svc_rdma_sendto.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521
  1. /*
  2. * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the BSD-type
  8. * license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or without
  11. * modification, are permitted provided that the following conditions
  12. * are met:
  13. *
  14. * Redistributions of source code must retain the above copyright
  15. * notice, this list of conditions and the following disclaimer.
  16. *
  17. * Redistributions in binary form must reproduce the above
  18. * copyright notice, this list of conditions and the following
  19. * disclaimer in the documentation and/or other materials provided
  20. * with the distribution.
  21. *
  22. * Neither the name of the Network Appliance, Inc. nor the names of
  23. * its contributors may be used to endorse or promote products
  24. * derived from this software without specific prior written
  25. * permission.
  26. *
  27. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  30. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  31. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  32. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  33. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  34. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  35. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  36. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  37. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  38. *
  39. * Author: Tom Tucker <tom@opengridcomputing.com>
  40. */
  41. #include <linux/sunrpc/debug.h>
  42. #include <linux/sunrpc/rpc_rdma.h>
  43. #include <linux/spinlock.h>
  44. #include <asm/unaligned.h>
  45. #include <rdma/ib_verbs.h>
  46. #include <rdma/rdma_cm.h>
  47. #include <linux/sunrpc/svc_rdma.h>
  48. #define RPCDBG_FACILITY RPCDBG_SVCXPRT
  49. /* Encode an XDR as an array of IB SGE
  50. *
  51. * Assumptions:
  52. * - head[0] is physically contiguous.
  53. * - tail[0] is physically contiguous.
  54. * - pages[] is not physically or virtually contigous and consists of
  55. * PAGE_SIZE elements.
  56. *
  57. * Output:
  58. * SGE[0] reserved for RCPRDMA header
  59. * SGE[1] data from xdr->head[]
  60. * SGE[2..sge_count-2] data from xdr->pages[]
  61. * SGE[sge_count-1] data from xdr->tail.
  62. *
  63. */
  64. static struct ib_sge *xdr_to_sge(struct svcxprt_rdma *xprt,
  65. struct xdr_buf *xdr,
  66. struct ib_sge *sge,
  67. int *sge_count)
  68. {
  69. /* Max we need is the length of the XDR / pagesize + one for
  70. * head + one for tail + one for RPCRDMA header
  71. */
  72. int sge_max = (xdr->len+PAGE_SIZE-1) / PAGE_SIZE + 3;
  73. int sge_no;
  74. u32 byte_count = xdr->len;
  75. u32 sge_bytes;
  76. u32 page_bytes;
  77. int page_off;
  78. int page_no;
  79. /* Skip the first sge, this is for the RPCRDMA header */
  80. sge_no = 1;
  81. /* Head SGE */
  82. sge[sge_no].addr = ib_dma_map_single(xprt->sc_cm_id->device,
  83. xdr->head[0].iov_base,
  84. xdr->head[0].iov_len,
  85. DMA_TO_DEVICE);
  86. sge_bytes = min_t(u32, byte_count, xdr->head[0].iov_len);
  87. byte_count -= sge_bytes;
  88. sge[sge_no].length = sge_bytes;
  89. sge[sge_no].lkey = xprt->sc_phys_mr->lkey;
  90. sge_no++;
  91. /* pages SGE */
  92. page_no = 0;
