time.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676
  1. /*
  2. * linux/kernel/time.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. *
  6. * This file contains the interface functions for the various
  7. * time related system calls: time, stime, gettimeofday, settimeofday,
  8. * adjtime
  9. */
  10. /*
  11. * Modification history kernel/time.c
  12. *
  13. * 1993-09-02 Philip Gladstone
  14. * Created file with time related functions from sched.c and adjtimex()
  15. * 1993-10-08 Torsten Duwe
  16. * adjtime interface update and CMOS clock write code
  17. * 1995-08-13 Torsten Duwe
  18. * kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19. * 1999-01-16 Ulrich Windl
  20. * Introduced error checking for many cases in adjtimex().
  21. * Updated NTP code according to technical memorandum Jan '96
  22. * "A Kernel Model for Precision Timekeeping" by Dave Mills
  23. * Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24. * (Even though the technical memorandum forbids it)
  25. * 2004-07-14 Christoph Lameter
  26. * Added getnstimeofday to allow the posix timer functions to return
  27. * with nanosecond accuracy
  28. */
  29. #include <linux/module.h>
  30. #include <linux/timex.h>
  31. #include <linux/capability.h>
  32. #include <linux/clocksource.h>
  33. #include <linux/errno.h>
  34. #include <linux/syscalls.h>
  35. #include <linux/security.h>
  36. #include <linux/fs.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/unistd.h>
  39. #include "timeconst.h"
  40. /*
  41. * The timezone where the local system is located. Used as a default by some
  42. * programs who obtain this value by using gettimeofday.
  43. */
  44. struct timezone sys_tz;
  45. EXPORT_SYMBOL(sys_tz);
  46. #ifdef __ARCH_WANT_SYS_TIME
  47. /*
  48. * sys_time() can be implemented in user-level using
  49. * sys_gettimeofday(). Is this for backwards compatibility? If so,
  50. * why not move it into the appropriate arch directory (for those
  51. * architectures that need it).
  52. */
  53. asmlinkage long sys_time(time_t __user * tloc)
  54. {
  55. time_t i = get_seconds();
  56. if (tloc) {
  57. if (put_user(i,tloc))
  58. i = -EFAULT;
  59. }
  60. return i;
  61. }
  62. /*
  63. * sys_stime() can be implemented in user-level using
  64. * sys_settimeofday(). Is this for backwards compatibility? If so,
  65. * why not move it into the appropriate arch directory (for those
  66. * architectures that need it).
  67. */
  68. asmlinkage long sys_stime(time_t __user *tptr)
  69. {
  70. struct timespec tv;
  71. int err;
  72. if (get_user(tv.tv_sec, tptr))
  73. return -EFAULT;
  74. tv.tv_nsec = 0;
  75. err = security_settime(&tv, NULL);
  76. if (err)
  77. return err;
  78. do_settimeofday(&tv);
  79. return 0;
  80. }
  81. #endif /* __ARCH_WANT_SYS_TIME */
  82. asmlinkage long sys_gettimeofday(struct timeval __user *tv,
  83. struct timezone __user *tz)
  84. {
  85. if (likely(tv != NULL)) {
  86. struct timeval ktv;
  87. do_gettimeofday(&ktv);
  88. if (copy_to_user(tv, &ktv, sizeof(ktv)))
  89. return -EFAULT;
  90. }
  91. if (unlikely(tz != NULL)) {
  92. if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
  93. return -EFAULT;
  94. }
  95. return 0;
  96. }
  97. /*
  98. * Adjust the time obtained from the CMOS to be UTC time instead of
  99. * local time.
  100. *
  101. * This is ugly, but preferable to the alternatives. Otherwise we
  102. * would either need to write a program to do it in /etc/rc (and risk
  103. * confusion if the program gets run more than once; it would also be
  104. * hard to make the program warp the clock precisely n hours) or
  105. * compile in the timezone information into the kernel. Bad, bad....
  106. *
  107. * - TYT, 1992-01-01
  108. *
  109. * The best thing to do is to keep the CMOS clock in universal time (UTC)
  110. * as real UNIX machines always do it. This avoids all headaches about
  111. * daylight saving times and warping kernel clocks.
