cpuset.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. *
  18. * This file is subject to the terms and conditions of the GNU General Public
  19. * License. See the file COPYING in the main directory of the Linux
  20. * distribution for more details.
  21. */
  22. #include <linux/cpu.h>
  23. #include <linux/cpumask.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/err.h>
  26. #include <linux/errno.h>
  27. #include <linux/file.h>
  28. #include <linux/fs.h>
  29. #include <linux/init.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/kernel.h>
  32. #include <linux/kmod.h>
  33. #include <linux/list.h>
  34. #include <linux/mempolicy.h>
  35. #include <linux/mm.h>
  36. #include <linux/module.h>
  37. #include <linux/mount.h>
  38. #include <linux/namei.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/proc_fs.h>
  41. #include <linux/rcupdate.h>
  42. #include <linux/sched.h>
  43. #include <linux/seq_file.h>
  44. #include <linux/security.h>
  45. #include <linux/slab.h>
  46. #include <linux/spinlock.h>
  47. #include <linux/stat.h>
  48. #include <linux/string.h>
  49. #include <linux/time.h>
  50. #include <linux/backing-dev.h>
  51. #include <linux/sort.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/atomic.h>
  54. #include <linux/mutex.h>
  55. #include <linux/kfifo.h>
  56. #include <linux/workqueue.h>
  57. #include <linux/cgroup.h>
  58. /*
  59. * Tracks how many cpusets are currently defined in system.
  60. * When there is only one cpuset (the root cpuset) we can
  61. * short circuit some hooks.
  62. */
  63. int number_of_cpusets __read_mostly;
  64. /* Forward declare cgroup structures */
  65. struct cgroup_subsys cpuset_subsys;
  66. struct cpuset;
  67. /* See "Frequency meter" comments, below. */
  68. struct fmeter {
  69. int cnt; /* unprocessed events count */
  70. int val; /* most recent output value */
  71. time_t time; /* clock (secs) when val computed */
  72. spinlock_t lock; /* guards read or write of above */
  73. };
  74. struct cpuset {
  75. struct cgroup_subsys_state css;
  76. unsigned long flags; /* "unsigned long" so bitops work */
  77. cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  78. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  79. struct cpuset *parent; /* my parent */
  80. /*
  81. * Copy of global cpuset_mems_generation as of the most
  82. * recent time this cpuset changed its mems_allowed.
  83. */
  84. int mems_generation;
  85. struct fmeter fmeter; /* memory_pressure filter */
  86. /* partition number for rebuild_sched_domains() */
  87. int pn;
  88. /* for custom sched domain */
  89. int relax_domain_level;
  90. /* used for walking a cpuset heirarchy */
  91. struct list_head stack_list;
  92. };
  93. /* Retrieve the cpuset for a cgroup */
  94. static inline struct cpuset *cgroup_cs(struct cgroup *cont)
  95. {
  96. return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
  97. struct cpuset, css);
  98. }
  99. /* Retrieve the cpuset for a task */
  100. static inline struct cpuset *task_cs(struct task_struct *task)
  101. {
  102. return container_of(task_subsys_state(task, cpuset_subsys_id),
  103. struct cpuset, css);
  104. }
  105. struct cpuset_hotplug_scanner {
  106. struct cgroup_scanner scan;
  107. struct cgroup *to;
  108. };
  109. /* bits in struct cpuset flags field */
  110. typedef enum {
  111. CS_CPU_EXCLUSIVE,
  112. CS_MEM_EXCLUSIVE,
  113. CS_MEMORY_MIGRATE,
  114. CS_SCHED_LOAD_BALANCE,
  115. CS_SPREAD_PAGE,
  116. CS_SPREAD_SLAB,
  117. } cpuset_flagbits_t;
  118. /* convenient tests for these bits */
  119. static inline int is_cpu_exclusive(const struct cpuset *cs)
  120. {
  121. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  122. }
  123. static inline int is_mem_exclusive(const struct cpuset *cs)
  124. {
  125. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  126. }
  127. static inline int is_sched_load_balance(const struct cpuset *cs)
  128. {
  129. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  130. }
  131. static inline int is_memory_migrate(const struct cpuset *cs)
  132. {
  133. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  134. }
  135. static inline int is_spread_page(const struct cpuset *cs)
  136. {
  137. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  138. }
  139. static inline int is_spread_slab(const struct cpuset *cs)
  140. {
  141. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  142. }
  143. /*
  144. * Increment this integer everytime any cpuset changes its
  145. * mems_allowed value. Users of cpusets can track this generation
  146. * number, and avoid having to lock and reload mems_allowed unless
  147. * the cpuset they're using changes generation.
