pid.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530
  1. /*
  2. * Generic pidhash and scalable, time-bounded PID allocator
  3. *
  4. * (C) 2002-2003 William Irwin, IBM
  5. * (C) 2004 William Irwin, Oracle
  6. * (C) 2002-2004 Ingo Molnar, Red Hat
  7. *
  8. * pid-structures are backing objects for tasks sharing a given ID to chain
  9. * against. There is very little to them aside from hashing them and
  10. * parking tasks using given ID's on a list.
  11. *
  12. * The hash is always changed with the tasklist_lock write-acquired,
  13. * and the hash is only accessed with the tasklist_lock at least
  14. * read-acquired, so there's no additional SMP locking needed here.
  15. *
  16. * We have a list of bitmap pages, which bitmaps represent the PID space.
  17. * Allocating and freeing PIDs is completely lockless. The worst-case
  18. * allocation scenario when all but one out of 1 million PIDs possible are
  19. * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
  20. * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
  21. *
  22. * Pid namespaces:
  23. * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
  24. * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
  25. * Many thanks to Oleg Nesterov for comments and help
  26. *
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/slab.h>
  31. #include <linux/init.h>
  32. #include <linux/bootmem.h>
  33. #include <linux/hash.h>
  34. #include <linux/pid_namespace.h>
  35. #include <linux/init_task.h>
  36. #include <linux/syscalls.h>
  37. #define pid_hashfn(nr, ns) \
  38. hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
  39. static struct hlist_head *pid_hash;
  40. static int pidhash_shift;
  41. struct pid init_struct_pid = INIT_STRUCT_PID;
  42. int pid_max = PID_MAX_DEFAULT;
  43. #define RESERVED_PIDS 300
  44. int pid_max_min = RESERVED_PIDS + 1;
  45. int pid_max_max = PID_MAX_LIMIT;
  46. #define BITS_PER_PAGE (PAGE_SIZE*8)
  47. #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
  48. static inline int mk_pid(struct pid_namespace *pid_ns,
  49. struct pidmap *map, int off)
  50. {
  51. return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
  52. }
  53. #define find_next_offset(map, off) \
  54. find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
  55. /*
  56. * PID-map pages start out as NULL, they get allocated upon
  57. * first use and are never deallocated. This way a low pid_max
  58. * value does not cause lots of bitmaps to be allocated, but
  59. * the scheme scales to up to 4 million PIDs, runtime.
  60. */
  61. struct pid_namespace init_pid_ns = {
  62. .kref = {
  63. .refcount = ATOMIC_INIT(2),
  64. },
  65. .pidmap = {
  66. [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
  67. },
  68. .last_pid = 0,
  69. .level = 0,
  70. .child_reaper = &init_task,
  71. };
  72. EXPORT_SYMBOL_GPL(init_pid_ns);
  73. int is_container_init(struct task_struct *tsk)
  74. {
  75. int ret = 0;
  76. struct pid *pid;
  77. rcu_read_lock();
  78. pid = task_pid(tsk);
  79. if (pid != NULL && pid->numbers[pid->level].nr == 1)
  80. ret = 1;
  81. rcu_read_unlock();
  82. return ret;
  83. }
  84. EXPORT_SYMBOL(is_container_init);
  85. /*
  86. * Note: disable interrupts while the pidmap_lock is held as an
  87. * interrupt might come in and do read_lock(&tasklist_lock).
  88. *
  89. * If we don't disable interrupts there is a nasty deadlock between
  90. * detach_pid()->free_pid() and another cpu that does
  91. * spin_lock(&pidmap_lock) followed by an interrupt routine that does
  92. * read_lock(&tasklist_lock);
  93. *
  94. * After we clean up the tasklist_lock and know there are no
  95. * irq handlers that take it we can leave the interrupts enabled.
  96. * For now it is easier to be safe than to prove it can't happen.
