tcp_input.c 178 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <net/dst.h>
  69. #include <net/tcp.h>
  70. #include <net/inet_common.h>
  71. #include <linux/ipsec.h>
  72. #include <asm/unaligned.h>
  73. #include <net/netdma.h>
  74. int sysctl_tcp_timestamps __read_mostly = 1;
  75. int sysctl_tcp_window_scaling __read_mostly = 1;
  76. int sysctl_tcp_sack __read_mostly = 1;
  77. int sysctl_tcp_fack __read_mostly = 1;
  78. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  79. EXPORT_SYMBOL(sysctl_tcp_reordering);
  80. int sysctl_tcp_ecn __read_mostly = 2;
  81. EXPORT_SYMBOL(sysctl_tcp_ecn);
  82. int sysctl_tcp_dsack __read_mostly = 1;
  83. int sysctl_tcp_app_win __read_mostly = 31;
  84. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  85. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_frto_response __read_mostly;
  91. int sysctl_tcp_nometrics_save __read_mostly;
  92. int sysctl_tcp_thin_dupack __read_mostly;
  93. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  94. int sysctl_tcp_abc __read_mostly;
  95. int sysctl_tcp_early_retrans __read_mostly = 2;
  96. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  97. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  98. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  99. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  100. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  101. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  102. #define FLAG_ECE 0x40 /* ECE in this ACK */
  103. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  104. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  105. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  106. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  107. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  108. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  109. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  110. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  111. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  112. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  113. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  114. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  115. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  116. /* Adapt the MSS value used to make delayed ack decision to the
  117. * real world.
  118. */
  119. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  120. {
  121. struct inet_connection_sock *icsk = inet_csk(sk);
  122. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  123. unsigned int len;
  124. icsk->icsk_ack.last_seg_size = 0;
  125. /* skb->len may jitter because of SACKs, even if peer
  126. * sends good full-sized frames.
  127. */
  128. len = skb_shinfo(skb)->gso_size ? : skb->len;
  129. if (len >= icsk->icsk_ack.rcv_mss) {
  130. icsk->icsk_ack.rcv_mss = len;
  131. } else {
  132. /* Otherwise, we make more careful check taking into account,
  133. * that SACKs block is variable.
  134. *
  135. * "len" is invariant segment length, including TCP header.
  136. */
  137. len += skb->data - skb_transport_header(skb);
  138. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  139. /* If PSH is not set, packet should be
  140. * full sized, provided peer TCP is not badly broken.
  141. * This observation (if it is correct 8)) allows
  142. * to handle super-low mtu links fairly.
  143. */
  144. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  145. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  146. /* Subtract also invariant (if peer is RFC compliant),
  147. * tcp header plus fixed timestamp option length.
  148. * Resulting "len" is MSS free of SACK jitter.
  149. */
  150. len -= tcp_sk(sk)->tcp_header_len;
  151. icsk->icsk_ack.last_seg_size = len;
  152. if (len == lss) {
  153. icsk->icsk_ack.rcv_mss = len;
  154. return;
  155. }
  156. }
  157. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  158. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  159. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  160. }
  161. }
  162. static void tcp_incr_quickack(struct sock *sk)
  163. {
  164. struct inet_connection_sock *icsk = inet_csk(sk);
  165. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  166. if (quickacks == 0)
  167. quickacks = 2;
  168. if (quickacks > icsk->icsk_ack.quick)
  169. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  170. }
  171. static void tcp_enter_quickack_mode(struct sock *sk)
  172. {
  173. struct inet_connection_sock *icsk = inet_csk(sk);
  174. tcp_incr_quickack(sk);
  175. icsk->icsk_ack.pingpong = 0;
  176. icsk->icsk_ack.ato = TCP_ATO_MIN;
  177. }
  178. /* Send ACKs quickly, if "quick" count is not exhausted
  179. * and the session is not interactive.
  180. */
  181. static inline bool tcp_in_quickack_mode(const struct sock *sk)
  182. {
  183. const struct inet_connection_sock *icsk = inet_csk(sk);
  184. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  185. }
  186. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  187. {
  188. if (tp->ecn_flags & TCP_ECN_OK)
  189. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  190. }
  191. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  192. {
  193. if (tcp_hdr(skb)->cwr)
  194. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  195. }
  196. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  197. {
  198. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  199. }
  200. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  201. {
  202. if (!(tp->ecn_flags & TCP_ECN_OK))
  203. return;
  204. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  205. case INET_ECN_NOT_ECT:
  206. /* Funny extension: if ECT is not set on a segment,
  207. * and we already seen ECT on a previous segment,
  208. * it is probably a retransmit.
  209. */
  210. if (tp->ecn_flags & TCP_ECN_SEEN)
  211. tcp_enter_quickack_mode((struct sock *)tp);
  212. break;
  213. case INET_ECN_CE:
  214. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  215. /* fallinto */
  216. default:
  217. tp->ecn_flags |= TCP_ECN_SEEN;
  218. }
  219. }
  220. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  221. {
  222. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  223. tp->ecn_flags &= ~TCP_ECN_OK;
  224. }
  225. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  226. {
  227. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  228. tp->ecn_flags &= ~TCP_ECN_OK;
  229. }
  230. static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  231. {
  232. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  233. return true;
  234. return false;
  235. }
  236. /* Buffer size and advertised window tuning.
  237. *
  238. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  239. */
  240. static void tcp_fixup_sndbuf(struct sock *sk)
  241. {
  242. int sndmem = SKB_TRUESIZE(tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER);
  243. sndmem *= TCP_INIT_CWND;
  244. if (sk->sk_sndbuf < sndmem)
  245. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  246. }
  247. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  248. *
  249. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  250. * forward and advertised in receiver window (tp->rcv_wnd) and
  251. * "application buffer", required to isolate scheduling/application
  252. * latencies from network.
  253. * window_clamp is maximal advertised window. It can be less than
  254. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  255. * is reserved for "application" buffer. The less window_clamp is
  256. * the smoother our behaviour from viewpoint of network, but the lower
  257. * throughput and the higher sensitivity of the connection to losses. 8)
  258. *
  259. * rcv_ssthresh is more strict window_clamp used at "slow start"
  260. * phase to predict further behaviour of this connection.
  261. * It is used for two goals:
  262. * - to enforce header prediction at sender, even when application
  263. * requires some significant "application buffer". It is check #1.
  264. * - to prevent pruning of receive queue because of misprediction
  265. * of receiver window. Check #2.
  266. *
  267. * The scheme does not work when sender sends good segments opening
  268. * window and then starts to feed us spaghetti. But it should work
  269. * in common situations. Otherwise, we have to rely on queue collapsing.
  270. */
  271. /* Slow part of check#2. */
  272. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  273. {
  274. struct tcp_sock *tp = tcp_sk(sk);
  275. /* Optimize this! */
  276. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  277. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  278. while (tp->rcv_ssthresh <= window) {
  279. if (truesize <= skb->len)
  280. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  281. truesize >>= 1;
  282. window >>= 1;
  283. }
  284. return 0;
  285. }
  286. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  287. {
  288. struct tcp_sock *tp = tcp_sk(sk);
  289. /* Check #1 */
  290. if (tp->rcv_ssthresh < tp->window_clamp &&
  291. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  292. !sk_under_memory_pressure(sk)) {
  293. int incr;
  294. /* Check #2. Increase window, if skb with such overhead
  295. * will fit to rcvbuf in future.
  296. */
  297. if (tcp_win_from_space(skb->truesize) <= skb->len)
  298. incr = 2 * tp->advmss;
  299. else
  300. incr = __tcp_grow_window(sk, skb);
  301. if (incr) {
  302. incr = max_t(int, incr, 2 * skb->len);
  303. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  304. tp->window_clamp);
  305. inet_csk(sk)->icsk_ack.quick |= 1;
  306. }
  307. }
  308. }
  309. /* 3. Tuning rcvbuf, when connection enters established state. */
  310. static void tcp_fixup_rcvbuf(struct sock *sk)
  311. {
  312. u32 mss = tcp_sk(sk)->advmss;
  313. u32 icwnd = TCP_DEFAULT_INIT_RCVWND;
  314. int rcvmem;
  315. /* Limit to 10 segments if mss <= 1460,
  316. * or 14600/mss segments, with a minimum of two segments.
  317. */
  318. if (mss > 1460)
  319. icwnd = max_t(u32, (1460 * TCP_DEFAULT_INIT_RCVWND) / mss, 2);
  320. rcvmem = SKB_TRUESIZE(mss + MAX_TCP_HEADER);
  321. while (tcp_win_from_space(rcvmem) < mss)
  322. rcvmem += 128;
  323. rcvmem *= icwnd;
  324. if (sk->sk_rcvbuf < rcvmem)
  325. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  326. }
  327. /* 4. Try to fixup all. It is made immediately after connection enters
  328. * established state.
  329. */
  330. static void tcp_init_buffer_space(struct sock *sk)
  331. {
  332. struct tcp_sock *tp = tcp_sk(sk);
  333. int maxwin;
  334. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  335. tcp_fixup_rcvbuf(sk);
  336. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  337. tcp_fixup_sndbuf(sk);
  338. tp->rcvq_space.space = tp->rcv_wnd;
  339. maxwin = tcp_full_space(sk);
  340. if (tp->window_clamp >= maxwin) {
  341. tp->window_clamp = maxwin;
  342. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  343. tp->window_clamp = max(maxwin -
  344. (maxwin >> sysctl_tcp_app_win),
  345. 4 * tp->advmss);
  346. }
  347. /* Force reservation of one segment. */
  348. if (sysctl_tcp_app_win &&
  349. tp->window_clamp > 2 * tp->advmss &&
  350. tp->window_clamp + tp->advmss > maxwin)
  351. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  352. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  353. tp->snd_cwnd_stamp = tcp_time_stamp;
  354. }
  355. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  356. static void tcp_clamp_window(struct sock *sk)
  357. {
  358. struct tcp_sock *tp = tcp_sk(sk);
  359. struct inet_connection_sock *icsk = inet_csk(sk);
  360. icsk->icsk_ack.quick = 0;
  361. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  362. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  363. !sk_under_memory_pressure(sk) &&
  364. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  365. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  366. sysctl_tcp_rmem[2]);
  367. }
  368. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  369. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  370. }
  371. /* Initialize RCV_MSS value.
  372. * RCV_MSS is an our guess about MSS used by the peer.
  373. * We haven't any direct information about the MSS.
  374. * It's better to underestimate the RCV_MSS rather than overestimate.
  375. * Overestimations make us ACKing less frequently than needed.
  376. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  377. */
  378. void tcp_initialize_rcv_mss(struct sock *sk)
  379. {
  380. const struct tcp_sock *tp = tcp_sk(sk);
  381. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  382. hint = min(hint, tp->rcv_wnd / 2);
  383. hint = min(hint, TCP_MSS_DEFAULT);
  384. hint = max(hint, TCP_MIN_MSS);
  385. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  386. }
  387. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  388. /* Receiver "autotuning" code.
  389. *
  390. * The algorithm for RTT estimation w/o timestamps is based on
  391. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  392. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  393. *
  394. * More detail on this code can be found at
  395. * <http://staff.psc.edu/jheffner/>,
  396. * though this reference is out of date. A new paper
  397. * is pending.
  398. */
  399. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  400. {
  401. u32 new_sample = tp->rcv_rtt_est.rtt;
  402. long m = sample;
  403. if (m == 0)
  404. m = 1;
  405. if (new_sample != 0) {
  406. /* If we sample in larger samples in the non-timestamp
  407. * case, we could grossly overestimate the RTT especially
  408. * with chatty applications or bulk transfer apps which
  409. * are stalled on filesystem I/O.
  410. *
  411. * Also, since we are only going for a minimum in the
  412. * non-timestamp case, we do not smooth things out
  413. * else with timestamps disabled convergence takes too
  414. * long.
  415. */
  416. if (!win_dep) {
  417. m -= (new_sample >> 3);
  418. new_sample += m;
  419. } else {
  420. m <<= 3;
  421. if (m < new_sample)
  422. new_sample = m;
  423. }
  424. } else {
  425. /* No previous measure. */
  426. new_sample = m << 3;
  427. }
  428. if (tp->rcv_rtt_est.rtt != new_sample)
  429. tp->rcv_rtt_est.rtt = new_sample;
  430. }
  431. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  432. {
  433. if (tp->rcv_rtt_est.time == 0)
  434. goto new_measure;
  435. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  436. return;
  437. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  438. new_measure:
  439. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  440. tp->rcv_rtt_est.time = tcp_time_stamp;
  441. }
  442. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  443. const struct sk_buff *skb)
  444. {
  445. struct tcp_sock *tp = tcp_sk(sk);
  446. if (tp->rx_opt.rcv_tsecr &&
  447. (TCP_SKB_CB(skb)->end_seq -
  448. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  449. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  450. }
  451. /*
  452. * This function should be called every time data is copied to user space.
  453. * It calculates the appropriate TCP receive buffer space.
  454. */
  455. void tcp_rcv_space_adjust(struct sock *sk)
  456. {
  457. struct tcp_sock *tp = tcp_sk(sk);
  458. int time;
  459. int space;
  460. if (tp->rcvq_space.time == 0)
  461. goto new_measure;
  462. time = tcp_time_stamp - tp->rcvq_space.time;
  463. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  464. return;
  465. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  466. space = max(tp->rcvq_space.space, space);
  467. if (tp->rcvq_space.space != space) {
  468. int rcvmem;
  469. tp->rcvq_space.space = space;
  470. if (sysctl_tcp_moderate_rcvbuf &&
  471. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  472. int new_clamp = space;
  473. /* Receive space grows, normalize in order to
  474. * take into account packet headers and sk_buff
  475. * structure overhead.
  476. */
  477. space /= tp->advmss;
  478. if (!space)
  479. space = 1;
  480. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  481. while (tcp_win_from_space(rcvmem) < tp->advmss)
  482. rcvmem += 128;
  483. space *= rcvmem;
  484. space = min(space, sysctl_tcp_rmem[2]);
  485. if (space > sk->sk_rcvbuf) {
  486. sk->sk_rcvbuf = space;
  487. /* Make the window clamp follow along. */
  488. tp->window_clamp = new_clamp;
  489. }
  490. }
  491. }
  492. new_measure:
  493. tp->rcvq_space.seq = tp->copied_seq;
  494. tp->rcvq_space.time = tcp_time_stamp;
  495. }
  496. /* There is something which you must keep in mind when you analyze the
  497. * behavior of the tp->ato delayed ack timeout interval. When a
  498. * connection starts up, we want to ack as quickly as possible. The
  499. * problem is that "good" TCP's do slow start at the beginning of data
  500. * transmission. The means that until we send the first few ACK's the
  501. * sender will sit on his end and only queue most of his data, because
  502. * he can only send snd_cwnd unacked packets at any given time. For
  503. * each ACK we send, he increments snd_cwnd and transmits more of his
  504. * queue. -DaveM
  505. */
  506. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  507. {
  508. struct tcp_sock *tp = tcp_sk(sk);
  509. struct inet_connection_sock *icsk = inet_csk(sk);
  510. u32 now;
  511. inet_csk_schedule_ack(sk);
  512. tcp_measure_rcv_mss(sk, skb);
  513. tcp_rcv_rtt_measure(tp);
  514. now = tcp_time_stamp;
  515. if (!icsk->icsk_ack.ato) {
  516. /* The _first_ data packet received, initialize
  517. * delayed ACK engine.
  518. */
  519. tcp_incr_quickack(sk);
  520. icsk->icsk_ack.ato = TCP_ATO_MIN;
  521. } else {
  522. int m = now - icsk->icsk_ack.lrcvtime;
  523. if (m <= TCP_ATO_MIN / 2) {
  524. /* The fastest case is the first. */
  525. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  526. } else if (m < icsk->icsk_ack.ato) {
  527. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  528. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  529. icsk->icsk_ack.ato = icsk->icsk_rto;
  530. } else if (m > icsk->icsk_rto) {
  531. /* Too long gap. Apparently sender failed to
  532. * restart window, so that we send ACKs quickly.
  533. */
  534. tcp_incr_quickack(sk);
  535. sk_mem_reclaim(sk);
  536. }
  537. }
  538. icsk->icsk_ack.lrcvtime = now;
  539. TCP_ECN_check_ce(tp, skb);
  540. if (skb->len >= 128)
  541. tcp_grow_window(sk, skb);
  542. }
  543. /* Called to compute a smoothed rtt estimate. The data fed to this
  544. * routine either comes from timestamps, or from segments that were
  545. * known _not_ to have been retransmitted [see Karn/Partridge
  546. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  547. * piece by Van Jacobson.
  548. * NOTE: the next three routines used to be one big routine.
  549. * To save cycles in the RFC 1323 implementation it was better to break
  550. * it up into three procedures. -- erics
  551. */
  552. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  553. {
  554. struct tcp_sock *tp = tcp_sk(sk);
  555. long m = mrtt; /* RTT */
  556. /* The following amusing code comes from Jacobson's
  557. * article in SIGCOMM '88. Note that rtt and mdev
  558. * are scaled versions of rtt and mean deviation.
  559. * This is designed to be as fast as possible
  560. * m stands for "measurement".
  561. *
  562. * On a 1990 paper the rto value is changed to:
  563. * RTO = rtt + 4 * mdev
  564. *
  565. * Funny. This algorithm seems to be very broken.
  566. * These formulae increase RTO, when it should be decreased, increase
  567. * too slowly, when it should be increased quickly, decrease too quickly
  568. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  569. * does not matter how to _calculate_ it. Seems, it was trap
  570. * that VJ failed to avoid. 8)
  571. */
  572. if (m == 0)
  573. m = 1;
  574. if (tp->srtt != 0) {
  575. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  576. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  577. if (m < 0) {
  578. m = -m; /* m is now abs(error) */
  579. m -= (tp->mdev >> 2); /* similar update on mdev */
  580. /* This is similar to one of Eifel findings.
  581. * Eifel blocks mdev updates when rtt decreases.
  582. * This solution is a bit different: we use finer gain
  583. * for mdev in this case (alpha*beta).
  584. * Like Eifel it also prevents growth of rto,
  585. * but also it limits too fast rto decreases,
  586. * happening in pure Eifel.
  587. */
  588. if (m > 0)
  589. m >>= 3;
  590. } else {
  591. m -= (tp->mdev >> 2); /* similar update on mdev */
  592. }
  593. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  594. if (tp->mdev > tp->mdev_max) {
  595. tp->mdev_max = tp->mdev;
  596. if (tp->mdev_max > tp->rttvar)
  597. tp->rttvar = tp->mdev_max;
  598. }
  599. if (after(tp->snd_una, tp->rtt_seq)) {
  600. if (tp->mdev_max < tp->rttvar)
  601. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  602. tp->rtt_seq = tp->snd_nxt;
  603. tp->mdev_max = tcp_rto_min(sk);
  604. }
  605. } else {
  606. /* no previous measure. */
  607. tp->srtt = m << 3; /* take the measured time to be rtt */
  608. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  609. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  610. tp->rtt_seq = tp->snd_nxt;
  611. }
  612. }
  613. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  614. * routine referred to above.
  615. */
  616. static inline void tcp_set_rto(struct sock *sk)
  617. {
  618. const struct tcp_sock *tp = tcp_sk(sk);
  619. /* Old crap is replaced with new one. 8)
  620. *
  621. * More seriously:
  622. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  623. * It cannot be less due to utterly erratic ACK generation made
  624. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  625. * to do with delayed acks, because at cwnd>2 true delack timeout
  626. * is invisible. Actually, Linux-2.4 also generates erratic
  627. * ACKs in some circumstances.
  628. */
  629. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  630. /* 2. Fixups made earlier cannot be right.
  631. * If we do not estimate RTO correctly without them,
  632. * all the algo is pure shit and should be replaced
  633. * with correct one. It is exactly, which we pretend to do.
  634. */
  635. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  636. * guarantees that rto is higher.
  637. */
  638. tcp_bound_rto(sk);
  639. }
  640. /* Save metrics learned by this TCP session.
  641. This function is called only, when TCP finishes successfully
  642. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  643. */
  644. void tcp_update_metrics(struct sock *sk)
  645. {
  646. struct tcp_sock *tp = tcp_sk(sk);
  647. struct dst_entry *dst = __sk_dst_get(sk);
  648. if (sysctl_tcp_nometrics_save)
  649. return;
  650. dst_confirm(dst);
  651. if (dst && (dst->flags & DST_HOST)) {
  652. const struct inet_connection_sock *icsk = inet_csk(sk);
  653. int m;
  654. unsigned long rtt;
  655. if (icsk->icsk_backoff || !tp->srtt) {
  656. /* This session failed to estimate rtt. Why?
  657. * Probably, no packets returned in time.
  658. * Reset our results.
  659. */
  660. if (!(dst_metric_locked(dst, RTAX_RTT)))
  661. dst_metric_set(dst, RTAX_RTT, 0);
  662. return;
  663. }
  664. rtt = dst_metric_rtt(dst, RTAX_RTT);
  665. m = rtt - tp->srtt;
  666. /* If newly calculated rtt larger than stored one,
  667. * store new one. Otherwise, use EWMA. Remember,
  668. * rtt overestimation is always better than underestimation.
  669. */
  670. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  671. if (m <= 0)
  672. set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
  673. else
  674. set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
  675. }
  676. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  677. unsigned long var;
  678. if (m < 0)
  679. m = -m;
  680. /* Scale deviation to rttvar fixed point */
  681. m >>= 1;
  682. if (m < tp->mdev)
  683. m = tp->mdev;
  684. var = dst_metric_rtt(dst, RTAX_RTTVAR);
  685. if (m >= var)
  686. var = m;
  687. else
  688. var -= (var - m) >> 2;
  689. set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
  690. }
  691. if (tcp_in_initial_slowstart(tp)) {
  692. /* Slow start still did not finish. */
  693. if (dst_metric(dst, RTAX_SSTHRESH) &&
  694. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  695. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  696. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
  697. if (!dst_metric_locked(dst, RTAX_CWND) &&
  698. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  699. dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
  700. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  701. icsk->icsk_ca_state == TCP_CA_Open) {
  702. /* Cong. avoidance phase, cwnd is reliable. */
  703. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  704. dst_metric_set(dst, RTAX_SSTHRESH,
  705. max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
  706. if (!dst_metric_locked(dst, RTAX_CWND))
  707. dst_metric_set(dst, RTAX_CWND,
  708. (dst_metric(dst, RTAX_CWND) +
  709. tp->snd_cwnd) >> 1);
  710. } else {
  711. /* Else slow start did not finish, cwnd is non-sense,
  712. ssthresh may be also invalid.
  713. */
  714. if (!dst_metric_locked(dst, RTAX_CWND))
  715. dst_metric_set(dst, RTAX_CWND,
  716. (dst_metric(dst, RTAX_CWND) +
  717. tp->snd_ssthresh) >> 1);
  718. if (dst_metric(dst, RTAX_SSTHRESH) &&
  719. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  720. tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
  721. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
  722. }
  723. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  724. if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
  725. tp->reordering != sysctl_tcp_reordering)
  726. dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
  727. }
  728. }
  729. }
  730. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  731. {
  732. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  733. if (!cwnd)
  734. cwnd = TCP_INIT_CWND;
  735. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  736. }
  737. /* Set slow start threshold and cwnd not falling to slow start */
  738. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  739. {
  740. struct tcp_sock *tp = tcp_sk(sk);
  741. const struct inet_connection_sock *icsk = inet_csk(sk);
  742. tp->prior_ssthresh = 0;
  743. tp->bytes_acked = 0;
  744. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  745. tp->undo_marker = 0;
  746. if (set_ssthresh)
  747. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  748. tp->snd_cwnd = min(tp->snd_cwnd,
  749. tcp_packets_in_flight(tp) + 1U);
  750. tp->snd_cwnd_cnt = 0;
  751. tp->high_seq = tp->snd_nxt;
  752. tp->snd_cwnd_stamp = tcp_time_stamp;
  753. TCP_ECN_queue_cwr(tp);
  754. tcp_set_ca_state(sk, TCP_CA_CWR);
  755. }
  756. }
  757. /*
  758. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  759. * disables it when reordering is detected
  760. */
  761. static void tcp_disable_fack(struct tcp_sock *tp)
  762. {
  763. /* RFC3517 uses different metric in lost marker => reset on change */
  764. if (tcp_is_fack(tp))
  765. tp->lost_skb_hint = NULL;
  766. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  767. }
  768. /* Take a notice that peer is sending D-SACKs */
  769. static void tcp_dsack_seen(struct tcp_sock *tp)
  770. {
  771. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  772. }
  773. /* Initialize metrics on socket. */
  774. static void tcp_init_metrics(struct sock *sk)
  775. {
  776. struct tcp_sock *tp = tcp_sk(sk);
  777. struct dst_entry *dst = __sk_dst_get(sk);
  778. if (dst == NULL)
  779. goto reset;
  780. dst_confirm(dst);
  781. if (dst_metric_locked(dst, RTAX_CWND))
  782. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  783. if (dst_metric(dst, RTAX_SSTHRESH)) {
  784. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  785. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  786. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  787. } else {
  788. /* ssthresh may have been reduced unnecessarily during.
