dmapool.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500
  1. /*
  2. * DMA Pool allocator
  3. *
  4. * Copyright 2001 David Brownell
  5. * Copyright 2007 Intel Corporation
  6. * Author: Matthew Wilcox <willy@linux.intel.com>
  7. *
  8. * This software may be redistributed and/or modified under the terms of
  9. * the GNU General Public License ("GPL") version 2 as published by the
  10. * Free Software Foundation.
  11. *
  12. * This allocator returns small blocks of a given size which are DMA-able by
  13. * the given device. It uses the dma_alloc_coherent page allocator to get
  14. * new pages, then splits them up into blocks of the required size.
  15. * Many older drivers still have their own code to do this.
  16. *
  17. * The current design of this allocator is fairly simple. The pool is
  18. * represented by the 'struct dma_pool' which keeps a doubly-linked list of
  19. * allocated pages. Each page in the page_list is split into blocks of at
  20. * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked
  21. * list of free blocks within the page. Used blocks aren't tracked, but we
  22. * keep a count of how many are currently allocated from each page.
  23. */
  24. #include <linux/device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/dmapool.h>
  27. #include <linux/kernel.h>
  28. #include <linux/list.h>
  29. #include <linux/module.h>
  30. #include <linux/mutex.h>
  31. #include <linux/poison.h>
  32. #include <linux/sched.h>
  33. #include <linux/slab.h>
  34. #include <linux/spinlock.h>
  35. #include <linux/string.h>
  36. #include <linux/types.h>
  37. #include <linux/wait.h>
  38. struct dma_pool { /* the pool */
  39. struct list_head page_list;
  40. spinlock_t lock;
  41. size_t size;
  42. struct device *dev;
  43. size_t allocation;
  44. size_t boundary;
  45. char name[32];
  46. wait_queue_head_t waitq;
  47. struct list_head pools;
  48. };
  49. struct dma_page { /* cacheable header for 'allocation' bytes */
  50. struct list_head page_list;
  51. void *vaddr;
  52. dma_addr_t dma;
  53. unsigned int in_use;
  54. unsigned int offset;
  55. };
  56. #define POOL_TIMEOUT_JIFFIES ((100 /* msec */ * HZ) / 1000)
  57. static DEFINE_MUTEX(pools_lock);
  58. static ssize_t
  59. show_pools(struct device *dev, struct device_attribute *attr, char *buf)
  60. {
  61. unsigned temp;
  62. unsigned size;
  63. char *next;
  64. struct dma_page *page;
  65. struct dma_pool *pool;
  66. next = buf;
  67. size = PAGE_SIZE;
  68. temp = scnprintf(next, size, "poolinfo - 0.1\n");
  69. size -= temp;
  70. next += temp;
  71. mutex_lock(&pools_lock);
  72. list_for_each_entry(pool, &dev->dma_pools, pools) {
  73. unsigned pages = 0;
  74. unsigned blocks = 0;
  75. list_for_each_entry(page, &pool->page_list, page_list) {
  76. pages++;
  77. blocks += page->in_use;
  78. }
  79. /* per-pool info, no real statistics yet */
  80. temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
  81. pool->name, blocks,
  82. pages * (pool->allocation / pool->size),
  83. pool->size, pages);
  84. size -= temp;
  85. next += temp;
  86. }
  87. mutex_unlock(&pools_lock);
  88. return PAGE_SIZE - size;
  89. }
  90. static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
  91. /**
  92. * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
  93. * @name: name of pool, for diagnostics
  94. * @dev: device that will be doing the DMA
  95. * @size: size of the blocks in this pool.
  96. * @align: alignment requirement for blocks; must be a power of two
  97. * @boundary: returned blocks won't cross this power of two boundary
  98. * Context: !in_interrupt()
  99. *
  100. * Returns a dma allocation pool with the requested characteristics, or
  101. * null if one can't be created. Given one of these pools, dma_pool_alloc()
  102. * may be used to allocate memory. Such memory will all have "consistent"
  103. * DMA mappings, accessible by the device and its driver without using
  104. * cache flushing primitives. The actual size of blocks allocated may be
  105. * larger than requested because of alignment.
