ste_dma40.c 94 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685
  1. /*
  2. * Copyright (C) Ericsson AB 2007-2008
  3. * Copyright (C) ST-Ericsson SA 2008-2010
  4. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  5. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  6. * License terms: GNU General Public License (GPL) version 2
  7. */
  8. #include <linux/dma-mapping.h>
  9. #include <linux/kernel.h>
  10. #include <linux/slab.h>
  11. #include <linux/export.h>
  12. #include <linux/dmaengine.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/pm.h>
  17. #include <linux/pm_runtime.h>
  18. #include <linux/err.h>
  19. #include <linux/amba/bus.h>
  20. #include <linux/regulator/consumer.h>
  21. #include <linux/platform_data/dma-ste-dma40.h>
  22. #include "dmaengine.h"
  23. #include "ste_dma40_ll.h"
  24. #define D40_NAME "dma40"
  25. #define D40_PHY_CHAN -1
  26. /* For masking out/in 2 bit channel positions */
  27. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  28. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  29. /* Maximum iterations taken before giving up suspending a channel */
  30. #define D40_SUSPEND_MAX_IT 500
  31. /* Milliseconds */
  32. #define DMA40_AUTOSUSPEND_DELAY 100
  33. /* Hardware requirement on LCLA alignment */
  34. #define LCLA_ALIGNMENT 0x40000
  35. /* Max number of links per event group */
  36. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  37. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  38. /* Attempts before giving up to trying to get pages that are aligned */
  39. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  40. /* Bit markings for allocation map */
  41. #define D40_ALLOC_FREE (1 << 31)
  42. #define D40_ALLOC_PHY (1 << 30)
  43. #define D40_ALLOC_LOG_FREE 0
  44. #define MAX(a, b) (((a) < (b)) ? (b) : (a))
  45. /* Reserved event lines for memcpy only. */
  46. #define DB8500_DMA_MEMCPY_EV_0 51
  47. #define DB8500_DMA_MEMCPY_EV_1 56
  48. #define DB8500_DMA_MEMCPY_EV_2 57
  49. #define DB8500_DMA_MEMCPY_EV_3 58
  50. #define DB8500_DMA_MEMCPY_EV_4 59
  51. #define DB8500_DMA_MEMCPY_EV_5 60
  52. static int dma40_memcpy_channels[] = {
  53. DB8500_DMA_MEMCPY_EV_0,
  54. DB8500_DMA_MEMCPY_EV_1,
  55. DB8500_DMA_MEMCPY_EV_2,
  56. DB8500_DMA_MEMCPY_EV_3,
  57. DB8500_DMA_MEMCPY_EV_4,
  58. DB8500_DMA_MEMCPY_EV_5,
  59. };
  60. /**
  61. * enum 40_command - The different commands and/or statuses.
  62. *
  63. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  64. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  65. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  66. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  67. */
  68. enum d40_command {
  69. D40_DMA_STOP = 0,
  70. D40_DMA_RUN = 1,
  71. D40_DMA_SUSPEND_REQ = 2,
  72. D40_DMA_SUSPENDED = 3
  73. };
  74. /*
  75. * enum d40_events - The different Event Enables for the event lines.
  76. *
  77. * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
  78. * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
  79. * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
  80. * @D40_ROUND_EVENTLINE: Status check for event line.
  81. */
  82. enum d40_events {
  83. D40_DEACTIVATE_EVENTLINE = 0,
  84. D40_ACTIVATE_EVENTLINE = 1,
  85. D40_SUSPEND_REQ_EVENTLINE = 2,
  86. D40_ROUND_EVENTLINE = 3
  87. };
  88. /*
  89. * These are the registers that has to be saved and later restored
  90. * when the DMA hw is powered off.
  91. * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
  92. */
  93. static u32 d40_backup_regs[] = {
  94. D40_DREG_LCPA,
  95. D40_DREG_LCLA,
  96. D40_DREG_PRMSE,
  97. D40_DREG_PRMSO,
  98. D40_DREG_PRMOE,
  99. D40_DREG_PRMOO,
  100. };
  101. #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
  102. /*
  103. * since 9540 and 8540 has the same HW revision
  104. * use v4a for 9540 or ealier
  105. * use v4b for 8540 or later
  106. * HW revision:
  107. * DB8500ed has revision 0
  108. * DB8500v1 has revision 2
  109. * DB8500v2 has revision 3
  110. * AP9540v1 has revision 4
  111. * DB8540v1 has revision 4
  112. * TODO: Check if all these registers have to be saved/restored on dma40 v4a
  113. */
  114. static u32 d40_backup_regs_v4a[] = {
  115. D40_DREG_PSEG1,
  116. D40_DREG_PSEG2,
  117. D40_DREG_PSEG3,
  118. D40_DREG_PSEG4,
  119. D40_DREG_PCEG1,
  120. D40_DREG_PCEG2,
  121. D40_DREG_PCEG3,
  122. D40_DREG_PCEG4,
  123. D40_DREG_RSEG1,
  124. D40_DREG_RSEG2,
  125. D40_DREG_RSEG3,
  126. D40_DREG_RSEG4,
  127. D40_DREG_RCEG1,
  128. D40_DREG_RCEG2,
  129. D40_DREG_RCEG3,
  130. D40_DREG_RCEG4,
  131. };
  132. #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
  133. static u32 d40_backup_regs_v4b[] = {
  134. D40_DREG_CPSEG1,
  135. D40_DREG_CPSEG2,
  136. D40_DREG_CPSEG3,
  137. D40_DREG_CPSEG4,
  138. D40_DREG_CPSEG5,
  139. D40_DREG_CPCEG1,
  140. D40_DREG_CPCEG2,
  141. D40_DREG_CPCEG3,
  142. D40_DREG_CPCEG4,
  143. D40_DREG_CPCEG5,
  144. D40_DREG_CRSEG1,
  145. D40_DREG_CRSEG2,
  146. D40_DREG_CRSEG3,
  147. D40_DREG_CRSEG4,
  148. D40_DREG_CRSEG5,
  149. D40_DREG_CRCEG1,
  150. D40_DREG_CRCEG2,
  151. D40_DREG_CRCEG3,
  152. D40_DREG_CRCEG4,
  153. D40_DREG_CRCEG5,
  154. };
  155. #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
  156. static u32 d40_backup_regs_chan[] = {
  157. D40_CHAN_REG_SSCFG,
  158. D40_CHAN_REG_SSELT,
  159. D40_CHAN_REG_SSPTR,
  160. D40_CHAN_REG_SSLNK,
  161. D40_CHAN_REG_SDCFG,
  162. D40_CHAN_REG_SDELT,
  163. D40_CHAN_REG_SDPTR,
  164. D40_CHAN_REG_SDLNK,
  165. };
  166. /**
  167. * struct d40_interrupt_lookup - lookup table for interrupt handler
  168. *
  169. * @src: Interrupt mask register.
  170. * @clr: Interrupt clear register.
  171. * @is_error: true if this is an error interrupt.
  172. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  173. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  174. */
  175. struct d40_interrupt_lookup {
  176. u32 src;
  177. u32 clr;
  178. bool is_error;
  179. int offset;
  180. };
  181. static struct d40_interrupt_lookup il_v4a[] = {
  182. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  183. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  184. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  185. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  186. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  187. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  188. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  189. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  190. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  191. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  192. };
  193. static struct d40_interrupt_lookup il_v4b[] = {
  194. {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0},
  195. {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
  196. {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
  197. {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
  198. {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
  199. {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0},
  200. {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32},
  201. {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64},
  202. {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96},
  203. {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128},
  204. {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN},
  205. {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN},
  206. };
  207. /**
  208. * struct d40_reg_val - simple lookup struct
  209. *
  210. * @reg: The register.
  211. * @val: The value that belongs to the register in reg.
  212. */
  213. struct d40_reg_val {
  214. unsigned int reg;
  215. unsigned int val;
  216. };
  217. static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
  218. /* Clock every part of the DMA block from start */
  219. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  220. /* Interrupts on all logical channels */
  221. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  222. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  223. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  224. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  225. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  226. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  227. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  228. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  229. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  230. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  231. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  232. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  233. };
  234. static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
  235. /* Clock every part of the DMA block from start */
  236. { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL},
  237. /* Interrupts on all logical channels */
  238. { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
  239. { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
  240. { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
  241. { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
  242. { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
  243. { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
  244. { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
  245. { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
  246. { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
  247. { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
  248. { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
  249. { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
  250. { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
  251. { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
  252. { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
  253. };
  254. /**
  255. * struct d40_lli_pool - Structure for keeping LLIs in memory
  256. *
  257. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  258. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  259. * pre_alloc_lli is used.
  260. * @dma_addr: DMA address, if mapped
  261. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  262. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  263. * one buffer to one buffer.
  264. */
  265. struct d40_lli_pool {
  266. void *base;
  267. int size;
  268. dma_addr_t dma_addr;
  269. /* Space for dst and src, plus an extra for padding */
  270. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  271. };
  272. /**
  273. * struct d40_desc - A descriptor is one DMA job.
  274. *
  275. * @lli_phy: LLI settings for physical channel. Both src and dst=
  276. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  277. * lli_len equals one.
  278. * @lli_log: Same as above but for logical channels.
  279. * @lli_pool: The pool with two entries pre-allocated.
  280. * @lli_len: Number of llis of current descriptor.
  281. * @lli_current: Number of transferred llis.
  282. * @lcla_alloc: Number of LCLA entries allocated.
  283. * @txd: DMA engine struct. Used for among other things for communication
  284. * during a transfer.
  285. * @node: List entry.
  286. * @is_in_client_list: true if the client owns this descriptor.
  287. * @cyclic: true if this is a cyclic job
  288. *
  289. * This descriptor is used for both logical and physical transfers.
  290. */
  291. struct d40_desc {
  292. /* LLI physical */
  293. struct d40_phy_lli_bidir lli_phy;
  294. /* LLI logical */
  295. struct d40_log_lli_bidir lli_log;
  296. struct d40_lli_pool lli_pool;
  297. int lli_len;
  298. int lli_current;
  299. int lcla_alloc;
  300. struct dma_async_tx_descriptor txd;
  301. struct list_head node;
  302. bool is_in_client_list;
  303. bool cyclic;
  304. };
  305. /**
  306. * struct d40_lcla_pool - LCLA pool settings and data.
  307. *
  308. * @base: The virtual address of LCLA. 18 bit aligned.
  309. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  310. * This pointer is only there for clean-up on error.
  311. * @pages: The number of pages needed for all physical channels.
  312. * Only used later for clean-up on error
  313. * @lock: Lock to protect the content in this struct.
  314. * @alloc_map: big map over which LCLA entry is own by which job.
  315. */
  316. struct d40_lcla_pool {
  317. void *base;
  318. dma_addr_t dma_addr;
  319. void *base_unaligned;
  320. int pages;
  321. spinlock_t lock;
  322. struct d40_desc **alloc_map;
  323. };
  324. /**
  325. * struct d40_phy_res - struct for handling eventlines mapped to physical
  326. * channels.
  327. *
  328. * @lock: A lock protection this entity.
  329. * @reserved: True if used by secure world or otherwise.
  330. * @num: The physical channel number of this entity.
  331. * @allocated_src: Bit mapped to show which src event line's are mapped to
  332. * this physical channel. Can also be free or physically allocated.
  333. * @allocated_dst: Same as for src but is dst.
  334. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  335. * event line number.
  336. * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
  337. */
  338. struct d40_phy_res {
  339. spinlock_t lock;
  340. bool reserved;
  341. int num;
  342. u32 allocated_src;
  343. u32 allocated_dst;
  344. bool use_soft_lli;
  345. };
  346. struct d40_base;
  347. /**
  348. * struct d40_chan - Struct that describes a channel.
  349. *
  350. * @lock: A spinlock to protect this struct.
  351. * @log_num: The logical number, if any of this channel.
  352. * @pending_tx: The number of pending transfers. Used between interrupt handler
  353. * and tasklet.
  354. * @busy: Set to true when transfer is ongoing on this channel.
  355. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  356. * point is NULL, then the channel is not allocated.
  357. * @chan: DMA engine handle.
  358. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  359. * transfer and call client callback.
  360. * @client: Cliented owned descriptor list.
  361. * @pending_queue: Submitted jobs, to be issued by issue_pending()
  362. * @active: Active descriptor.
  363. * @done: Completed jobs
  364. * @queue: Queued jobs.
  365. * @prepare_queue: Prepared jobs.
  366. * @dma_cfg: The client configuration of this dma channel.
  367. * @configured: whether the dma_cfg configuration is valid
  368. * @base: Pointer to the device instance struct.
  369. * @src_def_cfg: Default cfg register setting for src.
  370. * @dst_def_cfg: Default cfg register setting for dst.
  371. * @log_def: Default logical channel settings.
  372. * @lcpa: Pointer to dst and src lcpa settings.
  373. * @runtime_addr: runtime configured address.
  374. * @runtime_direction: runtime configured direction.
  375. *
  376. * This struct can either "be" a logical or a physical channel.
