sched_fair.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. /*
  24. * Targeted preemption latency for CPU-bound tasks:
  25. * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
  26. *
  27. * NOTE: this latency value is not the same as the concept of
  28. * 'timeslice length' - timeslices in CFS are of variable length
  29. * and have no persistent notion like in traditional, time-slice
  30. * based scheduling concepts.
  31. *
  32. * (to see the precise effective timeslice length of your workload,
  33. * run vmstat and monitor the context-switches (cs) field)
  34. */
  35. unsigned int sysctl_sched_latency = 20000000ULL;
  36. /*
  37. * Minimal preemption granularity for CPU-bound tasks:
  38. * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
  39. */
  40. unsigned int sysctl_sched_min_granularity = 4000000ULL;
  41. /*
  42. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  43. */
  44. static unsigned int sched_nr_latency = 5;
  45. /*
  46. * After fork, child runs first. (default) If set to 0 then
  47. * parent will (try to) run first.
  48. */
  49. const_debug unsigned int sysctl_sched_child_runs_first = 1;
  50. /*
  51. * sys_sched_yield() compat mode
  52. *
  53. * This option switches the agressive yield implementation of the
  54. * old scheduler back on.
  55. */
  56. unsigned int __read_mostly sysctl_sched_compat_yield;
  57. /*
  58. * SCHED_OTHER wake-up granularity.
  59. * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60. *
  61. * This option delays the preemption effects of decoupled workloads
  62. * and reduces their over-scheduling. Synchronous workloads will still
  63. * have immediate wakeup/sleep latencies.
  64. */
  65. unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
  66. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  67. /**************************************************************
  68. * CFS operations on generic schedulable entities:
  69. */
  70. static inline struct task_struct *task_of(struct sched_entity *se)
  71. {
  72. return container_of(se, struct task_struct, se);
  73. }
  74. #ifdef CONFIG_FAIR_GROUP_SCHED
  75. /* cpu runqueue to which this cfs_rq is attached */
  76. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  77. {
  78. return cfs_rq->rq;
  79. }
  80. /* An entity is a task if it doesn't "own" a runqueue */
  81. #define entity_is_task(se) (!se->my_q)
  82. /* Walk up scheduling entities hierarchy */
  83. #define for_each_sched_entity(se) \
  84. for (; se; se = se->parent)
  85. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  86. {
  87. return p->se.cfs_rq;
  88. }
  89. /* runqueue on which this entity is (to be) queued */
  90. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  91. {
  92. return se->cfs_rq;
  93. }
  94. /* runqueue "owned" by this group */
  95. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  96. {
  97. return grp->my_q;
  98. }
  99. /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
  100. * another cpu ('this_cpu')
  101. */
  102. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  103. {
  104. return cfs_rq->tg->cfs_rq[this_cpu];
  105. }
  106. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  107. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  108. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  109. /* Do the two (enqueued) entities belong to the same group ? */
  110. static inline int
  111. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  112. {
  113. if (se->cfs_rq == pse->cfs_rq)
  114. return 1;
  115. return 0;
  116. }
  117. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  118. {
  119. return se->parent;
  120. }
  121. #else /* CONFIG_FAIR_GROUP_SCHED */
  122. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  123. {
  124. return container_of(cfs_rq, struct rq, cfs);
  125. }
  126. #define entity_is_task(se) 1
  127. #define for_each_sched_entity(se) \
  128. for (; se; se = NULL)
  129. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  130. {
  131. return &task_rq(p)->cfs;
  132. }
  133. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  134. {
  135. struct task_struct *p = task_of(se);
  136. struct rq *rq = task_rq(p);
  137. return &rq->cfs;
  138. }
  139. /* runqueue "owned" by this group */
  140. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  141. {
  142. return NULL;
  143. }
  144. static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
  145. {
  146. return &cpu_rq(this_cpu)->cfs;
  147. }
  148. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  149. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  150. static inline int
  151. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  152. {
  153. return 1;
  154. }
  155. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  156. {
  157. return NULL;
  158. }
  159. #endif /* CONFIG_FAIR_GROUP_SCHED */
  160. /**************************************************************
  161. * Scheduling class tree data structure manipulation methods:
  162. */
  163. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  164. {
  165. s64 delta = (s64)(vruntime - min_vruntime);
  166. if (delta > 0)
  167. min_vruntime = vruntime;
  168. return min_vruntime;
  169. }
  170. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  171. {
  172. s64 delta = (s64)(vruntime - min_vruntime);
  173. if (delta < 0)
  174. min_vruntime = vruntime;
  175. return min_vruntime;
  176. }
  177. static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
  178. {
  179. return se->vruntime - cfs_rq->min_vruntime;
  180. }
  181. /*
  182. * Enqueue an entity into the rb-tree:
  183. */
  184. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  185. {
  186. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  187. struct rb_node *parent = NULL;
  188. struct sched_entity *entry;
  189. s64 key = entity_key(cfs_rq, se);
  190. int leftmost = 1;
  191. /*
  192. * Find the right place in the rbtree:
  193. */
  194. while (*link) {
  195. parent = *link;
  196. entry = rb_entry(parent, struct sched_entity, run_node);
  197. /*
  198. * We dont care about collisions. Nodes with
  199. * the same key stay together.
  200. */
  201. if (key < entity_key(cfs_rq, entry)) {
  202. link = &parent->rb_left;
  203. } else {
  204. link = &parent->rb_right;
  205. leftmost = 0;
  206. }
  207. }
  208. /*
  209. * Maintain a cache of leftmost tree entries (it is frequently
  210. * used):
  211. */
  212. if (leftmost) {
  213. cfs_rq->rb_leftmost = &se->run_node;
  214. /*
  215. * maintain cfs_rq->min_vruntime to be a monotonic increasing
  216. * value tracking the leftmost vruntime in the tree.
