page_alloc.c 124 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/compiler.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/suspend.h>
  27. #include <linux/pagevec.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/slab.h>
  30. #include <linux/oom.h>
  31. #include <linux/notifier.h>
  32. #include <linux/topology.h>
  33. #include <linux/sysctl.h>
  34. #include <linux/cpu.h>
  35. #include <linux/cpuset.h>
  36. #include <linux/memory_hotplug.h>
  37. #include <linux/nodemask.h>
  38. #include <linux/vmalloc.h>
  39. #include <linux/mempolicy.h>
  40. #include <linux/stop_machine.h>
  41. #include <linux/sort.h>
  42. #include <linux/pfn.h>
  43. #include <linux/backing-dev.h>
  44. #include <linux/fault-inject.h>
  45. #include <linux/page-isolation.h>
  46. #include <linux/memcontrol.h>
  47. #include <asm/tlbflush.h>
  48. #include <asm/div64.h>
  49. #include "internal.h"
  50. /*
  51. * Array of node states.
  52. */
  53. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  54. [N_POSSIBLE] = NODE_MASK_ALL,
  55. [N_ONLINE] = { { [0] = 1UL } },
  56. #ifndef CONFIG_NUMA
  57. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  58. #ifdef CONFIG_HIGHMEM
  59. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  60. #endif
  61. [N_CPU] = { { [0] = 1UL } },
  62. #endif /* NUMA */
  63. };
  64. EXPORT_SYMBOL(node_states);
  65. unsigned long totalram_pages __read_mostly;
  66. unsigned long totalreserve_pages __read_mostly;
  67. long nr_swap_pages;
  68. int percpu_pagelist_fraction;
  69. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  70. int pageblock_order __read_mostly;
  71. #endif
  72. static void __free_pages_ok(struct page *page, unsigned int order);
  73. /*
  74. * results with 256, 32 in the lowmem_reserve sysctl:
  75. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  76. * 1G machine -> (16M dma, 784M normal, 224M high)
  77. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  78. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  79. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  80. *
  81. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  82. * don't need any ZONE_NORMAL reservation
  83. */
  84. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  85. #ifdef CONFIG_ZONE_DMA
  86. 256,
  87. #endif
  88. #ifdef CONFIG_ZONE_DMA32
  89. 256,
  90. #endif
  91. #ifdef CONFIG_HIGHMEM
  92. 32,
  93. #endif
  94. 32,
  95. };
  96. EXPORT_SYMBOL(totalram_pages);
  97. static char * const zone_names[MAX_NR_ZONES] = {
  98. #ifdef CONFIG_ZONE_DMA
  99. "DMA",
  100. #endif
  101. #ifdef CONFIG_ZONE_DMA32
  102. "DMA32",
  103. #endif
  104. "Normal",
  105. #ifdef CONFIG_HIGHMEM
  106. "HighMem",
  107. #endif
  108. "Movable",
  109. };
  110. int min_free_kbytes = 1024;
  111. unsigned long __meminitdata nr_kernel_pages;
  112. unsigned long __meminitdata nr_all_pages;
  113. static unsigned long __meminitdata dma_reserve;
  114. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  115. /*
  116. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  117. * ranges of memory (RAM) that may be registered with add_active_range().
  118. * Ranges passed to add_active_range() will be merged if possible
  119. * so the number of times add_active_range() can be called is
  120. * related to the number of nodes and the number of holes
  121. */
  122. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  123. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  124. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  125. #else
  126. #if MAX_NUMNODES >= 32
  127. /* If there can be many nodes, allow up to 50 holes per node */
  128. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  129. #else
  130. /* By default, allow up to 256 distinct regions */
  131. #define MAX_ACTIVE_REGIONS 256
  132. #endif
  133. #endif
  134. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  135. static int __meminitdata nr_nodemap_entries;
  136. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  137. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  138. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  139. static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
  140. static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
  141. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  142. unsigned long __initdata required_kernelcore;
  143. static unsigned long __initdata required_movablecore;
  144. unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  145. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  146. int movable_zone;
  147. EXPORT_SYMBOL(movable_zone);
  148. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  149. #if MAX_NUMNODES > 1
  150. int nr_node_ids __read_mostly = MAX_NUMNODES;
  151. EXPORT_SYMBOL(nr_node_ids);
  152. #endif
  153. int page_group_by_mobility_disabled __read_mostly;
  154. static void set_pageblock_migratetype(struct page *page, int migratetype)
  155. {
  156. set_pageblock_flags_group(page, (unsigned long)migratetype,
  157. PB_migrate, PB_migrate_end);
  158. }
  159. #ifdef CONFIG_DEBUG_VM
  160. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  161. {
  162. int ret = 0;
  163. unsigned seq;
  164. unsigned long pfn = page_to_pfn(page);
  165. do {
  166. seq = zone_span_seqbegin(zone);
  167. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  168. ret = 1;
  169. else if (pfn < zone->zone_start_pfn)
  170. ret = 1;
  171. } while (zone_span_seqretry(zone, seq));
  172. return ret;
  173. }
  174. static int page_is_consistent(struct zone *zone, struct page *page)
  175. {
  176. if (!pfn_valid_within(page_to_pfn(page)))
  177. return 0;
  178. if (zone != page_zone(page))
  179. return 0;
  180. return 1;
  181. }
  182. /*
  183. * Temporary debugging check for pages not lying within a given zone.
  184. */
  185. static int bad_range(struct zone *zone, struct page *page)
  186. {
  187. if (page_outside_zone_boundaries(zone, page))
  188. return 1;
  189. if (!page_is_consistent(zone, page))
  190. return 1;
  191. return 0;
  192. }
  193. #else
  194. static inline int bad_range(struct zone *zone, struct page *page)
  195. {
  196. return 0;
  197. }
  198. #endif
  199. static void bad_page(struct page *page)
  200. {
  201. void *pc = page_get_page_cgroup(page);
  202. printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
  203. "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
  204. current->comm, page, (int)(2*sizeof(unsigned long)),
  205. (unsigned long)page->flags, page->mapping,
  206. page_mapcount(page), page_count(page));
  207. if (pc) {
  208. printk(KERN_EMERG "cgroup:%p\n", pc);
  209. page_reset_bad_cgroup(page);
  210. }
  211. printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
  212. KERN_EMERG "Backtrace:\n");
  213. dump_stack();
  214. page->flags &= ~(1 << PG_lru |
  215. 1 << PG_private |
  216. 1 << PG_locked |
  217. 1 << PG_active |
  218. 1 << PG_dirty |
  219. 1 << PG_reclaim |
  220. 1 << PG_slab |
  221. 1 << PG_swapcache |
  222. 1 << PG_writeback |
  223. 1 << PG_buddy );
  224. set_page_count(page, 0);
  225. reset_page_mapcount(page);
  226. page->mapping = NULL;
  227. add_taint(TAINT_BAD_PAGE);
  228. }
  229. /*
  230. * Higher-order pages are called "compound pages". They are structured thusly:
  231. *
  232. * The first PAGE_SIZE page is called the "head page".
  233. *
  234. * The remaining PAGE_SIZE pages are called "tail pages".
  235. *
  236. * All pages have PG_compound set. All pages have their ->private pointing at
  237. * the head page (even the head page has this).
  238. *
  239. * The first tail page's ->lru.next holds the address of the compound page's
  240. * put_page() function. Its ->lru.prev holds the order of allocation.
  241. * This usage means that zero-order pages may not be compound.
  242. */
  243. static void free_compound_page(struct page *page)
  244. {
  245. __free_pages_ok(page, compound_order(page));
  246. }
  247. static void prep_compound_page(struct page *page, unsigned long order)
  248. {
  249. int i;
  250. int nr_pages = 1 << order;
  251. set_compound_page_dtor(page, free_compound_page);
  252. set_compound_order(page, order);
  253. __SetPageHead(page);
  254. for (i = 1; i < nr_pages; i++) {
  255. struct page *p = page + i;
  256. __SetPageTail(p);
  257. p->first_page = page;
  258. }
  259. }
  260. static void destroy_compound_page(struct page *page, unsigned long order)
  261. {
  262. int i;
  263. int nr_pages = 1 << order;
  264. if (unlikely(compound_order(page) != order))
  265. bad_page(page);
  266. if (unlikely(!PageHead(page)))
  267. bad_page(page);
  268. __ClearPageHead(page);
  269. for (i = 1; i < nr_pages; i++) {
  270. struct page *p = page + i;
  271. if (unlikely(!PageTail(p) |
  272. (p->first_page != page)))
  273. bad_page(page);
  274. __ClearPageTail(p);
  275. }
  276. }
  277. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  278. {
  279. int i;
  280. /*
  281. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  282. * and __GFP_HIGHMEM from hard or soft interrupt context.
  283. */
  284. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  285. for (i = 0; i < (1 << order); i++)
  286. clear_highpage(page + i);
  287. }
  288. static inline void set_page_order(struct page *page, int order)
  289. {
  290. set_page_private(page, order);
  291. __SetPageBuddy(page);
  292. }
  293. static inline void rmv_page_order(struct page *page)
  294. {
  295. __ClearPageBuddy(page);
  296. set_page_private(page, 0);
  297. }
  298. /*
  299. * Locate the struct page for both the matching buddy in our
  300. * pair (buddy1) and the combined O(n+1) page they form (page).
  301. *
  302. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  303. * the following equation:
  304. * B2 = B1 ^ (1 << O)
  305. * For example, if the starting buddy (buddy2) is #8 its order
  306. * 1 buddy is #10:
  307. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  308. *
  309. * 2) Any buddy B will have an order O+1 parent P which
  310. * satisfies the following equation:
  311. * P = B & ~(1 << O)
  312. *
  313. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  314. */
  315. static inline struct page *
  316. __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
  317. {
  318. unsigned long buddy_idx = page_idx ^ (1 << order);
  319. return page + (buddy_idx - page_idx);
  320. }
  321. static inline unsigned long
  322. __find_combined_index(unsigned long page_idx, unsigned int order)
  323. {
  324. return (page_idx & ~(1 << order));
  325. }
  326. /*
  327. * This function checks whether a page is free && is the buddy
  328. * we can do coalesce a page and its buddy if
  329. * (a) the buddy is not in a hole &&
  330. * (b) the buddy is in the buddy system &&
  331. * (c) a page and its buddy have the same order &&
  332. * (d) a page and its buddy are in the same zone.
  333. *
  334. * For recording whether a page is in the buddy system, we use PG_buddy.
  335. * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
  336. *
  337. * For recording page's order, we use page_private(page).
  338. */
  339. static inline int page_is_buddy(struct page *page, struct page *buddy,
  340. int order)
  341. {
  342. if (!pfn_valid_within(page_to_pfn(buddy)))
  343. return 0;
  344. if (page_zone_id(page) != page_zone_id(buddy))
  345. return 0;
  346. if (PageBuddy(buddy) && page_order(buddy) == order) {
  347. BUG_ON(page_count(buddy) != 0);
  348. return 1;
  349. }
  350. return 0;
  351. }
  352. /*
  353. * Freeing function for a buddy system allocator.
  354. *
  355. * The concept of a buddy system is to maintain direct-mapped table
  356. * (containing bit values) for memory blocks of various "orders".
  357. * The bottom level table contains the map for the smallest allocatable
  358. * units of memory (here, pages), and each level above it describes
  359. * pairs of units from the levels below, hence, "buddies".
  360. * At a high level, all that happens here is marking the table entry
  361. * at the bottom level available, and propagating the changes upward
  362. * as necessary, plus some accounting needed to play nicely with other
  363. * parts of the VM system.
  364. * At each level, we keep a list of pages, which are heads of continuous
  365. * free pages of length of (1 << order) and marked with PG_buddy. Page's
  366. * order is recorded in page_private(page) field.
  367. * So when we are allocating or freeing one, we can derive the state of the
  368. * other. That is, if we allocate a small block, and both were
  369. * free, the remainder of the region must be split into blocks.
  370. * If a block is freed, and its buddy is also free, then this
  371. * triggers coalescing into a block of larger size.
  372. *
  373. * -- wli
  374. */
  375. static inline void __free_one_page(struct page *page,
  376. struct zone *zone, unsigned int order)
  377. {
  378. unsigned long page_idx;
  379. int order_size = 1 << order;
  380. int migratetype = get_pageblock_migratetype(page);
  381. if (unlikely(PageCompound(page)))
  382. destroy_compound_page(page, order);
  383. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  384. VM_BUG_ON(page_idx & (order_size - 1));
  385. VM_BUG_ON(bad_range(zone, page));
  386. __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
  387. while (order < MAX_ORDER-1) {
  388. unsigned long combined_idx;
  389. struct page *buddy;
  390. buddy = __page_find_buddy(page, page_idx, order);
  391. if (!page_is_buddy(page, buddy, order))
  392. break; /* Move the buddy up one level. */
  393. list_del(&buddy->lru);
  394. zone->free_area[order].nr_free--;
  395. rmv_page_order(buddy);
  396. combined_idx = __find_combined_index(page_idx, order);
  397. page = page + (combined_idx - page_idx);
  398. page_idx = combined_idx;
  399. order++;
  400. }
  401. set_page_order(page, order);
  402. list_add(&page->lru,
  403. &zone->free_area[order].free_list[migratetype]);
  404. zone->free_area[order].nr_free++;
  405. }
  406. static inline int free_pages_check(struct page *page)
  407. {
  408. if (unlikely(page_mapcount(page) |
  409. (page->mapping != NULL) |
  410. (page_get_page_cgroup(page) != NULL) |
  411. (page_count(page) != 0) |
  412. (page->flags & (
  413. 1 << PG_lru |
  414. 1 << PG_private |
  415. 1 << PG_locked |
  416. 1 << PG_active |
  417. 1 << PG_slab |
  418. 1 << PG_swapcache |
  419. 1 << PG_writeback |
  420. 1 << PG_reserved |
  421. 1 << PG_buddy ))))
  422. bad_page(page);
  423. if (PageDirty(page))
  424. __ClearPageDirty(page);
  425. /*
  426. * For now, we report if PG_reserved was found set, but do not
  427. * clear it, and do not free the page. But we shall soon need
  428. * to do more, for when the ZERO_PAGE count wraps negative.
  429. */
  430. return PageReserved(page);
  431. }
  432. /*
  433. * Frees a list of pages.
  434. * Assumes all pages on list are in same zone, and of same order.
  435. * count is the number of pages to free.
  436. *
  437. * If the zone was previously in an "all pages pinned" state then look to
  438. * see if this freeing clears that state.
  439. *
  440. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  441. * pinned" detection logic.
  442. */
  443. static void free_pages_bulk(struct zone *zone, int count,
  444. struct list_head *list, int order)
  445. {
  446. spin_lock(&zone->lock);
  447. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  448. zone->pages_scanned = 0;
  449. while (count--) {
  450. struct page *page;
  451. VM_BUG_ON(list_empty(list));
  452. page = list_entry(list->prev, struct page, lru);
  453. /* have to delete it as __free_one_page list manipulates */
  454. list_del(&page->lru);
  455. __free_one_page(page, zone, order);
  456. }
  457. spin_unlock(&zone->lock);
  458. }
  459. static void free_one_page(struct zone *zone, struct page *page, int order)
  460. {
  461. spin_lock(&zone->lock);
  462. zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
  463. zone->pages_scanned = 0;
  464. __free_one_page(page, zone, order);
  465. spin_unlock(&zone->lock);
  466. }
  467. static void __free_pages_ok(struct page *page, unsigned int order)
  468. {
  469. unsigned long flags;
  470. int i;
  471. int reserved = 0;
  472. for (i = 0 ; i < (1 << order) ; ++i)
  473. reserved += free_pages_check(page + i);
  474. if (reserved)
  475. return;
  476. if (!PageHighMem(page))
  477. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  478. arch_free_page(page, order);
  479. kernel_map_pages(page, 1 << order, 0);
  480. local_irq_save(flags);
  481. __count_vm_events(PGFREE, 1 << order);
  482. free_one_page(page_zone(page), page, order);
  483. local_irq_restore(flags);
  484. }
  485. /*
  486. * permit the bootmem allocator to evade page validation on high-order frees
  487. */
  488. void __init __free_pages_bootmem(struct page *page, unsigned int order)
  489. {
  490. if (order == 0) {
  491. __ClearPageReserved(page);
  492. set_page_count(page, 0);
  493. set_page_refcounted(page);
  494. __free_page(page);
  495. } else {
  496. int loop;
  497. prefetchw(page);
  498. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  499. struct page *p = &page[loop];
  500. if (loop + 1 < BITS_PER_LONG)
  501. prefetchw(p + 1);
  502. __ClearPageReserved(p);
  503. set_page_count(p, 0);
  504. }
  505. set_page_refcounted(page);
  506. __free_pages(page, order);
  507. }
  508. }
  509. /*
  510. * The order of subdivision here is critical for the IO subsystem.
  511. * Please do not alter this order without good reasons and regression
  512. * testing. Specifically, as large blocks of memory are subdivided,
  513. * the order in which smaller blocks are delivered depends on the order
  514. * they're subdivided in this function. This is the primary factor
  515. * influencing the order in which pages are delivered to the IO
  516. * subsystem according to empirical testing, and this is also justified
  517. * by considering the behavior of a buddy system containing a single
  518. * large block of memory acted on by a series of small allocations.
  519. * This behavior is a critical factor in sglist merging's success.