  377. */
  378. struct d40_chan {
  379. spinlock_t lock;
  380. int log_num;
  381. int pending_tx;
  382. bool busy;
  383. struct d40_phy_res *phy_chan;
  384. struct dma_chan chan;
  385. struct tasklet_struct tasklet;
  386. struct list_head client;
  387. struct list_head pending_queue;
  388. struct list_head active;
  389. struct list_head done;
  390. struct list_head queue;
  391. struct list_head prepare_queue;
  392. struct stedma40_chan_cfg dma_cfg;
  393. bool configured;
  394. struct d40_base *base;
  395. /* Default register configurations */
  396. u32 src_def_cfg;
  397. u32 dst_def_cfg;
  398. struct d40_def_lcsp log_def;
  399. struct d40_log_lli_full *lcpa;
  400. /* Runtime reconfiguration */
  401. dma_addr_t runtime_addr;
  402. enum dma_transfer_direction runtime_direction;
  403. };
  404. /**
  405. * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
  406. * controller
  407. *
  408. * @backup: the pointer to the registers address array for backup
  409. * @backup_size: the size of the registers address array for backup
  410. * @realtime_en: the realtime enable register
  411. * @realtime_clear: the realtime clear register
  412. * @high_prio_en: the high priority enable register
  413. * @high_prio_clear: the high priority clear register
  414. * @interrupt_en: the interrupt enable register
  415. * @interrupt_clear: the interrupt clear register
  416. * @il: the pointer to struct d40_interrupt_lookup
  417. * @il_size: the size of d40_interrupt_lookup array
  418. * @init_reg: the pointer to the struct d40_reg_val
  419. * @init_reg_size: the size of d40_reg_val array
  420. */
  421. struct d40_gen_dmac {
  422. u32 *backup;
  423. u32 backup_size;
  424. u32 realtime_en;
  425. u32 realtime_clear;
  426. u32 high_prio_en;
  427. u32 high_prio_clear;
  428. u32 interrupt_en;
  429. u32 interrupt_clear;
  430. struct d40_interrupt_lookup *il;
  431. u32 il_size;
  432. struct d40_reg_val *init_reg;
  433. u32 init_reg_size;
  434. };
  435. /**
  436. * struct d40_base - The big global struct, one for each probe'd instance.
  437. *
  438. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  439. * @execmd_lock: Lock for execute command usage since several channels share
  440. * the same physical register.
  441. * @dev: The device structure.
  442. * @virtbase: The virtual base address of the DMA's register.
  443. * @rev: silicon revision detected.
  444. * @clk: Pointer to the DMA clock structure.
  445. * @phy_start: Physical memory start of the DMA registers.
  446. * @phy_size: Size of the DMA register map.
  447. * @irq: The IRQ number.
  448. * @num_phy_chans: The number of physical channels. Read from HW. This
  449. * is the number of available channels for this driver, not counting "Secure
  450. * mode" allocated physical channels.
  451. * @num_log_chans: The number of logical channels. Calculated from
  452. * num_phy_chans.
  453. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  454. * @dma_slave: dma_device channels that can do only do slave transfers.
  455. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  456. * @phy_chans: Room for all possible physical channels in system.
  457. * @log_chans: Room for all possible logical channels in system.
  458. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  459. * to log_chans entries.
  460. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  461. * to phy_chans entries.
  462. * @plat_data: Pointer to provided platform_data which is the driver
  463. * configuration.
  464. * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
  465. * @phy_res: Vector containing all physical channels.
  466. * @lcla_pool: lcla pool settings and data.
  467. * @lcpa_base: The virtual mapped address of LCPA.
  468. * @phy_lcpa: The physical address of the LCPA.
  469. * @lcpa_size: The size of the LCPA area.
  470. * @desc_slab: cache for descriptors.
  471. * @reg_val_backup: Here the values of some hardware registers are stored
  472. * before the DMA is powered off. They are restored when the power is back on.
  473. * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
  474. * later
  475. * @reg_val_backup_chan: Backup data for standard channel parameter registers.
  476. * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
  477. * @initialized: true if the dma has been initialized
  478. * @gen_dmac: the struct for generic registers values to represent u8500/8540
  479. * DMA controller
  480. */
  481. struct d40_base {
  482. spinlock_t interrupt_lock;
  483. spinlock_t execmd_lock;
  484. struct device *dev;
  485. void __iomem *virtbase;
  486. u8 rev:4;
  487. struct clk *clk;
  488. phys_addr_t phy_start;
  489. resource_size_t phy_size;
  490. int irq;
  491. int num_phy_chans;
  492. int num_log_chans;
  493. struct device_dma_parameters dma_parms;
  494. struct dma_device dma_both;
  495. struct dma_device dma_slave;
  496. struct dma_device dma_memcpy;
  497. struct d40_chan *phy_chans;
  498. struct d40_chan *log_chans;
  499. struct d40_chan **lookup_log_chans;
  500. struct d40_chan **lookup_phy_chans;
  501. struct stedma40_platform_data *plat_data;
  502. struct regulator *lcpa_regulator;
  503. /* Physical half channels */
  504. struct d40_phy_res *phy_res;
  505. struct d40_lcla_pool lcla_pool;
  506. void *lcpa_base;
  507. dma_addr_t phy_lcpa;
  508. resource_size_t lcpa_size;
  509. struct kmem_cache *desc_slab;
  510. u32 reg_val_backup[BACKUP_REGS_SZ];
  511. u32 reg_val_backup_v4[MAX(BACKUP_REGS_SZ_V4A, BACKUP_REGS_SZ_V4B)];
  512. u32 *reg_val_backup_chan;
  513. u16 gcc_pwr_off_mask;
  514. bool initialized;
  515. struct d40_gen_dmac gen_dmac;
  516. };
  517. static struct device *chan2dev(struct d40_chan *d40c)
  518. {
  519. return &d40c->chan.dev->device;
  520. }
  521. static bool chan_is_physical(struct d40_chan *chan)
  522. {
  523. return chan->log_num == D40_PHY_CHAN;
  524. }
  525. static bool chan_is_logical(struct d40_chan *chan)
  526. {
  527. return !chan_is_physical(chan);
  528. }
  529. static void __iomem *chan_base(struct d40_chan *chan)
  530. {
  531. return chan->base->virtbase + D40_DREG_PCBASE +
  532. chan->phy_chan->num * D40_DREG_PCDELTA;
  533. }
  534. #define d40_err(dev, format, arg...) \
  535. dev_err(dev, "[%s] " format, __func__, ## arg)
  536. #define chan_err(d40c, format, arg...) \
  537. d40_err(chan2dev(d40c), format, ## arg)
  538. static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
  539. int lli_len)
  540. {
  541. bool is_log = chan_is_logical(d40c);
  542. u32 align;
  543. void *base;
  544. if (is_log)
  545. align = sizeof(struct d40_log_lli);
  546. else
  547. align = sizeof(struct d40_phy_lli);
  548. if (lli_len == 1) {
  549. base = d40d->lli_pool.pre_alloc_lli;
  550. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  551. d40d->lli_pool.base = NULL;
  552. } else {
  553. d40d->lli_pool.size = lli_len * 2 * align;
  554. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  555. d40d->lli_pool.base = base;
  556. if (d40d->lli_pool.base == NULL)
  557. return -ENOMEM;
  558. }
  559. if (is_log) {
  560. d40d->lli_log.src = PTR_ALIGN(base, align);
  561. d40d->lli_log.dst = d40d->lli_log.src + lli_len;
  562. d40d->lli_pool.dma_addr = 0;
  563. } else {
  564. d40d->lli_phy.src = PTR_ALIGN(base, align);
  565. d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
  566. d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
  567. d40d->lli_phy.src,
  568. d40d->lli_pool.size,
  569. DMA_TO_DEVICE);
  570. if (dma_mapping_error(d40c->base->dev,
  571. d40d->lli_pool.dma_addr)) {
  572. kfree(d40d->lli_pool.base);
  573. d40d->lli_pool.base = NULL;
  574. d40d->lli_pool.dma_addr = 0;
  575. return -ENOMEM;
  576. }
  577. }
  578. return 0;
  579. }
  580. static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
  581. {
  582. if (d40d->lli_pool.dma_addr)
  583. dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
  584. d40d->lli_pool.size, DMA_TO_DEVICE);
  585. kfree(d40d->lli_pool.base);
  586. d40d->lli_pool.base = NULL;
  587. d40d->lli_pool.size = 0;
  588. d40d->lli_log.src = NULL;
  589. d40d->lli_log.dst = NULL;
  590. d40d->lli_phy.src = NULL;
  591. d40d->lli_phy.dst = NULL;
  592. }
  593. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  594. struct d40_desc *d40d)
  595. {
  596. unsigned long flags;
  597. int i;
  598. int ret = -EINVAL;
  599. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  600. /*
  601. * Allocate both src and dst at the same time, therefore the half
  602. * start on 1 since 0 can't be used since zero is used as end marker.
  603. */
  604. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  605. int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
  606. if (!d40c->base->lcla_pool.alloc_map[idx]) {
  607. d40c->base->lcla_pool.alloc_map[idx] = d40d;
  608. d40d->lcla_alloc++;
  609. ret = i;
  610. break;
  611. }
  612. }
  613. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  614. return ret;
  615. }
  616. static int d40_lcla_free_all(struct d40_chan *d40c,
  617. struct d40_desc *d40d)
  618. {
  619. unsigned long flags;
  620. int i;
  621. int ret = -EINVAL;
  622. if (chan_is_physical(d40c))
  623. return 0;
  624. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  625. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  626. int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
  627. if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
  628. d40c->base->lcla_pool.alloc_map[idx] = NULL;
  629. d40d->lcla_alloc--;
  630. if (d40d->lcla_alloc == 0) {
  631. ret = 0;
  632. break;
  633. }
  634. }
  635. }
  636. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  637. return ret;
  638. }
  639. static void d40_desc_remove(struct d40_desc *d40d)
  640. {
  641. list_del(&d40d->node);
  642. }
  643. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  644. {
  645. struct d40_desc *desc = NULL;
  646. if (!list_empty(&d40c->client)) {
  647. struct d40_desc *d;
  648. struct d40_desc *_d;
  649. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  650. if (async_tx_test_ack(&d->txd)) {
  651. d40_desc_remove(d);
  652. desc = d;
  653. memset(desc, 0, sizeof(*desc));
  654. break;
  655. }
  656. }
  657. }
  658. if (!desc)
  659. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  660. if (desc)
  661. INIT_LIST_HEAD(&desc->node);
  662. return desc;
  663. }
  664. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  665. {
  666. d40_pool_lli_free(d40c, d40d);
  667. d40_lcla_free_all(d40c, d40d);
  668. kmem_cache_free(d40c->base->desc_slab, d40d);
  669. }
  670. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  671. {
  672. list_add_tail(&desc->node, &d40c->active);
  673. }
  674. static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
  675. {
  676. struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
  677. struct d40_phy_lli *lli_src = desc->lli_phy.src;
  678. void __iomem *base = chan_base(chan);
  679. writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
  680. writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
  681. writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
  682. writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
  683. writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
  684. writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
  685. writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
  686. writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
  687. }
  688. static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
  689. {
  690. list_add_tail(&desc->node, &d40c->done);
  691. }
  692. static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
  693. {
  694. struct d40_lcla_pool *pool = &chan->base->lcla_pool;
  695. struct d40_log_lli_bidir *lli = &desc->lli_log;
  696. int lli_current = desc->lli_current;
  697. int lli_len = desc->lli_len;
  698. bool cyclic = desc->cyclic;
  699. int curr_lcla = -EINVAL;
  700. int first_lcla = 0;
  701. bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
  702. bool linkback;
  703. /*
  704. * We may have partially running cyclic transfers, in case we did't get
  705. * enough LCLA entries.
  706. */
  707. linkback = cyclic && lli_current == 0;
  708. /*
  709. * For linkback, we need one LCLA even with only one link, because we
  710. * can't link back to the one in LCPA space
  711. */
  712. if (linkback || (lli_len - lli_current > 1)) {
  713. /*
  714. * If the channel is expected to use only soft_lli don't
  715. * allocate a lcla. This is to avoid a HW issue that exists
  716. * in some controller during a peripheral to memory transfer
  717. * that uses linked lists.
  718. */
  719. if (!(chan->phy_chan->use_soft_lli &&
  720. chan->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM))
  721. curr_lcla = d40_lcla_alloc_one(chan, desc);
  722. first_lcla = curr_lcla;
  723. }
  724. /*
  725. * For linkback, we normally load the LCPA in the loop since we need to
  726. * link it to the second LCLA and not the first. However, if we
  727. * couldn't even get a first LCLA, then we have to run in LCPA and
  728. * reload manually.
  729. */
  730. if (!linkback || curr_lcla == -EINVAL) {
  731. unsigned int flags = 0;
  732. if (curr_lcla == -EINVAL)
  733. flags |= LLI_TERM_INT;
  734. d40_log_lli_lcpa_write(chan->lcpa,
  735. &lli->dst[lli_current],
  736. &lli->src[lli_current],
  737. curr_lcla,
  738. flags);
  739. lli_current++;
  740. }
  741. if (curr_lcla < 0)
  742. goto out;
  743. for (; lli_current < lli_len; lli_current++) {
  744. unsigned int lcla_offset = chan->phy_chan->num * 1024 +
  745. 8 * curr_lcla * 2;
  746. struct d40_log_lli *lcla = pool->base + lcla_offset;
  747. unsigned int flags = 0;
  748. int next_lcla;
  749. if (lli_current + 1 < lli_len)
  750. next_lcla = d40_lcla_alloc_one(chan, desc);
  751. else
  752. next_lcla = linkback ? first_lcla : -EINVAL;
  753. if (cyclic || next_lcla == -EINVAL)
  754. flags |= LLI_TERM_INT;
  755. if (linkback && curr_lcla == first_lcla) {
  756. /* First link goes in both LCPA and LCLA */
  757. d40_log_lli_lcpa_write(chan->lcpa,
  758. &lli->dst[lli_current],
  759. &lli->src[lli_current],
  760. next_lcla, flags);
  761. }
  762. /*
  763. * One unused LCLA in the cyclic case if the very first
  764. * next_lcla fails...