  217. */
  218. cfs_rq->min_vruntime =
  219. max_vruntime(cfs_rq->min_vruntime, se->vruntime);
  220. }
  221. rb_link_node(&se->run_node, parent, link);
  222. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  223. }
  224. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  225. {
  226. if (cfs_rq->rb_leftmost == &se->run_node) {
  227. struct rb_node *next_node;
  228. struct sched_entity *next;
  229. next_node = rb_next(&se->run_node);
  230. cfs_rq->rb_leftmost = next_node;
  231. if (next_node) {
  232. next = rb_entry(next_node,
  233. struct sched_entity, run_node);
  234. cfs_rq->min_vruntime =
  235. max_vruntime(cfs_rq->min_vruntime,
  236. next->vruntime);
  237. }
  238. }
  239. if (cfs_rq->next == se)
  240. cfs_rq->next = NULL;
  241. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  242. }
  243. static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
  244. {
  245. return cfs_rq->rb_leftmost;
  246. }
  247. static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
  248. {
  249. return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
  250. }
  251. static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  252. {
  253. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  254. if (!last)
  255. return NULL;
  256. return rb_entry(last, struct sched_entity, run_node);
  257. }
  258. /**************************************************************
  259. * Scheduling class statistics methods:
  260. */
  261. #ifdef CONFIG_SCHED_DEBUG
  262. int sched_nr_latency_handler(struct ctl_table *table, int write,
  263. struct file *filp, void __user *buffer, size_t *lenp,
  264. loff_t *ppos)
  265. {
  266. int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
  267. if (ret || !write)
  268. return ret;
  269. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  270. sysctl_sched_min_granularity);
  271. return 0;
  272. }
  273. #endif
  274. /*
  275. * delta *= w / rw
  276. */
  277. static inline unsigned long
  278. calc_delta_weight(unsigned long delta, struct sched_entity *se)
  279. {
  280. for_each_sched_entity(se) {
  281. delta = calc_delta_mine(delta,
  282. se->load.weight, &cfs_rq_of(se)->load);
  283. }
  284. return delta;
  285. }
  286. /*
  287. * delta *= rw / w
  288. */
  289. static inline unsigned long
  290. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  291. {
  292. for_each_sched_entity(se) {
  293. delta = calc_delta_mine(delta,
  294. cfs_rq_of(se)->load.weight, &se->load);
  295. }
  296. return delta;
  297. }
  298. /*
  299. * The idea is to set a period in which each task runs once.
  300. *
  301. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  302. * this period because otherwise the slices get too small.
  303. *
  304. * p = (nr <= nl) ? l : l*nr/nl
  305. */
  306. static u64 __sched_period(unsigned long nr_running)
  307. {
  308. u64 period = sysctl_sched_latency;
  309. unsigned long nr_latency = sched_nr_latency;
  310. if (unlikely(nr_running > nr_latency)) {
  311. period = sysctl_sched_min_granularity;
  312. period *= nr_running;
  313. }
  314. return period;
  315. }
  316. /*
  317. * We calculate the wall-time slice from the period by taking a part
  318. * proportional to the weight.
  319. *
  320. * s = p*w/rw
  321. */
  322. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  323. {
  324. return calc_delta_weight(__sched_period(cfs_rq->nr_running), se);
  325. }
  326. /*
  327. * We calculate the vruntime slice of a to be inserted task
  328. *
  329. * vs = s*rw/w = p
  330. */
  331. static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
  332. {
  333. unsigned long nr_running = cfs_rq->nr_running;
  334. if (!se->on_rq)
  335. nr_running++;
  336. return __sched_period(nr_running);
  337. }
  338. /*
  339. * The goal of calc_delta_asym() is to be asymmetrically around NICE_0_LOAD, in
  340. * that it favours >=0 over <0.
  341. *
  342. * -20 |
  343. * |
  344. * 0 --------+-------
  345. * .'
  346. * 19 .'
  347. *
  348. */
  349. static unsigned long
  350. calc_delta_asym(unsigned long delta, struct sched_entity *se)
  351. {
  352. struct load_weight lw = {
  353. .weight = NICE_0_LOAD,
  354. .inv_weight = 1UL << (WMULT_SHIFT-NICE_0_SHIFT)
  355. };
  356. for_each_sched_entity(se) {
  357. struct load_weight *se_lw = &se->load;
  358. if (se->load.weight < NICE_0_LOAD)
  359. se_lw = &lw;
  360. delta = calc_delta_mine(delta,
  361. cfs_rq_of(se)->load.weight, se_lw);
  362. }
  363. return delta;
  364. }
  365. /*
  366. * Update the current task's runtime statistics. Skip current tasks that
  367. * are not in our scheduling class.