  789. * 3WHS. Restore it back to its initial default.
  790. */
  791. tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
  792. }
  793. if (dst_metric(dst, RTAX_REORDERING) &&
  794. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  795. tcp_disable_fack(tp);
  796. tcp_disable_early_retrans(tp);
  797. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  798. }
  799. if (dst_metric(dst, RTAX_RTT) == 0 || tp->srtt == 0)
  800. goto reset;
  801. /* Initial rtt is determined from SYN,SYN-ACK.
  802. * The segment is small and rtt may appear much
  803. * less than real one. Use per-dst memory
  804. * to make it more realistic.
  805. *
  806. * A bit of theory. RTT is time passed after "normal" sized packet
  807. * is sent until it is ACKed. In normal circumstances sending small
  808. * packets force peer to delay ACKs and calculation is correct too.
  809. * The algorithm is adaptive and, provided we follow specs, it
  810. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  811. * tricks sort of "quick acks" for time long enough to decrease RTT
  812. * to low value, and then abruptly stops to do it and starts to delay
  813. * ACKs, wait for troubles.
  814. */
  815. if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
  816. tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
  817. tp->rtt_seq = tp->snd_nxt;
  818. }
  819. if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
  820. tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
  821. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  822. }
  823. tcp_set_rto(sk);
  824. reset:
  825. if (tp->srtt == 0) {
  826. /* RFC6298: 5.7 We've failed to get a valid RTT sample from
  827. * 3WHS. This is most likely due to retransmission,
  828. * including spurious one. Reset the RTO back to 3secs
  829. * from the more aggressive 1sec to avoid more spurious
  830. * retransmission.
  831. */
  832. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_FALLBACK;
  833. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_FALLBACK;
  834. }
  835. /* Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
  836. * retransmitted. In light of RFC6298 more aggressive 1sec
  837. * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
  838. * retransmission has occurred.
  839. */
  840. if (tp->total_retrans > 1)
  841. tp->snd_cwnd = 1;
  842. else
  843. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  844. tp->snd_cwnd_stamp = tcp_time_stamp;
  845. }
  846. static void tcp_update_reordering(struct sock *sk, const int metric,
  847. const int ts)
  848. {
  849. struct tcp_sock *tp = tcp_sk(sk);
  850. if (metric > tp->reordering) {
  851. int mib_idx;
  852. tp->reordering = min(TCP_MAX_REORDERING, metric);
  853. /* This exciting event is worth to be remembered. 8) */
  854. if (ts)
  855. mib_idx = LINUX_MIB_TCPTSREORDER;
  856. else if (tcp_is_reno(tp))
  857. mib_idx = LINUX_MIB_TCPRENOREORDER;
  858. else if (tcp_is_fack(tp))
  859. mib_idx = LINUX_MIB_TCPFACKREORDER;
  860. else
  861. mib_idx = LINUX_MIB_TCPSACKREORDER;
  862. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  863. #if FASTRETRANS_DEBUG > 1
  864. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  865. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  866. tp->reordering,
  867. tp->fackets_out,
  868. tp->sacked_out,
  869. tp->undo_marker ? tp->undo_retrans : 0);
  870. #endif
  871. tcp_disable_fack(tp);
  872. }
  873. if (metric > 0)
  874. tcp_disable_early_retrans(tp);
  875. }
  876. /* This must be called before lost_out is incremented */
  877. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  878. {
  879. if ((tp->retransmit_skb_hint == NULL) ||
  880. before(TCP_SKB_CB(skb)->seq,
  881. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  882. tp->retransmit_skb_hint = skb;
  883. if (!tp->lost_out ||
  884. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  885. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  886. }
  887. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  888. {
  889. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  890. tcp_verify_retransmit_hint(tp, skb);
  891. tp->lost_out += tcp_skb_pcount(skb);
  892. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  893. }
  894. }
  895. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  896. struct sk_buff *skb)
  897. {
  898. tcp_verify_retransmit_hint(tp, skb);
  899. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  900. tp->lost_out += tcp_skb_pcount(skb);
  901. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  902. }
  903. }
  904. /* This procedure tags the retransmission queue when SACKs arrive.
  905. *
  906. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  907. * Packets in queue with these bits set are counted in variables
  908. * sacked_out, retrans_out and lost_out, correspondingly.
  909. *
  910. * Valid combinations are:
  911. * Tag InFlight Description
  912. * 0 1 - orig segment is in flight.
  913. * S 0 - nothing flies, orig reached receiver.
  914. * L 0 - nothing flies, orig lost by net.
  915. * R 2 - both orig and retransmit are in flight.
  916. * L|R 1 - orig is lost, retransmit is in flight.
  917. * S|R 1 - orig reached receiver, retrans is still in flight.
  918. * (L|S|R is logically valid, it could occur when L|R is sacked,
  919. * but it is equivalent to plain S and code short-curcuits it to S.
  920. * L|S is logically invalid, it would mean -1 packet in flight 8))
  921. *
  922. * These 6 states form finite state machine, controlled by the following events:
  923. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  924. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  925. * 3. Loss detection event of two flavors:
  926. * A. Scoreboard estimator decided the packet is lost.
  927. * A'. Reno "three dupacks" marks head of queue lost.
  928. * A''. Its FACK modification, head until snd.fack is lost.
  929. * B. SACK arrives sacking SND.NXT at the moment, when the
  930. * segment was retransmitted.
  931. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  932. *
  933. * It is pleasant to note, that state diagram turns out to be commutative,
  934. * so that we are allowed not to be bothered by order of our actions,
  935. * when multiple events arrive simultaneously. (see the function below).
  936. *
  937. * Reordering detection.
  938. * --------------------
  939. * Reordering metric is maximal distance, which a packet can be displaced
  940. * in packet stream. With SACKs we can estimate it:
  941. *
  942. * 1. SACK fills old hole and the corresponding segment was not
  943. * ever retransmitted -> reordering. Alas, we cannot use it
  944. * when segment was retransmitted.
  945. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  946. * for retransmitted and already SACKed segment -> reordering..
  947. * Both of these heuristics are not used in Loss state, when we cannot
  948. * account for retransmits accurately.
  949. *
  950. * SACK block validation.
  951. * ----------------------
  952. *
  953. * SACK block range validation checks that the received SACK block fits to
  954. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  955. * Note that SND.UNA is not included to the range though being valid because
  956. * it means that the receiver is rather inconsistent with itself reporting
  957. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  958. * perfectly valid, however, in light of RFC2018 which explicitly states
  959. * that "SACK block MUST reflect the newest segment. Even if the newest
  960. * segment is going to be discarded ...", not that it looks very clever
  961. * in case of head skb. Due to potentional receiver driven attacks, we
  962. * choose to avoid immediate execution of a walk in write queue due to
  963. * reneging and defer head skb's loss recovery to standard loss recovery
  964. * procedure that will eventually trigger (nothing forbids us doing this).
  965. *
  966. * Implements also blockage to start_seq wrap-around. Problem lies in the
  967. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  968. * there's no guarantee that it will be before snd_nxt (n). The problem
  969. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  970. * wrap (s_w):
  971. *
  972. * <- outs wnd -> <- wrapzone ->
  973. * u e n u_w e_w s n_w
  974. * | | | | | | |
  975. * |<------------+------+----- TCP seqno space --------------+---------->|
  976. * ...-- <2^31 ->| |<--------...
  977. * ...---- >2^31 ------>| |<--------...
  978. *
  979. * Current code wouldn't be vulnerable but it's better still to discard such
  980. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  981. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  982. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  983. * equal to the ideal case (infinite seqno space without wrap caused issues).
  984. *
  985. * With D-SACK the lower bound is extended to cover sequence space below
  986. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  987. * again, D-SACK block must not to go across snd_una (for the same reason as
  988. * for the normal SACK blocks, explained above). But there all simplicity
  989. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  990. * fully below undo_marker they do not affect behavior in anyway and can
  991. * therefore be safely ignored. In rare cases (which are more or less
  992. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  993. * fragmentation and packet reordering past skb's retransmission. To consider
  994. * them correctly, the acceptable range must be extended even more though
  995. * the exact amount is rather hard to quantify. However, tp->max_window can
  996. * be used as an exaggerated estimate.
  997. */
  998. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  999. u32 start_seq, u32 end_seq)
  1000. {
  1001. /* Too far in future, or reversed (interpretation is ambiguous) */
  1002. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  1003. return false;
  1004. /* Nasty start_seq wrap-around check (see comments above) */
  1005. if (!before(start_seq, tp->snd_nxt))
  1006. return false;
  1007. /* In outstanding window? ...This is valid exit for D-SACKs too.
  1008. * start_seq == snd_una is non-sensical (see comments above)
  1009. */
  1010. if (after(start_seq, tp->snd_una))
  1011. return true;
  1012. if (!is_dsack || !tp->undo_marker)
  1013. return false;
  1014. /* ...Then it's D-SACK, and must reside below snd_una completely */
  1015. if (after(end_seq, tp->snd_una))
  1016. return false;
  1017. if (!before(start_seq, tp->undo_marker))
  1018. return true;
  1019. /* Too old */
  1020. if (!after(end_seq, tp->undo_marker))
  1021. return false;
  1022. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  1023. * start_seq < undo_marker and end_seq >= undo_marker.
  1024. */
  1025. return !before(start_seq, end_seq - tp->max_window);
  1026. }
  1027. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  1028. * Event "B". Later note: FACK people cheated me again 8), we have to account
  1029. * for reordering! Ugly, but should help.
  1030. *
  1031. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  1032. * less than what is now known to be received by the other end (derived from
  1033. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  1034. * retransmitted skbs to avoid some costly processing per ACKs.
  1035. */
  1036. static void tcp_mark_lost_retrans(struct sock *sk)
  1037. {
  1038. const struct inet_connection_sock *icsk = inet_csk(sk);
  1039. struct tcp_sock *tp = tcp_sk(sk);
  1040. struct sk_buff *skb;
  1041. int cnt = 0;
  1042. u32 new_low_seq = tp->snd_nxt;
  1043. u32 received_upto = tcp_highest_sack_seq(tp);
  1044. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  1045. !after(received_upto, tp->lost_retrans_low) ||
  1046. icsk->icsk_ca_state != TCP_CA_Recovery)
  1047. return;
  1048. tcp_for_write_queue(skb, sk) {
  1049. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  1050. if (skb == tcp_send_head(sk))
  1051. break;
  1052. if (cnt == tp->retrans_out)
  1053. break;
  1054. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1055. continue;
  1056. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  1057. continue;
  1058. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  1059. * constraint here (see above) but figuring out that at
  1060. * least tp->reordering SACK blocks reside between ack_seq
  1061. * and received_upto is not easy task to do cheaply with
  1062. * the available datastructures.
  1063. *
  1064. * Whether FACK should check here for tp->reordering segs
  1065. * in-between one could argue for either way (it would be
  1066. * rather simple to implement as we could count fack_count
  1067. * during the walk and do tp->fackets_out - fack_count).
  1068. */
  1069. if (after(received_upto, ack_seq)) {
  1070. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1071. tp->retrans_out -= tcp_skb_pcount(skb);
  1072. tcp_skb_mark_lost_uncond_verify(tp, skb);
  1073. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  1074. } else {
  1075. if (before(ack_seq, new_low_seq))
  1076. new_low_seq = ack_seq;
  1077. cnt += tcp_skb_pcount(skb);
  1078. }
  1079. }
  1080. if (tp->retrans_out)
  1081. tp->lost_retrans_low = new_low_seq;
  1082. }
  1083. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  1084. struct tcp_sack_block_wire *sp, int num_sacks,
  1085. u32 prior_snd_una)
  1086. {
  1087. struct tcp_sock *tp = tcp_sk(sk);
  1088. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  1089. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  1090. bool dup_sack = false;
  1091. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  1092. dup_sack = true;
  1093. tcp_dsack_seen(tp);
  1094. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  1095. } else if (num_sacks > 1) {
  1096. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  1097. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  1098. if (!after(end_seq_0, end_seq_1) &&
  1099. !before(start_seq_0, start_seq_1)) {
  1100. dup_sack = true;
  1101. tcp_dsack_seen(tp);
  1102. NET_INC_STATS_BH(sock_net(sk),
  1103. LINUX_MIB_TCPDSACKOFORECV);
  1104. }
  1105. }
  1106. /* D-SACK for already forgotten data... Do dumb counting. */
  1107. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  1108. !after(end_seq_0, prior_snd_una) &&
  1109. after(end_seq_0, tp->undo_marker))
  1110. tp->undo_retrans--;
  1111. return dup_sack;
  1112. }
  1113. struct tcp_sacktag_state {
  1114. int reord;
  1115. int fack_count;
  1116. int flag;
  1117. };
  1118. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1119. * the incoming SACK may not exactly match but we can find smaller MSS
  1120. * aligned portion of it that matches. Therefore we might need to fragment
  1121. * which may fail and creates some hassle (caller must handle error case
  1122. * returns).
  1123. *
  1124. * FIXME: this could be merged to shift decision code
  1125. */
  1126. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1127. u32 start_seq, u32 end_seq)
  1128. {
  1129. int err;
  1130. bool in_sack;
  1131. unsigned int pkt_len;
  1132. unsigned int mss;
  1133. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1134. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1135. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1136. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1137. mss = tcp_skb_mss(skb);
  1138. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1139. if (!in_sack) {
  1140. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1141. if (pkt_len < mss)
  1142. pkt_len = mss;
  1143. } else {
  1144. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1145. if (pkt_len < mss)
  1146. return -EINVAL;
  1147. }
  1148. /* Round if necessary so that SACKs cover only full MSSes
  1149. * and/or the remaining small portion (if present)
  1150. */
  1151. if (pkt_len > mss) {
  1152. unsigned int new_len = (pkt_len / mss) * mss;
  1153. if (!in_sack && new_len < pkt_len) {
  1154. new_len += mss;
  1155. if (new_len > skb->len)
  1156. return 0;
  1157. }
  1158. pkt_len = new_len;
  1159. }
  1160. err = tcp_fragment(sk, skb, pkt_len, mss);
  1161. if (err < 0)
  1162. return err;
  1163. }
  1164. return in_sack;
  1165. }
  1166. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1167. static u8 tcp_sacktag_one(struct sock *sk,
  1168. struct tcp_sacktag_state *state, u8 sacked,
  1169. u32 start_seq, u32 end_seq,
  1170. bool dup_sack, int pcount)
  1171. {
  1172. struct tcp_sock *tp = tcp_sk(sk);
  1173. int fack_count = state->fack_count;
  1174. /* Account D-SACK for retransmitted packet. */
  1175. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1176. if (tp->undo_marker && tp->undo_retrans &&
  1177. after(end_seq, tp->undo_marker))
  1178. tp->undo_retrans--;
  1179. if (sacked & TCPCB_SACKED_ACKED)
  1180. state->reord = min(fack_count, state->reord);
  1181. }
  1182. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1183. if (!after(end_seq, tp->snd_una))
  1184. return sacked;
  1185. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1186. if (sacked & TCPCB_SACKED_RETRANS) {
  1187. /* If the segment is not tagged as lost,
  1188. * we do not clear RETRANS, believing
  1189. * that retransmission is still in flight.
  1190. */
  1191. if (sacked & TCPCB_LOST) {
  1192. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1193. tp->lost_out -= pcount;
  1194. tp->retrans_out -= pcount;
  1195. }
  1196. } else {
  1197. if (!(sacked & TCPCB_RETRANS)) {
  1198. /* New sack for not retransmitted frame,
  1199. * which was in hole. It is reordering.
  1200. */
  1201. if (before(start_seq,
  1202. tcp_highest_sack_seq(tp)))
  1203. state->reord = min(fack_count,
  1204. state->reord);
  1205. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1206. if (!after(end_seq, tp->frto_highmark))
  1207. state->flag |= FLAG_ONLY_ORIG_SACKED;
  1208. }
  1209. if (sacked & TCPCB_LOST) {
  1210. sacked &= ~TCPCB_LOST;
  1211. tp->lost_out -= pcount;
  1212. }
  1213. }
  1214. sacked |= TCPCB_SACKED_ACKED;
  1215. state->flag |= FLAG_DATA_SACKED;
  1216. tp->sacked_out += pcount;
  1217. fack_count += pcount;
  1218. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1219. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1220. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1221. tp->lost_cnt_hint += pcount;
  1222. if (fack_count > tp->fackets_out)
  1223. tp->fackets_out = fack_count;
  1224. }
  1225. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1226. * frames and clear it. undo_retrans is decreased above, L|R frames
  1227. * are accounted above as well.
  1228. */
  1229. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1230. sacked &= ~TCPCB_SACKED_RETRANS;
  1231. tp->retrans_out -= pcount;
  1232. }
  1233. return sacked;
  1234. }
  1235. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1236. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1237. */
  1238. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1239. struct tcp_sacktag_state *state,
  1240. unsigned int pcount, int shifted, int mss,
  1241. bool dup_sack)
  1242. {
  1243. struct tcp_sock *tp = tcp_sk(sk);
  1244. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1245. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1246. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1247. BUG_ON(!pcount);
  1248. /* Adjust counters and hints for the newly sacked sequence
  1249. * range but discard the return value since prev is already
  1250. * marked. We must tag the range first because the seq
  1251. * advancement below implicitly advances
  1252. * tcp_highest_sack_seq() when skb is highest_sack.
  1253. */
  1254. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1255. start_seq, end_seq, dup_sack, pcount);
  1256. if (skb == tp->lost_skb_hint)
  1257. tp->lost_cnt_hint += pcount;
  1258. TCP_SKB_CB(prev)->end_seq += shifted;
  1259. TCP_SKB_CB(skb)->seq += shifted;
  1260. skb_shinfo(prev)->gso_segs += pcount;
  1261. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1262. skb_shinfo(skb)->gso_segs -= pcount;
  1263. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1264. * in theory this shouldn't be necessary but as long as DSACK
  1265. * code can come after this skb later on it's better to keep
  1266. * setting gso_size to something.
  1267. */
  1268. if (!skb_shinfo(prev)->gso_size) {
  1269. skb_shinfo(prev)->gso_size = mss;
  1270. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1271. }
  1272. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1273. if (skb_shinfo(skb)->gso_segs <= 1) {
  1274. skb_shinfo(skb)->gso_size = 0;
  1275. skb_shinfo(skb)->gso_type = 0;
  1276. }
  1277. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1278. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1279. if (skb->len > 0) {
  1280. BUG_ON(!tcp_skb_pcount(skb));
  1281. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1282. return false;
  1283. }
  1284. /* Whole SKB was eaten :-) */
  1285. if (skb == tp->retransmit_skb_hint)
  1286. tp->retransmit_skb_hint = prev;
  1287. if (skb == tp->scoreboard_skb_hint)
  1288. tp->scoreboard_skb_hint = prev;
  1289. if (skb == tp->lost_skb_hint) {
  1290. tp->lost_skb_hint = prev;
  1291. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1292. }
  1293. TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(prev)->tcp_flags;
  1294. if (skb == tcp_highest_sack(sk))
  1295. tcp_advance_highest_sack(sk, skb);
  1296. tcp_unlink_write_queue(skb, sk);
  1297. sk_wmem_free_skb(sk, skb);
  1298. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1299. return true;
  1300. }
  1301. /* I wish gso_size would have a bit more sane initialization than
  1302. * something-or-zero which complicates things
  1303. */
  1304. static int tcp_skb_seglen(const struct sk_buff *skb)
  1305. {
  1306. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1307. }
  1308. /* Shifting pages past head area doesn't work */
  1309. static int skb_can_shift(const struct sk_buff *skb)
  1310. {
  1311. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1312. }
  1313. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1314. * skb.
  1315. */
  1316. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1317. struct tcp_sacktag_state *state,
  1318. u32 start_seq, u32 end_seq,
  1319. bool dup_sack)
  1320. {
  1321. struct tcp_sock *tp = tcp_sk(sk);
  1322. struct sk_buff *prev;
  1323. int mss;
  1324. int pcount = 0;
  1325. int len;
  1326. int in_sack;
  1327. if (!sk_can_gso(sk))
  1328. goto fallback;
  1329. /* Normally R but no L won't result in plain S */
  1330. if (!dup_sack &&
  1331. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1332. goto fallback;
  1333. if (!skb_can_shift(skb))
  1334. goto fallback;
  1335. /* This frame is about to be dropped (was ACKed). */
  1336. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1337. goto fallback;
  1338. /* Can only happen with delayed DSACK + discard craziness */
  1339. if (unlikely(skb == tcp_write_queue_head(sk)))
  1340. goto fallback;
  1341. prev = tcp_write_queue_prev(sk, skb);
  1342. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1343. goto fallback;
  1344. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1345. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1346. if (in_sack) {
  1347. len = skb->len;
  1348. pcount = tcp_skb_pcount(skb);
  1349. mss = tcp_skb_seglen(skb);
  1350. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1351. * drop this restriction as unnecessary
  1352. */
  1353. if (mss != tcp_skb_seglen(prev))
  1354. goto fallback;
  1355. } else {
  1356. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1357. goto noop;
  1358. /* CHECKME: This is non-MSS split case only?, this will
  1359. * cause skipped skbs due to advancing loop btw, original
  1360. * has that feature too
  1361. */
  1362. if (tcp_skb_pcount(skb) <= 1)
  1363. goto noop;
  1364. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1365. if (!in_sack) {
  1366. /* TODO: head merge to next could be attempted here
  1367. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1368. * though it might not be worth of the additional hassle
  1369. *
  1370. * ...we can probably just fallback to what was done
  1371. * previously. We could try merging non-SACKed ones
  1372. * as well but it probably isn't going to buy off
  1373. * because later SACKs might again split them, and
  1374. * it would make skb timestamp tracking considerably
  1375. * harder problem.
  1376. */
  1377. goto fallback;
  1378. }
  1379. len = end_seq - TCP_SKB_CB(skb)->seq;
  1380. BUG_ON(len < 0);
  1381. BUG_ON(len > skb->len);
  1382. /* MSS boundaries should be honoured or else pcount will
  1383. * severely break even though it makes things bit trickier.