  765. */
  766. d40_log_lli_lcla_write(lcla,
  767. &lli->dst[lli_current],
  768. &lli->src[lli_current],
  769. next_lcla, flags);
  770. /*
  771. * Cache maintenance is not needed if lcla is
  772. * mapped in esram
  773. */
  774. if (!use_esram_lcla) {
  775. dma_sync_single_range_for_device(chan->base->dev,
  776. pool->dma_addr, lcla_offset,
  777. 2 * sizeof(struct d40_log_lli),
  778. DMA_TO_DEVICE);
  779. }
  780. curr_lcla = next_lcla;
  781. if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
  782. lli_current++;
  783. break;
  784. }
  785. }
  786. out:
  787. desc->lli_current = lli_current;
  788. }
  789. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  790. {
  791. if (chan_is_physical(d40c)) {
  792. d40_phy_lli_load(d40c, d40d);
  793. d40d->lli_current = d40d->lli_len;
  794. } else
  795. d40_log_lli_to_lcxa(d40c, d40d);
  796. }
  797. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  798. {
  799. struct d40_desc *d;
  800. if (list_empty(&d40c->active))
  801. return NULL;
  802. d = list_first_entry(&d40c->active,
  803. struct d40_desc,
  804. node);
  805. return d;
  806. }
  807. /* remove desc from current queue and add it to the pending_queue */
  808. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  809. {
  810. d40_desc_remove(desc);
  811. desc->is_in_client_list = false;
  812. list_add_tail(&desc->node, &d40c->pending_queue);
  813. }
  814. static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
  815. {
  816. struct d40_desc *d;
  817. if (list_empty(&d40c->pending_queue))
  818. return NULL;
  819. d = list_first_entry(&d40c->pending_queue,
  820. struct d40_desc,
  821. node);
  822. return d;
  823. }
  824. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  825. {
  826. struct d40_desc *d;
  827. if (list_empty(&d40c->queue))
  828. return NULL;
  829. d = list_first_entry(&d40c->queue,
  830. struct d40_desc,
  831. node);
  832. return d;
  833. }
  834. static struct d40_desc *d40_first_done(struct d40_chan *d40c)
  835. {
  836. if (list_empty(&d40c->done))
  837. return NULL;
  838. return list_first_entry(&d40c->done, struct d40_desc, node);
  839. }
  840. static int d40_psize_2_burst_size(bool is_log, int psize)
  841. {
  842. if (is_log) {
  843. if (psize == STEDMA40_PSIZE_LOG_1)
  844. return 1;
  845. } else {
  846. if (psize == STEDMA40_PSIZE_PHY_1)
  847. return 1;
  848. }
  849. return 2 << psize;
  850. }
  851. /*
  852. * The dma only supports transmitting packages up to
  853. * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
  854. * dma elements required to send the entire sg list
  855. */
  856. static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
  857. {
  858. int dmalen;
  859. u32 max_w = max(data_width1, data_width2);
  860. u32 min_w = min(data_width1, data_width2);
  861. u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
  862. if (seg_max > STEDMA40_MAX_SEG_SIZE)
  863. seg_max -= (1 << max_w);
  864. if (!IS_ALIGNED(size, 1 << max_w))
  865. return -EINVAL;
  866. if (size <= seg_max)
  867. dmalen = 1;
  868. else {
  869. dmalen = size / seg_max;
  870. if (dmalen * seg_max < size)
  871. dmalen++;
  872. }
  873. return dmalen;
  874. }
  875. static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
  876. u32 data_width1, u32 data_width2)
  877. {
  878. struct scatterlist *sg;
  879. int i;
  880. int len = 0;
  881. int ret;
  882. for_each_sg(sgl, sg, sg_len, i) {
  883. ret = d40_size_2_dmalen(sg_dma_len(sg),
  884. data_width1, data_width2);
  885. if (ret < 0)
  886. return ret;
  887. len += ret;
  888. }
  889. return len;
  890. }
  891. #ifdef CONFIG_PM
  892. static void dma40_backup(void __iomem *baseaddr, u32 *backup,
  893. u32 *regaddr, int num, bool save)
  894. {
  895. int i;
  896. for (i = 0; i < num; i++) {
  897. void __iomem *addr = baseaddr + regaddr[i];
  898. if (save)
  899. backup[i] = readl_relaxed(addr);
  900. else
  901. writel_relaxed(backup[i], addr);
  902. }
  903. }
  904. static void d40_save_restore_registers(struct d40_base *base, bool save)
  905. {
  906. int i;
  907. /* Save/Restore channel specific registers */
  908. for (i = 0; i < base->num_phy_chans; i++) {
  909. void __iomem *addr;
  910. int idx;
  911. if (base->phy_res[i].reserved)
  912. continue;
  913. addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
  914. idx = i * ARRAY_SIZE(d40_backup_regs_chan);
  915. dma40_backup(addr, &base->reg_val_backup_chan[idx],
  916. d40_backup_regs_chan,
  917. ARRAY_SIZE(d40_backup_regs_chan),
  918. save);
  919. }
  920. /* Save/Restore global registers */
  921. dma40_backup(base->virtbase, base->reg_val_backup,
  922. d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
  923. save);
  924. /* Save/Restore registers only existing on dma40 v3 and later */
  925. if (base->gen_dmac.backup)
  926. dma40_backup(base->virtbase, base->reg_val_backup_v4,
  927. base->gen_dmac.backup,
  928. base->gen_dmac.backup_size,
  929. save);
  930. }
  931. #else
  932. static void d40_save_restore_registers(struct d40_base *base, bool save)
  933. {
  934. }
  935. #endif
  936. static int __d40_execute_command_phy(struct d40_chan *d40c,
  937. enum d40_command command)
  938. {
  939. u32 status;
  940. int i;
  941. void __iomem *active_reg;
  942. int ret = 0;
  943. unsigned long flags;
  944. u32 wmask;
  945. if (command == D40_DMA_STOP) {
  946. ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
  947. if (ret)
  948. return ret;
  949. }
  950. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  951. if (d40c->phy_chan->num % 2 == 0)
  952. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  953. else
  954. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  955. if (command == D40_DMA_SUSPEND_REQ) {
  956. status = (readl(active_reg) &
  957. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  958. D40_CHAN_POS(d40c->phy_chan->num);
  959. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  960. goto done;
  961. }
  962. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  963. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  964. active_reg);
  965. if (command == D40_DMA_SUSPEND_REQ) {
  966. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  967. status = (readl(active_reg) &
  968. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  969. D40_CHAN_POS(d40c->phy_chan->num);
  970. cpu_relax();
  971. /*
  972. * Reduce the number of bus accesses while
  973. * waiting for the DMA to suspend.
  974. */
  975. udelay(3);
  976. if (status == D40_DMA_STOP ||
  977. status == D40_DMA_SUSPENDED)
  978. break;
  979. }
  980. if (i == D40_SUSPEND_MAX_IT) {
  981. chan_err(d40c,
  982. "unable to suspend the chl %d (log: %d) status %x\n",
  983. d40c->phy_chan->num, d40c->log_num,
  984. status);
  985. dump_stack();
  986. ret = -EBUSY;
  987. }
  988. }
  989. done:
  990. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  991. return ret;
  992. }
  993. static void d40_term_all(struct d40_chan *d40c)
  994. {
  995. struct d40_desc *d40d;
  996. struct d40_desc *_d;
  997. /* Release completed descriptors */
  998. while ((d40d = d40_first_done(d40c))) {
  999. d40_desc_remove(d40d);
  1000. d40_desc_free(d40c, d40d);
  1001. }
  1002. /* Release active descriptors */
  1003. while ((d40d = d40_first_active_get(d40c))) {
  1004. d40_desc_remove(d40d);
  1005. d40_desc_free(d40c, d40d);
  1006. }
  1007. /* Release queued descriptors waiting for transfer */
  1008. while ((d40d = d40_first_queued(d40c))) {
  1009. d40_desc_remove(d40d);
  1010. d40_desc_free(d40c, d40d);
  1011. }
  1012. /* Release pending descriptors */
  1013. while ((d40d = d40_first_pending(d40c))) {
  1014. d40_desc_remove(d40d);
  1015. d40_desc_free(d40c, d40d);
  1016. }
  1017. /* Release client owned descriptors */
  1018. if (!list_empty(&d40c->client))
  1019. list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
  1020. d40_desc_remove(d40d);
  1021. d40_desc_free(d40c, d40d);
  1022. }
  1023. /* Release descriptors in prepare queue */
  1024. if (!list_empty(&d40c->prepare_queue))
  1025. list_for_each_entry_safe(d40d, _d,
  1026. &d40c->prepare_queue, node) {
  1027. d40_desc_remove(d40d);
  1028. d40_desc_free(d40c, d40d);
  1029. }
  1030. d40c->pending_tx = 0;
  1031. }
  1032. static void __d40_config_set_event(struct d40_chan *d40c,
  1033. enum d40_events event_type, u32 event,
  1034. int reg)
  1035. {
  1036. void __iomem *addr = chan_base(d40c) + reg;
  1037. int tries;
  1038. u32 status;
  1039. switch (event_type) {
  1040. case D40_DEACTIVATE_EVENTLINE:
  1041. writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
  1042. | ~D40_EVENTLINE_MASK(event), addr);
  1043. break;
  1044. case D40_SUSPEND_REQ_EVENTLINE:
  1045. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  1046. D40_EVENTLINE_POS(event);
  1047. if (status == D40_DEACTIVATE_EVENTLINE ||
  1048. status == D40_SUSPEND_REQ_EVENTLINE)
  1049. break;
  1050. writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
  1051. | ~D40_EVENTLINE_MASK(event), addr);
  1052. for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
  1053. status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
  1054. D40_EVENTLINE_POS(event);
  1055. cpu_relax();
  1056. /*
  1057. * Reduce the number of bus accesses while
  1058. * waiting for the DMA to suspend.
  1059. */
  1060. udelay(3);
  1061. if (status == D40_DEACTIVATE_EVENTLINE)
  1062. break;
  1063. }
  1064. if (tries == D40_SUSPEND_MAX_IT) {
  1065. chan_err(d40c,
  1066. "unable to stop the event_line chl %d (log: %d)"
  1067. "status %x\n", d40c->phy_chan->num,
  1068. d40c->log_num, status);
  1069. }
  1070. break;
  1071. case D40_ACTIVATE_EVENTLINE:
  1072. /*
  1073. * The hardware sometimes doesn't register the enable when src and dst
  1074. * event lines are active on the same logical channel. Retry to ensure
  1075. * it does. Usually only one retry is sufficient.
  1076. */
  1077. tries = 100;
  1078. while (--tries) {
  1079. writel((D40_ACTIVATE_EVENTLINE <<
  1080. D40_EVENTLINE_POS(event)) |
  1081. ~D40_EVENTLINE_MASK(event), addr);
  1082. if (readl(addr) & D40_EVENTLINE_MASK(event))
  1083. break;
  1084. }
  1085. if (tries != 99)
  1086. dev_dbg(chan2dev(d40c),
  1087. "[%s] workaround enable S%cLNK (%d tries)\n",
  1088. __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
  1089. 100 - tries);
  1090. WARN_ON(!tries);
  1091. break;
  1092. case D40_ROUND_EVENTLINE:
  1093. BUG();
  1094. break;
  1095. }
  1096. }
  1097. static void d40_config_set_event(struct d40_chan *d40c,
  1098. enum d40_events event_type)
  1099. {
  1100. /* Enable event line connected to device (or memcpy) */
  1101. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  1102. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  1103. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1104. __d40_config_set_event(d40c, event_type, event,
  1105. D40_CHAN_REG_SSLNK);
  1106. }
  1107. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  1108. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1109. __d40_config_set_event(d40c, event_type, event,
  1110. D40_CHAN_REG_SDLNK);
  1111. }
  1112. }
  1113. static u32 d40_chan_has_events(struct d40_chan *d40c)
  1114. {
  1115. void __iomem *chanbase = chan_base(d40c);
  1116. u32 val;
  1117. val = readl(chanbase + D40_CHAN_REG_SSLNK);
  1118. val |= readl(chanbase + D40_CHAN_REG_SDLNK);
  1119. return val;
  1120. }
  1121. static int
  1122. __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
  1123. {
  1124. unsigned long flags;
  1125. int ret = 0;
  1126. u32 active_status;
  1127. void __iomem *active_reg;
  1128. if (d40c->phy_chan->num % 2 == 0)
  1129. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1130. else
  1131. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1132. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  1133. switch (command) {
  1134. case D40_DMA_STOP:
  1135. case D40_DMA_SUSPEND_REQ:
  1136. active_status = (readl(active_reg) &
  1137. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1138. D40_CHAN_POS(d40c->phy_chan->num);
  1139. if (active_status == D40_DMA_RUN)
  1140. d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
  1141. else
  1142. d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
  1143. if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
  1144. ret = __d40_execute_command_phy(d40c, command);
  1145. break;
  1146. case D40_DMA_RUN:
  1147. d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
  1148. ret = __d40_execute_command_phy(d40c, command);
  1149. break;
  1150. case D40_DMA_SUSPENDED:
  1151. BUG();
  1152. break;
  1153. }