  97. */
  98. static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
  99. static void free_pidmap(struct pid_namespace *pid_ns, int pid)
  100. {
  101. struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE;
  102. int offset = pid & BITS_PER_PAGE_MASK;
  103. clear_bit(offset, map->page);
  104. atomic_inc(&map->nr_free);
  105. }
  106. static int alloc_pidmap(struct pid_namespace *pid_ns)
  107. {
  108. int i, offset, max_scan, pid, last = pid_ns->last_pid;
  109. struct pidmap *map;
  110. pid = last + 1;
  111. if (pid >= pid_max)
  112. pid = RESERVED_PIDS;
  113. offset = pid & BITS_PER_PAGE_MASK;
  114. map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
  115. max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
  116. for (i = 0; i <= max_scan; ++i) {
  117. if (unlikely(!map->page)) {
  118. void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  119. /*
  120. * Free the page if someone raced with us
  121. * installing it:
  122. */
  123. spin_lock_irq(&pidmap_lock);
  124. if (map->page)
  125. kfree(page);
  126. else
  127. map->page = page;
  128. spin_unlock_irq(&pidmap_lock);
  129. if (unlikely(!map->page))
  130. break;
  131. }
  132. if (likely(atomic_read(&map->nr_free))) {
  133. do {
  134. if (!test_and_set_bit(offset, map->page)) {
  135. atomic_dec(&map->nr_free);
  136. pid_ns->last_pid = pid;
  137. return pid;
  138. }
  139. offset = find_next_offset(map, offset);
  140. pid = mk_pid(pid_ns, map, offset);
  141. /*
  142. * find_next_offset() found a bit, the pid from it
  143. * is in-bounds, and if we fell back to the last
  144. * bitmap block and the final block was the same
  145. * as the starting point, pid is before last_pid.
  146. */
  147. } while (offset < BITS_PER_PAGE && pid < pid_max &&
  148. (i != max_scan || pid < last ||
  149. !((last+1) & BITS_PER_PAGE_MASK)));
  150. }
  151. if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
  152. ++map;
  153. offset = 0;
  154. } else {
  155. map = &pid_ns->pidmap[0];
  156. offset = RESERVED_PIDS;
  157. if (unlikely(last == offset))
  158. break;
  159. }
  160. pid = mk_pid(pid_ns, map, offset);
  161. }
  162. return -1;
  163. }
  164. int next_pidmap(struct pid_namespace *pid_ns, int last)
  165. {
  166. int offset;
  167. struct pidmap *map, *end;
  168. offset = (last + 1) & BITS_PER_PAGE_MASK;
  169. map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
  170. end = &pid_ns->pidmap[PIDMAP_ENTRIES];
  171. for (; map < end; map++, offset = 0) {
  172. if (unlikely(!map->page))
  173. continue;
  174. offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
  175. if (offset < BITS_PER_PAGE)
  176. return mk_pid(pid_ns, map, offset);
  177. }
  178. return -1;
  179. }
  180. void put_pid(struct pid *pid)
  181. {
  182. struct pid_namespace *ns;
  183. if (!pid)
  184. return;
  185. ns = pid->numbers[pid->level].ns;
  186. if ((atomic_read(&pid->count) == 1) ||
  187. atomic_dec_and_test(&pid->count)) {
  188. kmem_cache_free(ns->pid_cachep, pid);
  189. put_pid_ns(ns);
  190. }
  191. }
  192. EXPORT_SYMBOL_GPL(put_pid);
  193. static void delayed_put_pid(struct rcu_head *rhp)
  194. {
  195. struct pid *pid = container_of(rhp, struct pid, rcu);
  196. put_pid(pid);
  197. }
  198. void free_pid(struct pid *pid)
  199. {
  200. /* We can be called with write_lock_irq(&tasklist_lock) held */
  201. int i;
  202. unsigned long flags;
  203. spin_lock_irqsave(&pidmap_lock, flags);
  204. for (i = 0; i <= pid->level; i++)
  205. hlist_del_rcu(&pid->numbers[i].pid_chain);
  206. spin_unlock_irqrestore(&pidmap_lock, flags);