  1384. * Optimize common case to avoid most of the divides
  1385. */
  1386. mss = tcp_skb_mss(skb);
  1387. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1388. * drop this restriction as unnecessary
  1389. */
  1390. if (mss != tcp_skb_seglen(prev))
  1391. goto fallback;
  1392. if (len == mss) {
  1393. pcount = 1;
  1394. } else if (len < mss) {
  1395. goto noop;
  1396. } else {
  1397. pcount = len / mss;
  1398. len = pcount * mss;
  1399. }
  1400. }
  1401. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1402. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1403. goto fallback;
  1404. if (!skb_shift(prev, skb, len))
  1405. goto fallback;
  1406. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1407. goto out;
  1408. /* Hole filled allows collapsing with the next as well, this is very
  1409. * useful when hole on every nth skb pattern happens
  1410. */
  1411. if (prev == tcp_write_queue_tail(sk))
  1412. goto out;
  1413. skb = tcp_write_queue_next(sk, prev);
  1414. if (!skb_can_shift(skb) ||
  1415. (skb == tcp_send_head(sk)) ||
  1416. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1417. (mss != tcp_skb_seglen(skb)))
  1418. goto out;
  1419. len = skb->len;
  1420. if (skb_shift(prev, skb, len)) {
  1421. pcount += tcp_skb_pcount(skb);
  1422. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1423. }
  1424. out:
  1425. state->fack_count += pcount;
  1426. return prev;
  1427. noop:
  1428. return skb;
  1429. fallback:
  1430. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1431. return NULL;
  1432. }
  1433. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1434. struct tcp_sack_block *next_dup,
  1435. struct tcp_sacktag_state *state,
  1436. u32 start_seq, u32 end_seq,
  1437. bool dup_sack_in)
  1438. {
  1439. struct tcp_sock *tp = tcp_sk(sk);
  1440. struct sk_buff *tmp;
  1441. tcp_for_write_queue_from(skb, sk) {
  1442. int in_sack = 0;
  1443. bool dup_sack = dup_sack_in;
  1444. if (skb == tcp_send_head(sk))
  1445. break;
  1446. /* queue is in-order => we can short-circuit the walk early */
  1447. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1448. break;
  1449. if ((next_dup != NULL) &&
  1450. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1451. in_sack = tcp_match_skb_to_sack(sk, skb,
  1452. next_dup->start_seq,
  1453. next_dup->end_seq);
  1454. if (in_sack > 0)
  1455. dup_sack = true;
  1456. }
  1457. /* skb reference here is a bit tricky to get right, since
  1458. * shifting can eat and free both this skb and the next,
  1459. * so not even _safe variant of the loop is enough.
  1460. */
  1461. if (in_sack <= 0) {
  1462. tmp = tcp_shift_skb_data(sk, skb, state,
  1463. start_seq, end_seq, dup_sack);
  1464. if (tmp != NULL) {
  1465. if (tmp != skb) {
  1466. skb = tmp;
  1467. continue;
  1468. }
  1469. in_sack = 0;
  1470. } else {
  1471. in_sack = tcp_match_skb_to_sack(sk, skb,
  1472. start_seq,
  1473. end_seq);
  1474. }
  1475. }
  1476. if (unlikely(in_sack < 0))
  1477. break;
  1478. if (in_sack) {
  1479. TCP_SKB_CB(skb)->sacked =
  1480. tcp_sacktag_one(sk,
  1481. state,
  1482. TCP_SKB_CB(skb)->sacked,
  1483. TCP_SKB_CB(skb)->seq,
  1484. TCP_SKB_CB(skb)->end_seq,
  1485. dup_sack,
  1486. tcp_skb_pcount(skb));
  1487. if (!before(TCP_SKB_CB(skb)->seq,
  1488. tcp_highest_sack_seq(tp)))
  1489. tcp_advance_highest_sack(sk, skb);
  1490. }
  1491. state->fack_count += tcp_skb_pcount(skb);
  1492. }
  1493. return skb;
  1494. }
  1495. /* Avoid all extra work that is being done by sacktag while walking in
  1496. * a normal way
  1497. */
  1498. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1499. struct tcp_sacktag_state *state,
  1500. u32 skip_to_seq)
  1501. {
  1502. tcp_for_write_queue_from(skb, sk) {
  1503. if (skb == tcp_send_head(sk))
  1504. break;
  1505. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1506. break;
  1507. state->fack_count += tcp_skb_pcount(skb);
  1508. }
  1509. return skb;
  1510. }
  1511. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1512. struct sock *sk,
  1513. struct tcp_sack_block *next_dup,
  1514. struct tcp_sacktag_state *state,
  1515. u32 skip_to_seq)
  1516. {
  1517. if (next_dup == NULL)
  1518. return skb;
  1519. if (before(next_dup->start_seq, skip_to_seq)) {
  1520. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1521. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1522. next_dup->start_seq, next_dup->end_seq,
  1523. 1);
  1524. }
  1525. return skb;
  1526. }
  1527. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1528. {
  1529. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1530. }
  1531. static int
  1532. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1533. u32 prior_snd_una)
  1534. {
  1535. const struct inet_connection_sock *icsk = inet_csk(sk);
  1536. struct tcp_sock *tp = tcp_sk(sk);
  1537. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1538. TCP_SKB_CB(ack_skb)->sacked);
  1539. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1540. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1541. struct tcp_sack_block *cache;
  1542. struct tcp_sacktag_state state;
  1543. struct sk_buff *skb;
  1544. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1545. int used_sacks;
  1546. bool found_dup_sack = false;
  1547. int i, j;
  1548. int first_sack_index;
  1549. state.flag = 0;
  1550. state.reord = tp->packets_out;
  1551. if (!tp->sacked_out) {
  1552. if (WARN_ON(tp->fackets_out))
  1553. tp->fackets_out = 0;
  1554. tcp_highest_sack_reset(sk);
  1555. }
  1556. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1557. num_sacks, prior_snd_una);
  1558. if (found_dup_sack)
  1559. state.flag |= FLAG_DSACKING_ACK;
  1560. /* Eliminate too old ACKs, but take into
  1561. * account more or less fresh ones, they can
  1562. * contain valid SACK info.
  1563. */
  1564. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1565. return 0;
  1566. if (!tp->packets_out)
  1567. goto out;
  1568. used_sacks = 0;
  1569. first_sack_index = 0;
  1570. for (i = 0; i < num_sacks; i++) {
  1571. bool dup_sack = !i && found_dup_sack;
  1572. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1573. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1574. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1575. sp[used_sacks].start_seq,
  1576. sp[used_sacks].end_seq)) {
  1577. int mib_idx;
  1578. if (dup_sack) {
  1579. if (!tp->undo_marker)
  1580. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1581. else
  1582. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1583. } else {
  1584. /* Don't count olds caused by ACK reordering */
  1585. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1586. !after(sp[used_sacks].end_seq, tp->snd_una))
  1587. continue;
  1588. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1589. }
  1590. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1591. if (i == 0)
  1592. first_sack_index = -1;
  1593. continue;
  1594. }
  1595. /* Ignore very old stuff early */
  1596. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1597. continue;
  1598. used_sacks++;
  1599. }
  1600. /* order SACK blocks to allow in order walk of the retrans queue */
  1601. for (i = used_sacks - 1; i > 0; i--) {
  1602. for (j = 0; j < i; j++) {
  1603. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1604. swap(sp[j], sp[j + 1]);
  1605. /* Track where the first SACK block goes to */
  1606. if (j == first_sack_index)
  1607. first_sack_index = j + 1;
  1608. }
  1609. }
  1610. }
  1611. skb = tcp_write_queue_head(sk);
  1612. state.fack_count = 0;
  1613. i = 0;
  1614. if (!tp->sacked_out) {
  1615. /* It's already past, so skip checking against it */
  1616. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1617. } else {
  1618. cache = tp->recv_sack_cache;
  1619. /* Skip empty blocks in at head of the cache */
  1620. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1621. !cache->end_seq)
  1622. cache++;
  1623. }
  1624. while (i < used_sacks) {
  1625. u32 start_seq = sp[i].start_seq;
  1626. u32 end_seq = sp[i].end_seq;
  1627. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1628. struct tcp_sack_block *next_dup = NULL;
  1629. if (found_dup_sack && ((i + 1) == first_sack_index))
  1630. next_dup = &sp[i + 1];
  1631. /* Skip too early cached blocks */
  1632. while (tcp_sack_cache_ok(tp, cache) &&
  1633. !before(start_seq, cache->end_seq))
  1634. cache++;
  1635. /* Can skip some work by looking recv_sack_cache? */
  1636. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1637. after(end_seq, cache->start_seq)) {
  1638. /* Head todo? */
  1639. if (before(start_seq, cache->start_seq)) {
  1640. skb = tcp_sacktag_skip(skb, sk, &state,
  1641. start_seq);
  1642. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1643. &state,
  1644. start_seq,
  1645. cache->start_seq,
  1646. dup_sack);
  1647. }
  1648. /* Rest of the block already fully processed? */
  1649. if (!after(end_seq, cache->end_seq))
  1650. goto advance_sp;
  1651. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1652. &state,
  1653. cache->end_seq);
  1654. /* ...tail remains todo... */
  1655. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1656. /* ...but better entrypoint exists! */
  1657. skb = tcp_highest_sack(sk);
  1658. if (skb == NULL)
  1659. break;
  1660. state.fack_count = tp->fackets_out;
  1661. cache++;
  1662. goto walk;
  1663. }
  1664. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1665. /* Check overlap against next cached too (past this one already) */
  1666. cache++;
  1667. continue;
  1668. }
  1669. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1670. skb = tcp_highest_sack(sk);
  1671. if (skb == NULL)
  1672. break;
  1673. state.fack_count = tp->fackets_out;
  1674. }
  1675. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1676. walk:
  1677. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1678. start_seq, end_seq, dup_sack);
  1679. advance_sp:
  1680. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1681. * due to in-order walk
  1682. */
  1683. if (after(end_seq, tp->frto_highmark))
  1684. state.flag &= ~FLAG_ONLY_ORIG_SACKED;
  1685. i++;
  1686. }
  1687. /* Clear the head of the cache sack blocks so we can skip it next time */
  1688. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1689. tp->recv_sack_cache[i].start_seq = 0;
  1690. tp->recv_sack_cache[i].end_seq = 0;
  1691. }
  1692. for (j = 0; j < used_sacks; j++)
  1693. tp->recv_sack_cache[i++] = sp[j];
  1694. tcp_mark_lost_retrans(sk);
  1695. tcp_verify_left_out(tp);
  1696. if ((state.reord < tp->fackets_out) &&
  1697. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1698. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1699. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1700. out:
  1701. #if FASTRETRANS_DEBUG > 0
  1702. WARN_ON((int)tp->sacked_out < 0);
  1703. WARN_ON((int)tp->lost_out < 0);
  1704. WARN_ON((int)tp->retrans_out < 0);
  1705. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1706. #endif
  1707. return state.flag;
  1708. }
  1709. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1710. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1711. */
  1712. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1713. {
  1714. u32 holes;
  1715. holes = max(tp->lost_out, 1U);
  1716. holes = min(holes, tp->packets_out);
  1717. if ((tp->sacked_out + holes) > tp->packets_out) {
  1718. tp->sacked_out = tp->packets_out - holes;
  1719. return true;
  1720. }
  1721. return false;
  1722. }
  1723. /* If we receive more dupacks than we expected counting segments
  1724. * in assumption of absent reordering, interpret this as reordering.
  1725. * The only another reason could be bug in receiver TCP.
  1726. */
  1727. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1728. {
  1729. struct tcp_sock *tp = tcp_sk(sk);
  1730. if (tcp_limit_reno_sacked(tp))
  1731. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1732. }
  1733. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1734. static void tcp_add_reno_sack(struct sock *sk)
  1735. {
  1736. struct tcp_sock *tp = tcp_sk(sk);
  1737. tp->sacked_out++;
  1738. tcp_check_reno_reordering(sk, 0);
  1739. tcp_verify_left_out(tp);
  1740. }
  1741. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1742. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1743. {
  1744. struct tcp_sock *tp = tcp_sk(sk);
  1745. if (acked > 0) {
  1746. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1747. if (acked - 1 >= tp->sacked_out)
  1748. tp->sacked_out = 0;
  1749. else
  1750. tp->sacked_out -= acked - 1;
  1751. }
  1752. tcp_check_reno_reordering(sk, acked);
  1753. tcp_verify_left_out(tp);
  1754. }
  1755. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1756. {
  1757. tp->sacked_out = 0;
  1758. }
  1759. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1760. {
  1761. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1762. }
  1763. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1764. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1765. */
  1766. bool tcp_use_frto(struct sock *sk)
  1767. {
  1768. const struct tcp_sock *tp = tcp_sk(sk);
  1769. const struct inet_connection_sock *icsk = inet_csk(sk);
  1770. struct sk_buff *skb;
  1771. if (!sysctl_tcp_frto)
  1772. return false;
  1773. /* MTU probe and F-RTO won't really play nicely along currently */
  1774. if (icsk->icsk_mtup.probe_size)
  1775. return false;
  1776. if (tcp_is_sackfrto(tp))
  1777. return true;
  1778. /* Avoid expensive walking of rexmit queue if possible */
  1779. if (tp->retrans_out > 1)
  1780. return false;
  1781. skb = tcp_write_queue_head(sk);
  1782. if (tcp_skb_is_last(sk, skb))
  1783. return true;
  1784. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1785. tcp_for_write_queue_from(skb, sk) {
  1786. if (skb == tcp_send_head(sk))
  1787. break;
  1788. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1789. return false;
  1790. /* Short-circuit when first non-SACKed skb has been checked */
  1791. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1792. break;
  1793. }
  1794. return true;
  1795. }
  1796. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1797. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1798. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1799. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1800. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1801. * bits are handled if the Loss state is really to be entered (in
  1802. * tcp_enter_frto_loss).
  1803. *
  1804. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1805. * does:
  1806. * "Reduce ssthresh if it has not yet been made inside this window."
  1807. */
  1808. void tcp_enter_frto(struct sock *sk)
  1809. {
  1810. const struct inet_connection_sock *icsk = inet_csk(sk);
  1811. struct tcp_sock *tp = tcp_sk(sk);
  1812. struct sk_buff *skb;
  1813. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1814. tp->snd_una == tp->high_seq ||
  1815. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1816. !icsk->icsk_retransmits)) {
  1817. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1818. /* Our state is too optimistic in ssthresh() call because cwnd
  1819. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1820. * recovery has not yet completed. Pattern would be this: RTO,
  1821. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1822. * up here twice).
  1823. * RFC4138 should be more specific on what to do, even though
  1824. * RTO is quite unlikely to occur after the first Cumulative ACK
  1825. * due to back-off and complexity of triggering events ...
  1826. */
  1827. if (tp->frto_counter) {
  1828. u32 stored_cwnd;
  1829. stored_cwnd = tp->snd_cwnd;
  1830. tp->snd_cwnd = 2;
  1831. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1832. tp->snd_cwnd = stored_cwnd;
  1833. } else {
  1834. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1835. }
  1836. /* ... in theory, cong.control module could do "any tricks" in
  1837. * ssthresh(), which means that ca_state, lost bits and lost_out
  1838. * counter would have to be faked before the call occurs. We
  1839. * consider that too expensive, unlikely and hacky, so modules
  1840. * using these in ssthresh() must deal these incompatibility
  1841. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1842. */
  1843. tcp_ca_event(sk, CA_EVENT_FRTO);
  1844. }
  1845. tp->undo_marker = tp->snd_una;
  1846. tp->undo_retrans = 0;
  1847. skb = tcp_write_queue_head(sk);
  1848. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1849. tp->undo_marker = 0;
  1850. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1851. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1852. tp->retrans_out -= tcp_skb_pcount(skb);
  1853. }
  1854. tcp_verify_left_out(tp);
  1855. /* Too bad if TCP was application limited */
  1856. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1857. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1858. * The last condition is necessary at least in tp->frto_counter case.
  1859. */
  1860. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1861. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1862. after(tp->high_seq, tp->snd_una)) {
  1863. tp->frto_highmark = tp->high_seq;
  1864. } else {
  1865. tp->frto_highmark = tp->snd_nxt;
  1866. }
  1867. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1868. tp->high_seq = tp->snd_nxt;
  1869. tp->frto_counter = 1;
  1870. }
  1871. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1872. * which indicates that we should follow the traditional RTO recovery,
  1873. * i.e. mark everything lost and do go-back-N retransmission.
  1874. */
  1875. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1876. {
  1877. struct tcp_sock *tp = tcp_sk(sk);
  1878. struct sk_buff *skb;
  1879. tp->lost_out = 0;
  1880. tp->retrans_out = 0;
  1881. if (tcp_is_reno(tp))
  1882. tcp_reset_reno_sack(tp);
  1883. tcp_for_write_queue(skb, sk) {
  1884. if (skb == tcp_send_head(sk))
  1885. break;
  1886. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1887. /*
  1888. * Count the retransmission made on RTO correctly (only when
  1889. * waiting for the first ACK and did not get it)...
  1890. */
  1891. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1892. /* For some reason this R-bit might get cleared? */
  1893. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1894. tp->retrans_out += tcp_skb_pcount(skb);
  1895. /* ...enter this if branch just for the first segment */
  1896. flag |= FLAG_DATA_ACKED;
  1897. } else {
  1898. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1899. tp->undo_marker = 0;
  1900. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1901. }
  1902. /* Marking forward transmissions that were made after RTO lost
  1903. * can cause unnecessary retransmissions in some scenarios,
  1904. * SACK blocks will mitigate that in some but not in all cases.
  1905. * We used to not mark them but it was causing break-ups with
  1906. * receivers that do only in-order receival.
  1907. *
  1908. * TODO: we could detect presence of such receiver and select
  1909. * different behavior per flow.
  1910. */
  1911. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1912. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1913. tp->lost_out += tcp_skb_pcount(skb);
  1914. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1915. }
  1916. }
  1917. tcp_verify_left_out(tp);
  1918. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1919. tp->snd_cwnd_cnt = 0;
  1920. tp->snd_cwnd_stamp = tcp_time_stamp;
  1921. tp->frto_counter = 0;
  1922. tp->bytes_acked = 0;
  1923. tp->reordering = min_t(unsigned int, tp->reordering,
  1924. sysctl_tcp_reordering);
  1925. tcp_set_ca_state(sk, TCP_CA_Loss);
  1926. tp->high_seq = tp->snd_nxt;
  1927. TCP_ECN_queue_cwr(tp);
  1928. tcp_clear_all_retrans_hints(tp);
  1929. }
  1930. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1931. {
  1932. tp->retrans_out = 0;
  1933. tp->lost_out = 0;
  1934. tp->undo_marker = 0;
  1935. tp->undo_retrans = 0;
  1936. }
  1937. void tcp_clear_retrans(struct tcp_sock *tp)
  1938. {
  1939. tcp_clear_retrans_partial(tp);
  1940. tp->fackets_out = 0;
  1941. tp->sacked_out = 0;
  1942. }
  1943. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1944. * and reset tags completely, otherwise preserve SACKs. If receiver
  1945. * dropped its ofo queue, we will know this due to reneging detection.
  1946. */
  1947. void tcp_enter_loss(struct sock *sk, int how)
  1948. {
  1949. const struct inet_connection_sock *icsk = inet_csk(sk);
  1950. struct tcp_sock *tp = tcp_sk(sk);
  1951. struct sk_buff *skb;
  1952. /* Reduce ssthresh if it has not yet been made inside this window. */
  1953. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1954. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1955. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1956. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1957. tcp_ca_event(sk, CA_EVENT_LOSS);
  1958. }
  1959. tp->snd_cwnd = 1;
  1960. tp->snd_cwnd_cnt = 0;
  1961. tp->snd_cwnd_stamp = tcp_time_stamp;
  1962. tp->bytes_acked = 0;
  1963. tcp_clear_retrans_partial(tp);
  1964. if (tcp_is_reno(tp))
  1965. tcp_reset_reno_sack(tp);
  1966. if (!how) {
  1967. /* Push undo marker, if it was plain RTO and nothing
  1968. * was retransmitted. */
  1969. tp->undo_marker = tp->snd_una;
  1970. } else {
  1971. tp->sacked_out = 0;
  1972. tp->fackets_out = 0;
  1973. }
  1974. tcp_clear_all_retrans_hints(tp);
  1975. tcp_for_write_queue(skb, sk) {
  1976. if (skb == tcp_send_head(sk))
  1977. break;
  1978. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1979. tp->undo_marker = 0;
  1980. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1981. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1982. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1983. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1984. tp->lost_out += tcp_skb_pcount(skb);
  1985. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1986. }
  1987. }
  1988. tcp_verify_left_out(tp);
  1989. tp->reordering = min_t(unsigned int, tp->reordering,
  1990. sysctl_tcp_reordering);
  1991. tcp_set_ca_state(sk, TCP_CA_Loss);
  1992. tp->high_seq = tp->snd_nxt;
  1993. TCP_ECN_queue_cwr(tp);
  1994. /* Abort F-RTO algorithm if one is in progress */
  1995. tp->frto_counter = 0;
  1996. }
  1997. /* If ACK arrived pointing to a remembered SACK, it means that our
  1998. * remembered SACKs do not reflect real state of receiver i.e.
  1999. * receiver _host_ is heavily congested (or buggy).
  2000. *
  2001. * Do processing similar to RTO timeout.
  2002. */
  2003. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  2004. {
  2005. if (flag & FLAG_SACK_RENEGING) {
  2006. struct inet_connection_sock *icsk = inet_csk(sk);
  2007. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  2008. tcp_enter_loss(sk, 1);
  2009. icsk->icsk_retransmits++;
  2010. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  2011. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2012. icsk->icsk_rto, TCP_RTO_MAX);
  2013. return true;
  2014. }
  2015. return false;
  2016. }
  2017. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  2018. {
  2019. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  2020. }
  2021. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  2022. * counter when SACK is enabled (without SACK, sacked_out is used for
  2023. * that purpose).
  2024. *
  2025. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  2026. * segments up to the highest received SACK block so far and holes in
  2027. * between them.
  2028. *
  2029. * With reordering, holes may still be in flight, so RFC3517 recovery
  2030. * uses pure sacked_out (total number of SACKed segments) even though
  2031. * it violates the RFC that uses duplicate ACKs, often these are equal
  2032. * but when e.g. out-of-window ACKs or packet duplication occurs,
  2033. * they differ. Since neither occurs due to loss, TCP should really
  2034. * ignore them.
  2035. */
  2036. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  2037. {
  2038. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  2039. }
  2040. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  2041. {
  2042. struct tcp_sock *tp = tcp_sk(sk);
  2043. unsigned long delay;
  2044. /* Delay early retransmit and entering fast recovery for
  2045. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  2046. * available, or RTO is scheduled to fire first.
  2047. */
  2048. if (sysctl_tcp_early_retrans < 2 || (flag & FLAG_ECE) || !tp->srtt)
  2049. return false;
  2050. delay = max_t(unsigned long, (tp->srtt >> 5), msecs_to_jiffies(2));
  2051. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  2052. return false;
  2053. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, delay, TCP_RTO_MAX);
  2054. tp->early_retrans_delayed = 1;
  2055. return true;
  2056. }
  2057. static inline int tcp_skb_timedout(const struct sock *sk,
  2058. const struct sk_buff *skb)
  2059. {
  2060. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  2061. }
  2062. static inline int tcp_head_timedout(const struct sock *sk)
  2063. {
  2064. const struct tcp_sock *tp = tcp_sk(sk);
  2065. return tp->packets_out &&
  2066. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  2067. }
  2068. /* Linux NewReno/SACK/FACK/ECN state machine.
  2069. * --------------------------------------
  2070. *
  2071. * "Open" Normal state, no dubious events, fast path.
  2072. * "Disorder" In all the respects it is "Open",
  2073. * but requires a bit more attention. It is entered when
  2074. * we see some SACKs or dupacks. It is split of "Open"
  2075. * mainly to move some processing from fast path to slow one.
  2076. * "CWR" CWND was reduced due to some Congestion Notification event.
  2077. * It can be ECN, ICMP source quench, local device congestion.
  2078. * "Recovery" CWND was reduced, we are fast-retransmitting.
  2079. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  2080. *
  2081. * tcp_fastretrans_alert() is entered:
  2082. * - each incoming ACK, if state is not "Open"
  2083. * - when arrived ACK is unusual, namely:
  2084. * * SACK
  2085. * * Duplicate ACK.
  2086. * * ECN ECE.
  2087. *
  2088. * Counting packets in flight is pretty simple.
  2089. *
  2090. * in_flight = packets_out - left_out + retrans_out
  2091. *
  2092. * packets_out is SND.NXT-SND.UNA counted in packets.
  2093. *
  2094. * retrans_out is number of retransmitted segments.
  2095. *
  2096. * left_out is number of segments left network, but not ACKed yet.
