xfrm_algo.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785
  1. /*
  2. * xfrm algorithm interface
  3. *
  4. * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License as published by the Free
  8. * Software Foundation; either version 2 of the License, or (at your option)
  9. * any later version.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/kernel.h>
  13. #include <linux/pfkeyv2.h>
  14. #include <linux/crypto.h>
  15. #include <linux/scatterlist.h>
  16. #include <net/xfrm.h>
  17. #if defined(CONFIG_INET_AH) || defined(CONFIG_INET_AH_MODULE) || defined(CONFIG_INET6_AH) || defined(CONFIG_INET6_AH_MODULE)
  18. #include <net/ah.h>
  19. #endif
  20. #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
  21. #include <net/esp.h>
  22. #endif
  23. /*
  24. * Algorithms supported by IPsec. These entries contain properties which
  25. * are used in key negotiation and xfrm processing, and are used to verify
  26. * that instantiated crypto transforms have correct parameters for IPsec
  27. * purposes.
  28. */
  29. static struct xfrm_algo_desc aead_list[] = {
  30. {
  31. .name = "rfc4106(gcm(aes))",
  32. .uinfo = {
  33. .aead = {
  34. .icv_truncbits = 64,
  35. }
  36. },
  37. .desc = {
  38. .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
  39. .sadb_alg_ivlen = 8,
  40. .sadb_alg_minbits = 128,
  41. .sadb_alg_maxbits = 256
  42. }
  43. },
  44. {
  45. .name = "rfc4106(gcm(aes))",
  46. .uinfo = {
  47. .aead = {
  48. .icv_truncbits = 96,
  49. }
  50. },
  51. .desc = {
  52. .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
  53. .sadb_alg_ivlen = 8,
  54. .sadb_alg_minbits = 128,
  55. .sadb_alg_maxbits = 256
  56. }
  57. },
  58. {
  59. .name = "rfc4106(gcm(aes))",
  60. .uinfo = {
  61. .aead = {
  62. .icv_truncbits = 128,
  63. }
  64. },
  65. .desc = {
  66. .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
  67. .sadb_alg_ivlen = 8,
  68. .sadb_alg_minbits = 128,
  69. .sadb_alg_maxbits = 256
  70. }
  71. },
  72. {
  73. .name = "rfc4309(ccm(aes))",
  74. .uinfo = {
  75. .aead = {
  76. .icv_truncbits = 64,
  77. }
  78. },
  79. .desc = {
  80. .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
  81. .sadb_alg_ivlen = 8,
  82. .sadb_alg_minbits = 128,
  83. .sadb_alg_maxbits = 256
  84. }
  85. },
  86. {
  87. .name = "rfc4309(ccm(aes))",
  88. .uinfo = {
  89. .aead = {
  90. .icv_truncbits = 96,
  91. }
  92. },
  93. .desc = {
  94. .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
  95. .sadb_alg_ivlen = 8,
  96. .sadb_alg_minbits = 128,
  97. .sadb_alg_maxbits = 256
  98. }
  99. },
  100. {
  101. .name = "rfc4309(ccm(aes))",
  102. .uinfo = {
  103. .aead = {
  104. .icv_truncbits = 128,
  105. }
  106. },
  107. .desc = {
  108. .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
  109. .sadb_alg_ivlen = 8,
  110. .sadb_alg_minbits = 128,
  111. .sadb_alg_maxbits = 256
  112. }
  113. },
  114. };
  115. static struct xfrm_algo_desc aalg_list[] = {
  116. {
  117. .name = "hmac(digest_null)",
  118. .compat = "digest_null",
  119. .uinfo = {
  120. .auth = {
  121. .icv_truncbits = 0,
  122. .icv_fullbits = 0,
  123. }
  124. },
  125. .desc = {
  126. .sadb_alg_id = SADB_X_AALG_NULL,
  127. .sadb_alg_ivlen = 0,
  128. .sadb_alg_minbits = 0,
  129. .sadb_alg_maxbits = 0
  130. }
  131. },
  132. {
  133. .name = "hmac(md5)",
  134. .compat = "md5",
  135. .uinfo = {
  136. .auth = {
  137. .icv_truncbits = 96,
  138. .icv_fullbits = 128,
  139. }
  140. },
  141. .desc = {
  142. .sadb_alg_id = SADB_AALG_MD5HMAC,
  143. .sadb_alg_ivlen = 0,
  144. .sadb_alg_minbits = 128,
  145. .sadb_alg_maxbits = 128
  146. }