  520. *
  521. * -- wli
  522. */
  523. static inline void expand(struct zone *zone, struct page *page,
  524. int low, int high, struct free_area *area,
  525. int migratetype)
  526. {
  527. unsigned long size = 1 << high;
  528. while (high > low) {
  529. area--;
  530. high--;
  531. size >>= 1;
  532. VM_BUG_ON(bad_range(zone, &page[size]));
  533. list_add(&page[size].lru, &area->free_list[migratetype]);
  534. area->nr_free++;
  535. set_page_order(&page[size], high);
  536. }
  537. }
  538. /*
  539. * This page is about to be returned from the page allocator
  540. */
  541. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  542. {
  543. if (unlikely(page_mapcount(page) |
  544. (page->mapping != NULL) |
  545. (page_get_page_cgroup(page) != NULL) |
  546. (page_count(page) != 0) |
  547. (page->flags & (
  548. 1 << PG_lru |
  549. 1 << PG_private |
  550. 1 << PG_locked |
  551. 1 << PG_active |
  552. 1 << PG_dirty |
  553. 1 << PG_slab |
  554. 1 << PG_swapcache |
  555. 1 << PG_writeback |
  556. 1 << PG_reserved |
  557. 1 << PG_buddy ))))
  558. bad_page(page);
  559. /*
  560. * For now, we report if PG_reserved was found set, but do not
  561. * clear it, and do not allocate the page: as a safety net.
  562. */
  563. if (PageReserved(page))
  564. return 1;
  565. page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
  566. 1 << PG_referenced | 1 << PG_arch_1 |
  567. 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
  568. set_page_private(page, 0);
  569. set_page_refcounted(page);
  570. arch_alloc_page(page, order);
  571. kernel_map_pages(page, 1 << order, 1);
  572. if (gfp_flags & __GFP_ZERO)
  573. prep_zero_page(page, order, gfp_flags);
  574. if (order && (gfp_flags & __GFP_COMP))
  575. prep_compound_page(page, order);
  576. return 0;
  577. }
  578. /*
  579. * Go through the free lists for the given migratetype and remove
  580. * the smallest available page from the freelists
  581. */
  582. static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  583. int migratetype)
  584. {
  585. unsigned int current_order;
  586. struct free_area * area;
  587. struct page *page;
  588. /* Find a page of the appropriate size in the preferred list */
  589. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  590. area = &(zone->free_area[current_order]);
  591. if (list_empty(&area->free_list[migratetype]))
  592. continue;
  593. page = list_entry(area->free_list[migratetype].next,
  594. struct page, lru);
  595. list_del(&page->lru);
  596. rmv_page_order(page);
  597. area->nr_free--;
  598. __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
  599. expand(zone, page, order, current_order, area, migratetype);
  600. return page;
  601. }
  602. return NULL;
  603. }
  604. /*
  605. * This array describes the order lists are fallen back to when
  606. * the free lists for the desirable migrate type are depleted
  607. */
  608. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  609. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  610. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  611. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  612. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  613. };
  614. /*
  615. * Move the free pages in a range to the free lists of the requested type.
  616. * Note that start_page and end_pages are not aligned on a pageblock
  617. * boundary. If alignment is required, use move_freepages_block()
  618. */
  619. int move_freepages(struct zone *zone,
  620. struct page *start_page, struct page *end_page,
  621. int migratetype)
  622. {
  623. struct page *page;
  624. unsigned long order;
  625. int pages_moved = 0;
  626. #ifndef CONFIG_HOLES_IN_ZONE
  627. /*
  628. * page_zone is not safe to call in this context when
  629. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  630. * anyway as we check zone boundaries in move_freepages_block().
  631. * Remove at a later date when no bug reports exist related to
  632. * grouping pages by mobility
  633. */
  634. BUG_ON(page_zone(start_page) != page_zone(end_page));
  635. #endif
  636. for (page = start_page; page <= end_page;) {
  637. if (!pfn_valid_within(page_to_pfn(page))) {
  638. page++;
  639. continue;
  640. }
  641. if (!PageBuddy(page)) {
  642. page++;
  643. continue;
  644. }
  645. order = page_order(page);
  646. list_del(&page->lru);
  647. list_add(&page->lru,
  648. &zone->free_area[order].free_list[migratetype]);
  649. page += 1 << order;
  650. pages_moved += 1 << order;
  651. }
  652. return pages_moved;
  653. }
  654. int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
  655. {
  656. unsigned long start_pfn, end_pfn;
  657. struct page *start_page, *end_page;
  658. start_pfn = page_to_pfn(page);
  659. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  660. start_page = pfn_to_page(start_pfn);
  661. end_page = start_page + pageblock_nr_pages - 1;
  662. end_pfn = start_pfn + pageblock_nr_pages - 1;
  663. /* Do not cross zone boundaries */
  664. if (start_pfn < zone->zone_start_pfn)
  665. start_page = page;
  666. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  667. return 0;
  668. return move_freepages(zone, start_page, end_page, migratetype);
  669. }
  670. /* Remove an element from the buddy allocator from the fallback list */
  671. static struct page *__rmqueue_fallback(struct zone *zone, int order,
  672. int start_migratetype)
  673. {
  674. struct free_area * area;
  675. int current_order;
  676. struct page *page;
  677. int migratetype, i;
  678. /* Find the largest possible block of pages in the other list */
  679. for (current_order = MAX_ORDER-1; current_order >= order;
  680. --current_order) {
  681. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  682. migratetype = fallbacks[start_migratetype][i];
  683. /* MIGRATE_RESERVE handled later if necessary */
  684. if (migratetype == MIGRATE_RESERVE)
  685. continue;
  686. area = &(zone->free_area[current_order]);
  687. if (list_empty(&area->free_list[migratetype]))
  688. continue;
  689. page = list_entry(area->free_list[migratetype].next,
  690. struct page, lru);
  691. area->nr_free--;
  692. /*
  693. * If breaking a large block of pages, move all free
  694. * pages to the preferred allocation list. If falling
  695. * back for a reclaimable kernel allocation, be more
  696. * agressive about taking ownership of free pages
  697. */
  698. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  699. start_migratetype == MIGRATE_RECLAIMABLE) {
  700. unsigned long pages;
  701. pages = move_freepages_block(zone, page,
  702. start_migratetype);
  703. /* Claim the whole block if over half of it is free */
  704. if (pages >= (1 << (pageblock_order-1)))
  705. set_pageblock_migratetype(page,
  706. start_migratetype);
  707. migratetype = start_migratetype;
  708. }
  709. /* Remove the page from the freelists */
  710. list_del(&page->lru);
  711. rmv_page_order(page);
  712. __mod_zone_page_state(zone, NR_FREE_PAGES,
  713. -(1UL << order));
  714. if (current_order == pageblock_order)
  715. set_pageblock_migratetype(page,
  716. start_migratetype);
  717. expand(zone, page, order, current_order, area, migratetype);
  718. return page;
  719. }
  720. }
  721. /* Use MIGRATE_RESERVE rather than fail an allocation */
  722. return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
  723. }
  724. /*
  725. * Do the hard work of removing an element from the buddy allocator.
  726. * Call me with the zone->lock already held.
  727. */
  728. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  729. int migratetype)
  730. {
  731. struct page *page;
  732. page = __rmqueue_smallest(zone, order, migratetype);
  733. if (unlikely(!page))
  734. page = __rmqueue_fallback(zone, order, migratetype);
  735. return page;
  736. }
  737. /*
  738. * Obtain a specified number of elements from the buddy allocator, all under
  739. * a single hold of the lock, for efficiency. Add them to the supplied list.
  740. * Returns the number of new pages which were placed at *list.
  741. */
  742. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  743. unsigned long count, struct list_head *list,
  744. int migratetype)
  745. {
  746. int i;
  747. spin_lock(&zone->lock);
  748. for (i = 0; i < count; ++i) {
  749. struct page *page = __rmqueue(zone, order, migratetype);
  750. if (unlikely(page == NULL))
  751. break;
  752. /*
  753. * Split buddy pages returned by expand() are received here
  754. * in physical page order. The page is added to the callers and
  755. * list and the list head then moves forward. From the callers
  756. * perspective, the linked list is ordered by page number in
  757. * some conditions. This is useful for IO devices that can
  758. * merge IO requests if the physical pages are ordered
  759. * properly.
  760. */
  761. list_add(&page->lru, list);
  762. set_page_private(page, migratetype);
  763. list = &page->lru;
  764. }
  765. spin_unlock(&zone->lock);
  766. return i;
  767. }
  768. #ifdef CONFIG_NUMA
  769. /*
  770. * Called from the vmstat counter updater to drain pagesets of this
  771. * currently executing processor on remote nodes after they have
  772. * expired.
  773. *
  774. * Note that this function must be called with the thread pinned to
  775. * a single processor.
  776. */
  777. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  778. {
  779. unsigned long flags;
  780. int to_drain;
  781. local_irq_save(flags);
  782. if (pcp->count >= pcp->batch)
  783. to_drain = pcp->batch;
  784. else
  785. to_drain = pcp->count;
  786. free_pages_bulk(zone, to_drain, &pcp->list, 0);
  787. pcp->count -= to_drain;
  788. local_irq_restore(flags);
  789. }
  790. #endif
  791. /*
  792. * Drain pages of the indicated processor.
  793. *
  794. * The processor must either be the current processor and the
  795. * thread pinned to the current processor or a processor that
  796. * is not online.
  797. */
  798. static void drain_pages(unsigned int cpu)
  799. {
  800. unsigned long flags;
  801. struct zone *zone;
  802. for_each_zone(zone) {
  803. struct per_cpu_pageset *pset;
  804. struct per_cpu_pages *pcp;
  805. if (!populated_zone(zone))
  806. continue;
  807. pset = zone_pcp(zone, cpu);
  808. pcp = &pset->pcp;
  809. local_irq_save(flags);
  810. free_pages_bulk(zone, pcp->count, &pcp->list, 0);
  811. pcp->count = 0;
  812. local_irq_restore(flags);
  813. }
  814. }
  815. /*
  816. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  817. */
  818. void drain_local_pages(void *arg)
  819. {
  820. drain_pages(smp_processor_id());
  821. }
  822. /*
  823. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  824. */
  825. void drain_all_pages(void)
  826. {
  827. on_each_cpu(drain_local_pages, NULL, 0, 1);
  828. }
  829. #ifdef CONFIG_HIBERNATION
  830. void mark_free_pages(struct zone *zone)
  831. {
  832. unsigned long pfn, max_zone_pfn;
  833. unsigned long flags;
  834. int order, t;
  835. struct list_head *curr;
  836. if (!zone->spanned_pages)
  837. return;
  838. spin_lock_irqsave(&zone->lock, flags);
  839. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  840. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  841. if (pfn_valid(pfn)) {
  842. struct page *page = pfn_to_page(pfn);
  843. if (!swsusp_page_is_forbidden(page))
  844. swsusp_unset_page_free(page);
  845. }
  846. for_each_migratetype_order(order, t) {
  847. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  848. unsigned long i;
  849. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  850. for (i = 0; i < (1UL << order); i++)
  851. swsusp_set_page_free(pfn_to_page(pfn + i));
  852. }
  853. }
  854. spin_unlock_irqrestore(&zone->lock, flags);
  855. }
  856. #endif /* CONFIG_PM */
  857. /*
  858. * Free a 0-order page
  859. */
  860. static void free_hot_cold_page(struct page *page, int cold)
  861. {
  862. struct zone *zone = page_zone(page);
  863. struct per_cpu_pages *pcp;
  864. unsigned long flags;
  865. if (PageAnon(page))
  866. page->mapping = NULL;
  867. if (free_pages_check(page))
  868. return;
  869. if (!PageHighMem(page))
  870. debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
  871. arch_free_page(page, 0);
  872. kernel_map_pages(page, 1, 0);
  873. pcp = &zone_pcp(zone, get_cpu())->pcp;
  874. local_irq_save(flags);
  875. __count_vm_event(PGFREE);
  876. if (cold)
  877. list_add_tail(&page->lru, &pcp->list);
  878. else
  879. list_add(&page->lru, &pcp->list);
  880. set_page_private(page, get_pageblock_migratetype(page));
  881. pcp->count++;
  882. if (pcp->count >= pcp->high) {
  883. free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
  884. pcp->count -= pcp->batch;
  885. }
  886. local_irq_restore(flags);
  887. put_cpu();
  888. }
  889. void free_hot_page(struct page *page)
  890. {
  891. free_hot_cold_page(page, 0);
  892. }
  893. void free_cold_page(struct page *page)
  894. {
  895. free_hot_cold_page(page, 1);
  896. }
  897. /*
  898. * split_page takes a non-compound higher-order page, and splits it into
  899. * n (1<<order) sub-pages: page[0..n]
  900. * Each sub-page must be freed individually.
  901. *
  902. * Note: this is probably too low level an operation for use in drivers.
  903. * Please consult with lkml before using this in your driver.
  904. */
  905. void split_page(struct page *page, unsigned int order)
  906. {
  907. int i;
  908. VM_BUG_ON(PageCompound(page));
  909. VM_BUG_ON(!page_count(page));
  910. for (i = 1; i < (1 << order); i++)
  911. set_page_refcounted(page + i);
  912. }
  913. /*
  914. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  915. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  916. * or two.
  917. */
  918. static struct page *buffered_rmqueue(struct zonelist *zonelist,
  919. struct zone *zone, int order, gfp_t gfp_flags)
  920. {
  921. unsigned long flags;
  922. struct page *page;
  923. int cold = !!(gfp_flags & __GFP_COLD);
  924. int cpu;
  925. int migratetype = allocflags_to_migratetype(gfp_flags);
  926. again:
  927. cpu = get_cpu();
  928. if (likely(order == 0)) {
  929. struct per_cpu_pages *pcp;
  930. pcp = &zone_pcp(zone, cpu)->pcp;
  931. local_irq_save(flags);
  932. if (!pcp->count) {
  933. pcp->count = rmqueue_bulk(zone, 0,
  934. pcp->batch, &pcp->list, migratetype);
  935. if (unlikely(!pcp->count))
  936. goto failed;
  937. }
  938. /* Find a page of the appropriate migrate type */
  939. if (cold) {
  940. list_for_each_entry_reverse(page, &pcp->list, lru)
  941. if (page_private(page) == migratetype)
  942. break;
  943. } else {
  944. list_for_each_entry(page, &pcp->list, lru)
  945. if (page_private(page) == migratetype)
  946. break;
  947. }
  948. /* Allocate more to the pcp list if necessary */
  949. if (unlikely(&page->lru == &pcp->list)) {
  950. pcp->count += rmqueue_bulk(zone, 0,
  951. pcp->batch, &pcp->list, migratetype);
  952. page = list_entry(pcp->list.next, struct page, lru);
  953. }
  954. list_del(&page->lru);
  955. pcp->count--;
  956. } else {
  957. spin_lock_irqsave(&zone->lock, flags);
  958. page = __rmqueue(zone, order, migratetype);
  959. spin_unlock(&zone->lock);
  960. if (!page)
  961. goto failed;
  962. }
  963. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  964. zone_statistics(zonelist, zone);
  965. local_irq_restore(flags);
  966. put_cpu();
  967. VM_BUG_ON(bad_range(zone, page));
  968. if (prep_new_page(page, order, gfp_flags))
  969. goto again;
  970. return page;
  971. failed:
  972. local_irq_restore(flags);
  973. put_cpu();
  974. return NULL;
  975. }
  976. #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
  977. #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
  978. #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
  979. #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
  980. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  981. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  982. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  983. #ifdef CONFIG_FAIL_PAGE_ALLOC
  984. static struct fail_page_alloc_attr {
  985. struct fault_attr attr;
  986. u32 ignore_gfp_highmem;
  987. u32 ignore_gfp_wait;
  988. u32 min_order;
  989. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  990. struct dentry *ignore_gfp_highmem_file;
  991. struct dentry *ignore_gfp_wait_file;
  992. struct dentry *min_order_file;
  993. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  994. } fail_page_alloc = {
  995. .attr = FAULT_ATTR_INITIALIZER,
  996. .ignore_gfp_wait = 1,
  997. .ignore_gfp_highmem = 1,
  998. .min_order = 1,
  999. };
  1000. static int __init setup_fail_page_alloc(char *str)
  1001. {
  1002. return setup_fault_attr(&fail_page_alloc.attr, str);
  1003. }
  1004. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1005. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1006. {
  1007. if (order < fail_page_alloc.min_order)
  1008. return 0;
  1009. if (gfp_mask & __GFP_NOFAIL)
  1010. return 0;
  1011. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1012. return 0;
  1013. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1014. return 0;
  1015. return should_fail(&fail_page_alloc.attr, 1 << order);
  1016. }
  1017. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1018. static int __init fail_page_alloc_debugfs(void)
  1019. {
  1020. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1021. struct dentry *dir;
  1022. int err;
  1023. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1024. "fail_page_alloc");
  1025. if (err)
  1026. return err;
  1027. dir = fail_page_alloc.attr.dentries.dir;
  1028. fail_page_alloc.ignore_gfp_wait_file =
  1029. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1030. &fail_page_alloc.ignore_gfp_wait);
  1031. fail_page_alloc.ignore_gfp_highmem_file =
  1032. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1033. &fail_page_alloc.ignore_gfp_highmem);
  1034. fail_page_alloc.min_order_file =
  1035. debugfs_create_u32("min-order", mode, dir,
  1036. &fail_page_alloc.min_order);
  1037. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1038. !fail_page_alloc.ignore_gfp_highmem_file ||
  1039. !fail_page_alloc.min_order_file) {
  1040. err = -ENOMEM;
  1041. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1042. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1043. debugfs_remove(fail_page_alloc.min_order_file);
  1044. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1045. }
  1046. return err;
  1047. }
  1048. late_initcall(fail_page_alloc_debugfs);
  1049. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1050. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1051. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1052. {
  1053. return 0;
  1054. }
  1055. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1056. /*
  1057. * Return 1 if free pages are above 'mark'. This takes into account the order
  1058. * of the allocation.