  2097. *
  2098. * left_out = sacked_out + lost_out
  2099. *
  2100. * sacked_out: Packets, which arrived to receiver out of order
  2101. * and hence not ACKed. With SACKs this number is simply
  2102. * amount of SACKed data. Even without SACKs
  2103. * it is easy to give pretty reliable estimate of this number,
  2104. * counting duplicate ACKs.
  2105. *
  2106. * lost_out: Packets lost by network. TCP has no explicit
  2107. * "loss notification" feedback from network (for now).
  2108. * It means that this number can be only _guessed_.
  2109. * Actually, it is the heuristics to predict lossage that
  2110. * distinguishes different algorithms.
  2111. *
  2112. * F.e. after RTO, when all the queue is considered as lost,
  2113. * lost_out = packets_out and in_flight = retrans_out.
  2114. *
  2115. * Essentially, we have now two algorithms counting
  2116. * lost packets.
  2117. *
  2118. * FACK: It is the simplest heuristics. As soon as we decided
  2119. * that something is lost, we decide that _all_ not SACKed
  2120. * packets until the most forward SACK are lost. I.e.
  2121. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  2122. * It is absolutely correct estimate, if network does not reorder
  2123. * packets. And it loses any connection to reality when reordering
  2124. * takes place. We use FACK by default until reordering
  2125. * is suspected on the path to this destination.
  2126. *
  2127. * NewReno: when Recovery is entered, we assume that one segment
  2128. * is lost (classic Reno). While we are in Recovery and
  2129. * a partial ACK arrives, we assume that one more packet
  2130. * is lost (NewReno). This heuristics are the same in NewReno
  2131. * and SACK.
  2132. *
  2133. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  2134. * deflation etc. CWND is real congestion window, never inflated, changes
  2135. * only according to classic VJ rules.
  2136. *
  2137. * Really tricky (and requiring careful tuning) part of algorithm
  2138. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  2139. * The first determines the moment _when_ we should reduce CWND and,
  2140. * hence, slow down forward transmission. In fact, it determines the moment
  2141. * when we decide that hole is caused by loss, rather than by a reorder.
  2142. *
  2143. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  2144. * holes, caused by lost packets.
  2145. *
  2146. * And the most logically complicated part of algorithm is undo
  2147. * heuristics. We detect false retransmits due to both too early
  2148. * fast retransmit (reordering) and underestimated RTO, analyzing
  2149. * timestamps and D-SACKs. When we detect that some segments were
  2150. * retransmitted by mistake and CWND reduction was wrong, we undo
  2151. * window reduction and abort recovery phase. This logic is hidden
  2152. * inside several functions named tcp_try_undo_<something>.
  2153. */
  2154. /* This function decides, when we should leave Disordered state
  2155. * and enter Recovery phase, reducing congestion window.
  2156. *
  2157. * Main question: may we further continue forward transmission
  2158. * with the same cwnd?
  2159. */
  2160. static bool tcp_time_to_recover(struct sock *sk, int flag)
  2161. {
  2162. struct tcp_sock *tp = tcp_sk(sk);
  2163. __u32 packets_out;
  2164. /* Do not perform any recovery during F-RTO algorithm */
  2165. if (tp->frto_counter)
  2166. return false;
  2167. /* Trick#1: The loss is proven. */
  2168. if (tp->lost_out)
  2169. return true;
  2170. /* Not-A-Trick#2 : Classic rule... */
  2171. if (tcp_dupack_heuristics(tp) > tp->reordering)
  2172. return true;
  2173. /* Trick#3 : when we use RFC2988 timer restart, fast
  2174. * retransmit can be triggered by timeout of queue head.
  2175. */
  2176. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  2177. return true;
  2178. /* Trick#4: It is still not OK... But will it be useful to delay
  2179. * recovery more?
  2180. */
  2181. packets_out = tp->packets_out;
  2182. if (packets_out <= tp->reordering &&
  2183. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  2184. !tcp_may_send_now(sk)) {
  2185. /* We have nothing to send. This connection is limited
  2186. * either by receiver window or by application.
  2187. */
  2188. return true;
  2189. }
  2190. /* If a thin stream is detected, retransmit after first
  2191. * received dupack. Employ only if SACK is supported in order
  2192. * to avoid possible corner-case series of spurious retransmissions
  2193. * Use only if there are no unsent data.
  2194. */
  2195. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  2196. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  2197. tcp_is_sack(tp) && !tcp_send_head(sk))
  2198. return true;
  2199. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  2200. * retransmissions due to small network reorderings, we implement
  2201. * Mitigation A.3 in the RFC and delay the retransmission for a short
  2202. * interval if appropriate.
  2203. */
  2204. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  2205. (tp->packets_out == (tp->sacked_out + 1) && tp->packets_out < 4) &&
  2206. !tcp_may_send_now(sk))
  2207. return !tcp_pause_early_retransmit(sk, flag);
  2208. return false;
  2209. }
  2210. /* New heuristics: it is possible only after we switched to restart timer
  2211. * each time when something is ACKed. Hence, we can detect timed out packets
  2212. * during fast retransmit without falling to slow start.
  2213. *
  2214. * Usefulness of this as is very questionable, since we should know which of
  2215. * the segments is the next to timeout which is relatively expensive to find
  2216. * in general case unless we add some data structure just for that. The
  2217. * current approach certainly won't find the right one too often and when it
  2218. * finally does find _something_ it usually marks large part of the window
  2219. * right away (because a retransmission with a larger timestamp blocks the
  2220. * loop from advancing). -ij
  2221. */
  2222. static void tcp_timeout_skbs(struct sock *sk)
  2223. {
  2224. struct tcp_sock *tp = tcp_sk(sk);
  2225. struct sk_buff *skb;
  2226. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  2227. return;
  2228. skb = tp->scoreboard_skb_hint;
  2229. if (tp->scoreboard_skb_hint == NULL)
  2230. skb = tcp_write_queue_head(sk);
  2231. tcp_for_write_queue_from(skb, sk) {
  2232. if (skb == tcp_send_head(sk))
  2233. break;
  2234. if (!tcp_skb_timedout(sk, skb))
  2235. break;
  2236. tcp_skb_mark_lost(tp, skb);
  2237. }
  2238. tp->scoreboard_skb_hint = skb;
  2239. tcp_verify_left_out(tp);
  2240. }
  2241. /* Detect loss in event "A" above by marking head of queue up as lost.
  2242. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  2243. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  2244. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  2245. * the maximum SACKed segments to pass before reaching this limit.
  2246. */
  2247. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  2248. {
  2249. struct tcp_sock *tp = tcp_sk(sk);
  2250. struct sk_buff *skb;
  2251. int cnt, oldcnt;
  2252. int err;
  2253. unsigned int mss;
  2254. /* Use SACK to deduce losses of new sequences sent during recovery */
  2255. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  2256. WARN_ON(packets > tp->packets_out);
  2257. if (tp->lost_skb_hint) {
  2258. skb = tp->lost_skb_hint;
  2259. cnt = tp->lost_cnt_hint;
  2260. /* Head already handled? */
  2261. if (mark_head && skb != tcp_write_queue_head(sk))
  2262. return;
  2263. } else {
  2264. skb = tcp_write_queue_head(sk);
  2265. cnt = 0;
  2266. }
  2267. tcp_for_write_queue_from(skb, sk) {
  2268. if (skb == tcp_send_head(sk))
  2269. break;
  2270. /* TODO: do this better */
  2271. /* this is not the most efficient way to do this... */
  2272. tp->lost_skb_hint = skb;
  2273. tp->lost_cnt_hint = cnt;
  2274. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  2275. break;
  2276. oldcnt = cnt;
  2277. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  2278. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2279. cnt += tcp_skb_pcount(skb);
  2280. if (cnt > packets) {
  2281. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  2282. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  2283. (oldcnt >= packets))
  2284. break;
  2285. mss = skb_shinfo(skb)->gso_size;
  2286. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  2287. if (err < 0)
  2288. break;
  2289. cnt = packets;
  2290. }
  2291. tcp_skb_mark_lost(tp, skb);
  2292. if (mark_head)
  2293. break;
  2294. }
  2295. tcp_verify_left_out(tp);
  2296. }
  2297. /* Account newly detected lost packet(s) */
  2298. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  2299. {
  2300. struct tcp_sock *tp = tcp_sk(sk);
  2301. if (tcp_is_reno(tp)) {
  2302. tcp_mark_head_lost(sk, 1, 1);
  2303. } else if (tcp_is_fack(tp)) {
  2304. int lost = tp->fackets_out - tp->reordering;
  2305. if (lost <= 0)
  2306. lost = 1;
  2307. tcp_mark_head_lost(sk, lost, 0);
  2308. } else {
  2309. int sacked_upto = tp->sacked_out - tp->reordering;
  2310. if (sacked_upto >= 0)
  2311. tcp_mark_head_lost(sk, sacked_upto, 0);
  2312. else if (fast_rexmit)
  2313. tcp_mark_head_lost(sk, 1, 1);
  2314. }
  2315. tcp_timeout_skbs(sk);
  2316. }
  2317. /* CWND moderation, preventing bursts due to too big ACKs
  2318. * in dubious situations.
  2319. */
  2320. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2321. {
  2322. tp->snd_cwnd = min(tp->snd_cwnd,
  2323. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2324. tp->snd_cwnd_stamp = tcp_time_stamp;
  2325. }
  2326. /* Lower bound on congestion window is slow start threshold
  2327. * unless congestion avoidance choice decides to overide it.
  2328. */
  2329. static inline u32 tcp_cwnd_min(const struct sock *sk)
  2330. {
  2331. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  2332. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  2333. }
  2334. /* Decrease cwnd each second ack. */
  2335. static void tcp_cwnd_down(struct sock *sk, int flag)
  2336. {
  2337. struct tcp_sock *tp = tcp_sk(sk);
  2338. int decr = tp->snd_cwnd_cnt + 1;
  2339. if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
  2340. (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
  2341. tp->snd_cwnd_cnt = decr & 1;
  2342. decr >>= 1;
  2343. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  2344. tp->snd_cwnd -= decr;
  2345. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  2346. tp->snd_cwnd_stamp = tcp_time_stamp;
  2347. }
  2348. }
  2349. /* Nothing was retransmitted or returned timestamp is less
  2350. * than timestamp of the first retransmission.
  2351. */
  2352. static inline int tcp_packet_delayed(const struct tcp_sock *tp)
  2353. {
  2354. return !tp->retrans_stamp ||
  2355. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2356. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2357. }
  2358. /* Undo procedures. */
  2359. #if FASTRETRANS_DEBUG > 1
  2360. static void DBGUNDO(struct sock *sk, const char *msg)
  2361. {
  2362. struct tcp_sock *tp = tcp_sk(sk);
  2363. struct inet_sock *inet = inet_sk(sk);
  2364. if (sk->sk_family == AF_INET) {
  2365. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2366. msg,
  2367. &inet->inet_daddr, ntohs(inet->inet_dport),
  2368. tp->snd_cwnd, tcp_left_out(tp),
  2369. tp->snd_ssthresh, tp->prior_ssthresh,
  2370. tp->packets_out);
  2371. }
  2372. #if IS_ENABLED(CONFIG_IPV6)
  2373. else if (sk->sk_family == AF_INET6) {
  2374. struct ipv6_pinfo *np = inet6_sk(sk);
  2375. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2376. msg,
  2377. &np->daddr, ntohs(inet->inet_dport),
  2378. tp->snd_cwnd, tcp_left_out(tp),
  2379. tp->snd_ssthresh, tp->prior_ssthresh,
  2380. tp->packets_out);
  2381. }
  2382. #endif
  2383. }
  2384. #else
  2385. #define DBGUNDO(x...) do { } while (0)
  2386. #endif
  2387. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  2388. {
  2389. struct tcp_sock *tp = tcp_sk(sk);
  2390. if (tp->prior_ssthresh) {
  2391. const struct inet_connection_sock *icsk = inet_csk(sk);
  2392. if (icsk->icsk_ca_ops->undo_cwnd)
  2393. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2394. else
  2395. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2396. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2397. tp->snd_ssthresh = tp->prior_ssthresh;
  2398. TCP_ECN_withdraw_cwr(tp);
  2399. }
  2400. } else {
  2401. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2402. }
  2403. tp->snd_cwnd_stamp = tcp_time_stamp;
  2404. }
  2405. static inline int tcp_may_undo(const struct tcp_sock *tp)
  2406. {
  2407. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2408. }
  2409. /* People celebrate: "We love our President!" */
  2410. static bool tcp_try_undo_recovery(struct sock *sk)
  2411. {
  2412. struct tcp_sock *tp = tcp_sk(sk);
  2413. if (tcp_may_undo(tp)) {
  2414. int mib_idx;
  2415. /* Happy end! We did not retransmit anything
  2416. * or our original transmission succeeded.
  2417. */
  2418. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2419. tcp_undo_cwr(sk, true);
  2420. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2421. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2422. else
  2423. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2424. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2425. tp->undo_marker = 0;
  2426. }
  2427. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2428. /* Hold old state until something *above* high_seq
  2429. * is ACKed. For Reno it is MUST to prevent false
  2430. * fast retransmits (RFC2582). SACK TCP is safe. */
  2431. tcp_moderate_cwnd(tp);
  2432. return true;
  2433. }
  2434. tcp_set_ca_state(sk, TCP_CA_Open);
  2435. return false;
  2436. }
  2437. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2438. static void tcp_try_undo_dsack(struct sock *sk)
  2439. {
  2440. struct tcp_sock *tp = tcp_sk(sk);
  2441. if (tp->undo_marker && !tp->undo_retrans) {
  2442. DBGUNDO(sk, "D-SACK");
  2443. tcp_undo_cwr(sk, true);
  2444. tp->undo_marker = 0;
  2445. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2446. }
  2447. }
  2448. /* We can clear retrans_stamp when there are no retransmissions in the
  2449. * window. It would seem that it is trivially available for us in
  2450. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2451. * what will happen if errors occur when sending retransmission for the
  2452. * second time. ...It could the that such segment has only
  2453. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2454. * the head skb is enough except for some reneging corner cases that
  2455. * are not worth the effort.
  2456. *
  2457. * Main reason for all this complexity is the fact that connection dying
  2458. * time now depends on the validity of the retrans_stamp, in particular,
  2459. * that successive retransmissions of a segment must not advance
  2460. * retrans_stamp under any conditions.
  2461. */
  2462. static bool tcp_any_retrans_done(const struct sock *sk)
  2463. {
  2464. const struct tcp_sock *tp = tcp_sk(sk);
  2465. struct sk_buff *skb;
  2466. if (tp->retrans_out)
  2467. return true;
  2468. skb = tcp_write_queue_head(sk);
  2469. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2470. return true;
  2471. return false;
  2472. }
  2473. /* Undo during fast recovery after partial ACK. */
  2474. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2475. {
  2476. struct tcp_sock *tp = tcp_sk(sk);
  2477. /* Partial ACK arrived. Force Hoe's retransmit. */
  2478. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2479. if (tcp_may_undo(tp)) {
  2480. /* Plain luck! Hole if filled with delayed
  2481. * packet, rather than with a retransmit.
  2482. */
  2483. if (!tcp_any_retrans_done(sk))
  2484. tp->retrans_stamp = 0;
  2485. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2486. DBGUNDO(sk, "Hoe");
  2487. tcp_undo_cwr(sk, false);
  2488. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2489. /* So... Do not make Hoe's retransmit yet.
  2490. * If the first packet was delayed, the rest
  2491. * ones are most probably delayed as well.
  2492. */
  2493. failed = 0;
  2494. }
  2495. return failed;
  2496. }
  2497. /* Undo during loss recovery after partial ACK. */
  2498. static bool tcp_try_undo_loss(struct sock *sk)
  2499. {
  2500. struct tcp_sock *tp = tcp_sk(sk);
  2501. if (tcp_may_undo(tp)) {
  2502. struct sk_buff *skb;
  2503. tcp_for_write_queue(skb, sk) {
  2504. if (skb == tcp_send_head(sk))
  2505. break;
  2506. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2507. }
  2508. tcp_clear_all_retrans_hints(tp);
  2509. DBGUNDO(sk, "partial loss");
  2510. tp->lost_out = 0;
  2511. tcp_undo_cwr(sk, true);
  2512. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2513. inet_csk(sk)->icsk_retransmits = 0;
  2514. tp->undo_marker = 0;
  2515. if (tcp_is_sack(tp))
  2516. tcp_set_ca_state(sk, TCP_CA_Open);
  2517. return true;
  2518. }
  2519. return false;
  2520. }
  2521. static inline void tcp_complete_cwr(struct sock *sk)
  2522. {
  2523. struct tcp_sock *tp = tcp_sk(sk);
  2524. /* Do not moderate cwnd if it's already undone in cwr or recovery. */
  2525. if (tp->undo_marker) {
  2526. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR) {
  2527. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  2528. tp->snd_cwnd_stamp = tcp_time_stamp;
  2529. } else if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH) {
  2530. /* PRR algorithm. */
  2531. tp->snd_cwnd = tp->snd_ssthresh;
  2532. tp->snd_cwnd_stamp = tcp_time_stamp;
  2533. }
  2534. }
  2535. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2536. }
  2537. static void tcp_try_keep_open(struct sock *sk)
  2538. {
  2539. struct tcp_sock *tp = tcp_sk(sk);
  2540. int state = TCP_CA_Open;
  2541. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2542. state = TCP_CA_Disorder;
  2543. if (inet_csk(sk)->icsk_ca_state != state) {
  2544. tcp_set_ca_state(sk, state);
  2545. tp->high_seq = tp->snd_nxt;
  2546. }
  2547. }
  2548. static void tcp_try_to_open(struct sock *sk, int flag)
  2549. {
  2550. struct tcp_sock *tp = tcp_sk(sk);
  2551. tcp_verify_left_out(tp);
  2552. if (!tp->frto_counter && !tcp_any_retrans_done(sk))
  2553. tp->retrans_stamp = 0;
  2554. if (flag & FLAG_ECE)
  2555. tcp_enter_cwr(sk, 1);
  2556. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2557. tcp_try_keep_open(sk);
  2558. if (inet_csk(sk)->icsk_ca_state != TCP_CA_Open)
  2559. tcp_moderate_cwnd(tp);
  2560. } else {
  2561. tcp_cwnd_down(sk, flag);
  2562. }
  2563. }
  2564. static void tcp_mtup_probe_failed(struct sock *sk)
  2565. {
  2566. struct inet_connection_sock *icsk = inet_csk(sk);
  2567. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2568. icsk->icsk_mtup.probe_size = 0;
  2569. }
  2570. static void tcp_mtup_probe_success(struct sock *sk)
  2571. {
  2572. struct tcp_sock *tp = tcp_sk(sk);
  2573. struct inet_connection_sock *icsk = inet_csk(sk);
  2574. /* FIXME: breaks with very large cwnd */
  2575. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2576. tp->snd_cwnd = tp->snd_cwnd *
  2577. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2578. icsk->icsk_mtup.probe_size;
  2579. tp->snd_cwnd_cnt = 0;
  2580. tp->snd_cwnd_stamp = tcp_time_stamp;
  2581. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2582. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2583. icsk->icsk_mtup.probe_size = 0;
  2584. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2585. }
  2586. /* Do a simple retransmit without using the backoff mechanisms in
  2587. * tcp_timer. This is used for path mtu discovery.
  2588. * The socket is already locked here.
  2589. */
  2590. void tcp_simple_retransmit(struct sock *sk)
  2591. {
  2592. const struct inet_connection_sock *icsk = inet_csk(sk);
  2593. struct tcp_sock *tp = tcp_sk(sk);
  2594. struct sk_buff *skb;
  2595. unsigned int mss = tcp_current_mss(sk);
  2596. u32 prior_lost = tp->lost_out;
  2597. tcp_for_write_queue(skb, sk) {
  2598. if (skb == tcp_send_head(sk))
  2599. break;
  2600. if (tcp_skb_seglen(skb) > mss &&
  2601. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2602. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2603. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2604. tp->retrans_out -= tcp_skb_pcount(skb);
  2605. }
  2606. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2607. }
  2608. }
  2609. tcp_clear_retrans_hints_partial(tp);
  2610. if (prior_lost == tp->lost_out)
  2611. return;
  2612. if (tcp_is_reno(tp))
  2613. tcp_limit_reno_sacked(tp);
  2614. tcp_verify_left_out(tp);
  2615. /* Don't muck with the congestion window here.
  2616. * Reason is that we do not increase amount of _data_
  2617. * in network, but units changed and effective
  2618. * cwnd/ssthresh really reduced now.
  2619. */
  2620. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2621. tp->high_seq = tp->snd_nxt;
  2622. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2623. tp->prior_ssthresh = 0;
  2624. tp->undo_marker = 0;
  2625. tcp_set_ca_state(sk, TCP_CA_Loss);
  2626. }
  2627. tcp_xmit_retransmit_queue(sk);
  2628. }
  2629. EXPORT_SYMBOL(tcp_simple_retransmit);
  2630. /* This function implements the PRR algorithm, specifcally the PRR-SSRB
  2631. * (proportional rate reduction with slow start reduction bound) as described in
  2632. * http://www.ietf.org/id/draft-mathis-tcpm-proportional-rate-reduction-01.txt.
  2633. * It computes the number of packets to send (sndcnt) based on packets newly
  2634. * delivered:
  2635. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2636. * cwnd reductions across a full RTT.
  2637. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2638. * losses and/or application stalls), do not perform any further cwnd
  2639. * reductions, but instead slow start up to ssthresh.
  2640. */
  2641. static void tcp_update_cwnd_in_recovery(struct sock *sk, int newly_acked_sacked,
  2642. int fast_rexmit, int flag)
  2643. {
  2644. struct tcp_sock *tp = tcp_sk(sk);
  2645. int sndcnt = 0;
  2646. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2647. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2648. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2649. tp->prior_cwnd - 1;
  2650. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2651. } else {
  2652. sndcnt = min_t(int, delta,
  2653. max_t(int, tp->prr_delivered - tp->prr_out,
  2654. newly_acked_sacked) + 1);
  2655. }
  2656. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2657. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2658. }
  2659. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2660. {
  2661. struct tcp_sock *tp = tcp_sk(sk);
  2662. int mib_idx;
  2663. if (tcp_is_reno(tp))
  2664. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2665. else
  2666. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2667. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2668. tp->high_seq = tp->snd_nxt;
  2669. tp->prior_ssthresh = 0;
  2670. tp->undo_marker = tp->snd_una;
  2671. tp->undo_retrans = tp->retrans_out;
  2672. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2673. if (!ece_ack)
  2674. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2675. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2676. TCP_ECN_queue_cwr(tp);
  2677. }
  2678. tp->bytes_acked = 0;
  2679. tp->snd_cwnd_cnt = 0;
  2680. tp->prior_cwnd = tp->snd_cwnd;
  2681. tp->prr_delivered = 0;
  2682. tp->prr_out = 0;
  2683. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2684. }
  2685. /* Process an event, which can update packets-in-flight not trivially.
  2686. * Main goal of this function is to calculate new estimate for left_out,
  2687. * taking into account both packets sitting in receiver's buffer and
  2688. * packets lost by network.
  2689. *
  2690. * Besides that it does CWND reduction, when packet loss is detected
  2691. * and changes state of machine.
  2692. *
  2693. * It does _not_ decide what to send, it is made in function
  2694. * tcp_xmit_retransmit_queue().
  2695. */
  2696. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked,
  2697. int newly_acked_sacked, bool is_dupack,
  2698. int flag)
  2699. {
  2700. struct inet_connection_sock *icsk = inet_csk(sk);
  2701. struct tcp_sock *tp = tcp_sk(sk);
  2702. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2703. (tcp_fackets_out(tp) > tp->reordering));
  2704. int fast_rexmit = 0;
  2705. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2706. tp->sacked_out = 0;
  2707. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2708. tp->fackets_out = 0;
  2709. /* Now state machine starts.