  147. },
  148. {
  149. .name = "hmac(sha1)",
  150. .compat = "sha1",
  151. .uinfo = {
  152. .auth = {
  153. .icv_truncbits = 96,
  154. .icv_fullbits = 160,
  155. }
  156. },
  157. .desc = {
  158. .sadb_alg_id = SADB_AALG_SHA1HMAC,
  159. .sadb_alg_ivlen = 0,
  160. .sadb_alg_minbits = 160,
  161. .sadb_alg_maxbits = 160
  162. }
  163. },
  164. {
  165. .name = "hmac(sha256)",
  166. .compat = "sha256",
  167. .uinfo = {
  168. .auth = {
  169. .icv_truncbits = 96,
  170. .icv_fullbits = 256,
  171. }
  172. },
  173. .desc = {
  174. .sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
  175. .sadb_alg_ivlen = 0,
  176. .sadb_alg_minbits = 256,
  177. .sadb_alg_maxbits = 256
  178. }
  179. },
  180. {
  181. .name = "hmac(ripemd160)",
  182. .compat = "ripemd160",
  183. .uinfo = {
  184. .auth = {
  185. .icv_truncbits = 96,
  186. .icv_fullbits = 160,
  187. }
  188. },
  189. .desc = {
  190. .sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
  191. .sadb_alg_ivlen = 0,
  192. .sadb_alg_minbits = 160,
  193. .sadb_alg_maxbits = 160
  194. }
  195. },
  196. {
  197. .name = "xcbc(aes)",
  198. .uinfo = {
  199. .auth = {
  200. .icv_truncbits = 96,
  201. .icv_fullbits = 128,
  202. }
  203. },
  204. .desc = {
  205. .sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
  206. .sadb_alg_ivlen = 0,
  207. .sadb_alg_minbits = 128,
  208. .sadb_alg_maxbits = 128
  209. }
  210. },
  211. };
  212. static struct xfrm_algo_desc ealg_list[] = {
  213. {
  214. .name = "ecb(cipher_null)",
  215. .compat = "cipher_null",
  216. .uinfo = {
  217. .encr = {
  218. .blockbits = 8,
  219. .defkeybits = 0,
  220. }
  221. },
  222. .desc = {
  223. .sadb_alg_id = SADB_EALG_NULL,
  224. .sadb_alg_ivlen = 0,
  225. .sadb_alg_minbits = 0,
  226. .sadb_alg_maxbits = 0
  227. }
  228. },
  229. {
  230. .name = "cbc(des)",
  231. .compat = "des",
  232. .uinfo = {
  233. .encr = {
  234. .blockbits = 64,
  235. .defkeybits = 64,
  236. }
  237. },
  238. .desc = {
  239. .sadb_alg_id = SADB_EALG_DESCBC,
  240. .sadb_alg_ivlen = 8,
  241. .sadb_alg_minbits = 64,
  242. .sadb_alg_maxbits = 64
  243. }
  244. },
  245. {
  246. .name = "cbc(des3_ede)",
  247. .compat = "des3_ede",
  248. .uinfo = {
  249. .encr = {
  250. .blockbits = 64,
  251. .defkeybits = 192,
  252. }
  253. },
  254. .desc = {
  255. .sadb_alg_id = SADB_EALG_3DESCBC,
  256. .sadb_alg_ivlen = 8,
  257. .sadb_alg_minbits = 192,
  258. .sadb_alg_maxbits = 192
  259. }
  260. },
  261. {
  262. .name = "cbc(cast128)",
  263. .compat = "cast128",
  264. .uinfo = {
  265. .encr = {
  266. .blockbits = 64,
  267. .defkeybits = 128,
  268. }
  269. },
  270. .desc = {
  271. .sadb_alg_id = SADB_X_EALG_CASTCBC,
  272. .sadb_alg_ivlen = 8,
  273. .sadb_alg_minbits = 40,
  274. .sadb_alg_maxbits = 128
  275. }
  276. },
  277. {
  278. .name = "cbc(blowfish)",
  279. .compat = "blowfish",
  280. .uinfo = {
  281. .encr = {
  282. .blockbits = 64,
  283. .defkeybits = 128,
  284. }
  285. },
  286. .desc = {
  287. .sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
  288. .sadb_alg_ivlen = 8,
  289. .sadb_alg_minbits = 40,
  290. .sadb_alg_maxbits = 448
  291. }
  292. },
  293. {
  294. .name = "cbc(aes)",
  295. .compat = "aes",
  296. .uinfo = {
  297. .encr = {
  298. .blockbits = 128,
  299. .defkeybits = 128,
  300. }
  301. },
  302. .desc = {
  303. .sadb_alg_id = SADB_X_EALG_AESCBC,
  304. .sadb_alg_ivlen = 8,
  305. .sadb_alg_minbits = 128,
  306. .sadb_alg_maxbits = 256
  307. }
  308. },
  309. {
  310. .name = "cbc(serpent)",
  311. .compat = "serpent",
  312. .uinfo = {
  313. .encr = {
  314. .blockbits = 128,