  93. page_bytes = xdr->page_len;
  94. page_off = xdr->page_base;
  95. while (byte_count && page_bytes) {
  96. sge_bytes = min_t(u32, byte_count, (PAGE_SIZE-page_off));
  97. sge[sge_no].addr =
  98. ib_dma_map_page(xprt->sc_cm_id->device,
  99. xdr->pages[page_no], page_off,
  100. sge_bytes, DMA_TO_DEVICE);
  101. sge_bytes = min(sge_bytes, page_bytes);
  102. byte_count -= sge_bytes;
  103. page_bytes -= sge_bytes;
  104. sge[sge_no].length = sge_bytes;
  105. sge[sge_no].lkey = xprt->sc_phys_mr->lkey;
  106. sge_no++;
  107. page_no++;
  108. page_off = 0; /* reset for next time through loop */
  109. }
  110. /* Tail SGE */
  111. if (byte_count && xdr->tail[0].iov_len) {
  112. sge[sge_no].addr =
  113. ib_dma_map_single(xprt->sc_cm_id->device,
  114. xdr->tail[0].iov_base,
  115. xdr->tail[0].iov_len,
  116. DMA_TO_DEVICE);
  117. sge_bytes = min_t(u32, byte_count, xdr->tail[0].iov_len);
  118. byte_count -= sge_bytes;
  119. sge[sge_no].length = sge_bytes;
  120. sge[sge_no].lkey = xprt->sc_phys_mr->lkey;
  121. sge_no++;
  122. }
  123. BUG_ON(sge_no > sge_max);
  124. BUG_ON(byte_count != 0);
  125. *sge_count = sge_no;
  126. return sge;
  127. }
  128. /* Assumptions:
  129. * - The specified write_len can be represented in sc_max_sge * PAGE_SIZE
  130. */
  131. static int send_write(struct svcxprt_rdma *xprt, struct svc_rqst *rqstp,
  132. u32 rmr, u64 to,
  133. u32 xdr_off, int write_len,
  134. struct ib_sge *xdr_sge, int sge_count)
  135. {
  136. struct svc_rdma_op_ctxt *tmp_sge_ctxt;
  137. struct ib_send_wr write_wr;
  138. struct ib_sge *sge;
  139. int xdr_sge_no;
  140. int sge_no;
  141. int sge_bytes;
  142. int sge_off;
  143. int bc;
  144. struct svc_rdma_op_ctxt *ctxt;
  145. int ret = 0;
  146. BUG_ON(sge_count > RPCSVC_MAXPAGES);
  147. dprintk("svcrdma: RDMA_WRITE rmr=%x, to=%llx, xdr_off=%d, "
  148. "write_len=%d, xdr_sge=%p, sge_count=%d\n",
  149. rmr, (unsigned long long)to, xdr_off,
  150. write_len, xdr_sge, sge_count);
  151. ctxt = svc_rdma_get_context(xprt);
  152. ctxt->count = 0;
  153. tmp_sge_ctxt = svc_rdma_get_context(xprt);
  154. sge = tmp_sge_ctxt->sge;
  155. /* Find the SGE associated with xdr_off */
  156. for (bc = xdr_off, xdr_sge_no = 1; bc && xdr_sge_no < sge_count;
  157. xdr_sge_no++) {
  158. if (xdr_sge[xdr_sge_no].length > bc)
  159. break;
  160. bc -= xdr_sge[xdr_sge_no].length;
  161. }
  162. sge_off = bc;
  163. bc = write_len;
  164. sge_no = 0;
  165. /* Copy the remaining SGE */
  166. while (bc != 0 && xdr_sge_no < sge_count) {
  167. sge[sge_no].addr = xdr_sge[xdr_sge_no].addr + sge_off;
  168. sge[sge_no].lkey = xdr_sge[xdr_sge_no].lkey;
  169. sge_bytes = min((size_t)bc,
  170. (size_t)(xdr_sge[xdr_sge_no].length-sge_off));
  171. sge[sge_no].length = sge_bytes;
  172. sge_off = 0;
  173. sge_no++;
  174. xdr_sge_no++;
  175. bc -= sge_bytes;
  176. }
  177. BUG_ON(bc != 0);
  178. BUG_ON(xdr_sge_no > sge_count);
  179. /* Prepare WRITE WR */
  180. memset(&write_wr, 0, sizeof write_wr);
  181. ctxt->wr_op = IB_WR_RDMA_WRITE;
  182. write_wr.wr_id = (unsigned long)ctxt;
  183. write_wr.sg_list = &sge[0];
  184. write_wr.num_sge = sge_no;
  185. write_wr.opcode = IB_WR_RDMA_WRITE;
  186. write_wr.send_flags = IB_SEND_SIGNALED;
  187. write_wr.wr.rdma.rkey = rmr;