  1154. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  1155. return ret;
  1156. }
  1157. static int d40_channel_execute_command(struct d40_chan *d40c,
  1158. enum d40_command command)
  1159. {
  1160. if (chan_is_logical(d40c))
  1161. return __d40_execute_command_log(d40c, command);
  1162. else
  1163. return __d40_execute_command_phy(d40c, command);
  1164. }
  1165. static u32 d40_get_prmo(struct d40_chan *d40c)
  1166. {
  1167. static const unsigned int phy_map[] = {
  1168. [STEDMA40_PCHAN_BASIC_MODE]
  1169. = D40_DREG_PRMO_PCHAN_BASIC,
  1170. [STEDMA40_PCHAN_MODULO_MODE]
  1171. = D40_DREG_PRMO_PCHAN_MODULO,
  1172. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  1173. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  1174. };
  1175. static const unsigned int log_map[] = {
  1176. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  1177. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  1178. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  1179. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  1180. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  1181. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  1182. };
  1183. if (chan_is_physical(d40c))
  1184. return phy_map[d40c->dma_cfg.mode_opt];
  1185. else
  1186. return log_map[d40c->dma_cfg.mode_opt];
  1187. }
  1188. static void d40_config_write(struct d40_chan *d40c)
  1189. {
  1190. u32 addr_base;
  1191. u32 var;
  1192. /* Odd addresses are even addresses + 4 */
  1193. addr_base = (d40c->phy_chan->num % 2) * 4;
  1194. /* Setup channel mode to logical or physical */
  1195. var = ((u32)(chan_is_logical(d40c)) + 1) <<
  1196. D40_CHAN_POS(d40c->phy_chan->num);
  1197. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  1198. /* Setup operational mode option register */
  1199. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  1200. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  1201. if (chan_is_logical(d40c)) {
  1202. int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
  1203. & D40_SREG_ELEM_LOG_LIDX_MASK;
  1204. void __iomem *chanbase = chan_base(d40c);
  1205. /* Set default config for CFG reg */
  1206. writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
  1207. writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
  1208. /* Set LIDX for lcla */
  1209. writel(lidx, chanbase + D40_CHAN_REG_SSELT);
  1210. writel(lidx, chanbase + D40_CHAN_REG_SDELT);
  1211. /* Clear LNK which will be used by d40_chan_has_events() */
  1212. writel(0, chanbase + D40_CHAN_REG_SSLNK);
  1213. writel(0, chanbase + D40_CHAN_REG_SDLNK);
  1214. }
  1215. }
  1216. static u32 d40_residue(struct d40_chan *d40c)
  1217. {
  1218. u32 num_elt;
  1219. if (chan_is_logical(d40c))
  1220. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  1221. >> D40_MEM_LCSP2_ECNT_POS;
  1222. else {
  1223. u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
  1224. num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
  1225. >> D40_SREG_ELEM_PHY_ECNT_POS;
  1226. }
  1227. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  1228. }
  1229. static bool d40_tx_is_linked(struct d40_chan *d40c)
  1230. {
  1231. bool is_link;
  1232. if (chan_is_logical(d40c))
  1233. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  1234. else
  1235. is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
  1236. & D40_SREG_LNK_PHYS_LNK_MASK;
  1237. return is_link;
  1238. }
  1239. static int d40_pause(struct d40_chan *d40c)
  1240. {
  1241. int res = 0;
  1242. unsigned long flags;
  1243. if (!d40c->busy)
  1244. return 0;
  1245. pm_runtime_get_sync(d40c->base->dev);
  1246. spin_lock_irqsave(&d40c->lock, flags);
  1247. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1248. pm_runtime_mark_last_busy(d40c->base->dev);
  1249. pm_runtime_put_autosuspend(d40c->base->dev);
  1250. spin_unlock_irqrestore(&d40c->lock, flags);
  1251. return res;
  1252. }
  1253. static int d40_resume(struct d40_chan *d40c)
  1254. {
  1255. int res = 0;
  1256. unsigned long flags;
  1257. if (!d40c->busy)
  1258. return 0;
  1259. spin_lock_irqsave(&d40c->lock, flags);
  1260. pm_runtime_get_sync(d40c->base->dev);
  1261. /* If bytes left to transfer or linked tx resume job */
  1262. if (d40_residue(d40c) || d40_tx_is_linked(d40c))
  1263. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  1264. pm_runtime_mark_last_busy(d40c->base->dev);
  1265. pm_runtime_put_autosuspend(d40c->base->dev);
  1266. spin_unlock_irqrestore(&d40c->lock, flags);
  1267. return res;
  1268. }
  1269. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  1270. {
  1271. struct d40_chan *d40c = container_of(tx->chan,
  1272. struct d40_chan,
  1273. chan);
  1274. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  1275. unsigned long flags;
  1276. dma_cookie_t cookie;
  1277. spin_lock_irqsave(&d40c->lock, flags);
  1278. cookie = dma_cookie_assign(tx);
  1279. d40_desc_queue(d40c, d40d);
  1280. spin_unlock_irqrestore(&d40c->lock, flags);
  1281. return cookie;
  1282. }
  1283. static int d40_start(struct d40_chan *d40c)
  1284. {
  1285. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  1286. }
  1287. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  1288. {
  1289. struct d40_desc *d40d;
  1290. int err;
  1291. /* Start queued jobs, if any */
  1292. d40d = d40_first_queued(d40c);
  1293. if (d40d != NULL) {
  1294. if (!d40c->busy) {
  1295. d40c->busy = true;
  1296. pm_runtime_get_sync(d40c->base->dev);
  1297. }
  1298. /* Remove from queue */
  1299. d40_desc_remove(d40d);
  1300. /* Add to active queue */
  1301. d40_desc_submit(d40c, d40d);
  1302. /* Initiate DMA job */
  1303. d40_desc_load(d40c, d40d);
  1304. /* Start dma job */
  1305. err = d40_start(d40c);
  1306. if (err)
  1307. return NULL;
  1308. }
  1309. return d40d;
  1310. }
  1311. /* called from interrupt context */
  1312. static void dma_tc_handle(struct d40_chan *d40c)
  1313. {
  1314. struct d40_desc *d40d;
  1315. /* Get first active entry from list */
  1316. d40d = d40_first_active_get(d40c);
  1317. if (d40d == NULL)
  1318. return;
  1319. if (d40d->cyclic) {
  1320. /*
  1321. * If this was a paritially loaded list, we need to reloaded
  1322. * it, and only when the list is completed. We need to check
  1323. * for done because the interrupt will hit for every link, and
  1324. * not just the last one.
  1325. */
  1326. if (d40d->lli_current < d40d->lli_len
  1327. && !d40_tx_is_linked(d40c)
  1328. && !d40_residue(d40c)) {
  1329. d40_lcla_free_all(d40c, d40d);
  1330. d40_desc_load(d40c, d40d);
  1331. (void) d40_start(d40c);
  1332. if (d40d->lli_current == d40d->lli_len)
  1333. d40d->lli_current = 0;
  1334. }
  1335. } else {
  1336. d40_lcla_free_all(d40c, d40d);
  1337. if (d40d->lli_current < d40d->lli_len) {
  1338. d40_desc_load(d40c, d40d);
  1339. /* Start dma job */
  1340. (void) d40_start(d40c);
  1341. return;
  1342. }
  1343. if (d40_queue_start(d40c) == NULL)
  1344. d40c->busy = false;
  1345. pm_runtime_mark_last_busy(d40c->base->dev);
  1346. pm_runtime_put_autosuspend(d40c->base->dev);
  1347. d40_desc_remove(d40d);
  1348. d40_desc_done(d40c, d40d);
  1349. }
  1350. d40c->pending_tx++;
  1351. tasklet_schedule(&d40c->tasklet);
  1352. }
  1353. static void dma_tasklet(unsigned long data)
  1354. {
  1355. struct d40_chan *d40c = (struct d40_chan *) data;
  1356. struct d40_desc *d40d;
  1357. unsigned long flags;
  1358. dma_async_tx_callback callback;
  1359. void *callback_param;
  1360. spin_lock_irqsave(&d40c->lock, flags);
  1361. /* Get first entry from the done list */
  1362. d40d = d40_first_done(d40c);
  1363. if (d40d == NULL) {
  1364. /* Check if we have reached here for cyclic job */
  1365. d40d = d40_first_active_get(d40c);
  1366. if (d40d == NULL || !d40d->cyclic)
  1367. goto err;
  1368. }
  1369. if (!d40d->cyclic)
  1370. dma_cookie_complete(&d40d->txd);
  1371. /*
  1372. * If terminating a channel pending_tx is set to zero.
  1373. * This prevents any finished active jobs to return to the client.
  1374. */
  1375. if (d40c->pending_tx == 0) {
  1376. spin_unlock_irqrestore(&d40c->lock, flags);
  1377. return;
  1378. }
  1379. /* Callback to client */
  1380. callback = d40d->txd.callback;
  1381. callback_param = d40d->txd.callback_param;
  1382. if (!d40d->cyclic) {
  1383. if (async_tx_test_ack(&d40d->txd)) {
  1384. d40_desc_remove(d40d);
  1385. d40_desc_free(d40c, d40d);
  1386. } else if (!d40d->is_in_client_list) {
  1387. d40_desc_remove(d40d);
  1388. d40_lcla_free_all(d40c, d40d);
  1389. list_add_tail(&d40d->node, &d40c->client);
  1390. d40d->is_in_client_list = true;
  1391. }
  1392. }
  1393. d40c->pending_tx--;
  1394. if (d40c->pending_tx)
  1395. tasklet_schedule(&d40c->tasklet);
  1396. spin_unlock_irqrestore(&d40c->lock, flags);
  1397. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  1398. callback(callback_param);
  1399. return;
  1400. err:
  1401. /* Rescue manouver if receiving double interrupts */
  1402. if (d40c->pending_tx > 0)
  1403. d40c->pending_tx--;
  1404. spin_unlock_irqrestore(&d40c->lock, flags);
  1405. }
  1406. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  1407. {
  1408. int i;
  1409. u32 idx;
  1410. u32 row;
  1411. long chan = -1;
  1412. struct d40_chan *d40c;
  1413. unsigned long flags;
  1414. struct d40_base *base = data;
  1415. u32 regs[base->gen_dmac.il_size];
  1416. struct d40_interrupt_lookup *il = base->gen_dmac.il;
  1417. u32 il_size = base->gen_dmac.il_size;
  1418. spin_lock_irqsave(&base->interrupt_lock, flags);
  1419. /* Read interrupt status of both logical and physical channels */
  1420. for (i = 0; i < il_size; i++)
  1421. regs[i] = readl(base->virtbase + il[i].src);
  1422. for (;;) {
  1423. chan = find_next_bit((unsigned long *)regs,
  1424. BITS_PER_LONG * il_size, chan + 1);
  1425. /* No more set bits found? */
  1426. if (chan == BITS_PER_LONG * il_size)
  1427. break;
  1428. row = chan / BITS_PER_LONG;
  1429. idx = chan & (BITS_PER_LONG - 1);
  1430. if (il[row].offset == D40_PHY_CHAN)
  1431. d40c = base->lookup_phy_chans[idx];
  1432. else
  1433. d40c = base->lookup_log_chans[il[row].offset + idx];
  1434. if (!d40c) {
  1435. /*
  1436. * No error because this can happen if something else
  1437. * in the system is using the channel.
  1438. */
  1439. continue;
  1440. }
  1441. /* ACK interrupt */
  1442. writel(1 << idx, base->virtbase + il[row].clr);
  1443. spin_lock(&d40c->lock);
  1444. if (!il[row].is_error)
  1445. dma_tc_handle(d40c);
  1446. else
  1447. d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
  1448. chan, il[row].offset, idx);
  1449. spin_unlock(&d40c->lock);
  1450. }
  1451. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  1452. return IRQ_HANDLED;
  1453. }
  1454. static int d40_validate_conf(struct d40_chan *d40c,
  1455. struct stedma40_chan_cfg *conf)
  1456. {
  1457. int res = 0;
  1458. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  1459. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  1460. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  1461. if (!conf->dir) {
  1462. chan_err(d40c, "Invalid direction.\n");
  1463. res = -EINVAL;
  1464. }
  1465. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  1466. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  1467. d40c->runtime_addr == 0) {
  1468. chan_err(d40c, "Invalid TX channel address (%d)\n",
  1469. conf->dst_dev_type);
  1470. res = -EINVAL;
  1471. }
  1472. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  1473. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  1474. d40c->runtime_addr == 0) {
  1475. chan_err(d40c, "Invalid RX channel address (%d)\n",
  1476. conf->src_dev_type);
  1477. res = -EINVAL;
  1478. }
  1479. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  1480. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  1481. chan_err(d40c, "Invalid dst\n");
  1482. res = -EINVAL;
  1483. }
  1484. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  1485. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1486. chan_err(d40c, "Invalid src\n");
  1487. res = -EINVAL;
  1488. }
  1489. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1490. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1491. chan_err(d40c, "No event line\n");
  1492. res = -EINVAL;
  1493. }
  1494. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1495. (src_event_group != dst_event_group)) {
  1496. chan_err(d40c, "Invalid event group\n");
  1497. res = -EINVAL;
  1498. }
  1499. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1500. /*
  1501. * DMAC HW supports it. Will be added to this driver,
  1502. * in case any dma client requires it.