  315. .defkeybits = 128,
  316. }
  317. },
  318. .desc = {
  319. .sadb_alg_id = SADB_X_EALG_SERPENTCBC,
  320. .sadb_alg_ivlen = 8,
  321. .sadb_alg_minbits = 128,
  322. .sadb_alg_maxbits = 256,
  323. }
  324. },
  325. {
  326. .name = "cbc(camellia)",
  327. .uinfo = {
  328. .encr = {
  329. .blockbits = 128,
  330. .defkeybits = 128,
  331. }
  332. },
  333. .desc = {
  334. .sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
  335. .sadb_alg_ivlen = 8,
  336. .sadb_alg_minbits = 128,
  337. .sadb_alg_maxbits = 256
  338. }
  339. },
  340. {
  341. .name = "cbc(twofish)",
  342. .compat = "twofish",
  343. .uinfo = {
  344. .encr = {
  345. .blockbits = 128,
  346. .defkeybits = 128,
  347. }
  348. },
  349. .desc = {
  350. .sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
  351. .sadb_alg_ivlen = 8,
  352. .sadb_alg_minbits = 128,
  353. .sadb_alg_maxbits = 256
  354. }
  355. },
  356. {
  357. .name = "rfc3686(ctr(aes))",
  358. .uinfo = {
  359. .encr = {
  360. .blockbits = 128,
  361. .defkeybits = 160, /* 128-bit key + 32-bit nonce */
  362. }
  363. },
  364. .desc = {
  365. .sadb_alg_id = SADB_X_EALG_AESCTR,
  366. .sadb_alg_ivlen = 8,
  367. .sadb_alg_minbits = 128,
  368. .sadb_alg_maxbits = 256
  369. }
  370. },
  371. };
  372. static struct xfrm_algo_desc calg_list[] = {
  373. {
  374. .name = "deflate",
  375. .uinfo = {
  376. .comp = {
  377. .threshold = 90,
  378. }
  379. },
  380. .desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
  381. },
  382. {
  383. .name = "lzs",
  384. .uinfo = {
  385. .comp = {
  386. .threshold = 90,
  387. }
  388. },
  389. .desc = { .sadb_alg_id = SADB_X_CALG_LZS }
  390. },
  391. {
  392. .name = "lzjh",
  393. .uinfo = {
  394. .comp = {
  395. .threshold = 50,
  396. }
  397. },
  398. .desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
  399. },
  400. };
  401. static inline int aead_entries(void)
  402. {
  403. return ARRAY_SIZE(aead_list);
  404. }
  405. static inline int aalg_entries(void)
  406. {
  407. return ARRAY_SIZE(aalg_list);
  408. }
  409. static inline int ealg_entries(void)
  410. {
  411. return ARRAY_SIZE(ealg_list);
  412. }
  413. static inline int calg_entries(void)
  414. {
  415. return ARRAY_SIZE(calg_list);
  416. }
  417. struct xfrm_algo_list {
  418. struct xfrm_algo_desc *algs;
  419. int entries;
  420. u32 type;
  421. u32 mask;
  422. };
  423. static const struct xfrm_algo_list xfrm_aead_list = {
  424. .algs = aead_list,
  425. .entries = ARRAY_SIZE(aead_list),
  426. .type = CRYPTO_ALG_TYPE_AEAD,
  427. .mask = CRYPTO_ALG_TYPE_MASK,
  428. };
  429. static const struct xfrm_algo_list xfrm_aalg_list = {
  430. .algs = aalg_list,
  431. .entries = ARRAY_SIZE(aalg_list),
  432. .type = CRYPTO_ALG_TYPE_HASH,
  433. .mask = CRYPTO_ALG_TYPE_HASH_MASK,
  434. };
  435. static const struct xfrm_algo_list xfrm_ealg_list = {
  436. .algs = ealg_list,
  437. .entries = ARRAY_SIZE(ealg_list),
  438. .type = CRYPTO_ALG_TYPE_BLKCIPHER,
  439. .mask = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
  440. };
  441. static const struct xfrm_algo_list xfrm_calg_list = {
  442. .algs = calg_list,
  443. .entries = ARRAY_SIZE(calg_list),
  444. .type = CRYPTO_ALG_TYPE_COMPRESS,
  445. .mask = CRYPTO_ALG_TYPE_MASK,
  446. };
  447. static struct xfrm_algo_desc *xfrm_find_algo(
  448. const struct xfrm_algo_list *algo_list,
  449. int match(const struct xfrm_algo_desc *entry, const void *data),
  450. const void *data, int probe)
  451. {
  452. struct xfrm_algo_desc *list = algo_list->algs;
  453. int i, status;
  454. for (i = 0; i < algo_list->entries; i++) {