  112. */
  113. static inline void warp_clock(void)
  114. {
  115. write_seqlock_irq(&xtime_lock);
  116. wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
  117. xtime.tv_sec += sys_tz.tz_minuteswest * 60;
  118. update_xtime_cache(0);
  119. write_sequnlock_irq(&xtime_lock);
  120. clock_was_set();
  121. }
  122. /*
  123. * In case for some reason the CMOS clock has not already been running
  124. * in UTC, but in some local time: The first time we set the timezone,
  125. * we will warp the clock so that it is ticking UTC time instead of
  126. * local time. Presumably, if someone is setting the timezone then we
  127. * are running in an environment where the programs understand about
  128. * timezones. This should be done at boot time in the /etc/rc script,
  129. * as soon as possible, so that the clock can be set right. Otherwise,
  130. * various programs will get confused when the clock gets warped.
  131. */
  132. int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
  133. {
  134. static int firsttime = 1;
  135. int error = 0;
  136. if (tv && !timespec_valid(tv))
  137. return -EINVAL;
  138. error = security_settime(tv, tz);
  139. if (error)
  140. return error;
  141. if (tz) {
  142. /* SMP safe, global irq locking makes it work. */
  143. sys_tz = *tz;
  144. update_vsyscall_tz();
  145. if (firsttime) {
  146. firsttime = 0;
  147. if (!tv)
  148. warp_clock();
  149. }
  150. }
  151. if (tv)
  152. {
  153. /* SMP safe, again the code in arch/foo/time.c should
  154. * globally block out interrupts when it runs.
  155. */
  156. return do_settimeofday(tv);
  157. }
  158. return 0;
  159. }
  160. asmlinkage long sys_settimeofday(struct timeval __user *tv,
  161. struct timezone __user *tz)
  162. {
  163. struct timeval user_tv;
  164. struct timespec new_ts;
  165. struct timezone new_tz;
  166. if (tv) {
  167. if (copy_from_user(&user_tv, tv, sizeof(*tv)))
  168. return -EFAULT;
  169. new_ts.tv_sec = user_tv.tv_sec;
  170. new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
  171. }
  172. if (tz) {
  173. if (copy_from_user(&new_tz, tz, sizeof(*tz)))
  174. return -EFAULT;
  175. }
  176. return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
  177. }
  178. asmlinkage long sys_adjtimex(struct timex __user *txc_p)
  179. {
  180. struct timex txc; /* Local copy of parameter */
  181. int ret;
  182. /* Copy the user data space into the kernel copy
  183. * structure. But bear in mind that the structures
  184. * may change
  185. */
  186. if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
  187. return -EFAULT;
  188. ret = do_adjtimex(&txc);
  189. return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
  190. }
  191. /**
  192. * current_fs_time - Return FS time
  193. * @sb: Superblock.
  194. *
  195. * Return the current time truncated to the time granularity supported by
  196. * the fs.
  197. */
  198. struct timespec current_fs_time(struct super_block *sb)
  199. {
  200. struct timespec now = current_kernel_time();
  201. return timespec_trunc(now, sb->s_time_gran);
  202. }
  203. EXPORT_SYMBOL(current_fs_time);
  204. /*
  205. * Convert jiffies to milliseconds and back.
  206. *
  207. * Avoid unnecessary multiplications/divisions in the
  208. * two most common HZ cases:
  209. */
  210. unsigned int inline jiffies_to_msecs(const unsigned long j)
  211. {
  212. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  213. return (MSEC_PER_SEC / HZ) * j;
  214. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  215. return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
  216. #else
  217. # if BITS_PER_LONG == 32
  218. return ((u64)HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
  219. # else
  220. return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
  221. # endif
  222. #endif
  223. }
  224. EXPORT_SYMBOL(jiffies_to_msecs);
  225. unsigned int inline jiffies_to_usecs(const unsigned long j)
  226. {
  227. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  228. return (USEC_PER_SEC / HZ) * j;
  229. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  230. return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
  231. #else
  232. # if BITS_PER_LONG == 32
  233. return ((u64)HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
  234. # else
  235. return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
  236. # endif
  237. #endif
  238. }
  239. EXPORT_SYMBOL(jiffies_to_usecs);
  240. /**
  241. * timespec_trunc - Truncate timespec to a granularity
  242. * @t: Timespec
  243. * @gran: Granularity in ns.
  244. *
  245. * Truncate a timespec to a granularity. gran must be smaller than a second.
  246. * Always rounds down.
  247. *
  248. * This function should be only used for timestamps returned by
  249. * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
  250. * it doesn't handle the better resolution of the latter.