  1059. */
  1060. int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1061. int classzone_idx, int alloc_flags)
  1062. {
  1063. /* free_pages my go negative - that's OK */
  1064. long min = mark;
  1065. long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
  1066. int o;
  1067. if (alloc_flags & ALLOC_HIGH)
  1068. min -= min / 2;
  1069. if (alloc_flags & ALLOC_HARDER)
  1070. min -= min / 4;
  1071. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1072. return 0;
  1073. for (o = 0; o < order; o++) {
  1074. /* At the next order, this order's pages become unavailable */
  1075. free_pages -= z->free_area[o].nr_free << o;
  1076. /* Require fewer higher order pages to be free */
  1077. min >>= 1;
  1078. if (free_pages <= min)
  1079. return 0;
  1080. }
  1081. return 1;
  1082. }
  1083. #ifdef CONFIG_NUMA
  1084. /*
  1085. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1086. * skip over zones that are not allowed by the cpuset, or that have
  1087. * been recently (in last second) found to be nearly full. See further
  1088. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1089. * that have to skip over a lot of full or unallowed zones.
  1090. *
  1091. * If the zonelist cache is present in the passed in zonelist, then
  1092. * returns a pointer to the allowed node mask (either the current
  1093. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1094. *
  1095. * If the zonelist cache is not available for this zonelist, does
  1096. * nothing and returns NULL.
  1097. *
  1098. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1099. * a second since last zap'd) then we zap it out (clear its bits.)
  1100. *
  1101. * We hold off even calling zlc_setup, until after we've checked the
  1102. * first zone in the zonelist, on the theory that most allocations will
  1103. * be satisfied from that first zone, so best to examine that zone as
  1104. * quickly as we can.
  1105. */
  1106. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1107. {
  1108. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1109. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1110. zlc = zonelist->zlcache_ptr;
  1111. if (!zlc)
  1112. return NULL;
  1113. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1114. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1115. zlc->last_full_zap = jiffies;
  1116. }
  1117. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1118. &cpuset_current_mems_allowed :
  1119. &node_states[N_HIGH_MEMORY];
  1120. return allowednodes;
  1121. }
  1122. /*
  1123. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1124. * if it is worth looking at further for free memory:
  1125. * 1) Check that the zone isn't thought to be full (doesn't have its
  1126. * bit set in the zonelist_cache fullzones BITMAP).
  1127. * 2) Check that the zones node (obtained from the zonelist_cache
  1128. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1129. * Return true (non-zero) if zone is worth looking at further, or
  1130. * else return false (zero) if it is not.
  1131. *
  1132. * This check -ignores- the distinction between various watermarks,
  1133. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1134. * found to be full for any variation of these watermarks, it will
  1135. * be considered full for up to one second by all requests, unless
  1136. * we are so low on memory on all allowed nodes that we are forced
  1137. * into the second scan of the zonelist.
  1138. *
  1139. * In the second scan we ignore this zonelist cache and exactly
  1140. * apply the watermarks to all zones, even it is slower to do so.
  1141. * We are low on memory in the second scan, and should leave no stone
  1142. * unturned looking for a free page.
  1143. */
  1144. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  1145. nodemask_t *allowednodes)
  1146. {
  1147. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1148. int i; /* index of *z in zonelist zones */
  1149. int n; /* node that zone *z is on */
  1150. zlc = zonelist->zlcache_ptr;
  1151. if (!zlc)
  1152. return 1;
  1153. i = z - zonelist->zones;
  1154. n = zlc->z_to_n[i];
  1155. /* This zone is worth trying if it is allowed but not full */
  1156. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1157. }
  1158. /*
  1159. * Given 'z' scanning a zonelist, set the corresponding bit in
  1160. * zlc->fullzones, so that subsequent attempts to allocate a page
  1161. * from that zone don't waste time re-examining it.
  1162. */
  1163. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  1164. {
  1165. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1166. int i; /* index of *z in zonelist zones */
  1167. zlc = zonelist->zlcache_ptr;
  1168. if (!zlc)
  1169. return;
  1170. i = z - zonelist->zones;
  1171. set_bit(i, zlc->fullzones);
  1172. }
  1173. #else /* CONFIG_NUMA */
  1174. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1175. {
  1176. return NULL;
  1177. }
  1178. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
  1179. nodemask_t *allowednodes)
  1180. {
  1181. return 1;
  1182. }
  1183. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
  1184. {
  1185. }
  1186. #endif /* CONFIG_NUMA */
  1187. /*
  1188. * get_page_from_freelist goes through the zonelist trying to allocate
  1189. * a page.
  1190. */
  1191. static struct page *
  1192. get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
  1193. struct zonelist *zonelist, int alloc_flags)
  1194. {
  1195. struct zone **z;
  1196. struct page *page = NULL;
  1197. int classzone_idx = zone_idx(zonelist->zones[0]);
  1198. struct zone *zone;
  1199. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1200. int zlc_active = 0; /* set if using zonelist_cache */
  1201. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1202. enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
  1203. zonelist_scan:
  1204. /*
  1205. * Scan zonelist, looking for a zone with enough free.
  1206. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1207. */
  1208. z = zonelist->zones;
  1209. do {
  1210. /*
  1211. * In NUMA, this could be a policy zonelist which contains
  1212. * zones that may not be allowed by the current gfp_mask.
  1213. * Check the zone is allowed by the current flags
  1214. */
  1215. if (unlikely(alloc_should_filter_zonelist(zonelist))) {
  1216. if (highest_zoneidx == -1)
  1217. highest_zoneidx = gfp_zone(gfp_mask);
  1218. if (zone_idx(*z) > highest_zoneidx)
  1219. continue;
  1220. }
  1221. if (NUMA_BUILD && zlc_active &&
  1222. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1223. continue;
  1224. zone = *z;
  1225. if ((alloc_flags & ALLOC_CPUSET) &&
  1226. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1227. goto try_next_zone;
  1228. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1229. unsigned long mark;
  1230. if (alloc_flags & ALLOC_WMARK_MIN)
  1231. mark = zone->pages_min;
  1232. else if (alloc_flags & ALLOC_WMARK_LOW)
  1233. mark = zone->pages_low;
  1234. else
  1235. mark = zone->pages_high;
  1236. if (!zone_watermark_ok(zone, order, mark,
  1237. classzone_idx, alloc_flags)) {
  1238. if (!zone_reclaim_mode ||
  1239. !zone_reclaim(zone, gfp_mask, order))
  1240. goto this_zone_full;
  1241. }
  1242. }
  1243. page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
  1244. if (page)
  1245. break;
  1246. this_zone_full:
  1247. if (NUMA_BUILD)
  1248. zlc_mark_zone_full(zonelist, z);
  1249. try_next_zone:
  1250. if (NUMA_BUILD && !did_zlc_setup) {
  1251. /* we do zlc_setup after the first zone is tried */
  1252. allowednodes = zlc_setup(zonelist, alloc_flags);
  1253. zlc_active = 1;
  1254. did_zlc_setup = 1;
  1255. }
  1256. } while (*(++z) != NULL);
  1257. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1258. /* Disable zlc cache for second zonelist scan */
  1259. zlc_active = 0;
  1260. goto zonelist_scan;
  1261. }
  1262. return page;
  1263. }
  1264. /*
  1265. * This is the 'heart' of the zoned buddy allocator.
  1266. */
  1267. struct page *
  1268. __alloc_pages(gfp_t gfp_mask, unsigned int order,
  1269. struct zonelist *zonelist)
  1270. {
  1271. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1272. struct zone **z;
  1273. struct page *page;
  1274. struct reclaim_state reclaim_state;
  1275. struct task_struct *p = current;
  1276. int do_retry;
  1277. int alloc_flags;
  1278. int did_some_progress;
  1279. might_sleep_if(wait);
  1280. if (should_fail_alloc_page(gfp_mask, order))
  1281. return NULL;
  1282. restart:
  1283. z = zonelist->zones; /* the list of zones suitable for gfp_mask */
  1284. if (unlikely(*z == NULL)) {
  1285. /*
  1286. * Happens if we have an empty zonelist as a result of
  1287. * GFP_THISNODE being used on a memoryless node
  1288. */
  1289. return NULL;
  1290. }
  1291. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1292. zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
  1293. if (page)
  1294. goto got_pg;
  1295. /*
  1296. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1297. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1298. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1299. * using a larger set of nodes after it has established that the
  1300. * allowed per node queues are empty and that nodes are
  1301. * over allocated.
  1302. */
  1303. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1304. goto nopage;
  1305. for (z = zonelist->zones; *z; z++)
  1306. wakeup_kswapd(*z, order);
  1307. /*
  1308. * OK, we're below the kswapd watermark and have kicked background
  1309. * reclaim. Now things get more complex, so set up alloc_flags according
  1310. * to how we want to proceed.
  1311. *
  1312. * The caller may dip into page reserves a bit more if the caller
  1313. * cannot run direct reclaim, or if the caller has realtime scheduling
  1314. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1315. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1316. */
  1317. alloc_flags = ALLOC_WMARK_MIN;
  1318. if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
  1319. alloc_flags |= ALLOC_HARDER;
  1320. if (gfp_mask & __GFP_HIGH)
  1321. alloc_flags |= ALLOC_HIGH;
  1322. if (wait)
  1323. alloc_flags |= ALLOC_CPUSET;
  1324. /*
  1325. * Go through the zonelist again. Let __GFP_HIGH and allocations
  1326. * coming from realtime tasks go deeper into reserves.
  1327. *
  1328. * This is the last chance, in general, before the goto nopage.
  1329. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1330. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1331. */
  1332. page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
  1333. if (page)
  1334. goto got_pg;
  1335. /* This allocation should allow future memory freeing. */
  1336. rebalance:
  1337. if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
  1338. && !in_interrupt()) {
  1339. if (!(gfp_mask & __GFP_NOMEMALLOC)) {
  1340. nofail_alloc:
  1341. /* go through the zonelist yet again, ignoring mins */
  1342. page = get_page_from_freelist(gfp_mask, order,
  1343. zonelist, ALLOC_NO_WATERMARKS);
  1344. if (page)
  1345. goto got_pg;
  1346. if (gfp_mask & __GFP_NOFAIL) {
  1347. congestion_wait(WRITE, HZ/50);
  1348. goto nofail_alloc;
  1349. }
  1350. }
  1351. goto nopage;
  1352. }
  1353. /* Atomic allocations - we can't balance anything */
  1354. if (!wait)
  1355. goto nopage;
  1356. cond_resched();
  1357. /* We now go into synchronous reclaim */
  1358. cpuset_memory_pressure_bump();
  1359. p->flags |= PF_MEMALLOC;
  1360. reclaim_state.reclaimed_slab = 0;
  1361. p->reclaim_state = &reclaim_state;
  1362. did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
  1363. p->reclaim_state = NULL;
  1364. p->flags &= ~PF_MEMALLOC;
  1365. cond_resched();
  1366. if (order != 0)
  1367. drain_all_pages();
  1368. if (likely(did_some_progress)) {
  1369. page = get_page_from_freelist(gfp_mask, order,
  1370. zonelist, alloc_flags);
  1371. if (page)
  1372. goto got_pg;
  1373. } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1374. if (!try_set_zone_oom(zonelist)) {
  1375. schedule_timeout_uninterruptible(1);
  1376. goto restart;
  1377. }
  1378. /*
  1379. * Go through the zonelist yet one more time, keep
  1380. * very high watermark here, this is only to catch
  1381. * a parallel oom killing, we must fail if we're still
  1382. * under heavy pressure.
  1383. */
  1384. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
  1385. zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
  1386. if (page) {
  1387. clear_zonelist_oom(zonelist);
  1388. goto got_pg;
  1389. }
  1390. /* The OOM killer will not help higher order allocs so fail */
  1391. if (order > PAGE_ALLOC_COSTLY_ORDER) {
  1392. clear_zonelist_oom(zonelist);
  1393. goto nopage;
  1394. }
  1395. out_of_memory(zonelist, gfp_mask, order);
  1396. clear_zonelist_oom(zonelist);
  1397. goto restart;
  1398. }
  1399. /*
  1400. * Don't let big-order allocations loop unless the caller explicitly
  1401. * requests that. Wait for some write requests to complete then retry.
  1402. *
  1403. * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
  1404. * <= 3, but that may not be true in other implementations.
  1405. */
  1406. do_retry = 0;
  1407. if (!(gfp_mask & __GFP_NORETRY)) {
  1408. if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
  1409. (gfp_mask & __GFP_REPEAT))
  1410. do_retry = 1;
  1411. if (gfp_mask & __GFP_NOFAIL)
  1412. do_retry = 1;
  1413. }
  1414. if (do_retry) {
  1415. congestion_wait(WRITE, HZ/50);
  1416. goto rebalance;
  1417. }
  1418. nopage:
  1419. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1420. printk(KERN_WARNING "%s: page allocation failure."
  1421. " order:%d, mode:0x%x\n",
  1422. p->comm, order, gfp_mask);
  1423. dump_stack();
  1424. show_mem();
  1425. }
  1426. got_pg:
  1427. return page;
  1428. }
  1429. EXPORT_SYMBOL(__alloc_pages);
  1430. /*
  1431. * Common helper functions.
  1432. */
  1433. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1434. {
  1435. struct page * page;
  1436. page = alloc_pages(gfp_mask, order);
  1437. if (!page)
  1438. return 0;
  1439. return (unsigned long) page_address(page);
  1440. }
  1441. EXPORT_SYMBOL(__get_free_pages);
  1442. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1443. {
  1444. struct page * page;
  1445. /*
  1446. * get_zeroed_page() returns a 32-bit address, which cannot represent
  1447. * a highmem page
  1448. */
  1449. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1450. page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
  1451. if (page)
  1452. return (unsigned long) page_address(page);
  1453. return 0;
  1454. }
  1455. EXPORT_SYMBOL(get_zeroed_page);
  1456. void __pagevec_free(struct pagevec *pvec)
  1457. {
  1458. int i = pagevec_count(pvec);
  1459. while (--i >= 0)
  1460. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1461. }
  1462. void __free_pages(struct page *page, unsigned int order)
  1463. {
  1464. if (put_page_testzero(page)) {
  1465. if (order == 0)
  1466. free_hot_page(page);
  1467. else
  1468. __free_pages_ok(page, order);
  1469. }
  1470. }
  1471. EXPORT_SYMBOL(__free_pages);
  1472. void free_pages(unsigned long addr, unsigned int order)
  1473. {
  1474. if (addr != 0) {
  1475. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1476. __free_pages(virt_to_page((void *)addr), order);
  1477. }
  1478. }
  1479. EXPORT_SYMBOL(free_pages);
  1480. static unsigned int nr_free_zone_pages(int offset)
  1481. {
  1482. /* Just pick one node, since fallback list is circular */
  1483. pg_data_t *pgdat = NODE_DATA(numa_node_id());
  1484. unsigned int sum = 0;
  1485. struct zonelist *zonelist = pgdat->node_zonelists + offset;
  1486. struct zone **zonep = zonelist->zones;
  1487. struct zone *zone;
  1488. for (zone = *zonep++; zone; zone = *zonep++) {
  1489. unsigned long size = zone->present_pages;
  1490. unsigned long high = zone->pages_high;
  1491. if (size > high)
  1492. sum += size - high;
  1493. }
  1494. return sum;
  1495. }
  1496. /*
  1497. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  1498. */
  1499. unsigned int nr_free_buffer_pages(void)
  1500. {
  1501. return nr_free_zone_pages(gfp_zone(GFP_USER));
  1502. }
  1503. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  1504. /*
  1505. * Amount of free RAM allocatable within all zones
  1506. */
  1507. unsigned int nr_free_pagecache_pages(void)
  1508. {
  1509. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  1510. }
  1511. static inline void show_node(struct zone *zone)
  1512. {
  1513. if (NUMA_BUILD)
  1514. printk("Node %d ", zone_to_nid(zone));
  1515. }
  1516. void si_meminfo(struct sysinfo *val)
  1517. {
  1518. val->totalram = totalram_pages;
  1519. val->sharedram = 0;
  1520. val->freeram = global_page_state(NR_FREE_PAGES);
  1521. val->bufferram = nr_blockdev_pages();
  1522. val->totalhigh = totalhigh_pages;
  1523. val->freehigh = nr_free_highpages();
  1524. val->mem_unit = PAGE_SIZE;
  1525. }
  1526. EXPORT_SYMBOL(si_meminfo);
  1527. #ifdef CONFIG_NUMA
  1528. void si_meminfo_node(struct sysinfo *val, int nid)
  1529. {
  1530. pg_data_t *pgdat = NODE_DATA(nid);
  1531. val->totalram = pgdat->node_present_pages;
  1532. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  1533. #ifdef CONFIG_HIGHMEM
  1534. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  1535. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  1536. NR_FREE_PAGES);
  1537. #else
  1538. val->totalhigh = 0;
  1539. val->freehigh = 0;
  1540. #endif
  1541. val->mem_unit = PAGE_SIZE;
  1542. }
  1543. #endif
  1544. #define K(x) ((x) << (PAGE_SHIFT-10))
  1545. /*
  1546. * Show free area list (used inside shift_scroll-lock stuff)
  1547. * We also calculate the percentage fragmentation. We do this by counting the
  1548. * memory on each free list with the exception of the first item on the list.