  1503. */
  1504. chan_err(d40c, "periph to periph not supported\n");
  1505. res = -EINVAL;
  1506. }
  1507. if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
  1508. (1 << conf->src_info.data_width) !=
  1509. d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
  1510. (1 << conf->dst_info.data_width)) {
  1511. /*
  1512. * The DMAC hardware only supports
  1513. * src (burst x width) == dst (burst x width)
  1514. */
  1515. chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
  1516. res = -EINVAL;
  1517. }
  1518. return res;
  1519. }
  1520. static bool d40_alloc_mask_set(struct d40_phy_res *phy,
  1521. bool is_src, int log_event_line, bool is_log,
  1522. bool *first_user)
  1523. {
  1524. unsigned long flags;
  1525. spin_lock_irqsave(&phy->lock, flags);
  1526. *first_user = ((phy->allocated_src | phy->allocated_dst)
  1527. == D40_ALLOC_FREE);
  1528. if (!is_log) {
  1529. /* Physical interrupts are masked per physical full channel */
  1530. if (phy->allocated_src == D40_ALLOC_FREE &&
  1531. phy->allocated_dst == D40_ALLOC_FREE) {
  1532. phy->allocated_dst = D40_ALLOC_PHY;
  1533. phy->allocated_src = D40_ALLOC_PHY;
  1534. goto found;
  1535. } else
  1536. goto not_found;
  1537. }
  1538. /* Logical channel */
  1539. if (is_src) {
  1540. if (phy->allocated_src == D40_ALLOC_PHY)
  1541. goto not_found;
  1542. if (phy->allocated_src == D40_ALLOC_FREE)
  1543. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1544. if (!(phy->allocated_src & (1 << log_event_line))) {
  1545. phy->allocated_src |= 1 << log_event_line;
  1546. goto found;
  1547. } else
  1548. goto not_found;
  1549. } else {
  1550. if (phy->allocated_dst == D40_ALLOC_PHY)
  1551. goto not_found;
  1552. if (phy->allocated_dst == D40_ALLOC_FREE)
  1553. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1554. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1555. phy->allocated_dst |= 1 << log_event_line;
  1556. goto found;
  1557. } else
  1558. goto not_found;
  1559. }
  1560. not_found:
  1561. spin_unlock_irqrestore(&phy->lock, flags);
  1562. return false;
  1563. found:
  1564. spin_unlock_irqrestore(&phy->lock, flags);
  1565. return true;
  1566. }
  1567. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1568. int log_event_line)
  1569. {
  1570. unsigned long flags;
  1571. bool is_free = false;
  1572. spin_lock_irqsave(&phy->lock, flags);
  1573. if (!log_event_line) {
  1574. phy->allocated_dst = D40_ALLOC_FREE;
  1575. phy->allocated_src = D40_ALLOC_FREE;
  1576. is_free = true;
  1577. goto out;
  1578. }
  1579. /* Logical channel */
  1580. if (is_src) {
  1581. phy->allocated_src &= ~(1 << log_event_line);
  1582. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1583. phy->allocated_src = D40_ALLOC_FREE;
  1584. } else {
  1585. phy->allocated_dst &= ~(1 << log_event_line);
  1586. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1587. phy->allocated_dst = D40_ALLOC_FREE;
  1588. }
  1589. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1590. D40_ALLOC_FREE);
  1591. out:
  1592. spin_unlock_irqrestore(&phy->lock, flags);
  1593. return is_free;
  1594. }
  1595. static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
  1596. {
  1597. int dev_type;
  1598. int event_group;
  1599. int event_line;
  1600. struct d40_phy_res *phys;
  1601. int i;
  1602. int j;
  1603. int log_num;
  1604. int num_phy_chans;
  1605. bool is_src;
  1606. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1607. phys = d40c->base->phy_res;
  1608. num_phy_chans = d40c->base->num_phy_chans;
  1609. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1610. dev_type = d40c->dma_cfg.src_dev_type;
  1611. log_num = 2 * dev_type;
  1612. is_src = true;
  1613. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1614. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1615. /* dst event lines are used for logical memcpy */
  1616. dev_type = d40c->dma_cfg.dst_dev_type;
  1617. log_num = 2 * dev_type + 1;
  1618. is_src = false;
  1619. } else
  1620. return -EINVAL;
  1621. event_group = D40_TYPE_TO_GROUP(dev_type);
  1622. event_line = D40_TYPE_TO_EVENT(dev_type);
  1623. if (!is_log) {
  1624. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1625. /* Find physical half channel */
  1626. if (d40c->dma_cfg.use_fixed_channel) {
  1627. i = d40c->dma_cfg.phy_channel;
  1628. if (d40_alloc_mask_set(&phys[i], is_src,
  1629. 0, is_log,
  1630. first_phy_user))
  1631. goto found_phy;
  1632. } else {
  1633. for (i = 0; i < num_phy_chans; i++) {
  1634. if (d40_alloc_mask_set(&phys[i], is_src,
  1635. 0, is_log,
  1636. first_phy_user))
  1637. goto found_phy;
  1638. }
  1639. }
  1640. } else
  1641. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1642. int phy_num = j + event_group * 2;
  1643. for (i = phy_num; i < phy_num + 2; i++) {
  1644. if (d40_alloc_mask_set(&phys[i],
  1645. is_src,
  1646. 0,
  1647. is_log,
  1648. first_phy_user))
  1649. goto found_phy;
  1650. }
  1651. }
  1652. return -EINVAL;
  1653. found_phy:
  1654. d40c->phy_chan = &phys[i];
  1655. d40c->log_num = D40_PHY_CHAN;
  1656. goto out;
  1657. }
  1658. if (dev_type == -1)
  1659. return -EINVAL;
  1660. /* Find logical channel */
  1661. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1662. int phy_num = j + event_group * 2;
  1663. if (d40c->dma_cfg.use_fixed_channel) {
  1664. i = d40c->dma_cfg.phy_channel;
  1665. if ((i != phy_num) && (i != phy_num + 1)) {
  1666. dev_err(chan2dev(d40c),
  1667. "invalid fixed phy channel %d\n", i);
  1668. return -EINVAL;
  1669. }
  1670. if (d40_alloc_mask_set(&phys[i], is_src, event_line,
  1671. is_log, first_phy_user))
  1672. goto found_log;
  1673. dev_err(chan2dev(d40c),
  1674. "could not allocate fixed phy channel %d\n", i);
  1675. return -EINVAL;
  1676. }
  1677. /*
  1678. * Spread logical channels across all available physical rather
  1679. * than pack every logical channel at the first available phy
  1680. * channels.
  1681. */
  1682. if (is_src) {
  1683. for (i = phy_num; i < phy_num + 2; i++) {
  1684. if (d40_alloc_mask_set(&phys[i], is_src,
  1685. event_line, is_log,
  1686. first_phy_user))
  1687. goto found_log;
  1688. }
  1689. } else {
  1690. for (i = phy_num + 1; i >= phy_num; i--) {
  1691. if (d40_alloc_mask_set(&phys[i], is_src,
  1692. event_line, is_log,
  1693. first_phy_user))
  1694. goto found_log;
  1695. }
  1696. }
  1697. }
  1698. return -EINVAL;
  1699. found_log:
  1700. d40c->phy_chan = &phys[i];
  1701. d40c->log_num = log_num;
  1702. out:
  1703. if (is_log)
  1704. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1705. else
  1706. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1707. return 0;
  1708. }
  1709. static int d40_config_memcpy(struct d40_chan *d40c)
  1710. {
  1711. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1712. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1713. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1714. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1715. d40c->dma_cfg.dst_dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
  1716. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1717. dma_has_cap(DMA_SLAVE, cap)) {
  1718. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1719. } else {
  1720. chan_err(d40c, "No memcpy\n");
  1721. return -EINVAL;
  1722. }
  1723. return 0;
  1724. }
  1725. static int d40_free_dma(struct d40_chan *d40c)
  1726. {
  1727. int res = 0;
  1728. u32 event;
  1729. struct d40_phy_res *phy = d40c->phy_chan;
  1730. bool is_src;
  1731. /* Terminate all queued and active transfers */
  1732. d40_term_all(d40c);
  1733. if (phy == NULL) {
  1734. chan_err(d40c, "phy == null\n");
  1735. return -EINVAL;
  1736. }
  1737. if (phy->allocated_src == D40_ALLOC_FREE &&
  1738. phy->allocated_dst == D40_ALLOC_FREE) {
  1739. chan_err(d40c, "channel already free\n");
  1740. return -EINVAL;
  1741. }
  1742. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1743. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1744. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1745. is_src = false;
  1746. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1747. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1748. is_src = true;
  1749. } else {
  1750. chan_err(d40c, "Unknown direction\n");
  1751. return -EINVAL;
  1752. }
  1753. pm_runtime_get_sync(d40c->base->dev);
  1754. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1755. if (res) {
  1756. chan_err(d40c, "stop failed\n");
  1757. goto out;
  1758. }
  1759. d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
  1760. if (chan_is_logical(d40c))
  1761. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1762. else
  1763. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1764. if (d40c->busy) {
  1765. pm_runtime_mark_last_busy(d40c->base->dev);
  1766. pm_runtime_put_autosuspend(d40c->base->dev);
  1767. }
  1768. d40c->busy = false;
  1769. d40c->phy_chan = NULL;
  1770. d40c->configured = false;
  1771. out:
  1772. pm_runtime_mark_last_busy(d40c->base->dev);
  1773. pm_runtime_put_autosuspend(d40c->base->dev);
  1774. return res;
  1775. }
  1776. static bool d40_is_paused(struct d40_chan *d40c)
  1777. {
  1778. void __iomem *chanbase = chan_base(d40c);
  1779. bool is_paused = false;
  1780. unsigned long flags;
  1781. void __iomem *active_reg;
  1782. u32 status;
  1783. u32 event;
  1784. spin_lock_irqsave(&d40c->lock, flags);
  1785. if (chan_is_physical(d40c)) {
  1786. if (d40c->phy_chan->num % 2 == 0)
  1787. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1788. else
  1789. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1790. status = (readl(active_reg) &
  1791. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1792. D40_CHAN_POS(d40c->phy_chan->num);
  1793. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1794. is_paused = true;
  1795. goto _exit;
  1796. }
  1797. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1798. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1799. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1800. status = readl(chanbase + D40_CHAN_REG_SDLNK);
  1801. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1802. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1803. status = readl(chanbase + D40_CHAN_REG_SSLNK);
  1804. } else {
  1805. chan_err(d40c, "Unknown direction\n");
  1806. goto _exit;
  1807. }
  1808. status = (status & D40_EVENTLINE_MASK(event)) >>
  1809. D40_EVENTLINE_POS(event);
  1810. if (status != D40_DMA_RUN)
  1811. is_paused = true;
  1812. _exit:
  1813. spin_unlock_irqrestore(&d40c->lock, flags);
  1814. return is_paused;
  1815. }
  1816. static u32 stedma40_residue(struct dma_chan *chan)
  1817. {
  1818. struct d40_chan *d40c =
  1819. container_of(chan, struct d40_chan, chan);
  1820. u32 bytes_left;
  1821. unsigned long flags;
  1822. spin_lock_irqsave(&d40c->lock, flags);
  1823. bytes_left = d40_residue(d40c);
  1824. spin_unlock_irqrestore(&d40c->lock, flags);
  1825. return bytes_left;
  1826. }
  1827. static int
  1828. d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
  1829. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1830. unsigned int sg_len, dma_addr_t src_dev_addr,
  1831. dma_addr_t dst_dev_addr)
  1832. {
  1833. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1834. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1835. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1836. int ret;
  1837. ret = d40_log_sg_to_lli(sg_src, sg_len,
  1838. src_dev_addr,
  1839. desc->lli_log.src,
  1840. chan->log_def.lcsp1,
  1841. src_info->data_width,
  1842. dst_info->data_width);
  1843. ret = d40_log_sg_to_lli(sg_dst, sg_len,
  1844. dst_dev_addr,
  1845. desc->lli_log.dst,
  1846. chan->log_def.lcsp3,
  1847. dst_info->data_width,
  1848. src_info->data_width);
  1849. return ret < 0 ? ret : 0;
  1850. }
  1851. static int
  1852. d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
  1853. struct scatterlist *sg_src, struct scatterlist *sg_dst,
  1854. unsigned int sg_len, dma_addr_t src_dev_addr,
  1855. dma_addr_t dst_dev_addr)
  1856. {
  1857. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1858. struct stedma40_half_channel_info *src_info = &cfg->src_info;
  1859. struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
  1860. unsigned long flags = 0;
  1861. int ret;
  1862. if (desc->cyclic)
  1863. flags |= LLI_CYCLIC | LLI_TERM_INT;
  1864. ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
  1865. desc->lli_phy.src,
  1866. virt_to_phys(desc->lli_phy.src),
  1867. chan->src_def_cfg,
  1868. src_info, dst_info, flags);
  1869. ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
  1870. desc->lli_phy.dst,
  1871. virt_to_phys(desc->lli_phy.dst),
  1872. chan->dst_def_cfg,
  1873. dst_info, src_info, flags);
  1874. dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
  1875. desc->lli_pool.size, DMA_TO_DEVICE);
  1876. return ret < 0 ? ret : 0;
  1877. }
  1878. static struct d40_desc *
  1879. d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
  1880. unsigned int sg_len, unsigned long dma_flags)
  1881. {
  1882. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1883. struct d40_desc *desc;
  1884. int ret;
  1885. desc = d40_desc_get(chan);
  1886. if (!desc)
  1887. return NULL;
  1888. desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
  1889. cfg->dst_info.data_width);
  1890. if (desc->lli_len < 0) {
  1891. chan_err(chan, "Unaligned size\n");
  1892. goto err;
  1893. }
  1894. ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
  1895. if (ret < 0) {
  1896. chan_err(chan, "Could not allocate lli\n");
  1897. goto err;
  1898. }
  1899. desc->lli_current = 0;
  1900. desc->txd.flags = dma_flags;
  1901. desc->txd.tx_submit = d40_tx_submit;
  1902. dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
  1903. return desc;
  1904. err:
  1905. d40_desc_free(chan, desc);
  1906. return NULL;
  1907. }
  1908. static dma_addr_t
  1909. d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction)
  1910. {
  1911. struct stedma40_platform_data *plat = chan->base->plat_data;
  1912. struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
  1913. dma_addr_t addr = 0;
  1914. if (chan->runtime_addr)
  1915. return chan->runtime_addr;
  1916. if (direction == DMA_DEV_TO_MEM)
  1917. addr = plat->dev_rx[cfg->src_dev_type];
  1918. else if (direction == DMA_MEM_TO_DEV)
  1919. addr = plat->dev_tx[cfg->dst_dev_type];
  1920. return addr;
  1921. }
  1922. static struct dma_async_tx_descriptor *
  1923. d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
  1924. struct scatterlist *sg_dst, unsigned int sg_len,
  1925. enum dma_transfer_direction direction, unsigned long dma_flags)
  1926. {
  1927. struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
  1928. dma_addr_t src_dev_addr = 0;
  1929. dma_addr_t dst_dev_addr = 0;
  1930. struct d40_desc *desc;
  1931. unsigned long flags;
  1932. int ret;
  1933. if (!chan->phy_chan) {
  1934. chan_err(chan, "Cannot prepare unallocated channel\n");
  1935. return NULL;
  1936. }
  1937. spin_lock_irqsave(&chan->lock, flags);
  1938. desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
  1939. if (desc == NULL)
  1940. goto err;
  1941. if (sg_next(&sg_src[sg_len - 1]) == sg_src)
  1942. desc->cyclic = true;
  1943. if (direction != DMA_TRANS_NONE) {
  1944. dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
  1945. if (direction == DMA_DEV_TO_MEM)
  1946. src_dev_addr = dev_addr;
  1947. else if (direction == DMA_MEM_TO_DEV)
  1948. dst_dev_addr = dev_addr;
  1949. }
  1950. if (chan_is_logical(chan))
  1951. ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
  1952. sg_len, src_dev_addr, dst_dev_addr);
  1953. else
  1954. ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
  1955. sg_len, src_dev_addr, dst_dev_addr);
  1956. if (ret) {
  1957. chan_err(chan, "Failed to prepare %s sg job: %d\n",
  1958. chan_is_logical(chan) ? "log" : "phy", ret);
  1959. goto err;
  1960. }
  1961. /*
  1962. * add descriptor to the prepare queue in order to be able
  1963. * to free them later in terminate_all
  1964. */
  1965. list_add_tail(&desc->node, &chan->prepare_queue);
  1966. spin_unlock_irqrestore(&chan->lock, flags);
  1967. return &desc->txd;
  1968. err:
  1969. if (desc)
  1970. d40_desc_free(chan, desc);
  1971. spin_unlock_irqrestore(&chan->lock, flags);
  1972. return NULL;
  1973. }
  1974. bool stedma40_filter(struct dma_chan *chan, void *data)
  1975. {
  1976. struct stedma40_chan_cfg *info = data;
  1977. struct d40_chan *d40c =
  1978. container_of(chan, struct d40_chan, chan);
  1979. int err;
  1980. if (data) {
  1981. err = d40_validate_conf(d40c, info);
  1982. if (!err)
  1983. d40c->dma_cfg = *info;
  1984. } else
  1985. err = d40_config_memcpy(d40c);
  1986. if (!err)
  1987. d40c->configured = true;
  1988. return err == 0;
  1989. }
  1990. EXPORT_SYMBOL(stedma40_filter);
  1991. static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
  1992. {
  1993. bool realtime = d40c->dma_cfg.realtime;
  1994. bool highprio = d40c->dma_cfg.high_priority;
  1995. u32 rtreg;
  1996. u32 event = D40_TYPE_TO_EVENT(dev_type);
  1997. u32 group = D40_TYPE_TO_GROUP(dev_type);
  1998. u32 bit = 1 << event;
  1999. u32 prioreg;
  2000. struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
  2001. rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
  2002. /*
  2003. * Due to a hardware bug, in some cases a logical channel triggered by
  2004. * a high priority destination event line can generate extra packet
  2005. * transactions.
