_all_links(connector);
  8740. }
  8741. }
  8742. /* Enabled encoders without active connectors will be fixed in
  8743. * the crtc fixup. */
  8744. }
  8745. void i915_redisable_vga(struct drm_device *dev)
  8746. {
  8747. struct drm_i915_private *dev_priv = dev->dev_private;
  8748. u32 vga_reg = i915_vgacntrl_reg(dev);
  8749. /* This function can be called both from intel_modeset_setup_hw_state or
  8750. * at a very early point in our resume sequence, where the power well
  8751. * structures are not yet restored. Since this function is at a very
  8752. * paranoid "someone might have enabled VGA while we were not looking"
  8753. * level, just check if the power well is enabled instead of trying to
  8754. * follow the "don't touch the power well if we don't need it" policy
  8755. * the rest of the driver uses. */
  8756. if (HAS_POWER_WELL(dev) &&
  8757. (I915_READ(HSW_PWR_WELL_DRIVER) & HSW_PWR_WELL_STATE_ENABLED) == 0)
  8758. return;
  8759. if (I915_READ(vga_reg) != VGA_DISP_DISABLE) {
  8760. DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
  8761. i915_disable_vga(dev);
  8762. }
  8763. }
  8764. static void intel_modeset_readout_hw_state(struct drm_device *dev)
  8765. {
  8766. struct drm_i915_private *dev_priv = dev->dev_private;
  8767. enum pipe pipe;
  8768. struct intel_crtc *crtc;
  8769. struct intel_encoder *encoder;
  8770. struct intel_connector *connector;
  8771. int i;
  8772. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8773. base.head) {
  8774. memset(&crtc->config, 0, sizeof(crtc->config));
  8775. crtc->active = dev_priv->display.get_pipe_config(crtc,
  8776. &crtc->config);
  8777. crtc->base.enabled = crtc->active;
  8778. DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
  8779. crtc->base.base.id,
  8780. crtc->active ? "enabled" : "disabled");
  8781. }
  8782. /* FIXME: Smash this into the new shared dpll infrastructure. */
  8783. if (HAS_DDI(dev))
  8784. intel_ddi_setup_hw_pll_state(dev);
  8785. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8786. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8787. pll->on = pll->get_hw_state(dev_priv, pll, &pll->hw_state);
  8788. pll->active = 0;
  8789. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8790. base.head) {
  8791. if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
  8792. pll->active++;
  8793. }
  8794. pll->refcount = pll->active;
  8795. DRM_DEBUG_KMS("%s hw state readout: refcount %i, on %i\n",
  8796. pll->name, pll->refcount, pll->on);
  8797. }
  8798. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8799. base.head) {
  8800. pipe = 0;
  8801. if (encoder->get_hw_state(encoder, &pipe)) {
  8802. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8803. encoder->base.crtc = &crtc->base;
  8804. if (encoder->get_config)
  8805. encoder->get_config(encoder, &crtc->config);
  8806. } else {
  8807. encoder->base.crtc = NULL;
  8808. }
  8809. encoder->connectors_active = false;
  8810. DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
  8811. encoder->base.base.id,
  8812. drm_get_encoder_name(&encoder->base),
  8813. encoder->base.crtc ? "enabled" : "disabled",
  8814. pipe);
  8815. }
  8816. list_for_each_entry(connector, &dev->mode_config.connector_list,
  8817. base.head) {
  8818. if (connector->get_hw_state(connector)) {
  8819. connector->base.dpms = DRM_MODE_DPMS_ON;
  8820. connector->encoder->connectors_active = true;
  8821. connector->base.encoder = &connector->encoder->base;
  8822. } else {
  8823. connector->base.dpms = DRM_MODE_DPMS_OFF;
  8824. connector->base.encoder = NULL;
  8825. }
  8826. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
  8827. connector->base.base.id,
  8828. drm_get_connector_name(&connector->base),
  8829. connector->base.encoder ? "enabled" : "disabled");
  8830. }
  8831. }
  8832. /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
  8833. * and i915 state tracking structures. */
  8834. void intel_modeset_setup_hw_state(struct drm_device *dev,
  8835. bool force_restore)
  8836. {
  8837. struct drm_i915_private *dev_priv = dev->dev_private;
  8838. enum pipe pipe;
  8839. struct drm_plane *plane;
  8840. struct intel_crtc *crtc;
  8841. struct intel_encoder *encoder;
  8842. int i;
  8843. intel_modeset_readout_hw_state(dev);
  8844. /*
  8845. * Now that we have the config, copy it to each CRTC struct
  8846. * Note that this could go away if we move to using crtc_config
  8847. * checking everywhere.
