md.c 182 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/buffer_head.h> /* for invalidate_bdev */
  31. #include <linux/poll.h>
  32. #include <linux/ctype.h>
  33. #include <linux/hdreg.h>
  34. #include <linux/proc_fs.h>
  35. #include <linux/random.h>
  36. #include <linux/reboot.h>
  37. #include <linux/file.h>
  38. #include <linux/delay.h>
  39. #include <linux/raid/md_p.h>
  40. #include <linux/raid/md_u.h>
  41. #include "md.h"
  42. #include "bitmap.h"
  43. #define DEBUG 0
  44. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  45. #ifndef MODULE
  46. static void autostart_arrays(int part);
  47. #endif
  48. static LIST_HEAD(pers_list);
  49. static DEFINE_SPINLOCK(pers_lock);
  50. static void md_print_devices(void);
  51. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  52. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  53. /*
  54. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  55. * is 1000 KB/sec, so the extra system load does not show up that much.
  56. * Increase it if you want to have more _guaranteed_ speed. Note that
  57. * the RAID driver will use the maximum available bandwidth if the IO
  58. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  59. * speed limit - in case reconstruction slows down your system despite
  60. * idle IO detection.
  61. *
  62. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  63. * or /sys/block/mdX/md/sync_speed_{min,max}
  64. */
  65. static int sysctl_speed_limit_min = 1000;
  66. static int sysctl_speed_limit_max = 200000;
  67. static inline int speed_min(mddev_t *mddev)
  68. {
  69. return mddev->sync_speed_min ?
  70. mddev->sync_speed_min : sysctl_speed_limit_min;
  71. }
  72. static inline int speed_max(mddev_t *mddev)
  73. {
  74. return mddev->sync_speed_max ?
  75. mddev->sync_speed_max : sysctl_speed_limit_max;
  76. }
  77. static struct ctl_table_header *raid_table_header;
  78. static ctl_table raid_table[] = {
  79. {
  80. .procname = "speed_limit_min",
  81. .data = &sysctl_speed_limit_min,
  82. .maxlen = sizeof(int),
  83. .mode = S_IRUGO|S_IWUSR,
  84. .proc_handler = proc_dointvec,
  85. },
  86. {
  87. .procname = "speed_limit_max",
  88. .data = &sysctl_speed_limit_max,
  89. .maxlen = sizeof(int),
  90. .mode = S_IRUGO|S_IWUSR,
  91. .proc_handler = proc_dointvec,
  92. },
  93. { }
  94. };
  95. static ctl_table raid_dir_table[] = {
  96. {
  97. .procname = "raid",
  98. .maxlen = 0,
  99. .mode = S_IRUGO|S_IXUGO,
  100. .child = raid_table,
  101. },
  102. { }
  103. };
  104. static ctl_table raid_root_table[] = {
  105. {
  106. .procname = "dev",
  107. .maxlen = 0,
  108. .mode = 0555,
  109. .child = raid_dir_table,
  110. },
  111. { }
  112. };
  113. static const struct block_device_operations md_fops;
  114. static int start_readonly;
  115. /*
  116. * We have a system wide 'event count' that is incremented
  117. * on any 'interesting' event, and readers of /proc/mdstat
  118. * can use 'poll' or 'select' to find out when the event
  119. * count increases.
  120. *
  121. * Events are:
  122. * start array, stop array, error, add device, remove device,
  123. * start build, activate spare
  124. */
  125. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  126. static atomic_t md_event_count;
  127. void md_new_event(mddev_t *mddev)
  128. {
  129. atomic_inc(&md_event_count);
  130. wake_up(&md_event_waiters);
  131. }
  132. EXPORT_SYMBOL_GPL(md_new_event);
  133. /* Alternate version that can be called from interrupts
  134. * when calling sysfs_notify isn't needed.
  135. */
  136. static void md_new_event_inintr(mddev_t *mddev)
  137. {
  138. atomic_inc(&md_event_count);
  139. wake_up(&md_event_waiters);
  140. }
  141. /*
  142. * Enables to iterate over all existing md arrays
  143. * all_mddevs_lock protects this list.
  144. */
  145. static LIST_HEAD(all_mddevs);
  146. static DEFINE_SPINLOCK(all_mddevs_lock);
  147. /*
  148. * iterates through all used mddevs in the system.
  149. * We take care to grab the all_mddevs_lock whenever navigating
  150. * the list, and to always hold a refcount when unlocked.
  151. * Any code which breaks out of this loop while own
  152. * a reference to the current mddev and must mddev_put it.
  153. */
  154. #define for_each_mddev(mddev,tmp) \
  155. \
  156. for (({ spin_lock(&all_mddevs_lock); \
  157. tmp = all_mddevs.next; \
  158. mddev = NULL;}); \
  159. ({ if (tmp != &all_mddevs) \
  160. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  161. spin_unlock(&all_mddevs_lock); \
  162. if (mddev) mddev_put(mddev); \
  163. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  164. tmp != &all_mddevs;}); \
  165. ({ spin_lock(&all_mddevs_lock); \
  166. tmp = tmp->next;}) \
  167. )
  168. /* Rather than calling directly into the personality make_request function,
  169. * IO requests come here first so that we can check if the device is
  170. * being suspended pending a reconfiguration.
  171. * We hold a refcount over the call to ->make_request. By the time that
  172. * call has finished, the bio has been linked into some internal structure
  173. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  174. */
  175. static int md_make_request(struct request_queue *q, struct bio *bio)
  176. {
  177. mddev_t *mddev = q->queuedata;
  178. int rv;
  179. if (mddev == NULL || mddev->pers == NULL) {
  180. bio_io_error(bio);
  181. return 0;
  182. }
  183. rcu_read_lock();
  184. if (mddev->suspended || mddev->barrier) {
  185. DEFINE_WAIT(__wait);
  186. for (;;) {
  187. prepare_to_wait(&mddev->sb_wait, &__wait,
  188. TASK_UNINTERRUPTIBLE);
  189. if (!mddev->suspended && !mddev->barrier)
  190. break;
  191. rcu_read_unlock();
  192. schedule();
  193. rcu_read_lock();
  194. }
  195. finish_wait(&mddev->sb_wait, &__wait);
  196. }
  197. atomic_inc(&mddev->active_io);
  198. rcu_read_unlock();
  199. rv = mddev->pers->make_request(q, bio);
  200. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  201. wake_up(&mddev->sb_wait);
  202. return rv;
  203. }
  204. static void mddev_suspend(mddev_t *mddev)
  205. {
  206. BUG_ON(mddev->suspended);
  207. mddev->suspended = 1;
  208. synchronize_rcu();
  209. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  210. mddev->pers->quiesce(mddev, 1);
  211. md_unregister_thread(mddev->thread);
  212. mddev->thread = NULL;
  213. /* we now know that no code is executing in the personality module,
  214. * except possibly the tail end of a ->bi_end_io function, but that
  215. * is certain to complete before the module has a chance to get
  216. * unloaded
  217. */
  218. }
  219. static void mddev_resume(mddev_t *mddev)
  220. {
  221. mddev->suspended = 0;
  222. wake_up(&mddev->sb_wait);
  223. mddev->pers->quiesce(mddev, 0);
  224. }
  225. int mddev_congested(mddev_t *mddev, int bits)
  226. {
  227. if (mddev->barrier)
  228. return 1;
  229. return mddev->suspended;
  230. }
  231. EXPORT_SYMBOL(mddev_congested);
  232. /*
  233. * Generic barrier handling for md
  234. */
  235. #define POST_REQUEST_BARRIER ((void*)1)
  236. static void md_end_barrier(struct bio *bio, int err)
  237. {
  238. mdk_rdev_t *rdev = bio->bi_private;
  239. mddev_t *mddev = rdev->mddev;
  240. if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER)
  241. set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags);
  242. rdev_dec_pending(rdev, mddev);
  243. if (atomic_dec_and_test(&mddev->flush_pending)) {
  244. if (mddev->barrier == POST_REQUEST_BARRIER) {
  245. /* This was a post-request barrier */
  246. mddev->barrier = NULL;
  247. wake_up(&mddev->sb_wait);
  248. } else
  249. /* The pre-request barrier has finished */
  250. schedule_work(&mddev->barrier_work);
  251. }
  252. bio_put(bio);
  253. }
  254. static void submit_barriers(mddev_t *mddev)
  255. {
  256. mdk_rdev_t *rdev;
  257. rcu_read_lock();
  258. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  259. if (rdev->raid_disk >= 0 &&
  260. !test_bit(Faulty, &rdev->flags)) {
  261. /* Take two references, one is dropped
  262. * when request finishes, one after
  263. * we reclaim rcu_read_lock
  264. */
  265. struct bio *bi;
  266. atomic_inc(&rdev->nr_pending);
  267. atomic_inc(&rdev->nr_pending);
  268. rcu_read_unlock();
  269. bi = bio_alloc(GFP_KERNEL, 0);
  270. bi->bi_end_io = md_end_barrier;
  271. bi->bi_private = rdev;
  272. bi->bi_bdev = rdev->bdev;
  273. atomic_inc(&mddev->flush_pending);
  274. submit_bio(WRITE_BARRIER, bi);
  275. rcu_read_lock();
  276. rdev_dec_pending(rdev, mddev);
  277. }
  278. rcu_read_unlock();
  279. }
  280. static void md_submit_barrier(struct work_struct *ws)
  281. {
  282. mddev_t *mddev = container_of(ws, mddev_t, barrier_work);
  283. struct bio *bio = mddev->barrier;
  284. atomic_set(&mddev->flush_pending, 1);
  285. if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
  286. bio_endio(bio, -EOPNOTSUPP);
  287. else if (bio->bi_size == 0)
  288. /* an empty barrier - all done */
  289. bio_endio(bio, 0);
  290. else {
  291. bio->bi_rw &= ~(1<<BIO_RW_BARRIER);
  292. if (mddev->pers->make_request(mddev->queue, bio))
  293. generic_make_request(bio);
  294. mddev->barrier = POST_REQUEST_BARRIER;
  295. submit_barriers(mddev);
  296. }
  297. if (atomic_dec_and_test(&mddev->flush_pending)) {
  298. mddev->barrier = NULL;
  299. wake_up(&mddev->sb_wait);
  300. }
  301. }
  302. void md_barrier_request(mddev_t *mddev, struct bio *bio)
  303. {
  304. spin_lock_irq(&mddev->write_lock);
  305. wait_event_lock_irq(mddev->sb_wait,
  306. !mddev->barrier,
  307. mddev->write_lock, /*nothing*/);
  308. mddev->barrier = bio;
  309. spin_unlock_irq(&mddev->write_lock);
  310. atomic_set(&mddev->flush_pending, 1);
  311. INIT_WORK(&mddev->barrier_work, md_submit_barrier);
  312. submit_barriers(mddev);
  313. if (atomic_dec_and_test(&mddev->flush_pending))
  314. schedule_work(&mddev->barrier_work);
  315. }
  316. EXPORT_SYMBOL(md_barrier_request);
  317. static inline mddev_t *mddev_get(mddev_t *mddev)
  318. {
  319. atomic_inc(&mddev->active);
  320. return mddev;
  321. }
  322. static void mddev_delayed_delete(struct work_struct *ws);
  323. static void mddev_put(mddev_t *mddev)
  324. {
  325. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  326. return;
  327. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  328. !mddev->hold_active) {
  329. list_del(&mddev->all_mddevs);
  330. if (mddev->gendisk) {
  331. /* we did a probe so need to clean up.
  332. * Call schedule_work inside the spinlock
  333. * so that flush_scheduled_work() after
  334. * mddev_find will succeed in waiting for the
  335. * work to be done.
  336. */
  337. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  338. schedule_work(&mddev->del_work);
  339. } else
  340. kfree(mddev);
  341. }
  342. spin_unlock(&all_mddevs_lock);
  343. }
  344. static mddev_t * mddev_find(dev_t unit)
  345. {
  346. mddev_t *mddev, *new = NULL;
  347. retry:
  348. spin_lock(&all_mddevs_lock);
  349. if (unit) {
  350. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  351. if (mddev->unit == unit) {
  352. mddev_get(mddev);
  353. spin_unlock(&all_mddevs_lock);
  354. kfree(new);
  355. return mddev;
  356. }
  357. if (new) {
  358. list_add(&new->all_mddevs, &all_mddevs);
  359. spin_unlock(&all_mddevs_lock);
  360. new->hold_active = UNTIL_IOCTL;
  361. return new;
  362. }
  363. } else if (new) {
  364. /* find an unused unit number */
  365. static int next_minor = 512;
  366. int start = next_minor;
  367. int is_free = 0;
  368. int dev = 0;
  369. while (!is_free) {
  370. dev = MKDEV(MD_MAJOR, next_minor);
  371. next_minor++;
  372. if (next_minor > MINORMASK)
  373. next_minor = 0;
  374. if (next_minor == start) {
  375. /* Oh dear, all in use. */
  376. spin_unlock(&all_mddevs_lock);
  377. kfree(new);
  378. return NULL;
  379. }
  380. is_free = 1;
  381. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  382. if (mddev->unit == dev) {
  383. is_free = 0;
  384. break;
  385. }
  386. }
  387. new->unit = dev;
  388. new->md_minor = MINOR(dev);
  389. new->hold_active = UNTIL_STOP;
  390. list_add(&new->all_mddevs, &all_mddevs);
  391. spin_unlock(&all_mddevs_lock);
  392. return new;
  393. }
  394. spin_unlock(&all_mddevs_lock);
  395. new = kzalloc(sizeof(*new), GFP_KERNEL);
  396. if (!new)
  397. return NULL;
  398. new->unit = unit;
  399. if (MAJOR(unit) == MD_MAJOR)
  400. new->md_minor = MINOR(unit);
  401. else
  402. new->md_minor = MINOR(unit) >> MdpMinorShift;
  403. mutex_init(&new->open_mutex);
  404. mutex_init(&new->reconfig_mutex);
  405. mutex_init(&new->bitmap_mutex);
  406. INIT_LIST_HEAD(&new->disks);
  407. INIT_LIST_HEAD(&new->all_mddevs);
  408. init_timer(&new->safemode_timer);
  409. atomic_set(&new->active, 1);
  410. atomic_set(&new->openers, 0);
  411. atomic_set(&new->active_io, 0);
  412. spin_lock_init(&new->write_lock);
  413. atomic_set(&new->flush_pending, 0);
  414. init_waitqueue_head(&new->sb_wait);
  415. init_waitqueue_head(&new->recovery_wait);
  416. new->reshape_position = MaxSector;
  417. new->resync_min = 0;
  418. new->resync_max = MaxSector;
  419. new->level = LEVEL_NONE;
  420. goto retry;
  421. }
  422. static inline int mddev_lock(mddev_t * mddev)
  423. {
  424. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  425. }
  426. static inline int mddev_is_locked(mddev_t *mddev)
  427. {
  428. return mutex_is_locked(&mddev->reconfig_mutex);
  429. }
  430. static inline int mddev_trylock(mddev_t * mddev)
  431. {
  432. return mutex_trylock(&mddev->reconfig_mutex);
  433. }
  434. static inline void mddev_unlock(mddev_t * mddev)
  435. {
  436. mutex_unlock(&mddev->reconfig_mutex);
  437. md_wakeup_thread(mddev->thread);
  438. }
  439. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  440. {
  441. mdk_rdev_t *rdev;
  442. list_for_each_entry(rdev, &mddev->disks, same_set)
  443. if (rdev->desc_nr == nr)
  444. return rdev;
  445. return NULL;
  446. }
  447. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  448. {
  449. mdk_rdev_t *rdev;
  450. list_for_each_entry(rdev, &mddev->disks, same_set)
  451. if (rdev->bdev->bd_dev == dev)
  452. return rdev;
  453. return NULL;
  454. }
  455. static struct mdk_personality *find_pers(int level, char *clevel)
  456. {
  457. struct mdk_personality *pers;
  458. list_for_each_entry(pers, &pers_list, list) {
  459. if (level != LEVEL_NONE && pers->level == level)
  460. return pers;
  461. if (strcmp(pers->name, clevel)==0)
  462. return pers;
  463. }
  464. return NULL;
  465. }
  466. /* return the offset of the super block in 512byte sectors */
  467. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  468. {
  469. sector_t num_sectors = bdev->bd_inode->i_size / 512;
  470. return MD_NEW_SIZE_SECTORS(num_sectors);
  471. }
  472. static int alloc_disk_sb(mdk_rdev_t * rdev)
  473. {
  474. if (rdev->sb_page)
  475. MD_BUG();
  476. rdev->sb_page = alloc_page(GFP_KERNEL);
  477. if (!rdev->sb_page) {
  478. printk(KERN_ALERT "md: out of memory.\n");
  479. return -ENOMEM;
  480. }
  481. return 0;
  482. }
  483. static void free_disk_sb(mdk_rdev_t * rdev)
  484. {
  485. if (rdev->sb_page) {
  486. put_page(rdev->sb_page);
  487. rdev->sb_loaded = 0;
  488. rdev->sb_page = NULL;
  489. rdev->sb_start = 0;
  490. rdev->sectors = 0;
  491. }
  492. }
  493. static void super_written(struct bio *bio, int error)
  494. {
  495. mdk_rdev_t *rdev = bio->bi_private;
  496. mddev_t *mddev = rdev->mddev;
  497. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  498. printk("md: super_written gets error=%d, uptodate=%d\n",
  499. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  500. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  501. md_error(mddev, rdev);
  502. }
  503. if (atomic_dec_and_test(&mddev->pending_writes))
  504. wake_up(&mddev->sb_wait);
  505. bio_put(bio);
  506. }
  507. static void super_written_barrier(struct bio *bio, int error)
  508. {
  509. struct bio *bio2 = bio->bi_private;
  510. mdk_rdev_t *rdev = bio2->bi_private;
  511. mddev_t *mddev = rdev->mddev;
  512. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  513. error == -EOPNOTSUPP) {
  514. unsigned long flags;
  515. /* barriers don't appear to be supported :-( */
  516. set_bit(BarriersNotsupp, &rdev->flags);
  517. mddev->barriers_work = 0;
  518. spin_lock_irqsave(&mddev->write_lock, flags);
  519. bio2->bi_next = mddev->biolist;
  520. mddev->biolist = bio2;
  521. spin_unlock_irqrestore(&mddev->write_lock, flags);
  522. wake_up(&mddev->sb_wait);
  523. bio_put(bio);
  524. } else {
  525. bio_put(bio2);
  526. bio->bi_private = rdev;
  527. super_written(bio, error);
  528. }
  529. }
  530. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  531. sector_t sector, int size, struct page *page)
  532. {
  533. /* write first size bytes of page to sector of rdev
  534. * Increment mddev->pending_writes before returning
  535. * and decrement it on completion, waking up sb_wait
  536. * if zero is reached.
  537. * If an error occurred, call md_error
  538. *
  539. * As we might need to resubmit the request if BIO_RW_BARRIER
  540. * causes ENOTSUPP, we allocate a spare bio...
  541. */
  542. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  543. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
  544. bio->bi_bdev = rdev->bdev;
  545. bio->bi_sector = sector;
  546. bio_add_page(bio, page, size, 0);
  547. bio->bi_private = rdev;
  548. bio->bi_end_io = super_written;
  549. bio->bi_rw = rw;
  550. atomic_inc(&mddev->pending_writes);
  551. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  552. struct bio *rbio;
  553. rw |= (1<<BIO_RW_BARRIER);
  554. rbio = bio_clone(bio, GFP_NOIO);
  555. rbio->bi_private = bio;
  556. rbio->bi_end_io = super_written_barrier;
  557. submit_bio(rw, rbio);
  558. } else
  559. submit_bio(rw, bio);
  560. }
  561. void md_super_wait(mddev_t *mddev)
  562. {
  563. /* wait for all superblock writes that were scheduled to complete.
  564. * if any had to be retried (due to BARRIER problems), retry them
  565. */
  566. DEFINE_WAIT(wq);
  567. for(;;) {
  568. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  569. if (atomic_read(&mddev->pending_writes)==0)
  570. break;
  571. while (mddev->biolist) {
  572. struct bio *bio;
  573. spin_lock_irq(&mddev->write_lock);
  574. bio = mddev->biolist;
  575. mddev->biolist = bio->bi_next ;
  576. bio->bi_next = NULL;
  577. spin_unlock_irq(&mddev->write_lock);
  578. submit_bio(bio->bi_rw, bio);
  579. }
  580. schedule();
  581. }
  582. finish_wait(&mddev->sb_wait, &wq);
  583. }
  584. static void bi_complete(struct bio *bio, int error)
  585. {
  586. complete((struct completion*)bio->bi_private);
  587. }
  588. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  589. struct page *page, int rw)
  590. {
  591. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  592. struct completion event;
  593. int ret;
  594. rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
  595. bio->bi_bdev = bdev;
  596. bio->bi_sector = sector;
  597. bio_add_page(bio, page, size, 0);
  598. init_completion(&event);
  599. bio->bi_private = &event;
  600. bio->bi_end_io = bi_complete;
  601. submit_bio(rw, bio);
  602. wait_for_completion(&event);
  603. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  604. bio_put(bio);
  605. return ret;
  606. }
  607. EXPORT_SYMBOL_GPL(sync_page_io);
  608. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  609. {
  610. char b[BDEVNAME_SIZE];
  611. if (!rdev->sb_page) {
  612. MD_BUG();
  613. return -EINVAL;
  614. }
  615. if (rdev->sb_loaded)
  616. return 0;
  617. if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
  618. goto fail;
  619. rdev->sb_loaded = 1;
  620. return 0;
  621. fail:
  622. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  623. bdevname(rdev->bdev,b));
  624. return -EINVAL;
  625. }
  626. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  627. {
  628. return sb1->set_uuid0 == sb2->set_uuid0 &&
  629. sb1->set_uuid1 == sb2->set_uuid1 &&
  630. sb1->set_uuid2 == sb2->set_uuid2 &&
  631. sb1->set_uuid3 == sb2->set_uuid3;
  632. }
  633. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  634. {
  635. int ret;
  636. mdp_super_t *tmp1, *tmp2;
  637. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  638. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  639. if (!tmp1 || !tmp2) {
  640. ret = 0;
  641. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  642. goto abort;
  643. }
  644. *tmp1 = *sb1;
  645. *tmp2 = *sb2;
  646. /*
  647. * nr_disks is not constant
  648. */
  649. tmp1->nr_disks = 0;
  650. tmp2->nr_disks = 0;
  651. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  652. abort:
  653. kfree(tmp1);
  654. kfree(tmp2);
  655. return ret;
  656. }
  657. static u32 md_csum_fold(u32 csum)
  658. {
  659. csum = (csum & 0xffff) + (csum >> 16);
  660. return (csum & 0xffff) + (csum >> 16);
  661. }
  662. static unsigned int calc_sb_csum(mdp_super_t * sb)
  663. {
  664. u64 newcsum = 0;
  665. u32 *sb32 = (u32*)sb;
  666. int i;
  667. unsigned int disk_csum, csum;
  668. disk_csum = sb->sb_csum;
  669. sb->sb_csum = 0;
  670. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  671. newcsum += sb32[i];
  672. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  673. #ifdef CONFIG_ALPHA
  674. /* This used to use csum_partial, which was wrong for several
  675. * reasons including that different results are returned on
  676. * different architectures. It isn't critical that we get exactly
  677. * the same return value as before (we always csum_fold before
  678. * testing, and that removes any differences). However as we
  679. * know that csum_partial always returned a 16bit value on
  680. * alphas, do a fold to maximise conformity to previous behaviour.
  681. */
  682. sb->sb_csum = md_csum_fold(disk_csum);
  683. #else
  684. sb->sb_csum = disk_csum;
  685. #endif
  686. return csum;
  687. }
  688. /*
  689. * Handle superblock details.
  690. * We want to be able to handle multiple superblock formats
  691. * so we have a common interface to them all, and an array of
  692. * different handlers.
  693. * We rely on user-space to write the initial superblock, and support
  694. * reading and updating of superblocks.
  695. * Interface methods are:
  696. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  697. * loads and validates a superblock on dev.
  698. * if refdev != NULL, compare superblocks on both devices
  699. * Return:
  700. * 0 - dev has a superblock that is compatible with refdev
  701. * 1 - dev has a superblock that is compatible and newer than refdev
  702. * so dev should be used as the refdev in future
  703. * -EINVAL superblock incompatible or invalid
  704. * -othererror e.g. -EIO
  705. *
  706. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  707. * Verify that dev is acceptable into mddev.
  708. * The first time, mddev->raid_disks will be 0, and data from
  709. * dev should be merged in. Subsequent calls check that dev
  710. * is new enough. Return 0 or -EINVAL
  711. *
  712. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  713. * Update the superblock for rdev with data in mddev
  714. * This does not write to disc.
  715. *
  716. */
  717. struct super_type {
  718. char *name;
  719. struct module *owner;
  720. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
  721. int minor_version);
  722. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  723. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  724. unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
  725. sector_t num_sectors);
  726. };
  727. /*
  728. * Check that the given mddev has no bitmap.
  729. *
  730. * This function is called from the run method of all personalities that do not
  731. * support bitmaps. It prints an error message and returns non-zero if mddev
  732. * has a bitmap. Otherwise, it returns 0.
  733. *
  734. */
  735. int md_check_no_bitmap(mddev_t *mddev)
  736. {
  737. if (!mddev->bitmap_file && !mddev->bitmap_offset)
  738. return 0;
  739. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  740. mdname(mddev), mddev->pers->name);
  741. return 1;
  742. }
  743. EXPORT_SYMBOL(md_check_no_bitmap);
  744. /*
  745. * load_super for 0.90.0
  746. */
  747. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  748. {
  749. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  750. mdp_super_t *sb;
  751. int ret;
  752. /*
  753. * Calculate the position of the superblock (512byte sectors),
  754. * it's at the end of the disk.
  755. *
  756. * It also happens to be a multiple of 4Kb.
  757. */
  758. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  759. ret = read_disk_sb(rdev, MD_SB_BYTES);
  760. if (ret) return ret;
  761. ret = -EINVAL;
  762. bdevname(rdev->bdev, b);
  763. sb = (mdp_super_t*)page_address(rdev->sb_page);
  764. if (sb->md_magic != MD_SB_MAGIC) {
  765. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  766. b);
  767. goto abort;
  768. }
  769. if (sb->major_version != 0 ||
  770. sb->minor_version < 90 ||
  771. sb->minor_version > 91) {
  772. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  773. sb->major_version, sb->minor_version,
  774. b);
  775. goto abort;
  776. }
  777. if (sb->raid_disks <= 0)
  778. goto abort;
  779. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  780. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  781. b);
  782. goto abort;
  783. }
  784. rdev->preferred_minor = sb->md_minor;
  785. rdev->data_offset = 0;
  786. rdev->sb_size = MD_SB_BYTES;
  787. if (sb->level == LEVEL_MULTIPATH)
  788. rdev->desc_nr = -1;
  789. else
  790. rdev->desc_nr = sb->this_disk.number;
  791. if (!refdev) {
  792. ret = 1;
  793. } else {
  794. __u64 ev1, ev2;
  795. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  796. if (!uuid_equal(refsb, sb)) {
  797. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  798. b, bdevname(refdev->bdev,b2));
  799. goto abort;
  800. }
  801. if (!sb_equal(refsb, sb)) {
  802. printk(KERN_WARNING "md: %s has same UUID"
  803. " but different superblock to %s\n",
  804. b, bdevname(refdev->bdev, b2));
  805. goto abort;
  806. }
  807. ev1 = md_event(sb);
  808. ev2 = md_event(refsb);
  809. if (ev1 > ev2)
  810. ret = 1;
  811. else
  812. ret = 0;
  813. }
  814. rdev->sectors = rdev->sb_start;
  815. if (rdev->sectors < sb->size * 2 && sb->level > 1)
  816. /* "this cannot possibly happen" ... */
  817. ret = -EINVAL;
  818. abort:
  819. return ret;
  820. }
  821. /*
  822. * validate_super for 0.90.0
  823. */
  824. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  825. {
  826. mdp_disk_t *desc;
  827. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  828. __u64 ev1 = md_event(sb);
  829. rdev->raid_disk = -1;
  830. clear_bit(Faulty, &rdev->flags);
  831. clear_bit(In_sync, &rdev->flags);
  832. clear_bit(WriteMostly, &rdev->flags);
  833. clear_bit(BarriersNotsupp, &rdev->flags);
  834. if (mddev->raid_disks == 0) {
  835. mddev->major_version = 0;
  836. mddev->minor_version = sb->minor_version;
  837. mddev->patch_version = sb->patch_version;
  838. mddev->external = 0;
  839. mddev->chunk_sectors = sb->chunk_size >> 9;
  840. mddev->ctime = sb->ctime;
  841. mddev->utime = sb->utime;
  842. mddev->level = sb->level;
  843. mddev->clevel[0] = 0;
  844. mddev->layout = sb->layout;
  845. mddev->raid_disks = sb->raid_disks;
  846. mddev->dev_sectors = sb->size * 2;
  847. mddev->events = ev1;
  848. mddev->bitmap_offset = 0;
  849. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  850. if (mddev->minor_version >= 91) {
  851. mddev->reshape_position = sb->reshape_position;
  852. mddev->delta_disks = sb->delta_disks;
  853. mddev->new_level = sb->new_level;
  854. mddev->new_layout = sb->new_layout;
  855. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  856. } else {
  857. mddev->reshape_position = MaxSector;
  858. mddev->delta_disks = 0;
  859. mddev->new_level = mddev->level;
  860. mddev->new_layout = mddev->layout;
  861. mddev->new_chunk_sectors = mddev->chunk_sectors;
  862. }
  863. if (sb->state & (1<<MD_SB_CLEAN))
  864. mddev->recovery_cp = MaxSector;
  865. else {
  866. if (sb->events_hi == sb->cp_events_hi &&
  867. sb->events_lo == sb->cp_events_lo) {
  868. mddev->recovery_cp = sb->recovery_cp;
  869. } else
  870. mddev->recovery_cp = 0;
  871. }
  872. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  873. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  874. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  875. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  876. mddev->max_disks = MD_SB_DISKS;
  877. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  878. mddev->bitmap_file == NULL)
  879. mddev->bitmap_offset = mddev->default_bitmap_offset;
  880. } else if (mddev->pers == NULL) {
  881. /* Insist on good event counter while assembling */
  882. ++ev1;
  883. if (ev1 < mddev->events)
  884. return -EINVAL;
  885. } else if (mddev->bitmap) {
  886. /* if adding to array with a bitmap, then we can accept an
  887. * older device ... but not too old.