  2006. *
  2007. * The workaround is to not set the high priority level for the
  2008. * destination event lines that trigger logical channels.
  2009. */
  2010. if (!src && chan_is_logical(d40c))
  2011. highprio = false;
  2012. prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
  2013. /* Destination event lines are stored in the upper halfword */
  2014. if (!src)
  2015. bit <<= 16;
  2016. writel(bit, d40c->base->virtbase + prioreg + group * 4);
  2017. writel(bit, d40c->base->virtbase + rtreg + group * 4);
  2018. }
  2019. static void d40_set_prio_realtime(struct d40_chan *d40c)
  2020. {
  2021. if (d40c->base->rev < 3)
  2022. return;
  2023. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  2024. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  2025. __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
  2026. if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
  2027. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
  2028. __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
  2029. }
  2030. /* DMA ENGINE functions */
  2031. static int d40_alloc_chan_resources(struct dma_chan *chan)
  2032. {
  2033. int err;
  2034. unsigned long flags;
  2035. struct d40_chan *d40c =
  2036. container_of(chan, struct d40_chan, chan);
  2037. bool is_free_phy;
  2038. spin_lock_irqsave(&d40c->lock, flags);
  2039. dma_cookie_init(chan);
  2040. /* If no dma configuration is set use default configuration (memcpy) */
  2041. if (!d40c->configured) {
  2042. err = d40_config_memcpy(d40c);
  2043. if (err) {
  2044. chan_err(d40c, "Failed to configure memcpy channel\n");
  2045. goto fail;
  2046. }
  2047. }
  2048. err = d40_allocate_channel(d40c, &is_free_phy);
  2049. if (err) {
  2050. chan_err(d40c, "Failed to allocate channel\n");
  2051. d40c->configured = false;
  2052. goto fail;
  2053. }
  2054. pm_runtime_get_sync(d40c->base->dev);
  2055. /* Fill in basic CFG register values */
  2056. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  2057. &d40c->dst_def_cfg, chan_is_logical(d40c));
  2058. d40_set_prio_realtime(d40c);
  2059. if (chan_is_logical(d40c)) {
  2060. d40_log_cfg(&d40c->dma_cfg,
  2061. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2062. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  2063. d40c->lcpa = d40c->base->lcpa_base +
  2064. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  2065. else
  2066. d40c->lcpa = d40c->base->lcpa_base +
  2067. d40c->dma_cfg.dst_dev_type *
  2068. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  2069. }
  2070. dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
  2071. chan_is_logical(d40c) ? "logical" : "physical",
  2072. d40c->phy_chan->num,
  2073. d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
  2074. /*
  2075. * Only write channel configuration to the DMA if the physical
  2076. * resource is free. In case of multiple logical channels
  2077. * on the same physical resource, only the first write is necessary.
  2078. */
  2079. if (is_free_phy)
  2080. d40_config_write(d40c);
  2081. fail:
  2082. pm_runtime_mark_last_busy(d40c->base->dev);
  2083. pm_runtime_put_autosuspend(d40c->base->dev);
  2084. spin_unlock_irqrestore(&d40c->lock, flags);
  2085. return err;
  2086. }
  2087. static void d40_free_chan_resources(struct dma_chan *chan)
  2088. {
  2089. struct d40_chan *d40c =
  2090. container_of(chan, struct d40_chan, chan);
  2091. int err;
  2092. unsigned long flags;
  2093. if (d40c->phy_chan == NULL) {
  2094. chan_err(d40c, "Cannot free unallocated channel\n");
  2095. return;
  2096. }
  2097. spin_lock_irqsave(&d40c->lock, flags);
  2098. err = d40_free_dma(d40c);
  2099. if (err)
  2100. chan_err(d40c, "Failed to free channel\n");
  2101. spin_unlock_irqrestore(&d40c->lock, flags);
  2102. }
  2103. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  2104. dma_addr_t dst,
  2105. dma_addr_t src,
  2106. size_t size,
  2107. unsigned long dma_flags)
  2108. {
  2109. struct scatterlist dst_sg;
  2110. struct scatterlist src_sg;
  2111. sg_init_table(&dst_sg, 1);
  2112. sg_init_table(&src_sg, 1);
  2113. sg_dma_address(&dst_sg) = dst;
  2114. sg_dma_address(&src_sg) = src;
  2115. sg_dma_len(&dst_sg) = size;
  2116. sg_dma_len(&src_sg) = size;
  2117. return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
  2118. }
  2119. static struct dma_async_tx_descriptor *
  2120. d40_prep_memcpy_sg(struct dma_chan *chan,
  2121. struct scatterlist *dst_sg, unsigned int dst_nents,
  2122. struct scatterlist *src_sg, unsigned int src_nents,
  2123. unsigned long dma_flags)
  2124. {
  2125. if (dst_nents != src_nents)
  2126. return NULL;
  2127. return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
  2128. }
  2129. static struct dma_async_tx_descriptor *
  2130. d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
  2131. unsigned int sg_len, enum dma_transfer_direction direction,
  2132. unsigned long dma_flags, void *context)
  2133. {
  2134. if (!is_slave_direction(direction))
  2135. return NULL;
  2136. return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
  2137. }
  2138. static struct dma_async_tx_descriptor *
  2139. dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
  2140. size_t buf_len, size_t period_len,
  2141. enum dma_transfer_direction direction, unsigned long flags,
  2142. void *context)
  2143. {
  2144. unsigned int periods = buf_len / period_len;
  2145. struct dma_async_tx_descriptor *txd;
  2146. struct scatterlist *sg;
  2147. int i;
  2148. sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
  2149. for (i = 0; i < periods; i++) {
  2150. sg_dma_address(&sg[i]) = dma_addr;
  2151. sg_dma_len(&sg[i]) = period_len;
  2152. dma_addr += period_len;
  2153. }
  2154. sg[periods].offset = 0;
  2155. sg_dma_len(&sg[periods]) = 0;
  2156. sg[periods].page_link =
  2157. ((unsigned long)sg | 0x01) & ~0x02;
  2158. txd = d40_prep_sg(chan, sg, sg, periods, direction,
  2159. DMA_PREP_INTERRUPT);
  2160. kfree(sg);
  2161. return txd;
  2162. }
  2163. static enum dma_status d40_tx_status(struct dma_chan *chan,
  2164. dma_cookie_t cookie,
  2165. struct dma_tx_state *txstate)
  2166. {
  2167. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2168. enum dma_status ret;
  2169. if (d40c->phy_chan == NULL) {
  2170. chan_err(d40c, "Cannot read status of unallocated channel\n");
  2171. return -EINVAL;
  2172. }
  2173. ret = dma_cookie_status(chan, cookie, txstate);
  2174. if (ret != DMA_SUCCESS)
  2175. dma_set_residue(txstate, stedma40_residue(chan));
  2176. if (d40_is_paused(d40c))
  2177. ret = DMA_PAUSED;
  2178. return ret;
  2179. }
  2180. static void d40_issue_pending(struct dma_chan *chan)
  2181. {
  2182. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2183. unsigned long flags;
  2184. if (d40c->phy_chan == NULL) {
  2185. chan_err(d40c, "Channel is not allocated!\n");
  2186. return;
  2187. }
  2188. spin_lock_irqsave(&d40c->lock, flags);
  2189. list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
  2190. /* Busy means that queued jobs are already being processed */
  2191. if (!d40c->busy)
  2192. (void) d40_queue_start(d40c);
  2193. spin_unlock_irqrestore(&d40c->lock, flags);
  2194. }
  2195. static void d40_terminate_all(struct dma_chan *chan)
  2196. {
  2197. unsigned long flags;
  2198. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2199. int ret;
  2200. spin_lock_irqsave(&d40c->lock, flags);
  2201. pm_runtime_get_sync(d40c->base->dev);
  2202. ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
  2203. if (ret)
  2204. chan_err(d40c, "Failed to stop channel\n");
  2205. d40_term_all(d40c);
  2206. pm_runtime_mark_last_busy(d40c->base->dev);
  2207. pm_runtime_put_autosuspend(d40c->base->dev);
  2208. if (d40c->busy) {
  2209. pm_runtime_mark_last_busy(d40c->base->dev);
  2210. pm_runtime_put_autosuspend(d40c->base->dev);
  2211. }
  2212. d40c->busy = false;
  2213. spin_unlock_irqrestore(&d40c->lock, flags);
  2214. }
  2215. static int
  2216. dma40_config_to_halfchannel(struct d40_chan *d40c,
  2217. struct stedma40_half_channel_info *info,
  2218. enum dma_slave_buswidth width,
  2219. u32 maxburst)
  2220. {
  2221. enum stedma40_periph_data_width addr_width;
  2222. int psize;
  2223. switch (width) {
  2224. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  2225. addr_width = STEDMA40_BYTE_WIDTH;
  2226. break;
  2227. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  2228. addr_width = STEDMA40_HALFWORD_WIDTH;
  2229. break;
  2230. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  2231. addr_width = STEDMA40_WORD_WIDTH;
  2232. break;
  2233. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  2234. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  2235. break;
  2236. default:
  2237. dev_err(d40c->base->dev,
  2238. "illegal peripheral address width "
  2239. "requested (%d)\n",
  2240. width);
  2241. return -EINVAL;
  2242. }
  2243. if (chan_is_logical(d40c)) {
  2244. if (maxburst >= 16)
  2245. psize = STEDMA40_PSIZE_LOG_16;
  2246. else if (maxburst >= 8)
  2247. psize = STEDMA40_PSIZE_LOG_8;
  2248. else if (maxburst >= 4)
  2249. psize = STEDMA40_PSIZE_LOG_4;
  2250. else
  2251. psize = STEDMA40_PSIZE_LOG_1;
  2252. } else {
  2253. if (maxburst >= 16)
  2254. psize = STEDMA40_PSIZE_PHY_16;
  2255. else if (maxburst >= 8)
  2256. psize = STEDMA40_PSIZE_PHY_8;
  2257. else if (maxburst >= 4)
  2258. psize = STEDMA40_PSIZE_PHY_4;
  2259. else
  2260. psize = STEDMA40_PSIZE_PHY_1;
  2261. }
  2262. info->data_width = addr_width;
  2263. info->psize = psize;
  2264. info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  2265. return 0;
  2266. }
  2267. /* Runtime reconfiguration extension */
  2268. static int d40_set_runtime_config(struct dma_chan *chan,
  2269. struct dma_slave_config *config)
  2270. {
  2271. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2272. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  2273. enum dma_slave_buswidth src_addr_width, dst_addr_width;
  2274. dma_addr_t config_addr;
  2275. u32 src_maxburst, dst_maxburst;
  2276. int ret;
  2277. src_addr_width = config->src_addr_width;
  2278. src_maxburst = config->src_maxburst;
  2279. dst_addr_width = config->dst_addr_width;
  2280. dst_maxburst = config->dst_maxburst;
  2281. if (config->direction == DMA_DEV_TO_MEM) {
  2282. dma_addr_t dev_addr_rx =
  2283. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  2284. config_addr = config->src_addr;
  2285. if (dev_addr_rx)
  2286. dev_dbg(d40c->base->dev,
  2287. "channel has a pre-wired RX address %08x "
  2288. "overriding with %08x\n",
  2289. dev_addr_rx, config_addr);
  2290. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  2291. dev_dbg(d40c->base->dev,
  2292. "channel was not configured for peripheral "
  2293. "to memory transfer (%d) overriding\n",
  2294. cfg->dir);
  2295. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  2296. /* Configure the memory side */
  2297. if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2298. dst_addr_width = src_addr_width;
  2299. if (dst_maxburst == 0)
  2300. dst_maxburst = src_maxburst;
  2301. } else if (config->direction == DMA_MEM_TO_DEV) {
  2302. dma_addr_t dev_addr_tx =
  2303. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  2304. config_addr = config->dst_addr;
  2305. if (dev_addr_tx)
  2306. dev_dbg(d40c->base->dev,
  2307. "channel has a pre-wired TX address %08x "
  2308. "overriding with %08x\n",
  2309. dev_addr_tx, config_addr);