  455. if (!match(list + i, data))
  456. continue;
  457. if (list[i].available)
  458. return &list[i];
  459. if (!probe)
  460. break;
  461. status = crypto_has_alg(list[i].name, algo_list->type,
  462. algo_list->mask);
  463. if (!status)
  464. break;
  465. list[i].available = status;
  466. return &list[i];
  467. }
  468. return NULL;
  469. }
  470. static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
  471. const void *data)
  472. {
  473. return entry->desc.sadb_alg_id == (unsigned long)data;
  474. }
  475. struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
  476. {
  477. return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
  478. (void *)(unsigned long)alg_id, 1);
  479. }
  480. EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
  481. struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
  482. {
  483. return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
  484. (void *)(unsigned long)alg_id, 1);
  485. }
  486. EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
  487. struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
  488. {
  489. return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
  490. (void *)(unsigned long)alg_id, 1);
  491. }
  492. EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
  493. static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
  494. const void *data)
  495. {
  496. const char *name = data;
  497. return name && (!strcmp(name, entry->name) ||
  498. (entry->compat && !strcmp(name, entry->compat)));
  499. }
  500. struct xfrm_algo_desc *xfrm_aalg_get_byname(char *name, int probe)
  501. {
  502. return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
  503. probe);
  504. }
  505. EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
  506. struct xfrm_algo_desc *xfrm_ealg_get_byname(char *name, int probe)
  507. {
  508. return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
  509. probe);
  510. }
  511. EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
  512. struct xfrm_algo_desc *xfrm_calg_get_byname(char *name, int probe)
  513. {
  514. return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
  515. probe);
  516. }
  517. EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
  518. struct xfrm_aead_name {
  519. const char *name;
  520. int icvbits;
  521. };
  522. static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
  523. const void *data)
  524. {
  525. const struct xfrm_aead_name *aead = data;
  526. const char *name = aead->name;
  527. return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
  528. !strcmp(name, entry->name);
  529. }
  530. struct xfrm_algo_desc *xfrm_aead_get_byname(char *name, int icv_len, int probe)
  531. {
  532. struct xfrm_aead_name data = {
  533. .name = name,
  534. .icvbits = icv_len,
  535. };
  536. return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
  537. probe);
  538. }
  539. EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
  540. struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
  541. {
  542. if (idx >= aalg_entries())
  543. return NULL;
  544. return &aalg_list[idx];
  545. }
  546. EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
  547. struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
  548. {
  549. if (idx >= ealg_entries())
  550. return NULL;
  551. return &ealg_list[idx];
  552. }
  553. EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
  554. /*
  555. * Probe for the availability of crypto algorithms, and set the available
  556. * flag for any algorithms found on the system. This is typically called by
  557. * pfkey during userspace SA add, update or register.