  106. *
  107. * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
  108. * cross that size boundary. This is useful for devices which have
  109. * addressing restrictions on individual DMA transfers, such as not crossing
  110. * boundaries of 4KBytes.
  111. */
  112. struct dma_pool *dma_pool_create(const char *name, struct device *dev,
  113. size_t size, size_t align, size_t boundary)
  114. {
  115. struct dma_pool *retval;
  116. size_t allocation;
  117. if (align == 0) {
  118. align = 1;
  119. } else if (align & (align - 1)) {
  120. return NULL;
  121. }
  122. if (size == 0) {
  123. return NULL;
  124. } else if (size < 4) {
  125. size = 4;
  126. }
  127. if ((size % align) != 0)
  128. size = ALIGN(size, align);
  129. allocation = max_t(size_t, size, PAGE_SIZE);
  130. if (!boundary) {
  131. boundary = allocation;
  132. } else if ((boundary < size) || (boundary & (boundary - 1))) {
  133. return NULL;
  134. }
  135. retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
  136. if (!retval)
  137. return retval;
  138. strlcpy(retval->name, name, sizeof(retval->name));
  139. retval->dev = dev;
  140. INIT_LIST_HEAD(&retval->page_list);
  141. spin_lock_init(&retval->lock);
  142. retval->size = size;
  143. retval->boundary = boundary;
  144. retval->allocation = allocation;
  145. init_waitqueue_head(&retval->waitq);
  146. if (dev) {
  147. int ret;
  148. mutex_lock(&pools_lock);
  149. if (list_empty(&dev->dma_pools))
  150. ret = device_create_file(dev, &dev_attr_pools);
  151. else
  152. ret = 0;
  153. /* note: not currently insisting "name" be unique */
  154. if (!ret)
  155. list_add(&retval->pools, &dev->dma_pools);
  156. else {
  157. kfree(retval);
  158. retval = NULL;
  159. }
  160. mutex_unlock(&pools_lock);
  161. } else
  162. INIT_LIST_HEAD(&retval->pools);
  163. return retval;
  164. }
  165. EXPORT_SYMBOL(dma_pool_create);
  166. static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
  167. {
  168. unsigned int offset = 0;
  169. unsigned int next_boundary = pool->boundary;
  170. do {
  171. unsigned int next = offset + pool->size;
  172. if (unlikely((next + pool->size) >= next_boundary)) {
  173. next = next_boundary;
  174. next_boundary += pool->boundary;
  175. }
  176. *(int *)(page->vaddr + offset) = next;
  177. offset = next;
  178. } while (offset < pool->allocation);
  179. }
  180. static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
  181. {
  182. struct dma_page *page;
  183. page = kmalloc(sizeof(*page), mem_flags);
  184. if (!page)
  185. return NULL;
  186. page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
  187. &page->dma, mem_flags);
  188. if (page->vaddr) {
  189. #ifdef CONFIG_DEBUG_SLAB
  190. memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
  191. #endif
  192. pool_initialise_page(pool, page);
  193. list_add(&page->page_list, &pool->page_list);
  194. page->in_use = 0;
  195. page->offset = 0;
  196. } else {
  197. kfree(page);
  198. page = NULL;
  199. }
  200. return page;
  201. }
  202. static inline int is_page_busy(struct dma_page *page)
  203. {
  204. return page->in_use != 0;
  205. }
  206. static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
  207. {
  208. dma_addr_t dma = page->dma;
  209. #ifdef CONFIG_DEBUG_SLAB
  210. memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
  211. #endif
  212. dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
  213. list_del(&page->page_list);
  214. kfree(page);
  215. }
  216. /**
  217. * dma_pool_destroy - destroys a pool of dma memory blocks.
  218. * @pool: dma pool that will be destroyed
  219. * Context: !in_interrupt()
  220. *
  221. * Caller guarantees that no more memory from the pool is in use,
  222. * and that nothing will try to use the pool after this call.