  2310. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  2311. dev_dbg(d40c->base->dev,
  2312. "channel was not configured for memory "
  2313. "to peripheral transfer (%d) overriding\n",
  2314. cfg->dir);
  2315. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  2316. /* Configure the memory side */
  2317. if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
  2318. src_addr_width = dst_addr_width;
  2319. if (src_maxburst == 0)
  2320. src_maxburst = dst_maxburst;
  2321. } else {
  2322. dev_err(d40c->base->dev,
  2323. "unrecognized channel direction %d\n",
  2324. config->direction);
  2325. return -EINVAL;
  2326. }
  2327. if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
  2328. dev_err(d40c->base->dev,
  2329. "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
  2330. src_maxburst,
  2331. src_addr_width,
  2332. dst_maxburst,
  2333. dst_addr_width);
  2334. return -EINVAL;
  2335. }
  2336. if (src_maxburst > 16) {
  2337. src_maxburst = 16;
  2338. dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
  2339. } else if (dst_maxburst > 16) {
  2340. dst_maxburst = 16;
  2341. src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
  2342. }
  2343. ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
  2344. src_addr_width,
  2345. src_maxburst);
  2346. if (ret)
  2347. return ret;
  2348. ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
  2349. dst_addr_width,
  2350. dst_maxburst);
  2351. if (ret)
  2352. return ret;
  2353. /* Fill in register values */
  2354. if (chan_is_logical(d40c))
  2355. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  2356. else
  2357. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  2358. &d40c->dst_def_cfg, false);
  2359. /* These settings will take precedence later */
  2360. d40c->runtime_addr = config_addr;
  2361. d40c->runtime_direction = config->direction;
  2362. dev_dbg(d40c->base->dev,
  2363. "configured channel %s for %s, data width %d/%d, "
  2364. "maxburst %d/%d elements, LE, no flow control\n",
  2365. dma_chan_name(chan),
  2366. (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
  2367. src_addr_width, dst_addr_width,
  2368. src_maxburst, dst_maxburst);
  2369. return 0;
  2370. }
  2371. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  2372. unsigned long arg)
  2373. {
  2374. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  2375. if (d40c->phy_chan == NULL) {
  2376. chan_err(d40c, "Channel is not allocated!\n");
  2377. return -EINVAL;
  2378. }
  2379. switch (cmd) {
  2380. case DMA_TERMINATE_ALL:
  2381. d40_terminate_all(chan);
  2382. return 0;
  2383. case DMA_PAUSE:
  2384. return d40_pause(d40c);
  2385. case DMA_RESUME:
  2386. return d40_resume(d40c);
  2387. case DMA_SLAVE_CONFIG:
  2388. return d40_set_runtime_config(chan,
  2389. (struct dma_slave_config *) arg);
  2390. default:
  2391. break;
  2392. }
  2393. /* Other commands are unimplemented */
  2394. return -ENXIO;
  2395. }
  2396. /* Initialization functions */
  2397. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  2398. struct d40_chan *chans, int offset,
  2399. int num_chans)
  2400. {
  2401. int i = 0;
  2402. struct d40_chan *d40c;
  2403. INIT_LIST_HEAD(&dma->channels);
  2404. for (i = offset; i < offset + num_chans; i++) {
  2405. d40c = &chans[i];
  2406. d40c->base = base;
  2407. d40c->chan.device = dma;
  2408. spin_lock_init(&d40c->lock);
  2409. d40c->log_num = D40_PHY_CHAN;
  2410. INIT_LIST_HEAD(&d40c->done);
  2411. INIT_LIST_HEAD(&d40c->active);
  2412. INIT_LIST_HEAD(&d40c->queue);
  2413. INIT_LIST_HEAD(&d40c->pending_queue);
  2414. INIT_LIST_HEAD(&d40c->client);
  2415. INIT_LIST_HEAD(&d40c->prepare_queue);
  2416. tasklet_init(&d40c->tasklet, dma_tasklet,
  2417. (unsigned long) d40c);
  2418. list_add_tail(&d40c->chan.device_node,
  2419. &dma->channels);
  2420. }
  2421. }
  2422. static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
  2423. {
  2424. if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
  2425. dev->device_prep_slave_sg = d40_prep_slave_sg;
  2426. if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
  2427. dev->device_prep_dma_memcpy = d40_prep_memcpy;
  2428. /*
  2429. * This controller can only access address at even
  2430. * 32bit boundaries, i.e. 2^2
  2431. */
  2432. dev->copy_align = 2;
  2433. }
  2434. if (dma_has_cap(DMA_SG, dev->cap_mask))
  2435. dev->device_prep_dma_sg = d40_prep_memcpy_sg;
  2436. if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
  2437. dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
  2438. dev->device_alloc_chan_resources = d40_alloc_chan_resources;
  2439. dev->device_free_chan_resources = d40_free_chan_resources;
  2440. dev->device_issue_pending = d40_issue_pending;
  2441. dev->device_tx_status = d40_tx_status;
  2442. dev->device_control = d40_control;
  2443. dev->dev = base->dev;
  2444. }
  2445. static int __init d40_dmaengine_init(struct d40_base *base,
  2446. int num_reserved_chans)
  2447. {
  2448. int err ;
  2449. d40_chan_init(base, &base->dma_slave, base->log_chans,
  2450. 0, base->num_log_chans);
  2451. dma_cap_zero(base->dma_slave.cap_mask);
  2452. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  2453. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2454. d40_ops_init(base, &base->dma_slave);
  2455. err = dma_async_device_register(&base->dma_slave);
  2456. if (err) {
  2457. d40_err(base->dev, "Failed to register slave channels\n");
  2458. goto failure1;
  2459. }
  2460. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  2461. base->num_log_chans, ARRAY_SIZE(dma40_memcpy_channels));
  2462. dma_cap_zero(base->dma_memcpy.cap_mask);
  2463. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  2464. dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
  2465. d40_ops_init(base, &base->dma_memcpy);
  2466. err = dma_async_device_register(&base->dma_memcpy);
  2467. if (err) {
  2468. d40_err(base->dev,
  2469. "Failed to regsiter memcpy only channels\n");
  2470. goto failure2;
  2471. }
  2472. d40_chan_init(base, &base->dma_both, base->phy_chans,
  2473. 0, num_reserved_chans);
  2474. dma_cap_zero(base->dma_both.cap_mask);
  2475. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  2476. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  2477. dma_cap_set(DMA_SG, base->dma_both.cap_mask);
  2478. dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
  2479. d40_ops_init(base, &base->dma_both);
  2480. err = dma_async_device_register(&base->dma_both);
  2481. if (err) {
  2482. d40_err(base->dev,
  2483. "Failed to register logical and physical capable channels\n");
  2484. goto failure3;
  2485. }
  2486. return 0;
  2487. failure3:
  2488. dma_async_device_unregister(&base->dma_memcpy);
  2489. failure2:
  2490. dma_async_device_unregister(&base->dma_slave);
  2491. failure1:
  2492. return err;
  2493. }
  2494. /* Suspend resume functionality */
  2495. #ifdef CONFIG_PM
  2496. static int dma40_pm_suspend(struct device *dev)
  2497. {
  2498. struct platform_device *pdev = to_platform_device(dev);
  2499. struct d40_base *base = platform_get_drvdata(pdev);
  2500. int ret = 0;
  2501. if (base->lcpa_regulator)
  2502. ret = regulator_disable(base->lcpa_regulator);
  2503. return ret;
  2504. }
  2505. static int dma40_runtime_suspend(struct device *dev)
  2506. {
  2507. struct platform_device *pdev = to_platform_device(dev);
  2508. struct d40_base *base = platform_get_drvdata(pdev);
  2509. d40_save_restore_registers(base, true);
  2510. /* Don't disable/enable clocks for v1 due to HW bugs */
  2511. if (base->rev != 1)
  2512. writel_relaxed(base->gcc_pwr_off_mask,
  2513. base->virtbase + D40_DREG_GCC);
  2514. return 0;
  2515. }
  2516. static int dma40_runtime_resume(struct device *dev)
  2517. {
  2518. struct platform_device *pdev = to_platform_device(dev);
  2519. struct d40_base *base = platform_get_drvdata(pdev);
  2520. if (base->initialized)
  2521. d40_save_restore_registers(base, false);
  2522. writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
  2523. base->virtbase + D40_DREG_GCC);
  2524. return 0;
  2525. }
  2526. static int dma40_resume(struct device *dev)
  2527. {
  2528. struct platform_device *pdev = to_platform_device(dev);
  2529. struct d40_base *base = platform_get_drvdata(pdev);
  2530. int ret = 0;
  2531. if (base->lcpa_regulator)
  2532. ret = regulator_enable(base->lcpa_regulator);
  2533. return ret;
  2534. }
  2535. static const struct dev_pm_ops dma40_pm_ops = {
  2536. .suspend = dma40_pm_suspend,
  2537. .runtime_suspend = dma40_runtime_suspend,
  2538. .runtime_resume = dma40_runtime_resume,
  2539. .resume = dma40_resume,
  2540. };
  2541. #define DMA40_PM_OPS (&dma40_pm_ops)
  2542. #else
  2543. #define DMA40_PM_OPS NULL
  2544. #endif
  2545. /* Initialization functions. */
  2546. static int __init d40_phy_res_init(struct d40_base *base)
  2547. {
  2548. int i;
  2549. int num_phy_chans_avail = 0;
  2550. u32 val[2];
  2551. int odd_even_bit = -2;
  2552. int gcc = D40_DREG_GCC_ENA;
  2553. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2554. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2555. for (i = 0; i < base->num_phy_chans; i++) {
  2556. base->phy_res[i].num = i;
  2557. odd_even_bit += 2 * ((i % 2) == 0);
  2558. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2559. /* Mark security only channels as occupied */
  2560. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2561. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2562. base->phy_res[i].reserved = true;
  2563. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2564. D40_DREG_GCC_SRC);
  2565. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
  2566. D40_DREG_GCC_DST);
  2567. } else {
  2568. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2569. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2570. base->phy_res[i].reserved = false;
  2571. num_phy_chans_avail++;
  2572. }
  2573. spin_lock_init(&base->phy_res[i].lock);
  2574. }
  2575. /* Mark disabled channels as occupied */
  2576. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2577. int chan = base->plat_data->disabled_channels[i];
  2578. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2579. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2580. base->phy_res[chan].reserved = true;
  2581. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2582. D40_DREG_GCC_SRC);
  2583. gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
  2584. D40_DREG_GCC_DST);
  2585. num_phy_chans_avail--;
  2586. }
  2587. /* Mark soft_lli channels */
  2588. for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
  2589. int chan = base->plat_data->soft_lli_chans[i];
  2590. base->phy_res[chan].use_soft_lli = true;
  2591. }
  2592. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2593. num_phy_chans_avail, base->num_phy_chans);
  2594. /* Verify settings extended vs standard */
  2595. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2596. for (i = 0; i < base->num_phy_chans; i++) {
  2597. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2598. (val[0] & 0x3) != 1)
  2599. dev_info(base->dev,
  2600. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2601. __func__, i, val[0] & 0x3);
  2602. val[0] = val[0] >> 2;
  2603. }
  2604. /*
  2605. * To keep things simple, Enable all clocks initially.
  2606. * The clocks will get managed later post channel allocation.
  2607. * The clocks for the event lines on which reserved channels exists
  2608. * are not managed here.