  888. */
  889. if (ev1 < mddev->bitmap->events_cleared)
  890. return 0;
  891. } else {
  892. if (ev1 < mddev->events)
  893. /* just a hot-add of a new device, leave raid_disk at -1 */
  894. return 0;
  895. }
  896. if (mddev->level != LEVEL_MULTIPATH) {
  897. desc = sb->disks + rdev->desc_nr;
  898. if (desc->state & (1<<MD_DISK_FAULTY))
  899. set_bit(Faulty, &rdev->flags);
  900. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  901. desc->raid_disk < mddev->raid_disks */) {
  902. set_bit(In_sync, &rdev->flags);
  903. rdev->raid_disk = desc->raid_disk;
  904. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  905. /* active but not in sync implies recovery up to
  906. * reshape position. We don't know exactly where
  907. * that is, so set to zero for now */
  908. if (mddev->minor_version >= 91) {
  909. rdev->recovery_offset = 0;
  910. rdev->raid_disk = desc->raid_disk;
  911. }
  912. }
  913. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  914. set_bit(WriteMostly, &rdev->flags);
  915. } else /* MULTIPATH are always insync */
  916. set_bit(In_sync, &rdev->flags);
  917. return 0;
  918. }
  919. /*
  920. * sync_super for 0.90.0
  921. */
  922. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  923. {
  924. mdp_super_t *sb;
  925. mdk_rdev_t *rdev2;
  926. int next_spare = mddev->raid_disks;
  927. /* make rdev->sb match mddev data..
  928. *
  929. * 1/ zero out disks
  930. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  931. * 3/ any empty disks < next_spare become removed
  932. *
  933. * disks[0] gets initialised to REMOVED because
  934. * we cannot be sure from other fields if it has
  935. * been initialised or not.
  936. */
  937. int i;
  938. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  939. rdev->sb_size = MD_SB_BYTES;
  940. sb = (mdp_super_t*)page_address(rdev->sb_page);
  941. memset(sb, 0, sizeof(*sb));
  942. sb->md_magic = MD_SB_MAGIC;
  943. sb->major_version = mddev->major_version;
  944. sb->patch_version = mddev->patch_version;
  945. sb->gvalid_words = 0; /* ignored */
  946. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  947. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  948. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  949. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  950. sb->ctime = mddev->ctime;
  951. sb->level = mddev->level;
  952. sb->size = mddev->dev_sectors / 2;
  953. sb->raid_disks = mddev->raid_disks;
  954. sb->md_minor = mddev->md_minor;
  955. sb->not_persistent = 0;
  956. sb->utime = mddev->utime;
  957. sb->state = 0;
  958. sb->events_hi = (mddev->events>>32);
  959. sb->events_lo = (u32)mddev->events;
  960. if (mddev->reshape_position == MaxSector)
  961. sb->minor_version = 90;
  962. else {
  963. sb->minor_version = 91;
  964. sb->reshape_position = mddev->reshape_position;
  965. sb->new_level = mddev->new_level;
  966. sb->delta_disks = mddev->delta_disks;
  967. sb->new_layout = mddev->new_layout;
  968. sb->new_chunk = mddev->new_chunk_sectors << 9;
  969. }
  970. mddev->minor_version = sb->minor_version;
  971. if (mddev->in_sync)
  972. {
  973. sb->recovery_cp = mddev->recovery_cp;
  974. sb->cp_events_hi = (mddev->events>>32);
  975. sb->cp_events_lo = (u32)mddev->events;
  976. if (mddev->recovery_cp == MaxSector)
  977. sb->state = (1<< MD_SB_CLEAN);
  978. } else
  979. sb->recovery_cp = 0;
  980. sb->layout = mddev->layout;
  981. sb->chunk_size = mddev->chunk_sectors << 9;
  982. if (mddev->bitmap && mddev->bitmap_file == NULL)
  983. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  984. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  985. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  986. mdp_disk_t *d;
  987. int desc_nr;
  988. int is_active = test_bit(In_sync, &rdev2->flags);
  989. if (rdev2->raid_disk >= 0 &&
  990. sb->minor_version >= 91)
  991. /* we have nowhere to store the recovery_offset,
  992. * but if it is not below the reshape_position,
  993. * we can piggy-back on that.
  994. */
  995. is_active = 1;
  996. if (rdev2->raid_disk < 0 ||
  997. test_bit(Faulty, &rdev2->flags))
  998. is_active = 0;
  999. if (is_active)
  1000. desc_nr = rdev2->raid_disk;
  1001. else
  1002. desc_nr = next_spare++;
  1003. rdev2->desc_nr = desc_nr;
  1004. d = &sb->disks[rdev2->desc_nr];
  1005. nr_disks++;
  1006. d->number = rdev2->desc_nr;
  1007. d->major = MAJOR(rdev2->bdev->bd_dev);
  1008. d->minor = MINOR(rdev2->bdev->bd_dev);
  1009. if (is_active)
  1010. d->raid_disk = rdev2->raid_disk;
  1011. else
  1012. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1013. if (test_bit(Faulty, &rdev2->flags))
  1014. d->state = (1<<MD_DISK_FAULTY);
  1015. else if (is_active) {
  1016. d->state = (1<<MD_DISK_ACTIVE);
  1017. if (test_bit(In_sync, &rdev2->flags))
  1018. d->state |= (1<<MD_DISK_SYNC);
  1019. active++;
  1020. working++;
  1021. } else {
  1022. d->state = 0;
  1023. spare++;
  1024. working++;
  1025. }
  1026. if (test_bit(WriteMostly, &rdev2->flags))
  1027. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1028. }
  1029. /* now set the "removed" and "faulty" bits on any missing devices */
  1030. for (i=0 ; i < mddev->raid_disks ; i++) {
  1031. mdp_disk_t *d = &sb->disks[i];
  1032. if (d->state == 0 && d->number == 0) {
  1033. d->number = i;
  1034. d->raid_disk = i;
  1035. d->state = (1<<MD_DISK_REMOVED);
  1036. d->state |= (1<<MD_DISK_FAULTY);
  1037. failed++;
  1038. }
  1039. }
  1040. sb->nr_disks = nr_disks;
  1041. sb->active_disks = active;
  1042. sb->working_disks = working;
  1043. sb->failed_disks = failed;
  1044. sb->spare_disks = spare;
  1045. sb->this_disk = sb->disks[rdev->desc_nr];
  1046. sb->sb_csum = calc_sb_csum(sb);
  1047. }
  1048. /*
  1049. * rdev_size_change for 0.90.0
  1050. */
  1051. static unsigned long long
  1052. super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  1053. {
  1054. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1055. return 0; /* component must fit device */
  1056. if (rdev->mddev->bitmap_offset)
  1057. return 0; /* can't move bitmap */
  1058. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  1059. if (!num_sectors || num_sectors > rdev->sb_start)
  1060. num_sectors = rdev->sb_start;
  1061. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1062. rdev->sb_page);
  1063. md_super_wait(rdev->mddev);
  1064. return num_sectors / 2; /* kB for sysfs */
  1065. }
  1066. /*
  1067. * version 1 superblock
  1068. */
  1069. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1070. {
  1071. __le32 disk_csum;
  1072. u32 csum;
  1073. unsigned long long newcsum;
  1074. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1075. __le32 *isuper = (__le32*)sb;
  1076. int i;
  1077. disk_csum = sb->sb_csum;
  1078. sb->sb_csum = 0;
  1079. newcsum = 0;
  1080. for (i=0; size>=4; size -= 4 )
  1081. newcsum += le32_to_cpu(*isuper++);
  1082. if (size == 2)
  1083. newcsum += le16_to_cpu(*(__le16*) isuper);
  1084. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1085. sb->sb_csum = disk_csum;
  1086. return cpu_to_le32(csum);
  1087. }
  1088. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  1089. {
  1090. struct mdp_superblock_1 *sb;
  1091. int ret;
  1092. sector_t sb_start;
  1093. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1094. int bmask;
  1095. /*
  1096. * Calculate the position of the superblock in 512byte sectors.
  1097. * It is always aligned to a 4K boundary and
  1098. * depeding on minor_version, it can be:
  1099. * 0: At least 8K, but less than 12K, from end of device
  1100. * 1: At start of device
  1101. * 2: 4K from start of device.
  1102. */
  1103. switch(minor_version) {
  1104. case 0:
  1105. sb_start = rdev->bdev->bd_inode->i_size >> 9;
  1106. sb_start -= 8*2;
  1107. sb_start &= ~(sector_t)(4*2-1);
  1108. break;
  1109. case 1:
  1110. sb_start = 0;
  1111. break;
  1112. case 2:
  1113. sb_start = 8;
  1114. break;
  1115. default:
  1116. return -EINVAL;
  1117. }
  1118. rdev->sb_start = sb_start;
  1119. /* superblock is rarely larger than 1K, but it can be larger,
  1120. * and it is safe to read 4k, so we do that
  1121. */
  1122. ret = read_disk_sb(rdev, 4096);
  1123. if (ret) return ret;
  1124. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1125. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1126. sb->major_version != cpu_to_le32(1) ||
  1127. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1128. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1129. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1130. return -EINVAL;
  1131. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1132. printk("md: invalid superblock checksum on %s\n",
  1133. bdevname(rdev->bdev,b));
  1134. return -EINVAL;
  1135. }
  1136. if (le64_to_cpu(sb->data_size) < 10) {
  1137. printk("md: data_size too small on %s\n",
  1138. bdevname(rdev->bdev,b));
  1139. return -EINVAL;
  1140. }
  1141. rdev->preferred_minor = 0xffff;
  1142. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1143. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1144. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1145. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1146. if (rdev->sb_size & bmask)
  1147. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1148. if (minor_version
  1149. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1150. return -EINVAL;
  1151. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1152. rdev->desc_nr = -1;
  1153. else
  1154. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1155. if (!refdev) {
  1156. ret = 1;
  1157. } else {
  1158. __u64 ev1, ev2;
  1159. struct mdp_superblock_1 *refsb =
  1160. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  1161. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1162. sb->level != refsb->level ||
  1163. sb->layout != refsb->layout ||
  1164. sb->chunksize != refsb->chunksize) {
  1165. printk(KERN_WARNING "md: %s has strangely different"
  1166. " superblock to %s\n",
  1167. bdevname(rdev->bdev,b),
  1168. bdevname(refdev->bdev,b2));
  1169. return -EINVAL;
  1170. }
  1171. ev1 = le64_to_cpu(sb->events);
  1172. ev2 = le64_to_cpu(refsb->events);
  1173. if (ev1 > ev2)
  1174. ret = 1;
  1175. else
  1176. ret = 0;
  1177. }
  1178. if (minor_version)
  1179. rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
  1180. le64_to_cpu(sb->data_offset);
  1181. else
  1182. rdev->sectors = rdev->sb_start;
  1183. if (rdev->sectors < le64_to_cpu(sb->data_size))
  1184. return -EINVAL;
  1185. rdev->sectors = le64_to_cpu(sb->data_size);
  1186. if (le64_to_cpu(sb->size) > rdev->sectors)
  1187. return -EINVAL;
  1188. return ret;
  1189. }
  1190. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  1191. {
  1192. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1193. __u64 ev1 = le64_to_cpu(sb->events);
  1194. rdev->raid_disk = -1;
  1195. clear_bit(Faulty, &rdev->flags);
  1196. clear_bit(In_sync, &rdev->flags);
  1197. clear_bit(WriteMostly, &rdev->flags);
  1198. clear_bit(BarriersNotsupp, &rdev->flags);
  1199. if (mddev->raid_disks == 0) {
  1200. mddev->major_version = 1;
  1201. mddev->patch_version = 0;
  1202. mddev->external = 0;
  1203. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1204. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1205. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1206. mddev->level = le32_to_cpu(sb->level);
  1207. mddev->clevel[0] = 0;
  1208. mddev->layout = le32_to_cpu(sb->layout);
  1209. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1210. mddev->dev_sectors = le64_to_cpu(sb->size);
  1211. mddev->events = ev1;
  1212. mddev->bitmap_offset = 0;
  1213. mddev->default_bitmap_offset = 1024 >> 9;
  1214. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1215. memcpy(mddev->uuid, sb->set_uuid, 16);
  1216. mddev->max_disks = (4096-256)/2;
  1217. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1218. mddev->bitmap_file == NULL )
  1219. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  1220. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1221. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1222. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1223. mddev->new_level = le32_to_cpu(sb->new_level);
  1224. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1225. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1226. } else {
  1227. mddev->reshape_position = MaxSector;
  1228. mddev->delta_disks = 0;
  1229. mddev->new_level = mddev->level;
  1230. mddev->new_layout = mddev->layout;
  1231. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1232. }
  1233. } else if (mddev->pers == NULL) {
  1234. /* Insist of good event counter while assembling */
  1235. ++ev1;
  1236. if (ev1 < mddev->events)
  1237. return -EINVAL;
  1238. } else if (mddev->bitmap) {
  1239. /* If adding to array with a bitmap, then we can accept an
  1240. * older device, but not too old.
  1241. */
  1242. if (ev1 < mddev->bitmap->events_cleared)
  1243. return 0;
  1244. } else {
  1245. if (ev1 < mddev->events)
  1246. /* just a hot-add of a new device, leave raid_disk at -1 */
  1247. return 0;
  1248. }
  1249. if (mddev->level != LEVEL_MULTIPATH) {
  1250. int role;
  1251. if (rdev->desc_nr < 0 ||
  1252. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1253. role = 0xffff;
  1254. rdev->desc_nr = -1;
  1255. } else
  1256. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1257. switch(role) {
  1258. case 0xffff: /* spare */
  1259. break;
  1260. case 0xfffe: /* faulty */
  1261. set_bit(Faulty, &rdev->flags);
  1262. break;
  1263. default:
  1264. if ((le32_to_cpu(sb->feature_map) &
  1265. MD_FEATURE_RECOVERY_OFFSET))
  1266. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1267. else
  1268. set_bit(In_sync, &rdev->flags);
  1269. rdev->raid_disk = role;
  1270. break;
  1271. }
  1272. if (sb->devflags & WriteMostly1)
  1273. set_bit(WriteMostly, &rdev->flags);
  1274. } else /* MULTIPATH are always insync */
  1275. set_bit(In_sync, &rdev->flags);
  1276. return 0;
  1277. }
  1278. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1279. {
  1280. struct mdp_superblock_1 *sb;
  1281. mdk_rdev_t *rdev2;
  1282. int max_dev, i;
  1283. /* make rdev->sb match mddev and rdev data. */
  1284. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1285. sb->feature_map = 0;
  1286. sb->pad0 = 0;
  1287. sb->recovery_offset = cpu_to_le64(0);
  1288. memset(sb->pad1, 0, sizeof(sb->pad1));
  1289. memset(sb->pad2, 0, sizeof(sb->pad2));
  1290. memset(sb->pad3, 0, sizeof(sb->pad3));
  1291. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1292. sb->events = cpu_to_le64(mddev->events);
  1293. if (mddev->in_sync)
  1294. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1295. else
  1296. sb->resync_offset = cpu_to_le64(0);
  1297. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1298. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1299. sb->size = cpu_to_le64(mddev->dev_sectors);
  1300. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1301. sb->level = cpu_to_le32(mddev->level);
  1302. sb->layout = cpu_to_le32(mddev->layout);
  1303. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  1304. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  1305. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1306. }
  1307. if (rdev->raid_disk >= 0 &&
  1308. !test_bit(In_sync, &rdev->flags)) {
  1309. if (rdev->recovery_offset > 0) {
  1310. sb->feature_map |=
  1311. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1312. sb->recovery_offset =
  1313. cpu_to_le64(rdev->recovery_offset);
  1314. }
  1315. }
  1316. if (mddev->reshape_position != MaxSector) {
  1317. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1318. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1319. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1320. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1321. sb->new_level = cpu_to_le32(mddev->new_level);
  1322. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1323. }
  1324. max_dev = 0;
  1325. list_for_each_entry(rdev2, &mddev->disks, same_set)
  1326. if (rdev2->desc_nr+1 > max_dev)
  1327. max_dev = rdev2->desc_nr+1;
  1328. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1329. int bmask;
  1330. sb->max_dev = cpu_to_le32(max_dev);
  1331. rdev->sb_size = max_dev * 2 + 256;
  1332. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1333. if (rdev->sb_size & bmask)
  1334. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1335. }
  1336. for (i=0; i<max_dev;i++)
  1337. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1338. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1339. i = rdev2->desc_nr;
  1340. if (test_bit(Faulty, &rdev2->flags))
  1341. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1342. else if (test_bit(In_sync, &rdev2->flags))
  1343. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1344. else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
  1345. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1346. else
  1347. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1348. }
  1349. sb->sb_csum = calc_sb_1_csum(sb);
  1350. }
  1351. static unsigned long long
  1352. super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  1353. {
  1354. struct mdp_superblock_1 *sb;
  1355. sector_t max_sectors;
  1356. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1357. return 0; /* component must fit device */
  1358. if (rdev->sb_start < rdev->data_offset) {
  1359. /* minor versions 1 and 2; superblock before data */
  1360. max_sectors = rdev->bdev->bd_inode->i_size >> 9;
  1361. max_sectors -= rdev->data_offset;
  1362. if (!num_sectors || num_sectors > max_sectors)
  1363. num_sectors = max_sectors;
  1364. } else if (rdev->mddev->bitmap_offset) {
  1365. /* minor version 0 with bitmap we can't move */
  1366. return 0;
  1367. } else {
  1368. /* minor version 0; superblock after data */
  1369. sector_t sb_start;
  1370. sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
  1371. sb_start &= ~(sector_t)(4*2 - 1);
  1372. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1373. if (!num_sectors || num_sectors > max_sectors)
  1374. num_sectors = max_sectors;
  1375. rdev->sb_start = sb_start;
  1376. }
  1377. sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
  1378. sb->data_size = cpu_to_le64(num_sectors);
  1379. sb->super_offset = rdev->sb_start;
  1380. sb->sb_csum = calc_sb_1_csum(sb);
  1381. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1382. rdev->sb_page);
  1383. md_super_wait(rdev->mddev);
  1384. return num_sectors / 2; /* kB for sysfs */
  1385. }
  1386. static struct super_type super_types[] = {
  1387. [0] = {
  1388. .name = "0.90.0",
  1389. .owner = THIS_MODULE,
  1390. .load_super = super_90_load,
  1391. .validate_super = super_90_validate,
  1392. .sync_super = super_90_sync,
  1393. .rdev_size_change = super_90_rdev_size_change,
  1394. },
  1395. [1] = {
  1396. .name = "md-1",
  1397. .owner = THIS_MODULE,
  1398. .load_super = super_1_load,
  1399. .validate_super = super_1_validate,
  1400. .sync_super = super_1_sync,
  1401. .rdev_size_change = super_1_rdev_size_change,
  1402. },
  1403. };
  1404. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1405. {
  1406. mdk_rdev_t *rdev, *rdev2;
  1407. rcu_read_lock();
  1408. rdev_for_each_rcu(rdev, mddev1)
  1409. rdev_for_each_rcu(rdev2, mddev2)
  1410. if (rdev->bdev->bd_contains ==
  1411. rdev2->bdev->bd_contains) {
  1412. rcu_read_unlock();
  1413. return 1;
  1414. }
  1415. rcu_read_unlock();
  1416. return 0;
  1417. }
  1418. static LIST_HEAD(pending_raid_disks);
  1419. /*
  1420. * Try to register data integrity profile for an mddev
  1421. *
  1422. * This is called when an array is started and after a disk has been kicked
  1423. * from the array. It only succeeds if all working and active component devices
  1424. * are integrity capable with matching profiles.
  1425. */
  1426. int md_integrity_register(mddev_t *mddev)
  1427. {
  1428. mdk_rdev_t *rdev, *reference = NULL;
  1429. if (list_empty(&mddev->disks))
  1430. return 0; /* nothing to do */
  1431. if (blk_get_integrity(mddev->gendisk))
  1432. return 0; /* already registered */
  1433. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1434. /* skip spares and non-functional disks */
  1435. if (test_bit(Faulty, &rdev->flags))
  1436. continue;
  1437. if (rdev->raid_disk < 0)
  1438. continue;
  1439. /*
  1440. * If at least one rdev is not integrity capable, we can not
  1441. * enable data integrity for the md device.
  1442. */
  1443. if (!bdev_get_integrity(rdev->bdev))
  1444. return -EINVAL;
  1445. if (!reference) {
  1446. /* Use the first rdev as the reference */
  1447. reference = rdev;
  1448. continue;
  1449. }
  1450. /* does this rdev's profile match the reference profile? */
  1451. if (blk_integrity_compare(reference->bdev->bd_disk,
  1452. rdev->bdev->bd_disk) < 0)
  1453. return -EINVAL;
  1454. }
  1455. /*
  1456. * All component devices are integrity capable and have matching
  1457. * profiles, register the common profile for the md device.
  1458. */
  1459. if (blk_integrity_register(mddev->gendisk,
  1460. bdev_get_integrity(reference->bdev)) != 0) {
  1461. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1462. mdname(mddev));
  1463. return -EINVAL;
  1464. }
  1465. printk(KERN_NOTICE "md: data integrity on %s enabled\n",
  1466. mdname(mddev));
  1467. return 0;
  1468. }
  1469. EXPORT_SYMBOL(md_integrity_register);
  1470. /* Disable data integrity if non-capable/non-matching disk is being added */
  1471. void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
  1472. {
  1473. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1474. struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
  1475. if (!bi_mddev) /* nothing to do */
  1476. return;
  1477. if (rdev->raid_disk < 0) /* skip spares */
  1478. return;
  1479. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1480. rdev->bdev->bd_disk) >= 0)
  1481. return;
  1482. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1483. blk_integrity_unregister(mddev->gendisk);
  1484. }
  1485. EXPORT_SYMBOL(md_integrity_add_rdev);
  1486. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1487. {
  1488. char b[BDEVNAME_SIZE];
  1489. struct kobject *ko;
  1490. char *s;
  1491. int err;
  1492. if (rdev->mddev) {
  1493. MD_BUG();
  1494. return -EINVAL;
  1495. }
  1496. /* prevent duplicates */
  1497. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1498. return -EEXIST;
  1499. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1500. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1501. rdev->sectors < mddev->dev_sectors)) {
  1502. if (mddev->pers) {
  1503. /* Cannot change size, so fail
  1504. * If mddev->level <= 0, then we don't care
  1505. * about aligning sizes (e.g. linear)
  1506. */
  1507. if (mddev->level > 0)
  1508. return -ENOSPC;
  1509. } else
  1510. mddev->dev_sectors = rdev->sectors;
  1511. }
  1512. /* Verify rdev->desc_nr is unique.
  1513. * If it is -1, assign a free number, else
  1514. * check number is not in use
  1515. */
  1516. if (rdev->desc_nr < 0) {
  1517. int choice = 0;
  1518. if (mddev->pers) choice = mddev->raid_disks;
  1519. while (find_rdev_nr(mddev, choice))
  1520. choice++;
  1521. rdev->desc_nr = choice;
  1522. } else {
  1523. if (find_rdev_nr(mddev, rdev->desc_nr))
  1524. return -EBUSY;
  1525. }
  1526. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1527. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1528. mdname(mddev), mddev->max_disks);
  1529. return -EBUSY;
  1530. }
  1531. bdevname(rdev->bdev,b);
  1532. while ( (s=strchr(b, '/')) != NULL)
  1533. *s = '!';
  1534. rdev->mddev = mddev;
  1535. printk(KERN_INFO "md: bind<%s>\n", b);
  1536. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1537. goto fail;
  1538. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1539. if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
  1540. kobject_del(&rdev->kobj);
  1541. goto fail;
  1542. }
  1543. rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
  1544. list_add_rcu(&rdev->same_set, &mddev->disks);
  1545. bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
  1546. /* May as well allow recovery to be retried once */
  1547. mddev->recovery_disabled = 0;
  1548. return 0;
  1549. fail:
  1550. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1551. b, mdname(mddev));
  1552. return err;
  1553. }
  1554. static void md_delayed_delete(struct work_struct *ws)
  1555. {
  1556. mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
  1557. kobject_del(&rdev->kobj);
  1558. kobject_put(&rdev->kobj);
  1559. }
  1560. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1561. {
  1562. char b[BDEVNAME_SIZE];
  1563. if (!rdev->mddev) {
  1564. MD_BUG();
  1565. return;
  1566. }
  1567. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1568. list_del_rcu(&rdev->same_set);
  1569. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1570. rdev->mddev = NULL;
  1571. sysfs_remove_link(&rdev->kobj, "block");
  1572. sysfs_put(rdev->sysfs_state);
  1573. rdev->sysfs_state = NULL;
  1574. /* We need to delay this, otherwise we can deadlock when
  1575. * writing to 'remove' to "dev/state". We also need
  1576. * to delay it due to rcu usage.
  1577. */
  1578. synchronize_rcu();
  1579. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1580. kobject_get(&rdev->kobj);
  1581. schedule_work(&rdev->del_work);
  1582. }
  1583. /*
  1584. * prevent the device from being mounted, repartitioned or
  1585. * otherwise reused by a RAID array (or any other kernel
  1586. * subsystem), by bd_claiming the device.