  368. */
  369. static inline void
  370. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  371. unsigned long delta_exec)
  372. {
  373. unsigned long delta_exec_weighted;
  374. schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
  375. curr->sum_exec_runtime += delta_exec;
  376. schedstat_add(cfs_rq, exec_clock, delta_exec);
  377. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  378. curr->vruntime += delta_exec_weighted;
  379. }
  380. static void update_curr(struct cfs_rq *cfs_rq)
  381. {
  382. struct sched_entity *curr = cfs_rq->curr;
  383. u64 now = rq_of(cfs_rq)->clock;
  384. unsigned long delta_exec;
  385. if (unlikely(!curr))
  386. return;
  387. /*
  388. * Get the amount of time the current task was running
  389. * since the last time we changed load (this cannot
  390. * overflow on 32 bits):
  391. */
  392. delta_exec = (unsigned long)(now - curr->exec_start);
  393. __update_curr(cfs_rq, curr, delta_exec);
  394. curr->exec_start = now;
  395. if (entity_is_task(curr)) {
  396. struct task_struct *curtask = task_of(curr);
  397. cpuacct_charge(curtask, delta_exec);
  398. }
  399. }
  400. static inline void
  401. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  402. {
  403. schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
  404. }
  405. /*
  406. * Task is being enqueued - update stats:
  407. */
  408. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  409. {
  410. /*
  411. * Are we enqueueing a waiting task? (for current tasks
  412. * a dequeue/enqueue event is a NOP)
  413. */
  414. if (se != cfs_rq->curr)
  415. update_stats_wait_start(cfs_rq, se);
  416. }
  417. static void
  418. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  419. {
  420. schedstat_set(se->wait_max, max(se->wait_max,
  421. rq_of(cfs_rq)->clock - se->wait_start));
  422. schedstat_set(se->wait_count, se->wait_count + 1);
  423. schedstat_set(se->wait_sum, se->wait_sum +
  424. rq_of(cfs_rq)->clock - se->wait_start);
  425. schedstat_set(se->wait_start, 0);
  426. }
  427. static inline void
  428. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  429. {
  430. /*
  431. * Mark the end of the wait period if dequeueing a
  432. * waiting task:
  433. */
  434. if (se != cfs_rq->curr)
  435. update_stats_wait_end(cfs_rq, se);
  436. }
  437. /*
  438. * We are picking a new current task - update its stats:
  439. */
  440. static inline void
  441. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  442. {
  443. /*
  444. * We are starting a new run period:
  445. */
  446. se->exec_start = rq_of(cfs_rq)->clock;
  447. }
  448. /**************************************************
  449. * Scheduling class queueing methods:
  450. */
  451. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  452. static void
  453. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  454. {
  455. cfs_rq->task_weight += weight;
  456. }
  457. #else
  458. static inline void
  459. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  460. {
  461. }
  462. #endif
  463. static void
  464. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  465. {
  466. update_load_add(&cfs_rq->load, se->load.weight);
  467. if (!parent_entity(se))
  468. inc_cpu_load(rq_of(cfs_rq), se->load.weight);
  469. if (entity_is_task(se))
  470. add_cfs_task_weight(cfs_rq, se->load.weight);
  471. cfs_rq->nr_running++;
  472. se->on_rq = 1;
  473. list_add(&se->group_node, &cfs_rq->tasks);
  474. }
  475. static void
  476. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  477. {
  478. update_load_sub(&cfs_rq->load, se->load.weight);
  479. if (!parent_entity(se))
  480. dec_cpu_load(rq_of(cfs_rq), se->load.weight);
  481. if (entity_is_task(se))
  482. add_cfs_task_weight(cfs_rq, -se->load.weight);
  483. cfs_rq->nr_running--;
  484. se->on_rq = 0;
  485. list_del_init(&se->group_node);
  486. }
  487. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  488. {
  489. #ifdef CONFIG_SCHEDSTATS
  490. if (se->sleep_start) {
  491. u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
  492. struct task_struct *tsk = task_of(se);
  493. if ((s64)delta < 0)
  494. delta = 0;
  495. if (unlikely(delta > se->sleep_max))
  496. se->sleep_max = delta;
  497. se->sleep_start = 0;
  498. se->sum_sleep_runtime += delta;
  499. account_scheduler_latency(tsk, delta >> 10, 1);
  500. }
  501. if (se->block_start) {
  502. u64 delta = rq_of(cfs_rq)->clock - se->block_start;
  503. struct task_struct *tsk = task_of(se);
  504. if ((s64)delta < 0)
  505. delta = 0;
  506. if (unlikely(delta > se->block_max))
  507. se->block_max = delta;
  508. se->block_start = 0;
  509. se->sum_sleep_runtime += delta;
  510. /*
  511. * Blocking time is in units of nanosecs, so shift by 20 to
  512. * get a milliseconds-range estimation of the amount of
  513. * time that the task spent sleeping:
  514. */
  515. if (unlikely(prof_on == SLEEP_PROFILING)) {
  516. profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
  517. delta >> 20);
  518. }
  519. account_scheduler_latency(tsk, delta >> 10, 0);
  520. }
  521. #endif
  522. }
  523. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  524. {
  525. #ifdef CONFIG_SCHED_DEBUG
  526. s64 d = se->vruntime - cfs_rq->min_vruntime;
  527. if (d < 0)
  528. d = -d;
  529. if (d > 3*sysctl_sched_latency)
  530. schedstat_inc(cfs_rq, nr_spread_over);
  531. #endif
  532. }
  533. static void
  534. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  535. {
  536. u64 vruntime;
  537. if (first_fair(cfs_rq)) {
  538. vruntime = min_vruntime(cfs_rq->min_vruntime,
  539. __pick_next_entity(cfs_rq)->vruntime);
  540. } else
  541. vruntime = cfs_rq->min_vruntime;
  542. /*
  543. * The 'current' period is already promised to the current tasks,
  544. * however the extra weight of the new task will slow them down a
  545. * little, place the new task so that it fits in the slot that
  546. * stays open at the end.
  547. */
  548. if (initial && sched_feat(START_DEBIT))
  549. vruntime += sched_vslice_add(cfs_rq, se);
  550. if (!initial) {
  551. /* sleeps upto a single latency don't count. */
  552. if (sched_feat(NEW_FAIR_SLEEPERS)) {
  553. if (sched_feat(NORMALIZED_SLEEPER))
  554. vruntime -= calc_delta_weight(sysctl_sched_latency, se);
  555. else
  556. vruntime -= sysctl_sched_latency;
  557. }
  558. /* ensure we never gain time by being placed backwards. */
  559. vruntime = max_vruntime(se->vruntime, vruntime);
  560. }
  561. se->vruntime = vruntime;
  562. }
  563. static void
  564. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
  565. {
  566. /*
  567. * Update run-time statistics of the 'current'.