  188. write_wr.wr.rdma.remote_addr = to;
  189. /* Post It */
  190. atomic_inc(&rdma_stat_write);
  191. if (svc_rdma_send(xprt, &write_wr)) {
  192. svc_rdma_put_context(ctxt, 1);
  193. /* Fatal error, close transport */
  194. ret = -EIO;
  195. }
  196. svc_rdma_put_context(tmp_sge_ctxt, 0);
  197. return ret;
  198. }
  199. static int send_write_chunks(struct svcxprt_rdma *xprt,
  200. struct rpcrdma_msg *rdma_argp,
  201. struct rpcrdma_msg *rdma_resp,
  202. struct svc_rqst *rqstp,
  203. struct ib_sge *sge,
  204. int sge_count)
  205. {
  206. u32 xfer_len = rqstp->rq_res.page_len + rqstp->rq_res.tail[0].iov_len;
  207. int write_len;
  208. int max_write;
  209. u32 xdr_off;
  210. int chunk_off;
  211. int chunk_no;
  212. struct rpcrdma_write_array *arg_ary;
  213. struct rpcrdma_write_array *res_ary;
  214. int ret;
  215. arg_ary = svc_rdma_get_write_array(rdma_argp);
  216. if (!arg_ary)
  217. return 0;
  218. res_ary = (struct rpcrdma_write_array *)
  219. &rdma_resp->rm_body.rm_chunks[1];
  220. max_write = xprt->sc_max_sge * PAGE_SIZE;
  221. /* Write chunks start at the pagelist */
  222. for (xdr_off = rqstp->rq_res.head[0].iov_len, chunk_no = 0;
  223. xfer_len && chunk_no < arg_ary->wc_nchunks;
  224. chunk_no++) {
  225. struct rpcrdma_segment *arg_ch;
  226. u64 rs_offset;
  227. arg_ch = &arg_ary->wc_array[chunk_no].wc_target;
  228. write_len = min(xfer_len, arg_ch->rs_length);
  229. /* Prepare the response chunk given the length actually
  230. * written */
  231. rs_offset = get_unaligned(&(arg_ch->rs_offset));
  232. svc_rdma_xdr_encode_array_chunk(res_ary, chunk_no,
  233. arg_ch->rs_handle,
  234. rs_offset,
  235. write_len);
  236. chunk_off = 0;
  237. while (write_len) {
  238. int this_write;
  239. this_write = min(write_len, max_write);
  240. ret = send_write(xprt, rqstp,
  241. arg_ch->rs_handle,
  242. rs_offset + chunk_off,
  243. xdr_off,
  244. this_write,
  245. sge,
  246. sge_count);
  247. if (ret) {
  248. dprintk("svcrdma: RDMA_WRITE failed, ret=%d\n",
  249. ret);
  250. return -EIO;
  251. }
  252. chunk_off += this_write;
  253. xdr_off += this_write;
  254. xfer_len -= this_write;
  255. write_len -= this_write;
  256. }
  257. }
  258. /* Update the req with the number of chunks actually used */
  259. svc_rdma_xdr_encode_write_list(rdma_resp, chunk_no);
  260. return rqstp->rq_res.page_len + rqstp->rq_res.tail[0].iov_len;
  261. }
  262. static int send_reply_chunks(struct svcxprt_rdma *xprt,
  263. struct rpcrdma_msg *rdma_argp,
  264. struct rpcrdma_msg *rdma_resp,
  265. struct svc_rqst *rqstp,
  266. struct ib_sge *sge,
  267. int sge_count)
  268. {
  269. u32 xfer_len = rqstp->rq_res.len;
  270. int write_len;
  271. int max_write;
  272. u32 xdr_off;
  273. int chunk_no;
  274. int chunk_off;
  275. struct rpcrdma_segment *ch;
  276. struct rpcrdma_write_array *arg_ary;
  277. struct rpcrdma_write_array *res_ary;
  278. int ret;
  279. arg_ary = svc_rdma_get_reply_array(rdma_argp);
  280. if (!arg_ary)
  281. return 0;
  282. /* XXX: need to fix when reply lists occur with read-list and or
  283. * write-list */
  284. res_ary = (struct rpcrdma_write_array *)
  285. &rdma_resp->rm_body.rm_chunks[2];
  286. max_write = xprt->sc_max_sge * PAGE_SIZE;
  287. /* xdr offset starts at RPC message */