  1587. */
  1588. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
  1589. {
  1590. int err = 0;
  1591. struct block_device *bdev;
  1592. char b[BDEVNAME_SIZE];
  1593. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1594. if (IS_ERR(bdev)) {
  1595. printk(KERN_ERR "md: could not open %s.\n",
  1596. __bdevname(dev, b));
  1597. return PTR_ERR(bdev);
  1598. }
  1599. err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
  1600. if (err) {
  1601. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1602. bdevname(bdev, b));
  1603. blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
  1604. return err;
  1605. }
  1606. if (!shared)
  1607. set_bit(AllReserved, &rdev->flags);
  1608. rdev->bdev = bdev;
  1609. return err;
  1610. }
  1611. static void unlock_rdev(mdk_rdev_t *rdev)
  1612. {
  1613. struct block_device *bdev = rdev->bdev;
  1614. rdev->bdev = NULL;
  1615. if (!bdev)
  1616. MD_BUG();
  1617. bd_release(bdev);
  1618. blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
  1619. }
  1620. void md_autodetect_dev(dev_t dev);
  1621. static void export_rdev(mdk_rdev_t * rdev)
  1622. {
  1623. char b[BDEVNAME_SIZE];
  1624. printk(KERN_INFO "md: export_rdev(%s)\n",
  1625. bdevname(rdev->bdev,b));
  1626. if (rdev->mddev)
  1627. MD_BUG();
  1628. free_disk_sb(rdev);
  1629. #ifndef MODULE
  1630. if (test_bit(AutoDetected, &rdev->flags))
  1631. md_autodetect_dev(rdev->bdev->bd_dev);
  1632. #endif
  1633. unlock_rdev(rdev);
  1634. kobject_put(&rdev->kobj);
  1635. }
  1636. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1637. {
  1638. unbind_rdev_from_array(rdev);
  1639. export_rdev(rdev);
  1640. }
  1641. static void export_array(mddev_t *mddev)
  1642. {
  1643. mdk_rdev_t *rdev, *tmp;
  1644. rdev_for_each(rdev, tmp, mddev) {
  1645. if (!rdev->mddev) {
  1646. MD_BUG();
  1647. continue;
  1648. }
  1649. kick_rdev_from_array(rdev);
  1650. }
  1651. if (!list_empty(&mddev->disks))
  1652. MD_BUG();
  1653. mddev->raid_disks = 0;
  1654. mddev->major_version = 0;
  1655. }
  1656. static void print_desc(mdp_disk_t *desc)
  1657. {
  1658. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1659. desc->major,desc->minor,desc->raid_disk,desc->state);
  1660. }
  1661. static void print_sb_90(mdp_super_t *sb)
  1662. {
  1663. int i;
  1664. printk(KERN_INFO
  1665. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1666. sb->major_version, sb->minor_version, sb->patch_version,
  1667. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1668. sb->ctime);
  1669. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1670. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1671. sb->md_minor, sb->layout, sb->chunk_size);
  1672. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1673. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1674. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1675. sb->failed_disks, sb->spare_disks,
  1676. sb->sb_csum, (unsigned long)sb->events_lo);
  1677. printk(KERN_INFO);
  1678. for (i = 0; i < MD_SB_DISKS; i++) {
  1679. mdp_disk_t *desc;
  1680. desc = sb->disks + i;
  1681. if (desc->number || desc->major || desc->minor ||
  1682. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1683. printk(" D %2d: ", i);
  1684. print_desc(desc);
  1685. }
  1686. }
  1687. printk(KERN_INFO "md: THIS: ");
  1688. print_desc(&sb->this_disk);
  1689. }
  1690. static void print_sb_1(struct mdp_superblock_1 *sb)
  1691. {
  1692. __u8 *uuid;
  1693. uuid = sb->set_uuid;
  1694. printk(KERN_INFO
  1695. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x"
  1696. ":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n"
  1697. "md: Name: \"%s\" CT:%llu\n",
  1698. le32_to_cpu(sb->major_version),
  1699. le32_to_cpu(sb->feature_map),
  1700. uuid[0], uuid[1], uuid[2], uuid[3],
  1701. uuid[4], uuid[5], uuid[6], uuid[7],
  1702. uuid[8], uuid[9], uuid[10], uuid[11],
  1703. uuid[12], uuid[13], uuid[14], uuid[15],
  1704. sb->set_name,
  1705. (unsigned long long)le64_to_cpu(sb->ctime)
  1706. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  1707. uuid = sb->device_uuid;
  1708. printk(KERN_INFO
  1709. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  1710. " RO:%llu\n"
  1711. "md: Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x"
  1712. ":%02x%02x%02x%02x%02x%02x\n"
  1713. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  1714. "md: (MaxDev:%u) \n",
  1715. le32_to_cpu(sb->level),
  1716. (unsigned long long)le64_to_cpu(sb->size),
  1717. le32_to_cpu(sb->raid_disks),
  1718. le32_to_cpu(sb->layout),
  1719. le32_to_cpu(sb->chunksize),
  1720. (unsigned long long)le64_to_cpu(sb->data_offset),
  1721. (unsigned long long)le64_to_cpu(sb->data_size),
  1722. (unsigned long long)le64_to_cpu(sb->super_offset),
  1723. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  1724. le32_to_cpu(sb->dev_number),
  1725. uuid[0], uuid[1], uuid[2], uuid[3],
  1726. uuid[4], uuid[5], uuid[6], uuid[7],
  1727. uuid[8], uuid[9], uuid[10], uuid[11],
  1728. uuid[12], uuid[13], uuid[14], uuid[15],
  1729. sb->devflags,
  1730. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  1731. (unsigned long long)le64_to_cpu(sb->events),
  1732. (unsigned long long)le64_to_cpu(sb->resync_offset),
  1733. le32_to_cpu(sb->sb_csum),
  1734. le32_to_cpu(sb->max_dev)
  1735. );
  1736. }
  1737. static void print_rdev(mdk_rdev_t *rdev, int major_version)
  1738. {
  1739. char b[BDEVNAME_SIZE];
  1740. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  1741. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  1742. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1743. rdev->desc_nr);
  1744. if (rdev->sb_loaded) {
  1745. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  1746. switch (major_version) {
  1747. case 0:
  1748. print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
  1749. break;
  1750. case 1:
  1751. print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
  1752. break;
  1753. }
  1754. } else
  1755. printk(KERN_INFO "md: no rdev superblock!\n");
  1756. }
  1757. static void md_print_devices(void)
  1758. {
  1759. struct list_head *tmp;
  1760. mdk_rdev_t *rdev;
  1761. mddev_t *mddev;
  1762. char b[BDEVNAME_SIZE];
  1763. printk("\n");
  1764. printk("md: **********************************\n");
  1765. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1766. printk("md: **********************************\n");
  1767. for_each_mddev(mddev, tmp) {
  1768. if (mddev->bitmap)
  1769. bitmap_print_sb(mddev->bitmap);
  1770. else
  1771. printk("%s: ", mdname(mddev));
  1772. list_for_each_entry(rdev, &mddev->disks, same_set)
  1773. printk("<%s>", bdevname(rdev->bdev,b));
  1774. printk("\n");
  1775. list_for_each_entry(rdev, &mddev->disks, same_set)
  1776. print_rdev(rdev, mddev->major_version);
  1777. }
  1778. printk("md: **********************************\n");
  1779. printk("\n");
  1780. }
  1781. static void sync_sbs(mddev_t * mddev, int nospares)
  1782. {
  1783. /* Update each superblock (in-memory image), but
  1784. * if we are allowed to, skip spares which already
  1785. * have the right event counter, or have one earlier
  1786. * (which would mean they aren't being marked as dirty
  1787. * with the rest of the array)
  1788. */
  1789. mdk_rdev_t *rdev;
  1790. /* First make sure individual recovery_offsets are correct */
  1791. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1792. if (rdev->raid_disk >= 0 &&
  1793. !test_bit(In_sync, &rdev->flags) &&
  1794. mddev->curr_resync_completed > rdev->recovery_offset)
  1795. rdev->recovery_offset = mddev->curr_resync_completed;
  1796. }
  1797. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1798. if (rdev->sb_events == mddev->events ||
  1799. (nospares &&
  1800. rdev->raid_disk < 0 &&
  1801. (rdev->sb_events&1)==0 &&
  1802. rdev->sb_events+1 == mddev->events)) {
  1803. /* Don't update this superblock */
  1804. rdev->sb_loaded = 2;
  1805. } else {
  1806. super_types[mddev->major_version].
  1807. sync_super(mddev, rdev);
  1808. rdev->sb_loaded = 1;
  1809. }
  1810. }
  1811. }
  1812. static void md_update_sb(mddev_t * mddev, int force_change)
  1813. {
  1814. mdk_rdev_t *rdev;
  1815. int sync_req;
  1816. int nospares = 0;
  1817. mddev->utime = get_seconds();
  1818. if (mddev->external)
  1819. return;
  1820. repeat:
  1821. spin_lock_irq(&mddev->write_lock);
  1822. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  1823. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1824. force_change = 1;
  1825. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1826. /* just a clean<-> dirty transition, possibly leave spares alone,
  1827. * though if events isn't the right even/odd, we will have to do
  1828. * spares after all
  1829. */
  1830. nospares = 1;
  1831. if (force_change)
  1832. nospares = 0;
  1833. if (mddev->degraded)
  1834. /* If the array is degraded, then skipping spares is both
  1835. * dangerous and fairly pointless.
  1836. * Dangerous because a device that was removed from the array
  1837. * might have a event_count that still looks up-to-date,
  1838. * so it can be re-added without a resync.
  1839. * Pointless because if there are any spares to skip,
  1840. * then a recovery will happen and soon that array won't
  1841. * be degraded any more and the spare can go back to sleep then.
  1842. */
  1843. nospares = 0;
  1844. sync_req = mddev->in_sync;
  1845. /* If this is just a dirty<->clean transition, and the array is clean
  1846. * and 'events' is odd, we can roll back to the previous clean state */
  1847. if (nospares
  1848. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1849. && (mddev->events & 1)
  1850. && mddev->events != 1)
  1851. mddev->events--;
  1852. else {
  1853. /* otherwise we have to go forward and ... */
  1854. mddev->events ++;
  1855. if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
  1856. /* .. if the array isn't clean, an 'even' event must also go
  1857. * to spares. */
  1858. if ((mddev->events&1)==0)
  1859. nospares = 0;
  1860. } else {
  1861. /* otherwise an 'odd' event must go to spares */
  1862. if ((mddev->events&1))
  1863. nospares = 0;
  1864. }
  1865. }
  1866. if (!mddev->events) {
  1867. /*
  1868. * oops, this 64-bit counter should never wrap.
  1869. * Either we are in around ~1 trillion A.C., assuming
  1870. * 1 reboot per second, or we have a bug:
  1871. */
  1872. MD_BUG();
  1873. mddev->events --;
  1874. }
  1875. /*
  1876. * do not write anything to disk if using
  1877. * nonpersistent superblocks
  1878. */
  1879. if (!mddev->persistent) {
  1880. if (!mddev->external)
  1881. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1882. spin_unlock_irq(&mddev->write_lock);
  1883. wake_up(&mddev->sb_wait);
  1884. return;
  1885. }
  1886. sync_sbs(mddev, nospares);
  1887. spin_unlock_irq(&mddev->write_lock);
  1888. dprintk(KERN_INFO
  1889. "md: updating %s RAID superblock on device (in sync %d)\n",
  1890. mdname(mddev),mddev->in_sync);
  1891. bitmap_update_sb(mddev->bitmap);
  1892. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1893. char b[BDEVNAME_SIZE];
  1894. dprintk(KERN_INFO "md: ");
  1895. if (rdev->sb_loaded != 1)
  1896. continue; /* no noise on spare devices */
  1897. if (test_bit(Faulty, &rdev->flags))
  1898. dprintk("(skipping faulty ");
  1899. dprintk("%s ", bdevname(rdev->bdev,b));
  1900. if (!test_bit(Faulty, &rdev->flags)) {
  1901. md_super_write(mddev,rdev,
  1902. rdev->sb_start, rdev->sb_size,
  1903. rdev->sb_page);
  1904. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1905. bdevname(rdev->bdev,b),
  1906. (unsigned long long)rdev->sb_start);
  1907. rdev->sb_events = mddev->events;
  1908. } else
  1909. dprintk(")\n");
  1910. if (mddev->level == LEVEL_MULTIPATH)
  1911. /* only need to write one superblock... */
  1912. break;
  1913. }
  1914. md_super_wait(mddev);
  1915. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  1916. spin_lock_irq(&mddev->write_lock);
  1917. if (mddev->in_sync != sync_req ||
  1918. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  1919. /* have to write it out again */
  1920. spin_unlock_irq(&mddev->write_lock);
  1921. goto repeat;
  1922. }
  1923. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1924. spin_unlock_irq(&mddev->write_lock);
  1925. wake_up(&mddev->sb_wait);
  1926. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  1927. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  1928. }
  1929. /* words written to sysfs files may, or may not, be \n terminated.
  1930. * We want to accept with case. For this we use cmd_match.
  1931. */
  1932. static int cmd_match(const char *cmd, const char *str)
  1933. {
  1934. /* See if cmd, written into a sysfs file, matches
  1935. * str. They must either be the same, or cmd can
  1936. * have a trailing newline
  1937. */
  1938. while (*cmd && *str && *cmd == *str) {
  1939. cmd++;
  1940. str++;
  1941. }
  1942. if (*cmd == '\n')
  1943. cmd++;
  1944. if (*str || *cmd)
  1945. return 0;
  1946. return 1;
  1947. }
  1948. struct rdev_sysfs_entry {
  1949. struct attribute attr;
  1950. ssize_t (*show)(mdk_rdev_t *, char *);
  1951. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1952. };
  1953. static ssize_t
  1954. state_show(mdk_rdev_t *rdev, char *page)
  1955. {
  1956. char *sep = "";
  1957. size_t len = 0;
  1958. if (test_bit(Faulty, &rdev->flags)) {
  1959. len+= sprintf(page+len, "%sfaulty",sep);
  1960. sep = ",";
  1961. }
  1962. if (test_bit(In_sync, &rdev->flags)) {
  1963. len += sprintf(page+len, "%sin_sync",sep);
  1964. sep = ",";
  1965. }
  1966. if (test_bit(WriteMostly, &rdev->flags)) {
  1967. len += sprintf(page+len, "%swrite_mostly",sep);
  1968. sep = ",";
  1969. }
  1970. if (test_bit(Blocked, &rdev->flags)) {
  1971. len += sprintf(page+len, "%sblocked", sep);
  1972. sep = ",";
  1973. }
  1974. if (!test_bit(Faulty, &rdev->flags) &&
  1975. !test_bit(In_sync, &rdev->flags)) {
  1976. len += sprintf(page+len, "%sspare", sep);
  1977. sep = ",";
  1978. }
  1979. return len+sprintf(page+len, "\n");
  1980. }
  1981. static ssize_t
  1982. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1983. {
  1984. /* can write
  1985. * faulty - simulates and error
  1986. * remove - disconnects the device
  1987. * writemostly - sets write_mostly
  1988. * -writemostly - clears write_mostly
  1989. * blocked - sets the Blocked flag
  1990. * -blocked - clears the Blocked flag
  1991. * insync - sets Insync providing device isn't active
  1992. */
  1993. int err = -EINVAL;
  1994. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  1995. md_error(rdev->mddev, rdev);
  1996. err = 0;
  1997. } else if (cmd_match(buf, "remove")) {
  1998. if (rdev->raid_disk >= 0)
  1999. err = -EBUSY;
  2000. else {
  2001. mddev_t *mddev = rdev->mddev;
  2002. kick_rdev_from_array(rdev);
  2003. if (mddev->pers)
  2004. md_update_sb(mddev, 1);
  2005. md_new_event(mddev);
  2006. err = 0;
  2007. }
  2008. } else if (cmd_match(buf, "writemostly")) {
  2009. set_bit(WriteMostly, &rdev->flags);
  2010. err = 0;
  2011. } else if (cmd_match(buf, "-writemostly")) {
  2012. clear_bit(WriteMostly, &rdev->flags);
  2013. err = 0;
  2014. } else if (cmd_match(buf, "blocked")) {
  2015. set_bit(Blocked, &rdev->flags);
  2016. err = 0;
  2017. } else if (cmd_match(buf, "-blocked")) {
  2018. clear_bit(Blocked, &rdev->flags);
  2019. wake_up(&rdev->blocked_wait);
  2020. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2021. md_wakeup_thread(rdev->mddev->thread);
  2022. err = 0;
  2023. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2024. set_bit(In_sync, &rdev->flags);
  2025. err = 0;
  2026. }
  2027. if (!err && rdev->sysfs_state)
  2028. sysfs_notify_dirent(rdev->sysfs_state);
  2029. return err ? err : len;
  2030. }
  2031. static struct rdev_sysfs_entry rdev_state =
  2032. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2033. static ssize_t
  2034. errors_show(mdk_rdev_t *rdev, char *page)
  2035. {
  2036. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2037. }
  2038. static ssize_t
  2039. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2040. {
  2041. char *e;
  2042. unsigned long n = simple_strtoul(buf, &e, 10);
  2043. if (*buf && (*e == 0 || *e == '\n')) {
  2044. atomic_set(&rdev->corrected_errors, n);
  2045. return len;
  2046. }
  2047. return -EINVAL;
  2048. }
  2049. static struct rdev_sysfs_entry rdev_errors =
  2050. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2051. static ssize_t
  2052. slot_show(mdk_rdev_t *rdev, char *page)
  2053. {
  2054. if (rdev->raid_disk < 0)
  2055. return sprintf(page, "none\n");
  2056. else
  2057. return sprintf(page, "%d\n", rdev->raid_disk);
  2058. }
  2059. static ssize_t
  2060. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2061. {
  2062. char *e;
  2063. int err;
  2064. char nm[20];
  2065. int slot = simple_strtoul(buf, &e, 10);
  2066. if (strncmp(buf, "none", 4)==0)
  2067. slot = -1;
  2068. else if (e==buf || (*e && *e!= '\n'))
  2069. return -EINVAL;
  2070. if (rdev->mddev->pers && slot == -1) {
  2071. /* Setting 'slot' on an active array requires also
  2072. * updating the 'rd%d' link, and communicating
  2073. * with the personality with ->hot_*_disk.
  2074. * For now we only support removing
  2075. * failed/spare devices. This normally happens automatically,
  2076. * but not when the metadata is externally managed.
  2077. */
  2078. if (rdev->raid_disk == -1)
  2079. return -EEXIST;
  2080. /* personality does all needed checks */
  2081. if (rdev->mddev->pers->hot_add_disk == NULL)
  2082. return -EINVAL;
  2083. err = rdev->mddev->pers->
  2084. hot_remove_disk(rdev->mddev, rdev->raid_disk);
  2085. if (err)
  2086. return err;
  2087. sprintf(nm, "rd%d", rdev->raid_disk);
  2088. sysfs_remove_link(&rdev->mddev->kobj, nm);
  2089. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2090. md_wakeup_thread(rdev->mddev->thread);
  2091. } else if (rdev->mddev->pers) {
  2092. mdk_rdev_t *rdev2;
  2093. /* Activating a spare .. or possibly reactivating
  2094. * if we ever get bitmaps working here.
  2095. */
  2096. if (rdev->raid_disk != -1)
  2097. return -EBUSY;
  2098. if (rdev->mddev->pers->hot_add_disk == NULL)
  2099. return -EINVAL;
  2100. list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
  2101. if (rdev2->raid_disk == slot)
  2102. return -EEXIST;
  2103. rdev->raid_disk = slot;
  2104. if (test_bit(In_sync, &rdev->flags))
  2105. rdev->saved_raid_disk = slot;
  2106. else
  2107. rdev->saved_raid_disk = -1;
  2108. err = rdev->mddev->pers->
  2109. hot_add_disk(rdev->mddev, rdev);
  2110. if (err) {
  2111. rdev->raid_disk = -1;
  2112. return err;
  2113. } else
  2114. sysfs_notify_dirent(rdev->sysfs_state);
  2115. sprintf(nm, "rd%d", rdev->raid_disk);
  2116. if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
  2117. printk(KERN_WARNING
  2118. "md: cannot register "
  2119. "%s for %s\n",
  2120. nm, mdname(rdev->mddev));
  2121. /* don't wakeup anyone, leave that to userspace. */
  2122. } else {
  2123. if (slot >= rdev->mddev->raid_disks)
  2124. return -ENOSPC;
  2125. rdev->raid_disk = slot;
  2126. /* assume it is working */
  2127. clear_bit(Faulty, &rdev->flags);
  2128. clear_bit(WriteMostly, &rdev->flags);
  2129. set_bit(In_sync, &rdev->flags);
  2130. sysfs_notify_dirent(rdev->sysfs_state);
  2131. }
  2132. return len;
  2133. }
  2134. static struct rdev_sysfs_entry rdev_slot =
  2135. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2136. static ssize_t
  2137. offset_show(mdk_rdev_t *rdev, char *page)
  2138. {
  2139. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2140. }
  2141. static ssize_t
  2142. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2143. {
  2144. char *e;
  2145. unsigned long long offset = simple_strtoull(buf, &e, 10);
  2146. if (e==buf || (*e && *e != '\n'))
  2147. return -EINVAL;
  2148. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2149. return -EBUSY;
  2150. if (rdev->sectors && rdev->mddev->external)
  2151. /* Must set offset before size, so overlap checks
  2152. * can be sane */
  2153. return -EBUSY;
  2154. rdev->data_offset = offset;
  2155. return len;
  2156. }
  2157. static struct rdev_sysfs_entry rdev_offset =
  2158. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2159. static ssize_t
  2160. rdev_size_show(mdk_rdev_t *rdev, char *page)
  2161. {
  2162. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2163. }
  2164. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2165. {
  2166. /* check if two start/length pairs overlap */
  2167. if (s1+l1 <= s2)
  2168. return 0;
  2169. if (s2+l2 <= s1)
  2170. return 0;
  2171. return 1;
  2172. }
  2173. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2174. {
  2175. unsigned long long blocks;
  2176. sector_t new;
  2177. if (strict_strtoull(buf, 10, &blocks) < 0)
  2178. return -EINVAL;
  2179. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2180. return -EINVAL; /* sector conversion overflow */
  2181. new = blocks * 2;
  2182. if (new != blocks * 2)
  2183. return -EINVAL; /* unsigned long long to sector_t overflow */
  2184. *sectors = new;
  2185. return 0;
  2186. }
  2187. static ssize_t
  2188. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2189. {
  2190. mddev_t *my_mddev = rdev->mddev;
  2191. sector_t oldsectors = rdev->sectors;
  2192. sector_t sectors;
  2193. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2194. return -EINVAL;
  2195. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2196. if (my_mddev->persistent) {
  2197. sectors = super_types[my_mddev->major_version].
  2198. rdev_size_change(rdev, sectors);
  2199. if (!sectors)
  2200. return -EBUSY;
  2201. } else if (!sectors)
  2202. sectors = (rdev->bdev->bd_inode->i_size >> 9) -
  2203. rdev->data_offset;
  2204. }
  2205. if (sectors < my_mddev->dev_sectors)
  2206. return -EINVAL; /* component must fit device */
  2207. rdev->sectors = sectors;
  2208. if (sectors > oldsectors && my_mddev->external) {
  2209. /* need to check that all other rdevs with the same ->bdev
  2210. * do not overlap. We need to unlock the mddev to avoid
  2211. * a deadlock. We have already changed rdev->sectors, and if
  2212. * we have to change it back, we will have the lock again.
  2213. */
  2214. mddev_t *mddev;
  2215. int overlap = 0;
  2216. struct list_head *tmp;
  2217. mddev_unlock(my_mddev);
  2218. for_each_mddev(mddev, tmp) {
  2219. mdk_rdev_t *rdev2;
  2220. mddev_lock(mddev);
  2221. list_for_each_entry(rdev2, &mddev->disks, same_set)
  2222. if (test_bit(AllReserved, &rdev2->flags) ||
  2223. (rdev->bdev == rdev2->bdev &&
  2224. rdev != rdev2 &&
  2225. overlaps(rdev->data_offset, rdev->sectors,
  2226. rdev2->data_offset,
  2227. rdev2->sectors))) {
  2228. overlap = 1;
  2229. break;
  2230. }
  2231. mddev_unlock(mddev);
  2232. if (overlap) {
  2233. mddev_put(mddev);
  2234. break;
  2235. }
  2236. }
  2237. mddev_lock(my_mddev);
  2238. if (overlap) {
  2239. /* Someone else could have slipped in a size
  2240. * change here, but doing so is just silly.
  2241. * We put oldsectors back because we *know* it is
  2242. * safe, and trust userspace not to race with
  2243. * itself
  2244. */
  2245. rdev->sectors = oldsectors;
  2246. return -EBUSY;
  2247. }
  2248. }
  2249. return len;
  2250. }
  2251. static struct rdev_sysfs_entry rdev_size =
  2252. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2253. static struct attribute *rdev_default_attrs[] = {
  2254. &rdev_state.attr,
  2255. &rdev_errors.attr,
  2256. &rdev_slot.attr,
  2257. &rdev_offset.attr,
  2258. &rdev_size.attr,
  2259. NULL,
  2260. };
  2261. static ssize_t
  2262. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2263. {
  2264. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2265. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2266. mddev_t *mddev = rdev->mddev;
  2267. ssize_t rv;
  2268. if (!entry->show)
  2269. return -EIO;
  2270. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2271. if (!rv) {
  2272. if (rdev->mddev == NULL)
  2273. rv = -EBUSY;
  2274. else
  2275. rv = entry->show(rdev, page);
  2276. mddev_unlock(mddev);
  2277. }
  2278. return rv;
  2279. }
  2280. static ssize_t
  2281. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2282. const char *page, size_t length)
  2283. {
  2284. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2285. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2286. ssize_t rv;
  2287. mddev_t *mddev = rdev->mddev;
  2288. if (!entry->store)
  2289. return -EIO;
  2290. if (!capable(CAP_SYS_ADMIN))
  2291. return -EACCES;
  2292. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2293. if (!rv) {
  2294. if (rdev->mddev == NULL)
  2295. rv = -EBUSY;
  2296. else
  2297. rv = entry->store(rdev, page, length);
  2298. mddev_unlock(mddev);
  2299. }
  2300. return rv;
  2301. }
  2302. static void rdev_free(struct kobject *ko)
  2303. {
  2304. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  2305. kfree(rdev);
  2306. }
  2307. static struct sysfs_ops rdev_sysfs_ops = {
  2308. .show = rdev_attr_show,
  2309. .store = rdev_attr_store,
  2310. };
  2311. static struct kobj_type rdev_ktype = {
  2312. .release = rdev_free,
  2313. .sysfs_ops = &rdev_sysfs_ops,
  2314. .default_attrs = rdev_default_attrs,
  2315. };
  2316. /*
  2317. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2318. *
  2319. * mark the device faulty if:
  2320. *
  2321. * - the device is nonexistent (zero size)
  2322. * - the device has no valid superblock
  2323. *
  2324. * a faulty rdev _never_ has rdev->sb set.
  2325. */
  2326. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  2327. {
  2328. char b[BDEVNAME_SIZE];
  2329. int err;
  2330. mdk_rdev_t *rdev;
  2331. sector_t size;
  2332. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2333. if (!rdev) {
  2334. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2335. return ERR_PTR(-ENOMEM);
  2336. }
  2337. if ((err = alloc_disk_sb(rdev)))
  2338. goto abort_free;
  2339. err = lock_rdev(rdev, newdev, super_format == -2);
  2340. if (err)
  2341. goto abort_free;
  2342. kobject_init(&rdev->kobj, &rdev_ktype);
  2343. rdev->desc_nr = -1;
  2344. rdev->saved_raid_disk = -1;
  2345. rdev->raid_disk = -1;
  2346. rdev->flags = 0;
  2347. rdev->data_offset = 0;
  2348. rdev->sb_events = 0;
  2349. atomic_set(&rdev->nr_pending, 0);
  2350. atomic_set(&rdev->read_errors, 0);
  2351. atomic_set(&rdev->corrected_errors, 0);
  2352. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  2353. if (!size) {
  2354. printk(KERN_WARNING
  2355. "md: %s has zero or unknown size, marking faulty!\n",
  2356. bdevname(rdev->bdev,b));
  2357. err = -EINVAL;
  2358. goto abort_free;
  2359. }
  2360. if (super_format >= 0) {
  2361. err = super_types[super_format].
  2362. load_super(rdev, NULL, super_minor);
  2363. if (err == -EINVAL) {
  2364. printk(KERN_WARNING
  2365. "md: %s does not have a valid v%d.%d "
  2366. "superblock, not importing!\n",
  2367. bdevname(rdev->bdev,b),
  2368. super_format, super_minor);
  2369. goto abort_free;
  2370. }
  2371. if (err < 0) {
  2372. printk(KERN_WARNING
  2373. "md: could not read %s's sb, not importing!\n",
  2374. bdevname(rdev->bdev,b));
  2375. goto abort_free;
  2376. }
  2377. }
  2378. INIT_LIST_HEAD(&rdev->same_set);
  2379. init_waitqueue_head(&rdev->blocked_wait);
  2380. return rdev;
  2381. abort_free:
  2382. if (rdev->sb_page) {
  2383. if (rdev->bdev)
  2384. unlock_rdev(rdev);
  2385. free_disk_sb(rdev);
  2386. }
  2387. kfree(rdev);
  2388. return ERR_PTR(err);
  2389. }
  2390. /*
  2391. * Check a full RAID array for plausibility
  2392. */
  2393. static void analyze_sbs(mddev_t * mddev)
  2394. {
  2395. int i;
  2396. mdk_rdev_t *rdev, *freshest, *tmp;
  2397. char b[BDEVNAME_SIZE];
  2398. freshest = NULL;
  2399. rdev_for_each(rdev, tmp, mddev)
  2400. switch (super_types[mddev->major_version].