  568. */
  569. update_curr(cfs_rq);
  570. if (wakeup) {
  571. place_entity(cfs_rq, se, 0);
  572. enqueue_sleeper(cfs_rq, se);
  573. }
  574. update_stats_enqueue(cfs_rq, se);
  575. check_spread(cfs_rq, se);
  576. if (se != cfs_rq->curr)
  577. __enqueue_entity(cfs_rq, se);
  578. account_entity_enqueue(cfs_rq, se);
  579. }
  580. static void update_avg(u64 *avg, u64 sample)
  581. {
  582. s64 diff = sample - *avg;
  583. *avg += diff >> 3;
  584. }
  585. static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
  586. {
  587. if (!se->last_wakeup)
  588. return;
  589. update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
  590. se->last_wakeup = 0;
  591. }
  592. static void
  593. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
  594. {
  595. /*
  596. * Update run-time statistics of the 'current'.
  597. */
  598. update_curr(cfs_rq);
  599. update_stats_dequeue(cfs_rq, se);
  600. if (sleep) {
  601. update_avg_stats(cfs_rq, se);
  602. #ifdef CONFIG_SCHEDSTATS
  603. if (entity_is_task(se)) {
  604. struct task_struct *tsk = task_of(se);
  605. if (tsk->state & TASK_INTERRUPTIBLE)
  606. se->sleep_start = rq_of(cfs_rq)->clock;
  607. if (tsk->state & TASK_UNINTERRUPTIBLE)
  608. se->block_start = rq_of(cfs_rq)->clock;
  609. }
  610. #endif
  611. }
  612. if (se != cfs_rq->curr)
  613. __dequeue_entity(cfs_rq, se);
  614. account_entity_dequeue(cfs_rq, se);
  615. }
  616. /*
  617. * Preempt the current task with a newly woken task if needed:
  618. */
  619. static void
  620. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  621. {
  622. unsigned long ideal_runtime, delta_exec;
  623. ideal_runtime = sched_slice(cfs_rq, curr);
  624. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  625. if (delta_exec > ideal_runtime)
  626. resched_task(rq_of(cfs_rq)->curr);
  627. }
  628. static void
  629. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  630. {
  631. /* 'current' is not kept within the tree. */
  632. if (se->on_rq) {
  633. /*
  634. * Any task has to be enqueued before it get to execute on
  635. * a CPU. So account for the time it spent waiting on the
  636. * runqueue.
  637. */
  638. update_stats_wait_end(cfs_rq, se);
  639. __dequeue_entity(cfs_rq, se);
  640. }
  641. update_stats_curr_start(cfs_rq, se);
  642. cfs_rq->curr = se;
  643. #ifdef CONFIG_SCHEDSTATS
  644. /*
  645. * Track our maximum slice length, if the CPU's load is at
  646. * least twice that of our own weight (i.e. dont track it
  647. * when there are only lesser-weight tasks around):
  648. */
  649. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  650. se->slice_max = max(se->slice_max,
  651. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  652. }
  653. #endif
  654. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  655. }
  656. static int
  657. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  658. static struct sched_entity *
  659. pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
  660. {
  661. if (!cfs_rq->next)
  662. return se;
  663. if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
  664. return se;
  665. return cfs_rq->next;
  666. }
  667. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  668. {
  669. struct sched_entity *se = NULL;
  670. if (first_fair(cfs_rq)) {
  671. se = __pick_next_entity(cfs_rq);
  672. se = pick_next(cfs_rq, se);
  673. set_next_entity(cfs_rq, se);
  674. }
  675. return se;
  676. }
  677. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  678. {
  679. /*
  680. * If still on the runqueue then deactivate_task()
  681. * was not called and update_curr() has to be done:
  682. */
  683. if (prev->on_rq)
  684. update_curr(cfs_rq);
  685. check_spread(cfs_rq, prev);
  686. if (prev->on_rq) {
  687. update_stats_wait_start(cfs_rq, prev);
  688. /* Put 'current' back into the tree. */
  689. __enqueue_entity(cfs_rq, prev);
  690. }
  691. cfs_rq->curr = NULL;
  692. }
  693. static void
  694. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  695. {
  696. /*
  697. * Update run-time statistics of the 'current'.
  698. */
  699. update_curr(cfs_rq);
  700. #ifdef CONFIG_SCHED_HRTICK
  701. /*
  702. * queued ticks are scheduled to match the slice, so don't bother
  703. * validating it and just reschedule.
  704. */
  705. if (queued)
  706. return resched_task(rq_of(cfs_rq)->curr);
  707. /*
  708. * don't let the period tick interfere with the hrtick preemption
  709. */
  710. if (!sched_feat(DOUBLE_TICK) &&
  711. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  712. return;
  713. #endif
  714. if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
  715. check_preempt_tick(cfs_rq, curr);
  716. }
  717. /**************************************************
  718. * CFS operations on tasks:
  719. */
  720. #ifdef CONFIG_SCHED_HRTICK
  721. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  722. {
  723. int requeue = rq->curr == p;
  724. struct sched_entity *se = &p->se;
  725. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  726. WARN_ON(task_rq(p) != rq);
  727. if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
  728. u64 slice = sched_slice(cfs_rq, se);
  729. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  730. s64 delta = slice - ran;
  731. if (delta < 0) {
  732. if (rq->curr == p)
  733. resched_task(p);
  734. return;
  735. }
  736. /*
  737. * Don't schedule slices shorter than 10000ns, that just
  738. * doesn't make sense. Rely on vruntime for fairness.