  223. */
  224. void dma_pool_destroy(struct dma_pool *pool)
  225. {
  226. mutex_lock(&pools_lock);
  227. list_del(&pool->pools);
  228. if (pool->dev && list_empty(&pool->dev->dma_pools))
  229. device_remove_file(pool->dev, &dev_attr_pools);
  230. mutex_unlock(&pools_lock);
  231. while (!list_empty(&pool->page_list)) {
  232. struct dma_page *page;
  233. page = list_entry(pool->page_list.next,
  234. struct dma_page, page_list);
  235. if (is_page_busy(page)) {
  236. if (pool->dev)
  237. dev_err(pool->dev,
  238. "dma_pool_destroy %s, %p busy\n",
  239. pool->name, page->vaddr);
  240. else
  241. printk(KERN_ERR
  242. "dma_pool_destroy %s, %p busy\n",
  243. pool->name, page->vaddr);
  244. /* leak the still-in-use consistent memory */
  245. list_del(&page->page_list);
  246. kfree(page);
  247. } else
  248. pool_free_page(pool, page);
  249. }
  250. kfree(pool);
  251. }
  252. EXPORT_SYMBOL(dma_pool_destroy);
  253. /**
  254. * dma_pool_alloc - get a block of consistent memory
  255. * @pool: dma pool that will produce the block
  256. * @mem_flags: GFP_* bitmask
  257. * @handle: pointer to dma address of block
  258. *
  259. * This returns the kernel virtual address of a currently unused block,
  260. * and reports its dma address through the handle.
  261. * If such a memory block can't be allocated, %NULL is returned.
  262. */
  263. void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
  264. dma_addr_t *handle)
  265. {
  266. unsigned long flags;
  267. struct dma_page *page;
  268. size_t offset;
  269. void *retval;
  270. spin_lock_irqsave(&pool->lock, flags);
  271. restart:
  272. list_for_each_entry(page, &pool->page_list, page_list) {
  273. if (page->offset < pool->allocation)
  274. goto ready;
  275. }
  276. page = pool_alloc_page(pool, GFP_ATOMIC);
  277. if (!page) {
  278. if (mem_flags & __GFP_WAIT) {
  279. DECLARE_WAITQUEUE(wait, current);
  280. __set_current_state(TASK_INTERRUPTIBLE);
  281. __add_wait_queue(&pool->waitq, &wait);
  282. spin_unlock_irqrestore(&pool->lock, flags);
  283. schedule_timeout(POOL_TIMEOUT_JIFFIES);
  284. spin_lock_irqsave(&pool->lock, flags);
  285. __remove_wait_queue(&pool->waitq, &wait);
  286. goto restart;
  287. }
  288. retval = NULL;
  289. goto done;
  290. }
  291. ready:
  292. page->in_use++;
  293. offset = page->offset;
  294. page->offset = *(int *)(page->vaddr + offset);
  295. retval = offset + page->vaddr;
  296. *handle = offset + page->dma;
  297. #ifdef CONFIG_DEBUG_SLAB
  298. memset(retval, POOL_POISON_ALLOCATED, pool->size);
  299. #endif
  300. done:
  301. spin_unlock_irqrestore(&pool->lock, flags);
  302. return retval;
  303. }
  304. EXPORT_SYMBOL(dma_pool_alloc);
  305. static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
  306. {
  307. unsigned long flags;
  308. struct dma_page *page;
  309. spin_lock_irqsave(&pool->lock, flags);
  310. list_for_each_entry(page, &pool->page_list, page_list) {
  311. if (dma < page->dma)
  312. continue;
  313. if (dma < (page->dma + pool->allocation))
  314. goto done;
  315. }
  316. page = NULL;
  317. done:
  318. spin_unlock_irqrestore(&pool->lock, flags);
  319. return page;
  320. }
  321. /**
  322. * dma_pool_free - put block back into dma pool
  323. * @pool: the dma pool holding the block
  324. * @vaddr: virtual address of block
  325. * @dma: dma address of block
  326. *
  327. * Caller promises neither device nor driver will again touch this block
  328. * unless it is first re-allocated.