  2401. load_super(rdev, freshest, mddev->minor_version)) {
  2402. case 1:
  2403. freshest = rdev;
  2404. break;
  2405. case 0:
  2406. break;
  2407. default:
  2408. printk( KERN_ERR \
  2409. "md: fatal superblock inconsistency in %s"
  2410. " -- removing from array\n",
  2411. bdevname(rdev->bdev,b));
  2412. kick_rdev_from_array(rdev);
  2413. }
  2414. super_types[mddev->major_version].
  2415. validate_super(mddev, freshest);
  2416. i = 0;
  2417. rdev_for_each(rdev, tmp, mddev) {
  2418. if (rdev->desc_nr >= mddev->max_disks ||
  2419. i > mddev->max_disks) {
  2420. printk(KERN_WARNING
  2421. "md: %s: %s: only %d devices permitted\n",
  2422. mdname(mddev), bdevname(rdev->bdev, b),
  2423. mddev->max_disks);
  2424. kick_rdev_from_array(rdev);
  2425. continue;
  2426. }
  2427. if (rdev != freshest)
  2428. if (super_types[mddev->major_version].
  2429. validate_super(mddev, rdev)) {
  2430. printk(KERN_WARNING "md: kicking non-fresh %s"
  2431. " from array!\n",
  2432. bdevname(rdev->bdev,b));
  2433. kick_rdev_from_array(rdev);
  2434. continue;
  2435. }
  2436. if (mddev->level == LEVEL_MULTIPATH) {
  2437. rdev->desc_nr = i++;
  2438. rdev->raid_disk = rdev->desc_nr;
  2439. set_bit(In_sync, &rdev->flags);
  2440. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2441. rdev->raid_disk = -1;
  2442. clear_bit(In_sync, &rdev->flags);
  2443. }
  2444. }
  2445. }
  2446. static void md_safemode_timeout(unsigned long data);
  2447. static ssize_t
  2448. safe_delay_show(mddev_t *mddev, char *page)
  2449. {
  2450. int msec = (mddev->safemode_delay*1000)/HZ;
  2451. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2452. }
  2453. static ssize_t
  2454. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  2455. {
  2456. int scale=1;
  2457. int dot=0;
  2458. int i;
  2459. unsigned long msec;
  2460. char buf[30];
  2461. /* remove a period, and count digits after it */
  2462. if (len >= sizeof(buf))
  2463. return -EINVAL;
  2464. strlcpy(buf, cbuf, sizeof(buf));
  2465. for (i=0; i<len; i++) {
  2466. if (dot) {
  2467. if (isdigit(buf[i])) {
  2468. buf[i-1] = buf[i];
  2469. scale *= 10;
  2470. }
  2471. buf[i] = 0;
  2472. } else if (buf[i] == '.') {
  2473. dot=1;
  2474. buf[i] = 0;
  2475. }
  2476. }
  2477. if (strict_strtoul(buf, 10, &msec) < 0)
  2478. return -EINVAL;
  2479. msec = (msec * 1000) / scale;
  2480. if (msec == 0)
  2481. mddev->safemode_delay = 0;
  2482. else {
  2483. unsigned long old_delay = mddev->safemode_delay;
  2484. mddev->safemode_delay = (msec*HZ)/1000;
  2485. if (mddev->safemode_delay == 0)
  2486. mddev->safemode_delay = 1;
  2487. if (mddev->safemode_delay < old_delay)
  2488. md_safemode_timeout((unsigned long)mddev);
  2489. }
  2490. return len;
  2491. }
  2492. static struct md_sysfs_entry md_safe_delay =
  2493. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2494. static ssize_t
  2495. level_show(mddev_t *mddev, char *page)
  2496. {
  2497. struct mdk_personality *p = mddev->pers;
  2498. if (p)
  2499. return sprintf(page, "%s\n", p->name);
  2500. else if (mddev->clevel[0])
  2501. return sprintf(page, "%s\n", mddev->clevel);
  2502. else if (mddev->level != LEVEL_NONE)
  2503. return sprintf(page, "%d\n", mddev->level);
  2504. else
  2505. return 0;
  2506. }
  2507. static ssize_t
  2508. level_store(mddev_t *mddev, const char *buf, size_t len)
  2509. {
  2510. char level[16];
  2511. ssize_t rv = len;
  2512. struct mdk_personality *pers;
  2513. void *priv;
  2514. mdk_rdev_t *rdev;
  2515. if (mddev->pers == NULL) {
  2516. if (len == 0)
  2517. return 0;
  2518. if (len >= sizeof(mddev->clevel))
  2519. return -ENOSPC;
  2520. strncpy(mddev->clevel, buf, len);
  2521. if (mddev->clevel[len-1] == '\n')
  2522. len--;
  2523. mddev->clevel[len] = 0;
  2524. mddev->level = LEVEL_NONE;
  2525. return rv;
  2526. }
  2527. /* request to change the personality. Need to ensure:
  2528. * - array is not engaged in resync/recovery/reshape
  2529. * - old personality can be suspended
  2530. * - new personality will access other array.
  2531. */
  2532. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  2533. return -EBUSY;
  2534. if (!mddev->pers->quiesce) {
  2535. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2536. mdname(mddev), mddev->pers->name);
  2537. return -EINVAL;
  2538. }
  2539. /* Now find the new personality */
  2540. if (len == 0 || len >= sizeof(level))
  2541. return -EINVAL;
  2542. strncpy(level, buf, len);
  2543. if (level[len-1] == '\n')
  2544. len--;
  2545. level[len] = 0;
  2546. request_module("md-%s", level);
  2547. spin_lock(&pers_lock);
  2548. pers = find_pers(LEVEL_NONE, level);
  2549. if (!pers || !try_module_get(pers->owner)) {
  2550. spin_unlock(&pers_lock);
  2551. printk(KERN_WARNING "md: personality %s not loaded\n", level);
  2552. return -EINVAL;
  2553. }
  2554. spin_unlock(&pers_lock);
  2555. if (pers == mddev->pers) {
  2556. /* Nothing to do! */
  2557. module_put(pers->owner);
  2558. return rv;
  2559. }
  2560. if (!pers->takeover) {
  2561. module_put(pers->owner);
  2562. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  2563. mdname(mddev), level);
  2564. return -EINVAL;
  2565. }
  2566. /* ->takeover must set new_* and/or delta_disks
  2567. * if it succeeds, and may set them when it fails.
  2568. */
  2569. priv = pers->takeover(mddev);
  2570. if (IS_ERR(priv)) {
  2571. mddev->new_level = mddev->level;
  2572. mddev->new_layout = mddev->layout;
  2573. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2574. mddev->raid_disks -= mddev->delta_disks;
  2575. mddev->delta_disks = 0;
  2576. module_put(pers->owner);
  2577. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  2578. mdname(mddev), level);
  2579. return PTR_ERR(priv);
  2580. }
  2581. /* Looks like we have a winner */
  2582. mddev_suspend(mddev);
  2583. mddev->pers->stop(mddev);
  2584. module_put(mddev->pers->owner);
  2585. /* Invalidate devices that are now superfluous */
  2586. list_for_each_entry(rdev, &mddev->disks, same_set)
  2587. if (rdev->raid_disk >= mddev->raid_disks) {
  2588. rdev->raid_disk = -1;
  2589. clear_bit(In_sync, &rdev->flags);
  2590. }
  2591. mddev->pers = pers;
  2592. mddev->private = priv;
  2593. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  2594. mddev->level = mddev->new_level;
  2595. mddev->layout = mddev->new_layout;
  2596. mddev->chunk_sectors = mddev->new_chunk_sectors;
  2597. mddev->delta_disks = 0;
  2598. pers->run(mddev);
  2599. mddev_resume(mddev);
  2600. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  2601. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2602. md_wakeup_thread(mddev->thread);
  2603. return rv;
  2604. }
  2605. static struct md_sysfs_entry md_level =
  2606. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  2607. static ssize_t
  2608. layout_show(mddev_t *mddev, char *page)
  2609. {
  2610. /* just a number, not meaningful for all levels */
  2611. if (mddev->reshape_position != MaxSector &&
  2612. mddev->layout != mddev->new_layout)
  2613. return sprintf(page, "%d (%d)\n",
  2614. mddev->new_layout, mddev->layout);
  2615. return sprintf(page, "%d\n", mddev->layout);
  2616. }
  2617. static ssize_t
  2618. layout_store(mddev_t *mddev, const char *buf, size_t len)
  2619. {
  2620. char *e;
  2621. unsigned long n = simple_strtoul(buf, &e, 10);
  2622. if (!*buf || (*e && *e != '\n'))
  2623. return -EINVAL;
  2624. if (mddev->pers) {
  2625. int err;
  2626. if (mddev->pers->check_reshape == NULL)
  2627. return -EBUSY;
  2628. mddev->new_layout = n;
  2629. err = mddev->pers->check_reshape(mddev);
  2630. if (err) {
  2631. mddev->new_layout = mddev->layout;
  2632. return err;
  2633. }
  2634. } else {
  2635. mddev->new_layout = n;
  2636. if (mddev->reshape_position == MaxSector)
  2637. mddev->layout = n;
  2638. }
  2639. return len;
  2640. }
  2641. static struct md_sysfs_entry md_layout =
  2642. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  2643. static ssize_t
  2644. raid_disks_show(mddev_t *mddev, char *page)
  2645. {
  2646. if (mddev->raid_disks == 0)
  2647. return 0;
  2648. if (mddev->reshape_position != MaxSector &&
  2649. mddev->delta_disks != 0)
  2650. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  2651. mddev->raid_disks - mddev->delta_disks);
  2652. return sprintf(page, "%d\n", mddev->raid_disks);
  2653. }
  2654. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  2655. static ssize_t
  2656. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  2657. {
  2658. char *e;
  2659. int rv = 0;
  2660. unsigned long n = simple_strtoul(buf, &e, 10);
  2661. if (!*buf || (*e && *e != '\n'))
  2662. return -EINVAL;
  2663. if (mddev->pers)
  2664. rv = update_raid_disks(mddev, n);
  2665. else if (mddev->reshape_position != MaxSector) {
  2666. int olddisks = mddev->raid_disks - mddev->delta_disks;
  2667. mddev->delta_disks = n - olddisks;
  2668. mddev->raid_disks = n;
  2669. } else
  2670. mddev->raid_disks = n;
  2671. return rv ? rv : len;
  2672. }
  2673. static struct md_sysfs_entry md_raid_disks =
  2674. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  2675. static ssize_t
  2676. chunk_size_show(mddev_t *mddev, char *page)
  2677. {
  2678. if (mddev->reshape_position != MaxSector &&
  2679. mddev->chunk_sectors != mddev->new_chunk_sectors)
  2680. return sprintf(page, "%d (%d)\n",
  2681. mddev->new_chunk_sectors << 9,
  2682. mddev->chunk_sectors << 9);
  2683. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  2684. }
  2685. static ssize_t
  2686. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  2687. {
  2688. char *e;
  2689. unsigned long n = simple_strtoul(buf, &e, 10);
  2690. if (!*buf || (*e && *e != '\n'))
  2691. return -EINVAL;
  2692. if (mddev->pers) {
  2693. int err;
  2694. if (mddev->pers->check_reshape == NULL)
  2695. return -EBUSY;
  2696. mddev->new_chunk_sectors = n >> 9;
  2697. err = mddev->pers->check_reshape(mddev);
  2698. if (err) {
  2699. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2700. return err;
  2701. }
  2702. } else {
  2703. mddev->new_chunk_sectors = n >> 9;
  2704. if (mddev->reshape_position == MaxSector)
  2705. mddev->chunk_sectors = n >> 9;
  2706. }
  2707. return len;
  2708. }
  2709. static struct md_sysfs_entry md_chunk_size =
  2710. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  2711. static ssize_t
  2712. resync_start_show(mddev_t *mddev, char *page)
  2713. {
  2714. if (mddev->recovery_cp == MaxSector)
  2715. return sprintf(page, "none\n");
  2716. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  2717. }
  2718. static ssize_t
  2719. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  2720. {
  2721. char *e;
  2722. unsigned long long n = simple_strtoull(buf, &e, 10);
  2723. if (mddev->pers)
  2724. return -EBUSY;
  2725. if (!*buf || (*e && *e != '\n'))
  2726. return -EINVAL;
  2727. mddev->recovery_cp = n;
  2728. return len;
  2729. }
  2730. static struct md_sysfs_entry md_resync_start =
  2731. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  2732. /*
  2733. * The array state can be:
  2734. *
  2735. * clear
  2736. * No devices, no size, no level
  2737. * Equivalent to STOP_ARRAY ioctl
  2738. * inactive
  2739. * May have some settings, but array is not active
  2740. * all IO results in error
  2741. * When written, doesn't tear down array, but just stops it
  2742. * suspended (not supported yet)
  2743. * All IO requests will block. The array can be reconfigured.
  2744. * Writing this, if accepted, will block until array is quiescent
  2745. * readonly
  2746. * no resync can happen. no superblocks get written.
  2747. * write requests fail
  2748. * read-auto
  2749. * like readonly, but behaves like 'clean' on a write request.
  2750. *
  2751. * clean - no pending writes, but otherwise active.
  2752. * When written to inactive array, starts without resync
  2753. * If a write request arrives then
  2754. * if metadata is known, mark 'dirty' and switch to 'active'.
  2755. * if not known, block and switch to write-pending
  2756. * If written to an active array that has pending writes, then fails.
  2757. * active
  2758. * fully active: IO and resync can be happening.
  2759. * When written to inactive array, starts with resync
  2760. *
  2761. * write-pending
  2762. * clean, but writes are blocked waiting for 'active' to be written.
  2763. *
  2764. * active-idle
  2765. * like active, but no writes have been seen for a while (100msec).
  2766. *
  2767. */
  2768. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  2769. write_pending, active_idle, bad_word};
  2770. static char *array_states[] = {
  2771. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  2772. "write-pending", "active-idle", NULL };
  2773. static int match_word(const char *word, char **list)
  2774. {
  2775. int n;
  2776. for (n=0; list[n]; n++)
  2777. if (cmd_match(word, list[n]))
  2778. break;
  2779. return n;
  2780. }
  2781. static ssize_t
  2782. array_state_show(mddev_t *mddev, char *page)
  2783. {
  2784. enum array_state st = inactive;
  2785. if (mddev->pers)
  2786. switch(mddev->ro) {
  2787. case 1:
  2788. st = readonly;
  2789. break;
  2790. case 2:
  2791. st = read_auto;
  2792. break;
  2793. case 0:
  2794. if (mddev->in_sync)
  2795. st = clean;
  2796. else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2797. st = write_pending;
  2798. else if (mddev->safemode)
  2799. st = active_idle;
  2800. else
  2801. st = active;
  2802. }
  2803. else {
  2804. if (list_empty(&mddev->disks) &&
  2805. mddev->raid_disks == 0 &&
  2806. mddev->dev_sectors == 0)
  2807. st = clear;
  2808. else
  2809. st = inactive;
  2810. }
  2811. return sprintf(page, "%s\n", array_states[st]);
  2812. }
  2813. static int do_md_stop(mddev_t * mddev, int ro, int is_open);
  2814. static int do_md_run(mddev_t * mddev);
  2815. static int restart_array(mddev_t *mddev);
  2816. static ssize_t
  2817. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  2818. {
  2819. int err = -EINVAL;
  2820. enum array_state st = match_word(buf, array_states);
  2821. switch(st) {
  2822. case bad_word:
  2823. break;
  2824. case clear:
  2825. /* stopping an active array */
  2826. if (atomic_read(&mddev->openers) > 0)
  2827. return -EBUSY;
  2828. err = do_md_stop(mddev, 0, 0);
  2829. break;
  2830. case inactive:
  2831. /* stopping an active array */
  2832. if (mddev->pers) {
  2833. if (atomic_read(&mddev->openers) > 0)
  2834. return -EBUSY;
  2835. err = do_md_stop(mddev, 2, 0);
  2836. } else
  2837. err = 0; /* already inactive */
  2838. break;
  2839. case suspended:
  2840. break; /* not supported yet */
  2841. case readonly:
  2842. if (mddev->pers)
  2843. err = do_md_stop(mddev, 1, 0);
  2844. else {
  2845. mddev->ro = 1;
  2846. set_disk_ro(mddev->gendisk, 1);
  2847. err = do_md_run(mddev);
  2848. }
  2849. break;
  2850. case read_auto:
  2851. if (mddev->pers) {
  2852. if (mddev->ro == 0)
  2853. err = do_md_stop(mddev, 1, 0);
  2854. else if (mddev->ro == 1)
  2855. err = restart_array(mddev);
  2856. if (err == 0) {
  2857. mddev->ro = 2;
  2858. set_disk_ro(mddev->gendisk, 0);
  2859. }
  2860. } else {
  2861. mddev->ro = 2;
  2862. err = do_md_run(mddev);
  2863. }
  2864. break;
  2865. case clean:
  2866. if (mddev->pers) {
  2867. restart_array(mddev);
  2868. spin_lock_irq(&mddev->write_lock);
  2869. if (atomic_read(&mddev->writes_pending) == 0) {
  2870. if (mddev->in_sync == 0) {
  2871. mddev->in_sync = 1;
  2872. if (mddev->safemode == 1)
  2873. mddev->safemode = 0;
  2874. if (mddev->persistent)
  2875. set_bit(MD_CHANGE_CLEAN,
  2876. &mddev->flags);
  2877. }
  2878. err = 0;
  2879. } else
  2880. err = -EBUSY;
  2881. spin_unlock_irq(&mddev->write_lock);
  2882. } else
  2883. err = -EINVAL;
  2884. break;
  2885. case active:
  2886. if (mddev->pers) {
  2887. restart_array(mddev);
  2888. if (mddev->external)
  2889. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2890. wake_up(&mddev->sb_wait);
  2891. err = 0;
  2892. } else {
  2893. mddev->ro = 0;
  2894. set_disk_ro(mddev->gendisk, 0);
  2895. err = do_md_run(mddev);
  2896. }
  2897. break;
  2898. case write_pending:
  2899. case active_idle:
  2900. /* these cannot be set */
  2901. break;
  2902. }
  2903. if (err)
  2904. return err;
  2905. else {
  2906. sysfs_notify_dirent(mddev->sysfs_state);
  2907. return len;
  2908. }
  2909. }
  2910. static struct md_sysfs_entry md_array_state =
  2911. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  2912. static ssize_t
  2913. null_show(mddev_t *mddev, char *page)
  2914. {
  2915. return -EINVAL;
  2916. }
  2917. static ssize_t
  2918. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  2919. {
  2920. /* buf must be %d:%d\n? giving major and minor numbers */
  2921. /* The new device is added to the array.
  2922. * If the array has a persistent superblock, we read the
  2923. * superblock to initialise info and check validity.
  2924. * Otherwise, only checking done is that in bind_rdev_to_array,
  2925. * which mainly checks size.
  2926. */
  2927. char *e;
  2928. int major = simple_strtoul(buf, &e, 10);
  2929. int minor;
  2930. dev_t dev;
  2931. mdk_rdev_t *rdev;
  2932. int err;
  2933. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  2934. return -EINVAL;
  2935. minor = simple_strtoul(e+1, &e, 10);
  2936. if (*e && *e != '\n')
  2937. return -EINVAL;
  2938. dev = MKDEV(major, minor);
  2939. if (major != MAJOR(dev) ||
  2940. minor != MINOR(dev))
  2941. return -EOVERFLOW;
  2942. if (mddev->persistent) {
  2943. rdev = md_import_device(dev, mddev->major_version,
  2944. mddev->minor_version);
  2945. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  2946. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2947. mdk_rdev_t, same_set);
  2948. err = super_types[mddev->major_version]
  2949. .load_super(rdev, rdev0, mddev->minor_version);
  2950. if (err < 0)
  2951. goto out;
  2952. }
  2953. } else if (mddev->external)
  2954. rdev = md_import_device(dev, -2, -1);
  2955. else
  2956. rdev = md_import_device(dev, -1, -1);
  2957. if (IS_ERR(rdev))
  2958. return PTR_ERR(rdev);
  2959. err = bind_rdev_to_array(rdev, mddev);
  2960. out:
  2961. if (err)
  2962. export_rdev(rdev);
  2963. return err ? err : len;
  2964. }
  2965. static struct md_sysfs_entry md_new_device =
  2966. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  2967. static ssize_t
  2968. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  2969. {
  2970. char *end;
  2971. unsigned long chunk, end_chunk;
  2972. if (!mddev->bitmap)
  2973. goto out;
  2974. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  2975. while (*buf) {
  2976. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  2977. if (buf == end) break;
  2978. if (*end == '-') { /* range */
  2979. buf = end + 1;
  2980. end_chunk = simple_strtoul(buf, &end, 0);
  2981. if (buf == end) break;
  2982. }
  2983. if (*end && !isspace(*end)) break;
  2984. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  2985. buf = end;
  2986. while (isspace(*buf)) buf++;
  2987. }
  2988. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  2989. out:
  2990. return len;
  2991. }
  2992. static struct md_sysfs_entry md_bitmap =
  2993. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  2994. static ssize_t
  2995. size_show(mddev_t *mddev, char *page)
  2996. {
  2997. return sprintf(page, "%llu\n",
  2998. (unsigned long long)mddev->dev_sectors / 2);
  2999. }
  3000. static int update_size(mddev_t *mddev, sector_t num_sectors);
  3001. static ssize_t
  3002. size_store(mddev_t *mddev, const char *buf, size_t len)
  3003. {
  3004. /* If array is inactive, we can reduce the component size, but
  3005. * not increase it (except from 0).
  3006. * If array is active, we can try an on-line resize
  3007. */
  3008. sector_t sectors;
  3009. int err = strict_blocks_to_sectors(buf, &sectors);
  3010. if (err < 0)
  3011. return err;
  3012. if (mddev->pers) {
  3013. err = update_size(mddev, sectors);
  3014. md_update_sb(mddev, 1);
  3015. } else {
  3016. if (mddev->dev_sectors == 0 ||
  3017. mddev->dev_sectors > sectors)
  3018. mddev->dev_sectors = sectors;
  3019. else
  3020. err = -ENOSPC;
  3021. }
  3022. return err ? err : len;
  3023. }
  3024. static struct md_sysfs_entry md_size =
  3025. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3026. /* Metdata version.
  3027. * This is one of
  3028. * 'none' for arrays with no metadata (good luck...)
  3029. * 'external' for arrays with externally managed metadata,
  3030. * or N.M for internally known formats
  3031. */
  3032. static ssize_t
  3033. metadata_show(mddev_t *mddev, char *page)
  3034. {
  3035. if (mddev->persistent)
  3036. return sprintf(page, "%d.%d\n",
  3037. mddev->major_version, mddev->minor_version);
  3038. else if (mddev->external)
  3039. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3040. else
  3041. return sprintf(page, "none\n");
  3042. }
  3043. static ssize_t
  3044. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  3045. {
  3046. int major, minor;
  3047. char *e;
  3048. /* Changing the details of 'external' metadata is
  3049. * always permitted. Otherwise there must be
  3050. * no devices attached to the array.
  3051. */
  3052. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3053. ;
  3054. else if (!list_empty(&mddev->disks))
  3055. return -EBUSY;
  3056. if (cmd_match(buf, "none")) {
  3057. mddev->persistent = 0;
  3058. mddev->external = 0;
  3059. mddev->major_version = 0;
  3060. mddev->minor_version = 90;
  3061. return len;
  3062. }
  3063. if (strncmp(buf, "external:", 9) == 0) {
  3064. size_t namelen = len-9;
  3065. if (namelen >= sizeof(mddev->metadata_type))
  3066. namelen = sizeof(mddev->metadata_type)-1;
  3067. strncpy(mddev->metadata_type, buf+9, namelen);
  3068. mddev->metadata_type[namelen] = 0;
  3069. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3070. mddev->metadata_type[--namelen] = 0;
  3071. mddev->persistent = 0;
  3072. mddev->external = 1;
  3073. mddev->major_version = 0;
  3074. mddev->minor_version = 90;
  3075. return len;
  3076. }
  3077. major = simple_strtoul(buf, &e, 10);
  3078. if (e==buf || *e != '.')