  207. for (i = 0; i <= pid->level; i++)
  208. free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
  209. call_rcu(&pid->rcu, delayed_put_pid);
  210. }
  211. struct pid *alloc_pid(struct pid_namespace *ns)
  212. {
  213. struct pid *pid;
  214. enum pid_type type;
  215. int i, nr;
  216. struct pid_namespace *tmp;
  217. struct upid *upid;
  218. pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
  219. if (!pid)
  220. goto out;
  221. tmp = ns;
  222. for (i = ns->level; i >= 0; i--) {
  223. nr = alloc_pidmap(tmp);
  224. if (nr < 0)
  225. goto out_free;
  226. pid->numbers[i].nr = nr;
  227. pid->numbers[i].ns = tmp;
  228. tmp = tmp->parent;
  229. }
  230. get_pid_ns(ns);
  231. pid->level = ns->level;
  232. atomic_set(&pid->count, 1);
  233. for (type = 0; type < PIDTYPE_MAX; ++type)
  234. INIT_HLIST_HEAD(&pid->tasks[type]);
  235. spin_lock_irq(&pidmap_lock);
  236. for (i = ns->level; i >= 0; i--) {
  237. upid = &pid->numbers[i];
  238. hlist_add_head_rcu(&upid->pid_chain,
  239. &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
  240. }
  241. spin_unlock_irq(&pidmap_lock);
  242. out:
  243. return pid;
  244. out_free:
  245. for (i++; i <= ns->level; i++)
  246. free_pidmap(pid->numbers[i].ns, pid->numbers[i].nr);
  247. kmem_cache_free(ns->pid_cachep, pid);
  248. pid = NULL;
  249. goto out;
  250. }
  251. struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
  252. {
  253. struct hlist_node *elem;
  254. struct upid *pnr;
  255. hlist_for_each_entry_rcu(pnr, elem,
  256. &pid_hash[pid_hashfn(nr, ns)], pid_chain)
  257. if (pnr->nr == nr && pnr->ns == ns)
  258. return container_of(pnr, struct pid,
  259. numbers[ns->level]);
  260. return NULL;
  261. }
  262. EXPORT_SYMBOL_GPL(find_pid_ns);
  263. struct pid *find_vpid(int nr)
  264. {
  265. return find_pid_ns(nr, current->nsproxy->pid_ns);
  266. }
  267. EXPORT_SYMBOL_GPL(find_vpid);
  268. struct pid *find_pid(int nr)
  269. {
  270. return find_pid_ns(nr, &init_pid_ns);
  271. }
  272. EXPORT_SYMBOL_GPL(find_pid);
  273. /*
  274. * attach_pid() must be called with the tasklist_lock write-held.
  275. */
  276. int attach_pid(struct task_struct *task, enum pid_type type,
  277. struct pid *pid)
  278. {
  279. struct pid_link *link;
  280. link = &task->pids[type];
  281. link->pid = pid;
  282. hlist_add_head_rcu(&link->node, &pid->tasks[type]);
  283. return 0;
  284. }
  285. void detach_pid(struct task_struct *task, enum pid_type type)
  286. {
  287. struct pid_link *link;
  288. struct pid *pid;
  289. int tmp;
  290. link = &task->pids[type];
  291. pid = link->pid;
  292. hlist_del_rcu(&link->node);
  293. link->pid = NULL;
  294. for (tmp = PIDTYPE_MAX; --tmp >= 0; )
  295. if (!hlist_empty(&pid->tasks[tmp]))
  296. return;
  297. free_pid(pid);
  298. }
  299. /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
  300. void transfer_pid(struct task_struct *old, struct task_struct *new,
  301. enum pid_type type)
  302. {
  303. new->pids[type].pid = old->pids[type].pid;
  304. hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
  305. old->pids[type].pid = NULL;
  306. }
  307. struct task_struct *pid_task(struct pid *pid, enum pid_type type)
  308. {
  309. struct task_struct *result = NULL;
  310. if (pid) {
  311. struct hlist_node *first;
  312. first = rcu_dereference(pid->tasks[type].first);
  313. if (first)
  314. result = hlist_entry(first, struct task_struct, pids[(type)].node);
  315. }
  316. return result;
  317. }
  318. EXPORT_SYMBOL(pid_task);
  319. /*
  320. * Must be called under rcu_read_lock() or with tasklist_lock read-held.