  251. */
  252. struct timespec timespec_trunc(struct timespec t, unsigned gran)
  253. {
  254. /*
  255. * Division is pretty slow so avoid it for common cases.
  256. * Currently current_kernel_time() never returns better than
  257. * jiffies resolution. Exploit that.
  258. */
  259. if (gran <= jiffies_to_usecs(1) * 1000) {
  260. /* nothing */
  261. } else if (gran == 1000000000) {
  262. t.tv_nsec = 0;
  263. } else {
  264. t.tv_nsec -= t.tv_nsec % gran;
  265. }
  266. return t;
  267. }
  268. EXPORT_SYMBOL(timespec_trunc);
  269. #ifndef CONFIG_GENERIC_TIME
  270. /*
  271. * Simulate gettimeofday using do_gettimeofday which only allows a timeval
  272. * and therefore only yields usec accuracy
  273. */
  274. void getnstimeofday(struct timespec *tv)
  275. {
  276. struct timeval x;
  277. do_gettimeofday(&x);
  278. tv->tv_sec = x.tv_sec;
  279. tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
  280. }
  281. EXPORT_SYMBOL_GPL(getnstimeofday);
  282. #endif
  283. /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
  284. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
  285. * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
  286. *
  287. * [For the Julian calendar (which was used in Russia before 1917,
  288. * Britain & colonies before 1752, anywhere else before 1582,
  289. * and is still in use by some communities) leave out the
  290. * -year/100+year/400 terms, and add 10.]
  291. *
  292. * This algorithm was first published by Gauss (I think).
  293. *
  294. * WARNING: this function will overflow on 2106-02-07 06:28:16 on
  295. * machines where long is 32-bit! (However, as time_t is signed, we
  296. * will already get problems at other places on 2038-01-19 03:14:08)
  297. */
  298. unsigned long
  299. mktime(const unsigned int year0, const unsigned int mon0,
  300. const unsigned int day, const unsigned int hour,
  301. const unsigned int min, const unsigned int sec)
  302. {
  303. unsigned int mon = mon0, year = year0;
  304. /* 1..12 -> 11,12,1..10 */
  305. if (0 >= (int) (mon -= 2)) {
  306. mon += 12; /* Puts Feb last since it has leap day */
  307. year -= 1;
  308. }
  309. return ((((unsigned long)
  310. (year/4 - year/100 + year/400 + 367*mon/12 + day) +
  311. year*365 - 719499
  312. )*24 + hour /* now have hours */
  313. )*60 + min /* now have minutes */
  314. )*60 + sec; /* finally seconds */
  315. }
  316. EXPORT_SYMBOL(mktime);
  317. /**
  318. * set_normalized_timespec - set timespec sec and nsec parts and normalize
  319. *
  320. * @ts: pointer to timespec variable to be set
  321. * @sec: seconds to set
  322. * @nsec: nanoseconds to set
  323. *
  324. * Set seconds and nanoseconds field of a timespec variable and
  325. * normalize to the timespec storage format
  326. *
  327. * Note: The tv_nsec part is always in the range of
  328. * 0 <= tv_nsec < NSEC_PER_SEC
  329. * For negative values only the tv_sec field is negative !
  330. */
  331. void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
  332. {
  333. while (nsec >= NSEC_PER_SEC) {
  334. nsec -= NSEC_PER_SEC;
  335. ++sec;
  336. }
  337. while (nsec < 0) {
  338. nsec += NSEC_PER_SEC;
  339. --sec;
  340. }
  341. ts->tv_sec = sec;
  342. ts->tv_nsec = nsec;
  343. }
  344. EXPORT_SYMBOL(set_normalized_timespec);
  345. /**
  346. * ns_to_timespec - Convert nanoseconds to timespec
  347. * @nsec: the nanoseconds value to be converted
  348. *
  349. * Returns the timespec representation of the nsec parameter.
  350. */
  351. struct timespec ns_to_timespec(const s64 nsec)
  352. {
  353. struct timespec ts;
  354. if (!nsec)
  355. return (struct timespec) {0, 0};
  356. ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
  357. if (unlikely(nsec < 0))
  358. set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
  359. return ts;
  360. }
  361. EXPORT_SYMBOL(ns_to_timespec);
  362. /**
  363. * ns_to_timeval - Convert nanoseconds to timeval
  364. * @nsec: the nanoseconds value to be converted
  365. *
  366. * Returns the timeval representation of the nsec parameter.