  3079. return -EINVAL;
  3080. buf = e+1;
  3081. minor = simple_strtoul(buf, &e, 10);
  3082. if (e==buf || (*e && *e != '\n') )
  3083. return -EINVAL;
  3084. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3085. return -ENOENT;
  3086. mddev->major_version = major;
  3087. mddev->minor_version = minor;
  3088. mddev->persistent = 1;
  3089. mddev->external = 0;
  3090. return len;
  3091. }
  3092. static struct md_sysfs_entry md_metadata =
  3093. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3094. static ssize_t
  3095. action_show(mddev_t *mddev, char *page)
  3096. {
  3097. char *type = "idle";
  3098. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3099. type = "frozen";
  3100. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3101. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3102. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3103. type = "reshape";
  3104. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3105. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3106. type = "resync";
  3107. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3108. type = "check";
  3109. else
  3110. type = "repair";
  3111. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3112. type = "recover";
  3113. }
  3114. return sprintf(page, "%s\n", type);
  3115. }
  3116. static ssize_t
  3117. action_store(mddev_t *mddev, const char *page, size_t len)
  3118. {
  3119. if (!mddev->pers || !mddev->pers->sync_request)
  3120. return -EINVAL;
  3121. if (cmd_match(page, "frozen"))
  3122. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3123. else
  3124. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3125. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3126. if (mddev->sync_thread) {
  3127. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3128. md_unregister_thread(mddev->sync_thread);
  3129. mddev->sync_thread = NULL;
  3130. mddev->recovery = 0;
  3131. }
  3132. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3133. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3134. return -EBUSY;
  3135. else if (cmd_match(page, "resync"))
  3136. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3137. else if (cmd_match(page, "recover")) {
  3138. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3139. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3140. } else if (cmd_match(page, "reshape")) {
  3141. int err;
  3142. if (mddev->pers->start_reshape == NULL)
  3143. return -EINVAL;
  3144. err = mddev->pers->start_reshape(mddev);
  3145. if (err)
  3146. return err;
  3147. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3148. } else {
  3149. if (cmd_match(page, "check"))
  3150. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3151. else if (!cmd_match(page, "repair"))
  3152. return -EINVAL;
  3153. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3154. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3155. }
  3156. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3157. md_wakeup_thread(mddev->thread);
  3158. sysfs_notify_dirent(mddev->sysfs_action);
  3159. return len;
  3160. }
  3161. static ssize_t
  3162. mismatch_cnt_show(mddev_t *mddev, char *page)
  3163. {
  3164. return sprintf(page, "%llu\n",
  3165. (unsigned long long) mddev->resync_mismatches);
  3166. }
  3167. static struct md_sysfs_entry md_scan_mode =
  3168. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3169. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3170. static ssize_t
  3171. sync_min_show(mddev_t *mddev, char *page)
  3172. {
  3173. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3174. mddev->sync_speed_min ? "local": "system");
  3175. }
  3176. static ssize_t
  3177. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  3178. {
  3179. int min;
  3180. char *e;
  3181. if (strncmp(buf, "system", 6)==0) {
  3182. mddev->sync_speed_min = 0;
  3183. return len;
  3184. }
  3185. min = simple_strtoul(buf, &e, 10);
  3186. if (buf == e || (*e && *e != '\n') || min <= 0)
  3187. return -EINVAL;
  3188. mddev->sync_speed_min = min;
  3189. return len;
  3190. }
  3191. static struct md_sysfs_entry md_sync_min =
  3192. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3193. static ssize_t
  3194. sync_max_show(mddev_t *mddev, char *page)
  3195. {
  3196. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3197. mddev->sync_speed_max ? "local": "system");
  3198. }
  3199. static ssize_t
  3200. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  3201. {
  3202. int max;
  3203. char *e;
  3204. if (strncmp(buf, "system", 6)==0) {
  3205. mddev->sync_speed_max = 0;
  3206. return len;
  3207. }
  3208. max = simple_strtoul(buf, &e, 10);
  3209. if (buf == e || (*e && *e != '\n') || max <= 0)
  3210. return -EINVAL;
  3211. mddev->sync_speed_max = max;
  3212. return len;
  3213. }
  3214. static struct md_sysfs_entry md_sync_max =
  3215. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3216. static ssize_t
  3217. degraded_show(mddev_t *mddev, char *page)
  3218. {
  3219. return sprintf(page, "%d\n", mddev->degraded);
  3220. }
  3221. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3222. static ssize_t
  3223. sync_force_parallel_show(mddev_t *mddev, char *page)
  3224. {
  3225. return sprintf(page, "%d\n", mddev->parallel_resync);
  3226. }
  3227. static ssize_t
  3228. sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
  3229. {
  3230. long n;
  3231. if (strict_strtol(buf, 10, &n))
  3232. return -EINVAL;
  3233. if (n != 0 && n != 1)
  3234. return -EINVAL;
  3235. mddev->parallel_resync = n;
  3236. if (mddev->sync_thread)
  3237. wake_up(&resync_wait);
  3238. return len;
  3239. }
  3240. /* force parallel resync, even with shared block devices */
  3241. static struct md_sysfs_entry md_sync_force_parallel =
  3242. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3243. sync_force_parallel_show, sync_force_parallel_store);
  3244. static ssize_t
  3245. sync_speed_show(mddev_t *mddev, char *page)
  3246. {
  3247. unsigned long resync, dt, db;
  3248. if (mddev->curr_resync == 0)
  3249. return sprintf(page, "none\n");
  3250. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3251. dt = (jiffies - mddev->resync_mark) / HZ;
  3252. if (!dt) dt++;
  3253. db = resync - mddev->resync_mark_cnt;
  3254. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3255. }
  3256. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3257. static ssize_t
  3258. sync_completed_show(mddev_t *mddev, char *page)
  3259. {
  3260. unsigned long max_sectors, resync;
  3261. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3262. return sprintf(page, "none\n");
  3263. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3264. max_sectors = mddev->resync_max_sectors;
  3265. else
  3266. max_sectors = mddev->dev_sectors;
  3267. resync = mddev->curr_resync_completed;
  3268. return sprintf(page, "%lu / %lu\n", resync, max_sectors);
  3269. }
  3270. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3271. static ssize_t
  3272. min_sync_show(mddev_t *mddev, char *page)
  3273. {
  3274. return sprintf(page, "%llu\n",
  3275. (unsigned long long)mddev->resync_min);
  3276. }
  3277. static ssize_t
  3278. min_sync_store(mddev_t *mddev, const char *buf, size_t len)
  3279. {
  3280. unsigned long long min;
  3281. if (strict_strtoull(buf, 10, &min))
  3282. return -EINVAL;
  3283. if (min > mddev->resync_max)
  3284. return -EINVAL;
  3285. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3286. return -EBUSY;
  3287. /* Must be a multiple of chunk_size */
  3288. if (mddev->chunk_sectors) {
  3289. sector_t temp = min;
  3290. if (sector_div(temp, mddev->chunk_sectors))
  3291. return -EINVAL;
  3292. }
  3293. mddev->resync_min = min;
  3294. return len;
  3295. }
  3296. static struct md_sysfs_entry md_min_sync =
  3297. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3298. static ssize_t
  3299. max_sync_show(mddev_t *mddev, char *page)
  3300. {
  3301. if (mddev->resync_max == MaxSector)
  3302. return sprintf(page, "max\n");
  3303. else
  3304. return sprintf(page, "%llu\n",
  3305. (unsigned long long)mddev->resync_max);
  3306. }
  3307. static ssize_t
  3308. max_sync_store(mddev_t *mddev, const char *buf, size_t len)
  3309. {
  3310. if (strncmp(buf, "max", 3) == 0)
  3311. mddev->resync_max = MaxSector;
  3312. else {
  3313. unsigned long long max;
  3314. if (strict_strtoull(buf, 10, &max))
  3315. return -EINVAL;
  3316. if (max < mddev->resync_min)
  3317. return -EINVAL;
  3318. if (max < mddev->resync_max &&
  3319. mddev->ro == 0 &&
  3320. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3321. return -EBUSY;
  3322. /* Must be a multiple of chunk_size */
  3323. if (mddev->chunk_sectors) {
  3324. sector_t temp = max;
  3325. if (sector_div(temp, mddev->chunk_sectors))
  3326. return -EINVAL;
  3327. }
  3328. mddev->resync_max = max;
  3329. }
  3330. wake_up(&mddev->recovery_wait);
  3331. return len;
  3332. }
  3333. static struct md_sysfs_entry md_max_sync =
  3334. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3335. static ssize_t
  3336. suspend_lo_show(mddev_t *mddev, char *page)
  3337. {
  3338. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3339. }
  3340. static ssize_t
  3341. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  3342. {
  3343. char *e;
  3344. unsigned long long new = simple_strtoull(buf, &e, 10);
  3345. if (mddev->pers == NULL ||
  3346. mddev->pers->quiesce == NULL)
  3347. return -EINVAL;
  3348. if (buf == e || (*e && *e != '\n'))
  3349. return -EINVAL;
  3350. if (new >= mddev->suspend_hi ||
  3351. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  3352. mddev->suspend_lo = new;
  3353. mddev->pers->quiesce(mddev, 2);
  3354. return len;
  3355. } else
  3356. return -EINVAL;
  3357. }
  3358. static struct md_sysfs_entry md_suspend_lo =
  3359. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  3360. static ssize_t
  3361. suspend_hi_show(mddev_t *mddev, char *page)
  3362. {
  3363. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  3364. }
  3365. static ssize_t
  3366. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  3367. {
  3368. char *e;
  3369. unsigned long long new = simple_strtoull(buf, &e, 10);
  3370. if (mddev->pers == NULL ||
  3371. mddev->pers->quiesce == NULL)
  3372. return -EINVAL;
  3373. if (buf == e || (*e && *e != '\n'))
  3374. return -EINVAL;
  3375. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  3376. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  3377. mddev->suspend_hi = new;
  3378. mddev->pers->quiesce(mddev, 1);
  3379. mddev->pers->quiesce(mddev, 0);
  3380. return len;
  3381. } else
  3382. return -EINVAL;
  3383. }
  3384. static struct md_sysfs_entry md_suspend_hi =
  3385. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  3386. static ssize_t
  3387. reshape_position_show(mddev_t *mddev, char *page)
  3388. {
  3389. if (mddev->reshape_position != MaxSector)
  3390. return sprintf(page, "%llu\n",
  3391. (unsigned long long)mddev->reshape_position);
  3392. strcpy(page, "none\n");
  3393. return 5;
  3394. }
  3395. static ssize_t
  3396. reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
  3397. {
  3398. char *e;
  3399. unsigned long long new = simple_strtoull(buf, &e, 10);
  3400. if (mddev->pers)
  3401. return -EBUSY;
  3402. if (buf == e || (*e && *e != '\n'))
  3403. return -EINVAL;
  3404. mddev->reshape_position = new;
  3405. mddev->delta_disks = 0;
  3406. mddev->new_level = mddev->level;
  3407. mddev->new_layout = mddev->layout;
  3408. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3409. return len;
  3410. }
  3411. static struct md_sysfs_entry md_reshape_position =
  3412. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  3413. reshape_position_store);
  3414. static ssize_t
  3415. array_size_show(mddev_t *mddev, char *page)
  3416. {
  3417. if (mddev->external_size)
  3418. return sprintf(page, "%llu\n",
  3419. (unsigned long long)mddev->array_sectors/2);
  3420. else
  3421. return sprintf(page, "default\n");
  3422. }
  3423. static ssize_t
  3424. array_size_store(mddev_t *mddev, const char *buf, size_t len)
  3425. {
  3426. sector_t sectors;
  3427. if (strncmp(buf, "default", 7) == 0) {
  3428. if (mddev->pers)
  3429. sectors = mddev->pers->size(mddev, 0, 0);
  3430. else
  3431. sectors = mddev->array_sectors;
  3432. mddev->external_size = 0;
  3433. } else {
  3434. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  3435. return -EINVAL;
  3436. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  3437. return -E2BIG;
  3438. mddev->external_size = 1;
  3439. }
  3440. mddev->array_sectors = sectors;
  3441. set_capacity(mddev->gendisk, mddev->array_sectors);
  3442. if (mddev->pers)
  3443. revalidate_disk(mddev->gendisk);
  3444. return len;
  3445. }
  3446. static struct md_sysfs_entry md_array_size =
  3447. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  3448. array_size_store);
  3449. static struct attribute *md_default_attrs[] = {
  3450. &md_level.attr,
  3451. &md_layout.attr,
  3452. &md_raid_disks.attr,
  3453. &md_chunk_size.attr,
  3454. &md_size.attr,
  3455. &md_resync_start.attr,
  3456. &md_metadata.attr,
  3457. &md_new_device.attr,
  3458. &md_safe_delay.attr,
  3459. &md_array_state.attr,
  3460. &md_reshape_position.attr,
  3461. &md_array_size.attr,
  3462. NULL,
  3463. };
  3464. static struct attribute *md_redundancy_attrs[] = {
  3465. &md_scan_mode.attr,
  3466. &md_mismatches.attr,
  3467. &md_sync_min.attr,
  3468. &md_sync_max.attr,
  3469. &md_sync_speed.attr,
  3470. &md_sync_force_parallel.attr,
  3471. &md_sync_completed.attr,
  3472. &md_min_sync.attr,
  3473. &md_max_sync.attr,
  3474. &md_suspend_lo.attr,
  3475. &md_suspend_hi.attr,
  3476. &md_bitmap.attr,
  3477. &md_degraded.attr,
  3478. NULL,
  3479. };
  3480. static struct attribute_group md_redundancy_group = {
  3481. .name = NULL,
  3482. .attrs = md_redundancy_attrs,
  3483. };
  3484. static ssize_t
  3485. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3486. {
  3487. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3488. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3489. ssize_t rv;
  3490. if (!entry->show)
  3491. return -EIO;
  3492. rv = mddev_lock(mddev);
  3493. if (!rv) {
  3494. rv = entry->show(mddev, page);
  3495. mddev_unlock(mddev);
  3496. }
  3497. return rv;
  3498. }
  3499. static ssize_t
  3500. md_attr_store(struct kobject *kobj, struct attribute *attr,
  3501. const char *page, size_t length)
  3502. {
  3503. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3504. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3505. ssize_t rv;
  3506. if (!entry->store)
  3507. return -EIO;
  3508. if (!capable(CAP_SYS_ADMIN))
  3509. return -EACCES;
  3510. rv = mddev_lock(mddev);
  3511. if (mddev->hold_active == UNTIL_IOCTL)
  3512. mddev->hold_active = 0;
  3513. if (!rv) {
  3514. rv = entry->store(mddev, page, length);
  3515. mddev_unlock(mddev);
  3516. }
  3517. return rv;
  3518. }
  3519. static void md_free(struct kobject *ko)
  3520. {
  3521. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  3522. if (mddev->sysfs_state)
  3523. sysfs_put(mddev->sysfs_state);
  3524. if (mddev->gendisk) {
  3525. del_gendisk(mddev->gendisk);
  3526. put_disk(mddev->gendisk);
  3527. }
  3528. if (mddev->queue)
  3529. blk_cleanup_queue(mddev->queue);
  3530. kfree(mddev);
  3531. }
  3532. static struct sysfs_ops md_sysfs_ops = {
  3533. .show = md_attr_show,
  3534. .store = md_attr_store,
  3535. };
  3536. static struct kobj_type md_ktype = {
  3537. .release = md_free,
  3538. .sysfs_ops = &md_sysfs_ops,
  3539. .default_attrs = md_default_attrs,
  3540. };
  3541. int mdp_major = 0;
  3542. static void mddev_delayed_delete(struct work_struct *ws)
  3543. {
  3544. mddev_t *mddev = container_of(ws, mddev_t, del_work);
  3545. if (mddev->private == &md_redundancy_group) {
  3546. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  3547. if (mddev->sysfs_action)
  3548. sysfs_put(mddev->sysfs_action);
  3549. mddev->sysfs_action = NULL;
  3550. mddev->private = NULL;
  3551. }
  3552. kobject_del(&mddev->kobj);
  3553. kobject_put(&mddev->kobj);
  3554. }
  3555. static int md_alloc(dev_t dev, char *name)
  3556. {
  3557. static DEFINE_MUTEX(disks_mutex);
  3558. mddev_t *mddev = mddev_find(dev);
  3559. struct gendisk *disk;
  3560. int partitioned;
  3561. int shift;
  3562. int unit;
  3563. int error;
  3564. if (!mddev)
  3565. return -ENODEV;
  3566. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  3567. shift = partitioned ? MdpMinorShift : 0;
  3568. unit = MINOR(mddev->unit) >> shift;
  3569. /* wait for any previous instance if this device
  3570. * to be completed removed (mddev_delayed_delete).
  3571. */
  3572. flush_scheduled_work();
  3573. mutex_lock(&disks_mutex);
  3574. error = -EEXIST;
  3575. if (mddev->gendisk)
  3576. goto abort;
  3577. if (name) {
  3578. /* Need to ensure that 'name' is not a duplicate.
  3579. */
  3580. mddev_t *mddev2;
  3581. spin_lock(&all_mddevs_lock);
  3582. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  3583. if (mddev2->gendisk &&
  3584. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  3585. spin_unlock(&all_mddevs_lock);
  3586. goto abort;
  3587. }
  3588. spin_unlock(&all_mddevs_lock);
  3589. }
  3590. error = -ENOMEM;
  3591. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  3592. if (!mddev->queue)
  3593. goto abort;
  3594. mddev->queue->queuedata = mddev;
  3595. /* Can be unlocked because the queue is new: no concurrency */
  3596. queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
  3597. blk_queue_make_request(mddev->queue, md_make_request);
  3598. disk = alloc_disk(1 << shift);
  3599. if (!disk) {
  3600. blk_cleanup_queue(mddev->queue);
  3601. mddev->queue = NULL;
  3602. goto abort;
  3603. }
  3604. disk->major = MAJOR(mddev->unit);
  3605. disk->first_minor = unit << shift;
  3606. if (name)
  3607. strcpy(disk->disk_name, name);
  3608. else if (partitioned)
  3609. sprintf(disk->disk_name, "md_d%d", unit);
  3610. else
  3611. sprintf(disk->disk_name, "md%d", unit);
  3612. disk->fops = &md_fops;
  3613. disk->private_data = mddev;
  3614. disk->queue = mddev->queue;
  3615. /* Allow extended partitions. This makes the
  3616. * 'mdp' device redundant, but we can't really
  3617. * remove it now.
  3618. */
  3619. disk->flags |= GENHD_FL_EXT_DEVT;
  3620. add_disk(disk);
  3621. mddev->gendisk = disk;
  3622. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  3623. &disk_to_dev(disk)->kobj, "%s", "md");
  3624. if (error) {
  3625. /* This isn't possible, but as kobject_init_and_add is marked
  3626. * __must_check, we must do something with the result
  3627. */
  3628. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  3629. disk->disk_name);
  3630. error = 0;
  3631. }
  3632. abort:
  3633. mutex_unlock(&disks_mutex);
  3634. if (!error) {
  3635. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  3636. mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
  3637. }
  3638. mddev_put(mddev);
  3639. return error;
  3640. }
  3641. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  3642. {
  3643. md_alloc(dev, NULL);
  3644. return NULL;
  3645. }
  3646. static int add_named_array(const char *val, struct kernel_param *kp)
  3647. {
  3648. /* val must be "md_*" where * is not all digits.
  3649. * We allocate an array with a large free minor number, and
  3650. * set the name to val. val must not already be an active name.
  3651. */
  3652. int len = strlen(val);
  3653. char buf[DISK_NAME_LEN];
  3654. while (len && val[len-1] == '\n')
  3655. len--;
  3656. if (len >= DISK_NAME_LEN)
  3657. return -E2BIG;
  3658. strlcpy(buf, val, len+1);
  3659. if (strncmp(buf, "md_", 3) != 0)
  3660. return -EINVAL;
  3661. return md_alloc(0, buf);
  3662. }
  3663. static void md_safemode_timeout(unsigned long data)
  3664. {
  3665. mddev_t *mddev = (mddev_t *) data;
  3666. if (!atomic_read(&mddev->writes_pending)) {
  3667. mddev->safemode = 1;
  3668. if (mddev->external)
  3669. sysfs_notify_dirent(mddev->sysfs_state);
  3670. }
  3671. md_wakeup_thread(mddev->thread);
  3672. }
  3673. static int start_dirty_degraded;
  3674. static int do_md_run(mddev_t * mddev)
  3675. {
  3676. int err;
  3677. mdk_rdev_t *rdev;
  3678. struct gendisk *disk;
  3679. struct mdk_personality *pers;
  3680. if (list_empty(&mddev->disks))
  3681. /* cannot run an array with no devices.. */
  3682. return -EINVAL;
  3683. if (mddev->pers)
  3684. return -EBUSY;
  3685. /*
  3686. * Analyze all RAID superblock(s)
  3687. */
  3688. if (!mddev->raid_disks) {
  3689. if (!mddev->persistent)
  3690. return -EINVAL;
  3691. analyze_sbs(mddev);
  3692. }
  3693. if (mddev->level != LEVEL_NONE)
  3694. request_module("md-level-%d", mddev->level);
  3695. else if (mddev->clevel[0])
  3696. request_module("md-%s", mddev->clevel);
  3697. /*
  3698. * Drop all container device buffers, from now on
  3699. * the only valid external interface is through the md
  3700. * device.
  3701. */
  3702. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3703. if (test_bit(Faulty, &rdev->flags))
  3704. continue;
  3705. sync_blockdev(rdev->bdev);
  3706. invalidate_bdev(rdev->bdev);
  3707. /* perform some consistency tests on the device.
  3708. * We don't want the data to overlap the metadata,
  3709. * Internal Bitmap issues have been handled elsewhere.
  3710. */
  3711. if (rdev->data_offset < rdev->sb_start) {
  3712. if (mddev->dev_sectors &&
  3713. rdev->data_offset + mddev->dev_sectors
  3714. > rdev->sb_start) {
  3715. printk("md: %s: data overlaps metadata\n",
  3716. mdname(mddev));
  3717. return -EINVAL;
  3718. }
  3719. } else {
  3720. if (rdev->sb_start + rdev->sb_size/512
  3721. > rdev->data_offset) {
  3722. printk("md: %s: metadata overlaps data\n",
  3723. mdname(mddev));
  3724. return -EINVAL;
  3725. }
  3726. }
  3727. sysfs_notify_dirent(rdev->sysfs_state);
  3728. }
  3729. md_probe(mddev->unit, NULL, NULL);
  3730. disk = mddev->gendisk;
  3731. if (!disk)
  3732. return -ENOMEM;
  3733. spin_lock(&pers_lock);
  3734. pers = find_pers(mddev->level, mddev->clevel);
  3735. if (!pers || !try_module_get(pers->owner)) {
  3736. spin_unlock(&pers_lock);
  3737. if (mddev->level != LEVEL_NONE)
  3738. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  3739. mddev->level);
  3740. else
  3741. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  3742. mddev->clevel);
  3743. return -EINVAL;
  3744. }
  3745. mddev->pers = pers;
  3746. spin_unlock(&pers_lock);
  3747. if (mddev->level != pers->level) {
  3748. mddev->level = pers->level;
  3749. mddev->new_level = pers->level;
  3750. }
  3751. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3752. if (mddev->reshape_position != MaxSector &&
  3753. pers->start_reshape == NULL) {
  3754. /* This personality cannot handle reshaping... */
  3755. mddev->pers = NULL;
  3756. module_put(pers->owner);
  3757. return -EINVAL;
  3758. }
  3759. if (pers->sync_request) {
  3760. /* Warn if this is a potentially silly
  3761. * configuration.
  3762. */
  3763. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3764. mdk_rdev_t *rdev2;
  3765. int warned = 0;
  3766. list_for_each_entry(rdev, &mddev->disks, same_set)
  3767. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  3768. if (rdev < rdev2 &&
  3769. rdev->bdev->bd_contains ==
  3770. rdev2->bdev->bd_contains) {
  3771. printk(KERN_WARNING
  3772. "%s: WARNING: %s appears to be"
  3773. " on the same physical disk as"
  3774. " %s.\n",
  3775. mdname(mddev),
  3776. bdevname(rdev->bdev,b),
  3777. bdevname(rdev2->bdev,b2));
  3778. warned = 1;
  3779. }
  3780. }
  3781. if (warned)
  3782. printk(KERN_WARNING
  3783. "True protection against single-disk"
  3784. " failure might be compromised.\n");
  3785. }
  3786. mddev->recovery = 0;
  3787. /* may be over-ridden by personality */
  3788. mddev->resync_max_sectors = mddev->dev_sectors;
  3789. mddev->barriers_work = 1;
  3790. mddev->ok_start_degraded = start_dirty_degraded;
  3791. if (start_readonly)
  3792. mddev->ro = 2; /* read-only, but switch on first write */
  3793. err = mddev->pers->run(mddev);
  3794. if (err)
  3795. printk(KERN_ERR "md: pers->run() failed ...\n");
  3796. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  3797. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  3798. " but 'external_size' not in effect?\n", __func__);
  3799. printk(KERN_ERR
  3800. "md: invalid array_size %llu > default size %llu\n",
  3801. (unsigned long long)mddev->array_sectors / 2,
  3802. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  3803. err = -EINVAL;
  3804. mddev->pers->stop(mddev);
  3805. }
  3806. if (err == 0 && mddev->pers->sync_request) {
  3807. err = bitmap_create(mddev);
  3808. if (err) {
  3809. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  3810. mdname(mddev), err);
  3811. mddev->pers->stop(mddev);
  3812. }
  3813. }
  3814. if (err) {
  3815. module_put(mddev->pers->owner);
  3816. mddev->pers = NULL;
  3817. bitmap_destroy(mddev);
  3818. return err;
  3819. }
  3820. if (mddev->pers->sync_request) {
  3821. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3822. printk(KERN_WARNING
  3823. "md: cannot register extra attributes for %s\n",
  3824. mdname(mddev));
  3825. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
  3826. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  3827. mddev->ro = 0;
  3828. atomic_set(&mddev->writes_pending,0);
  3829. mddev->safemode = 0;
  3830. mddev->safemode_timer.function = md_safemode_timeout;
  3831. mddev->safemode_timer.data = (unsigned long) mddev;
  3832. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  3833. mddev->in_sync = 1;
  3834. list_for_each_entry(rdev, &mddev->disks, same_set)
  3835. if (rdev->raid_disk >= 0) {
  3836. char nm[20];
  3837. sprintf(nm, "rd%d", rdev->raid_disk);
  3838. if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
  3839. printk("md: cannot register %s for %s\n",
  3840. nm, mdname(mddev));
  3841. }
  3842. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3843. if (mddev->flags)
  3844. md_update_sb(mddev, 0);
  3845. set_capacity(disk, mddev->array_sectors);
  3846. /* If there is a partially-recovered drive we need to
  3847. * start recovery here. If we leave it to md_check_recovery,
  3848. * it will remove the drives and not do the right thing
  3849. */
  3850. if (mddev->degraded && !mddev->sync_thread) {
  3851. int spares = 0;
  3852. list_for_each_entry(rdev, &mddev->disks, same_set)
  3853. if (rdev->raid_disk >= 0 &&
  3854. !test_bit(In_sync, &rdev->flags) &&
  3855. !test_bit(Faulty, &rdev->flags))
  3856. /* complete an interrupted recovery */
  3857. spares++;
  3858. if (spares && mddev->pers->sync_request) {
  3859. mddev->recovery = 0;
  3860. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3861. mddev->sync_thread = md_register_thread(md_do_sync,
  3862. mddev,
  3863. "resync");
  3864. if (!mddev->sync_thread) {
  3865. printk(KERN_ERR "%s: could not start resync"
  3866. " thread...\n",
  3867. mdname(mddev));
  3868. /* leave the spares where they are, it shouldn't hurt */
  3869. mddev->recovery = 0;
  3870. }
  3871. }
  3872. }
  3873. md_wakeup_thread(mddev->thread);
  3874. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  3875. revalidate_disk(mddev->gendisk);
  3876. mddev->changed = 1;
  3877. md_new_event(mddev);
  3878. sysfs_notify_dirent(mddev->sysfs_state);
  3879. if (mddev->sysfs_action)
  3880. sysfs_notify_dirent(mddev->sysfs_action);
  3881. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3882. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  3883. return 0;
  3884. }
  3885. static int restart_array(mddev_t *mddev)
  3886. {
  3887. struct gendisk *disk = mddev->gendisk;
  3888. /* Complain if it has no devices */
  3889. if (list_empty(&mddev->disks))
  3890. return -ENXIO;
  3891. if (!mddev->pers)
  3892. return -EINVAL;
  3893. if (!mddev->ro)
  3894. return -EBUSY;
  3895. mddev->safemode = 0;
  3896. mddev->ro = 0;
  3897. set_disk_ro(disk, 0);
  3898. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  3899. mdname(mddev));
  3900. /* Kick recovery or resync if necessary */
  3901. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3902. md_wakeup_thread(mddev->thread);
  3903. md_wakeup_thread(mddev->sync_thread);
  3904. sysfs_notify_dirent(mddev->sysfs_state);
  3905. return 0;
  3906. }
  3907. /* similar to deny_write_access, but accounts for our holding a reference
  3908. * to the file ourselves */
  3909. static int deny_bitmap_write_access(struct file * file)
  3910. {
  3911. struct inode *inode = file->f_mapping->host;
  3912. spin_lock(&inode->i_lock);
  3913. if (atomic_read(&inode->i_writecount) > 1) {
  3914. spin_unlock(&inode->i_lock);
  3915. return -ETXTBSY;
  3916. }
  3917. atomic_set(&inode->i_writecount, -1);
  3918. spin_unlock(&inode->i_lock);
  3919. return 0;
  3920. }
  3921. static void restore_bitmap_write_access(struct file *file)
  3922. {
  3923. struct inode *inode = file->f_mapping->host;
  3924. spin_lock(&inode->i_lock);
  3925. atomic_set(&inode->i_writecount, 1);
  3926. spin_unlock(&inode->i_lock);
  3927. }
  3928. /* mode:
  3929. * 0 - completely stop and dis-assemble array
  3930. * 1 - switch to readonly
  3931. * 2 - stop but do not disassemble array
  3932. */
  3933. static int do_md_stop(mddev_t * mddev, int mode, int is_open)
  3934. {
  3935. int err = 0;
  3936. struct gendisk *disk = mddev->gendisk;
  3937. mdk_rdev_t *rdev;
  3938. mutex_lock(&mddev->open_mutex);
  3939. if (atomic_read(&mddev->openers) > is_open) {
  3940. printk("md: %s still in use.\n",mdname(mddev));
  3941. err = -EBUSY;
  3942. } else if (mddev->pers) {
  3943. if (mddev->sync_thread) {
  3944. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3945. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3946. md_unregister_thread(mddev->sync_thread);
  3947. mddev->sync_thread = NULL;
  3948. }
  3949. del_timer_sync(&mddev->safemode_timer);
  3950. switch(mode) {
  3951. case 1: /* readonly */
  3952. err = -ENXIO;
  3953. if (mddev->ro==1)
  3954. goto out;
  3955. mddev->ro = 1;
  3956. break;
  3957. case 0: /* disassemble */
  3958. case 2: /* stop */
  3959. bitmap_flush(mddev);
  3960. md_super_wait(mddev);
  3961. if (mddev->ro)
  3962. set_disk_ro(disk, 0);
  3963. mddev->pers->stop(mddev);
  3964. mddev->queue->merge_bvec_fn = NULL;
  3965. mddev->queue->unplug_fn = NULL;
  3966. mddev->queue->backing_dev_info.congested_fn = NULL;
  3967. module_put(mddev->pers->owner);
  3968. if (mddev->pers->sync_request)
  3969. mddev->private = &md_redundancy_group;
  3970. mddev->pers = NULL;
  3971. /* tell userspace to handle 'inactive' */
  3972. sysfs_notify_dirent(mddev->sysfs_state);
  3973. list_for_each_entry(rdev, &mddev->disks, same_set)
  3974. if (rdev->raid_disk >= 0) {
  3975. char nm[20];
  3976. sprintf(nm, "rd%d", rdev->raid_disk);
  3977. sysfs_remove_link(&mddev->kobj, nm);
  3978. }
  3979. set_capacity(disk, 0);
  3980. mddev->changed = 1;
  3981. if (mddev->ro)
  3982. mddev->ro = 0;
  3983. }
  3984. if (!mddev->in_sync || mddev->flags) {
  3985. /* mark array as shutdown cleanly */
  3986. mddev->in_sync = 1;
  3987. md_update_sb(mddev, 1);
  3988. }
  3989. if (mode == 1)
  3990. set_disk_ro(disk, 1);
  3991. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3992. err = 0;
  3993. }
  3994. out:
  3995. mutex_unlock(&mddev->open_mutex);
  3996. if (err)
  3997. return err;
  3998. /*
  3999. * Free resources if final stop
  4000. */
  4001. if (mode == 0) {
  4002. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4003. bitmap_destroy(mddev);
  4004. if (mddev->bitmap_file) {
  4005. restore_bitmap_write_access(mddev->bitmap_file);
  4006. fput(mddev->bitmap_file);
  4007. mddev->bitmap_file = NULL;
  4008. }
  4009. mddev->bitmap_offset = 0;
  4010. /* make sure all md_delayed_delete calls have finished */
  4011. flush_scheduled_work();
  4012. export_array(mddev);
  4013. mddev->array_sectors = 0;
  4014. mddev->external_size = 0;
  4015. mddev->dev_sectors = 0;
  4016. mddev->raid_disks = 0;
  4017. mddev->recovery_cp = 0;
  4018. mddev->resync_min = 0;
  4019. mddev->resync_max = MaxSector;
  4020. mddev->reshape_position = MaxSector;
  4021. mddev->external = 0;
  4022. mddev->persistent = 0;
  4023. mddev->level = LEVEL_NONE;
  4024. mddev->clevel[0] = 0;
  4025. mddev->flags = 0;
  4026. mddev->ro = 0;
  4027. mddev->metadata_type[0] = 0;
  4028. mddev->chunk_sectors = 0;
  4029. mddev->ctime = mddev->utime = 0;
  4030. mddev->layout = 0;
  4031. mddev->max_disks = 0;
  4032. mddev->events = 0;
  4033. mddev->delta_disks = 0;
  4034. mddev->new_level = LEVEL_NONE;
  4035. mddev->new_layout = 0;
  4036. mddev->new_chunk_sectors = 0;
  4037. mddev->curr_resync = 0;
  4038. mddev->resync_mismatches = 0;
  4039. mddev->suspend_lo = mddev->suspend_hi = 0;
  4040. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4041. mddev->recovery = 0;
  4042. mddev->in_sync = 0;
  4043. mddev->changed = 0;
  4044. mddev->degraded = 0;
  4045. mddev->barriers_work = 0;
  4046. mddev->safemode = 0;
  4047. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4048. if (mddev->hold_active == UNTIL_STOP)
  4049. mddev->hold_active = 0;
  4050. } else if (mddev->pers)
  4051. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  4052. mdname(mddev));
  4053. err = 0;
  4054. blk_integrity_unregister(disk);
  4055. md_new_event(mddev);
  4056. sysfs_notify_dirent(mddev->sysfs_state);
  4057. return err;
  4058. }
  4059. #ifndef MODULE
  4060. static void autorun_array(mddev_t *mddev)
  4061. {
  4062. mdk_rdev_t *rdev;
  4063. int err;
  4064. if (list_empty(&mddev->disks))
  4065. return;
  4066. printk(KERN_INFO "md: running: ");
  4067. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4068. char b[BDEVNAME_SIZE];
  4069. printk("<%s>", bdevname(rdev->bdev,b));
  4070. }
  4071. printk("\n");
  4072. err = do_md_run(mddev);
  4073. if (err) {
  4074. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4075. do_md_stop(mddev, 0, 0);
  4076. }
  4077. }
  4078. /*
  4079. * lets try to run arrays based on all disks that have arrived
  4080. * until now. (those are in pending_raid_disks)
  4081. *
  4082. * the method: pick the first pending disk, collect all disks with
  4083. * the same UUID, remove all from the pending list and put them into
  4084. * the 'same_array' list. Then order this list based on superblock
  4085. * update time (freshest comes first), kick out 'old' disks and
  4086. * compare superblocks. If everything's fine then run it.