  2710. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2711. if (flag & FLAG_ECE)
  2712. tp->prior_ssthresh = 0;
  2713. /* B. In all the states check for reneging SACKs. */
  2714. if (tcp_check_sack_reneging(sk, flag))
  2715. return;
  2716. /* C. Check consistency of the current state. */
  2717. tcp_verify_left_out(tp);
  2718. /* D. Check state exit conditions. State can be terminated
  2719. * when high_seq is ACKed. */
  2720. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2721. WARN_ON(tp->retrans_out != 0);
  2722. tp->retrans_stamp = 0;
  2723. } else if (!before(tp->snd_una, tp->high_seq)) {
  2724. switch (icsk->icsk_ca_state) {
  2725. case TCP_CA_Loss:
  2726. icsk->icsk_retransmits = 0;
  2727. if (tcp_try_undo_recovery(sk))
  2728. return;
  2729. break;
  2730. case TCP_CA_CWR:
  2731. /* CWR is to be held something *above* high_seq
  2732. * is ACKed for CWR bit to reach receiver. */
  2733. if (tp->snd_una != tp->high_seq) {
  2734. tcp_complete_cwr(sk);
  2735. tcp_set_ca_state(sk, TCP_CA_Open);
  2736. }
  2737. break;
  2738. case TCP_CA_Recovery:
  2739. if (tcp_is_reno(tp))
  2740. tcp_reset_reno_sack(tp);
  2741. if (tcp_try_undo_recovery(sk))
  2742. return;
  2743. tcp_complete_cwr(sk);
  2744. break;
  2745. }
  2746. }
  2747. /* E. Process state. */
  2748. switch (icsk->icsk_ca_state) {
  2749. case TCP_CA_Recovery:
  2750. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2751. if (tcp_is_reno(tp) && is_dupack)
  2752. tcp_add_reno_sack(sk);
  2753. } else
  2754. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2755. break;
  2756. case TCP_CA_Loss:
  2757. if (flag & FLAG_DATA_ACKED)
  2758. icsk->icsk_retransmits = 0;
  2759. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2760. tcp_reset_reno_sack(tp);
  2761. if (!tcp_try_undo_loss(sk)) {
  2762. tcp_moderate_cwnd(tp);
  2763. tcp_xmit_retransmit_queue(sk);
  2764. return;
  2765. }
  2766. if (icsk->icsk_ca_state != TCP_CA_Open)
  2767. return;
  2768. /* Loss is undone; fall through to processing in Open state. */
  2769. default:
  2770. if (tcp_is_reno(tp)) {
  2771. if (flag & FLAG_SND_UNA_ADVANCED)
  2772. tcp_reset_reno_sack(tp);
  2773. if (is_dupack)
  2774. tcp_add_reno_sack(sk);
  2775. }
  2776. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2777. tcp_try_undo_dsack(sk);
  2778. if (!tcp_time_to_recover(sk, flag)) {
  2779. tcp_try_to_open(sk, flag);
  2780. return;
  2781. }
  2782. /* MTU probe failure: don't reduce cwnd */
  2783. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2784. icsk->icsk_mtup.probe_size &&
  2785. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2786. tcp_mtup_probe_failed(sk);
  2787. /* Restores the reduction we did in tcp_mtup_probe() */
  2788. tp->snd_cwnd++;
  2789. tcp_simple_retransmit(sk);
  2790. return;
  2791. }
  2792. /* Otherwise enter Recovery state */
  2793. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2794. fast_rexmit = 1;
  2795. }
  2796. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2797. tcp_update_scoreboard(sk, fast_rexmit);
  2798. tp->prr_delivered += newly_acked_sacked;
  2799. tcp_update_cwnd_in_recovery(sk, newly_acked_sacked, fast_rexmit, flag);
  2800. tcp_xmit_retransmit_queue(sk);
  2801. }
  2802. void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2803. {
  2804. tcp_rtt_estimator(sk, seq_rtt);
  2805. tcp_set_rto(sk);
  2806. inet_csk(sk)->icsk_backoff = 0;
  2807. }
  2808. EXPORT_SYMBOL(tcp_valid_rtt_meas);
  2809. /* Read draft-ietf-tcplw-high-performance before mucking
  2810. * with this code. (Supersedes RFC1323)
  2811. */
  2812. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2813. {
  2814. /* RTTM Rule: A TSecr value received in a segment is used to
  2815. * update the averaged RTT measurement only if the segment
  2816. * acknowledges some new data, i.e., only if it advances the
  2817. * left edge of the send window.
  2818. *
  2819. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2820. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2821. *
  2822. * Changed: reset backoff as soon as we see the first valid sample.
  2823. * If we do not, we get strongly overestimated rto. With timestamps
  2824. * samples are accepted even from very old segments: f.e., when rtt=1
  2825. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2826. * answer arrives rto becomes 120 seconds! If at least one of segments
  2827. * in window is lost... Voila. --ANK (010210)
  2828. */
  2829. struct tcp_sock *tp = tcp_sk(sk);
  2830. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2831. }
  2832. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2833. {
  2834. /* We don't have a timestamp. Can only use
  2835. * packets that are not retransmitted to determine
  2836. * rtt estimates. Also, we must not reset the
  2837. * backoff for rto until we get a non-retransmitted
  2838. * packet. This allows us to deal with a situation
  2839. * where the network delay has increased suddenly.
  2840. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2841. */
  2842. if (flag & FLAG_RETRANS_DATA_ACKED)
  2843. return;
  2844. tcp_valid_rtt_meas(sk, seq_rtt);
  2845. }
  2846. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2847. const s32 seq_rtt)
  2848. {
  2849. const struct tcp_sock *tp = tcp_sk(sk);
  2850. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2851. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2852. tcp_ack_saw_tstamp(sk, flag);
  2853. else if (seq_rtt >= 0)
  2854. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2855. }
  2856. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2857. {
  2858. const struct inet_connection_sock *icsk = inet_csk(sk);
  2859. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2860. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2861. }
  2862. /* Restart timer after forward progress on connection.
  2863. * RFC2988 recommends to restart timer to now+rto.
  2864. */
  2865. void tcp_rearm_rto(struct sock *sk)
  2866. {
  2867. struct tcp_sock *tp = tcp_sk(sk);
  2868. if (!tp->packets_out) {
  2869. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2870. } else {
  2871. u32 rto = inet_csk(sk)->icsk_rto;
  2872. /* Offset the time elapsed after installing regular RTO */
  2873. if (tp->early_retrans_delayed) {
  2874. struct sk_buff *skb = tcp_write_queue_head(sk);
  2875. const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
  2876. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2877. /* delta may not be positive if the socket is locked
  2878. * when the delayed ER timer fires and is rescheduled.
  2879. */
  2880. if (delta > 0)
  2881. rto = delta;
  2882. }
  2883. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2884. TCP_RTO_MAX);
  2885. }
  2886. tp->early_retrans_delayed = 0;
  2887. }
  2888. /* This function is called when the delayed ER timer fires. TCP enters
  2889. * fast recovery and performs fast-retransmit.
  2890. */
  2891. void tcp_resume_early_retransmit(struct sock *sk)
  2892. {
  2893. struct tcp_sock *tp = tcp_sk(sk);
  2894. tcp_rearm_rto(sk);
  2895. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2896. if (!tp->do_early_retrans)
  2897. return;
  2898. tcp_enter_recovery(sk, false);
  2899. tcp_update_scoreboard(sk, 1);
  2900. tcp_xmit_retransmit_queue(sk);
  2901. }
  2902. /* If we get here, the whole TSO packet has not been acked. */
  2903. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2904. {
  2905. struct tcp_sock *tp = tcp_sk(sk);
  2906. u32 packets_acked;
  2907. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2908. packets_acked = tcp_skb_pcount(skb);
  2909. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2910. return 0;
  2911. packets_acked -= tcp_skb_pcount(skb);
  2912. if (packets_acked) {
  2913. BUG_ON(tcp_skb_pcount(skb) == 0);
  2914. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2915. }
  2916. return packets_acked;
  2917. }
  2918. /* Remove acknowledged frames from the retransmission queue. If our packet
  2919. * is before the ack sequence we can discard it as it's confirmed to have
  2920. * arrived at the other end.
  2921. */
  2922. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2923. u32 prior_snd_una)
  2924. {
  2925. struct tcp_sock *tp = tcp_sk(sk);
  2926. const struct inet_connection_sock *icsk = inet_csk(sk);
  2927. struct sk_buff *skb;
  2928. u32 now = tcp_time_stamp;
  2929. int fully_acked = true;
  2930. int flag = 0;
  2931. u32 pkts_acked = 0;
  2932. u32 reord = tp->packets_out;
  2933. u32 prior_sacked = tp->sacked_out;
  2934. s32 seq_rtt = -1;
  2935. s32 ca_seq_rtt = -1;
  2936. ktime_t last_ackt = net_invalid_timestamp();
  2937. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2938. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2939. u32 acked_pcount;
  2940. u8 sacked = scb->sacked;
  2941. /* Determine how many packets and what bytes were acked, tso and else */
  2942. if (after(scb->end_seq, tp->snd_una)) {
  2943. if (tcp_skb_pcount(skb) == 1 ||
  2944. !after(tp->snd_una, scb->seq))
  2945. break;
  2946. acked_pcount = tcp_tso_acked(sk, skb);
  2947. if (!acked_pcount)
  2948. break;
  2949. fully_acked = false;
  2950. } else {
  2951. acked_pcount = tcp_skb_pcount(skb);
  2952. }
  2953. if (sacked & TCPCB_RETRANS) {
  2954. if (sacked & TCPCB_SACKED_RETRANS)
  2955. tp->retrans_out -= acked_pcount;
  2956. flag |= FLAG_RETRANS_DATA_ACKED;
  2957. ca_seq_rtt = -1;
  2958. seq_rtt = -1;
  2959. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2960. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2961. } else {
  2962. ca_seq_rtt = now - scb->when;
  2963. last_ackt = skb->tstamp;
  2964. if (seq_rtt < 0) {
  2965. seq_rtt = ca_seq_rtt;
  2966. }
  2967. if (!(sacked & TCPCB_SACKED_ACKED))
  2968. reord = min(pkts_acked, reord);
  2969. }
  2970. if (sacked & TCPCB_SACKED_ACKED)
  2971. tp->sacked_out -= acked_pcount;
  2972. if (sacked & TCPCB_LOST)
  2973. tp->lost_out -= acked_pcount;
  2974. tp->packets_out -= acked_pcount;
  2975. pkts_acked += acked_pcount;
  2976. /* Initial outgoing SYN's get put onto the write_queue
  2977. * just like anything else we transmit. It is not
  2978. * true data, and if we misinform our callers that
  2979. * this ACK acks real data, we will erroneously exit
  2980. * connection startup slow start one packet too
  2981. * quickly. This is severely frowned upon behavior.
  2982. */
  2983. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2984. flag |= FLAG_DATA_ACKED;
  2985. } else {
  2986. flag |= FLAG_SYN_ACKED;
  2987. tp->retrans_stamp = 0;
  2988. }
  2989. if (!fully_acked)
  2990. break;
  2991. tcp_unlink_write_queue(skb, sk);
  2992. sk_wmem_free_skb(sk, skb);
  2993. tp->scoreboard_skb_hint = NULL;
  2994. if (skb == tp->retransmit_skb_hint)
  2995. tp->retransmit_skb_hint = NULL;
  2996. if (skb == tp->lost_skb_hint)
  2997. tp->lost_skb_hint = NULL;
  2998. }
  2999. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  3000. tp->snd_up = tp->snd_una;
  3001. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  3002. flag |= FLAG_SACK_RENEGING;
  3003. if (flag & FLAG_ACKED) {
  3004. const struct tcp_congestion_ops *ca_ops
  3005. = inet_csk(sk)->icsk_ca_ops;
  3006. if (unlikely(icsk->icsk_mtup.probe_size &&
  3007. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  3008. tcp_mtup_probe_success(sk);
  3009. }
  3010. tcp_ack_update_rtt(sk, flag, seq_rtt);
  3011. tcp_rearm_rto(sk);
  3012. if (tcp_is_reno(tp)) {
  3013. tcp_remove_reno_sacks(sk, pkts_acked);
  3014. } else {
  3015. int delta;
  3016. /* Non-retransmitted hole got filled? That's reordering */
  3017. if (reord < prior_fackets)
  3018. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  3019. delta = tcp_is_fack(tp) ? pkts_acked :
  3020. prior_sacked - tp->sacked_out;
  3021. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  3022. }
  3023. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  3024. if (ca_ops->pkts_acked) {
  3025. s32 rtt_us = -1;
  3026. /* Is the ACK triggering packet unambiguous? */
  3027. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  3028. /* High resolution needed and available? */
  3029. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  3030. !ktime_equal(last_ackt,
  3031. net_invalid_timestamp()))
  3032. rtt_us = ktime_us_delta(ktime_get_real(),
  3033. last_ackt);
  3034. else if (ca_seq_rtt >= 0)
  3035. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  3036. }
  3037. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  3038. }
  3039. }
  3040. #if FASTRETRANS_DEBUG > 0
  3041. WARN_ON((int)tp->sacked_out < 0);
  3042. WARN_ON((int)tp->lost_out < 0);
  3043. WARN_ON((int)tp->retrans_out < 0);
  3044. if (!tp->packets_out && tcp_is_sack(tp)) {
  3045. icsk = inet_csk(sk);
  3046. if (tp->lost_out) {
  3047. pr_debug("Leak l=%u %d\n",
  3048. tp->lost_out, icsk->icsk_ca_state);
  3049. tp->lost_out = 0;
  3050. }
  3051. if (tp->sacked_out) {
  3052. pr_debug("Leak s=%u %d\n",
  3053. tp->sacked_out, icsk->icsk_ca_state);
  3054. tp->sacked_out = 0;
  3055. }
  3056. if (tp->retrans_out) {
  3057. pr_debug("Leak r=%u %d\n",
  3058. tp->retrans_out, icsk->icsk_ca_state);
  3059. tp->retrans_out = 0;
  3060. }
  3061. }
  3062. #endif
  3063. return flag;
  3064. }
  3065. static void tcp_ack_probe(struct sock *sk)
  3066. {
  3067. const struct tcp_sock *tp = tcp_sk(sk);
  3068. struct inet_connection_sock *icsk = inet_csk(sk);
  3069. /* Was it a usable window open? */
  3070. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  3071. icsk->icsk_backoff = 0;
  3072. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  3073. /* Socket must be waked up by subsequent tcp_data_snd_check().
  3074. * This function is not for random using!
  3075. */
  3076. } else {
  3077. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  3078. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  3079. TCP_RTO_MAX);
  3080. }
  3081. }
  3082. static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
  3083. {
  3084. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  3085. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  3086. }
  3087. static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  3088. {
  3089. const struct tcp_sock *tp = tcp_sk(sk);
  3090. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  3091. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  3092. }
  3093. /* Check that window update is acceptable.
  3094. * The function assumes that snd_una<=ack<=snd_next.
  3095. */
  3096. static inline int tcp_may_update_window(const struct tcp_sock *tp,
  3097. const u32 ack, const u32 ack_seq,
  3098. const u32 nwin)
  3099. {
  3100. return after(ack, tp->snd_una) ||
  3101. after(ack_seq, tp->snd_wl1) ||
  3102. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  3103. }
  3104. /* Update our send window.
  3105. *
  3106. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  3107. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  3108. */
  3109. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  3110. u32 ack_seq)
  3111. {
  3112. struct tcp_sock *tp = tcp_sk(sk);
  3113. int flag = 0;
  3114. u32 nwin = ntohs(tcp_hdr(skb)->window);
  3115. if (likely(!tcp_hdr(skb)->syn))
  3116. nwin <<= tp->rx_opt.snd_wscale;
  3117. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  3118. flag |= FLAG_WIN_UPDATE;
  3119. tcp_update_wl(tp, ack_seq);
  3120. if (tp->snd_wnd != nwin) {
  3121. tp->snd_wnd = nwin;
  3122. /* Note, it is the only place, where
  3123. * fast path is recovered for sending TCP.
  3124. */
  3125. tp->pred_flags = 0;
  3126. tcp_fast_path_check(sk);
  3127. if (nwin > tp->max_window) {
  3128. tp->max_window = nwin;
  3129. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  3130. }
  3131. }
  3132. }
  3133. tp->snd_una = ack;
  3134. return flag;
  3135. }
  3136. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  3137. * continue in congestion avoidance.
  3138. */
  3139. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  3140. {
  3141. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  3142. tp->snd_cwnd_cnt = 0;
  3143. tp->bytes_acked = 0;
  3144. TCP_ECN_queue_cwr(tp);
  3145. tcp_moderate_cwnd(tp);
  3146. }
  3147. /* A conservative spurious RTO response algorithm: reduce cwnd using
  3148. * rate halving and continue in congestion avoidance.
  3149. */
  3150. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  3151. {
  3152. tcp_enter_cwr(sk, 0);
  3153. }
  3154. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  3155. {
  3156. if (flag & FLAG_ECE)
  3157. tcp_ratehalving_spur_to_response(sk);
  3158. else
  3159. tcp_undo_cwr(sk, true);
  3160. }
  3161. /* F-RTO spurious RTO detection algorithm (RFC4138)
  3162. *
  3163. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  3164. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  3165. * window (but not to or beyond highest sequence sent before RTO):
  3166. * On First ACK, send two new segments out.
  3167. * On Second ACK, RTO was likely spurious. Do spurious response (response
  3168. * algorithm is not part of the F-RTO detection algorithm
  3169. * given in RFC4138 but can be selected separately).
  3170. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  3171. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  3172. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  3173. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  3174. *
  3175. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  3176. * original window even after we transmit two new data segments.
  3177. *
  3178. * SACK version:
  3179. * on first step, wait until first cumulative ACK arrives, then move to
  3180. * the second step. In second step, the next ACK decides.
  3181. *
  3182. * F-RTO is implemented (mainly) in four functions:
  3183. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  3184. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  3185. * called when tcp_use_frto() showed green light
  3186. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  3187. * - tcp_enter_frto_loss() is called if there is not enough evidence
  3188. * to prove that the RTO is indeed spurious. It transfers the control
  3189. * from F-RTO to the conventional RTO recovery
  3190. */
  3191. static bool tcp_process_frto(struct sock *sk, int flag)
  3192. {
  3193. struct tcp_sock *tp = tcp_sk(sk);
  3194. tcp_verify_left_out(tp);
  3195. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  3196. if (flag & FLAG_DATA_ACKED)
  3197. inet_csk(sk)->icsk_retransmits = 0;
  3198. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  3199. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  3200. tp->undo_marker = 0;
  3201. if (!before(tp->snd_una, tp->frto_highmark)) {
  3202. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  3203. return true;
  3204. }
  3205. if (!tcp_is_sackfrto(tp)) {
  3206. /* RFC4138 shortcoming in step 2; should also have case c):
  3207. * ACK isn't duplicate nor advances window, e.g., opposite dir
  3208. * data, winupdate
  3209. */
  3210. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  3211. return true;
  3212. if (!(flag & FLAG_DATA_ACKED)) {
  3213. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  3214. flag);
  3215. return true;
  3216. }
  3217. } else {
  3218. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  3219. /* Prevent sending of new data. */
  3220. tp->snd_cwnd = min(tp->snd_cwnd,
  3221. tcp_packets_in_flight(tp));
  3222. return true;
  3223. }
  3224. if ((tp->frto_counter >= 2) &&
  3225. (!(flag & FLAG_FORWARD_PROGRESS) ||
  3226. ((flag & FLAG_DATA_SACKED) &&
  3227. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  3228. /* RFC4138 shortcoming (see comment above) */
  3229. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  3230. (flag & FLAG_NOT_DUP))
  3231. return true;
  3232. tcp_enter_frto_loss(sk, 3, flag);
  3233. return true;
  3234. }
  3235. }
  3236. if (tp->frto_counter == 1) {
  3237. /* tcp_may_send_now needs to see updated state */
  3238. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  3239. tp->frto_counter = 2;
  3240. if (!tcp_may_send_now(sk))
  3241. tcp_enter_frto_loss(sk, 2, flag);
  3242. return true;
  3243. } else {
  3244. switch (sysctl_tcp_frto_response) {
  3245. case 2:
  3246. tcp_undo_spur_to_response(sk, flag);
  3247. break;
  3248. case 1:
  3249. tcp_conservative_spur_to_response(tp);
  3250. break;
  3251. default:
  3252. tcp_ratehalving_spur_to_response(sk);
  3253. break;
  3254. }
  3255. tp->frto_counter = 0;
  3256. tp->undo_marker = 0;
  3257. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  3258. }
  3259. return false;
  3260. }
  3261. /* This routine deals with incoming acks, but not outgoing ones. */
  3262. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  3263. {
  3264. struct inet_connection_sock *icsk = inet_csk(sk);
  3265. struct tcp_sock *tp = tcp_sk(sk);
  3266. u32 prior_snd_una = tp->snd_una;
  3267. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3268. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3269. bool is_dupack = false;
  3270. u32 prior_in_flight;
  3271. u32 prior_fackets;
  3272. int prior_packets;
  3273. int prior_sacked = tp->sacked_out;
  3274. int pkts_acked = 0;
  3275. int newly_acked_sacked = 0;
  3276. bool frto_cwnd = false;
  3277. /* If the ack is older than previous acks
  3278. * then we can probably ignore it.
  3279. */
  3280. if (before(ack, prior_snd_una))
  3281. goto old_ack;
  3282. /* If the ack includes data we haven't sent yet, discard
  3283. * this segment (RFC793 Section 3.9).
  3284. */
  3285. if (after(ack, tp->snd_nxt))
  3286. goto invalid_ack;
  3287. if (tp->early_retrans_delayed)
  3288. tcp_rearm_rto(sk);
  3289. if (after(ack, prior_snd_una))
  3290. flag |= FLAG_SND_UNA_ADVANCED;
  3291. if (sysctl_tcp_abc) {
  3292. if (icsk->icsk_ca_state < TCP_CA_CWR)
  3293. tp->bytes_acked += ack - prior_snd_una;
  3294. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  3295. /* we assume just one segment left network */
  3296. tp->bytes_acked += min(ack - prior_snd_una,
  3297. tp->mss_cache);
  3298. }
  3299. prior_fackets = tp->fackets_out;
  3300. prior_in_flight = tcp_packets_in_flight(tp);
  3301. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3302. /* Window is constant, pure forward advance.
  3303. * No more checks are required.
  3304. * Note, we use the fact that SND.UNA>=SND.WL2.
  3305. */
  3306. tcp_update_wl(tp, ack_seq);
  3307. tp->snd_una = ack;
  3308. flag |= FLAG_WIN_UPDATE;
  3309. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  3310. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3311. } else {
  3312. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3313. flag |= FLAG_DATA;
  3314. else
  3315. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3316. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3317. if (TCP_SKB_CB(skb)->sacked)
  3318. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3319. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  3320. flag |= FLAG_ECE;
  3321. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  3322. }
  3323. /* We passed data and got it acked, remove any soft error
  3324. * log. Something worked...
  3325. */
  3326. sk->sk_err_soft = 0;
  3327. icsk->icsk_probes_out = 0;
  3328. tp->rcv_tstamp = tcp_time_stamp;
  3329. prior_packets = tp->packets_out;
  3330. if (!prior_packets)
  3331. goto no_queue;
  3332. /* See if we can take anything off of the retransmit queue. */
  3333. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  3334. pkts_acked = prior_packets - tp->packets_out;
  3335. newly_acked_sacked = (prior_packets - prior_sacked) -
  3336. (tp->packets_out - tp->sacked_out);
  3337. if (tp->frto_counter)
  3338. frto_cwnd = tcp_process_frto(sk, flag);
  3339. /* Guarantee sacktag reordering detection against wrap-arounds */
  3340. if (before(tp->frto_highmark, tp->snd_una))
  3341. tp->frto_highmark = 0;
  3342. if (tcp_ack_is_dubious(sk, flag)) {
  3343. /* Advance CWND, if state allows this. */
  3344. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  3345. tcp_may_raise_cwnd(sk, flag))
  3346. tcp_cong_avoid(sk, ack, prior_in_flight);
  3347. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  3348. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3349. is_dupack, flag);
  3350. } else {
  3351. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  3352. tcp_cong_avoid(sk, ack, prior_in_flight);
  3353. }
  3354. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3355. dst_confirm(__sk_dst_get(sk));
  3356. return 1;
  3357. no_queue:
  3358. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3359. if (flag & FLAG_DSACKING_ACK)
  3360. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3361. is_dupack, flag);
  3362. /* If this ack opens up a zero window, clear backoff. It was
  3363. * being used to time the probes, and is probably far higher than
  3364. * it needs to be for normal retransmission.