  321. */
  322. struct task_struct *find_task_by_pid_type_ns(int type, int nr,
  323. struct pid_namespace *ns)
  324. {
  325. return pid_task(find_pid_ns(nr, ns), type);
  326. }
  327. EXPORT_SYMBOL(find_task_by_pid_type_ns);
  328. struct task_struct *find_task_by_pid(pid_t nr)
  329. {
  330. return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns);
  331. }
  332. EXPORT_SYMBOL(find_task_by_pid);
  333. struct task_struct *find_task_by_vpid(pid_t vnr)
  334. {
  335. return find_task_by_pid_type_ns(PIDTYPE_PID, vnr,
  336. current->nsproxy->pid_ns);
  337. }
  338. EXPORT_SYMBOL(find_task_by_vpid);
  339. struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
  340. {
  341. return find_task_by_pid_type_ns(PIDTYPE_PID, nr, ns);
  342. }
  343. EXPORT_SYMBOL(find_task_by_pid_ns);
  344. struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
  345. {
  346. struct pid *pid;
  347. rcu_read_lock();
  348. pid = get_pid(task->pids[type].pid);
  349. rcu_read_unlock();
  350. return pid;
  351. }
  352. struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
  353. {
  354. struct task_struct *result;
  355. rcu_read_lock();
  356. result = pid_task(pid, type);
  357. if (result)
  358. get_task_struct(result);
  359. rcu_read_unlock();
  360. return result;
  361. }
  362. struct pid *find_get_pid(pid_t nr)
  363. {
  364. struct pid *pid;
  365. rcu_read_lock();
  366. pid = get_pid(find_vpid(nr));
  367. rcu_read_unlock();
  368. return pid;
  369. }
  370. pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
  371. {
  372. struct upid *upid;
  373. pid_t nr = 0;
  374. if (pid && ns->level <= pid->level) {
  375. upid = &pid->numbers[ns->level];
  376. if (upid->ns == ns)
  377. nr = upid->nr;
  378. }
  379. return nr;
  380. }
  381. pid_t pid_vnr(struct pid *pid)
  382. {
  383. return pid_nr_ns(pid, current->nsproxy->pid_ns);
  384. }
  385. EXPORT_SYMBOL_GPL(pid_vnr);
  386. pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  387. {
  388. return pid_nr_ns(task_pid(tsk), ns);
  389. }
  390. EXPORT_SYMBOL(task_pid_nr_ns);
  391. pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  392. {
  393. return pid_nr_ns(task_tgid(tsk), ns);
  394. }
  395. EXPORT_SYMBOL(task_tgid_nr_ns);
  396. pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  397. {
  398. return pid_nr_ns(task_pgrp(tsk), ns);
  399. }
  400. EXPORT_SYMBOL(task_pgrp_nr_ns);
  401. pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
  402. {
  403. return pid_nr_ns(task_session(tsk), ns);
  404. }
  405. EXPORT_SYMBOL(task_session_nr_ns);
  406. /*
  407. * Used by proc to find the first pid that is greater then or equal to nr.
  408. *
  409. * If there is a pid at nr this function is exactly the same as find_pid.
  410. */
  411. struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
  412. {
  413. struct pid *pid;
  414. do {
  415. pid = find_pid_ns(nr, ns);
  416. if (pid)
  417. break;
  418. nr = next_pidmap(ns, nr);
  419. } while (nr > 0);
  420. return pid;
  421. }
  422. EXPORT_SYMBOL_GPL(find_get_pid);
  423. /*
  424. * The pid hash table is scaled according to the amount of memory in the
  425. * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
  426. * more.
  427. */
  428. void __init pidhash_init(void)
  429. {
  430. int i, pidhash_size;
  431. unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
  432. pidhash_shift = max(4, fls(megabytes * 4));
  433. pidhash_shift = min(12, pidhash_shift);
  434. pidhash_size = 1 << pidhash_shift;
  435. printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
  436. pidhash_size, pidhash_shift,
  437. pidhash_size * sizeof(struct hlist_head));
  438. pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
  439. if (!pid_hash)
  440. panic("Could not alloc pidhash!\n");
  441. for (i = 0; i < pidhash_size; i++)
  442. INIT_HLIST_HEAD(&pid_hash[i]);
  443. }
  444. void __init pidmap_init(void)
  445. {
  446. init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  447. /* Reserve PID 0. We never call free_pidmap(0) */
  448. set_bit(0, init_pid_ns.pidmap[0].page);
  449. atomic_dec(&init_pid_ns.pidmap[0].nr_free);
  450. init_pid_ns.pid_cachep = KMEM_CACHE(pid,
  451. SLAB_HWCACHE_ALIGN | SLAB_PANIC);
  452. }