  8848. */
  8849. list_for_each_entry(crtc, &dev->mode_config.crtc_list,
  8850. base.head) {
  8851. if (crtc->active && i915_fastboot) {
  8852. intel_crtc_mode_from_pipe_config(crtc, &crtc->config);
  8853. DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
  8854. crtc->base.base.id);
  8855. drm_mode_debug_printmodeline(&crtc->base.mode);
  8856. }
  8857. }
  8858. /* HW state is read out, now we need to sanitize this mess. */
  8859. list_for_each_entry(encoder, &dev->mode_config.encoder_list,
  8860. base.head) {
  8861. intel_sanitize_encoder(encoder);
  8862. }
  8863. for_each_pipe(pipe) {
  8864. crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  8865. intel_sanitize_crtc(crtc);
  8866. intel_dump_pipe_config(crtc, &crtc->config, "[setup_hw_state]");
  8867. }
  8868. for (i = 0; i < dev_priv->num_shared_dpll; i++) {
  8869. struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
  8870. if (!pll->on || pll->active)
  8871. continue;
  8872. DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
  8873. pll->disable(dev_priv, pll);
  8874. pll->on = false;
  8875. }
  8876. if (force_restore) {
  8877. /*
  8878. * We need to use raw interfaces for restoring state to avoid
  8879. * checking (bogus) intermediate states.
  8880. */
  8881. for_each_pipe(pipe) {
  8882. struct drm_crtc *crtc =
  8883. dev_priv->pipe_to_crtc_mapping[pipe];
  8884. __intel_set_mode(crtc, &crtc->mode, crtc->x, crtc->y,
  8885. crtc->fb);
  8886. }
  8887. list_for_each_entry(plane, &dev->mode_config.plane_list, head)
  8888. intel_plane_restore(plane);
  8889. i915_redisable_vga(dev);
  8890. } else {
  8891. intel_modeset_update_staged_output_state(dev);
  8892. }
  8893. intel_modeset_check_state(dev);
  8894. drm_mode_config_reset(dev);
  8895. }
  8896. void intel_modeset_gem_init(struct drm_device *dev)
  8897. {
  8898. intel_modeset_init_hw(dev);
  8899. intel_setup_overlay(dev);
  8900. intel_modeset_setup_hw_state(dev, false);
  8901. }
  8902. void intel_modeset_cleanup(struct drm_device *dev)
  8903. {
  8904. struct drm_i915_private *dev_priv = dev->dev_private;
  8905. struct drm_crtc *crtc;
  8906. /*
  8907. * Interrupts and polling as the first thing to avoid creating havoc.
  8908. * Too much stuff here (turning of rps, connectors, ...) would
  8909. * experience fancy races otherwise.
  8910. */
  8911. drm_irq_uninstall(dev);
  8912. cancel_work_sync(&dev_priv->hotplug_work);
  8913. /*
  8914. * Due to the hpd irq storm handling the hotplug work can re-arm the
  8915. * poll handlers. Hence disable polling after hpd handling is shut down.
  8916. */
  8917. drm_kms_helper_poll_fini(dev);
  8918. mutex_lock(&dev->struct_mutex);
  8919. intel_unregister_dsm_handler();
  8920. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  8921. /* Skip inactive CRTCs */
  8922. if (!crtc->fb)
  8923. continue;
  8924. intel_increase_pllclock(crtc);
  8925. }
  8926. intel_disable_fbc(dev);
  8927. i915_enable_vga(dev);
  8928. intel_disable_gt_powersave(dev);
  8929. ironlake_teardown_rc6(dev);
  8930. mutex_unlock(&dev->struct_mutex);
  8931. /* flush any delayed tasks or pending work */
  8932. flush_scheduled_work();
  8933. /* destroy backlight, if any, before the connectors */
  8934. intel_panel_destroy_backlight(dev);
  8935. drm_mode_config_cleanup(dev);
  8936. intel_cleanup_overlay(dev);
  8937. }
  8938. /*
  8939. * Return which encoder is currently attached for connector.
  8940. */
  8941. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  8942. {
  8943. return &intel_attached_encoder(connector)->base;
  8944. }
  8945. void intel_connector_attach_encoder(struct intel_connector *connector,
  8946. struct intel_encoder *encoder)
  8947. {
  8948. connector->encoder = encoder;
  8949. drm_mode_connector_attach_encoder(&connector->base,
  8950. &encoder->base);
  8951. }
  8952. /*
  8953. * set vga decode state - true == enable VGA decode
  8954. */
  8955. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  8956. {
  8957. struct drm_i915_private *dev_priv = dev->dev_private;
  8958. u16 gmch_ctrl;
  8959. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  8960. if (state)
  8961. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  8962. else
  8963. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  8964. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  8965. return 0;
  8966. }
  8967. struct intel_display_error_state {
  8968. u32 power_well_driver;
  8969. int num_transcoders;
  8970. struct intel_cursor_error_state {
  8971. u32 control;
  8972. u32 position;
  8973. u32 base;
  8974. u32 size;
  8975. } cursor[I915_MAX_PIPES];
  8976. struct intel_pipe_error_state {
  8977. u32 source;
  8978. } pipe[I915_MAX_PIPES];
  8979. struct intel_plane_error_state {
  8980. u32 control;
  8981. u32 stride;
  8982. u32 size;
  8983. u32 pos;
  8984. u32 addr;
  8985. u32 surface;
  8986. u32 tile_offset;
  8987. } plane[I915_MAX_PIPES];
  8988. struct intel_transcoder_error_state {
  8989. enum transcoder cpu_transcoder;
  8990. u32 conf;
  8991. u32 htotal;
  8992. u32 hblank;
  8993. u32 hsync;