  1549. */
  1550. void show_free_areas(void)
  1551. {
  1552. int cpu;
  1553. struct zone *zone;
  1554. for_each_zone(zone) {
  1555. if (!populated_zone(zone))
  1556. continue;
  1557. show_node(zone);
  1558. printk("%s per-cpu:\n", zone->name);
  1559. for_each_online_cpu(cpu) {
  1560. struct per_cpu_pageset *pageset;
  1561. pageset = zone_pcp(zone, cpu);
  1562. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  1563. cpu, pageset->pcp.high,
  1564. pageset->pcp.batch, pageset->pcp.count);
  1565. }
  1566. }
  1567. printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
  1568. " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
  1569. global_page_state(NR_ACTIVE),
  1570. global_page_state(NR_INACTIVE),
  1571. global_page_state(NR_FILE_DIRTY),
  1572. global_page_state(NR_WRITEBACK),
  1573. global_page_state(NR_UNSTABLE_NFS),
  1574. global_page_state(NR_FREE_PAGES),
  1575. global_page_state(NR_SLAB_RECLAIMABLE) +
  1576. global_page_state(NR_SLAB_UNRECLAIMABLE),
  1577. global_page_state(NR_FILE_MAPPED),
  1578. global_page_state(NR_PAGETABLE),
  1579. global_page_state(NR_BOUNCE));
  1580. for_each_zone(zone) {
  1581. int i;
  1582. if (!populated_zone(zone))
  1583. continue;
  1584. show_node(zone);
  1585. printk("%s"
  1586. " free:%lukB"
  1587. " min:%lukB"
  1588. " low:%lukB"
  1589. " high:%lukB"
  1590. " active:%lukB"
  1591. " inactive:%lukB"
  1592. " present:%lukB"
  1593. " pages_scanned:%lu"
  1594. " all_unreclaimable? %s"
  1595. "\n",
  1596. zone->name,
  1597. K(zone_page_state(zone, NR_FREE_PAGES)),
  1598. K(zone->pages_min),
  1599. K(zone->pages_low),
  1600. K(zone->pages_high),
  1601. K(zone_page_state(zone, NR_ACTIVE)),
  1602. K(zone_page_state(zone, NR_INACTIVE)),
  1603. K(zone->present_pages),
  1604. zone->pages_scanned,
  1605. (zone_is_all_unreclaimable(zone) ? "yes" : "no")
  1606. );
  1607. printk("lowmem_reserve[]:");
  1608. for (i = 0; i < MAX_NR_ZONES; i++)
  1609. printk(" %lu", zone->lowmem_reserve[i]);
  1610. printk("\n");
  1611. }
  1612. for_each_zone(zone) {
  1613. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  1614. if (!populated_zone(zone))
  1615. continue;
  1616. show_node(zone);
  1617. printk("%s: ", zone->name);
  1618. spin_lock_irqsave(&zone->lock, flags);
  1619. for (order = 0; order < MAX_ORDER; order++) {
  1620. nr[order] = zone->free_area[order].nr_free;
  1621. total += nr[order] << order;
  1622. }
  1623. spin_unlock_irqrestore(&zone->lock, flags);
  1624. for (order = 0; order < MAX_ORDER; order++)
  1625. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  1626. printk("= %lukB\n", K(total));
  1627. }
  1628. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  1629. show_swap_cache_info();
  1630. }
  1631. /*
  1632. * Builds allocation fallback zone lists.
  1633. *
  1634. * Add all populated zones of a node to the zonelist.
  1635. */
  1636. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  1637. int nr_zones, enum zone_type zone_type)
  1638. {
  1639. struct zone *zone;
  1640. BUG_ON(zone_type >= MAX_NR_ZONES);
  1641. zone_type++;
  1642. do {
  1643. zone_type--;
  1644. zone = pgdat->node_zones + zone_type;
  1645. if (populated_zone(zone)) {
  1646. zonelist->zones[nr_zones++] = zone;
  1647. check_highest_zone(zone_type);
  1648. }
  1649. } while (zone_type);
  1650. return nr_zones;
  1651. }
  1652. /*
  1653. * zonelist_order:
  1654. * 0 = automatic detection of better ordering.
  1655. * 1 = order by ([node] distance, -zonetype)
  1656. * 2 = order by (-zonetype, [node] distance)
  1657. *
  1658. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  1659. * the same zonelist. So only NUMA can configure this param.
  1660. */
  1661. #define ZONELIST_ORDER_DEFAULT 0
  1662. #define ZONELIST_ORDER_NODE 1
  1663. #define ZONELIST_ORDER_ZONE 2
  1664. /* zonelist order in the kernel.
  1665. * set_zonelist_order() will set this to NODE or ZONE.
  1666. */
  1667. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1668. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  1669. #ifdef CONFIG_NUMA
  1670. /* The value user specified ....changed by config */
  1671. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1672. /* string for sysctl */
  1673. #define NUMA_ZONELIST_ORDER_LEN 16
  1674. char numa_zonelist_order[16] = "default";
  1675. /*
  1676. * interface for configure zonelist ordering.
  1677. * command line option "numa_zonelist_order"
  1678. * = "[dD]efault - default, automatic configuration.
  1679. * = "[nN]ode - order by node locality, then by zone within node
  1680. * = "[zZ]one - order by zone, then by locality within zone
  1681. */
  1682. static int __parse_numa_zonelist_order(char *s)
  1683. {
  1684. if (*s == 'd' || *s == 'D') {
  1685. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  1686. } else if (*s == 'n' || *s == 'N') {
  1687. user_zonelist_order = ZONELIST_ORDER_NODE;
  1688. } else if (*s == 'z' || *s == 'Z') {
  1689. user_zonelist_order = ZONELIST_ORDER_ZONE;
  1690. } else {
  1691. printk(KERN_WARNING
  1692. "Ignoring invalid numa_zonelist_order value: "
  1693. "%s\n", s);
  1694. return -EINVAL;
  1695. }
  1696. return 0;
  1697. }
  1698. static __init int setup_numa_zonelist_order(char *s)
  1699. {
  1700. if (s)
  1701. return __parse_numa_zonelist_order(s);
  1702. return 0;
  1703. }
  1704. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  1705. /*
  1706. * sysctl handler for numa_zonelist_order
  1707. */
  1708. int numa_zonelist_order_handler(ctl_table *table, int write,
  1709. struct file *file, void __user *buffer, size_t *length,
  1710. loff_t *ppos)
  1711. {
  1712. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  1713. int ret;
  1714. if (write)
  1715. strncpy(saved_string, (char*)table->data,
  1716. NUMA_ZONELIST_ORDER_LEN);
  1717. ret = proc_dostring(table, write, file, buffer, length, ppos);
  1718. if (ret)
  1719. return ret;
  1720. if (write) {
  1721. int oldval = user_zonelist_order;
  1722. if (__parse_numa_zonelist_order((char*)table->data)) {
  1723. /*
  1724. * bogus value. restore saved string
  1725. */
  1726. strncpy((char*)table->data, saved_string,
  1727. NUMA_ZONELIST_ORDER_LEN);
  1728. user_zonelist_order = oldval;
  1729. } else if (oldval != user_zonelist_order)
  1730. build_all_zonelists();
  1731. }
  1732. return 0;
  1733. }
  1734. #define MAX_NODE_LOAD (num_online_nodes())
  1735. static int node_load[MAX_NUMNODES];
  1736. /**
  1737. * find_next_best_node - find the next node that should appear in a given node's fallback list
  1738. * @node: node whose fallback list we're appending
  1739. * @used_node_mask: nodemask_t of already used nodes
  1740. *
  1741. * We use a number of factors to determine which is the next node that should
  1742. * appear on a given node's fallback list. The node should not have appeared
  1743. * already in @node's fallback list, and it should be the next closest node
  1744. * according to the distance array (which contains arbitrary distance values
  1745. * from each node to each node in the system), and should also prefer nodes
  1746. * with no CPUs, since presumably they'll have very little allocation pressure
  1747. * on them otherwise.
  1748. * It returns -1 if no node is found.
  1749. */
  1750. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  1751. {
  1752. int n, val;
  1753. int min_val = INT_MAX;
  1754. int best_node = -1;
  1755. node_to_cpumask_ptr(tmp, 0);
  1756. /* Use the local node if we haven't already */
  1757. if (!node_isset(node, *used_node_mask)) {
  1758. node_set(node, *used_node_mask);
  1759. return node;
  1760. }
  1761. for_each_node_state(n, N_HIGH_MEMORY) {
  1762. /* Don't want a node to appear more than once */
  1763. if (node_isset(n, *used_node_mask))
  1764. continue;
  1765. /* Use the distance array to find the distance */
  1766. val = node_distance(node, n);
  1767. /* Penalize nodes under us ("prefer the next node") */
  1768. val += (n < node);
  1769. /* Give preference to headless and unused nodes */
  1770. node_to_cpumask_ptr_next(tmp, n);
  1771. if (!cpus_empty(*tmp))
  1772. val += PENALTY_FOR_NODE_WITH_CPUS;
  1773. /* Slight preference for less loaded node */
  1774. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  1775. val += node_load[n];
  1776. if (val < min_val) {
  1777. min_val = val;
  1778. best_node = n;
  1779. }
  1780. }
  1781. if (best_node >= 0)
  1782. node_set(best_node, *used_node_mask);
  1783. return best_node;
  1784. }
  1785. /*
  1786. * Build zonelists ordered by node and zones within node.
  1787. * This results in maximum locality--normal zone overflows into local
  1788. * DMA zone, if any--but risks exhausting DMA zone.
  1789. */
  1790. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  1791. {
  1792. enum zone_type i;
  1793. int j;
  1794. struct zonelist *zonelist;
  1795. for (i = 0; i < MAX_NR_ZONES; i++) {
  1796. zonelist = pgdat->node_zonelists + i;
  1797. for (j = 0; zonelist->zones[j] != NULL; j++)
  1798. ;
  1799. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1800. zonelist->zones[j] = NULL;
  1801. }
  1802. }
  1803. /*
  1804. * Build gfp_thisnode zonelists
  1805. */
  1806. static void build_thisnode_zonelists(pg_data_t *pgdat)
  1807. {
  1808. enum zone_type i;
  1809. int j;
  1810. struct zonelist *zonelist;
  1811. for (i = 0; i < MAX_NR_ZONES; i++) {
  1812. zonelist = pgdat->node_zonelists + MAX_NR_ZONES + i;
  1813. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1814. zonelist->zones[j] = NULL;
  1815. }
  1816. }
  1817. /*
  1818. * Build zonelists ordered by zone and nodes within zones.
  1819. * This results in conserving DMA zone[s] until all Normal memory is
  1820. * exhausted, but results in overflowing to remote node while memory
  1821. * may still exist in local DMA zone.
  1822. */
  1823. static int node_order[MAX_NUMNODES];
  1824. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  1825. {
  1826. enum zone_type i;
  1827. int pos, j, node;
  1828. int zone_type; /* needs to be signed */
  1829. struct zone *z;
  1830. struct zonelist *zonelist;
  1831. for (i = 0; i < MAX_NR_ZONES; i++) {
  1832. zonelist = pgdat->node_zonelists + i;
  1833. pos = 0;
  1834. for (zone_type = i; zone_type >= 0; zone_type--) {
  1835. for (j = 0; j < nr_nodes; j++) {
  1836. node = node_order[j];
  1837. z = &NODE_DATA(node)->node_zones[zone_type];
  1838. if (populated_zone(z)) {
  1839. zonelist->zones[pos++] = z;
  1840. check_highest_zone(zone_type);
  1841. }
  1842. }
  1843. }
  1844. zonelist->zones[pos] = NULL;
  1845. }
  1846. }
  1847. static int default_zonelist_order(void)
  1848. {
  1849. int nid, zone_type;
  1850. unsigned long low_kmem_size,total_size;
  1851. struct zone *z;
  1852. int average_size;
  1853. /*
  1854. * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
  1855. * If they are really small and used heavily, the system can fall
  1856. * into OOM very easily.
  1857. * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
  1858. */
  1859. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  1860. low_kmem_size = 0;
  1861. total_size = 0;
  1862. for_each_online_node(nid) {
  1863. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1864. z = &NODE_DATA(nid)->node_zones[zone_type];
  1865. if (populated_zone(z)) {
  1866. if (zone_type < ZONE_NORMAL)
  1867. low_kmem_size += z->present_pages;
  1868. total_size += z->present_pages;
  1869. }
  1870. }
  1871. }
  1872. if (!low_kmem_size || /* there are no DMA area. */
  1873. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  1874. return ZONELIST_ORDER_NODE;
  1875. /*
  1876. * look into each node's config.
  1877. * If there is a node whose DMA/DMA32 memory is very big area on
  1878. * local memory, NODE_ORDER may be suitable.
  1879. */
  1880. average_size = total_size /
  1881. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  1882. for_each_online_node(nid) {
  1883. low_kmem_size = 0;
  1884. total_size = 0;
  1885. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  1886. z = &NODE_DATA(nid)->node_zones[zone_type];
  1887. if (populated_zone(z)) {
  1888. if (zone_type < ZONE_NORMAL)
  1889. low_kmem_size += z->present_pages;
  1890. total_size += z->present_pages;
  1891. }
  1892. }
  1893. if (low_kmem_size &&
  1894. total_size > average_size && /* ignore small node */
  1895. low_kmem_size > total_size * 70/100)
  1896. return ZONELIST_ORDER_NODE;
  1897. }
  1898. return ZONELIST_ORDER_ZONE;
  1899. }
  1900. static void set_zonelist_order(void)
  1901. {
  1902. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  1903. current_zonelist_order = default_zonelist_order();
  1904. else
  1905. current_zonelist_order = user_zonelist_order;
  1906. }
  1907. static void build_zonelists(pg_data_t *pgdat)
  1908. {
  1909. int j, node, load;
  1910. enum zone_type i;
  1911. nodemask_t used_mask;
  1912. int local_node, prev_node;
  1913. struct zonelist *zonelist;
  1914. int order = current_zonelist_order;
  1915. /* initialize zonelists */
  1916. for (i = 0; i < MAX_ZONELISTS; i++) {
  1917. zonelist = pgdat->node_zonelists + i;
  1918. zonelist->zones[0] = NULL;
  1919. }
  1920. /* NUMA-aware ordering of nodes */
  1921. local_node = pgdat->node_id;
  1922. load = num_online_nodes();
  1923. prev_node = local_node;
  1924. nodes_clear(used_mask);
  1925. memset(node_load, 0, sizeof(node_load));
  1926. memset(node_order, 0, sizeof(node_order));
  1927. j = 0;
  1928. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  1929. int distance = node_distance(local_node, node);
  1930. /*
  1931. * If another node is sufficiently far away then it is better
  1932. * to reclaim pages in a zone before going off node.
  1933. */
  1934. if (distance > RECLAIM_DISTANCE)
  1935. zone_reclaim_mode = 1;
  1936. /*
  1937. * We don't want to pressure a particular node.
  1938. * So adding penalty to the first node in same
  1939. * distance group to make it round-robin.
  1940. */
  1941. if (distance != node_distance(local_node, prev_node))
  1942. node_load[node] = load;
  1943. prev_node = node;
  1944. load--;
  1945. if (order == ZONELIST_ORDER_NODE)
  1946. build_zonelists_in_node_order(pgdat, node);
  1947. else
  1948. node_order[j++] = node; /* remember order */
  1949. }
  1950. if (order == ZONELIST_ORDER_ZONE) {
  1951. /* calculate node order -- i.e., DMA last! */
  1952. build_zonelists_in_zone_order(pgdat, j);
  1953. }
  1954. build_thisnode_zonelists(pgdat);
  1955. }
  1956. /* Construct the zonelist performance cache - see further mmzone.h */
  1957. static void build_zonelist_cache(pg_data_t *pgdat)
  1958. {
  1959. int i;
  1960. for (i = 0; i < MAX_NR_ZONES; i++) {
  1961. struct zonelist *zonelist;
  1962. struct zonelist_cache *zlc;
  1963. struct zone **z;
  1964. zonelist = pgdat->node_zonelists + i;
  1965. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  1966. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1967. for (z = zonelist->zones; *z; z++)
  1968. zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
  1969. }
  1970. }
  1971. #else /* CONFIG_NUMA */
  1972. static void set_zonelist_order(void)
  1973. {
  1974. current_zonelist_order = ZONELIST_ORDER_ZONE;
  1975. }
  1976. static void build_zonelists(pg_data_t *pgdat)
  1977. {
  1978. int node, local_node;
  1979. enum zone_type i,j;
  1980. local_node = pgdat->node_id;
  1981. for (i = 0; i < MAX_NR_ZONES; i++) {
  1982. struct zonelist *zonelist;
  1983. zonelist = pgdat->node_zonelists + i;
  1984. j = build_zonelists_node(pgdat, zonelist, 0, i);
  1985. /*
  1986. * Now we build the zonelist so that it contains the zones
  1987. * of all the other nodes.
  1988. * We don't want to pressure a particular node, so when
  1989. * building the zones for node N, we make sure that the
  1990. * zones coming right after the local ones are those from
  1991. * node N+1 (modulo N)
  1992. */
  1993. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  1994. if (!node_online(node))
  1995. continue;
  1996. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  1997. }
  1998. for (node = 0; node < local_node; node++) {
  1999. if (!node_online(node))
  2000. continue;
  2001. j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
  2002. }
  2003. zonelist->zones[j] = NULL;
  2004. }
  2005. }
  2006. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2007. static void build_zonelist_cache(pg_data_t *pgdat)
  2008. {
  2009. int i;
  2010. for (i = 0; i < MAX_NR_ZONES; i++)
  2011. pgdat->node_zonelists[i].zlcache_ptr = NULL;
  2012. }
  2013. #endif /* CONFIG_NUMA */
  2014. /* return values int ....just for stop_machine_run() */
  2015. static int __build_all_zonelists(void *dummy)
  2016. {
  2017. int nid;
  2018. for_each_online_node(nid) {
  2019. pg_data_t *pgdat = NODE_DATA(nid);
  2020. build_zonelists(pgdat);
  2021. build_zonelist_cache(pgdat);
  2022. }
  2023. return 0;
  2024. }
  2025. void build_all_zonelists(void)
  2026. {
  2027. set_zonelist_order();
  2028. if (system_state == SYSTEM_BOOTING) {
  2029. __build_all_zonelists(NULL);
  2030. cpuset_init_current_mems_allowed();
  2031. } else {
  2032. /* we have to stop all cpus to guarantee there is no user
  2033. of zonelist */
  2034. stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
  2035. /* cpuset refresh routine should be here */
  2036. }
  2037. vm_total_pages = nr_free_pagecache_pages();
  2038. /*
  2039. * Disable grouping by mobility if the number of pages in the
  2040. * system is too low to allow the mechanism to work. It would be
  2041. * more accurate, but expensive to check per-zone. This check is
  2042. * made on memory-hotadd so a system can start with mobility
  2043. * disabled and enable it later
  2044. */
  2045. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2046. page_group_by_mobility_disabled = 1;
  2047. else
  2048. page_group_by_mobility_disabled = 0;
  2049. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2050. "Total pages: %ld\n",
  2051. num_online_nodes(),
  2052. zonelist_order_name[current_zonelist_order],
  2053. page_group_by_mobility_disabled ? "off" : "on",
  2054. vm_total_pages);
  2055. #ifdef CONFIG_NUMA
  2056. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2057. #endif
  2058. }
  2059. /*
  2060. * Helper functions to size the waitqueue hash table.