  4087. *
  4088. * If "unit" is allocated, then bump its reference count
  4089. */
  4090. static void autorun_devices(int part)
  4091. {
  4092. mdk_rdev_t *rdev0, *rdev, *tmp;
  4093. mddev_t *mddev;
  4094. char b[BDEVNAME_SIZE];
  4095. printk(KERN_INFO "md: autorun ...\n");
  4096. while (!list_empty(&pending_raid_disks)) {
  4097. int unit;
  4098. dev_t dev;
  4099. LIST_HEAD(candidates);
  4100. rdev0 = list_entry(pending_raid_disks.next,
  4101. mdk_rdev_t, same_set);
  4102. printk(KERN_INFO "md: considering %s ...\n",
  4103. bdevname(rdev0->bdev,b));
  4104. INIT_LIST_HEAD(&candidates);
  4105. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4106. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4107. printk(KERN_INFO "md: adding %s ...\n",
  4108. bdevname(rdev->bdev,b));
  4109. list_move(&rdev->same_set, &candidates);
  4110. }
  4111. /*
  4112. * now we have a set of devices, with all of them having
  4113. * mostly sane superblocks. It's time to allocate the
  4114. * mddev.
  4115. */
  4116. if (part) {
  4117. dev = MKDEV(mdp_major,
  4118. rdev0->preferred_minor << MdpMinorShift);
  4119. unit = MINOR(dev) >> MdpMinorShift;
  4120. } else {
  4121. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4122. unit = MINOR(dev);
  4123. }
  4124. if (rdev0->preferred_minor != unit) {
  4125. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4126. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4127. break;
  4128. }
  4129. md_probe(dev, NULL, NULL);
  4130. mddev = mddev_find(dev);
  4131. if (!mddev || !mddev->gendisk) {
  4132. if (mddev)
  4133. mddev_put(mddev);
  4134. printk(KERN_ERR
  4135. "md: cannot allocate memory for md drive.\n");
  4136. break;
  4137. }
  4138. if (mddev_lock(mddev))
  4139. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4140. mdname(mddev));
  4141. else if (mddev->raid_disks || mddev->major_version
  4142. || !list_empty(&mddev->disks)) {
  4143. printk(KERN_WARNING
  4144. "md: %s already running, cannot run %s\n",
  4145. mdname(mddev), bdevname(rdev0->bdev,b));
  4146. mddev_unlock(mddev);
  4147. } else {
  4148. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4149. mddev->persistent = 1;
  4150. rdev_for_each_list(rdev, tmp, &candidates) {
  4151. list_del_init(&rdev->same_set);
  4152. if (bind_rdev_to_array(rdev, mddev))
  4153. export_rdev(rdev);
  4154. }
  4155. autorun_array(mddev);
  4156. mddev_unlock(mddev);
  4157. }
  4158. /* on success, candidates will be empty, on error
  4159. * it won't...
  4160. */
  4161. rdev_for_each_list(rdev, tmp, &candidates) {
  4162. list_del_init(&rdev->same_set);
  4163. export_rdev(rdev);
  4164. }
  4165. mddev_put(mddev);
  4166. }
  4167. printk(KERN_INFO "md: ... autorun DONE.\n");
  4168. }
  4169. #endif /* !MODULE */
  4170. static int get_version(void __user * arg)
  4171. {
  4172. mdu_version_t ver;
  4173. ver.major = MD_MAJOR_VERSION;
  4174. ver.minor = MD_MINOR_VERSION;
  4175. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4176. if (copy_to_user(arg, &ver, sizeof(ver)))
  4177. return -EFAULT;
  4178. return 0;
  4179. }
  4180. static int get_array_info(mddev_t * mddev, void __user * arg)
  4181. {
  4182. mdu_array_info_t info;
  4183. int nr,working,insync,failed,spare;
  4184. mdk_rdev_t *rdev;
  4185. nr=working=insync=failed=spare=0;
  4186. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4187. nr++;
  4188. if (test_bit(Faulty, &rdev->flags))
  4189. failed++;
  4190. else {
  4191. working++;
  4192. if (test_bit(In_sync, &rdev->flags))
  4193. insync++;
  4194. else
  4195. spare++;
  4196. }
  4197. }
  4198. info.major_version = mddev->major_version;
  4199. info.minor_version = mddev->minor_version;
  4200. info.patch_version = MD_PATCHLEVEL_VERSION;
  4201. info.ctime = mddev->ctime;
  4202. info.level = mddev->level;
  4203. info.size = mddev->dev_sectors / 2;
  4204. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4205. info.size = -1;
  4206. info.nr_disks = nr;
  4207. info.raid_disks = mddev->raid_disks;
  4208. info.md_minor = mddev->md_minor;
  4209. info.not_persistent= !mddev->persistent;
  4210. info.utime = mddev->utime;
  4211. info.state = 0;
  4212. if (mddev->in_sync)
  4213. info.state = (1<<MD_SB_CLEAN);
  4214. if (mddev->bitmap && mddev->bitmap_offset)
  4215. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4216. info.active_disks = insync;
  4217. info.working_disks = working;
  4218. info.failed_disks = failed;
  4219. info.spare_disks = spare;
  4220. info.layout = mddev->layout;
  4221. info.chunk_size = mddev->chunk_sectors << 9;
  4222. if (copy_to_user(arg, &info, sizeof(info)))
  4223. return -EFAULT;
  4224. return 0;
  4225. }
  4226. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  4227. {
  4228. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4229. char *ptr, *buf = NULL;
  4230. int err = -ENOMEM;
  4231. if (md_allow_write(mddev))
  4232. file = kmalloc(sizeof(*file), GFP_NOIO);
  4233. else
  4234. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4235. if (!file)
  4236. goto out;
  4237. /* bitmap disabled, zero the first byte and copy out */
  4238. if (!mddev->bitmap || !mddev->bitmap->file) {
  4239. file->pathname[0] = '\0';
  4240. goto copy_out;
  4241. }
  4242. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4243. if (!buf)
  4244. goto out;
  4245. ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
  4246. if (IS_ERR(ptr))
  4247. goto out;
  4248. strcpy(file->pathname, ptr);
  4249. copy_out:
  4250. err = 0;
  4251. if (copy_to_user(arg, file, sizeof(*file)))
  4252. err = -EFAULT;
  4253. out:
  4254. kfree(buf);
  4255. kfree(file);
  4256. return err;
  4257. }
  4258. static int get_disk_info(mddev_t * mddev, void __user * arg)
  4259. {
  4260. mdu_disk_info_t info;
  4261. mdk_rdev_t *rdev;
  4262. if (copy_from_user(&info, arg, sizeof(info)))
  4263. return -EFAULT;
  4264. rdev = find_rdev_nr(mddev, info.number);
  4265. if (rdev) {
  4266. info.major = MAJOR(rdev->bdev->bd_dev);
  4267. info.minor = MINOR(rdev->bdev->bd_dev);
  4268. info.raid_disk = rdev->raid_disk;
  4269. info.state = 0;
  4270. if (test_bit(Faulty, &rdev->flags))
  4271. info.state |= (1<<MD_DISK_FAULTY);
  4272. else if (test_bit(In_sync, &rdev->flags)) {
  4273. info.state |= (1<<MD_DISK_ACTIVE);
  4274. info.state |= (1<<MD_DISK_SYNC);
  4275. }
  4276. if (test_bit(WriteMostly, &rdev->flags))
  4277. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  4278. } else {
  4279. info.major = info.minor = 0;
  4280. info.raid_disk = -1;
  4281. info.state = (1<<MD_DISK_REMOVED);
  4282. }
  4283. if (copy_to_user(arg, &info, sizeof(info)))
  4284. return -EFAULT;
  4285. return 0;
  4286. }
  4287. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  4288. {
  4289. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4290. mdk_rdev_t *rdev;
  4291. dev_t dev = MKDEV(info->major,info->minor);
  4292. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  4293. return -EOVERFLOW;
  4294. if (!mddev->raid_disks) {
  4295. int err;
  4296. /* expecting a device which has a superblock */
  4297. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  4298. if (IS_ERR(rdev)) {
  4299. printk(KERN_WARNING
  4300. "md: md_import_device returned %ld\n",
  4301. PTR_ERR(rdev));
  4302. return PTR_ERR(rdev);
  4303. }
  4304. if (!list_empty(&mddev->disks)) {
  4305. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  4306. mdk_rdev_t, same_set);
  4307. err = super_types[mddev->major_version]
  4308. .load_super(rdev, rdev0, mddev->minor_version);
  4309. if (err < 0) {
  4310. printk(KERN_WARNING
  4311. "md: %s has different UUID to %s\n",
  4312. bdevname(rdev->bdev,b),
  4313. bdevname(rdev0->bdev,b2));
  4314. export_rdev(rdev);
  4315. return -EINVAL;
  4316. }
  4317. }
  4318. err = bind_rdev_to_array(rdev, mddev);
  4319. if (err)
  4320. export_rdev(rdev);
  4321. return err;
  4322. }
  4323. /*
  4324. * add_new_disk can be used once the array is assembled
  4325. * to add "hot spares". They must already have a superblock
  4326. * written
  4327. */
  4328. if (mddev->pers) {
  4329. int err;
  4330. if (!mddev->pers->hot_add_disk) {
  4331. printk(KERN_WARNING
  4332. "%s: personality does not support diskops!\n",
  4333. mdname(mddev));
  4334. return -EINVAL;
  4335. }
  4336. if (mddev->persistent)
  4337. rdev = md_import_device(dev, mddev->major_version,
  4338. mddev->minor_version);
  4339. else
  4340. rdev = md_import_device(dev, -1, -1);
  4341. if (IS_ERR(rdev)) {
  4342. printk(KERN_WARNING
  4343. "md: md_import_device returned %ld\n",
  4344. PTR_ERR(rdev));
  4345. return PTR_ERR(rdev);
  4346. }
  4347. /* set save_raid_disk if appropriate */
  4348. if (!mddev->persistent) {
  4349. if (info->state & (1<<MD_DISK_SYNC) &&
  4350. info->raid_disk < mddev->raid_disks)
  4351. rdev->raid_disk = info->raid_disk;
  4352. else
  4353. rdev->raid_disk = -1;
  4354. } else
  4355. super_types[mddev->major_version].
  4356. validate_super(mddev, rdev);
  4357. rdev->saved_raid_disk = rdev->raid_disk;
  4358. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  4359. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4360. set_bit(WriteMostly, &rdev->flags);
  4361. else
  4362. clear_bit(WriteMostly, &rdev->flags);
  4363. rdev->raid_disk = -1;
  4364. err = bind_rdev_to_array(rdev, mddev);
  4365. if (!err && !mddev->pers->hot_remove_disk) {
  4366. /* If there is hot_add_disk but no hot_remove_disk
  4367. * then added disks for geometry changes,
  4368. * and should be added immediately.
  4369. */
  4370. super_types[mddev->major_version].
  4371. validate_super(mddev, rdev);
  4372. err = mddev->pers->hot_add_disk(mddev, rdev);
  4373. if (err)
  4374. unbind_rdev_from_array(rdev);
  4375. }
  4376. if (err)
  4377. export_rdev(rdev);
  4378. else
  4379. sysfs_notify_dirent(rdev->sysfs_state);
  4380. md_update_sb(mddev, 1);
  4381. if (mddev->degraded)
  4382. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4383. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4384. md_wakeup_thread(mddev->thread);
  4385. return err;
  4386. }
  4387. /* otherwise, add_new_disk is only allowed
  4388. * for major_version==0 superblocks
  4389. */
  4390. if (mddev->major_version != 0) {
  4391. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  4392. mdname(mddev));
  4393. return -EINVAL;
  4394. }
  4395. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  4396. int err;
  4397. rdev = md_import_device(dev, -1, 0);
  4398. if (IS_ERR(rdev)) {
  4399. printk(KERN_WARNING
  4400. "md: error, md_import_device() returned %ld\n",
  4401. PTR_ERR(rdev));
  4402. return PTR_ERR(rdev);
  4403. }
  4404. rdev->desc_nr = info->number;
  4405. if (info->raid_disk < mddev->raid_disks)
  4406. rdev->raid_disk = info->raid_disk;
  4407. else
  4408. rdev->raid_disk = -1;
  4409. if (rdev->raid_disk < mddev->raid_disks)
  4410. if (info->state & (1<<MD_DISK_SYNC))
  4411. set_bit(In_sync, &rdev->flags);
  4412. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4413. set_bit(WriteMostly, &rdev->flags);
  4414. if (!mddev->persistent) {
  4415. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  4416. rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
  4417. } else
  4418. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  4419. rdev->sectors = rdev->sb_start;
  4420. err = bind_rdev_to_array(rdev, mddev);
  4421. if (err) {
  4422. export_rdev(rdev);
  4423. return err;
  4424. }
  4425. }
  4426. return 0;
  4427. }
  4428. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  4429. {
  4430. char b[BDEVNAME_SIZE];
  4431. mdk_rdev_t *rdev;
  4432. rdev = find_rdev(mddev, dev);
  4433. if (!rdev)
  4434. return -ENXIO;
  4435. if (rdev->raid_disk >= 0)
  4436. goto busy;
  4437. kick_rdev_from_array(rdev);
  4438. md_update_sb(mddev, 1);
  4439. md_new_event(mddev);
  4440. return 0;
  4441. busy:
  4442. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  4443. bdevname(rdev->bdev,b), mdname(mddev));
  4444. return -EBUSY;
  4445. }
  4446. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  4447. {
  4448. char b[BDEVNAME_SIZE];
  4449. int err;
  4450. mdk_rdev_t *rdev;
  4451. if (!mddev->pers)
  4452. return -ENODEV;
  4453. if (mddev->major_version != 0) {
  4454. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  4455. " version-0 superblocks.\n",
  4456. mdname(mddev));
  4457. return -EINVAL;
  4458. }
  4459. if (!mddev->pers->hot_add_disk) {
  4460. printk(KERN_WARNING
  4461. "%s: personality does not support diskops!\n",
  4462. mdname(mddev));
  4463. return -EINVAL;
  4464. }
  4465. rdev = md_import_device(dev, -1, 0);
  4466. if (IS_ERR(rdev)) {
  4467. printk(KERN_WARNING
  4468. "md: error, md_import_device() returned %ld\n",
  4469. PTR_ERR(rdev));
  4470. return -EINVAL;
  4471. }
  4472. if (mddev->persistent)
  4473. rdev->sb_start = calc_dev_sboffset(rdev->bdev);
  4474. else
  4475. rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
  4476. rdev->sectors = rdev->sb_start;
  4477. if (test_bit(Faulty, &rdev->flags)) {
  4478. printk(KERN_WARNING
  4479. "md: can not hot-add faulty %s disk to %s!\n",
  4480. bdevname(rdev->bdev,b), mdname(mddev));
  4481. err = -EINVAL;
  4482. goto abort_export;
  4483. }
  4484. clear_bit(In_sync, &rdev->flags);
  4485. rdev->desc_nr = -1;
  4486. rdev->saved_raid_disk = -1;
  4487. err = bind_rdev_to_array(rdev, mddev);
  4488. if (err)
  4489. goto abort_export;
  4490. /*
  4491. * The rest should better be atomic, we can have disk failures
  4492. * noticed in interrupt contexts ...
  4493. */
  4494. rdev->raid_disk = -1;
  4495. md_update_sb(mddev, 1);
  4496. /*
  4497. * Kick recovery, maybe this spare has to be added to the
  4498. * array immediately.
  4499. */
  4500. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4501. md_wakeup_thread(mddev->thread);
  4502. md_new_event(mddev);
  4503. return 0;
  4504. abort_export:
  4505. export_rdev(rdev);
  4506. return err;
  4507. }
  4508. static int set_bitmap_file(mddev_t *mddev, int fd)
  4509. {
  4510. int err;
  4511. if (mddev->pers) {
  4512. if (!mddev->pers->quiesce)
  4513. return -EBUSY;
  4514. if (mddev->recovery || mddev->sync_thread)
  4515. return -EBUSY;
  4516. /* we should be able to change the bitmap.. */
  4517. }
  4518. if (fd >= 0) {
  4519. if (mddev->bitmap)
  4520. return -EEXIST; /* cannot add when bitmap is present */
  4521. mddev->bitmap_file = fget(fd);
  4522. if (mddev->bitmap_file == NULL) {
  4523. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  4524. mdname(mddev));
  4525. return -EBADF;
  4526. }
  4527. err = deny_bitmap_write_access(mddev->bitmap_file);
  4528. if (err) {
  4529. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  4530. mdname(mddev));
  4531. fput(mddev->bitmap_file);
  4532. mddev->bitmap_file = NULL;
  4533. return err;
  4534. }
  4535. mddev->bitmap_offset = 0; /* file overrides offset */
  4536. } else if (mddev->bitmap == NULL)
  4537. return -ENOENT; /* cannot remove what isn't there */
  4538. err = 0;
  4539. if (mddev->pers) {
  4540. mddev->pers->quiesce(mddev, 1);
  4541. if (fd >= 0)
  4542. err = bitmap_create(mddev);
  4543. if (fd < 0 || err) {
  4544. bitmap_destroy(mddev);
  4545. fd = -1; /* make sure to put the file */
  4546. }
  4547. mddev->pers->quiesce(mddev, 0);
  4548. }
  4549. if (fd < 0) {
  4550. if (mddev->bitmap_file) {
  4551. restore_bitmap_write_access(mddev->bitmap_file);
  4552. fput(mddev->bitmap_file);
  4553. }
  4554. mddev->bitmap_file = NULL;
  4555. }
  4556. return err;
  4557. }
  4558. /*
  4559. * set_array_info is used two different ways
  4560. * The original usage is when creating a new array.
  4561. * In this usage, raid_disks is > 0 and it together with
  4562. * level, size, not_persistent,layout,chunksize determine the
  4563. * shape of the array.
  4564. * This will always create an array with a type-0.90.0 superblock.
  4565. * The newer usage is when assembling an array.
  4566. * In this case raid_disks will be 0, and the major_version field is
  4567. * use to determine which style super-blocks are to be found on the devices.
  4568. * The minor and patch _version numbers are also kept incase the
  4569. * super_block handler wishes to interpret them.
  4570. */
  4571. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  4572. {
  4573. if (info->raid_disks == 0) {
  4574. /* just setting version number for superblock loading */
  4575. if (info->major_version < 0 ||
  4576. info->major_version >= ARRAY_SIZE(super_types) ||
  4577. super_types[info->major_version].name == NULL) {
  4578. /* maybe try to auto-load a module? */
  4579. printk(KERN_INFO
  4580. "md: superblock version %d not known\n",
  4581. info->major_version);
  4582. return -EINVAL;
  4583. }
  4584. mddev->major_version = info->major_version;
  4585. mddev->minor_version = info->minor_version;
  4586. mddev->patch_version = info->patch_version;
  4587. mddev->persistent = !info->not_persistent;
  4588. return 0;
  4589. }
  4590. mddev->major_version = MD_MAJOR_VERSION;
  4591. mddev->minor_version = MD_MINOR_VERSION;
  4592. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  4593. mddev->ctime = get_seconds();
  4594. mddev->level = info->level;
  4595. mddev->clevel[0] = 0;
  4596. mddev->dev_sectors = 2 * (sector_t)info->size;
  4597. mddev->raid_disks = info->raid_disks;
  4598. /* don't set md_minor, it is determined by which /dev/md* was
  4599. * openned
  4600. */
  4601. if (info->state & (1<<MD_SB_CLEAN))
  4602. mddev->recovery_cp = MaxSector;
  4603. else
  4604. mddev->recovery_cp = 0;
  4605. mddev->persistent = ! info->not_persistent;
  4606. mddev->external = 0;
  4607. mddev->layout = info->layout;
  4608. mddev->chunk_sectors = info->chunk_size >> 9;
  4609. mddev->max_disks = MD_SB_DISKS;
  4610. if (mddev->persistent)
  4611. mddev->flags = 0;
  4612. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  4613. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  4614. mddev->bitmap_offset = 0;
  4615. mddev->reshape_position = MaxSector;
  4616. /*
  4617. * Generate a 128 bit UUID
  4618. */
  4619. get_random_bytes(mddev->uuid, 16);
  4620. mddev->new_level = mddev->level;
  4621. mddev->new_chunk_sectors = mddev->chunk_sectors;
  4622. mddev->new_layout = mddev->layout;
  4623. mddev->delta_disks = 0;
  4624. return 0;
  4625. }
  4626. void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
  4627. {
  4628. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  4629. if (mddev->external_size)
  4630. return;
  4631. mddev->array_sectors = array_sectors;
  4632. }
  4633. EXPORT_SYMBOL(md_set_array_sectors);
  4634. static int update_size(mddev_t *mddev, sector_t num_sectors)
  4635. {
  4636. mdk_rdev_t *rdev;
  4637. int rv;
  4638. int fit = (num_sectors == 0);
  4639. if (mddev->pers->resize == NULL)
  4640. return -EINVAL;
  4641. /* The "num_sectors" is the number of sectors of each device that
  4642. * is used. This can only make sense for arrays with redundancy.
  4643. * linear and raid0 always use whatever space is available. We can only
  4644. * consider changing this number if no resync or reconstruction is
  4645. * happening, and if the new size is acceptable. It must fit before the
  4646. * sb_start or, if that is <data_offset, it must fit before the size
  4647. * of each device. If num_sectors is zero, we find the largest size
  4648. * that fits.
  4649. */
  4650. if (mddev->sync_thread)
  4651. return -EBUSY;
  4652. if (mddev->bitmap)
  4653. /* Sorry, cannot grow a bitmap yet, just remove it,
  4654. * grow, and re-add.
  4655. */
  4656. return -EBUSY;
  4657. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4658. sector_t avail = rdev->sectors;
  4659. if (fit && (num_sectors == 0 || num_sectors > avail))
  4660. num_sectors = avail;
  4661. if (avail < num_sectors)
  4662. return -ENOSPC;
  4663. }
  4664. rv = mddev->pers->resize(mddev, num_sectors);
  4665. if (!rv)
  4666. revalidate_disk(mddev->gendisk);
  4667. return rv;
  4668. }
  4669. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  4670. {
  4671. int rv;
  4672. /* change the number of raid disks */
  4673. if (mddev->pers->check_reshape == NULL)
  4674. return -EINVAL;
  4675. if (raid_disks <= 0 ||
  4676. raid_disks >= mddev->max_disks)
  4677. return -EINVAL;
  4678. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  4679. return -EBUSY;
  4680. mddev->delta_disks = raid_disks - mddev->raid_disks;
  4681. rv = mddev->pers->check_reshape(mddev);
  4682. return rv;
  4683. }
  4684. /*
  4685. * update_array_info is used to change the configuration of an
  4686. * on-line array.
  4687. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  4688. * fields in the info are checked against the array.
  4689. * Any differences that cannot be handled will cause an error.
  4690. * Normally, only one change can be managed at a time.
  4691. */
  4692. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  4693. {
  4694. int rv = 0;
  4695. int cnt = 0;
  4696. int state = 0;
  4697. /* calculate expected state,ignoring low bits */
  4698. if (mddev->bitmap && mddev->bitmap_offset)
  4699. state |= (1 << MD_SB_BITMAP_PRESENT);
  4700. if (mddev->major_version != info->major_version ||
  4701. mddev->minor_version != info->minor_version ||
  4702. /* mddev->patch_version != info->patch_version || */
  4703. mddev->ctime != info->ctime ||
  4704. mddev->level != info->level ||
  4705. /* mddev->layout != info->layout || */
  4706. !mddev->persistent != info->not_persistent||
  4707. mddev->chunk_sectors != info->chunk_size >> 9 ||
  4708. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  4709. ((state^info->state) & 0xfffffe00)
  4710. )
  4711. return -EINVAL;
  4712. /* Check there is only one change */
  4713. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  4714. cnt++;
  4715. if (mddev->raid_disks != info->raid_disks)
  4716. cnt++;
  4717. if (mddev->layout != info->layout)
  4718. cnt++;
  4719. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  4720. cnt++;
  4721. if (cnt == 0)
  4722. return 0;
  4723. if (cnt > 1)
  4724. return -EINVAL;
  4725. if (mddev->layout != info->layout) {
  4726. /* Change layout
  4727. * we don't need to do anything at the md level, the
  4728. * personality will take care of it all.