  8994. u32 vtotal;
  8995. u32 vblank;
  8996. u32 vsync;
  8997. } transcoder[4];
  8998. };
  8999. struct intel_display_error_state *
  9000. intel_display_capture_error_state(struct drm_device *dev)
  9001. {
  9002. drm_i915_private_t *dev_priv = dev->dev_private;
  9003. struct intel_display_error_state *error;
  9004. int transcoders[] = {
  9005. TRANSCODER_A,
  9006. TRANSCODER_B,
  9007. TRANSCODER_C,
  9008. TRANSCODER_EDP,
  9009. };
  9010. int i;
  9011. if (INTEL_INFO(dev)->num_pipes == 0)
  9012. return NULL;
  9013. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  9014. if (error == NULL)
  9015. return NULL;
  9016. if (HAS_POWER_WELL(dev))
  9017. error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
  9018. for_each_pipe(i) {
  9019. if (INTEL_INFO(dev)->gen <= 6 || IS_VALLEYVIEW(dev)) {
  9020. error->cursor[i].control = I915_READ(CURCNTR(i));
  9021. error->cursor[i].position = I915_READ(CURPOS(i));
  9022. error->cursor[i].base = I915_READ(CURBASE(i));
  9023. } else {
  9024. error->cursor[i].control = I915_READ(CURCNTR_IVB(i));
  9025. error->cursor[i].position = I915_READ(CURPOS_IVB(i));
  9026. error->cursor[i].base = I915_READ(CURBASE_IVB(i));
  9027. }
  9028. error->plane[i].control = I915_READ(DSPCNTR(i));
  9029. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  9030. if (INTEL_INFO(dev)->gen <= 3) {
  9031. error->plane[i].size = I915_READ(DSPSIZE(i));
  9032. error->plane[i].pos = I915_READ(DSPPOS(i));
  9033. }
  9034. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9035. error->plane[i].addr = I915_READ(DSPADDR(i));
  9036. if (INTEL_INFO(dev)->gen >= 4) {
  9037. error->plane[i].surface = I915_READ(DSPSURF(i));
  9038. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  9039. }
  9040. error->pipe[i].source = I915_READ(PIPESRC(i));
  9041. }
  9042. error->num_transcoders = INTEL_INFO(dev)->num_pipes;
  9043. if (HAS_DDI(dev_priv->dev))
  9044. error->num_transcoders++; /* Account for eDP. */
  9045. for (i = 0; i < error->num_transcoders; i++) {
  9046. enum transcoder cpu_transcoder = transcoders[i];
  9047. error->transcoder[i].cpu_transcoder = cpu_transcoder;
  9048. error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
  9049. error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
  9050. error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
  9051. error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
  9052. error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
  9053. error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
  9054. error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
  9055. }
  9056. /* In the code above we read the registers without checking if the power
  9057. * well was on, so here we have to clear the FPGA_DBG_RM_NOCLAIM bit to
  9058. * prevent the next I915_WRITE from detecting it and printing an error
  9059. * message. */
  9060. intel_uncore_clear_errors(dev);
  9061. return error;
  9062. }
  9063. #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
  9064. void
  9065. intel_display_print_error_state(struct drm_i915_error_state_buf *m,
  9066. struct drm_device *dev,
  9067. struct intel_display_error_state *error)
  9068. {
  9069. int i;
  9070. if (!error)
  9071. return;
  9072. err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
  9073. if (HAS_POWER_WELL(dev))
  9074. err_printf(m, "PWR_WELL_CTL2: %08x\n",
  9075. error->power_well_driver);
  9076. for_each_pipe(i) {
  9077. err_printf(m, "Pipe [%d]:\n", i);
  9078. err_printf(m, " SRC: %08x\n", error->pipe[i].source);
  9079. err_printf(m, "Plane [%d]:\n", i);
  9080. err_printf(m, " CNTR: %08x\n", error->plane[i].control);
  9081. err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  9082. if (INTEL_INFO(dev)->gen <= 3) {
  9083. err_printf(m, " SIZE: %08x\n", error->plane[i].size);
  9084. err_printf(m, " POS: %08x\n", error->plane[i].pos);
  9085. }
  9086. if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
  9087. err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  9088. if (INTEL_INFO(dev)->gen >= 4) {
  9089. err_printf(m, " SURF: %08x\n", error->plane[i].surface);
  9090. err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  9091. }
  9092. err_printf(m, "Cursor [%d]:\n", i);
  9093. err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  9094. err_printf(m, " POS: %08x\n", error->cursor[i].position);
  9095. err_printf(m, " BASE: %08x\n", error->cursor[i].base);
  9096. }
  9097. for (i = 0; i < error->num_transcoders; i++) {
  9098. err_printf(m, " CPU transcoder: %c\n",
  9099. transcoder_name(error->transcoder[i].cpu_transcoder));
  9100. err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
  9101. err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
  9102. err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
  9103. err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
  9104. err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
  9105. err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
  9106. err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
  9107. }
  9108. }