  2609. */
  2610. writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
  2611. base->gcc_pwr_off_mask = gcc;
  2612. return num_phy_chans_avail;
  2613. }
  2614. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2615. {
  2616. struct stedma40_platform_data *plat_data;
  2617. struct clk *clk = NULL;
  2618. void __iomem *virtbase = NULL;
  2619. struct resource *res = NULL;
  2620. struct d40_base *base = NULL;
  2621. int num_log_chans = 0;
  2622. int num_phy_chans;
  2623. int clk_ret = -EINVAL;
  2624. int i;
  2625. u32 pid;
  2626. u32 cid;
  2627. u8 rev;
  2628. clk = clk_get(&pdev->dev, NULL);
  2629. if (IS_ERR(clk)) {
  2630. d40_err(&pdev->dev, "No matching clock found\n");
  2631. goto failure;
  2632. }
  2633. clk_ret = clk_prepare_enable(clk);
  2634. if (clk_ret) {
  2635. d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
  2636. goto failure;
  2637. }
  2638. /* Get IO for DMAC base address */
  2639. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2640. if (!res)
  2641. goto failure;
  2642. if (request_mem_region(res->start, resource_size(res),
  2643. D40_NAME " I/O base") == NULL)
  2644. goto failure;
  2645. virtbase = ioremap(res->start, resource_size(res));
  2646. if (!virtbase)
  2647. goto failure;
  2648. /* This is just a regular AMBA PrimeCell ID actually */
  2649. for (pid = 0, i = 0; i < 4; i++)
  2650. pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
  2651. & 255) << (i * 8);
  2652. for (cid = 0, i = 0; i < 4; i++)
  2653. cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
  2654. & 255) << (i * 8);
  2655. if (cid != AMBA_CID) {
  2656. d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
  2657. goto failure;
  2658. }
  2659. if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
  2660. d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
  2661. AMBA_MANF_BITS(pid),
  2662. AMBA_VENDOR_ST);
  2663. goto failure;
  2664. }
  2665. /*
  2666. * HW revision:
  2667. * DB8500ed has revision 0
  2668. * ? has revision 1
  2669. * DB8500v1 has revision 2
  2670. * DB8500v2 has revision 3
  2671. * AP9540v1 has revision 4
  2672. * DB8540v1 has revision 4
  2673. */
  2674. rev = AMBA_REV_BITS(pid);
  2675. plat_data = pdev->dev.platform_data;
  2676. /* The number of physical channels on this HW */
  2677. if (plat_data->num_of_phy_chans)
  2678. num_phy_chans = plat_data->num_of_phy_chans;
  2679. else
  2680. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2681. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x with %d physical channels\n",
  2682. rev, res->start, num_phy_chans);
  2683. if (rev < 2) {
  2684. d40_err(&pdev->dev, "hardware revision: %d is not supported",
  2685. rev);
  2686. goto failure;
  2687. }
  2688. /* Count the number of logical channels in use */
  2689. for (i = 0; i < plat_data->dev_len; i++)
  2690. if (plat_data->dev_rx[i] != 0)
  2691. num_log_chans++;
  2692. for (i = 0; i < plat_data->dev_len; i++)
  2693. if (plat_data->dev_tx[i] != 0)
  2694. num_log_chans++;
  2695. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2696. (num_phy_chans + num_log_chans + ARRAY_SIZE(dma40_memcpy_channels)) *
  2697. sizeof(struct d40_chan), GFP_KERNEL);
  2698. if (base == NULL) {
  2699. d40_err(&pdev->dev, "Out of memory\n");
  2700. goto failure;
  2701. }
  2702. base->rev = rev;
  2703. base->clk = clk;
  2704. base->num_phy_chans = num_phy_chans;
  2705. base->num_log_chans = num_log_chans;
  2706. base->phy_start = res->start;
  2707. base->phy_size = resource_size(res);
  2708. base->virtbase = virtbase;
  2709. base->plat_data = plat_data;
  2710. base->dev = &pdev->dev;
  2711. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2712. base->log_chans = &base->phy_chans[num_phy_chans];
  2713. if (base->plat_data->num_of_phy_chans == 14) {
  2714. base->gen_dmac.backup = d40_backup_regs_v4b;
  2715. base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
  2716. base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
  2717. base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
  2718. base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
  2719. base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
  2720. base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
  2721. base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
  2722. base->gen_dmac.il = il_v4b;
  2723. base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
  2724. base->gen_dmac.init_reg = dma_init_reg_v4b;
  2725. base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
  2726. } else {
  2727. if (base->rev >= 3) {
  2728. base->gen_dmac.backup = d40_backup_regs_v4a;
  2729. base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
  2730. }
  2731. base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
  2732. base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
  2733. base->gen_dmac.realtime_en = D40_DREG_RSEG1;
  2734. base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
  2735. base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
  2736. base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
  2737. base->gen_dmac.il = il_v4a;
  2738. base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
  2739. base->gen_dmac.init_reg = dma_init_reg_v4a;
  2740. base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
  2741. }
  2742. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2743. GFP_KERNEL);
  2744. if (!base->phy_res)
  2745. goto failure;
  2746. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2747. sizeof(struct d40_chan *),
  2748. GFP_KERNEL);
  2749. if (!base->lookup_phy_chans)
  2750. goto failure;
  2751. if (num_log_chans + ARRAY_SIZE(dma40_memcpy_channels)) {
  2752. /*
  2753. * The max number of logical channels are event lines for all
  2754. * src devices and dst devices
  2755. */
  2756. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2757. sizeof(struct d40_chan *),
  2758. GFP_KERNEL);
  2759. if (!base->lookup_log_chans)
  2760. goto failure;
  2761. }
  2762. base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
  2763. sizeof(d40_backup_regs_chan),
  2764. GFP_KERNEL);
  2765. if (!base->reg_val_backup_chan)
  2766. goto failure;
  2767. base->lcla_pool.alloc_map =
  2768. kzalloc(num_phy_chans * sizeof(struct d40_desc *)
  2769. * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
  2770. if (!base->lcla_pool.alloc_map)
  2771. goto failure;
  2772. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2773. 0, SLAB_HWCACHE_ALIGN,
  2774. NULL);
  2775. if (base->desc_slab == NULL)
  2776. goto failure;
  2777. return base;
  2778. failure:
  2779. if (!clk_ret)
  2780. clk_disable_unprepare(clk);
  2781. if (!IS_ERR(clk))
  2782. clk_put(clk);
  2783. if (virtbase)
  2784. iounmap(virtbase);
  2785. if (res)
  2786. release_mem_region(res->start,
  2787. resource_size(res));
  2788. if (virtbase)
  2789. iounmap(virtbase);
  2790. if (base) {
  2791. kfree(base->lcla_pool.alloc_map);
  2792. kfree(base->reg_val_backup_chan);
  2793. kfree(base->lookup_log_chans);
  2794. kfree(base->lookup_phy_chans);
  2795. kfree(base->phy_res);
  2796. kfree(base);
  2797. }
  2798. return NULL;
  2799. }
  2800. static void __init d40_hw_init(struct d40_base *base)
  2801. {
  2802. int i;
  2803. u32 prmseo[2] = {0, 0};
  2804. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2805. u32 pcmis = 0;
  2806. u32 pcicr = 0;
  2807. struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
  2808. u32 reg_size = base->gen_dmac.init_reg_size;
  2809. for (i = 0; i < reg_size; i++)
  2810. writel(dma_init_reg[i].val,
  2811. base->virtbase + dma_init_reg[i].reg);
  2812. /* Configure all our dma channels to default settings */
  2813. for (i = 0; i < base->num_phy_chans; i++) {
  2814. activeo[i % 2] = activeo[i % 2] << 2;
  2815. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2816. == D40_ALLOC_PHY) {
  2817. activeo[i % 2] |= 3;
  2818. continue;
  2819. }
  2820. /* Enable interrupt # */
  2821. pcmis = (pcmis << 1) | 1;
  2822. /* Clear interrupt # */
  2823. pcicr = (pcicr << 1) | 1;
  2824. /* Set channel to physical mode */
  2825. prmseo[i % 2] = prmseo[i % 2] << 2;
  2826. prmseo[i % 2] |= 1;
  2827. }
  2828. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2829. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2830. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2831. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2832. /* Write which interrupt to enable */
  2833. writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
  2834. /* Write which interrupt to clear */
  2835. writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
  2836. /* These are __initdata and cannot be accessed after init */
  2837. base->gen_dmac.init_reg = NULL;
  2838. base->gen_dmac.init_reg_size = 0;
  2839. }
  2840. static int __init d40_lcla_allocate(struct d40_base *base)
  2841. {
  2842. struct d40_lcla_pool *pool = &base->lcla_pool;
  2843. unsigned long *page_list;
  2844. int i, j;
  2845. int ret = 0;
  2846. /*
  2847. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2848. * To full fill this hardware requirement without wasting 256 kb
  2849. * we allocate pages until we get an aligned one.
  2850. */
  2851. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2852. GFP_KERNEL);
  2853. if (!page_list) {
  2854. ret = -ENOMEM;
  2855. goto failure;
  2856. }
  2857. /* Calculating how many pages that are required */
  2858. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2859. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2860. page_list[i] = __get_free_pages(GFP_KERNEL,
  2861. base->lcla_pool.pages);
  2862. if (!page_list[i]) {
  2863. d40_err(base->dev, "Failed to allocate %d pages.\n",
  2864. base->lcla_pool.pages);
  2865. for (j = 0; j < i; j++)
  2866. free_pages(page_list[j], base->lcla_pool.pages);
  2867. goto failure;
  2868. }
  2869. if ((virt_to_phys((void *)page_list[i]) &
  2870. (LCLA_ALIGNMENT - 1)) == 0)
  2871. break;
  2872. }
  2873. for (j = 0; j < i; j++)
  2874. free_pages(page_list[j], base->lcla_pool.pages);
  2875. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2876. base->lcla_pool.base = (void *)page_list[i];
  2877. } else {
  2878. /*
  2879. * After many attempts and no succees with finding the correct
  2880. * alignment, try with allocating a big buffer.
  2881. */
  2882. dev_warn(base->dev,
  2883. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2884. __func__, base->lcla_pool.pages);
  2885. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2886. base->num_phy_chans +
  2887. LCLA_ALIGNMENT,
  2888. GFP_KERNEL);
  2889. if (!base->lcla_pool.base_unaligned) {
  2890. ret = -ENOMEM;
  2891. goto failure;
  2892. }
  2893. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2894. LCLA_ALIGNMENT);
  2895. }
  2896. pool->dma_addr = dma_map_single(base->dev, pool->base,
  2897. SZ_1K * base->num_phy_chans,
  2898. DMA_TO_DEVICE);
  2899. if (dma_mapping_error(base->dev, pool->dma_addr)) {
  2900. pool->dma_addr = 0;
  2901. ret = -ENOMEM;
  2902. goto failure;
  2903. }
  2904. writel(virt_to_phys(base->lcla_pool.base),
  2905. base->virtbase + D40_DREG_LCLA);
  2906. failure:
  2907. kfree(page_list);
  2908. return ret;
  2909. }
  2910. static int __init d40_probe(struct platform_device *pdev)
  2911. {
  2912. int err;
  2913. int ret = -ENOENT;
  2914. struct d40_base *base;
  2915. struct resource *res = NULL;
  2916. int num_reserved_chans;
  2917. u32 val;
  2918. base = d40_hw_detect_init(pdev);
  2919. if (!base)
  2920. goto failure;
  2921. num_reserved_chans = d40_phy_res_init(base);
  2922. platform_set_drvdata(pdev, base);
  2923. spin_lock_init(&base->interrupt_lock);
  2924. spin_lock_init(&base->execmd_lock);
  2925. /* Get IO for logical channel parameter address */
  2926. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2927. if (!res) {
  2928. ret = -ENOENT;
  2929. d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
  2930. goto failure;
  2931. }
  2932. base->lcpa_size = resource_size(res);
  2933. base->phy_lcpa = res->start;
  2934. if (request_mem_region(res->start, resource_size(res),
  2935. D40_NAME " I/O lcpa") == NULL) {
  2936. ret = -EBUSY;
  2937. d40_err(&pdev->dev,
  2938. "Failed to request LCPA region 0x%x-0x%x\n",
  2939. res->start, res->end);
  2940. goto failure;
  2941. }
  2942. /* We make use of ESRAM memory for this. */
  2943. val = readl(base->virtbase + D40_DREG_LCPA);
  2944. if (res->start != val && val != 0) {
  2945. dev_warn(&pdev->dev,
  2946. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2947. __func__, val, res->start);
  2948. } else
  2949. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2950. base->lcpa_base = ioremap(res->start, resource_size(res));
  2951. if (!base->lcpa_base) {
  2952. ret = -ENOMEM;
  2953. d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
  2954. goto failure;
  2955. }
  2956. /* If lcla has to be located in ESRAM we don't need to allocate */
  2957. if (base->plat_data->use_esram_lcla) {
  2958. res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
  2959. "lcla_esram");
  2960. if (!res) {
  2961. ret = -ENOENT;
  2962. d40_err(&pdev->dev,
  2963. "No \"lcla_esram\" memory resource\n");
  2964. goto failure;
  2965. }
  2966. base->lcla_pool.base = ioremap(res->start,
  2967. resource_size(res));
  2968. if (!base->lcla_pool.base) {
  2969. ret = -ENOMEM;
  2970. d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
  2971. goto failure;
  2972. }
  2973. writel(res->start, base->virtbase + D40_DREG_LCLA);
  2974. } else {
  2975. ret = d40_lcla_allocate(base);
  2976. if (ret) {
  2977. d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
  2978. goto failure;
  2979. }
  2980. }
  2981. spin_lock_init(&base->lcla_pool.lock);
  2982. base->irq = platform_get_irq(pdev, 0);
  2983. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2984. if (ret) {
  2985. d40_err(&pdev->dev, "No IRQ defined\n");
  2986. goto failure;
  2987. }
  2988. pm_runtime_irq_safe(base->dev);
  2989. pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
  2990. pm_runtime_use_autosuspend(base->dev);
  2991. pm_runtime_enable(base->dev);
  2992. pm_runtime_resume(base->dev);
  2993. if (base->plat_data->use_esram_lcla) {
  2994. base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
  2995. if (IS_ERR(base->lcpa_regulator)) {
  2996. d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
  2997. base->lcpa_regulator = NULL;
  2998. goto failure;
  2999. }
  3000. ret = regulator_enable(base->lcpa_regulator);
  3001. if (ret) {
  3002. d40_err(&pdev->dev,
  3003. "Failed to enable lcpa_regulator\n");
  3004. regulator_put(base->lcpa_regulator);
  3005. base->lcpa_regulator = NULL;
  3006. goto failure;
  3007. }
  3008. }
  3009. base->initialized = true;
  3010. err = d40_dmaengine_init(base, num_reserved_chans);
  3011. if (err)
  3012. goto failure;
  3013. base->dev->dma_parms = &base->dma_parms;
  3014. err = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
  3015. if (err) {
  3016. d40_err(&pdev->dev, "Failed to set dma max seg size\n");
  3017. goto failure;
  3018. }
  3019. d40_hw_init(base);
  3020. dev_info(base->dev, "initialized\n");
  3021. return 0;
  3022. failure:
  3023. if (base) {
  3024. if (base->desc_slab)
  3025. kmem_cache_destroy(base->desc_slab);
  3026. if (base->virtbase)
  3027. iounmap(base->virtbase);
  3028. if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
  3029. iounmap(base->lcla_pool.base);
  3030. base->lcla_pool.base = NULL;
  3031. }
  3032. if (base->lcla_pool.dma_addr)
  3033. dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
  3034. SZ_1K * base->num_phy_chans,
  3035. DMA_TO_DEVICE);
  3036. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  3037. free_pages((unsigned long)base->lcla_pool.base,
  3038. base->lcla_pool.pages);
  3039. kfree(base->lcla_pool.base_unaligned);
  3040. if (base->phy_lcpa)
  3041. release_mem_region(base->phy_lcpa,
  3042. base->lcpa_size);
  3043. if (base->phy_start)
  3044. release_mem_region(base->phy_start,
  3045. base->phy_size);
  3046. if (base->clk) {
  3047. clk_disable_unprepare(base->clk);
  3048. clk_put(base->clk);
  3049. }
  3050. if (base->lcpa_regulator) {
  3051. regulator_disable(base->lcpa_regulator);
  3052. regulator_put(base->lcpa_regulator);
  3053. }
  3054. kfree(base->lcla_pool.alloc_map);
  3055. kfree(base->lookup_log_chans);
  3056. kfree(base->lookup_phy_chans);
  3057. kfree(base->phy_res);
  3058. kfree(base);
  3059. }
  3060. d40_err(&pdev->dev, "probe failed\n");
  3061. return ret;
  3062. }
  3063. static struct platform_driver d40_driver = {
  3064. .driver = {
  3065. .owner = THIS_MODULE,
  3066. .name = D40_NAME,
  3067. .pm = DMA40_PM_OPS,
  3068. },
  3069. };
  3070. static int __init stedma40_init(void)
  3071. {
  3072. return platform_driver_probe(&d40_driver, d40_probe);
  3073. }
  3074. subsys_initcall(stedma40_init);