  2061. * Essentially these want to choose hash table sizes sufficiently
  2062. * large so that collisions trying to wait on pages are rare.
  2063. * But in fact, the number of active page waitqueues on typical
  2064. * systems is ridiculously low, less than 200. So this is even
  2065. * conservative, even though it seems large.
  2066. *
  2067. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2068. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2069. */
  2070. #define PAGES_PER_WAITQUEUE 256
  2071. #ifndef CONFIG_MEMORY_HOTPLUG
  2072. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2073. {
  2074. unsigned long size = 1;
  2075. pages /= PAGES_PER_WAITQUEUE;
  2076. while (size < pages)
  2077. size <<= 1;
  2078. /*
  2079. * Once we have dozens or even hundreds of threads sleeping
  2080. * on IO we've got bigger problems than wait queue collision.
  2081. * Limit the size of the wait table to a reasonable size.
  2082. */
  2083. size = min(size, 4096UL);
  2084. return max(size, 4UL);
  2085. }
  2086. #else
  2087. /*
  2088. * A zone's size might be changed by hot-add, so it is not possible to determine
  2089. * a suitable size for its wait_table. So we use the maximum size now.
  2090. *
  2091. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2092. *
  2093. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2094. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2095. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2096. *
  2097. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2098. * or more by the traditional way. (See above). It equals:
  2099. *
  2100. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2101. * ia64(16K page size) : = ( 8G + 4M)byte.
  2102. * powerpc (64K page size) : = (32G +16M)byte.
  2103. */
  2104. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2105. {
  2106. return 4096UL;
  2107. }
  2108. #endif
  2109. /*
  2110. * This is an integer logarithm so that shifts can be used later
  2111. * to extract the more random high bits from the multiplicative
  2112. * hash function before the remainder is taken.
  2113. */
  2114. static inline unsigned long wait_table_bits(unsigned long size)
  2115. {
  2116. return ffz(~size);
  2117. }
  2118. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2119. /*
  2120. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2121. * of blocks reserved is based on zone->pages_min. The memory within the
  2122. * reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2123. * higher will lead to a bigger reserve which will get freed as contiguous
  2124. * blocks as reclaim kicks in
  2125. */
  2126. static void setup_zone_migrate_reserve(struct zone *zone)
  2127. {
  2128. unsigned long start_pfn, pfn, end_pfn;
  2129. struct page *page;
  2130. unsigned long reserve, block_migratetype;
  2131. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2132. start_pfn = zone->zone_start_pfn;
  2133. end_pfn = start_pfn + zone->spanned_pages;
  2134. reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
  2135. pageblock_order;
  2136. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2137. if (!pfn_valid(pfn))
  2138. continue;
  2139. page = pfn_to_page(pfn);
  2140. /* Blocks with reserved pages will never free, skip them. */
  2141. if (PageReserved(page))
  2142. continue;
  2143. block_migratetype = get_pageblock_migratetype(page);
  2144. /* If this block is reserved, account for it */
  2145. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2146. reserve--;
  2147. continue;
  2148. }
  2149. /* Suitable for reserving if this block is movable */
  2150. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2151. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2152. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2153. reserve--;
  2154. continue;
  2155. }
  2156. /*
  2157. * If the reserve is met and this is a previous reserved block,
  2158. * take it back
  2159. */
  2160. if (block_migratetype == MIGRATE_RESERVE) {
  2161. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2162. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2163. }
  2164. }
  2165. }
  2166. /*
  2167. * Initially all pages are reserved - free ones are freed
  2168. * up by free_all_bootmem() once the early boot process is
  2169. * done. Non-atomic initialization, single-pass.
  2170. */
  2171. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2172. unsigned long start_pfn, enum memmap_context context)
  2173. {
  2174. struct page *page;
  2175. unsigned long end_pfn = start_pfn + size;
  2176. unsigned long pfn;
  2177. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2178. /*
  2179. * There can be holes in boot-time mem_map[]s
  2180. * handed to this function. They do not
  2181. * exist on hotplugged memory.
  2182. */
  2183. if (context == MEMMAP_EARLY) {
  2184. if (!early_pfn_valid(pfn))
  2185. continue;
  2186. if (!early_pfn_in_nid(pfn, nid))
  2187. continue;
  2188. }
  2189. page = pfn_to_page(pfn);
  2190. set_page_links(page, zone, nid, pfn);
  2191. init_page_count(page);
  2192. reset_page_mapcount(page);
  2193. SetPageReserved(page);
  2194. /*
  2195. * Mark the block movable so that blocks are reserved for
  2196. * movable at startup. This will force kernel allocations
  2197. * to reserve their blocks rather than leaking throughout
  2198. * the address space during boot when many long-lived
  2199. * kernel allocations are made. Later some blocks near
  2200. * the start are marked MIGRATE_RESERVE by
  2201. * setup_zone_migrate_reserve()
  2202. */
  2203. if ((pfn & (pageblock_nr_pages-1)))
  2204. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2205. INIT_LIST_HEAD(&page->lru);
  2206. #ifdef WANT_PAGE_VIRTUAL
  2207. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2208. if (!is_highmem_idx(zone))
  2209. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2210. #endif
  2211. }
  2212. }
  2213. static void __meminit zone_init_free_lists(struct zone *zone)
  2214. {
  2215. int order, t;
  2216. for_each_migratetype_order(order, t) {
  2217. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2218. zone->free_area[order].nr_free = 0;
  2219. }
  2220. }
  2221. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2222. #define memmap_init(size, nid, zone, start_pfn) \
  2223. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2224. #endif
  2225. static int zone_batchsize(struct zone *zone)
  2226. {
  2227. int batch;
  2228. /*
  2229. * The per-cpu-pages pools are set to around 1000th of the
  2230. * size of the zone. But no more than 1/2 of a meg.
  2231. *
  2232. * OK, so we don't know how big the cache is. So guess.
  2233. */
  2234. batch = zone->present_pages / 1024;
  2235. if (batch * PAGE_SIZE > 512 * 1024)
  2236. batch = (512 * 1024) / PAGE_SIZE;
  2237. batch /= 4; /* We effectively *= 4 below */
  2238. if (batch < 1)
  2239. batch = 1;
  2240. /*
  2241. * Clamp the batch to a 2^n - 1 value. Having a power
  2242. * of 2 value was found to be more likely to have
  2243. * suboptimal cache aliasing properties in some cases.
  2244. *
  2245. * For example if 2 tasks are alternately allocating
  2246. * batches of pages, one task can end up with a lot
  2247. * of pages of one half of the possible page colors
  2248. * and the other with pages of the other colors.
  2249. */
  2250. batch = (1 << (fls(batch + batch/2)-1)) - 1;
  2251. return batch;
  2252. }
  2253. inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  2254. {
  2255. struct per_cpu_pages *pcp;
  2256. memset(p, 0, sizeof(*p));
  2257. pcp = &p->pcp;
  2258. pcp->count = 0;
  2259. pcp->high = 6 * batch;
  2260. pcp->batch = max(1UL, 1 * batch);
  2261. INIT_LIST_HEAD(&pcp->list);
  2262. }
  2263. /*
  2264. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  2265. * to the value high for the pageset p.
  2266. */
  2267. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  2268. unsigned long high)
  2269. {
  2270. struct per_cpu_pages *pcp;
  2271. pcp = &p->pcp;
  2272. pcp->high = high;
  2273. pcp->batch = max(1UL, high/4);
  2274. if ((high/4) > (PAGE_SHIFT * 8))
  2275. pcp->batch = PAGE_SHIFT * 8;
  2276. }
  2277. #ifdef CONFIG_NUMA
  2278. /*
  2279. * Boot pageset table. One per cpu which is going to be used for all
  2280. * zones and all nodes. The parameters will be set in such a way
  2281. * that an item put on a list will immediately be handed over to
  2282. * the buddy list. This is safe since pageset manipulation is done
  2283. * with interrupts disabled.
  2284. *
  2285. * Some NUMA counter updates may also be caught by the boot pagesets.
  2286. *
  2287. * The boot_pagesets must be kept even after bootup is complete for
  2288. * unused processors and/or zones. They do play a role for bootstrapping
  2289. * hotplugged processors.
  2290. *
  2291. * zoneinfo_show() and maybe other functions do
  2292. * not check if the processor is online before following the pageset pointer.
  2293. * Other parts of the kernel may not check if the zone is available.
  2294. */
  2295. static struct per_cpu_pageset boot_pageset[NR_CPUS];
  2296. /*
  2297. * Dynamically allocate memory for the
  2298. * per cpu pageset array in struct zone.
  2299. */
  2300. static int __cpuinit process_zones(int cpu)
  2301. {
  2302. struct zone *zone, *dzone;
  2303. int node = cpu_to_node(cpu);
  2304. node_set_state(node, N_CPU); /* this node has a cpu */
  2305. for_each_zone(zone) {
  2306. if (!populated_zone(zone))
  2307. continue;
  2308. zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
  2309. GFP_KERNEL, node);
  2310. if (!zone_pcp(zone, cpu))
  2311. goto bad;
  2312. setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
  2313. if (percpu_pagelist_fraction)
  2314. setup_pagelist_highmark(zone_pcp(zone, cpu),
  2315. (zone->present_pages / percpu_pagelist_fraction));
  2316. }
  2317. return 0;
  2318. bad:
  2319. for_each_zone(dzone) {
  2320. if (!populated_zone(dzone))
  2321. continue;
  2322. if (dzone == zone)
  2323. break;
  2324. kfree(zone_pcp(dzone, cpu));
  2325. zone_pcp(dzone, cpu) = NULL;
  2326. }
  2327. return -ENOMEM;
  2328. }
  2329. static inline void free_zone_pagesets(int cpu)
  2330. {
  2331. struct zone *zone;
  2332. for_each_zone(zone) {
  2333. struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
  2334. /* Free per_cpu_pageset if it is slab allocated */
  2335. if (pset != &boot_pageset[cpu])
  2336. kfree(pset);
  2337. zone_pcp(zone, cpu) = NULL;
  2338. }
  2339. }
  2340. static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
  2341. unsigned long action,
  2342. void *hcpu)
  2343. {
  2344. int cpu = (long)hcpu;
  2345. int ret = NOTIFY_OK;
  2346. switch (action) {
  2347. case CPU_UP_PREPARE:
  2348. case CPU_UP_PREPARE_FROZEN:
  2349. if (process_zones(cpu))
  2350. ret = NOTIFY_BAD;
  2351. break;
  2352. case CPU_UP_CANCELED:
  2353. case CPU_UP_CANCELED_FROZEN:
  2354. case CPU_DEAD:
  2355. case CPU_DEAD_FROZEN:
  2356. free_zone_pagesets(cpu);
  2357. break;
  2358. default:
  2359. break;
  2360. }
  2361. return ret;
  2362. }
  2363. static struct notifier_block __cpuinitdata pageset_notifier =
  2364. { &pageset_cpuup_callback, NULL, 0 };
  2365. void __init setup_per_cpu_pageset(void)
  2366. {
  2367. int err;
  2368. /* Initialize per_cpu_pageset for cpu 0.
  2369. * A cpuup callback will do this for every cpu
  2370. * as it comes online
  2371. */
  2372. err = process_zones(smp_processor_id());
  2373. BUG_ON(err);
  2374. register_cpu_notifier(&pageset_notifier);
  2375. }
  2376. #endif
  2377. static noinline __init_refok
  2378. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  2379. {
  2380. int i;
  2381. struct pglist_data *pgdat = zone->zone_pgdat;
  2382. size_t alloc_size;
  2383. /*
  2384. * The per-page waitqueue mechanism uses hashed waitqueues
  2385. * per zone.
  2386. */
  2387. zone->wait_table_hash_nr_entries =
  2388. wait_table_hash_nr_entries(zone_size_pages);
  2389. zone->wait_table_bits =
  2390. wait_table_bits(zone->wait_table_hash_nr_entries);
  2391. alloc_size = zone->wait_table_hash_nr_entries
  2392. * sizeof(wait_queue_head_t);
  2393. if (system_state == SYSTEM_BOOTING) {
  2394. zone->wait_table = (wait_queue_head_t *)
  2395. alloc_bootmem_node(pgdat, alloc_size);
  2396. } else {
  2397. /*
  2398. * This case means that a zone whose size was 0 gets new memory
  2399. * via memory hot-add.
  2400. * But it may be the case that a new node was hot-added. In
  2401. * this case vmalloc() will not be able to use this new node's
  2402. * memory - this wait_table must be initialized to use this new
  2403. * node itself as well.
  2404. * To use this new node's memory, further consideration will be
  2405. * necessary.
  2406. */
  2407. zone->wait_table = vmalloc(alloc_size);
  2408. }
  2409. if (!zone->wait_table)
  2410. return -ENOMEM;
  2411. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  2412. init_waitqueue_head(zone->wait_table + i);
  2413. return 0;
  2414. }
  2415. static __meminit void zone_pcp_init(struct zone *zone)
  2416. {
  2417. int cpu;
  2418. unsigned long batch = zone_batchsize(zone);
  2419. for (cpu = 0; cpu < NR_CPUS; cpu++) {
  2420. #ifdef CONFIG_NUMA
  2421. /* Early boot. Slab allocator not functional yet */
  2422. zone_pcp(zone, cpu) = &boot_pageset[cpu];
  2423. setup_pageset(&boot_pageset[cpu],0);
  2424. #else
  2425. setup_pageset(zone_pcp(zone,cpu), batch);
  2426. #endif
  2427. }
  2428. if (zone->present_pages)
  2429. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
  2430. zone->name, zone->present_pages, batch);
  2431. }
  2432. __meminit int init_currently_empty_zone(struct zone *zone,
  2433. unsigned long zone_start_pfn,
  2434. unsigned long size,
  2435. enum memmap_context context)
  2436. {
  2437. struct pglist_data *pgdat = zone->zone_pgdat;
  2438. int ret;
  2439. ret = zone_wait_table_init(zone, size);
  2440. if (ret)
  2441. return ret;
  2442. pgdat->nr_zones = zone_idx(zone) + 1;
  2443. zone->zone_start_pfn = zone_start_pfn;
  2444. memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
  2445. zone_init_free_lists(zone);
  2446. return 0;
  2447. }
  2448. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2449. /*
  2450. * Basic iterator support. Return the first range of PFNs for a node
  2451. * Note: nid == MAX_NUMNODES returns first region regardless of node
  2452. */
  2453. static int __meminit first_active_region_index_in_nid(int nid)
  2454. {
  2455. int i;
  2456. for (i = 0; i < nr_nodemap_entries; i++)
  2457. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  2458. return i;
  2459. return -1;
  2460. }
  2461. /*
  2462. * Basic iterator support. Return the next active range of PFNs for a node
  2463. * Note: nid == MAX_NUMNODES returns next region regardless of node
  2464. */
  2465. static int __meminit next_active_region_index_in_nid(int index, int nid)
  2466. {
  2467. for (index = index + 1; index < nr_nodemap_entries; index++)
  2468. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  2469. return index;
  2470. return -1;
  2471. }
  2472. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  2473. /*
  2474. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  2475. * Architectures may implement their own version but if add_active_range()
  2476. * was used and there are no special requirements, this is a convenient
  2477. * alternative
  2478. */
  2479. int __meminit early_pfn_to_nid(unsigned long pfn)
  2480. {
  2481. int i;
  2482. for (i = 0; i < nr_nodemap_entries; i++) {
  2483. unsigned long start_pfn = early_node_map[i].start_pfn;
  2484. unsigned long end_pfn = early_node_map[i].end_pfn;
  2485. if (start_pfn <= pfn && pfn < end_pfn)
  2486. return early_node_map[i].nid;
  2487. }
  2488. return 0;
  2489. }
  2490. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  2491. /* Basic iterator support to walk early_node_map[] */
  2492. #define for_each_active_range_index_in_nid(i, nid) \
  2493. for (i = first_active_region_index_in_nid(nid); i != -1; \
  2494. i = next_active_region_index_in_nid(i, nid))
  2495. /**
  2496. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  2497. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  2498. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  2499. *
  2500. * If an architecture guarantees that all ranges registered with
  2501. * add_active_ranges() contain no holes and may be freed, this
  2502. * this function may be used instead of calling free_bootmem() manually.
  2503. */
  2504. void __init free_bootmem_with_active_regions(int nid,
  2505. unsigned long max_low_pfn)
  2506. {
  2507. int i;
  2508. for_each_active_range_index_in_nid(i, nid) {
  2509. unsigned long size_pages = 0;
  2510. unsigned long end_pfn = early_node_map[i].end_pfn;
  2511. if (early_node_map[i].start_pfn >= max_low_pfn)
  2512. continue;
  2513. if (end_pfn > max_low_pfn)
  2514. end_pfn = max_low_pfn;
  2515. size_pages = end_pfn - early_node_map[i].start_pfn;
  2516. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  2517. PFN_PHYS(early_node_map[i].start_pfn),
  2518. size_pages << PAGE_SHIFT);
  2519. }
  2520. }
  2521. /**
  2522. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  2523. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  2524. *
  2525. * If an architecture guarantees that all ranges registered with
  2526. * add_active_ranges() contain no holes and may be freed, this
  2527. * function may be used instead of calling memory_present() manually.