  367. */
  368. struct timeval ns_to_timeval(const s64 nsec)
  369. {
  370. struct timespec ts = ns_to_timespec(nsec);
  371. struct timeval tv;
  372. tv.tv_sec = ts.tv_sec;
  373. tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
  374. return tv;
  375. }
  376. EXPORT_SYMBOL(ns_to_timeval);
  377. /*
  378. * When we convert to jiffies then we interpret incoming values
  379. * the following way:
  380. *
  381. * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
  382. *
  383. * - 'too large' values [that would result in larger than
  384. * MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
  385. *
  386. * - all other values are converted to jiffies by either multiplying
  387. * the input value by a factor or dividing it with a factor
  388. *
  389. * We must also be careful about 32-bit overflows.
  390. */
  391. unsigned long msecs_to_jiffies(const unsigned int m)
  392. {
  393. /*
  394. * Negative value, means infinite timeout:
  395. */
  396. if ((int)m < 0)
  397. return MAX_JIFFY_OFFSET;
  398. #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
  399. /*
  400. * HZ is equal to or smaller than 1000, and 1000 is a nice
  401. * round multiple of HZ, divide with the factor between them,
  402. * but round upwards:
  403. */
  404. return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
  405. #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
  406. /*
  407. * HZ is larger than 1000, and HZ is a nice round multiple of
  408. * 1000 - simply multiply with the factor between them.
  409. *
  410. * But first make sure the multiplication result cannot
  411. * overflow:
  412. */
  413. if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  414. return MAX_JIFFY_OFFSET;
  415. return m * (HZ / MSEC_PER_SEC);
  416. #else
  417. /*
  418. * Generic case - multiply, round and divide. But first
  419. * check that if we are doing a net multiplication, that
  420. * we wouldn't overflow:
  421. */
  422. if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
  423. return MAX_JIFFY_OFFSET;
  424. return ((u64)MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
  425. >> MSEC_TO_HZ_SHR32;
  426. #endif
  427. }
  428. EXPORT_SYMBOL(msecs_to_jiffies);
  429. unsigned long usecs_to_jiffies(const unsigned int u)
  430. {
  431. if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
  432. return MAX_JIFFY_OFFSET;
  433. #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
  434. return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
  435. #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
  436. return u * (HZ / USEC_PER_SEC);
  437. #else
  438. return ((u64)USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
  439. >> USEC_TO_HZ_SHR32;
  440. #endif
  441. }
  442. EXPORT_SYMBOL(usecs_to_jiffies);
  443. /*
  444. * The TICK_NSEC - 1 rounds up the value to the next resolution. Note
  445. * that a remainder subtract here would not do the right thing as the
  446. * resolution values don't fall on second boundries. I.e. the line:
  447. * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
  448. *
  449. * Rather, we just shift the bits off the right.
  450. *
  451. * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
  452. * value to a scaled second value.
  453. */
  454. unsigned long
  455. timespec_to_jiffies(const struct timespec *value)
  456. {
  457. unsigned long sec = value->tv_sec;
  458. long nsec = value->tv_nsec + TICK_NSEC - 1;
  459. if (sec >= MAX_SEC_IN_JIFFIES){
  460. sec = MAX_SEC_IN_JIFFIES;
  461. nsec = 0;
  462. }
  463. return (((u64)sec * SEC_CONVERSION) +
  464. (((u64)nsec * NSEC_CONVERSION) >>
  465. (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  466. }
  467. EXPORT_SYMBOL(timespec_to_jiffies);
  468. void
  469. jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
  470. {
  471. /*
  472. * Convert jiffies to nanoseconds and separate with
  473. * one divide.
  474. */
  475. u64 nsec = (u64)jiffies * TICK_NSEC;
  476. value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
  477. }
  478. EXPORT_SYMBOL(jiffies_to_timespec);
  479. /* Same for "timeval"
  480. *
  481. * Well, almost. The problem here is that the real system resolution is
  482. * in nanoseconds and the value being converted is in micro seconds.
  483. * Also for some machines (those that use HZ = 1024, in-particular),
  484. * there is a LARGE error in the tick size in microseconds.
  485. * The solution we use is to do the rounding AFTER we convert the
  486. * microsecond part. Thus the USEC_ROUND, the bits to be shifted off.