  3365. */
  3366. if (tcp_send_head(sk))
  3367. tcp_ack_probe(sk);
  3368. return 1;
  3369. invalid_ack:
  3370. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3371. return -1;
  3372. old_ack:
  3373. /* If data was SACKed, tag it and see if we should send more data.
  3374. * If data was DSACKed, see if we can undo a cwnd reduction.
  3375. */
  3376. if (TCP_SKB_CB(skb)->sacked) {
  3377. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3378. newly_acked_sacked = tp->sacked_out - prior_sacked;
  3379. tcp_fastretrans_alert(sk, pkts_acked, newly_acked_sacked,
  3380. is_dupack, flag);
  3381. }
  3382. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3383. return 0;
  3384. }
  3385. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3386. * But, this can also be called on packets in the established flow when
  3387. * the fast version below fails.
  3388. */
  3389. void tcp_parse_options(const struct sk_buff *skb, struct tcp_options_received *opt_rx,
  3390. const u8 **hvpp, int estab)
  3391. {
  3392. const unsigned char *ptr;
  3393. const struct tcphdr *th = tcp_hdr(skb);
  3394. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3395. ptr = (const unsigned char *)(th + 1);
  3396. opt_rx->saw_tstamp = 0;
  3397. while (length > 0) {
  3398. int opcode = *ptr++;
  3399. int opsize;
  3400. switch (opcode) {
  3401. case TCPOPT_EOL:
  3402. return;
  3403. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3404. length--;
  3405. continue;
  3406. default:
  3407. opsize = *ptr++;
  3408. if (opsize < 2) /* "silly options" */
  3409. return;
  3410. if (opsize > length)
  3411. return; /* don't parse partial options */
  3412. switch (opcode) {
  3413. case TCPOPT_MSS:
  3414. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3415. u16 in_mss = get_unaligned_be16(ptr);
  3416. if (in_mss) {
  3417. if (opt_rx->user_mss &&
  3418. opt_rx->user_mss < in_mss)
  3419. in_mss = opt_rx->user_mss;
  3420. opt_rx->mss_clamp = in_mss;
  3421. }
  3422. }
  3423. break;
  3424. case TCPOPT_WINDOW:
  3425. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3426. !estab && sysctl_tcp_window_scaling) {
  3427. __u8 snd_wscale = *(__u8 *)ptr;
  3428. opt_rx->wscale_ok = 1;
  3429. if (snd_wscale > 14) {
  3430. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3431. __func__,
  3432. snd_wscale);
  3433. snd_wscale = 14;
  3434. }
  3435. opt_rx->snd_wscale = snd_wscale;
  3436. }
  3437. break;
  3438. case TCPOPT_TIMESTAMP:
  3439. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3440. ((estab && opt_rx->tstamp_ok) ||
  3441. (!estab && sysctl_tcp_timestamps))) {
  3442. opt_rx->saw_tstamp = 1;
  3443. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3444. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3445. }
  3446. break;
  3447. case TCPOPT_SACK_PERM:
  3448. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3449. !estab && sysctl_tcp_sack) {
  3450. opt_rx->sack_ok = TCP_SACK_SEEN;
  3451. tcp_sack_reset(opt_rx);
  3452. }
  3453. break;
  3454. case TCPOPT_SACK:
  3455. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3456. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3457. opt_rx->sack_ok) {
  3458. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3459. }
  3460. break;
  3461. #ifdef CONFIG_TCP_MD5SIG
  3462. case TCPOPT_MD5SIG:
  3463. /*
  3464. * The MD5 Hash has already been
  3465. * checked (see tcp_v{4,6}_do_rcv()).
  3466. */
  3467. break;
  3468. #endif
  3469. case TCPOPT_COOKIE:
  3470. /* This option is variable length.
  3471. */
  3472. switch (opsize) {
  3473. case TCPOLEN_COOKIE_BASE:
  3474. /* not yet implemented */
  3475. break;
  3476. case TCPOLEN_COOKIE_PAIR:
  3477. /* not yet implemented */
  3478. break;
  3479. case TCPOLEN_COOKIE_MIN+0:
  3480. case TCPOLEN_COOKIE_MIN+2:
  3481. case TCPOLEN_COOKIE_MIN+4:
  3482. case TCPOLEN_COOKIE_MIN+6:
  3483. case TCPOLEN_COOKIE_MAX:
  3484. /* 16-bit multiple */
  3485. opt_rx->cookie_plus = opsize;
  3486. *hvpp = ptr;
  3487. break;
  3488. default:
  3489. /* ignore option */
  3490. break;
  3491. }
  3492. break;
  3493. }
  3494. ptr += opsize-2;
  3495. length -= opsize;
  3496. }
  3497. }
  3498. }
  3499. EXPORT_SYMBOL(tcp_parse_options);
  3500. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3501. {
  3502. const __be32 *ptr = (const __be32 *)(th + 1);
  3503. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3504. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3505. tp->rx_opt.saw_tstamp = 1;
  3506. ++ptr;
  3507. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3508. ++ptr;
  3509. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3510. return true;
  3511. }
  3512. return false;
  3513. }
  3514. /* Fast parse options. This hopes to only see timestamps.
  3515. * If it is wrong it falls back on tcp_parse_options().
  3516. */
  3517. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3518. const struct tcphdr *th,
  3519. struct tcp_sock *tp, const u8 **hvpp)
  3520. {
  3521. /* In the spirit of fast parsing, compare doff directly to constant
  3522. * values. Because equality is used, short doff can be ignored here.
  3523. */
  3524. if (th->doff == (sizeof(*th) / 4)) {
  3525. tp->rx_opt.saw_tstamp = 0;
  3526. return false;
  3527. } else if (tp->rx_opt.tstamp_ok &&
  3528. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3529. if (tcp_parse_aligned_timestamp(tp, th))
  3530. return true;
  3531. }
  3532. tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
  3533. return true;
  3534. }
  3535. #ifdef CONFIG_TCP_MD5SIG
  3536. /*
  3537. * Parse MD5 Signature option
  3538. */
  3539. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3540. {
  3541. int length = (th->doff << 2) - sizeof(*th);
  3542. const u8 *ptr = (const u8 *)(th + 1);
  3543. /* If the TCP option is too short, we can short cut */
  3544. if (length < TCPOLEN_MD5SIG)
  3545. return NULL;
  3546. while (length > 0) {
  3547. int opcode = *ptr++;
  3548. int opsize;
  3549. switch(opcode) {
  3550. case TCPOPT_EOL:
  3551. return NULL;
  3552. case TCPOPT_NOP:
  3553. length--;
  3554. continue;
  3555. default:
  3556. opsize = *ptr++;
  3557. if (opsize < 2 || opsize > length)
  3558. return NULL;
  3559. if (opcode == TCPOPT_MD5SIG)
  3560. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3561. }
  3562. ptr += opsize - 2;
  3563. length -= opsize;
  3564. }
  3565. return NULL;
  3566. }
  3567. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3568. #endif
  3569. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3570. {
  3571. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3572. tp->rx_opt.ts_recent_stamp = get_seconds();
  3573. }
  3574. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3575. {
  3576. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3577. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3578. * extra check below makes sure this can only happen
  3579. * for pure ACK frames. -DaveM
  3580. *
  3581. * Not only, also it occurs for expired timestamps.
  3582. */
  3583. if (tcp_paws_check(&tp->rx_opt, 0))
  3584. tcp_store_ts_recent(tp);
  3585. }
  3586. }
  3587. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3588. *
  3589. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3590. * it can pass through stack. So, the following predicate verifies that
  3591. * this segment is not used for anything but congestion avoidance or
  3592. * fast retransmit. Moreover, we even are able to eliminate most of such
  3593. * second order effects, if we apply some small "replay" window (~RTO)
  3594. * to timestamp space.
  3595. *
  3596. * All these measures still do not guarantee that we reject wrapped ACKs
  3597. * on networks with high bandwidth, when sequence space is recycled fastly,
  3598. * but it guarantees that such events will be very rare and do not affect
  3599. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3600. * buggy extension.
  3601. *
  3602. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3603. * states that events when retransmit arrives after original data are rare.
  3604. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3605. * the biggest problem on large power networks even with minor reordering.
  3606. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3607. * up to bandwidth of 18Gigabit/sec. 8) ]
  3608. */
  3609. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3610. {
  3611. const struct tcp_sock *tp = tcp_sk(sk);
  3612. const struct tcphdr *th = tcp_hdr(skb);
  3613. u32 seq = TCP_SKB_CB(skb)->seq;
  3614. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3615. return (/* 1. Pure ACK with correct sequence number. */
  3616. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3617. /* 2. ... and duplicate ACK. */
  3618. ack == tp->snd_una &&
  3619. /* 3. ... and does not update window. */
  3620. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3621. /* 4. ... and sits in replay window. */
  3622. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3623. }
  3624. static inline int tcp_paws_discard(const struct sock *sk,
  3625. const struct sk_buff *skb)
  3626. {
  3627. const struct tcp_sock *tp = tcp_sk(sk);
  3628. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3629. !tcp_disordered_ack(sk, skb);
  3630. }
  3631. /* Check segment sequence number for validity.
  3632. *
  3633. * Segment controls are considered valid, if the segment
  3634. * fits to the window after truncation to the window. Acceptability
  3635. * of data (and SYN, FIN, of course) is checked separately.
  3636. * See tcp_data_queue(), for example.
  3637. *
  3638. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3639. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3640. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3641. * (borrowed from freebsd)
  3642. */
  3643. static inline int tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3644. {
  3645. return !before(end_seq, tp->rcv_wup) &&
  3646. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3647. }
  3648. /* When we get a reset we do this. */
  3649. static void tcp_reset(struct sock *sk)
  3650. {
  3651. /* We want the right error as BSD sees it (and indeed as we do). */
  3652. switch (sk->sk_state) {
  3653. case TCP_SYN_SENT:
  3654. sk->sk_err = ECONNREFUSED;
  3655. break;
  3656. case TCP_CLOSE_WAIT:
  3657. sk->sk_err = EPIPE;
  3658. break;
  3659. case TCP_CLOSE:
  3660. return;
  3661. default:
  3662. sk->sk_err = ECONNRESET;
  3663. }
  3664. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3665. smp_wmb();
  3666. if (!sock_flag(sk, SOCK_DEAD))
  3667. sk->sk_error_report(sk);
  3668. tcp_done(sk);
  3669. }
  3670. /*
  3671. * Process the FIN bit. This now behaves as it is supposed to work
  3672. * and the FIN takes effect when it is validly part of sequence
  3673. * space. Not before when we get holes.
  3674. *
  3675. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3676. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3677. * TIME-WAIT)
  3678. *
  3679. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3680. * close and we go into CLOSING (and later onto TIME-WAIT)
  3681. *
  3682. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3683. */
  3684. static void tcp_fin(struct sock *sk)
  3685. {
  3686. struct tcp_sock *tp = tcp_sk(sk);
  3687. inet_csk_schedule_ack(sk);
  3688. sk->sk_shutdown |= RCV_SHUTDOWN;
  3689. sock_set_flag(sk, SOCK_DONE);
  3690. switch (sk->sk_state) {
  3691. case TCP_SYN_RECV:
  3692. case TCP_ESTABLISHED:
  3693. /* Move to CLOSE_WAIT */
  3694. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3695. inet_csk(sk)->icsk_ack.pingpong = 1;
  3696. break;
  3697. case TCP_CLOSE_WAIT:
  3698. case TCP_CLOSING:
  3699. /* Received a retransmission of the FIN, do
  3700. * nothing.
  3701. */
  3702. break;
  3703. case TCP_LAST_ACK:
  3704. /* RFC793: Remain in the LAST-ACK state. */
  3705. break;
  3706. case TCP_FIN_WAIT1:
  3707. /* This case occurs when a simultaneous close
  3708. * happens, we must ack the received FIN and
  3709. * enter the CLOSING state.
  3710. */
  3711. tcp_send_ack(sk);
  3712. tcp_set_state(sk, TCP_CLOSING);
  3713. break;
  3714. case TCP_FIN_WAIT2:
  3715. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3716. tcp_send_ack(sk);
  3717. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3718. break;
  3719. default:
  3720. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3721. * cases we should never reach this piece of code.
  3722. */
  3723. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3724. __func__, sk->sk_state);
  3725. break;
  3726. }
  3727. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3728. * Probably, we should reset in this case. For now drop them.
  3729. */
  3730. __skb_queue_purge(&tp->out_of_order_queue);
  3731. if (tcp_is_sack(tp))
  3732. tcp_sack_reset(&tp->rx_opt);
  3733. sk_mem_reclaim(sk);
  3734. if (!sock_flag(sk, SOCK_DEAD)) {
  3735. sk->sk_state_change(sk);
  3736. /* Do not send POLL_HUP for half duplex close. */
  3737. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3738. sk->sk_state == TCP_CLOSE)
  3739. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3740. else
  3741. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3742. }
  3743. }
  3744. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3745. u32 end_seq)
  3746. {
  3747. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3748. if (before(seq, sp->start_seq))
  3749. sp->start_seq = seq;
  3750. if (after(end_seq, sp->end_seq))
  3751. sp->end_seq = end_seq;
  3752. return true;
  3753. }
  3754. return false;
  3755. }
  3756. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3757. {
  3758. struct tcp_sock *tp = tcp_sk(sk);
  3759. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3760. int mib_idx;
  3761. if (before(seq, tp->rcv_nxt))
  3762. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3763. else
  3764. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3765. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3766. tp->rx_opt.dsack = 1;
  3767. tp->duplicate_sack[0].start_seq = seq;
  3768. tp->duplicate_sack[0].end_seq = end_seq;
  3769. }
  3770. }
  3771. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3772. {
  3773. struct tcp_sock *tp = tcp_sk(sk);
  3774. if (!tp->rx_opt.dsack)
  3775. tcp_dsack_set(sk, seq, end_seq);
  3776. else
  3777. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3778. }
  3779. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3780. {
  3781. struct tcp_sock *tp = tcp_sk(sk);
  3782. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3783. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3784. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3785. tcp_enter_quickack_mode(sk);
  3786. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3787. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3788. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3789. end_seq = tp->rcv_nxt;
  3790. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3791. }
  3792. }
  3793. tcp_send_ack(sk);
  3794. }
  3795. /* These routines update the SACK block as out-of-order packets arrive or
  3796. * in-order packets close up the sequence space.
  3797. */
  3798. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3799. {
  3800. int this_sack;
  3801. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3802. struct tcp_sack_block *swalk = sp + 1;
  3803. /* See if the recent change to the first SACK eats into
  3804. * or hits the sequence space of other SACK blocks, if so coalesce.
  3805. */
  3806. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3807. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3808. int i;
  3809. /* Zap SWALK, by moving every further SACK up by one slot.
  3810. * Decrease num_sacks.
  3811. */
  3812. tp->rx_opt.num_sacks--;
  3813. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3814. sp[i] = sp[i + 1];
  3815. continue;
  3816. }
  3817. this_sack++, swalk++;
  3818. }
  3819. }
  3820. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3821. {
  3822. struct tcp_sock *tp = tcp_sk(sk);
  3823. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3824. int cur_sacks = tp->rx_opt.num_sacks;
  3825. int this_sack;
  3826. if (!cur_sacks)
  3827. goto new_sack;
  3828. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3829. if (tcp_sack_extend(sp, seq, end_seq)) {
  3830. /* Rotate this_sack to the first one. */
  3831. for (; this_sack > 0; this_sack--, sp--)
  3832. swap(*sp, *(sp - 1));
  3833. if (cur_sacks > 1)
  3834. tcp_sack_maybe_coalesce(tp);
  3835. return;
  3836. }
  3837. }
  3838. /* Could not find an adjacent existing SACK, build a new one,
  3839. * put it at the front, and shift everyone else down. We
  3840. * always know there is at least one SACK present already here.
  3841. *
  3842. * If the sack array is full, forget about the last one.
  3843. */
  3844. if (this_sack >= TCP_NUM_SACKS) {
  3845. this_sack--;
  3846. tp->rx_opt.num_sacks--;
  3847. sp--;
  3848. }
  3849. for (; this_sack > 0; this_sack--, sp--)
  3850. *sp = *(sp - 1);
  3851. new_sack:
  3852. /* Build the new head SACK, and we're done. */
  3853. sp->start_seq = seq;
  3854. sp->end_seq = end_seq;
  3855. tp->rx_opt.num_sacks++;
  3856. }
  3857. /* RCV.NXT advances, some SACKs should be eaten. */
  3858. static void tcp_sack_remove(struct tcp_sock *tp)
  3859. {
  3860. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3861. int num_sacks = tp->rx_opt.num_sacks;
  3862. int this_sack;
  3863. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3864. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3865. tp->rx_opt.num_sacks = 0;
  3866. return;
  3867. }
  3868. for (this_sack = 0; this_sack < num_sacks;) {
  3869. /* Check if the start of the sack is covered by RCV.NXT. */
  3870. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3871. int i;
  3872. /* RCV.NXT must cover all the block! */
  3873. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3874. /* Zap this SACK, by moving forward any other SACKS. */
  3875. for (i=this_sack+1; i < num_sacks; i++)
  3876. tp->selective_acks[i-1] = tp->selective_acks[i];
  3877. num_sacks--;
  3878. continue;
  3879. }
  3880. this_sack++;
  3881. sp++;
  3882. }
  3883. tp->rx_opt.num_sacks = num_sacks;
  3884. }
  3885. /* This one checks to see if we can put data from the
  3886. * out_of_order queue into the receive_queue.
  3887. */
  3888. static void tcp_ofo_queue(struct sock *sk)
  3889. {
  3890. struct tcp_sock *tp = tcp_sk(sk);
  3891. __u32 dsack_high = tp->rcv_nxt;
  3892. struct sk_buff *skb;
  3893. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3894. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3895. break;
  3896. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3897. __u32 dsack = dsack_high;
  3898. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3899. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3900. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3901. }
  3902. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3903. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3904. __skb_unlink(skb, &tp->out_of_order_queue);
  3905. __kfree_skb(skb);
  3906. continue;
  3907. }
  3908. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3909. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3910. TCP_SKB_CB(skb)->end_seq);
  3911. __skb_unlink(skb, &tp->out_of_order_queue);
  3912. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3913. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3914. if (tcp_hdr(skb)->fin)
  3915. tcp_fin(sk);
  3916. }
  3917. }
  3918. static bool tcp_prune_ofo_queue(struct sock *sk);
  3919. static int tcp_prune_queue(struct sock *sk);
  3920. static int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
  3921. {
  3922. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3923. !sk_rmem_schedule(sk, size)) {
  3924. if (tcp_prune_queue(sk) < 0)
  3925. return -1;
  3926. if (!sk_rmem_schedule(sk, size)) {
  3927. if (!tcp_prune_ofo_queue(sk))
  3928. return -1;
  3929. if (!sk_rmem_schedule(sk, size))
  3930. return -1;
  3931. }
  3932. }
  3933. return 0;
  3934. }
  3935. /**
  3936. * tcp_try_coalesce - try to merge skb to prior one
  3937. * @sk: socket
  3938. * @to: prior buffer
  3939. * @from: buffer to add in queue
  3940. * @fragstolen: pointer to boolean
  3941. *
  3942. * Before queueing skb @from after @to, try to merge them
  3943. * to reduce overall memory use and queue lengths, if cost is small.
  3944. * Packets in ofo or receive queues can stay a long time.
  3945. * Better try to coalesce them right now to avoid future collapses.
  3946. * Returns true if caller should free @from instead of queueing it
  3947. */
  3948. static bool tcp_try_coalesce(struct sock *sk,
  3949. struct sk_buff *to,
  3950. struct sk_buff *from,
  3951. bool *fragstolen)
  3952. {
  3953. int i, delta, len = from->len;
  3954. *fragstolen = false;
  3955. if (tcp_hdr(from)->fin || skb_cloned(to))
  3956. return false;
  3957. if (len <= skb_tailroom(to)) {
  3958. BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
  3959. goto merge;
  3960. }
  3961. if (skb_has_frag_list(to) || skb_has_frag_list(from))
  3962. return false;
  3963. if (skb_headlen(from) != 0) {
  3964. struct page *page;
  3965. unsigned int offset;
  3966. if (skb_shinfo(to)->nr_frags +
  3967. skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
  3968. return false;
  3969. if (skb_head_is_locked(from))
  3970. return false;
  3971. delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
  3972. page = virt_to_head_page(from->head);
  3973. offset = from->data - (unsigned char *)page_address(page);
  3974. skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
  3975. page, offset, skb_headlen(from));
  3976. *fragstolen = true;
  3977. } else {
  3978. if (skb_shinfo(to)->nr_frags +
  3979. skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
  3980. return false;
  3981. delta = from->truesize -
  3982. SKB_TRUESIZE(skb_end_pointer(from) - from->head);
  3983. }
  3984. WARN_ON_ONCE(delta < len);
  3985. memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
  3986. skb_shinfo(from)->frags,
  3987. skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
  3988. skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
  3989. if (!skb_cloned(from))
  3990. skb_shinfo(from)->nr_frags = 0;
  3991. /* if the skb is cloned this does nothing since we set nr_frags to 0 */
  3992. for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
  3993. skb_frag_ref(from, i);
  3994. to->truesize += delta;
  3995. atomic_add(delta, &sk->sk_rmem_alloc);
  3996. sk_mem_charge(sk, delta);
  3997. to->len += len;
  3998. to->data_len += len;
  3999. merge:
  4000. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  4001. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  4002. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  4003. return true;
  4004. }
  4005. static void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
  4006. {
  4007. if (head_stolen)
  4008. kmem_cache_free(skbuff_head_cache, skb);
  4009. else
  4010. __kfree_skb(skb);
  4011. }
  4012. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  4013. {
  4014. struct tcp_sock *tp = tcp_sk(sk);
  4015. struct sk_buff *skb1;
  4016. u32 seq, end_seq;
  4017. TCP_ECN_check_ce(tp, skb);
  4018. if (tcp_try_rmem_schedule(sk, skb->truesize)) {
  4019. /* TODO: should increment a counter */
  4020. __kfree_skb(skb);
  4021. return;
  4022. }
  4023. /* Disable header prediction. */
  4024. tp->pred_flags = 0;
  4025. inet_csk_schedule_ack(sk);
  4026. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  4027. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4028. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  4029. if (!skb1) {
  4030. /* Initial out of order segment, build 1 SACK. */
  4031. if (tcp_is_sack(tp)) {
  4032. tp->rx_opt.num_sacks = 1;
  4033. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  4034. tp->selective_acks[0].end_seq =
  4035. TCP_SKB_CB(skb)->end_seq;
  4036. }
  4037. __skb_queue_head(&tp->out_of_order_queue, skb);
  4038. goto end;
  4039. }
  4040. seq = TCP_SKB_CB(skb)->seq;
  4041. end_seq = TCP_SKB_CB(skb)->end_seq;
  4042. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  4043. bool fragstolen;
  4044. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  4045. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  4046. } else {
  4047. kfree_skb_partial(skb, fragstolen);
  4048. skb = NULL;
  4049. }
  4050. if (!tp->rx_opt.num_sacks ||
  4051. tp->selective_acks[0].end_seq != seq)
  4052. goto add_sack;
  4053. /* Common case: data arrive in order after hole. */
  4054. tp->selective_acks[0].end_seq = end_seq;
  4055. goto end;
  4056. }
  4057. /* Find place to insert this segment. */
  4058. while (1) {
  4059. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  4060. break;
  4061. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  4062. skb1 = NULL;
  4063. break;
  4064. }
  4065. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  4066. }
  4067. /* Do skb overlap to previous one? */
  4068. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  4069. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  4070. /* All the bits are present. Drop. */
  4071. __kfree_skb(skb);
  4072. skb = NULL;
  4073. tcp_dsack_set(sk, seq, end_seq);
  4074. goto add_sack;
  4075. }
  4076. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  4077. /* Partial overlap. */
  4078. tcp_dsack_set(sk, seq,
  4079. TCP_SKB_CB(skb1)->end_seq);
  4080. } else {
  4081. if (skb_queue_is_first(&tp->out_of_order_queue,
  4082. skb1))
  4083. skb1 = NULL;
  4084. else
  4085. skb1 = skb_queue_prev(
  4086. &tp->out_of_order_queue,
  4087. skb1);
  4088. }
  4089. }
  4090. if (!skb1)
  4091. __skb_queue_head(&tp->out_of_order_queue, skb);
  4092. else
  4093. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  4094. /* And clean segments covered by new one as whole. */
  4095. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  4096. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  4097. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  4098. break;
  4099. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  4100. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  4101. end_seq);
  4102. break;
  4103. }
  4104. __skb_unlink(skb1, &tp->out_of_order_queue);
  4105. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  4106. TCP_SKB_CB(skb1)->end_seq);
  4107. __kfree_skb(skb1);
  4108. }
  4109. add_sack:
  4110. if (tcp_is_sack(tp))
  4111. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  4112. end:
  4113. if (skb)
  4114. skb_set_owner_r(skb, sk);
  4115. }
  4116. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  4117. bool *fragstolen)
  4118. {
  4119. int eaten;
  4120. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  4121. __skb_pull(skb, hdrlen);
  4122. eaten = (tail &&
  4123. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  4124. tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4125. if (!eaten) {
  4126. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4127. skb_set_owner_r(skb, sk);
  4128. }
  4129. return eaten;
  4130. }
  4131. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  4132. {
  4133. struct sk_buff *skb;
  4134. struct tcphdr *th;
  4135. bool fragstolen;
  4136. if (tcp_try_rmem_schedule(sk, size + sizeof(*th)))
  4137. goto err;
  4138. skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
  4139. if (!skb)
  4140. goto err;
  4141. th = (struct tcphdr *)skb_put(skb, sizeof(*th));
  4142. skb_reset_transport_header(skb);
  4143. memset(th, 0, sizeof(*th));
  4144. if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
  4145. goto err_free;
  4146. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  4147. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  4148. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  4149. if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
  4150. WARN_ON_ONCE(fragstolen); /* should not happen */
  4151. __kfree_skb(skb);
  4152. }
  4153. return size;
  4154. err_free:
  4155. kfree_skb(skb);
  4156. err:
  4157. return -ENOMEM;
  4158. }
  4159. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  4160. {
  4161. const struct tcphdr *th = tcp_hdr(skb);
  4162. struct tcp_sock *tp = tcp_sk(sk);
  4163. int eaten = -1;
  4164. bool fragstolen = false;
  4165. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  4166. goto drop;
  4167. skb_dst_drop(skb);
  4168. __skb_pull(skb, th->doff * 4);
  4169. TCP_ECN_accept_cwr(tp, skb);
  4170. tp->rx_opt.dsack = 0;
  4171. /* Queue data for delivery to the user.