  739. */
  740. if (!requeue)
  741. delta = max(10000LL, delta);
  742. hrtick_start(rq, delta, requeue);
  743. }
  744. }
  745. #else
  746. static inline void
  747. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  748. {
  749. }
  750. #endif
  751. /*
  752. * The enqueue_task method is called before nr_running is
  753. * increased. Here we update the fair scheduling stats and
  754. * then put the task into the rbtree:
  755. */
  756. static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
  757. {
  758. struct cfs_rq *cfs_rq;
  759. struct sched_entity *se = &p->se;
  760. for_each_sched_entity(se) {
  761. if (se->on_rq)
  762. break;
  763. cfs_rq = cfs_rq_of(se);
  764. enqueue_entity(cfs_rq, se, wakeup);
  765. wakeup = 1;
  766. }
  767. hrtick_start_fair(rq, rq->curr);
  768. }
  769. /*
  770. * The dequeue_task method is called before nr_running is
  771. * decreased. We remove the task from the rbtree and
  772. * update the fair scheduling stats:
  773. */
  774. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
  775. {
  776. struct cfs_rq *cfs_rq;
  777. struct sched_entity *se = &p->se;
  778. for_each_sched_entity(se) {
  779. cfs_rq = cfs_rq_of(se);
  780. dequeue_entity(cfs_rq, se, sleep);
  781. /* Don't dequeue parent if it has other entities besides us */
  782. if (cfs_rq->load.weight)
  783. break;
  784. sleep = 1;
  785. }
  786. hrtick_start_fair(rq, rq->curr);
  787. }
  788. /*
  789. * sched_yield() support is very simple - we dequeue and enqueue.
  790. *
  791. * If compat_yield is turned on then we requeue to the end of the tree.
  792. */
  793. static void yield_task_fair(struct rq *rq)
  794. {
  795. struct task_struct *curr = rq->curr;
  796. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  797. struct sched_entity *rightmost, *se = &curr->se;
  798. /*
  799. * Are we the only task in the tree?
  800. */
  801. if (unlikely(cfs_rq->nr_running == 1))
  802. return;
  803. if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
  804. __update_rq_clock(rq);
  805. /*
  806. * Update run-time statistics of the 'current'.
  807. */
  808. update_curr(cfs_rq);
  809. return;
  810. }
  811. /*
  812. * Find the rightmost entry in the rbtree:
  813. */
  814. rightmost = __pick_last_entity(cfs_rq);
  815. /*
  816. * Already in the rightmost position?
  817. */
  818. if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
  819. return;
  820. /*
  821. * Minimally necessary key value to be last in the tree:
  822. * Upon rescheduling, sched_class::put_prev_task() will place
  823. * 'current' within the tree based on its new key value.
  824. */
  825. se->vruntime = rightmost->vruntime + 1;
  826. }
  827. /*
  828. * wake_idle() will wake a task on an idle cpu if task->cpu is
  829. * not idle and an idle cpu is available. The span of cpus to
  830. * search starts with cpus closest then further out as needed,
  831. * so we always favor a closer, idle cpu.
  832. *
  833. * Returns the CPU we should wake onto.
  834. */
  835. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  836. static int wake_idle(int cpu, struct task_struct *p)
  837. {
  838. cpumask_t tmp;
  839. struct sched_domain *sd;
  840. int i;
  841. /*
  842. * If it is idle, then it is the best cpu to run this task.
  843. *
  844. * This cpu is also the best, if it has more than one task already.
  845. * Siblings must be also busy(in most cases) as they didn't already
  846. * pickup the extra load from this cpu and hence we need not check
  847. * sibling runqueue info. This will avoid the checks and cache miss
  848. * penalities associated with that.
  849. */
  850. if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
  851. return cpu;
  852. for_each_domain(cpu, sd) {
  853. if ((sd->flags & SD_WAKE_IDLE)
  854. || ((sd->flags & SD_WAKE_IDLE_FAR)
  855. && !task_hot(p, task_rq(p)->clock, sd))) {
  856. cpus_and(tmp, sd->span, p->cpus_allowed);
  857. for_each_cpu_mask(i, tmp) {
  858. if (idle_cpu(i)) {
  859. if (i != task_cpu(p)) {
  860. schedstat_inc(p,
  861. se.nr_wakeups_idle);
  862. }
  863. return i;
  864. }
  865. }
  866. } else {
  867. break;
  868. }
  869. }
  870. return cpu;
  871. }
  872. #else
  873. static inline int wake_idle(int cpu, struct task_struct *p)
  874. {
  875. return cpu;
  876. }
  877. #endif
  878. #ifdef CONFIG_SMP
  879. static const struct sched_class fair_sched_class;
  880. static int
  881. wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
  882. struct task_struct *p, int prev_cpu, int this_cpu, int sync,
  883. int idx, unsigned long load, unsigned long this_load,
  884. unsigned int imbalance)
  885. {
  886. struct task_struct *curr = this_rq->curr;
  887. unsigned long tl = this_load;
  888. unsigned long tl_per_task;
  889. if (!(this_sd->flags & SD_WAKE_AFFINE))
  890. return 0;
  891. /*
  892. * If the currently running task will sleep within
  893. * a reasonable amount of time then attract this newly
  894. * woken task:
  895. */
  896. if (sync && curr->sched_class == &fair_sched_class) {
  897. if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
  898. p->se.avg_overlap < sysctl_sched_migration_cost)
  899. return 1;
  900. }
  901. schedstat_inc(p, se.nr_wakeups_affine_attempts);
  902. tl_per_task = cpu_avg_load_per_task(this_cpu);
  903. /*
  904. * If sync wakeup then subtract the (maximum possible)
  905. * effect of the currently running task from the load
  906. * of the current CPU:
  907. */
  908. if (sync)
  909. tl -= current->se.load.weight;
  910. if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
  911. 100*(tl + p->se.load.weight) <= imbalance*load) {
  912. /*
  913. * This domain has SD_WAKE_AFFINE and
  914. * p is cache cold in this domain, and
  915. * there is no bad imbalance.