  329. */
  330. void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
  331. {
  332. struct dma_page *page;
  333. unsigned long flags;
  334. unsigned int offset;
  335. page = pool_find_page(pool, dma);
  336. if (!page) {
  337. if (pool->dev)
  338. dev_err(pool->dev,
  339. "dma_pool_free %s, %p/%lx (bad dma)\n",
  340. pool->name, vaddr, (unsigned long)dma);
  341. else
  342. printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
  343. pool->name, vaddr, (unsigned long)dma);
  344. return;
  345. }
  346. offset = vaddr - page->vaddr;
  347. #ifdef CONFIG_DEBUG_SLAB
  348. if ((dma - page->dma) != offset) {
  349. if (pool->dev)
  350. dev_err(pool->dev,
  351. "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
  352. pool->name, vaddr, (unsigned long long)dma);
  353. else
  354. printk(KERN_ERR
  355. "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
  356. pool->name, vaddr, (unsigned long long)dma);
  357. return;
  358. }
  359. {
  360. unsigned int chain = page->offset;
  361. while (chain < pool->allocation) {
  362. if (chain != offset) {
  363. chain = *(int *)(page->vaddr + chain);
  364. continue;
  365. }
  366. if (pool->dev)
  367. dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
  368. "already free\n", pool->name,
  369. (unsigned long long)dma);
  370. else
  371. printk(KERN_ERR "dma_pool_free %s, dma %Lx "
  372. "already free\n", pool->name,
  373. (unsigned long long)dma);
  374. return;
  375. }
  376. }
  377. memset(vaddr, POOL_POISON_FREED, pool->size);
  378. #endif
  379. spin_lock_irqsave(&pool->lock, flags);
  380. page->in_use--;
  381. *(int *)vaddr = page->offset;
  382. page->offset = offset;
  383. if (waitqueue_active(&pool->waitq))
  384. wake_up_locked(&pool->waitq);
  385. /*
  386. * Resist a temptation to do
  387. * if (!is_page_busy(page)) pool_free_page(pool, page);
  388. * Better have a few empty pages hang around.
  389. */
  390. spin_unlock_irqrestore(&pool->lock, flags);
  391. }
  392. EXPORT_SYMBOL(dma_pool_free);
  393. /*
  394. * Managed DMA pool
  395. */
  396. static void dmam_pool_release(struct device *dev, void *res)
  397. {
  398. struct dma_pool *pool = *(struct dma_pool **)res;
  399. dma_pool_destroy(pool);
  400. }
  401. static int dmam_pool_match(struct device *dev, void *res, void *match_data)
  402. {
  403. return *(struct dma_pool **)res == match_data;
  404. }
  405. /**
  406. * dmam_pool_create - Managed dma_pool_create()
  407. * @name: name of pool, for diagnostics
  408. * @dev: device that will be doing the DMA
  409. * @size: size of the blocks in this pool.
  410. * @align: alignment requirement for blocks; must be a power of two
  411. * @allocation: returned blocks won't cross this boundary (or zero)
  412. *
  413. * Managed dma_pool_create(). DMA pool created with this function is
  414. * automatically destroyed on driver detach.
  415. */
  416. struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
  417. size_t size, size_t align, size_t allocation)
  418. {
  419. struct dma_pool **ptr, *pool;
  420. ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
  421. if (!ptr)
  422. return NULL;
  423. pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
  424. if (pool)
  425. devres_add(dev, ptr);
  426. else
  427. devres_free(ptr);
  428. return pool;
  429. }
  430. EXPORT_SYMBOL(dmam_pool_create);
  431. /**
  432. * dmam_pool_destroy - Managed dma_pool_destroy()
  433. * @pool: dma pool that will be destroyed
  434. *
  435. * Managed dma_pool_destroy().
  436. */
  437. void dmam_pool_destroy(struct dma_pool *pool)
  438. {
  439. struct device *dev = pool->dev;
  440. dma_pool_destroy(pool);
  441. WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
  442. }
  443. EXPORT_SYMBOL(dmam_pool_destroy);