  288. for (xdr_off = 0, chunk_no = 0;
  289. xfer_len && chunk_no < arg_ary->wc_nchunks;
  290. chunk_no++) {
  291. u64 rs_offset;
  292. ch = &arg_ary->wc_array[chunk_no].wc_target;
  293. write_len = min(xfer_len, ch->rs_length);
  294. /* Prepare the reply chunk given the length actually
  295. * written */
  296. rs_offset = get_unaligned(&(ch->rs_offset));
  297. svc_rdma_xdr_encode_array_chunk(res_ary, chunk_no,
  298. ch->rs_handle, rs_offset,
  299. write_len);
  300. chunk_off = 0;
  301. while (write_len) {
  302. int this_write;
  303. this_write = min(write_len, max_write);
  304. ret = send_write(xprt, rqstp,
  305. ch->rs_handle,
  306. rs_offset + chunk_off,
  307. xdr_off,
  308. this_write,
  309. sge,
  310. sge_count);
  311. if (ret) {
  312. dprintk("svcrdma: RDMA_WRITE failed, ret=%d\n",
  313. ret);
  314. return -EIO;
  315. }
  316. chunk_off += this_write;
  317. xdr_off += this_write;
  318. xfer_len -= this_write;
  319. write_len -= this_write;
  320. }
  321. }
  322. /* Update the req with the number of chunks actually used */
  323. svc_rdma_xdr_encode_reply_array(res_ary, chunk_no);
  324. return rqstp->rq_res.len;
  325. }
  326. /* This function prepares the portion of the RPCRDMA message to be
  327. * sent in the RDMA_SEND. This function is called after data sent via
  328. * RDMA has already been transmitted. There are three cases:
  329. * - The RPCRDMA header, RPC header, and payload are all sent in a
  330. * single RDMA_SEND. This is the "inline" case.
  331. * - The RPCRDMA header and some portion of the RPC header and data
  332. * are sent via this RDMA_SEND and another portion of the data is
  333. * sent via RDMA.
  334. * - The RPCRDMA header [NOMSG] is sent in this RDMA_SEND and the RPC
  335. * header and data are all transmitted via RDMA.
  336. * In all three cases, this function prepares the RPCRDMA header in
  337. * sge[0], the 'type' parameter indicates the type to place in the
  338. * RPCRDMA header, and the 'byte_count' field indicates how much of
  339. * the XDR to include in this RDMA_SEND.
  340. */
  341. static int send_reply(struct svcxprt_rdma *rdma,
  342. struct svc_rqst *rqstp,
  343. struct page *page,
  344. struct rpcrdma_msg *rdma_resp,
  345. struct svc_rdma_op_ctxt *ctxt,
  346. int sge_count,
  347. int byte_count)
  348. {
  349. struct ib_send_wr send_wr;
  350. int sge_no;
  351. int sge_bytes;
  352. int page_no;
  353. int ret;
  354. /* Prepare the context */
  355. ctxt->pages[0] = page;
  356. ctxt->count = 1;
  357. /* Prepare the SGE for the RPCRDMA Header */
  358. ctxt->sge[0].addr =
  359. ib_dma_map_page(rdma->sc_cm_id->device,
  360. page, 0, PAGE_SIZE, DMA_TO_DEVICE);
  361. ctxt->direction = DMA_TO_DEVICE;
  362. ctxt->sge[0].length = svc_rdma_xdr_get_reply_hdr_len(rdma_resp);
  363. ctxt->sge[0].lkey = rdma->sc_phys_mr->lkey;
  364. /* Determine how many of our SGE are to be transmitted */
  365. for (sge_no = 1; byte_count && sge_no < sge_count; sge_no++) {
  366. sge_bytes = min((size_t)ctxt->sge[sge_no].length,
  367. (size_t)byte_count);
  368. byte_count -= sge_bytes;
  369. }
  370. BUG_ON(byte_count != 0);
  371. /* Save all respages in the ctxt and remove them from the
  372. * respages array. They are our pages until the I/O
  373. * completes.