  916. */
  917. schedstat_inc(this_sd, ttwu_move_affine);
  918. schedstat_inc(p, se.nr_wakeups_affine);
  919. return 1;
  920. }
  921. return 0;
  922. }
  923. static int select_task_rq_fair(struct task_struct *p, int sync)
  924. {
  925. struct sched_domain *sd, *this_sd = NULL;
  926. int prev_cpu, this_cpu, new_cpu;
  927. unsigned long load, this_load;
  928. struct rq *rq, *this_rq;
  929. unsigned int imbalance;
  930. int idx;
  931. prev_cpu = task_cpu(p);
  932. rq = task_rq(p);
  933. this_cpu = smp_processor_id();
  934. this_rq = cpu_rq(this_cpu);
  935. new_cpu = prev_cpu;
  936. /*
  937. * 'this_sd' is the first domain that both
  938. * this_cpu and prev_cpu are present in:
  939. */
  940. for_each_domain(this_cpu, sd) {
  941. if (cpu_isset(prev_cpu, sd->span)) {
  942. this_sd = sd;
  943. break;
  944. }
  945. }
  946. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  947. goto out;
  948. /*
  949. * Check for affine wakeup and passive balancing possibilities.
  950. */
  951. if (!this_sd)
  952. goto out;
  953. idx = this_sd->wake_idx;
  954. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  955. load = source_load(prev_cpu, idx);
  956. this_load = target_load(this_cpu, idx);
  957. if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
  958. load, this_load, imbalance))
  959. return this_cpu;
  960. if (prev_cpu == this_cpu)
  961. goto out;
  962. /*
  963. * Start passive balancing when half the imbalance_pct
  964. * limit is reached.
  965. */
  966. if (this_sd->flags & SD_WAKE_BALANCE) {
  967. if (imbalance*this_load <= 100*load) {
  968. schedstat_inc(this_sd, ttwu_move_balance);
  969. schedstat_inc(p, se.nr_wakeups_passive);
  970. return this_cpu;
  971. }
  972. }
  973. out:
  974. return wake_idle(new_cpu, p);
  975. }
  976. #endif /* CONFIG_SMP */
  977. static unsigned long wakeup_gran(struct sched_entity *se)
  978. {
  979. unsigned long gran = sysctl_sched_wakeup_granularity;
  980. /*
  981. * More easily preempt - nice tasks, while not making it harder for
  982. * + nice tasks.
  983. */
  984. gran = calc_delta_asym(sysctl_sched_wakeup_granularity, se);
  985. return gran;
  986. }
  987. /*
  988. * Should 'se' preempt 'curr'.
  989. *
  990. * |s1
  991. * |s2
  992. * |s3
  993. * g
  994. * |<--->|c
  995. *
  996. * w(c, s1) = -1
  997. * w(c, s2) = 0
  998. * w(c, s3) = 1
  999. *
  1000. */
  1001. static int
  1002. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  1003. {
  1004. s64 gran, vdiff = curr->vruntime - se->vruntime;
  1005. if (vdiff < 0)
  1006. return -1;
  1007. gran = wakeup_gran(curr);
  1008. if (vdiff > gran)
  1009. return 1;
  1010. return 0;
  1011. }
  1012. /* return depth at which a sched entity is present in the hierarchy */
  1013. static inline int depth_se(struct sched_entity *se)
  1014. {
  1015. int depth = 0;
  1016. for_each_sched_entity(se)
  1017. depth++;
  1018. return depth;
  1019. }
  1020. /*
  1021. * Preempt the current task with a newly woken task if needed:
  1022. */
  1023. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
  1024. {
  1025. struct task_struct *curr = rq->curr;
  1026. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  1027. struct sched_entity *se = &curr->se, *pse = &p->se;
  1028. int se_depth, pse_depth;
  1029. if (unlikely(rt_prio(p->prio))) {
  1030. update_rq_clock(rq);
  1031. update_curr(cfs_rq);
  1032. resched_task(curr);
  1033. return;
  1034. }
  1035. se->last_wakeup = se->sum_exec_runtime;
  1036. if (unlikely(se == pse))
  1037. return;
  1038. cfs_rq_of(pse)->next = pse;
  1039. /*
  1040. * Batch tasks do not preempt (their preemption is driven by
  1041. * the tick):
  1042. */
  1043. if (unlikely(p->policy == SCHED_BATCH))
  1044. return;
  1045. if (!sched_feat(WAKEUP_PREEMPT))
  1046. return;
  1047. /*
  1048. * preemption test can be made between sibling entities who are in the
  1049. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  1050. * both tasks until we find their ancestors who are siblings of common
  1051. * parent.