  4729. */
  4730. if (mddev->pers->check_reshape == NULL)
  4731. return -EINVAL;
  4732. else {
  4733. mddev->new_layout = info->layout;
  4734. rv = mddev->pers->check_reshape(mddev);
  4735. if (rv)
  4736. mddev->new_layout = mddev->layout;
  4737. return rv;
  4738. }
  4739. }
  4740. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  4741. rv = update_size(mddev, (sector_t)info->size * 2);
  4742. if (mddev->raid_disks != info->raid_disks)
  4743. rv = update_raid_disks(mddev, info->raid_disks);
  4744. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  4745. if (mddev->pers->quiesce == NULL)
  4746. return -EINVAL;
  4747. if (mddev->recovery || mddev->sync_thread)
  4748. return -EBUSY;
  4749. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  4750. /* add the bitmap */
  4751. if (mddev->bitmap)
  4752. return -EEXIST;
  4753. if (mddev->default_bitmap_offset == 0)
  4754. return -EINVAL;
  4755. mddev->bitmap_offset = mddev->default_bitmap_offset;
  4756. mddev->pers->quiesce(mddev, 1);
  4757. rv = bitmap_create(mddev);
  4758. if (rv)
  4759. bitmap_destroy(mddev);
  4760. mddev->pers->quiesce(mddev, 0);
  4761. } else {
  4762. /* remove the bitmap */
  4763. if (!mddev->bitmap)
  4764. return -ENOENT;
  4765. if (mddev->bitmap->file)
  4766. return -EINVAL;
  4767. mddev->pers->quiesce(mddev, 1);
  4768. bitmap_destroy(mddev);
  4769. mddev->pers->quiesce(mddev, 0);
  4770. mddev->bitmap_offset = 0;
  4771. }
  4772. }
  4773. md_update_sb(mddev, 1);
  4774. return rv;
  4775. }
  4776. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  4777. {
  4778. mdk_rdev_t *rdev;
  4779. if (mddev->pers == NULL)
  4780. return -ENODEV;
  4781. rdev = find_rdev(mddev, dev);
  4782. if (!rdev)
  4783. return -ENODEV;
  4784. md_error(mddev, rdev);
  4785. return 0;
  4786. }
  4787. /*
  4788. * We have a problem here : there is no easy way to give a CHS
  4789. * virtual geometry. We currently pretend that we have a 2 heads
  4790. * 4 sectors (with a BIG number of cylinders...). This drives
  4791. * dosfs just mad... ;-)
  4792. */
  4793. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  4794. {
  4795. mddev_t *mddev = bdev->bd_disk->private_data;
  4796. geo->heads = 2;
  4797. geo->sectors = 4;
  4798. geo->cylinders = get_capacity(mddev->gendisk) / 8;
  4799. return 0;
  4800. }
  4801. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  4802. unsigned int cmd, unsigned long arg)
  4803. {
  4804. int err = 0;
  4805. void __user *argp = (void __user *)arg;
  4806. mddev_t *mddev = NULL;
  4807. if (!capable(CAP_SYS_ADMIN))
  4808. return -EACCES;
  4809. /*
  4810. * Commands dealing with the RAID driver but not any
  4811. * particular array:
  4812. */
  4813. switch (cmd)
  4814. {
  4815. case RAID_VERSION:
  4816. err = get_version(argp);
  4817. goto done;
  4818. case PRINT_RAID_DEBUG:
  4819. err = 0;
  4820. md_print_devices();
  4821. goto done;
  4822. #ifndef MODULE
  4823. case RAID_AUTORUN:
  4824. err = 0;
  4825. autostart_arrays(arg);
  4826. goto done;
  4827. #endif
  4828. default:;
  4829. }
  4830. /*
  4831. * Commands creating/starting a new array:
  4832. */
  4833. mddev = bdev->bd_disk->private_data;
  4834. if (!mddev) {
  4835. BUG();
  4836. goto abort;
  4837. }
  4838. err = mddev_lock(mddev);
  4839. if (err) {
  4840. printk(KERN_INFO
  4841. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  4842. err, cmd);
  4843. goto abort;
  4844. }
  4845. switch (cmd)
  4846. {
  4847. case SET_ARRAY_INFO:
  4848. {
  4849. mdu_array_info_t info;
  4850. if (!arg)
  4851. memset(&info, 0, sizeof(info));
  4852. else if (copy_from_user(&info, argp, sizeof(info))) {
  4853. err = -EFAULT;
  4854. goto abort_unlock;
  4855. }
  4856. if (mddev->pers) {
  4857. err = update_array_info(mddev, &info);
  4858. if (err) {
  4859. printk(KERN_WARNING "md: couldn't update"
  4860. " array info. %d\n", err);
  4861. goto abort_unlock;
  4862. }
  4863. goto done_unlock;
  4864. }
  4865. if (!list_empty(&mddev->disks)) {
  4866. printk(KERN_WARNING
  4867. "md: array %s already has disks!\n",
  4868. mdname(mddev));
  4869. err = -EBUSY;
  4870. goto abort_unlock;
  4871. }
  4872. if (mddev->raid_disks) {
  4873. printk(KERN_WARNING
  4874. "md: array %s already initialised!\n",
  4875. mdname(mddev));
  4876. err = -EBUSY;
  4877. goto abort_unlock;
  4878. }
  4879. err = set_array_info(mddev, &info);
  4880. if (err) {
  4881. printk(KERN_WARNING "md: couldn't set"
  4882. " array info. %d\n", err);
  4883. goto abort_unlock;
  4884. }
  4885. }
  4886. goto done_unlock;
  4887. default:;
  4888. }
  4889. /*
  4890. * Commands querying/configuring an existing array:
  4891. */
  4892. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  4893. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  4894. if ((!mddev->raid_disks && !mddev->external)
  4895. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  4896. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  4897. && cmd != GET_BITMAP_FILE) {
  4898. err = -ENODEV;
  4899. goto abort_unlock;
  4900. }
  4901. /*
  4902. * Commands even a read-only array can execute:
  4903. */
  4904. switch (cmd)
  4905. {
  4906. case GET_ARRAY_INFO:
  4907. err = get_array_info(mddev, argp);
  4908. goto done_unlock;
  4909. case GET_BITMAP_FILE:
  4910. err = get_bitmap_file(mddev, argp);
  4911. goto done_unlock;
  4912. case GET_DISK_INFO:
  4913. err = get_disk_info(mddev, argp);
  4914. goto done_unlock;
  4915. case RESTART_ARRAY_RW:
  4916. err = restart_array(mddev);
  4917. goto done_unlock;
  4918. case STOP_ARRAY:
  4919. err = do_md_stop(mddev, 0, 1);
  4920. goto done_unlock;
  4921. case STOP_ARRAY_RO:
  4922. err = do_md_stop(mddev, 1, 1);
  4923. goto done_unlock;
  4924. }
  4925. /*
  4926. * The remaining ioctls are changing the state of the
  4927. * superblock, so we do not allow them on read-only arrays.
  4928. * However non-MD ioctls (e.g. get-size) will still come through
  4929. * here and hit the 'default' below, so only disallow
  4930. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  4931. */
  4932. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  4933. if (mddev->ro == 2) {
  4934. mddev->ro = 0;
  4935. sysfs_notify_dirent(mddev->sysfs_state);
  4936. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4937. md_wakeup_thread(mddev->thread);
  4938. } else {
  4939. err = -EROFS;
  4940. goto abort_unlock;
  4941. }
  4942. }
  4943. switch (cmd)
  4944. {
  4945. case ADD_NEW_DISK:
  4946. {
  4947. mdu_disk_info_t info;
  4948. if (copy_from_user(&info, argp, sizeof(info)))
  4949. err = -EFAULT;
  4950. else
  4951. err = add_new_disk(mddev, &info);
  4952. goto done_unlock;
  4953. }
  4954. case HOT_REMOVE_DISK:
  4955. err = hot_remove_disk(mddev, new_decode_dev(arg));
  4956. goto done_unlock;
  4957. case HOT_ADD_DISK:
  4958. err = hot_add_disk(mddev, new_decode_dev(arg));
  4959. goto done_unlock;
  4960. case SET_DISK_FAULTY:
  4961. err = set_disk_faulty(mddev, new_decode_dev(arg));
  4962. goto done_unlock;
  4963. case RUN_ARRAY:
  4964. err = do_md_run(mddev);
  4965. goto done_unlock;
  4966. case SET_BITMAP_FILE:
  4967. err = set_bitmap_file(mddev, (int)arg);
  4968. goto done_unlock;
  4969. default:
  4970. err = -EINVAL;
  4971. goto abort_unlock;
  4972. }
  4973. done_unlock:
  4974. abort_unlock:
  4975. if (mddev->hold_active == UNTIL_IOCTL &&
  4976. err != -EINVAL)
  4977. mddev->hold_active = 0;
  4978. mddev_unlock(mddev);
  4979. return err;
  4980. done:
  4981. if (err)
  4982. MD_BUG();
  4983. abort:
  4984. return err;
  4985. }
  4986. static int md_open(struct block_device *bdev, fmode_t mode)
  4987. {
  4988. /*
  4989. * Succeed if we can lock the mddev, which confirms that
  4990. * it isn't being stopped right now.
  4991. */
  4992. mddev_t *mddev = mddev_find(bdev->bd_dev);
  4993. int err;
  4994. if (mddev->gendisk != bdev->bd_disk) {
  4995. /* we are racing with mddev_put which is discarding this
  4996. * bd_disk.
  4997. */
  4998. mddev_put(mddev);
  4999. /* Wait until bdev->bd_disk is definitely gone */
  5000. flush_scheduled_work();
  5001. /* Then retry the open from the top */
  5002. return -ERESTARTSYS;
  5003. }
  5004. BUG_ON(mddev != bdev->bd_disk->private_data);
  5005. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5006. goto out;
  5007. err = 0;
  5008. atomic_inc(&mddev->openers);
  5009. mutex_unlock(&mddev->open_mutex);
  5010. check_disk_change(bdev);
  5011. out:
  5012. return err;
  5013. }
  5014. static int md_release(struct gendisk *disk, fmode_t mode)
  5015. {
  5016. mddev_t *mddev = disk->private_data;
  5017. BUG_ON(!mddev);
  5018. atomic_dec(&mddev->openers);
  5019. mddev_put(mddev);
  5020. return 0;
  5021. }
  5022. static int md_media_changed(struct gendisk *disk)
  5023. {
  5024. mddev_t *mddev = disk->private_data;
  5025. return mddev->changed;
  5026. }
  5027. static int md_revalidate(struct gendisk *disk)
  5028. {
  5029. mddev_t *mddev = disk->private_data;
  5030. mddev->changed = 0;
  5031. return 0;
  5032. }
  5033. static const struct block_device_operations md_fops =
  5034. {
  5035. .owner = THIS_MODULE,
  5036. .open = md_open,
  5037. .release = md_release,
  5038. .ioctl = md_ioctl,
  5039. .getgeo = md_getgeo,
  5040. .media_changed = md_media_changed,
  5041. .revalidate_disk= md_revalidate,
  5042. };
  5043. static int md_thread(void * arg)
  5044. {
  5045. mdk_thread_t *thread = arg;
  5046. /*
  5047. * md_thread is a 'system-thread', it's priority should be very
  5048. * high. We avoid resource deadlocks individually in each
  5049. * raid personality. (RAID5 does preallocation) We also use RR and
  5050. * the very same RT priority as kswapd, thus we will never get
  5051. * into a priority inversion deadlock.
  5052. *
  5053. * we definitely have to have equal or higher priority than
  5054. * bdflush, otherwise bdflush will deadlock if there are too
  5055. * many dirty RAID5 blocks.
  5056. */
  5057. allow_signal(SIGKILL);
  5058. while (!kthread_should_stop()) {
  5059. /* We need to wait INTERRUPTIBLE so that
  5060. * we don't add to the load-average.
  5061. * That means we need to be sure no signals are
  5062. * pending
  5063. */
  5064. if (signal_pending(current))
  5065. flush_signals(current);
  5066. wait_event_interruptible_timeout
  5067. (thread->wqueue,
  5068. test_bit(THREAD_WAKEUP, &thread->flags)
  5069. || kthread_should_stop(),
  5070. thread->timeout);
  5071. clear_bit(THREAD_WAKEUP, &thread->flags);
  5072. thread->run(thread->mddev);
  5073. }
  5074. return 0;
  5075. }
  5076. void md_wakeup_thread(mdk_thread_t *thread)
  5077. {
  5078. if (thread) {
  5079. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  5080. set_bit(THREAD_WAKEUP, &thread->flags);
  5081. wake_up(&thread->wqueue);
  5082. }
  5083. }
  5084. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  5085. const char *name)
  5086. {
  5087. mdk_thread_t *thread;
  5088. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  5089. if (!thread)
  5090. return NULL;
  5091. init_waitqueue_head(&thread->wqueue);
  5092. thread->run = run;
  5093. thread->mddev = mddev;
  5094. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5095. thread->tsk = kthread_run(md_thread, thread,
  5096. "%s_%s",
  5097. mdname(thread->mddev),
  5098. name ?: mddev->pers->name);
  5099. if (IS_ERR(thread->tsk)) {
  5100. kfree(thread);
  5101. return NULL;
  5102. }
  5103. return thread;
  5104. }
  5105. void md_unregister_thread(mdk_thread_t *thread)
  5106. {
  5107. if (!thread)
  5108. return;
  5109. dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5110. kthread_stop(thread->tsk);
  5111. kfree(thread);
  5112. }
  5113. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  5114. {
  5115. if (!mddev) {
  5116. MD_BUG();
  5117. return;
  5118. }
  5119. if (!rdev || test_bit(Faulty, &rdev->flags))
  5120. return;
  5121. if (mddev->external)
  5122. set_bit(Blocked, &rdev->flags);
  5123. /*
  5124. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  5125. mdname(mddev),
  5126. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  5127. __builtin_return_address(0),__builtin_return_address(1),
  5128. __builtin_return_address(2),__builtin_return_address(3));
  5129. */
  5130. if (!mddev->pers)
  5131. return;
  5132. if (!mddev->pers->error_handler)
  5133. return;
  5134. mddev->pers->error_handler(mddev,rdev);
  5135. if (mddev->degraded)
  5136. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5137. set_bit(StateChanged, &rdev->flags);
  5138. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5139. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5140. md_wakeup_thread(mddev->thread);
  5141. md_new_event_inintr(mddev);
  5142. }
  5143. /* seq_file implementation /proc/mdstat */
  5144. static void status_unused(struct seq_file *seq)
  5145. {
  5146. int i = 0;
  5147. mdk_rdev_t *rdev;
  5148. seq_printf(seq, "unused devices: ");
  5149. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  5150. char b[BDEVNAME_SIZE];
  5151. i++;
  5152. seq_printf(seq, "%s ",
  5153. bdevname(rdev->bdev,b));
  5154. }
  5155. if (!i)
  5156. seq_printf(seq, "<none>");
  5157. seq_printf(seq, "\n");
  5158. }
  5159. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  5160. {
  5161. sector_t max_sectors, resync, res;
  5162. unsigned long dt, db;
  5163. sector_t rt;
  5164. int scale;
  5165. unsigned int per_milli;
  5166. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  5167. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5168. max_sectors = mddev->resync_max_sectors;
  5169. else
  5170. max_sectors = mddev->dev_sectors;
  5171. /*
  5172. * Should not happen.
  5173. */
  5174. if (!max_sectors) {
  5175. MD_BUG();
  5176. return;
  5177. }
  5178. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  5179. * in a sector_t, and (max_sectors>>scale) will fit in a
  5180. * u32, as those are the requirements for sector_div.
  5181. * Thus 'scale' must be at least 10
  5182. */
  5183. scale = 10;
  5184. if (sizeof(sector_t) > sizeof(unsigned long)) {
  5185. while ( max_sectors/2 > (1ULL<<(scale+32)))
  5186. scale++;
  5187. }
  5188. res = (resync>>scale)*1000;
  5189. sector_div(res, (u32)((max_sectors>>scale)+1));
  5190. per_milli = res;
  5191. {
  5192. int i, x = per_milli/50, y = 20-x;
  5193. seq_printf(seq, "[");
  5194. for (i = 0; i < x; i++)
  5195. seq_printf(seq, "=");
  5196. seq_printf(seq, ">");
  5197. for (i = 0; i < y; i++)
  5198. seq_printf(seq, ".");
  5199. seq_printf(seq, "] ");
  5200. }
  5201. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  5202. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  5203. "reshape" :
  5204. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  5205. "check" :
  5206. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  5207. "resync" : "recovery"))),
  5208. per_milli/10, per_milli % 10,
  5209. (unsigned long long) resync/2,
  5210. (unsigned long long) max_sectors/2);
  5211. /*
  5212. * dt: time from mark until now
  5213. * db: blocks written from mark until now
  5214. * rt: remaining time
  5215. *
  5216. * rt is a sector_t, so could be 32bit or 64bit.
  5217. * So we divide before multiply in case it is 32bit and close
  5218. * to the limit.
  5219. * We scale the divisor (db) by 32 to avoid loosing precision
  5220. * near the end of resync when the number of remaining sectors
  5221. * is close to 'db'.
  5222. * We then divide rt by 32 after multiplying by db to compensate.
  5223. * The '+1' avoids division by zero if db is very small.
  5224. */
  5225. dt = ((jiffies - mddev->resync_mark) / HZ);
  5226. if (!dt) dt++;
  5227. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  5228. - mddev->resync_mark_cnt;
  5229. rt = max_sectors - resync; /* number of remaining sectors */
  5230. sector_div(rt, db/32+1);
  5231. rt *= dt;
  5232. rt >>= 5;
  5233. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  5234. ((unsigned long)rt % 60)/6);
  5235. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  5236. }
  5237. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  5238. {
  5239. struct list_head *tmp;
  5240. loff_t l = *pos;
  5241. mddev_t *mddev;
  5242. if (l >= 0x10000)
  5243. return NULL;
  5244. if (!l--)
  5245. /* header */
  5246. return (void*)1;
  5247. spin_lock(&all_mddevs_lock);
  5248. list_for_each(tmp,&all_mddevs)
  5249. if (!l--) {
  5250. mddev = list_entry(tmp, mddev_t, all_mddevs);
  5251. mddev_get(mddev);
  5252. spin_unlock(&all_mddevs_lock);
  5253. return mddev;
  5254. }
  5255. spin_unlock(&all_mddevs_lock);
  5256. if (!l--)
  5257. return (void*)2;/* tail */
  5258. return NULL;
  5259. }
  5260. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  5261. {
  5262. struct list_head *tmp;
  5263. mddev_t *next_mddev, *mddev = v;
  5264. ++*pos;
  5265. if (v == (void*)2)
  5266. return NULL;
  5267. spin_lock(&all_mddevs_lock);
  5268. if (v == (void*)1)
  5269. tmp = all_mddevs.next;
  5270. else
  5271. tmp = mddev->all_mddevs.next;
  5272. if (tmp != &all_mddevs)
  5273. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  5274. else {
  5275. next_mddev = (void*)2;
  5276. *pos = 0x10000;
  5277. }
  5278. spin_unlock(&all_mddevs_lock);
  5279. if (v != (void*)1)
  5280. mddev_put(mddev);
  5281. return next_mddev;
  5282. }
  5283. static void md_seq_stop(struct seq_file *seq, void *v)
  5284. {
  5285. mddev_t *mddev = v;
  5286. if (mddev && v != (void*)1 && v != (void*)2)
  5287. mddev_put(mddev);
  5288. }
  5289. struct mdstat_info {
  5290. int event;
  5291. };
  5292. static int md_seq_show(struct seq_file *seq, void *v)
  5293. {
  5294. mddev_t *mddev = v;
  5295. sector_t sectors;
  5296. mdk_rdev_t *rdev;
  5297. struct mdstat_info *mi = seq->private;
  5298. struct bitmap *bitmap;
  5299. if (v == (void*)1) {
  5300. struct mdk_personality *pers;
  5301. seq_printf(seq, "Personalities : ");
  5302. spin_lock(&pers_lock);
  5303. list_for_each_entry(pers, &pers_list, list)
  5304. seq_printf(seq, "[%s] ", pers->name);
  5305. spin_unlock(&pers_lock);
  5306. seq_printf(seq, "\n");
  5307. mi->event = atomic_read(&md_event_count);
  5308. return 0;
  5309. }
  5310. if (v == (void*)2) {
  5311. status_unused(seq);
  5312. return 0;
  5313. }
  5314. if (mddev_lock(mddev) < 0)
  5315. return -EINTR;
  5316. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  5317. seq_printf(seq, "%s : %sactive", mdname(mddev),
  5318. mddev->pers ? "" : "in");
  5319. if (mddev->pers) {
  5320. if (mddev->ro==1)
  5321. seq_printf(seq, " (read-only)");
  5322. if (mddev->ro==2)
  5323. seq_printf(seq, " (auto-read-only)");
  5324. seq_printf(seq, " %s", mddev->pers->name);
  5325. }
  5326. sectors = 0;
  5327. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5328. char b[BDEVNAME_SIZE];
  5329. seq_printf(seq, " %s[%d]",
  5330. bdevname(rdev->bdev,b), rdev->desc_nr);
  5331. if (test_bit(WriteMostly, &rdev->flags))
  5332. seq_printf(seq, "(W)");
  5333. if (test_bit(Faulty, &rdev->flags)) {
  5334. seq_printf(seq, "(F)");
  5335. continue;
  5336. } else if (rdev->raid_disk < 0)
  5337. seq_printf(seq, "(S)"); /* spare */
  5338. sectors += rdev->sectors;
  5339. }
  5340. if (!list_empty(&mddev->disks)) {
  5341. if (mddev->pers)
  5342. seq_printf(seq, "\n %llu blocks",
  5343. (unsigned long long)
  5344. mddev->array_sectors / 2);
  5345. else
  5346. seq_printf(seq, "\n %llu blocks",
  5347. (unsigned long long)sectors / 2);
  5348. }
  5349. if (mddev->persistent) {
  5350. if (mddev->major_version != 0 ||
  5351. mddev->minor_version != 90) {
  5352. seq_printf(seq," super %d.%d",
  5353. mddev->major_version,
  5354. mddev->minor_version);
  5355. }
  5356. } else if (mddev->external)
  5357. seq_printf(seq, " super external:%s",
  5358. mddev->metadata_type);
  5359. else
  5360. seq_printf(seq, " super non-persistent");
  5361. if (mddev->pers) {
  5362. mddev->pers->status(seq, mddev);
  5363. seq_printf(seq, "\n ");
  5364. if (mddev->pers->sync_request) {
  5365. if (mddev->curr_resync > 2) {
  5366. status_resync(seq, mddev);
  5367. seq_printf(seq, "\n ");
  5368. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  5369. seq_printf(seq, "\tresync=DELAYED\n ");
  5370. else if (mddev->recovery_cp < MaxSector)
  5371. seq_printf(seq, "\tresync=PENDING\n ");
  5372. }
  5373. } else
  5374. seq_printf(seq, "\n ");
  5375. if ((bitmap = mddev->bitmap)) {
  5376. unsigned long chunk_kb;
  5377. unsigned long flags;
  5378. spin_lock_irqsave(&bitmap->lock, flags);
  5379. chunk_kb = bitmap->chunksize >> 10;
  5380. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  5381. "%lu%s chunk",
  5382. bitmap->pages - bitmap->missing_pages,
  5383. bitmap->pages,
  5384. (bitmap->pages - bitmap->missing_pages)
  5385. << (PAGE_SHIFT - 10),
  5386. chunk_kb ? chunk_kb : bitmap->chunksize,
  5387. chunk_kb ? "KB" : "B");
  5388. if (bitmap->file) {
  5389. seq_printf(seq, ", file: ");
  5390. seq_path(seq, &bitmap->file->f_path, " \t\n");
  5391. }
  5392. seq_printf(seq, "\n");
  5393. spin_unlock_irqrestore(&bitmap->lock, flags);
  5394. }
  5395. seq_printf(seq, "\n");
  5396. }
  5397. mddev_unlock(mddev);
  5398. return 0;
  5399. }
  5400. static const struct seq_operations md_seq_ops = {
  5401. .start = md_seq_start,
  5402. .next = md_seq_next,
  5403. .stop = md_seq_stop,
  5404. .show = md_seq_show,
  5405. };
  5406. static int md_seq_open(struct inode *inode, struct file *file)
  5407. {
  5408. int error;
  5409. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  5410. if (mi == NULL)
  5411. return -ENOMEM;
  5412. error = seq_open(file, &md_seq_ops);
  5413. if (error)
  5414. kfree(mi);
  5415. else {
  5416. struct seq_file *p = file->private_data;
  5417. p->private = mi;
  5418. mi->event = atomic_read(&md_event_count);
  5419. }
  5420. return error;
  5421. }
  5422. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  5423. {
  5424. struct seq_file *m = filp->private_data;
  5425. struct mdstat_info *mi = m->private;
  5426. int mask;
  5427. poll_wait(filp, &md_event_waiters, wait);
  5428. /* always allow read */
  5429. mask = POLLIN | POLLRDNORM;
  5430. if (mi->event != atomic_read(&md_event_count))
  5431. mask |= POLLERR | POLLPRI;
  5432. return mask;
  5433. }
  5434. static const struct file_operations md_seq_fops = {
  5435. .owner = THIS_MODULE,
  5436. .open = md_seq_open,
  5437. .read = seq_read,
  5438. .llseek = seq_lseek,
  5439. .release = seq_release_private,
  5440. .poll = mdstat_poll,
  5441. };
  5442. int register_md_personality(struct mdk_personality *p)
  5443. {
  5444. spin_lock(&pers_lock);
  5445. list_add_tail(&p->list, &pers_list);
  5446. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  5447. spin_unlock(&pers_lock);
  5448. return 0;
  5449. }
  5450. int unregister_md_personality(struct mdk_personality *p)
  5451. {
  5452. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  5453. spin_lock(&pers_lock);
  5454. list_del_init(&p->list);
  5455. spin_unlock(&pers_lock);
  5456. return 0;
  5457. }
  5458. static int is_mddev_idle(mddev_t *mddev, int init)
  5459. {
  5460. mdk_rdev_t * rdev;
  5461. int idle;
  5462. int curr_events;
  5463. idle = 1;
  5464. rcu_read_lock();
  5465. rdev_for_each_rcu(rdev, mddev) {
  5466. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  5467. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  5468. (int)part_stat_read(&disk->part0, sectors[1]) -
  5469. atomic_read(&disk->sync_io);
  5470. /* sync IO will cause sync_io to increase before the disk_stats
  5471. * as sync_io is counted when a request starts, and
  5472. * disk_stats is counted when it completes.
  5473. * So resync activity will cause curr_events to be smaller than
  5474. * when there was no such activity.
  5475. * non-sync IO will cause disk_stat to increase without
  5476. * increasing sync_io so curr_events will (eventually)
  5477. * be larger than it was before. Once it becomes
  5478. * substantially larger, the test below will cause
  5479. * the array to appear non-idle, and resync will slow
  5480. * down.
  5481. * If there is a lot of outstanding resync activity when
  5482. * we set last_event to curr_events, then all that activity
  5483. * completing might cause the array to appear non-idle
  5484. * and resync will be slowed down even though there might
  5485. * not have been non-resync activity. This will only
  5486. * happen once though. 'last_events' will soon reflect
  5487. * the state where there is little or no outstanding
  5488. * resync requests, and further resync activity will
  5489. * always make curr_events less than last_events.
  5490. *
  5491. */
  5492. if (init || curr_events - rdev->last_events > 64) {
  5493. rdev->last_events = curr_events;
  5494. idle = 0;
  5495. }
  5496. }
  5497. rcu_read_unlock();
  5498. return idle;
  5499. }
  5500. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  5501. {
  5502. /* another "blocks" (512byte) blocks have been synced */
  5503. atomic_sub(blocks, &mddev->recovery_active);
  5504. wake_up(&mddev->recovery_wait);
  5505. if (!ok) {
  5506. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5507. md_wakeup_thread(mddev->thread);
  5508. // stop recovery, signal do_sync ....