  558. */
  559. void xfrm_probe_algs(void)
  560. {
  561. int i, status;
  562. BUG_ON(in_softirq());
  563. for (i = 0; i < aalg_entries(); i++) {
  564. status = crypto_has_hash(aalg_list[i].name, 0,
  565. CRYPTO_ALG_ASYNC);
  566. if (aalg_list[i].available != status)
  567. aalg_list[i].available = status;
  568. }
  569. for (i = 0; i < ealg_entries(); i++) {
  570. status = crypto_has_blkcipher(ealg_list[i].name, 0,
  571. CRYPTO_ALG_ASYNC);
  572. if (ealg_list[i].available != status)
  573. ealg_list[i].available = status;
  574. }
  575. for (i = 0; i < calg_entries(); i++) {
  576. status = crypto_has_comp(calg_list[i].name, 0,
  577. CRYPTO_ALG_ASYNC);
  578. if (calg_list[i].available != status)
  579. calg_list[i].available = status;
  580. }
  581. }
  582. EXPORT_SYMBOL_GPL(xfrm_probe_algs);
  583. int xfrm_count_auth_supported(void)
  584. {
  585. int i, n;
  586. for (i = 0, n = 0; i < aalg_entries(); i++)
  587. if (aalg_list[i].available)
  588. n++;
  589. return n;
  590. }
  591. EXPORT_SYMBOL_GPL(xfrm_count_auth_supported);
  592. int xfrm_count_enc_supported(void)
  593. {
  594. int i, n;
  595. for (i = 0, n = 0; i < ealg_entries(); i++)
  596. if (ealg_list[i].available)
  597. n++;
  598. return n;
  599. }
  600. EXPORT_SYMBOL_GPL(xfrm_count_enc_supported);
  601. /* Move to common area: it is shared with AH. */
  602. int skb_icv_walk(const struct sk_buff *skb, struct hash_desc *desc,
  603. int offset, int len, icv_update_fn_t icv_update)
  604. {
  605. int start = skb_headlen(skb);
  606. int i, copy = start - offset;
  607. int err;
  608. struct scatterlist sg;
  609. /* Checksum header. */
  610. if (copy > 0) {
  611. if (copy > len)
  612. copy = len;
  613. sg_init_one(&sg, skb->data + offset, copy);
  614. err = icv_update(desc, &sg, copy);
  615. if (unlikely(err))
  616. return err;
  617. if ((len -= copy) == 0)
  618. return 0;
  619. offset += copy;
  620. }
  621. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  622. int end;
  623. BUG_TRAP(start <= offset + len);
  624. end = start + skb_shinfo(skb)->frags[i].size;
  625. if ((copy = end - offset) > 0) {
  626. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  627. if (copy > len)
  628. copy = len;
  629. sg_init_table(&sg, 1);
  630. sg_set_page(&sg, frag->page, copy,
  631. frag->page_offset + offset-start);
  632. err = icv_update(desc, &sg, copy);
  633. if (unlikely(err))
  634. return err;
  635. if (!(len -= copy))
  636. return 0;
  637. offset += copy;
  638. }
  639. start = end;
  640. }
  641. if (skb_shinfo(skb)->frag_list) {
  642. struct sk_buff *list = skb_shinfo(skb)->frag_list;
  643. for (; list; list = list->next) {
  644. int end;
  645. BUG_TRAP(start <= offset + len);
  646. end = start + list->len;
  647. if ((copy = end - offset) > 0) {
  648. if (copy > len)
  649. copy = len;
  650. err = skb_icv_walk(list, desc, offset-start,
  651. copy, icv_update);
  652. if (unlikely(err))
  653. return err;
  654. if ((len -= copy) == 0)
  655. return 0;
  656. offset += copy;
  657. }
  658. start = end;
  659. }
  660. }
  661. BUG_ON(len);
  662. return 0;
  663. }
  664. EXPORT_SYMBOL_GPL(skb_icv_walk);
  665. #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
  666. void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
  667. {
  668. if (tail != skb) {
  669. skb->data_len += len;
  670. skb->len += len;
  671. }
  672. return skb_put(tail, len);
  673. }
  674. EXPORT_SYMBOL_GPL(pskb_put);
  675. #endif