  1052. */
  1053. /* First walk up until both entities are at same depth */
  1054. se_depth = depth_se(se);
  1055. pse_depth = depth_se(pse);
  1056. while (se_depth > pse_depth) {
  1057. se_depth--;
  1058. se = parent_entity(se);
  1059. }
  1060. while (pse_depth > se_depth) {
  1061. pse_depth--;
  1062. pse = parent_entity(pse);
  1063. }
  1064. while (!is_same_group(se, pse)) {
  1065. se = parent_entity(se);
  1066. pse = parent_entity(pse);
  1067. }
  1068. if (wakeup_preempt_entity(se, pse) == 1)
  1069. resched_task(curr);
  1070. }
  1071. static struct task_struct *pick_next_task_fair(struct rq *rq)
  1072. {
  1073. struct task_struct *p;
  1074. struct cfs_rq *cfs_rq = &rq->cfs;
  1075. struct sched_entity *se;
  1076. if (unlikely(!cfs_rq->nr_running))
  1077. return NULL;
  1078. do {
  1079. se = pick_next_entity(cfs_rq);
  1080. cfs_rq = group_cfs_rq(se);
  1081. } while (cfs_rq);
  1082. p = task_of(se);
  1083. hrtick_start_fair(rq, p);
  1084. return p;
  1085. }
  1086. /*
  1087. * Account for a descheduled task:
  1088. */
  1089. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  1090. {
  1091. struct sched_entity *se = &prev->se;
  1092. struct cfs_rq *cfs_rq;
  1093. for_each_sched_entity(se) {
  1094. cfs_rq = cfs_rq_of(se);
  1095. put_prev_entity(cfs_rq, se);
  1096. }
  1097. }
  1098. #ifdef CONFIG_SMP
  1099. /**************************************************
  1100. * Fair scheduling class load-balancing methods:
  1101. */
  1102. /*
  1103. * Load-balancing iterator. Note: while the runqueue stays locked
  1104. * during the whole iteration, the current task might be
  1105. * dequeued so the iterator has to be dequeue-safe. Here we
  1106. * achieve that by always pre-iterating before returning
  1107. * the current task:
  1108. */
  1109. static struct task_struct *
  1110. __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
  1111. {
  1112. struct task_struct *p = NULL;
  1113. struct sched_entity *se;
  1114. if (next == &cfs_rq->tasks)
  1115. return NULL;
  1116. /* Skip over entities that are not tasks */
  1117. do {
  1118. se = list_entry(next, struct sched_entity, group_node);
  1119. next = next->next;
  1120. } while (next != &cfs_rq->tasks && !entity_is_task(se));
  1121. if (next == &cfs_rq->tasks)
  1122. return NULL;
  1123. cfs_rq->balance_iterator = next;
  1124. if (entity_is_task(se))
  1125. p = task_of(se);
  1126. return p;
  1127. }
  1128. static struct task_struct *load_balance_start_fair(void *arg)
  1129. {
  1130. struct cfs_rq *cfs_rq = arg;
  1131. return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
  1132. }
  1133. static struct task_struct *load_balance_next_fair(void *arg)
  1134. {
  1135. struct cfs_rq *cfs_rq = arg;
  1136. return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
  1137. }
  1138. static unsigned long
  1139. __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1140. unsigned long max_load_move, struct sched_domain *sd,
  1141. enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
  1142. struct cfs_rq *cfs_rq)
  1143. {
  1144. struct rq_iterator cfs_rq_iterator;
  1145. cfs_rq_iterator.start = load_balance_start_fair;
  1146. cfs_rq_iterator.next = load_balance_next_fair;
  1147. cfs_rq_iterator.arg = cfs_rq;
  1148. return balance_tasks(this_rq, this_cpu, busiest,
  1149. max_load_move, sd, idle, all_pinned,
  1150. this_best_prio, &cfs_rq_iterator);
  1151. }
  1152. #ifdef CONFIG_FAIR_GROUP_SCHED
  1153. static unsigned long
  1154. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1155. unsigned long max_load_move,
  1156. struct sched_domain *sd, enum cpu_idle_type idle,
  1157. int *all_pinned, int *this_best_prio)
  1158. {
  1159. long rem_load_move = max_load_move;
  1160. int busiest_cpu = cpu_of(busiest);
  1161. struct task_group *tg;
  1162. rcu_read_lock();
  1163. list_for_each_entry(tg, &task_groups, list) {
  1164. long imbalance;
  1165. unsigned long this_weight, busiest_weight;
  1166. long rem_load, max_load, moved_load;
  1167. /*
  1168. * empty group
  1169. */
  1170. if (!aggregate(tg, sd)->task_weight)
  1171. continue;
  1172. rem_load = rem_load_move * aggregate(tg, sd)->rq_weight;
  1173. rem_load /= aggregate(tg, sd)->load + 1;
  1174. this_weight = tg->cfs_rq[this_cpu]->task_weight;
  1175. busiest_weight = tg->cfs_rq[busiest_cpu]->task_weight;
  1176. imbalance = (busiest_weight - this_weight) / 2;
  1177. if (imbalance < 0)
  1178. imbalance = busiest_weight;
  1179. max_load = max(rem_load, imbalance);
  1180. moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
  1181. max_load, sd, idle, all_pinned, this_best_prio,
  1182. tg->cfs_rq[busiest_cpu]);
  1183. if (!moved_load)
  1184. continue;
  1185. move_group_shares(tg, sd, busiest_cpu, this_cpu);
  1186. moved_load *= aggregate(tg, sd)->load;
  1187. moved_load /= aggregate(tg, sd)->rq_weight + 1;
  1188. rem_load_move -= moved_load;
  1189. if (rem_load_move < 0)
  1190. break;
  1191. }
  1192. rcu_read_unlock();
  1193. return max_load_move - rem_load_move;
  1194. }
  1195. #else
  1196. static unsigned long
  1197. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1198. unsigned long max_load_move,
  1199. struct sched_domain *sd, enum cpu_idle_type idle,
  1200. int *all_pinned, int *this_best_prio)
  1201. {
  1202. return __load_balance_fair(this_rq, this_cpu, busiest,
  1203. max_load_move, sd, idle, all_pinned,
  1204. this_best_prio, &busiest->cfs);
  1205. }
  1206. #endif
  1207. static int
  1208. move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1209. struct sched_domain *sd, enum cpu_idle_type idle)
  1210. {
  1211. struct cfs_rq *busy_cfs_rq;
  1212. struct rq_iterator cfs_rq_iterator;
  1213. cfs_rq_iterator.start = load_balance_start_fair;
  1214. cfs_rq_iterator.next = load_balance_next_fair;
  1215. for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
  1216. /*
  1217. * pass busy_cfs_rq argument into
  1218. * load_balance_[start|next]_fair iterators
  1219. */
  1220. cfs_rq_iterator.arg = busy_cfs_rq;
  1221. if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
  1222. &cfs_rq_iterator))
  1223. return 1;
  1224. }
  1225. return 0;
  1226. }
  1227. #endif
  1228. /*
  1229. * scheduler tick hitting a task of our scheduling class:
  1230. */
  1231. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  1232. {
  1233. struct cfs_rq *cfs_rq;
  1234. struct sched_entity *se = &curr->se;
  1235. for_each_sched_entity(se) {
  1236. cfs_rq = cfs_rq_of(se);
  1237. entity_tick(cfs_rq, se, queued);
  1238. }
  1239. }
  1240. #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
  1241. /*
  1242. * Share the fairness runtime between parent and child, thus the
  1243. * total amount of pressure for CPU stays equal - new tasks
  1244. * get a chance to run but frequent forkers are not allowed to
  1245. * monopolize the CPU. Note: the parent runqueue is locked,
  1246. * the child is not running yet.