  2528. */
  2529. void __init sparse_memory_present_with_active_regions(int nid)
  2530. {
  2531. int i;
  2532. for_each_active_range_index_in_nid(i, nid)
  2533. memory_present(early_node_map[i].nid,
  2534. early_node_map[i].start_pfn,
  2535. early_node_map[i].end_pfn);
  2536. }
  2537. /**
  2538. * push_node_boundaries - Push node boundaries to at least the requested boundary
  2539. * @nid: The nid of the node to push the boundary for
  2540. * @start_pfn: The start pfn of the node
  2541. * @end_pfn: The end pfn of the node
  2542. *
  2543. * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
  2544. * time. Specifically, on x86_64, SRAT will report ranges that can potentially
  2545. * be hotplugged even though no physical memory exists. This function allows
  2546. * an arch to push out the node boundaries so mem_map is allocated that can
  2547. * be used later.
  2548. */
  2549. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  2550. void __init push_node_boundaries(unsigned int nid,
  2551. unsigned long start_pfn, unsigned long end_pfn)
  2552. {
  2553. printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
  2554. nid, start_pfn, end_pfn);
  2555. /* Initialise the boundary for this node if necessary */
  2556. if (node_boundary_end_pfn[nid] == 0)
  2557. node_boundary_start_pfn[nid] = -1UL;
  2558. /* Update the boundaries */
  2559. if (node_boundary_start_pfn[nid] > start_pfn)
  2560. node_boundary_start_pfn[nid] = start_pfn;
  2561. if (node_boundary_end_pfn[nid] < end_pfn)
  2562. node_boundary_end_pfn[nid] = end_pfn;
  2563. }
  2564. /* If necessary, push the node boundary out for reserve hotadd */
  2565. static void __meminit account_node_boundary(unsigned int nid,
  2566. unsigned long *start_pfn, unsigned long *end_pfn)
  2567. {
  2568. printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
  2569. nid, *start_pfn, *end_pfn);
  2570. /* Return if boundary information has not been provided */
  2571. if (node_boundary_end_pfn[nid] == 0)
  2572. return;
  2573. /* Check the boundaries and update if necessary */
  2574. if (node_boundary_start_pfn[nid] < *start_pfn)
  2575. *start_pfn = node_boundary_start_pfn[nid];
  2576. if (node_boundary_end_pfn[nid] > *end_pfn)
  2577. *end_pfn = node_boundary_end_pfn[nid];
  2578. }
  2579. #else
  2580. void __init push_node_boundaries(unsigned int nid,
  2581. unsigned long start_pfn, unsigned long end_pfn) {}
  2582. static void __meminit account_node_boundary(unsigned int nid,
  2583. unsigned long *start_pfn, unsigned long *end_pfn) {}
  2584. #endif
  2585. /**
  2586. * get_pfn_range_for_nid - Return the start and end page frames for a node
  2587. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  2588. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  2589. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  2590. *
  2591. * It returns the start and end page frame of a node based on information
  2592. * provided by an arch calling add_active_range(). If called for a node
  2593. * with no available memory, a warning is printed and the start and end
  2594. * PFNs will be 0.
  2595. */
  2596. void __meminit get_pfn_range_for_nid(unsigned int nid,
  2597. unsigned long *start_pfn, unsigned long *end_pfn)
  2598. {
  2599. int i;
  2600. *start_pfn = -1UL;
  2601. *end_pfn = 0;
  2602. for_each_active_range_index_in_nid(i, nid) {
  2603. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  2604. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  2605. }
  2606. if (*start_pfn == -1UL)
  2607. *start_pfn = 0;
  2608. /* Push the node boundaries out if requested */
  2609. account_node_boundary(nid, start_pfn, end_pfn);
  2610. }
  2611. /*
  2612. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  2613. * assumption is made that zones within a node are ordered in monotonic
  2614. * increasing memory addresses so that the "highest" populated zone is used
  2615. */
  2616. void __init find_usable_zone_for_movable(void)
  2617. {
  2618. int zone_index;
  2619. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  2620. if (zone_index == ZONE_MOVABLE)
  2621. continue;
  2622. if (arch_zone_highest_possible_pfn[zone_index] >
  2623. arch_zone_lowest_possible_pfn[zone_index])
  2624. break;
  2625. }
  2626. VM_BUG_ON(zone_index == -1);
  2627. movable_zone = zone_index;
  2628. }
  2629. /*
  2630. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  2631. * because it is sized independant of architecture. Unlike the other zones,
  2632. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  2633. * in each node depending on the size of each node and how evenly kernelcore
  2634. * is distributed. This helper function adjusts the zone ranges
  2635. * provided by the architecture for a given node by using the end of the
  2636. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  2637. * zones within a node are in order of monotonic increases memory addresses
  2638. */
  2639. void __meminit adjust_zone_range_for_zone_movable(int nid,
  2640. unsigned long zone_type,
  2641. unsigned long node_start_pfn,
  2642. unsigned long node_end_pfn,
  2643. unsigned long *zone_start_pfn,
  2644. unsigned long *zone_end_pfn)
  2645. {
  2646. /* Only adjust if ZONE_MOVABLE is on this node */
  2647. if (zone_movable_pfn[nid]) {
  2648. /* Size ZONE_MOVABLE */
  2649. if (zone_type == ZONE_MOVABLE) {
  2650. *zone_start_pfn = zone_movable_pfn[nid];
  2651. *zone_end_pfn = min(node_end_pfn,
  2652. arch_zone_highest_possible_pfn[movable_zone]);
  2653. /* Adjust for ZONE_MOVABLE starting within this range */
  2654. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  2655. *zone_end_pfn > zone_movable_pfn[nid]) {
  2656. *zone_end_pfn = zone_movable_pfn[nid];
  2657. /* Check if this whole range is within ZONE_MOVABLE */
  2658. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  2659. *zone_start_pfn = *zone_end_pfn;
  2660. }
  2661. }
  2662. /*
  2663. * Return the number of pages a zone spans in a node, including holes
  2664. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  2665. */
  2666. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2667. unsigned long zone_type,
  2668. unsigned long *ignored)
  2669. {
  2670. unsigned long node_start_pfn, node_end_pfn;
  2671. unsigned long zone_start_pfn, zone_end_pfn;
  2672. /* Get the start and end of the node and zone */
  2673. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2674. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  2675. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  2676. adjust_zone_range_for_zone_movable(nid, zone_type,
  2677. node_start_pfn, node_end_pfn,
  2678. &zone_start_pfn, &zone_end_pfn);
  2679. /* Check that this node has pages within the zone's required range */
  2680. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  2681. return 0;
  2682. /* Move the zone boundaries inside the node if necessary */
  2683. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  2684. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  2685. /* Return the spanned pages */
  2686. return zone_end_pfn - zone_start_pfn;
  2687. }
  2688. /*
  2689. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  2690. * then all holes in the requested range will be accounted for.
  2691. */
  2692. unsigned long __meminit __absent_pages_in_range(int nid,
  2693. unsigned long range_start_pfn,
  2694. unsigned long range_end_pfn)
  2695. {
  2696. int i = 0;
  2697. unsigned long prev_end_pfn = 0, hole_pages = 0;
  2698. unsigned long start_pfn;
  2699. /* Find the end_pfn of the first active range of pfns in the node */
  2700. i = first_active_region_index_in_nid(nid);
  2701. if (i == -1)
  2702. return 0;
  2703. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2704. /* Account for ranges before physical memory on this node */
  2705. if (early_node_map[i].start_pfn > range_start_pfn)
  2706. hole_pages = prev_end_pfn - range_start_pfn;
  2707. /* Find all holes for the zone within the node */
  2708. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  2709. /* No need to continue if prev_end_pfn is outside the zone */
  2710. if (prev_end_pfn >= range_end_pfn)
  2711. break;
  2712. /* Make sure the end of the zone is not within the hole */
  2713. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  2714. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  2715. /* Update the hole size cound and move on */
  2716. if (start_pfn > range_start_pfn) {
  2717. BUG_ON(prev_end_pfn > start_pfn);
  2718. hole_pages += start_pfn - prev_end_pfn;
  2719. }
  2720. prev_end_pfn = early_node_map[i].end_pfn;
  2721. }
  2722. /* Account for ranges past physical memory on this node */
  2723. if (range_end_pfn > prev_end_pfn)
  2724. hole_pages += range_end_pfn -
  2725. max(range_start_pfn, prev_end_pfn);
  2726. return hole_pages;
  2727. }
  2728. /**
  2729. * absent_pages_in_range - Return number of page frames in holes within a range
  2730. * @start_pfn: The start PFN to start searching for holes
  2731. * @end_pfn: The end PFN to stop searching for holes
  2732. *
  2733. * It returns the number of pages frames in memory holes within a range.
  2734. */
  2735. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  2736. unsigned long end_pfn)
  2737. {
  2738. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  2739. }
  2740. /* Return the number of page frames in holes in a zone on a node */
  2741. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  2742. unsigned long zone_type,
  2743. unsigned long *ignored)
  2744. {
  2745. unsigned long node_start_pfn, node_end_pfn;
  2746. unsigned long zone_start_pfn, zone_end_pfn;
  2747. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  2748. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  2749. node_start_pfn);
  2750. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  2751. node_end_pfn);
  2752. adjust_zone_range_for_zone_movable(nid, zone_type,
  2753. node_start_pfn, node_end_pfn,
  2754. &zone_start_pfn, &zone_end_pfn);
  2755. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  2756. }
  2757. #else
  2758. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  2759. unsigned long zone_type,
  2760. unsigned long *zones_size)
  2761. {
  2762. return zones_size[zone_type];
  2763. }
  2764. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  2765. unsigned long zone_type,
  2766. unsigned long *zholes_size)
  2767. {
  2768. if (!zholes_size)
  2769. return 0;
  2770. return zholes_size[zone_type];
  2771. }
  2772. #endif
  2773. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  2774. unsigned long *zones_size, unsigned long *zholes_size)
  2775. {
  2776. unsigned long realtotalpages, totalpages = 0;
  2777. enum zone_type i;
  2778. for (i = 0; i < MAX_NR_ZONES; i++)
  2779. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  2780. zones_size);
  2781. pgdat->node_spanned_pages = totalpages;
  2782. realtotalpages = totalpages;
  2783. for (i = 0; i < MAX_NR_ZONES; i++)
  2784. realtotalpages -=
  2785. zone_absent_pages_in_node(pgdat->node_id, i,
  2786. zholes_size);
  2787. pgdat->node_present_pages = realtotalpages;
  2788. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  2789. realtotalpages);
  2790. }
  2791. #ifndef CONFIG_SPARSEMEM
  2792. /*
  2793. * Calculate the size of the zone->blockflags rounded to an unsigned long
  2794. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  2795. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  2796. * round what is now in bits to nearest long in bits, then return it in
  2797. * bytes.
  2798. */
  2799. static unsigned long __init usemap_size(unsigned long zonesize)
  2800. {
  2801. unsigned long usemapsize;
  2802. usemapsize = roundup(zonesize, pageblock_nr_pages);
  2803. usemapsize = usemapsize >> pageblock_order;
  2804. usemapsize *= NR_PAGEBLOCK_BITS;
  2805. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  2806. return usemapsize / 8;
  2807. }
  2808. static void __init setup_usemap(struct pglist_data *pgdat,
  2809. struct zone *zone, unsigned long zonesize)
  2810. {
  2811. unsigned long usemapsize = usemap_size(zonesize);
  2812. zone->pageblock_flags = NULL;
  2813. if (usemapsize) {
  2814. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  2815. memset(zone->pageblock_flags, 0, usemapsize);
  2816. }
  2817. }
  2818. #else
  2819. static void inline setup_usemap(struct pglist_data *pgdat,
  2820. struct zone *zone, unsigned long zonesize) {}
  2821. #endif /* CONFIG_SPARSEMEM */
  2822. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  2823. /* Return a sensible default order for the pageblock size. */
  2824. static inline int pageblock_default_order(void)
  2825. {
  2826. if (HPAGE_SHIFT > PAGE_SHIFT)
  2827. return HUGETLB_PAGE_ORDER;
  2828. return MAX_ORDER-1;
  2829. }
  2830. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  2831. static inline void __init set_pageblock_order(unsigned int order)
  2832. {
  2833. /* Check that pageblock_nr_pages has not already been setup */
  2834. if (pageblock_order)
  2835. return;
  2836. /*
  2837. * Assume the largest contiguous order of interest is a huge page.
  2838. * This value may be variable depending on boot parameters on IA64
  2839. */
  2840. pageblock_order = order;
  2841. }
  2842. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2843. /*
  2844. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  2845. * and pageblock_default_order() are unused as pageblock_order is set
  2846. * at compile-time. See include/linux/pageblock-flags.h for the values of
  2847. * pageblock_order based on the kernel config
  2848. */
  2849. static inline int pageblock_default_order(unsigned int order)
  2850. {
  2851. return MAX_ORDER-1;
  2852. }
  2853. #define set_pageblock_order(x) do {} while (0)
  2854. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  2855. /*
  2856. * Set up the zone data structures:
  2857. * - mark all pages reserved
  2858. * - mark all memory queues empty
  2859. * - clear the memory bitmaps
  2860. */
  2861. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  2862. unsigned long *zones_size, unsigned long *zholes_size)
  2863. {
  2864. enum zone_type j;
  2865. int nid = pgdat->node_id;
  2866. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  2867. int ret;
  2868. pgdat_resize_init(pgdat);
  2869. pgdat->nr_zones = 0;
  2870. init_waitqueue_head(&pgdat->kswapd_wait);
  2871. pgdat->kswapd_max_order = 0;
  2872. for (j = 0; j < MAX_NR_ZONES; j++) {
  2873. struct zone *zone = pgdat->node_zones + j;
  2874. unsigned long size, realsize, memmap_pages;
  2875. size = zone_spanned_pages_in_node(nid, j, zones_size);
  2876. realsize = size - zone_absent_pages_in_node(nid, j,
  2877. zholes_size);
  2878. /*
  2879. * Adjust realsize so that it accounts for how much memory
  2880. * is used by this zone for memmap. This affects the watermark
  2881. * and per-cpu initialisations
  2882. */
  2883. memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
  2884. if (realsize >= memmap_pages) {
  2885. realsize -= memmap_pages;
  2886. printk(KERN_DEBUG
  2887. " %s zone: %lu pages used for memmap\n",
  2888. zone_names[j], memmap_pages);
  2889. } else
  2890. printk(KERN_WARNING
  2891. " %s zone: %lu pages exceeds realsize %lu\n",
  2892. zone_names[j], memmap_pages, realsize);
  2893. /* Account for reserved pages */
  2894. if (j == 0 && realsize > dma_reserve) {
  2895. realsize -= dma_reserve;
  2896. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  2897. zone_names[0], dma_reserve);
  2898. }
  2899. if (!is_highmem_idx(j))
  2900. nr_kernel_pages += realsize;
  2901. nr_all_pages += realsize;
  2902. zone->spanned_pages = size;
  2903. zone->present_pages = realsize;
  2904. #ifdef CONFIG_NUMA
  2905. zone->node = nid;
  2906. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  2907. / 100;
  2908. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  2909. #endif
  2910. zone->name = zone_names[j];
  2911. spin_lock_init(&zone->lock);
  2912. spin_lock_init(&zone->lru_lock);
  2913. zone_seqlock_init(zone);
  2914. zone->zone_pgdat = pgdat;
  2915. zone->prev_priority = DEF_PRIORITY;
  2916. zone_pcp_init(zone);
  2917. INIT_LIST_HEAD(&zone->active_list);
  2918. INIT_LIST_HEAD(&zone->inactive_list);
  2919. zone->nr_scan_active = 0;
  2920. zone->nr_scan_inactive = 0;
  2921. zap_zone_vm_stats(zone);
  2922. zone->flags = 0;
  2923. if (!size)
  2924. continue;
  2925. set_pageblock_order(pageblock_default_order());
  2926. setup_usemap(pgdat, zone, size);
  2927. ret = init_currently_empty_zone(zone, zone_start_pfn,
  2928. size, MEMMAP_EARLY);
  2929. BUG_ON(ret);
  2930. zone_start_pfn += size;
  2931. }
  2932. }
  2933. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  2934. {
  2935. /* Skip empty nodes */
  2936. if (!pgdat->node_spanned_pages)
  2937. return;
  2938. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  2939. /* ia64 gets its own node_mem_map, before this, without bootmem */
  2940. if (!pgdat->node_mem_map) {
  2941. unsigned long size, start, end;
  2942. struct page *map;
  2943. /*
  2944. * The zone's endpoints aren't required to be MAX_ORDER
  2945. * aligned but the node_mem_map endpoints must be in order
  2946. * for the buddy allocator to function correctly.
  2947. */
  2948. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  2949. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  2950. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  2951. size = (end - start) * sizeof(struct page);
  2952. map = alloc_remap(pgdat->node_id, size);
  2953. if (!map)
  2954. map = alloc_bootmem_node(pgdat, size);
  2955. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  2956. }
  2957. #ifndef CONFIG_NEED_MULTIPLE_NODES
  2958. /*
  2959. * With no DISCONTIG, the global mem_map is just set as node 0's
  2960. */
  2961. if (pgdat == NODE_DATA(0)) {
  2962. mem_map = NODE_DATA(0)->node_mem_map;
  2963. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2964. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  2965. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  2966. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  2967. }
  2968. #endif
  2969. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  2970. }
  2971. void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
  2972. unsigned long *zones_size, unsigned long node_start_pfn,
  2973. unsigned long *zholes_size)
  2974. {
  2975. pgdat->node_id = nid;
  2976. pgdat->node_start_pfn = node_start_pfn;
  2977. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  2978. alloc_node_mem_map(pgdat);
  2979. free_area_init_core(pgdat, zones_size, zholes_size);
  2980. }
  2981. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  2982. #if MAX_NUMNODES > 1
  2983. /*
  2984. * Figure out the number of possible node ids.