  4172. * Packets in sequence go to the receive queue.
  4173. * Out of sequence packets to the out_of_order_queue.
  4174. */
  4175. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  4176. if (tcp_receive_window(tp) == 0)
  4177. goto out_of_window;
  4178. /* Ok. In sequence. In window. */
  4179. if (tp->ucopy.task == current &&
  4180. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  4181. sock_owned_by_user(sk) && !tp->urg_data) {
  4182. int chunk = min_t(unsigned int, skb->len,
  4183. tp->ucopy.len);
  4184. __set_current_state(TASK_RUNNING);
  4185. local_bh_enable();
  4186. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  4187. tp->ucopy.len -= chunk;
  4188. tp->copied_seq += chunk;
  4189. eaten = (chunk == skb->len);
  4190. tcp_rcv_space_adjust(sk);
  4191. }
  4192. local_bh_disable();
  4193. }
  4194. if (eaten <= 0) {
  4195. queue_and_out:
  4196. if (eaten < 0 &&
  4197. tcp_try_rmem_schedule(sk, skb->truesize))
  4198. goto drop;
  4199. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  4200. }
  4201. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4202. if (skb->len)
  4203. tcp_event_data_recv(sk, skb);
  4204. if (th->fin)
  4205. tcp_fin(sk);
  4206. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4207. tcp_ofo_queue(sk);
  4208. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  4209. * gap in queue is filled.
  4210. */
  4211. if (skb_queue_empty(&tp->out_of_order_queue))
  4212. inet_csk(sk)->icsk_ack.pingpong = 0;
  4213. }
  4214. if (tp->rx_opt.num_sacks)
  4215. tcp_sack_remove(tp);
  4216. tcp_fast_path_check(sk);
  4217. if (eaten > 0)
  4218. kfree_skb_partial(skb, fragstolen);
  4219. else if (!sock_flag(sk, SOCK_DEAD))
  4220. sk->sk_data_ready(sk, 0);
  4221. return;
  4222. }
  4223. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  4224. /* A retransmit, 2nd most common case. Force an immediate ack. */
  4225. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  4226. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  4227. out_of_window:
  4228. tcp_enter_quickack_mode(sk);
  4229. inet_csk_schedule_ack(sk);
  4230. drop:
  4231. __kfree_skb(skb);
  4232. return;
  4233. }
  4234. /* Out of window. F.e. zero window probe. */
  4235. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  4236. goto out_of_window;
  4237. tcp_enter_quickack_mode(sk);
  4238. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4239. /* Partial packet, seq < rcv_next < end_seq */
  4240. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  4241. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  4242. TCP_SKB_CB(skb)->end_seq);
  4243. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  4244. /* If window is closed, drop tail of packet. But after
  4245. * remembering D-SACK for its head made in previous line.
  4246. */
  4247. if (!tcp_receive_window(tp))
  4248. goto out_of_window;
  4249. goto queue_and_out;
  4250. }
  4251. tcp_data_queue_ofo(sk, skb);
  4252. }
  4253. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  4254. struct sk_buff_head *list)
  4255. {
  4256. struct sk_buff *next = NULL;
  4257. if (!skb_queue_is_last(list, skb))
  4258. next = skb_queue_next(list, skb);
  4259. __skb_unlink(skb, list);
  4260. __kfree_skb(skb);
  4261. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  4262. return next;
  4263. }
  4264. /* Collapse contiguous sequence of skbs head..tail with
  4265. * sequence numbers start..end.
  4266. *
  4267. * If tail is NULL, this means until the end of the list.
  4268. *
  4269. * Segments with FIN/SYN are not collapsed (only because this
  4270. * simplifies code)
  4271. */
  4272. static void
  4273. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  4274. struct sk_buff *head, struct sk_buff *tail,
  4275. u32 start, u32 end)
  4276. {
  4277. struct sk_buff *skb, *n;
  4278. bool end_of_skbs;
  4279. /* First, check that queue is collapsible and find
  4280. * the point where collapsing can be useful. */
  4281. skb = head;
  4282. restart:
  4283. end_of_skbs = true;
  4284. skb_queue_walk_from_safe(list, skb, n) {
  4285. if (skb == tail)
  4286. break;
  4287. /* No new bits? It is possible on ofo queue. */
  4288. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4289. skb = tcp_collapse_one(sk, skb, list);
  4290. if (!skb)
  4291. break;
  4292. goto restart;
  4293. }
  4294. /* The first skb to collapse is:
  4295. * - not SYN/FIN and
  4296. * - bloated or contains data before "start" or
  4297. * overlaps to the next one.
  4298. */
  4299. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  4300. (tcp_win_from_space(skb->truesize) > skb->len ||
  4301. before(TCP_SKB_CB(skb)->seq, start))) {
  4302. end_of_skbs = false;
  4303. break;
  4304. }
  4305. if (!skb_queue_is_last(list, skb)) {
  4306. struct sk_buff *next = skb_queue_next(list, skb);
  4307. if (next != tail &&
  4308. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4309. end_of_skbs = false;
  4310. break;
  4311. }
  4312. }
  4313. /* Decided to skip this, advance start seq. */
  4314. start = TCP_SKB_CB(skb)->end_seq;
  4315. }
  4316. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  4317. return;
  4318. while (before(start, end)) {
  4319. struct sk_buff *nskb;
  4320. unsigned int header = skb_headroom(skb);
  4321. int copy = SKB_MAX_ORDER(header, 0);
  4322. /* Too big header? This can happen with IPv6. */
  4323. if (copy < 0)
  4324. return;
  4325. if (end - start < copy)
  4326. copy = end - start;
  4327. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  4328. if (!nskb)
  4329. return;
  4330. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  4331. skb_set_network_header(nskb, (skb_network_header(skb) -
  4332. skb->head));
  4333. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  4334. skb->head));
  4335. skb_reserve(nskb, header);
  4336. memcpy(nskb->head, skb->head, header);
  4337. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4338. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4339. __skb_queue_before(list, skb, nskb);
  4340. skb_set_owner_r(nskb, sk);
  4341. /* Copy data, releasing collapsed skbs. */
  4342. while (copy > 0) {
  4343. int offset = start - TCP_SKB_CB(skb)->seq;
  4344. int size = TCP_SKB_CB(skb)->end_seq - start;
  4345. BUG_ON(offset < 0);
  4346. if (size > 0) {
  4347. size = min(copy, size);
  4348. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4349. BUG();
  4350. TCP_SKB_CB(nskb)->end_seq += size;
  4351. copy -= size;
  4352. start += size;
  4353. }
  4354. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4355. skb = tcp_collapse_one(sk, skb, list);
  4356. if (!skb ||
  4357. skb == tail ||
  4358. tcp_hdr(skb)->syn ||
  4359. tcp_hdr(skb)->fin)
  4360. return;
  4361. }
  4362. }
  4363. }
  4364. }
  4365. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4366. * and tcp_collapse() them until all the queue is collapsed.
  4367. */
  4368. static void tcp_collapse_ofo_queue(struct sock *sk)
  4369. {
  4370. struct tcp_sock *tp = tcp_sk(sk);
  4371. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4372. struct sk_buff *head;
  4373. u32 start, end;
  4374. if (skb == NULL)
  4375. return;
  4376. start = TCP_SKB_CB(skb)->seq;
  4377. end = TCP_SKB_CB(skb)->end_seq;
  4378. head = skb;
  4379. for (;;) {
  4380. struct sk_buff *next = NULL;
  4381. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4382. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4383. skb = next;
  4384. /* Segment is terminated when we see gap or when
  4385. * we are at the end of all the queue. */
  4386. if (!skb ||
  4387. after(TCP_SKB_CB(skb)->seq, end) ||
  4388. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4389. tcp_collapse(sk, &tp->out_of_order_queue,
  4390. head, skb, start, end);
  4391. head = skb;
  4392. if (!skb)
  4393. break;
  4394. /* Start new segment */
  4395. start = TCP_SKB_CB(skb)->seq;
  4396. end = TCP_SKB_CB(skb)->end_seq;
  4397. } else {
  4398. if (before(TCP_SKB_CB(skb)->seq, start))
  4399. start = TCP_SKB_CB(skb)->seq;
  4400. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4401. end = TCP_SKB_CB(skb)->end_seq;
  4402. }
  4403. }
  4404. }
  4405. /*
  4406. * Purge the out-of-order queue.
  4407. * Return true if queue was pruned.
  4408. */
  4409. static bool tcp_prune_ofo_queue(struct sock *sk)
  4410. {
  4411. struct tcp_sock *tp = tcp_sk(sk);
  4412. bool res = false;
  4413. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4414. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4415. __skb_queue_purge(&tp->out_of_order_queue);
  4416. /* Reset SACK state. A conforming SACK implementation will
  4417. * do the same at a timeout based retransmit. When a connection
  4418. * is in a sad state like this, we care only about integrity
  4419. * of the connection not performance.
  4420. */
  4421. if (tp->rx_opt.sack_ok)
  4422. tcp_sack_reset(&tp->rx_opt);
  4423. sk_mem_reclaim(sk);
  4424. res = true;
  4425. }
  4426. return res;
  4427. }
  4428. /* Reduce allocated memory if we can, trying to get
  4429. * the socket within its memory limits again.
  4430. *
  4431. * Return less than zero if we should start dropping frames
  4432. * until the socket owning process reads some of the data
  4433. * to stabilize the situation.
  4434. */
  4435. static int tcp_prune_queue(struct sock *sk)
  4436. {
  4437. struct tcp_sock *tp = tcp_sk(sk);
  4438. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4439. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4440. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4441. tcp_clamp_window(sk);
  4442. else if (sk_under_memory_pressure(sk))
  4443. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4444. tcp_collapse_ofo_queue(sk);
  4445. if (!skb_queue_empty(&sk->sk_receive_queue))
  4446. tcp_collapse(sk, &sk->sk_receive_queue,
  4447. skb_peek(&sk->sk_receive_queue),
  4448. NULL,
  4449. tp->copied_seq, tp->rcv_nxt);
  4450. sk_mem_reclaim(sk);
  4451. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4452. return 0;
  4453. /* Collapsing did not help, destructive actions follow.
  4454. * This must not ever occur. */
  4455. tcp_prune_ofo_queue(sk);
  4456. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4457. return 0;
  4458. /* If we are really being abused, tell the caller to silently
  4459. * drop receive data on the floor. It will get retransmitted
  4460. * and hopefully then we'll have sufficient space.
  4461. */
  4462. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4463. /* Massive buffer overcommit. */
  4464. tp->pred_flags = 0;
  4465. return -1;
  4466. }
  4467. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4468. * As additional protections, we do not touch cwnd in retransmission phases,
  4469. * and if application hit its sndbuf limit recently.
  4470. */
  4471. void tcp_cwnd_application_limited(struct sock *sk)
  4472. {
  4473. struct tcp_sock *tp = tcp_sk(sk);
  4474. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4475. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4476. /* Limited by application or receiver window. */
  4477. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4478. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4479. if (win_used < tp->snd_cwnd) {
  4480. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4481. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4482. }
  4483. tp->snd_cwnd_used = 0;
  4484. }
  4485. tp->snd_cwnd_stamp = tcp_time_stamp;
  4486. }
  4487. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4488. {
  4489. const struct tcp_sock *tp = tcp_sk(sk);
  4490. /* If the user specified a specific send buffer setting, do
  4491. * not modify it.
  4492. */
  4493. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4494. return false;
  4495. /* If we are under global TCP memory pressure, do not expand. */
  4496. if (sk_under_memory_pressure(sk))
  4497. return false;
  4498. /* If we are under soft global TCP memory pressure, do not expand. */
  4499. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4500. return false;
  4501. /* If we filled the congestion window, do not expand. */
  4502. if (tp->packets_out >= tp->snd_cwnd)
  4503. return false;
  4504. return true;
  4505. }
  4506. /* When incoming ACK allowed to free some skb from write_queue,
  4507. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4508. * on the exit from tcp input handler.
  4509. *
  4510. * PROBLEM: sndbuf expansion does not work well with largesend.
  4511. */
  4512. static void tcp_new_space(struct sock *sk)
  4513. {
  4514. struct tcp_sock *tp = tcp_sk(sk);
  4515. if (tcp_should_expand_sndbuf(sk)) {
  4516. int sndmem = SKB_TRUESIZE(max_t(u32,
  4517. tp->rx_opt.mss_clamp,
  4518. tp->mss_cache) +
  4519. MAX_TCP_HEADER);
  4520. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4521. tp->reordering + 1);
  4522. sndmem *= 2 * demanded;
  4523. if (sndmem > sk->sk_sndbuf)
  4524. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4525. tp->snd_cwnd_stamp = tcp_time_stamp;
  4526. }
  4527. sk->sk_write_space(sk);
  4528. }
  4529. static void tcp_check_space(struct sock *sk)
  4530. {
  4531. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4532. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4533. if (sk->sk_socket &&
  4534. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4535. tcp_new_space(sk);
  4536. }
  4537. }
  4538. static inline void tcp_data_snd_check(struct sock *sk)
  4539. {
  4540. tcp_push_pending_frames(sk);
  4541. tcp_check_space(sk);
  4542. }
  4543. /*
  4544. * Check if sending an ack is needed.
  4545. */
  4546. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4547. {
  4548. struct tcp_sock *tp = tcp_sk(sk);
  4549. /* More than one full frame received... */
  4550. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4551. /* ... and right edge of window advances far enough.
  4552. * (tcp_recvmsg() will send ACK otherwise). Or...
  4553. */
  4554. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4555. /* We ACK each frame or... */
  4556. tcp_in_quickack_mode(sk) ||
  4557. /* We have out of order data. */
  4558. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4559. /* Then ack it now */
  4560. tcp_send_ack(sk);
  4561. } else {
  4562. /* Else, send delayed ack. */
  4563. tcp_send_delayed_ack(sk);
  4564. }
  4565. }
  4566. static inline void tcp_ack_snd_check(struct sock *sk)
  4567. {
  4568. if (!inet_csk_ack_scheduled(sk)) {
  4569. /* We sent a data segment already. */
  4570. return;
  4571. }
  4572. __tcp_ack_snd_check(sk, 1);
  4573. }
  4574. /*
  4575. * This routine is only called when we have urgent data
  4576. * signaled. Its the 'slow' part of tcp_urg. It could be
  4577. * moved inline now as tcp_urg is only called from one
  4578. * place. We handle URGent data wrong. We have to - as
  4579. * BSD still doesn't use the correction from RFC961.
  4580. * For 1003.1g we should support a new option TCP_STDURG to permit
  4581. * either form (or just set the sysctl tcp_stdurg).
  4582. */
  4583. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4584. {
  4585. struct tcp_sock *tp = tcp_sk(sk);
  4586. u32 ptr = ntohs(th->urg_ptr);
  4587. if (ptr && !sysctl_tcp_stdurg)
  4588. ptr--;
  4589. ptr += ntohl(th->seq);
  4590. /* Ignore urgent data that we've already seen and read. */
  4591. if (after(tp->copied_seq, ptr))
  4592. return;
  4593. /* Do not replay urg ptr.
  4594. *
  4595. * NOTE: interesting situation not covered by specs.
  4596. * Misbehaving sender may send urg ptr, pointing to segment,
  4597. * which we already have in ofo queue. We are not able to fetch
  4598. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4599. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4600. * situations. But it is worth to think about possibility of some
  4601. * DoSes using some hypothetical application level deadlock.
  4602. */
  4603. if (before(ptr, tp->rcv_nxt))
  4604. return;
  4605. /* Do we already have a newer (or duplicate) urgent pointer? */
  4606. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4607. return;
  4608. /* Tell the world about our new urgent pointer. */
  4609. sk_send_sigurg(sk);
  4610. /* We may be adding urgent data when the last byte read was
  4611. * urgent. To do this requires some care. We cannot just ignore
  4612. * tp->copied_seq since we would read the last urgent byte again
  4613. * as data, nor can we alter copied_seq until this data arrives
  4614. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4615. *
  4616. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4617. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4618. * and expect that both A and B disappear from stream. This is _wrong_.
  4619. * Though this happens in BSD with high probability, this is occasional.
  4620. * Any application relying on this is buggy. Note also, that fix "works"
  4621. * only in this artificial test. Insert some normal data between A and B and we will
  4622. * decline of BSD again. Verdict: it is better to remove to trap
  4623. * buggy users.
  4624. */
  4625. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4626. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4627. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4628. tp->copied_seq++;
  4629. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4630. __skb_unlink(skb, &sk->sk_receive_queue);
  4631. __kfree_skb(skb);
  4632. }
  4633. }
  4634. tp->urg_data = TCP_URG_NOTYET;
  4635. tp->urg_seq = ptr;
  4636. /* Disable header prediction. */
  4637. tp->pred_flags = 0;
  4638. }
  4639. /* This is the 'fast' part of urgent handling. */
  4640. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4641. {
  4642. struct tcp_sock *tp = tcp_sk(sk);
  4643. /* Check if we get a new urgent pointer - normally not. */
  4644. if (th->urg)
  4645. tcp_check_urg(sk, th);
  4646. /* Do we wait for any urgent data? - normally not... */
  4647. if (tp->urg_data == TCP_URG_NOTYET) {
  4648. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4649. th->syn;
  4650. /* Is the urgent pointer pointing into this packet? */
  4651. if (ptr < skb->len) {
  4652. u8 tmp;
  4653. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4654. BUG();
  4655. tp->urg_data = TCP_URG_VALID | tmp;
  4656. if (!sock_flag(sk, SOCK_DEAD))
  4657. sk->sk_data_ready(sk, 0);
  4658. }
  4659. }
  4660. }
  4661. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4662. {
  4663. struct tcp_sock *tp = tcp_sk(sk);
  4664. int chunk = skb->len - hlen;
  4665. int err;
  4666. local_bh_enable();
  4667. if (skb_csum_unnecessary(skb))
  4668. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4669. else
  4670. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4671. tp->ucopy.iov);
  4672. if (!err) {
  4673. tp->ucopy.len -= chunk;
  4674. tp->copied_seq += chunk;
  4675. tcp_rcv_space_adjust(sk);
  4676. }
  4677. local_bh_disable();
  4678. return err;
  4679. }
  4680. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4681. struct sk_buff *skb)
  4682. {
  4683. __sum16 result;
  4684. if (sock_owned_by_user(sk)) {
  4685. local_bh_enable();
  4686. result = __tcp_checksum_complete(skb);
  4687. local_bh_disable();
  4688. } else {
  4689. result = __tcp_checksum_complete(skb);
  4690. }
  4691. return result;
  4692. }
  4693. static inline int tcp_checksum_complete_user(struct sock *sk,
  4694. struct sk_buff *skb)
  4695. {
  4696. return !skb_csum_unnecessary(skb) &&
  4697. __tcp_checksum_complete_user(sk, skb);
  4698. }
  4699. #ifdef CONFIG_NET_DMA
  4700. static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4701. int hlen)
  4702. {
  4703. struct tcp_sock *tp = tcp_sk(sk);
  4704. int chunk = skb->len - hlen;
  4705. int dma_cookie;
  4706. bool copied_early = false;
  4707. if (tp->ucopy.wakeup)
  4708. return false;
  4709. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4710. tp->ucopy.dma_chan = net_dma_find_channel();
  4711. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4712. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4713. skb, hlen,
  4714. tp->ucopy.iov, chunk,
  4715. tp->ucopy.pinned_list);
  4716. if (dma_cookie < 0)
  4717. goto out;
  4718. tp->ucopy.dma_cookie = dma_cookie;
  4719. copied_early = true;
  4720. tp->ucopy.len -= chunk;
  4721. tp->copied_seq += chunk;
  4722. tcp_rcv_space_adjust(sk);
  4723. if ((tp->ucopy.len == 0) ||
  4724. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4725. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4726. tp->ucopy.wakeup = 1;
  4727. sk->sk_data_ready(sk, 0);
  4728. }
  4729. } else if (chunk > 0) {
  4730. tp->ucopy.wakeup = 1;
  4731. sk->sk_data_ready(sk, 0);
  4732. }
  4733. out:
  4734. return copied_early;
  4735. }
  4736. #endif /* CONFIG_NET_DMA */
  4737. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4738. * play significant role here.
  4739. */
  4740. static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4741. const struct tcphdr *th, int syn_inerr)
  4742. {
  4743. const u8 *hash_location;
  4744. struct tcp_sock *tp = tcp_sk(sk);
  4745. /* RFC1323: H1. Apply PAWS check first. */
  4746. if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
  4747. tp->rx_opt.saw_tstamp &&
  4748. tcp_paws_discard(sk, skb)) {
  4749. if (!th->rst) {
  4750. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4751. tcp_send_dupack(sk, skb);
  4752. goto discard;
  4753. }
  4754. /* Reset is accepted even if it did not pass PAWS. */
  4755. }
  4756. /* Step 1: check sequence number */
  4757. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4758. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4759. * (RST) segments are validated by checking their SEQ-fields."