  1247. */
  1248. static void task_new_fair(struct rq *rq, struct task_struct *p)
  1249. {
  1250. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1251. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  1252. int this_cpu = smp_processor_id();
  1253. sched_info_queued(p);
  1254. update_curr(cfs_rq);
  1255. place_entity(cfs_rq, se, 1);
  1256. /* 'curr' will be NULL if the child belongs to a different group */
  1257. if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
  1258. curr && curr->vruntime < se->vruntime) {
  1259. /*
  1260. * Upon rescheduling, sched_class::put_prev_task() will place
  1261. * 'current' within the tree based on its new key value.
  1262. */
  1263. swap(curr->vruntime, se->vruntime);
  1264. }
  1265. enqueue_task_fair(rq, p, 0);
  1266. resched_task(rq->curr);
  1267. }
  1268. /*
  1269. * Priority of the task has changed. Check to see if we preempt
  1270. * the current task.
  1271. */
  1272. static void prio_changed_fair(struct rq *rq, struct task_struct *p,
  1273. int oldprio, int running)
  1274. {
  1275. /*
  1276. * Reschedule if we are currently running on this runqueue and
  1277. * our priority decreased, or if we are not currently running on
  1278. * this runqueue and our priority is higher than the current's
  1279. */
  1280. if (running) {
  1281. if (p->prio > oldprio)
  1282. resched_task(rq->curr);
  1283. } else
  1284. check_preempt_curr(rq, p);
  1285. }
  1286. /*
  1287. * We switched to the sched_fair class.
  1288. */
  1289. static void switched_to_fair(struct rq *rq, struct task_struct *p,
  1290. int running)
  1291. {
  1292. /*
  1293. * We were most likely switched from sched_rt, so
  1294. * kick off the schedule if running, otherwise just see
  1295. * if we can still preempt the current task.
  1296. */
  1297. if (running)
  1298. resched_task(rq->curr);
  1299. else
  1300. check_preempt_curr(rq, p);
  1301. }
  1302. /* Account for a task changing its policy or group.
  1303. *
  1304. * This routine is mostly called to set cfs_rq->curr field when a task
  1305. * migrates between groups/classes.
  1306. */
  1307. static void set_curr_task_fair(struct rq *rq)
  1308. {
  1309. struct sched_entity *se = &rq->curr->se;
  1310. for_each_sched_entity(se)
  1311. set_next_entity(cfs_rq_of(se), se);
  1312. }
  1313. #ifdef CONFIG_FAIR_GROUP_SCHED
  1314. static void moved_group_fair(struct task_struct *p)
  1315. {
  1316. struct cfs_rq *cfs_rq = task_cfs_rq(p);
  1317. update_curr(cfs_rq);
  1318. place_entity(cfs_rq, &p->se, 1);
  1319. }
  1320. #endif
  1321. /*
  1322. * All the scheduling class methods:
  1323. */
  1324. static const struct sched_class fair_sched_class = {
  1325. .next = &idle_sched_class,
  1326. .enqueue_task = enqueue_task_fair,
  1327. .dequeue_task = dequeue_task_fair,
  1328. .yield_task = yield_task_fair,
  1329. #ifdef CONFIG_SMP
  1330. .select_task_rq = select_task_rq_fair,
  1331. #endif /* CONFIG_SMP */
  1332. .check_preempt_curr = check_preempt_wakeup,
  1333. .pick_next_task = pick_next_task_fair,
  1334. .put_prev_task = put_prev_task_fair,
  1335. #ifdef CONFIG_SMP
  1336. .load_balance = load_balance_fair,
  1337. .move_one_task = move_one_task_fair,
  1338. #endif
  1339. .set_curr_task = set_curr_task_fair,
  1340. .task_tick = task_tick_fair,
  1341. .task_new = task_new_fair,
  1342. .prio_changed = prio_changed_fair,
  1343. .switched_to = switched_to_fair,
  1344. #ifdef CONFIG_FAIR_GROUP_SCHED
  1345. .moved_group = moved_group_fair,
  1346. #endif
  1347. };
  1348. #ifdef CONFIG_SCHED_DEBUG
  1349. static void
  1350. print_cfs_rq_tasks(struct seq_file *m, struct cfs_rq *cfs_rq, int depth)
  1351. {
  1352. struct sched_entity *se;
  1353. if (!cfs_rq)
  1354. return;
  1355. list_for_each_entry_rcu(se, &cfs_rq->tasks, group_node) {
  1356. int i;
  1357. for (i = depth; i; i--)
  1358. seq_puts(m, " ");
  1359. seq_printf(m, "%lu %s %lu\n",
  1360. se->load.weight,
  1361. entity_is_task(se) ? "T" : "G",
  1362. calc_delta_weight(SCHED_LOAD_SCALE, se)
  1363. );
  1364. if (!entity_is_task(se))
  1365. print_cfs_rq_tasks(m, group_cfs_rq(se), depth + 1);
  1366. }
  1367. }
  1368. static void print_cfs_stats(struct seq_file *m, int cpu)
  1369. {
  1370. struct cfs_rq *cfs_rq;
  1371. rcu_read_lock();
  1372. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  1373. print_cfs_rq(m, cpu, cfs_rq);
  1374. seq_printf(m, "\nWeight tree:\n");
  1375. print_cfs_rq_tasks(m, &cpu_rq(cpu)->cfs, 1);
  1376. rcu_read_unlock();
  1377. }
  1378. #endif