  2985. */
  2986. static void __init setup_nr_node_ids(void)
  2987. {
  2988. unsigned int node;
  2989. unsigned int highest = 0;
  2990. for_each_node_mask(node, node_possible_map)
  2991. highest = node;
  2992. nr_node_ids = highest + 1;
  2993. }
  2994. #else
  2995. static inline void setup_nr_node_ids(void)
  2996. {
  2997. }
  2998. #endif
  2999. /**
  3000. * add_active_range - Register a range of PFNs backed by physical memory
  3001. * @nid: The node ID the range resides on
  3002. * @start_pfn: The start PFN of the available physical memory
  3003. * @end_pfn: The end PFN of the available physical memory
  3004. *
  3005. * These ranges are stored in an early_node_map[] and later used by
  3006. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3007. * range spans a memory hole, it is up to the architecture to ensure
  3008. * the memory is not freed by the bootmem allocator. If possible
  3009. * the range being registered will be merged with existing ranges.
  3010. */
  3011. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3012. unsigned long end_pfn)
  3013. {
  3014. int i;
  3015. printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
  3016. "%d entries of %d used\n",
  3017. nid, start_pfn, end_pfn,
  3018. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3019. /* Merge with existing active regions if possible */
  3020. for (i = 0; i < nr_nodemap_entries; i++) {
  3021. if (early_node_map[i].nid != nid)
  3022. continue;
  3023. /* Skip if an existing region covers this new one */
  3024. if (start_pfn >= early_node_map[i].start_pfn &&
  3025. end_pfn <= early_node_map[i].end_pfn)
  3026. return;
  3027. /* Merge forward if suitable */
  3028. if (start_pfn <= early_node_map[i].end_pfn &&
  3029. end_pfn > early_node_map[i].end_pfn) {
  3030. early_node_map[i].end_pfn = end_pfn;
  3031. return;
  3032. }
  3033. /* Merge backward if suitable */
  3034. if (start_pfn < early_node_map[i].end_pfn &&
  3035. end_pfn >= early_node_map[i].start_pfn) {
  3036. early_node_map[i].start_pfn = start_pfn;
  3037. return;
  3038. }
  3039. }
  3040. /* Check that early_node_map is large enough */
  3041. if (i >= MAX_ACTIVE_REGIONS) {
  3042. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3043. MAX_ACTIVE_REGIONS);
  3044. return;
  3045. }
  3046. early_node_map[i].nid = nid;
  3047. early_node_map[i].start_pfn = start_pfn;
  3048. early_node_map[i].end_pfn = end_pfn;
  3049. nr_nodemap_entries = i + 1;
  3050. }
  3051. /**
  3052. * shrink_active_range - Shrink an existing registered range of PFNs
  3053. * @nid: The node id the range is on that should be shrunk
  3054. * @old_end_pfn: The old end PFN of the range
  3055. * @new_end_pfn: The new PFN of the range
  3056. *
  3057. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3058. * The map is kept at the end physical page range that has already been
  3059. * registered with add_active_range(). This function allows an arch to shrink
  3060. * an existing registered range.
  3061. */
  3062. void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
  3063. unsigned long new_end_pfn)
  3064. {
  3065. int i;
  3066. /* Find the old active region end and shrink */
  3067. for_each_active_range_index_in_nid(i, nid)
  3068. if (early_node_map[i].end_pfn == old_end_pfn) {
  3069. early_node_map[i].end_pfn = new_end_pfn;
  3070. break;
  3071. }
  3072. }
  3073. /**
  3074. * remove_all_active_ranges - Remove all currently registered regions
  3075. *
  3076. * During discovery, it may be found that a table like SRAT is invalid
  3077. * and an alternative discovery method must be used. This function removes
  3078. * all currently registered regions.
  3079. */
  3080. void __init remove_all_active_ranges(void)
  3081. {
  3082. memset(early_node_map, 0, sizeof(early_node_map));
  3083. nr_nodemap_entries = 0;
  3084. #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
  3085. memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
  3086. memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
  3087. #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
  3088. }
  3089. /* Compare two active node_active_regions */
  3090. static int __init cmp_node_active_region(const void *a, const void *b)
  3091. {
  3092. struct node_active_region *arange = (struct node_active_region *)a;
  3093. struct node_active_region *brange = (struct node_active_region *)b;
  3094. /* Done this way to avoid overflows */
  3095. if (arange->start_pfn > brange->start_pfn)
  3096. return 1;
  3097. if (arange->start_pfn < brange->start_pfn)
  3098. return -1;
  3099. return 0;
  3100. }
  3101. /* sort the node_map by start_pfn */
  3102. static void __init sort_node_map(void)
  3103. {
  3104. sort(early_node_map, (size_t)nr_nodemap_entries,
  3105. sizeof(struct node_active_region),
  3106. cmp_node_active_region, NULL);
  3107. }
  3108. /* Find the lowest pfn for a node */
  3109. unsigned long __init find_min_pfn_for_node(unsigned long nid)
  3110. {
  3111. int i;
  3112. unsigned long min_pfn = ULONG_MAX;
  3113. /* Assuming a sorted map, the first range found has the starting pfn */
  3114. for_each_active_range_index_in_nid(i, nid)
  3115. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3116. if (min_pfn == ULONG_MAX) {
  3117. printk(KERN_WARNING
  3118. "Could not find start_pfn for node %lu\n", nid);
  3119. return 0;
  3120. }
  3121. return min_pfn;
  3122. }
  3123. /**
  3124. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3125. *
  3126. * It returns the minimum PFN based on information provided via
  3127. * add_active_range().
  3128. */
  3129. unsigned long __init find_min_pfn_with_active_regions(void)
  3130. {
  3131. return find_min_pfn_for_node(MAX_NUMNODES);
  3132. }
  3133. /**
  3134. * find_max_pfn_with_active_regions - Find the maximum PFN registered
  3135. *
  3136. * It returns the maximum PFN based on information provided via
  3137. * add_active_range().
  3138. */
  3139. unsigned long __init find_max_pfn_with_active_regions(void)
  3140. {
  3141. int i;
  3142. unsigned long max_pfn = 0;
  3143. for (i = 0; i < nr_nodemap_entries; i++)
  3144. max_pfn = max(max_pfn, early_node_map[i].end_pfn);
  3145. return max_pfn;
  3146. }
  3147. /*
  3148. * early_calculate_totalpages()
  3149. * Sum pages in active regions for movable zone.
  3150. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3151. */
  3152. static unsigned long __init early_calculate_totalpages(void)
  3153. {
  3154. int i;
  3155. unsigned long totalpages = 0;
  3156. for (i = 0; i < nr_nodemap_entries; i++) {
  3157. unsigned long pages = early_node_map[i].end_pfn -
  3158. early_node_map[i].start_pfn;
  3159. totalpages += pages;
  3160. if (pages)
  3161. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3162. }
  3163. return totalpages;
  3164. }
  3165. /*
  3166. * Find the PFN the Movable zone begins in each node. Kernel memory
  3167. * is spread evenly between nodes as long as the nodes have enough
  3168. * memory. When they don't, some nodes will have more kernelcore than
  3169. * others
  3170. */
  3171. void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3172. {
  3173. int i, nid;
  3174. unsigned long usable_startpfn;
  3175. unsigned long kernelcore_node, kernelcore_remaining;
  3176. unsigned long totalpages = early_calculate_totalpages();
  3177. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3178. /*
  3179. * If movablecore was specified, calculate what size of
  3180. * kernelcore that corresponds so that memory usable for
  3181. * any allocation type is evenly spread. If both kernelcore
  3182. * and movablecore are specified, then the value of kernelcore
  3183. * will be used for required_kernelcore if it's greater than
  3184. * what movablecore would have allowed.
  3185. */
  3186. if (required_movablecore) {
  3187. unsigned long corepages;
  3188. /*
  3189. * Round-up so that ZONE_MOVABLE is at least as large as what
  3190. * was requested by the user
  3191. */
  3192. required_movablecore =
  3193. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3194. corepages = totalpages - required_movablecore;
  3195. required_kernelcore = max(required_kernelcore, corepages);
  3196. }
  3197. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3198. if (!required_kernelcore)
  3199. return;
  3200. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3201. find_usable_zone_for_movable();
  3202. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3203. restart:
  3204. /* Spread kernelcore memory as evenly as possible throughout nodes */
  3205. kernelcore_node = required_kernelcore / usable_nodes;
  3206. for_each_node_state(nid, N_HIGH_MEMORY) {
  3207. /*
  3208. * Recalculate kernelcore_node if the division per node
  3209. * now exceeds what is necessary to satisfy the requested
  3210. * amount of memory for the kernel
  3211. */
  3212. if (required_kernelcore < kernelcore_node)
  3213. kernelcore_node = required_kernelcore / usable_nodes;
  3214. /*
  3215. * As the map is walked, we track how much memory is usable
  3216. * by the kernel using kernelcore_remaining. When it is
  3217. * 0, the rest of the node is usable by ZONE_MOVABLE
  3218. */
  3219. kernelcore_remaining = kernelcore_node;
  3220. /* Go through each range of PFNs within this node */
  3221. for_each_active_range_index_in_nid(i, nid) {
  3222. unsigned long start_pfn, end_pfn;
  3223. unsigned long size_pages;
  3224. start_pfn = max(early_node_map[i].start_pfn,
  3225. zone_movable_pfn[nid]);
  3226. end_pfn = early_node_map[i].end_pfn;
  3227. if (start_pfn >= end_pfn)
  3228. continue;
  3229. /* Account for what is only usable for kernelcore */
  3230. if (start_pfn < usable_startpfn) {
  3231. unsigned long kernel_pages;
  3232. kernel_pages = min(end_pfn, usable_startpfn)
  3233. - start_pfn;
  3234. kernelcore_remaining -= min(kernel_pages,
  3235. kernelcore_remaining);
  3236. required_kernelcore -= min(kernel_pages,
  3237. required_kernelcore);
  3238. /* Continue if range is now fully accounted */
  3239. if (end_pfn <= usable_startpfn) {
  3240. /*
  3241. * Push zone_movable_pfn to the end so
  3242. * that if we have to rebalance
  3243. * kernelcore across nodes, we will
  3244. * not double account here
  3245. */
  3246. zone_movable_pfn[nid] = end_pfn;
  3247. continue;
  3248. }
  3249. start_pfn = usable_startpfn;
  3250. }
  3251. /*
  3252. * The usable PFN range for ZONE_MOVABLE is from
  3253. * start_pfn->end_pfn. Calculate size_pages as the
  3254. * number of pages used as kernelcore
  3255. */
  3256. size_pages = end_pfn - start_pfn;
  3257. if (size_pages > kernelcore_remaining)
  3258. size_pages = kernelcore_remaining;
  3259. zone_movable_pfn[nid] = start_pfn + size_pages;
  3260. /*
  3261. * Some kernelcore has been met, update counts and
  3262. * break if the kernelcore for this node has been
  3263. * satisified
  3264. */
  3265. required_kernelcore -= min(required_kernelcore,
  3266. size_pages);
  3267. kernelcore_remaining -= size_pages;
  3268. if (!kernelcore_remaining)
  3269. break;
  3270. }
  3271. }
  3272. /*
  3273. * If there is still required_kernelcore, we do another pass with one
  3274. * less node in the count. This will push zone_movable_pfn[nid] further
  3275. * along on the nodes that still have memory until kernelcore is
  3276. * satisified
  3277. */
  3278. usable_nodes--;
  3279. if (usable_nodes && required_kernelcore > usable_nodes)
  3280. goto restart;
  3281. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  3282. for (nid = 0; nid < MAX_NUMNODES; nid++)
  3283. zone_movable_pfn[nid] =
  3284. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  3285. }
  3286. /* Any regular memory on that node ? */
  3287. static void check_for_regular_memory(pg_data_t *pgdat)
  3288. {
  3289. #ifdef CONFIG_HIGHMEM
  3290. enum zone_type zone_type;
  3291. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  3292. struct zone *zone = &pgdat->node_zones[zone_type];
  3293. if (zone->present_pages)
  3294. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  3295. }
  3296. #endif
  3297. }
  3298. /**
  3299. * free_area_init_nodes - Initialise all pg_data_t and zone data
  3300. * @max_zone_pfn: an array of max PFNs for each zone
  3301. *
  3302. * This will call free_area_init_node() for each active node in the system.
  3303. * Using the page ranges provided by add_active_range(), the size of each
  3304. * zone in each node and their holes is calculated. If the maximum PFN
  3305. * between two adjacent zones match, it is assumed that the zone is empty.
  3306. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  3307. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  3308. * starts where the previous one ended. For example, ZONE_DMA32 starts
  3309. * at arch_max_dma_pfn.
  3310. */
  3311. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  3312. {
  3313. unsigned long nid;
  3314. enum zone_type i;
  3315. /* Sort early_node_map as initialisation assumes it is sorted */
  3316. sort_node_map();
  3317. /* Record where the zone boundaries are */
  3318. memset(arch_zone_lowest_possible_pfn, 0,
  3319. sizeof(arch_zone_lowest_possible_pfn));
  3320. memset(arch_zone_highest_possible_pfn, 0,
  3321. sizeof(arch_zone_highest_possible_pfn));
  3322. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  3323. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  3324. for (i = 1; i < MAX_NR_ZONES; i++) {
  3325. if (i == ZONE_MOVABLE)
  3326. continue;
  3327. arch_zone_lowest_possible_pfn[i] =
  3328. arch_zone_highest_possible_pfn[i-1];
  3329. arch_zone_highest_possible_pfn[i] =
  3330. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  3331. }
  3332. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  3333. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  3334. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  3335. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  3336. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  3337. /* Print out the zone ranges */
  3338. printk("Zone PFN ranges:\n");
  3339. for (i = 0; i < MAX_NR_ZONES; i++) {
  3340. if (i == ZONE_MOVABLE)
  3341. continue;
  3342. printk(" %-8s %8lu -> %8lu\n",
  3343. zone_names[i],
  3344. arch_zone_lowest_possible_pfn[i],
  3345. arch_zone_highest_possible_pfn[i]);
  3346. }
  3347. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  3348. printk("Movable zone start PFN for each node\n");
  3349. for (i = 0; i < MAX_NUMNODES; i++) {
  3350. if (zone_movable_pfn[i])
  3351. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  3352. }
  3353. /* Print out the early_node_map[] */
  3354. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  3355. for (i = 0; i < nr_nodemap_entries; i++)
  3356. printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
  3357. early_node_map[i].start_pfn,
  3358. early_node_map[i].end_pfn);
  3359. /* Initialise every node */
  3360. setup_nr_node_ids();
  3361. for_each_online_node(nid) {
  3362. pg_data_t *pgdat = NODE_DATA(nid);
  3363. free_area_init_node(nid, pgdat, NULL,
  3364. find_min_pfn_for_node(nid), NULL);
  3365. /* Any memory on that node */
  3366. if (pgdat->node_present_pages)
  3367. node_set_state(nid, N_HIGH_MEMORY);
  3368. check_for_regular_memory(pgdat);
  3369. }
  3370. }
  3371. static int __init cmdline_parse_core(char *p, unsigned long *core)
  3372. {
  3373. unsigned long long coremem;
  3374. if (!p)
  3375. return -EINVAL;
  3376. coremem = memparse(p, &p);
  3377. *core = coremem >> PAGE_SHIFT;
  3378. /* Paranoid check that UL is enough for the coremem value */
  3379. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  3380. return 0;
  3381. }
  3382. /*
  3383. * kernelcore=size sets the amount of memory for use for allocations that
  3384. * cannot be reclaimed or migrated.
  3385. */
  3386. static int __init cmdline_parse_kernelcore(char *p)
  3387. {
  3388. return cmdline_parse_core(p, &required_kernelcore);
  3389. }
  3390. /*
  3391. * movablecore=size sets the amount of memory for use for allocations that
  3392. * can be reclaimed or migrated.
  3393. */
  3394. static int __init cmdline_parse_movablecore(char *p)
  3395. {
  3396. return cmdline_parse_core(p, &required_movablecore);
  3397. }
  3398. early_param("kernelcore", cmdline_parse_kernelcore);
  3399. early_param("movablecore", cmdline_parse_movablecore);
  3400. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3401. /**
  3402. * set_dma_reserve - set the specified number of pages reserved in the first zone
  3403. * @new_dma_reserve: The number of pages to mark reserved
  3404. *
  3405. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  3406. * In the DMA zone, a significant percentage may be consumed by kernel image
  3407. * and other unfreeable allocations which can skew the watermarks badly. This
  3408. * function may optionally be used to account for unfreeable pages in the
  3409. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  3410. * smaller per-cpu batchsize.
  3411. */
  3412. void __init set_dma_reserve(unsigned long new_dma_reserve)
  3413. {
  3414. dma_reserve = new_dma_reserve;
  3415. }
  3416. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3417. static bootmem_data_t contig_bootmem_data;
  3418. struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
  3419. EXPORT_SYMBOL(contig_page_data);
  3420. #endif
  3421. void __init free_area_init(unsigned long *zones_size)
  3422. {
  3423. free_area_init_node(0, NODE_DATA(0), zones_size,
  3424. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  3425. }
  3426. static int page_alloc_cpu_notify(struct notifier_block *self,
  3427. unsigned long action, void *hcpu)
  3428. {
  3429. int cpu = (unsigned long)hcpu;
  3430. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3431. drain_pages(cpu);
  3432. /*
  3433. * Spill the event counters of the dead processor
  3434. * into the current processors event counters.
  3435. * This artificially elevates the count of the current
  3436. * processor.
  3437. */
  3438. vm_events_fold_cpu(cpu);
  3439. /*
  3440. * Zero the differential counters of the dead processor
  3441. * so that the vm statistics are consistent.