  4760. * And page 69: "If an incoming segment is not acceptable,
  4761. * an acknowledgment should be sent in reply (unless the RST
  4762. * bit is set, if so drop the segment and return)".
  4763. */
  4764. if (!th->rst)
  4765. tcp_send_dupack(sk, skb);
  4766. goto discard;
  4767. }
  4768. /* Step 2: check RST bit */
  4769. if (th->rst) {
  4770. tcp_reset(sk);
  4771. goto discard;
  4772. }
  4773. /* ts_recent update must be made after we are sure that the packet
  4774. * is in window.
  4775. */
  4776. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4777. /* step 3: check security and precedence [ignored] */
  4778. /* step 4: Check for a SYN in window. */
  4779. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4780. if (syn_inerr)
  4781. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4782. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
  4783. tcp_reset(sk);
  4784. return -1;
  4785. }
  4786. return 1;
  4787. discard:
  4788. __kfree_skb(skb);
  4789. return 0;
  4790. }
  4791. /*
  4792. * TCP receive function for the ESTABLISHED state.
  4793. *
  4794. * It is split into a fast path and a slow path. The fast path is
  4795. * disabled when:
  4796. * - A zero window was announced from us - zero window probing
  4797. * is only handled properly in the slow path.
  4798. * - Out of order segments arrived.
  4799. * - Urgent data is expected.
  4800. * - There is no buffer space left
  4801. * - Unexpected TCP flags/window values/header lengths are received
  4802. * (detected by checking the TCP header against pred_flags)
  4803. * - Data is sent in both directions. Fast path only supports pure senders
  4804. * or pure receivers (this means either the sequence number or the ack
  4805. * value must stay constant)
  4806. * - Unexpected TCP option.
  4807. *
  4808. * When these conditions are not satisfied it drops into a standard
  4809. * receive procedure patterned after RFC793 to handle all cases.
  4810. * The first three cases are guaranteed by proper pred_flags setting,
  4811. * the rest is checked inline. Fast processing is turned on in
  4812. * tcp_data_queue when everything is OK.
  4813. */
  4814. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4815. const struct tcphdr *th, unsigned int len)
  4816. {
  4817. struct tcp_sock *tp = tcp_sk(sk);
  4818. int res;
  4819. /*
  4820. * Header prediction.
  4821. * The code loosely follows the one in the famous
  4822. * "30 instruction TCP receive" Van Jacobson mail.
  4823. *
  4824. * Van's trick is to deposit buffers into socket queue
  4825. * on a device interrupt, to call tcp_recv function
  4826. * on the receive process context and checksum and copy
  4827. * the buffer to user space. smart...
  4828. *
  4829. * Our current scheme is not silly either but we take the
  4830. * extra cost of the net_bh soft interrupt processing...
  4831. * We do checksum and copy also but from device to kernel.
  4832. */
  4833. tp->rx_opt.saw_tstamp = 0;
  4834. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4835. * if header_prediction is to be made
  4836. * 'S' will always be tp->tcp_header_len >> 2
  4837. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4838. * turn it off (when there are holes in the receive
  4839. * space for instance)
  4840. * PSH flag is ignored.
  4841. */
  4842. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4843. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4844. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4845. int tcp_header_len = tp->tcp_header_len;
  4846. /* Timestamp header prediction: tcp_header_len
  4847. * is automatically equal to th->doff*4 due to pred_flags
  4848. * match.
  4849. */
  4850. /* Check timestamp */
  4851. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4852. /* No? Slow path! */
  4853. if (!tcp_parse_aligned_timestamp(tp, th))
  4854. goto slow_path;
  4855. /* If PAWS failed, check it more carefully in slow path */
  4856. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4857. goto slow_path;
  4858. /* DO NOT update ts_recent here, if checksum fails
  4859. * and timestamp was corrupted part, it will result
  4860. * in a hung connection since we will drop all
  4861. * future packets due to the PAWS test.
  4862. */
  4863. }
  4864. if (len <= tcp_header_len) {
  4865. /* Bulk data transfer: sender */
  4866. if (len == tcp_header_len) {
  4867. /* Predicted packet is in window by definition.
  4868. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4869. * Hence, check seq<=rcv_wup reduces to:
  4870. */
  4871. if (tcp_header_len ==
  4872. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4873. tp->rcv_nxt == tp->rcv_wup)
  4874. tcp_store_ts_recent(tp);
  4875. /* We know that such packets are checksummed
  4876. * on entry.
  4877. */
  4878. tcp_ack(sk, skb, 0);
  4879. __kfree_skb(skb);
  4880. tcp_data_snd_check(sk);
  4881. return 0;
  4882. } else { /* Header too small */
  4883. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4884. goto discard;
  4885. }
  4886. } else {
  4887. int eaten = 0;
  4888. int copied_early = 0;
  4889. bool fragstolen = false;
  4890. if (tp->copied_seq == tp->rcv_nxt &&
  4891. len - tcp_header_len <= tp->ucopy.len) {
  4892. #ifdef CONFIG_NET_DMA
  4893. if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4894. copied_early = 1;
  4895. eaten = 1;
  4896. }
  4897. #endif
  4898. if (tp->ucopy.task == current &&
  4899. sock_owned_by_user(sk) && !copied_early) {
  4900. __set_current_state(TASK_RUNNING);
  4901. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4902. eaten = 1;
  4903. }
  4904. if (eaten) {
  4905. /* Predicted packet is in window by definition.
  4906. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4907. * Hence, check seq<=rcv_wup reduces to:
  4908. */
  4909. if (tcp_header_len ==
  4910. (sizeof(struct tcphdr) +
  4911. TCPOLEN_TSTAMP_ALIGNED) &&
  4912. tp->rcv_nxt == tp->rcv_wup)
  4913. tcp_store_ts_recent(tp);
  4914. tcp_rcv_rtt_measure_ts(sk, skb);
  4915. __skb_pull(skb, tcp_header_len);
  4916. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4917. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4918. }
  4919. if (copied_early)
  4920. tcp_cleanup_rbuf(sk, skb->len);
  4921. }
  4922. if (!eaten) {
  4923. if (tcp_checksum_complete_user(sk, skb))
  4924. goto csum_error;
  4925. /* Predicted packet is in window by definition.
  4926. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4927. * Hence, check seq<=rcv_wup reduces to:
  4928. */
  4929. if (tcp_header_len ==
  4930. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4931. tp->rcv_nxt == tp->rcv_wup)
  4932. tcp_store_ts_recent(tp);
  4933. tcp_rcv_rtt_measure_ts(sk, skb);
  4934. if ((int)skb->truesize > sk->sk_forward_alloc)
  4935. goto step5;
  4936. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4937. /* Bulk data transfer: receiver */
  4938. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4939. &fragstolen);
  4940. }
  4941. tcp_event_data_recv(sk, skb);
  4942. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4943. /* Well, only one small jumplet in fast path... */
  4944. tcp_ack(sk, skb, FLAG_DATA);
  4945. tcp_data_snd_check(sk);
  4946. if (!inet_csk_ack_scheduled(sk))
  4947. goto no_ack;
  4948. }
  4949. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4950. __tcp_ack_snd_check(sk, 0);
  4951. no_ack:
  4952. #ifdef CONFIG_NET_DMA
  4953. if (copied_early)
  4954. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4955. else
  4956. #endif
  4957. if (eaten)
  4958. kfree_skb_partial(skb, fragstolen);
  4959. else
  4960. sk->sk_data_ready(sk, 0);
  4961. return 0;
  4962. }
  4963. }
  4964. slow_path:
  4965. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4966. goto csum_error;
  4967. /*
  4968. * Standard slow path.
  4969. */
  4970. res = tcp_validate_incoming(sk, skb, th, 1);
  4971. if (res <= 0)
  4972. return -res;
  4973. step5:
  4974. if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
  4975. goto discard;
  4976. tcp_rcv_rtt_measure_ts(sk, skb);
  4977. /* Process urgent data. */
  4978. tcp_urg(sk, skb, th);
  4979. /* step 7: process the segment text */
  4980. tcp_data_queue(sk, skb);
  4981. tcp_data_snd_check(sk);
  4982. tcp_ack_snd_check(sk);
  4983. return 0;
  4984. csum_error:
  4985. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4986. discard:
  4987. __kfree_skb(skb);
  4988. return 0;
  4989. }
  4990. EXPORT_SYMBOL(tcp_rcv_established);
  4991. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4992. {
  4993. struct tcp_sock *tp = tcp_sk(sk);
  4994. struct inet_connection_sock *icsk = inet_csk(sk);
  4995. tcp_set_state(sk, TCP_ESTABLISHED);
  4996. if (skb != NULL)
  4997. security_inet_conn_established(sk, skb);
  4998. /* Make sure socket is routed, for correct metrics. */
  4999. icsk->icsk_af_ops->rebuild_header(sk);
  5000. tcp_init_metrics(sk);
  5001. tcp_init_congestion_control(sk);
  5002. /* Prevent spurious tcp_cwnd_restart() on first data
  5003. * packet.
  5004. */
  5005. tp->lsndtime = tcp_time_stamp;
  5006. tcp_init_buffer_space(sk);
  5007. if (sock_flag(sk, SOCK_KEEPOPEN))
  5008. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  5009. if (!tp->rx_opt.snd_wscale)
  5010. __tcp_fast_path_on(tp, tp->snd_wnd);
  5011. else
  5012. tp->pred_flags = 0;
  5013. if (!sock_flag(sk, SOCK_DEAD)) {
  5014. sk->sk_state_change(sk);
  5015. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  5016. }
  5017. }
  5018. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  5019. const struct tcphdr *th, unsigned int len)
  5020. {
  5021. const u8 *hash_location;
  5022. struct inet_connection_sock *icsk = inet_csk(sk);
  5023. struct tcp_sock *tp = tcp_sk(sk);
  5024. struct tcp_cookie_values *cvp = tp->cookie_values;
  5025. int saved_clamp = tp->rx_opt.mss_clamp;
  5026. tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
  5027. if (th->ack) {
  5028. /* rfc793:
  5029. * "If the state is SYN-SENT then
  5030. * first check the ACK bit
  5031. * If the ACK bit is set
  5032. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  5033. * a reset (unless the RST bit is set, if so drop
  5034. * the segment and return)"
  5035. *
  5036. * We do not send data with SYN, so that RFC-correct
  5037. * test reduces to:
  5038. */
  5039. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  5040. goto reset_and_undo;
  5041. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  5042. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  5043. tcp_time_stamp)) {
  5044. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  5045. goto reset_and_undo;
  5046. }
  5047. /* Now ACK is acceptable.
  5048. *
  5049. * "If the RST bit is set
  5050. * If the ACK was acceptable then signal the user "error:
  5051. * connection reset", drop the segment, enter CLOSED state,
  5052. * delete TCB, and return."
  5053. */
  5054. if (th->rst) {
  5055. tcp_reset(sk);
  5056. goto discard;
  5057. }
  5058. /* rfc793:
  5059. * "fifth, if neither of the SYN or RST bits is set then
  5060. * drop the segment and return."
  5061. *
  5062. * See note below!
  5063. * --ANK(990513)
  5064. */
  5065. if (!th->syn)
  5066. goto discard_and_undo;
  5067. /* rfc793:
  5068. * "If the SYN bit is on ...
  5069. * are acceptable then ...
  5070. * (our SYN has been ACKed), change the connection
  5071. * state to ESTABLISHED..."
  5072. */
  5073. TCP_ECN_rcv_synack(tp, th);
  5074. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5075. tcp_ack(sk, skb, FLAG_SLOWPATH);
  5076. /* Ok.. it's good. Set up sequence numbers and
  5077. * move to established.
  5078. */
  5079. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5080. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5081. /* RFC1323: The window in SYN & SYN/ACK segments is
  5082. * never scaled.
  5083. */
  5084. tp->snd_wnd = ntohs(th->window);
  5085. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5086. if (!tp->rx_opt.wscale_ok) {
  5087. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  5088. tp->window_clamp = min(tp->window_clamp, 65535U);
  5089. }
  5090. if (tp->rx_opt.saw_tstamp) {
  5091. tp->rx_opt.tstamp_ok = 1;
  5092. tp->tcp_header_len =
  5093. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  5094. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5095. tcp_store_ts_recent(tp);
  5096. } else {
  5097. tp->tcp_header_len = sizeof(struct tcphdr);
  5098. }
  5099. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  5100. tcp_enable_fack(tp);
  5101. tcp_mtup_init(sk);
  5102. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5103. tcp_initialize_rcv_mss(sk);
  5104. /* Remember, tcp_poll() does not lock socket!
  5105. * Change state from SYN-SENT only after copied_seq
  5106. * is initialized. */
  5107. tp->copied_seq = tp->rcv_nxt;
  5108. if (cvp != NULL &&
  5109. cvp->cookie_pair_size > 0 &&
  5110. tp->rx_opt.cookie_plus > 0) {
  5111. int cookie_size = tp->rx_opt.cookie_plus
  5112. - TCPOLEN_COOKIE_BASE;
  5113. int cookie_pair_size = cookie_size
  5114. + cvp->cookie_desired;
  5115. /* A cookie extension option was sent and returned.
  5116. * Note that each incoming SYNACK replaces the
  5117. * Responder cookie. The initial exchange is most
  5118. * fragile, as protection against spoofing relies
  5119. * entirely upon the sequence and timestamp (above).
  5120. * This replacement strategy allows the correct pair to
  5121. * pass through, while any others will be filtered via
  5122. * Responder verification later.
  5123. */
  5124. if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
  5125. memcpy(&cvp->cookie_pair[cvp->cookie_desired],
  5126. hash_location, cookie_size);
  5127. cvp->cookie_pair_size = cookie_pair_size;
  5128. }
  5129. }
  5130. smp_mb();
  5131. tcp_finish_connect(sk, skb);
  5132. if (sk->sk_write_pending ||
  5133. icsk->icsk_accept_queue.rskq_defer_accept ||
  5134. icsk->icsk_ack.pingpong) {
  5135. /* Save one ACK. Data will be ready after
  5136. * several ticks, if write_pending is set.
  5137. *
  5138. * It may be deleted, but with this feature tcpdumps
  5139. * look so _wonderfully_ clever, that I was not able
  5140. * to stand against the temptation 8) --ANK
  5141. */
  5142. inet_csk_schedule_ack(sk);
  5143. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  5144. tcp_enter_quickack_mode(sk);
  5145. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  5146. TCP_DELACK_MAX, TCP_RTO_MAX);
  5147. discard:
  5148. __kfree_skb(skb);
  5149. return 0;
  5150. } else {
  5151. tcp_send_ack(sk);
  5152. }
  5153. return -1;
  5154. }
  5155. /* No ACK in the segment */
  5156. if (th->rst) {
  5157. /* rfc793:
  5158. * "If the RST bit is set
  5159. *
  5160. * Otherwise (no ACK) drop the segment and return."
  5161. */
  5162. goto discard_and_undo;
  5163. }
  5164. /* PAWS check. */
  5165. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  5166. tcp_paws_reject(&tp->rx_opt, 0))
  5167. goto discard_and_undo;
  5168. if (th->syn) {
  5169. /* We see SYN without ACK. It is attempt of
  5170. * simultaneous connect with crossed SYNs.
  5171. * Particularly, it can be connect to self.
  5172. */
  5173. tcp_set_state(sk, TCP_SYN_RECV);
  5174. if (tp->rx_opt.saw_tstamp) {
  5175. tp->rx_opt.tstamp_ok = 1;
  5176. tcp_store_ts_recent(tp);
  5177. tp->tcp_header_len =
  5178. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  5179. } else {
  5180. tp->tcp_header_len = sizeof(struct tcphdr);
  5181. }
  5182. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  5183. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  5184. /* RFC1323: The window in SYN & SYN/ACK segments is
  5185. * never scaled.
  5186. */
  5187. tp->snd_wnd = ntohs(th->window);
  5188. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  5189. tp->max_window = tp->snd_wnd;
  5190. TCP_ECN_rcv_syn(tp, th);
  5191. tcp_mtup_init(sk);
  5192. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  5193. tcp_initialize_rcv_mss(sk);
  5194. tcp_send_synack(sk);
  5195. #if 0
  5196. /* Note, we could accept data and URG from this segment.
  5197. * There are no obstacles to make this.
  5198. *
  5199. * However, if we ignore data in ACKless segments sometimes,
  5200. * we have no reasons to accept it sometimes.
  5201. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  5202. * is not flawless. So, discard packet for sanity.
  5203. * Uncomment this return to process the data.
  5204. */
  5205. return -1;
  5206. #else
  5207. goto discard;
  5208. #endif
  5209. }
  5210. /* "fifth, if neither of the SYN or RST bits is set then
  5211. * drop the segment and return."
  5212. */
  5213. discard_and_undo:
  5214. tcp_clear_options(&tp->rx_opt);
  5215. tp->rx_opt.mss_clamp = saved_clamp;
  5216. goto discard;
  5217. reset_and_undo:
  5218. tcp_clear_options(&tp->rx_opt);
  5219. tp->rx_opt.mss_clamp = saved_clamp;
  5220. return 1;
  5221. }
  5222. /*
  5223. * This function implements the receiving procedure of RFC 793 for
  5224. * all states except ESTABLISHED and TIME_WAIT.
  5225. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  5226. * address independent.
  5227. */
  5228. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  5229. const struct tcphdr *th, unsigned int len)
  5230. {
  5231. struct tcp_sock *tp = tcp_sk(sk);
  5232. struct inet_connection_sock *icsk = inet_csk(sk);
  5233. int queued = 0;
  5234. int res;
  5235. tp->rx_opt.saw_tstamp = 0;
  5236. switch (sk->sk_state) {
  5237. case TCP_CLOSE:
  5238. goto discard;
  5239. case TCP_LISTEN:
  5240. if (th->ack)
  5241. return 1;
  5242. if (th->rst)
  5243. goto discard;
  5244. if (th->syn) {
  5245. if (th->fin)
  5246. goto discard;
  5247. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  5248. return 1;
  5249. /* Now we have several options: In theory there is
  5250. * nothing else in the frame. KA9Q has an option to
  5251. * send data with the syn, BSD accepts data with the
  5252. * syn up to the [to be] advertised window and
  5253. * Solaris 2.1 gives you a protocol error. For now
  5254. * we just ignore it, that fits the spec precisely
  5255. * and avoids incompatibilities. It would be nice in
  5256. * future to drop through and process the data.
  5257. *
  5258. * Now that TTCP is starting to be used we ought to
  5259. * queue this data.
  5260. * But, this leaves one open to an easy denial of
  5261. * service attack, and SYN cookies can't defend
  5262. * against this problem. So, we drop the data
  5263. * in the interest of security over speed unless
  5264. * it's still in use.
  5265. */
  5266. kfree_skb(skb);
  5267. return 0;
  5268. }
  5269. goto discard;
  5270. case TCP_SYN_SENT:
  5271. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  5272. if (queued >= 0)
  5273. return queued;
  5274. /* Do step6 onward by hand. */
  5275. tcp_urg(sk, skb, th);
  5276. __kfree_skb(skb);
  5277. tcp_data_snd_check(sk);
  5278. return 0;
  5279. }
  5280. res = tcp_validate_incoming(sk, skb, th, 0);
  5281. if (res <= 0)
  5282. return -res;
  5283. /* step 5: check the ACK field */
  5284. if (th->ack) {
  5285. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
  5286. switch (sk->sk_state) {
  5287. case TCP_SYN_RECV:
  5288. if (acceptable) {
  5289. tp->copied_seq = tp->rcv_nxt;
  5290. smp_mb();
  5291. tcp_set_state(sk, TCP_ESTABLISHED);
  5292. sk->sk_state_change(sk);
  5293. /* Note, that this wakeup is only for marginal
  5294. * crossed SYN case. Passively open sockets
  5295. * are not waked up, because sk->sk_sleep ==
  5296. * NULL and sk->sk_socket == NULL.
  5297. */
  5298. if (sk->sk_socket)
  5299. sk_wake_async(sk,
  5300. SOCK_WAKE_IO, POLL_OUT);
  5301. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5302. tp->snd_wnd = ntohs(th->window) <<
  5303. tp->rx_opt.snd_wscale;
  5304. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5305. if (tp->rx_opt.tstamp_ok)
  5306. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5307. /* Make sure socket is routed, for
  5308. * correct metrics.
  5309. */
  5310. icsk->icsk_af_ops->rebuild_header(sk);
  5311. tcp_init_metrics(sk);
  5312. tcp_init_congestion_control(sk);
  5313. /* Prevent spurious tcp_cwnd_restart() on
  5314. * first data packet.
  5315. */
  5316. tp->lsndtime = tcp_time_stamp;
  5317. tcp_mtup_init(sk);
  5318. tcp_initialize_rcv_mss(sk);
  5319. tcp_init_buffer_space(sk);
  5320. tcp_fast_path_on(tp);
  5321. } else {
  5322. return 1;
  5323. }
  5324. break;
  5325. case TCP_FIN_WAIT1:
  5326. if (tp->snd_una == tp->write_seq) {
  5327. tcp_set_state(sk, TCP_FIN_WAIT2);
  5328. sk->sk_shutdown |= SEND_SHUTDOWN;
  5329. dst_confirm(__sk_dst_get(sk));
  5330. if (!sock_flag(sk, SOCK_DEAD))
  5331. /* Wake up lingering close() */
  5332. sk->sk_state_change(sk);
  5333. else {
  5334. int tmo;
  5335. if (tp->linger2 < 0 ||
  5336. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5337. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5338. tcp_done(sk);
  5339. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5340. return 1;
  5341. }
  5342. tmo = tcp_fin_time(sk);
  5343. if (tmo > TCP_TIMEWAIT_LEN) {
  5344. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5345. } else if (th->fin || sock_owned_by_user(sk)) {
  5346. /* Bad case. We could lose such FIN otherwise.
  5347. * It is not a big problem, but it looks confusing
  5348. * and not so rare event. We still can lose it now,
  5349. * if it spins in bh_lock_sock(), but it is really
  5350. * marginal case.
  5351. */
  5352. inet_csk_reset_keepalive_timer(sk, tmo);
  5353. } else {
  5354. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5355. goto discard;
  5356. }
  5357. }
  5358. }
  5359. break;
  5360. case TCP_CLOSING:
  5361. if (tp->snd_una == tp->write_seq) {
  5362. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5363. goto discard;
  5364. }
  5365. break;
  5366. case TCP_LAST_ACK:
  5367. if (tp->snd_una == tp->write_seq) {
  5368. tcp_update_metrics(sk);
  5369. tcp_done(sk);
  5370. goto discard;
  5371. }
  5372. break;
  5373. }
  5374. } else
  5375. goto discard;
  5376. /* step 6: check the URG bit */
  5377. tcp_urg(sk, skb, th);
  5378. /* step 7: process the segment text */
  5379. switch (sk->sk_state) {
  5380. case TCP_CLOSE_WAIT:
  5381. case TCP_CLOSING:
  5382. case TCP_LAST_ACK:
  5383. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5384. break;
  5385. case TCP_FIN_WAIT1:
  5386. case TCP_FIN_WAIT2:
  5387. /* RFC 793 says to queue data in these states,
  5388. * RFC 1122 says we MUST send a reset.
  5389. * BSD 4.4 also does reset.
  5390. */
  5391. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5392. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5393. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5394. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5395. tcp_reset(sk);
  5396. return 1;
  5397. }
  5398. }
  5399. /* Fall through */
  5400. case TCP_ESTABLISHED:
  5401. tcp_data_queue(sk, skb);
  5402. queued = 1;
  5403. break;
  5404. }
  5405. /* tcp_data could move socket to TIME-WAIT */
  5406. if (sk->sk_state != TCP_CLOSE) {
  5407. tcp_data_snd_check(sk);
  5408. tcp_ack_snd_check(sk);
  5409. }
  5410. if (!queued) {
  5411. discard:
  5412. __kfree_skb(skb);
  5413. }
  5414. return 0;
  5415. }
  5416. EXPORT_SYMBOL(tcp_rcv_state_process);