  487. * Instruction wise, this should cost only an additional add with carry
  488. * instruction above the way it was done above.
  489. */
  490. unsigned long
  491. timeval_to_jiffies(const struct timeval *value)
  492. {
  493. unsigned long sec = value->tv_sec;
  494. long usec = value->tv_usec;
  495. if (sec >= MAX_SEC_IN_JIFFIES){
  496. sec = MAX_SEC_IN_JIFFIES;
  497. usec = 0;
  498. }
  499. return (((u64)sec * SEC_CONVERSION) +
  500. (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
  501. (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
  502. }
  503. EXPORT_SYMBOL(timeval_to_jiffies);
  504. void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
  505. {
  506. /*
  507. * Convert jiffies to nanoseconds and separate with
  508. * one divide.
  509. */
  510. u64 nsec = (u64)jiffies * TICK_NSEC;
  511. long tv_usec;
  512. value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
  513. tv_usec /= NSEC_PER_USEC;
  514. value->tv_usec = tv_usec;
  515. }
  516. EXPORT_SYMBOL(jiffies_to_timeval);
  517. /*
  518. * Convert jiffies/jiffies_64 to clock_t and back.
  519. */
  520. clock_t jiffies_to_clock_t(long x)
  521. {
  522. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  523. # if HZ < USER_HZ
  524. return x * (USER_HZ / HZ);
  525. # else
  526. return x / (HZ / USER_HZ);
  527. # endif
  528. #else
  529. u64 tmp = (u64)x * TICK_NSEC;
  530. do_div(tmp, (NSEC_PER_SEC / USER_HZ));
  531. return (long)tmp;
  532. #endif
  533. }
  534. EXPORT_SYMBOL(jiffies_to_clock_t);
  535. unsigned long clock_t_to_jiffies(unsigned long x)
  536. {
  537. #if (HZ % USER_HZ)==0
  538. if (x >= ~0UL / (HZ / USER_HZ))
  539. return ~0UL;
  540. return x * (HZ / USER_HZ);
  541. #else
  542. u64 jif;
  543. /* Don't worry about loss of precision here .. */
  544. if (x >= ~0UL / HZ * USER_HZ)
  545. return ~0UL;
  546. /* .. but do try to contain it here */
  547. jif = x * (u64) HZ;
  548. do_div(jif, USER_HZ);
  549. return jif;
  550. #endif
  551. }
  552. EXPORT_SYMBOL(clock_t_to_jiffies);
  553. u64 jiffies_64_to_clock_t(u64 x)
  554. {
  555. #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
  556. # if HZ < USER_HZ
  557. x *= USER_HZ;
  558. do_div(x, HZ);
  559. # elif HZ > USER_HZ
  560. do_div(x, HZ / USER_HZ);
  561. # else
  562. /* Nothing to do */
  563. # endif
  564. #else
  565. /*
  566. * There are better ways that don't overflow early,
  567. * but even this doesn't overflow in hundreds of years
  568. * in 64 bits, so..
  569. */
  570. x *= TICK_NSEC;
  571. do_div(x, (NSEC_PER_SEC / USER_HZ));
  572. #endif
  573. return x;
  574. }
  575. EXPORT_SYMBOL(jiffies_64_to_clock_t);
  576. u64 nsec_to_clock_t(u64 x)
  577. {
  578. #if (NSEC_PER_SEC % USER_HZ) == 0
  579. do_div(x, (NSEC_PER_SEC / USER_HZ));
  580. #elif (USER_HZ % 512) == 0
  581. x *= USER_HZ/512;
  582. do_div(x, (NSEC_PER_SEC / 512));
  583. #else
  584. /*
  585. * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
  586. * overflow after 64.99 years.
  587. * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
  588. */
  589. x *= 9;
  590. do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
  591. USER_HZ));
  592. #endif
  593. return x;
  594. }
  595. #if (BITS_PER_LONG < 64)
  596. u64 get_jiffies_64(void)
  597. {
  598. unsigned long seq;
  599. u64 ret;
  600. do {
  601. seq = read_seqbegin(&xtime_lock);
  602. ret = jiffies_64;
  603. } while (read_seqretry(&xtime_lock, seq));
  604. return ret;
  605. }
  606. EXPORT_SYMBOL(get_jiffies_64);
  607. #endif
  608. EXPORT_SYMBOL(jiffies);