  3442. *
  3443. * This is only okay since the processor is dead and cannot
  3444. * race with what we are doing.
  3445. */
  3446. refresh_cpu_vm_stats(cpu);
  3447. }
  3448. return NOTIFY_OK;
  3449. }
  3450. void __init page_alloc_init(void)
  3451. {
  3452. hotcpu_notifier(page_alloc_cpu_notify, 0);
  3453. }
  3454. /*
  3455. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  3456. * or min_free_kbytes changes.
  3457. */
  3458. static void calculate_totalreserve_pages(void)
  3459. {
  3460. struct pglist_data *pgdat;
  3461. unsigned long reserve_pages = 0;
  3462. enum zone_type i, j;
  3463. for_each_online_pgdat(pgdat) {
  3464. for (i = 0; i < MAX_NR_ZONES; i++) {
  3465. struct zone *zone = pgdat->node_zones + i;
  3466. unsigned long max = 0;
  3467. /* Find valid and maximum lowmem_reserve in the zone */
  3468. for (j = i; j < MAX_NR_ZONES; j++) {
  3469. if (zone->lowmem_reserve[j] > max)
  3470. max = zone->lowmem_reserve[j];
  3471. }
  3472. /* we treat pages_high as reserved pages. */
  3473. max += zone->pages_high;
  3474. if (max > zone->present_pages)
  3475. max = zone->present_pages;
  3476. reserve_pages += max;
  3477. }
  3478. }
  3479. totalreserve_pages = reserve_pages;
  3480. }
  3481. /*
  3482. * setup_per_zone_lowmem_reserve - called whenever
  3483. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  3484. * has a correct pages reserved value, so an adequate number of
  3485. * pages are left in the zone after a successful __alloc_pages().
  3486. */
  3487. static void setup_per_zone_lowmem_reserve(void)
  3488. {
  3489. struct pglist_data *pgdat;
  3490. enum zone_type j, idx;
  3491. for_each_online_pgdat(pgdat) {
  3492. for (j = 0; j < MAX_NR_ZONES; j++) {
  3493. struct zone *zone = pgdat->node_zones + j;
  3494. unsigned long present_pages = zone->present_pages;
  3495. zone->lowmem_reserve[j] = 0;
  3496. idx = j;
  3497. while (idx) {
  3498. struct zone *lower_zone;
  3499. idx--;
  3500. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  3501. sysctl_lowmem_reserve_ratio[idx] = 1;
  3502. lower_zone = pgdat->node_zones + idx;
  3503. lower_zone->lowmem_reserve[j] = present_pages /
  3504. sysctl_lowmem_reserve_ratio[idx];
  3505. present_pages += lower_zone->present_pages;
  3506. }
  3507. }
  3508. }
  3509. /* update totalreserve_pages */
  3510. calculate_totalreserve_pages();
  3511. }
  3512. /**
  3513. * setup_per_zone_pages_min - called when min_free_kbytes changes.
  3514. *
  3515. * Ensures that the pages_{min,low,high} values for each zone are set correctly
  3516. * with respect to min_free_kbytes.
  3517. */
  3518. void setup_per_zone_pages_min(void)
  3519. {
  3520. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  3521. unsigned long lowmem_pages = 0;
  3522. struct zone *zone;
  3523. unsigned long flags;
  3524. /* Calculate total number of !ZONE_HIGHMEM pages */
  3525. for_each_zone(zone) {
  3526. if (!is_highmem(zone))
  3527. lowmem_pages += zone->present_pages;
  3528. }
  3529. for_each_zone(zone) {
  3530. u64 tmp;
  3531. spin_lock_irqsave(&zone->lru_lock, flags);
  3532. tmp = (u64)pages_min * zone->present_pages;
  3533. do_div(tmp, lowmem_pages);
  3534. if (is_highmem(zone)) {
  3535. /*
  3536. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  3537. * need highmem pages, so cap pages_min to a small
  3538. * value here.
  3539. *
  3540. * The (pages_high-pages_low) and (pages_low-pages_min)
  3541. * deltas controls asynch page reclaim, and so should
  3542. * not be capped for highmem.
  3543. */
  3544. int min_pages;
  3545. min_pages = zone->present_pages / 1024;
  3546. if (min_pages < SWAP_CLUSTER_MAX)
  3547. min_pages = SWAP_CLUSTER_MAX;
  3548. if (min_pages > 128)
  3549. min_pages = 128;
  3550. zone->pages_min = min_pages;
  3551. } else {
  3552. /*
  3553. * If it's a lowmem zone, reserve a number of pages
  3554. * proportionate to the zone's size.
  3555. */
  3556. zone->pages_min = tmp;
  3557. }
  3558. zone->pages_low = zone->pages_min + (tmp >> 2);
  3559. zone->pages_high = zone->pages_min + (tmp >> 1);
  3560. setup_zone_migrate_reserve(zone);
  3561. spin_unlock_irqrestore(&zone->lru_lock, flags);
  3562. }
  3563. /* update totalreserve_pages */
  3564. calculate_totalreserve_pages();
  3565. }
  3566. /*
  3567. * Initialise min_free_kbytes.
  3568. *
  3569. * For small machines we want it small (128k min). For large machines
  3570. * we want it large (64MB max). But it is not linear, because network
  3571. * bandwidth does not increase linearly with machine size. We use
  3572. *
  3573. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  3574. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  3575. *
  3576. * which yields
  3577. *
  3578. * 16MB: 512k
  3579. * 32MB: 724k
  3580. * 64MB: 1024k
  3581. * 128MB: 1448k
  3582. * 256MB: 2048k
  3583. * 512MB: 2896k
  3584. * 1024MB: 4096k
  3585. * 2048MB: 5792k
  3586. * 4096MB: 8192k
  3587. * 8192MB: 11584k
  3588. * 16384MB: 16384k
  3589. */
  3590. static int __init init_per_zone_pages_min(void)
  3591. {
  3592. unsigned long lowmem_kbytes;
  3593. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  3594. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  3595. if (min_free_kbytes < 128)
  3596. min_free_kbytes = 128;
  3597. if (min_free_kbytes > 65536)
  3598. min_free_kbytes = 65536;
  3599. setup_per_zone_pages_min();
  3600. setup_per_zone_lowmem_reserve();
  3601. return 0;
  3602. }
  3603. module_init(init_per_zone_pages_min)
  3604. /*
  3605. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  3606. * that we can call two helper functions whenever min_free_kbytes
  3607. * changes.
  3608. */
  3609. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  3610. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3611. {
  3612. proc_dointvec(table, write, file, buffer, length, ppos);
  3613. if (write)
  3614. setup_per_zone_pages_min();
  3615. return 0;
  3616. }
  3617. #ifdef CONFIG_NUMA
  3618. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  3619. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3620. {
  3621. struct zone *zone;
  3622. int rc;
  3623. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3624. if (rc)
  3625. return rc;
  3626. for_each_zone(zone)
  3627. zone->min_unmapped_pages = (zone->present_pages *
  3628. sysctl_min_unmapped_ratio) / 100;
  3629. return 0;
  3630. }
  3631. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  3632. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3633. {
  3634. struct zone *zone;
  3635. int rc;
  3636. rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3637. if (rc)
  3638. return rc;
  3639. for_each_zone(zone)
  3640. zone->min_slab_pages = (zone->present_pages *
  3641. sysctl_min_slab_ratio) / 100;
  3642. return 0;
  3643. }
  3644. #endif
  3645. /*
  3646. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  3647. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  3648. * whenever sysctl_lowmem_reserve_ratio changes.
  3649. *
  3650. * The reserve ratio obviously has absolutely no relation with the
  3651. * pages_min watermarks. The lowmem reserve ratio can only make sense
  3652. * if in function of the boot time zone sizes.
  3653. */
  3654. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  3655. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3656. {
  3657. proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3658. setup_per_zone_lowmem_reserve();
  3659. return 0;
  3660. }
  3661. /*
  3662. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  3663. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  3664. * can have before it gets flushed back to buddy allocator.
  3665. */
  3666. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  3667. struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
  3668. {
  3669. struct zone *zone;
  3670. unsigned int cpu;
  3671. int ret;
  3672. ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
  3673. if (!write || (ret == -EINVAL))
  3674. return ret;
  3675. for_each_zone(zone) {
  3676. for_each_online_cpu(cpu) {
  3677. unsigned long high;
  3678. high = zone->present_pages / percpu_pagelist_fraction;
  3679. setup_pagelist_highmark(zone_pcp(zone, cpu), high);
  3680. }
  3681. }
  3682. return 0;
  3683. }
  3684. int hashdist = HASHDIST_DEFAULT;
  3685. #ifdef CONFIG_NUMA
  3686. static int __init set_hashdist(char *str)
  3687. {
  3688. if (!str)
  3689. return 0;
  3690. hashdist = simple_strtoul(str, &str, 0);
  3691. return 1;
  3692. }
  3693. __setup("hashdist=", set_hashdist);
  3694. #endif
  3695. /*
  3696. * allocate a large system hash table from bootmem
  3697. * - it is assumed that the hash table must contain an exact power-of-2
  3698. * quantity of entries
  3699. * - limit is the number of hash buckets, not the total allocation size
  3700. */
  3701. void *__init alloc_large_system_hash(const char *tablename,
  3702. unsigned long bucketsize,
  3703. unsigned long numentries,
  3704. int scale,
  3705. int flags,
  3706. unsigned int *_hash_shift,
  3707. unsigned int *_hash_mask,
  3708. unsigned long limit)
  3709. {
  3710. unsigned long long max = limit;
  3711. unsigned long log2qty, size;
  3712. void *table = NULL;
  3713. /* allow the kernel cmdline to have a say */
  3714. if (!numentries) {
  3715. /* round applicable memory size up to nearest megabyte */
  3716. numentries = nr_kernel_pages;
  3717. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  3718. numentries >>= 20 - PAGE_SHIFT;
  3719. numentries <<= 20 - PAGE_SHIFT;
  3720. /* limit to 1 bucket per 2^scale bytes of low memory */
  3721. if (scale > PAGE_SHIFT)
  3722. numentries >>= (scale - PAGE_SHIFT);
  3723. else
  3724. numentries <<= (PAGE_SHIFT - scale);
  3725. /* Make sure we've got at least a 0-order allocation.. */
  3726. if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  3727. numentries = PAGE_SIZE / bucketsize;
  3728. }
  3729. numentries = roundup_pow_of_two(numentries);
  3730. /* limit allocation size to 1/16 total memory by default */
  3731. if (max == 0) {
  3732. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  3733. do_div(max, bucketsize);
  3734. }
  3735. if (numentries > max)
  3736. numentries = max;
  3737. log2qty = ilog2(numentries);
  3738. do {
  3739. size = bucketsize << log2qty;
  3740. if (flags & HASH_EARLY)
  3741. table = alloc_bootmem(size);
  3742. else if (hashdist)
  3743. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  3744. else {
  3745. unsigned long order;
  3746. for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
  3747. ;
  3748. table = (void*) __get_free_pages(GFP_ATOMIC, order);
  3749. /*
  3750. * If bucketsize is not a power-of-two, we may free
  3751. * some pages at the end of hash table.
  3752. */
  3753. if (table) {
  3754. unsigned long alloc_end = (unsigned long)table +
  3755. (PAGE_SIZE << order);
  3756. unsigned long used = (unsigned long)table +
  3757. PAGE_ALIGN(size);
  3758. split_page(virt_to_page(table), order);
  3759. while (used < alloc_end) {
  3760. free_page(used);
  3761. used += PAGE_SIZE;
  3762. }
  3763. }
  3764. }
  3765. } while (!table && size > PAGE_SIZE && --log2qty);
  3766. if (!table)
  3767. panic("Failed to allocate %s hash table\n", tablename);
  3768. printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
  3769. tablename,
  3770. (1U << log2qty),
  3771. ilog2(size) - PAGE_SHIFT,
  3772. size);
  3773. if (_hash_shift)
  3774. *_hash_shift = log2qty;
  3775. if (_hash_mask)
  3776. *_hash_mask = (1 << log2qty) - 1;
  3777. return table;
  3778. }
  3779. #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
  3780. struct page *pfn_to_page(unsigned long pfn)
  3781. {
  3782. return __pfn_to_page(pfn);
  3783. }
  3784. unsigned long page_to_pfn(struct page *page)
  3785. {
  3786. return __page_to_pfn(page);
  3787. }
  3788. EXPORT_SYMBOL(pfn_to_page);
  3789. EXPORT_SYMBOL(page_to_pfn);
  3790. #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
  3791. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  3792. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  3793. unsigned long pfn)
  3794. {
  3795. #ifdef CONFIG_SPARSEMEM
  3796. return __pfn_to_section(pfn)->pageblock_flags;
  3797. #else
  3798. return zone->pageblock_flags;
  3799. #endif /* CONFIG_SPARSEMEM */
  3800. }
  3801. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  3802. {
  3803. #ifdef CONFIG_SPARSEMEM
  3804. pfn &= (PAGES_PER_SECTION-1);
  3805. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3806. #else
  3807. pfn = pfn - zone->zone_start_pfn;
  3808. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  3809. #endif /* CONFIG_SPARSEMEM */
  3810. }
  3811. /**
  3812. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  3813. * @page: The page within the block of interest
  3814. * @start_bitidx: The first bit of interest to retrieve
  3815. * @end_bitidx: The last bit of interest
  3816. * returns pageblock_bits flags
  3817. */
  3818. unsigned long get_pageblock_flags_group(struct page *page,
  3819. int start_bitidx, int end_bitidx)
  3820. {
  3821. struct zone *zone;
  3822. unsigned long *bitmap;
  3823. unsigned long pfn, bitidx;
  3824. unsigned long flags = 0;
  3825. unsigned long value = 1;
  3826. zone = page_zone(page);
  3827. pfn = page_to_pfn(page);
  3828. bitmap = get_pageblock_bitmap(zone, pfn);
  3829. bitidx = pfn_to_bitidx(zone, pfn);
  3830. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3831. if (test_bit(bitidx + start_bitidx, bitmap))
  3832. flags |= value;
  3833. return flags;
  3834. }
  3835. /**
  3836. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  3837. * @page: The page within the block of interest
  3838. * @start_bitidx: The first bit of interest
  3839. * @end_bitidx: The last bit of interest
  3840. * @flags: The flags to set
  3841. */
  3842. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  3843. int start_bitidx, int end_bitidx)
  3844. {
  3845. struct zone *zone;
  3846. unsigned long *bitmap;
  3847. unsigned long pfn, bitidx;
  3848. unsigned long value = 1;
  3849. zone = page_zone(page);
  3850. pfn = page_to_pfn(page);
  3851. bitmap = get_pageblock_bitmap(zone, pfn);
  3852. bitidx = pfn_to_bitidx(zone, pfn);
  3853. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  3854. if (flags & value)
  3855. __set_bit(bitidx + start_bitidx, bitmap);
  3856. else
  3857. __clear_bit(bitidx + start_bitidx, bitmap);
  3858. }
  3859. /*
  3860. * This is designed as sub function...plz see page_isolation.c also.
  3861. * set/clear page block's type to be ISOLATE.
  3862. * page allocater never alloc memory from ISOLATE block.
  3863. */
  3864. int set_migratetype_isolate(struct page *page)
  3865. {
  3866. struct zone *zone;
  3867. unsigned long flags;
  3868. int ret = -EBUSY;
  3869. zone = page_zone(page);
  3870. spin_lock_irqsave(&zone->lock, flags);
  3871. /*
  3872. * In future, more migrate types will be able to be isolation target.
  3873. */
  3874. if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
  3875. goto out;
  3876. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  3877. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  3878. ret = 0;
  3879. out:
  3880. spin_unlock_irqrestore(&zone->lock, flags);
  3881. if (!ret)
  3882. drain_all_pages();
  3883. return ret;
  3884. }
  3885. void unset_migratetype_isolate(struct page *page)
  3886. {
  3887. struct zone *zone;
  3888. unsigned long flags;
  3889. zone = page_zone(page);
  3890. spin_lock_irqsave(&zone->lock, flags);
  3891. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  3892. goto out;
  3893. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  3894. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  3895. out:
  3896. spin_unlock_irqrestore(&zone->lock, flags);
  3897. }
  3898. #ifdef CONFIG_MEMORY_HOTREMOVE
  3899. /*
  3900. * All pages in the range must be isolated before calling this.
  3901. */
  3902. void
  3903. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  3904. {
  3905. struct page *page;
  3906. struct zone *zone;
  3907. int order, i;
  3908. unsigned long pfn;
  3909. unsigned long flags;
  3910. /* find the first valid pfn */
  3911. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  3912. if (pfn_valid(pfn))
  3913. break;
  3914. if (pfn == end_pfn)
  3915. return;
  3916. zone = page_zone(pfn_to_page(pfn));
  3917. spin_lock_irqsave(&zone->lock, flags);
  3918. pfn = start_pfn;
  3919. while (pfn < end_pfn) {
  3920. if (!pfn_valid(pfn)) {
  3921. pfn++;
  3922. continue;
  3923. }
  3924. page = pfn_to_page(pfn);
  3925. BUG_ON(page_count(page));
  3926. BUG_ON(!PageBuddy(page));
  3927. order = page_order(page);
  3928. #ifdef CONFIG_DEBUG_VM
  3929. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  3930. pfn, 1 << order, end_pfn);
  3931. #endif
  3932. list_del(&page->lru);
  3933. rmv_page_order(page);
  3934. zone->free_area[order].nr_free--;
  3935. __mod_zone_page_state(zone, NR_FREE_PAGES,
  3936. - (1UL << order));
  3937. for (i = 0; i < (1 << order); i++)
  3938. SetPageReserved((page+i));
  3939. pfn += (1 << order);
  3940. }
  3941. spin_unlock_irqrestore(&zone->lock, flags);
  3942. }
  3943. #endif