  5509. }
  5510. }
  5511. /* md_write_start(mddev, bi)
  5512. * If we need to update some array metadata (e.g. 'active' flag
  5513. * in superblock) before writing, schedule a superblock update
  5514. * and wait for it to complete.
  5515. */
  5516. void md_write_start(mddev_t *mddev, struct bio *bi)
  5517. {
  5518. int did_change = 0;
  5519. if (bio_data_dir(bi) != WRITE)
  5520. return;
  5521. BUG_ON(mddev->ro == 1);
  5522. if (mddev->ro == 2) {
  5523. /* need to switch to read/write */
  5524. mddev->ro = 0;
  5525. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5526. md_wakeup_thread(mddev->thread);
  5527. md_wakeup_thread(mddev->sync_thread);
  5528. did_change = 1;
  5529. }
  5530. atomic_inc(&mddev->writes_pending);
  5531. if (mddev->safemode == 1)
  5532. mddev->safemode = 0;
  5533. if (mddev->in_sync) {
  5534. spin_lock_irq(&mddev->write_lock);
  5535. if (mddev->in_sync) {
  5536. mddev->in_sync = 0;
  5537. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5538. md_wakeup_thread(mddev->thread);
  5539. did_change = 1;
  5540. }
  5541. spin_unlock_irq(&mddev->write_lock);
  5542. }
  5543. if (did_change)
  5544. sysfs_notify_dirent(mddev->sysfs_state);
  5545. wait_event(mddev->sb_wait,
  5546. !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
  5547. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  5548. }
  5549. void md_write_end(mddev_t *mddev)
  5550. {
  5551. if (atomic_dec_and_test(&mddev->writes_pending)) {
  5552. if (mddev->safemode == 2)
  5553. md_wakeup_thread(mddev->thread);
  5554. else if (mddev->safemode_delay)
  5555. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  5556. }
  5557. }
  5558. /* md_allow_write(mddev)
  5559. * Calling this ensures that the array is marked 'active' so that writes
  5560. * may proceed without blocking. It is important to call this before
  5561. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  5562. * Must be called with mddev_lock held.
  5563. *
  5564. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  5565. * is dropped, so return -EAGAIN after notifying userspace.
  5566. */
  5567. int md_allow_write(mddev_t *mddev)
  5568. {
  5569. if (!mddev->pers)
  5570. return 0;
  5571. if (mddev->ro)
  5572. return 0;
  5573. if (!mddev->pers->sync_request)
  5574. return 0;
  5575. spin_lock_irq(&mddev->write_lock);
  5576. if (mddev->in_sync) {
  5577. mddev->in_sync = 0;
  5578. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5579. if (mddev->safemode_delay &&
  5580. mddev->safemode == 0)
  5581. mddev->safemode = 1;
  5582. spin_unlock_irq(&mddev->write_lock);
  5583. md_update_sb(mddev, 0);
  5584. sysfs_notify_dirent(mddev->sysfs_state);
  5585. } else
  5586. spin_unlock_irq(&mddev->write_lock);
  5587. if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
  5588. return -EAGAIN;
  5589. else
  5590. return 0;
  5591. }
  5592. EXPORT_SYMBOL_GPL(md_allow_write);
  5593. #define SYNC_MARKS 10
  5594. #define SYNC_MARK_STEP (3*HZ)
  5595. void md_do_sync(mddev_t *mddev)
  5596. {
  5597. mddev_t *mddev2;
  5598. unsigned int currspeed = 0,
  5599. window;
  5600. sector_t max_sectors,j, io_sectors;
  5601. unsigned long mark[SYNC_MARKS];
  5602. sector_t mark_cnt[SYNC_MARKS];
  5603. int last_mark,m;
  5604. struct list_head *tmp;
  5605. sector_t last_check;
  5606. int skipped = 0;
  5607. mdk_rdev_t *rdev;
  5608. char *desc;
  5609. /* just incase thread restarts... */
  5610. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  5611. return;
  5612. if (mddev->ro) /* never try to sync a read-only array */
  5613. return;
  5614. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  5615. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  5616. desc = "data-check";
  5617. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  5618. desc = "requested-resync";
  5619. else
  5620. desc = "resync";
  5621. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  5622. desc = "reshape";
  5623. else
  5624. desc = "recovery";
  5625. /* we overload curr_resync somewhat here.
  5626. * 0 == not engaged in resync at all
  5627. * 2 == checking that there is no conflict with another sync
  5628. * 1 == like 2, but have yielded to allow conflicting resync to
  5629. * commense
  5630. * other == active in resync - this many blocks
  5631. *
  5632. * Before starting a resync we must have set curr_resync to
  5633. * 2, and then checked that every "conflicting" array has curr_resync
  5634. * less than ours. When we find one that is the same or higher
  5635. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  5636. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  5637. * This will mean we have to start checking from the beginning again.
  5638. *
  5639. */
  5640. do {
  5641. mddev->curr_resync = 2;
  5642. try_again:
  5643. if (kthread_should_stop()) {
  5644. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5645. goto skip;
  5646. }
  5647. for_each_mddev(mddev2, tmp) {
  5648. if (mddev2 == mddev)
  5649. continue;
  5650. if (!mddev->parallel_resync
  5651. && mddev2->curr_resync
  5652. && match_mddev_units(mddev, mddev2)) {
  5653. DEFINE_WAIT(wq);
  5654. if (mddev < mddev2 && mddev->curr_resync == 2) {
  5655. /* arbitrarily yield */
  5656. mddev->curr_resync = 1;
  5657. wake_up(&resync_wait);
  5658. }
  5659. if (mddev > mddev2 && mddev->curr_resync == 1)
  5660. /* no need to wait here, we can wait the next
  5661. * time 'round when curr_resync == 2
  5662. */
  5663. continue;
  5664. /* We need to wait 'interruptible' so as not to
  5665. * contribute to the load average, and not to
  5666. * be caught by 'softlockup'
  5667. */
  5668. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  5669. if (!kthread_should_stop() &&
  5670. mddev2->curr_resync >= mddev->curr_resync) {
  5671. printk(KERN_INFO "md: delaying %s of %s"
  5672. " until %s has finished (they"
  5673. " share one or more physical units)\n",
  5674. desc, mdname(mddev), mdname(mddev2));
  5675. mddev_put(mddev2);
  5676. if (signal_pending(current))
  5677. flush_signals(current);
  5678. schedule();
  5679. finish_wait(&resync_wait, &wq);
  5680. goto try_again;
  5681. }
  5682. finish_wait(&resync_wait, &wq);
  5683. }
  5684. }
  5685. } while (mddev->curr_resync < 2);
  5686. j = 0;
  5687. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  5688. /* resync follows the size requested by the personality,
  5689. * which defaults to physical size, but can be virtual size
  5690. */
  5691. max_sectors = mddev->resync_max_sectors;
  5692. mddev->resync_mismatches = 0;
  5693. /* we don't use the checkpoint if there's a bitmap */
  5694. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  5695. j = mddev->resync_min;
  5696. else if (!mddev->bitmap)
  5697. j = mddev->recovery_cp;
  5698. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  5699. max_sectors = mddev->dev_sectors;
  5700. else {
  5701. /* recovery follows the physical size of devices */
  5702. max_sectors = mddev->dev_sectors;
  5703. j = MaxSector;
  5704. list_for_each_entry(rdev, &mddev->disks, same_set)
  5705. if (rdev->raid_disk >= 0 &&
  5706. !test_bit(Faulty, &rdev->flags) &&
  5707. !test_bit(In_sync, &rdev->flags) &&
  5708. rdev->recovery_offset < j)
  5709. j = rdev->recovery_offset;
  5710. }
  5711. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  5712. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  5713. " %d KB/sec/disk.\n", speed_min(mddev));
  5714. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  5715. "(but not more than %d KB/sec) for %s.\n",
  5716. speed_max(mddev), desc);
  5717. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  5718. io_sectors = 0;
  5719. for (m = 0; m < SYNC_MARKS; m++) {
  5720. mark[m] = jiffies;
  5721. mark_cnt[m] = io_sectors;
  5722. }
  5723. last_mark = 0;
  5724. mddev->resync_mark = mark[last_mark];
  5725. mddev->resync_mark_cnt = mark_cnt[last_mark];
  5726. /*
  5727. * Tune reconstruction:
  5728. */
  5729. window = 32*(PAGE_SIZE/512);
  5730. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  5731. window/2,(unsigned long long) max_sectors/2);
  5732. atomic_set(&mddev->recovery_active, 0);
  5733. last_check = 0;
  5734. if (j>2) {
  5735. printk(KERN_INFO
  5736. "md: resuming %s of %s from checkpoint.\n",
  5737. desc, mdname(mddev));
  5738. mddev->curr_resync = j;
  5739. }
  5740. mddev->curr_resync_completed = mddev->curr_resync;
  5741. while (j < max_sectors) {
  5742. sector_t sectors;
  5743. skipped = 0;
  5744. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  5745. ((mddev->curr_resync > mddev->curr_resync_completed &&
  5746. (mddev->curr_resync - mddev->curr_resync_completed)
  5747. > (max_sectors >> 4)) ||
  5748. (j - mddev->curr_resync_completed)*2
  5749. >= mddev->resync_max - mddev->curr_resync_completed
  5750. )) {
  5751. /* time to update curr_resync_completed */
  5752. blk_unplug(mddev->queue);
  5753. wait_event(mddev->recovery_wait,
  5754. atomic_read(&mddev->recovery_active) == 0);
  5755. mddev->curr_resync_completed =
  5756. mddev->curr_resync;
  5757. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5758. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  5759. }
  5760. while (j >= mddev->resync_max && !kthread_should_stop()) {
  5761. /* As this condition is controlled by user-space,
  5762. * we can block indefinitely, so use '_interruptible'
  5763. * to avoid triggering warnings.
  5764. */
  5765. flush_signals(current); /* just in case */
  5766. wait_event_interruptible(mddev->recovery_wait,
  5767. mddev->resync_max > j
  5768. || kthread_should_stop());
  5769. }
  5770. if (kthread_should_stop())
  5771. goto interrupted;
  5772. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  5773. currspeed < speed_min(mddev));
  5774. if (sectors == 0) {
  5775. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5776. goto out;
  5777. }
  5778. if (!skipped) { /* actual IO requested */
  5779. io_sectors += sectors;
  5780. atomic_add(sectors, &mddev->recovery_active);
  5781. }
  5782. j += sectors;
  5783. if (j>1) mddev->curr_resync = j;
  5784. mddev->curr_mark_cnt = io_sectors;
  5785. if (last_check == 0)
  5786. /* this is the earliers that rebuilt will be
  5787. * visible in /proc/mdstat
  5788. */
  5789. md_new_event(mddev);
  5790. if (last_check + window > io_sectors || j == max_sectors)
  5791. continue;
  5792. last_check = io_sectors;
  5793. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  5794. break;
  5795. repeat:
  5796. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  5797. /* step marks */
  5798. int next = (last_mark+1) % SYNC_MARKS;
  5799. mddev->resync_mark = mark[next];
  5800. mddev->resync_mark_cnt = mark_cnt[next];
  5801. mark[next] = jiffies;
  5802. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  5803. last_mark = next;
  5804. }
  5805. if (kthread_should_stop())
  5806. goto interrupted;
  5807. /*
  5808. * this loop exits only if either when we are slower than
  5809. * the 'hard' speed limit, or the system was IO-idle for
  5810. * a jiffy.
  5811. * the system might be non-idle CPU-wise, but we only care
  5812. * about not overloading the IO subsystem. (things like an
  5813. * e2fsck being done on the RAID array should execute fast)
  5814. */
  5815. blk_unplug(mddev->queue);
  5816. cond_resched();
  5817. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  5818. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  5819. if (currspeed > speed_min(mddev)) {
  5820. if ((currspeed > speed_max(mddev)) ||
  5821. !is_mddev_idle(mddev, 0)) {
  5822. msleep(500);
  5823. goto repeat;
  5824. }
  5825. }
  5826. }
  5827. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  5828. /*
  5829. * this also signals 'finished resyncing' to md_stop
  5830. */
  5831. out:
  5832. blk_unplug(mddev->queue);
  5833. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  5834. /* tell personality that we are finished */
  5835. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  5836. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  5837. mddev->curr_resync > 2) {
  5838. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  5839. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  5840. if (mddev->curr_resync >= mddev->recovery_cp) {
  5841. printk(KERN_INFO
  5842. "md: checkpointing %s of %s.\n",
  5843. desc, mdname(mddev));
  5844. mddev->recovery_cp = mddev->curr_resync;
  5845. }
  5846. } else
  5847. mddev->recovery_cp = MaxSector;
  5848. } else {
  5849. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  5850. mddev->curr_resync = MaxSector;
  5851. list_for_each_entry(rdev, &mddev->disks, same_set)
  5852. if (rdev->raid_disk >= 0 &&
  5853. !test_bit(Faulty, &rdev->flags) &&
  5854. !test_bit(In_sync, &rdev->flags) &&
  5855. rdev->recovery_offset < mddev->curr_resync)
  5856. rdev->recovery_offset = mddev->curr_resync;
  5857. }
  5858. }
  5859. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5860. skip:
  5861. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  5862. /* We completed so min/max setting can be forgotten if used. */
  5863. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  5864. mddev->resync_min = 0;
  5865. mddev->resync_max = MaxSector;
  5866. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  5867. mddev->resync_min = mddev->curr_resync_completed;
  5868. mddev->curr_resync = 0;
  5869. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  5870. mddev->curr_resync_completed = 0;
  5871. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  5872. wake_up(&resync_wait);
  5873. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  5874. md_wakeup_thread(mddev->thread);
  5875. return;
  5876. interrupted:
  5877. /*
  5878. * got a signal, exit.
  5879. */
  5880. printk(KERN_INFO
  5881. "md: md_do_sync() got signal ... exiting\n");
  5882. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5883. goto out;
  5884. }
  5885. EXPORT_SYMBOL_GPL(md_do_sync);
  5886. static int remove_and_add_spares(mddev_t *mddev)
  5887. {
  5888. mdk_rdev_t *rdev;
  5889. int spares = 0;
  5890. mddev->curr_resync_completed = 0;
  5891. list_for_each_entry(rdev, &mddev->disks, same_set)
  5892. if (rdev->raid_disk >= 0 &&
  5893. !test_bit(Blocked, &rdev->flags) &&
  5894. (test_bit(Faulty, &rdev->flags) ||
  5895. ! test_bit(In_sync, &rdev->flags)) &&
  5896. atomic_read(&rdev->nr_pending)==0) {
  5897. if (mddev->pers->hot_remove_disk(
  5898. mddev, rdev->raid_disk)==0) {
  5899. char nm[20];
  5900. sprintf(nm,"rd%d", rdev->raid_disk);
  5901. sysfs_remove_link(&mddev->kobj, nm);
  5902. rdev->raid_disk = -1;
  5903. }
  5904. }
  5905. if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
  5906. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5907. if (rdev->raid_disk >= 0 &&
  5908. !test_bit(In_sync, &rdev->flags) &&
  5909. !test_bit(Blocked, &rdev->flags))
  5910. spares++;
  5911. if (rdev->raid_disk < 0
  5912. && !test_bit(Faulty, &rdev->flags)) {
  5913. rdev->recovery_offset = 0;
  5914. if (mddev->pers->
  5915. hot_add_disk(mddev, rdev) == 0) {
  5916. char nm[20];
  5917. sprintf(nm, "rd%d", rdev->raid_disk);
  5918. if (sysfs_create_link(&mddev->kobj,
  5919. &rdev->kobj, nm))
  5920. printk(KERN_WARNING
  5921. "md: cannot register "
  5922. "%s for %s\n",
  5923. nm, mdname(mddev));
  5924. spares++;
  5925. md_new_event(mddev);
  5926. } else
  5927. break;
  5928. }
  5929. }
  5930. }
  5931. return spares;
  5932. }
  5933. /*
  5934. * This routine is regularly called by all per-raid-array threads to
  5935. * deal with generic issues like resync and super-block update.
  5936. * Raid personalities that don't have a thread (linear/raid0) do not
  5937. * need this as they never do any recovery or update the superblock.
  5938. *
  5939. * It does not do any resync itself, but rather "forks" off other threads
  5940. * to do that as needed.
  5941. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  5942. * "->recovery" and create a thread at ->sync_thread.
  5943. * When the thread finishes it sets MD_RECOVERY_DONE
  5944. * and wakeups up this thread which will reap the thread and finish up.
  5945. * This thread also removes any faulty devices (with nr_pending == 0).
  5946. *
  5947. * The overall approach is:
  5948. * 1/ if the superblock needs updating, update it.
  5949. * 2/ If a recovery thread is running, don't do anything else.
  5950. * 3/ If recovery has finished, clean up, possibly marking spares active.
  5951. * 4/ If there are any faulty devices, remove them.
  5952. * 5/ If array is degraded, try to add spares devices
  5953. * 6/ If array has spares or is not in-sync, start a resync thread.
  5954. */
  5955. void md_check_recovery(mddev_t *mddev)
  5956. {
  5957. mdk_rdev_t *rdev;
  5958. if (mddev->bitmap)
  5959. bitmap_daemon_work(mddev);
  5960. if (mddev->ro)
  5961. return;
  5962. if (signal_pending(current)) {
  5963. if (mddev->pers->sync_request && !mddev->external) {
  5964. printk(KERN_INFO "md: %s in immediate safe mode\n",
  5965. mdname(mddev));
  5966. mddev->safemode = 2;
  5967. }
  5968. flush_signals(current);
  5969. }
  5970. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  5971. return;
  5972. if ( ! (
  5973. (mddev->flags && !mddev->external) ||
  5974. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  5975. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  5976. (mddev->external == 0 && mddev->safemode == 1) ||
  5977. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  5978. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  5979. ))
  5980. return;
  5981. if (mddev_trylock(mddev)) {
  5982. int spares = 0;
  5983. if (mddev->ro) {
  5984. /* Only thing we do on a ro array is remove
  5985. * failed devices.
  5986. */
  5987. remove_and_add_spares(mddev);
  5988. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5989. goto unlock;
  5990. }
  5991. if (!mddev->external) {
  5992. int did_change = 0;
  5993. spin_lock_irq(&mddev->write_lock);
  5994. if (mddev->safemode &&
  5995. !atomic_read(&mddev->writes_pending) &&
  5996. !mddev->in_sync &&
  5997. mddev->recovery_cp == MaxSector) {
  5998. mddev->in_sync = 1;
  5999. did_change = 1;
  6000. if (mddev->persistent)
  6001. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6002. }
  6003. if (mddev->safemode == 1)
  6004. mddev->safemode = 0;
  6005. spin_unlock_irq(&mddev->write_lock);
  6006. if (did_change)
  6007. sysfs_notify_dirent(mddev->sysfs_state);
  6008. }
  6009. if (mddev->flags)
  6010. md_update_sb(mddev, 0);
  6011. list_for_each_entry(rdev, &mddev->disks, same_set)
  6012. if (test_and_clear_bit(StateChanged, &rdev->flags))
  6013. sysfs_notify_dirent(rdev->sysfs_state);
  6014. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6015. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6016. /* resync/recovery still happening */
  6017. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6018. goto unlock;
  6019. }
  6020. if (mddev->sync_thread) {
  6021. /* resync has finished, collect result */
  6022. md_unregister_thread(mddev->sync_thread);
  6023. mddev->sync_thread = NULL;
  6024. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6025. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6026. /* success...*/
  6027. /* activate any spares */
  6028. if (mddev->pers->spare_active(mddev))
  6029. sysfs_notify(&mddev->kobj, NULL,
  6030. "degraded");
  6031. }
  6032. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6033. mddev->pers->finish_reshape)
  6034. mddev->pers->finish_reshape(mddev);
  6035. md_update_sb(mddev, 1);
  6036. /* if array is no-longer degraded, then any saved_raid_disk
  6037. * information must be scrapped
  6038. */
  6039. if (!mddev->degraded)
  6040. list_for_each_entry(rdev, &mddev->disks, same_set)
  6041. rdev->saved_raid_disk = -1;
  6042. mddev->recovery = 0;
  6043. /* flag recovery needed just to double check */
  6044. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6045. sysfs_notify_dirent(mddev->sysfs_action);
  6046. md_new_event(mddev);
  6047. goto unlock;
  6048. }
  6049. /* Set RUNNING before clearing NEEDED to avoid
  6050. * any transients in the value of "sync_action".
  6051. */
  6052. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6053. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6054. /* Clear some bits that don't mean anything, but
  6055. * might be left set
  6056. */
  6057. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6058. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6059. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6060. goto unlock;
  6061. /* no recovery is running.
  6062. * remove any failed drives, then
  6063. * add spares if possible.
  6064. * Spare are also removed and re-added, to allow
  6065. * the personality to fail the re-add.
  6066. */
  6067. if (mddev->reshape_position != MaxSector) {
  6068. if (mddev->pers->check_reshape == NULL ||
  6069. mddev->pers->check_reshape(mddev) != 0)
  6070. /* Cannot proceed */
  6071. goto unlock;
  6072. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6073. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6074. } else if ((spares = remove_and_add_spares(mddev))) {
  6075. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6076. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6077. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6078. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6079. } else if (mddev->recovery_cp < MaxSector) {
  6080. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6081. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6082. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6083. /* nothing to be done ... */
  6084. goto unlock;
  6085. if (mddev->pers->sync_request) {
  6086. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  6087. /* We are adding a device or devices to an array
  6088. * which has the bitmap stored on all devices.
  6089. * So make sure all bitmap pages get written
  6090. */
  6091. bitmap_write_all(mddev->bitmap);
  6092. }
  6093. mddev->sync_thread = md_register_thread(md_do_sync,
  6094. mddev,
  6095. "resync");
  6096. if (!mddev->sync_thread) {
  6097. printk(KERN_ERR "%s: could not start resync"
  6098. " thread...\n",
  6099. mdname(mddev));
  6100. /* leave the spares where they are, it shouldn't hurt */
  6101. mddev->recovery = 0;
  6102. } else
  6103. md_wakeup_thread(mddev->sync_thread);
  6104. sysfs_notify_dirent(mddev->sysfs_action);
  6105. md_new_event(mddev);
  6106. }
  6107. unlock:
  6108. if (!mddev->sync_thread) {
  6109. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6110. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6111. &mddev->recovery))
  6112. if (mddev->sysfs_action)
  6113. sysfs_notify_dirent(mddev->sysfs_action);
  6114. }
  6115. mddev_unlock(mddev);
  6116. }
  6117. }
  6118. void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
  6119. {
  6120. sysfs_notify_dirent(rdev->sysfs_state);
  6121. wait_event_timeout(rdev->blocked_wait,
  6122. !test_bit(Blocked, &rdev->flags),
  6123. msecs_to_jiffies(5000));
  6124. rdev_dec_pending(rdev, mddev);
  6125. }
  6126. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  6127. static int md_notify_reboot(struct notifier_block *this,
  6128. unsigned long code, void *x)
  6129. {
  6130. struct list_head *tmp;
  6131. mddev_t *mddev;
  6132. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  6133. printk(KERN_INFO "md: stopping all md devices.\n");
  6134. for_each_mddev(mddev, tmp)
  6135. if (mddev_trylock(mddev)) {
  6136. /* Force a switch to readonly even array
  6137. * appears to still be in use. Hence
  6138. * the '100'.
  6139. */
  6140. do_md_stop(mddev, 1, 100);
  6141. mddev_unlock(mddev);
  6142. }
  6143. /*
  6144. * certain more exotic SCSI devices are known to be
  6145. * volatile wrt too early system reboots. While the
  6146. * right place to handle this issue is the given
  6147. * driver, we do want to have a safe RAID driver ...
  6148. */
  6149. mdelay(1000*1);
  6150. }
  6151. return NOTIFY_DONE;
  6152. }
  6153. static struct notifier_block md_notifier = {
  6154. .notifier_call = md_notify_reboot,
  6155. .next = NULL,
  6156. .priority = INT_MAX, /* before any real devices */
  6157. };
  6158. static void md_geninit(void)
  6159. {
  6160. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  6161. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  6162. }
  6163. static int __init md_init(void)
  6164. {
  6165. if (register_blkdev(MD_MAJOR, "md"))
  6166. return -1;
  6167. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  6168. unregister_blkdev(MD_MAJOR, "md");
  6169. return -1;
  6170. }
  6171. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  6172. md_probe, NULL, NULL);
  6173. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  6174. md_probe, NULL, NULL);
  6175. register_reboot_notifier(&md_notifier);
  6176. raid_table_header = register_sysctl_table(raid_root_table);
  6177. md_geninit();
  6178. return 0;
  6179. }
  6180. #ifndef MODULE
  6181. /*
  6182. * Searches all registered partitions for autorun RAID arrays
  6183. * at boot time.
  6184. */
  6185. static LIST_HEAD(all_detected_devices);
  6186. struct detected_devices_node {
  6187. struct list_head list;
  6188. dev_t dev;
  6189. };
  6190. void md_autodetect_dev(dev_t dev)
  6191. {
  6192. struct detected_devices_node *node_detected_dev;
  6193. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  6194. if (node_detected_dev) {
  6195. node_detected_dev->dev = dev;
  6196. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  6197. } else {
  6198. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  6199. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  6200. }
  6201. }
  6202. static void autostart_arrays(int part)
  6203. {
  6204. mdk_rdev_t *rdev;
  6205. struct detected_devices_node *node_detected_dev;
  6206. dev_t dev;
  6207. int i_scanned, i_passed;
  6208. i_scanned = 0;
  6209. i_passed = 0;
  6210. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  6211. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  6212. i_scanned++;
  6213. node_detected_dev = list_entry(all_detected_devices.next,
  6214. struct detected_devices_node, list);
  6215. list_del(&node_detected_dev->list);
  6216. dev = node_detected_dev->dev;
  6217. kfree(node_detected_dev);
  6218. rdev = md_import_device(dev,0, 90);
  6219. if (IS_ERR(rdev))
  6220. continue;
  6221. if (test_bit(Faulty, &rdev->flags)) {
  6222. MD_BUG();
  6223. continue;
  6224. }
  6225. set_bit(AutoDetected, &rdev->flags);
  6226. list_add(&rdev->same_set, &pending_raid_disks);
  6227. i_passed++;
  6228. }
  6229. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  6230. i_scanned, i_passed);
  6231. autorun_devices(part);
  6232. }
  6233. #endif /* !MODULE */
  6234. static __exit void md_exit(void)
  6235. {
  6236. mddev_t *mddev;
  6237. struct list_head *tmp;
  6238. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  6239. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  6240. unregister_blkdev(MD_MAJOR,"md");
  6241. unregister_blkdev(mdp_major, "mdp");
  6242. unregister_reboot_notifier(&md_notifier);
  6243. unregister_sysctl_table(raid_table_header);
  6244. remove_proc_entry("mdstat", NULL);
  6245. for_each_mddev(mddev, tmp) {
  6246. export_array(mddev);
  6247. mddev->hold_active = 0;
  6248. }
  6249. }
  6250. subsys_initcall(md_init);
  6251. module_exit(md_exit)
  6252. static int get_ro(char *buffer, struct kernel_param *kp)
  6253. {
  6254. return sprintf(buffer, "%d", start_readonly);
  6255. }
  6256. static int set_ro(const char *val, struct kernel_param *kp)
  6257. {
  6258. char *e;
  6259. int num = simple_strtoul(val, &e, 10);
  6260. if (*val && (*e == '\0' || *e == '\n')) {
  6261. start_readonly = num;
  6262. return 0;
  6263. }
  6264. return -EINVAL;
  6265. }
  6266. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  6267. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  6268. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  6269. EXPORT_SYMBOL(register_md_personality);
  6270. EXPORT_SYMBOL(unregister_md_personality);
  6271. EXPORT_SYMBOL(md_error);
  6272. EXPORT_SYMBOL(md_done_sync);
  6273. EXPORT_SYMBOL(md_write_start);
  6274. EXPORT_SYMBOL(md_write_end);
  6275. EXPORT_SYMBOL(md_register_thread);
  6276. EXPORT_SYMBOL(md_unregister_thread);
  6277. EXPORT_SYMBOL(md_wakeup_thread);
  6278. EXPORT_SYMBOL(md_check_recovery);
  6279. MODULE_LICENSE("GPL");
  6280. MODULE_ALIAS("md");
  6281. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);