  374. */
  375. for (page_no = 0; page_no < rqstp->rq_resused; page_no++) {
  376. ctxt->pages[page_no+1] = rqstp->rq_respages[page_no];
  377. ctxt->count++;
  378. rqstp->rq_respages[page_no] = NULL;
  379. }
  380. BUG_ON(sge_no > rdma->sc_max_sge);
  381. memset(&send_wr, 0, sizeof send_wr);
  382. ctxt->wr_op = IB_WR_SEND;
  383. send_wr.wr_id = (unsigned long)ctxt;
  384. send_wr.sg_list = ctxt->sge;
  385. send_wr.num_sge = sge_no;
  386. send_wr.opcode = IB_WR_SEND;
  387. send_wr.send_flags = IB_SEND_SIGNALED;
  388. ret = svc_rdma_send(rdma, &send_wr);
  389. if (ret)
  390. svc_rdma_put_context(ctxt, 1);
  391. return ret;
  392. }
  393. void svc_rdma_prep_reply_hdr(struct svc_rqst *rqstp)
  394. {
  395. }
  396. /*
  397. * Return the start of an xdr buffer.
  398. */
  399. static void *xdr_start(struct xdr_buf *xdr)
  400. {
  401. return xdr->head[0].iov_base -
  402. (xdr->len -
  403. xdr->page_len -
  404. xdr->tail[0].iov_len -
  405. xdr->head[0].iov_len);
  406. }
  407. int svc_rdma_sendto(struct svc_rqst *rqstp)
  408. {
  409. struct svc_xprt *xprt = rqstp->rq_xprt;
  410. struct svcxprt_rdma *rdma =
  411. container_of(xprt, struct svcxprt_rdma, sc_xprt);
  412. struct rpcrdma_msg *rdma_argp;
  413. struct rpcrdma_msg *rdma_resp;
  414. struct rpcrdma_write_array *reply_ary;
  415. enum rpcrdma_proc reply_type;
  416. int ret;
  417. int inline_bytes;
  418. struct ib_sge *sge;
  419. int sge_count = 0;
  420. struct page *res_page;
  421. struct svc_rdma_op_ctxt *ctxt;
  422. dprintk("svcrdma: sending response for rqstp=%p\n", rqstp);
  423. /* Get the RDMA request header. */
  424. rdma_argp = xdr_start(&rqstp->rq_arg);
  425. /* Build an SGE for the XDR */
  426. ctxt = svc_rdma_get_context(rdma);
  427. ctxt->direction = DMA_TO_DEVICE;
  428. sge = xdr_to_sge(rdma, &rqstp->rq_res, ctxt->sge, &sge_count);
  429. inline_bytes = rqstp->rq_res.len;
  430. /* Create the RDMA response header */
  431. res_page = svc_rdma_get_page();
  432. rdma_resp = page_address(res_page);
  433. reply_ary = svc_rdma_get_reply_array(rdma_argp);
  434. if (reply_ary)
  435. reply_type = RDMA_NOMSG;
  436. else
  437. reply_type = RDMA_MSG;
  438. svc_rdma_xdr_encode_reply_header(rdma, rdma_argp,
  439. rdma_resp, reply_type);
  440. /* Send any write-chunk data and build resp write-list */
  441. ret = send_write_chunks(rdma, rdma_argp, rdma_resp,
  442. rqstp, sge, sge_count);
  443. if (ret < 0) {
  444. printk(KERN_ERR "svcrdma: failed to send write chunks, rc=%d\n",
  445. ret);
  446. goto error;
  447. }
  448. inline_bytes -= ret;
  449. /* Send any reply-list data and update resp reply-list */
  450. ret = send_reply_chunks(rdma, rdma_argp, rdma_resp,
  451. rqstp, sge, sge_count);
  452. if (ret < 0) {
  453. printk(KERN_ERR "svcrdma: failed to send reply chunks, rc=%d\n",
  454. ret);
  455. goto error;
  456. }
  457. inline_bytes -= ret;
  458. ret = send_reply(rdma, rqstp, res_page, rdma_resp, ctxt, sge_count,
  459. inline_bytes);
  460. dprintk("svcrdma: send_reply returns %d\n", ret);
  461. return ret;
  462. error:
  463. svc_rdma_put_context(ctxt, 0);
  464. put_page(res_page);
  465. return ret;
  466. }