  148. *
  149. * A single, global generation is needed because cpuset_attach_task() could
  150. * reattach a task to a different cpuset, which must not have its
  151. * generation numbers aliased with those of that tasks previous cpuset.
  152. *
  153. * Generations are needed for mems_allowed because one task cannot
  154. * modify another's memory placement. So we must enable every task,
  155. * on every visit to __alloc_pages(), to efficiently check whether
  156. * its current->cpuset->mems_allowed has changed, requiring an update
  157. * of its current->mems_allowed.
  158. *
  159. * Since writes to cpuset_mems_generation are guarded by the cgroup lock
  160. * there is no need to mark it atomic.
  161. */
  162. static int cpuset_mems_generation;
  163. static struct cpuset top_cpuset = {
  164. .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
  165. .cpus_allowed = CPU_MASK_ALL,
  166. .mems_allowed = NODE_MASK_ALL,
  167. };
  168. /*
  169. * There are two global mutexes guarding cpuset structures. The first
  170. * is the main control groups cgroup_mutex, accessed via
  171. * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
  172. * callback_mutex, below. They can nest. It is ok to first take
  173. * cgroup_mutex, then nest callback_mutex. We also require taking
  174. * task_lock() when dereferencing a task's cpuset pointer. See "The
  175. * task_lock() exception", at the end of this comment.
  176. *
  177. * A task must hold both mutexes to modify cpusets. If a task
  178. * holds cgroup_mutex, then it blocks others wanting that mutex,
  179. * ensuring that it is the only task able to also acquire callback_mutex
  180. * and be able to modify cpusets. It can perform various checks on
  181. * the cpuset structure first, knowing nothing will change. It can
  182. * also allocate memory while just holding cgroup_mutex. While it is
  183. * performing these checks, various callback routines can briefly
  184. * acquire callback_mutex to query cpusets. Once it is ready to make
  185. * the changes, it takes callback_mutex, blocking everyone else.
  186. *
  187. * Calls to the kernel memory allocator can not be made while holding
  188. * callback_mutex, as that would risk double tripping on callback_mutex
  189. * from one of the callbacks into the cpuset code from within
  190. * __alloc_pages().
  191. *
  192. * If a task is only holding callback_mutex, then it has read-only
  193. * access to cpusets.
  194. *
  195. * The task_struct fields mems_allowed and mems_generation may only
  196. * be accessed in the context of that task, so require no locks.
  197. *
  198. * The cpuset_common_file_write handler for operations that modify
  199. * the cpuset hierarchy holds cgroup_mutex across the entire operation,
  200. * single threading all such cpuset modifications across the system.
  201. *
  202. * The cpuset_common_file_read() handlers only hold callback_mutex across
  203. * small pieces of code, such as when reading out possibly multi-word
  204. * cpumasks and nodemasks.
  205. *
  206. * Accessing a task's cpuset should be done in accordance with the
  207. * guidelines for accessing subsystem state in kernel/cgroup.c
  208. */
  209. static DEFINE_MUTEX(callback_mutex);
  210. /* This is ugly, but preserves the userspace API for existing cpuset
  211. * users. If someone tries to mount the "cpuset" filesystem, we
  212. * silently switch it to mount "cgroup" instead */
  213. static int cpuset_get_sb(struct file_system_type *fs_type,
  214. int flags, const char *unused_dev_name,
  215. void *data, struct vfsmount *mnt)
  216. {
  217. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  218. int ret = -ENODEV;
  219. if (cgroup_fs) {
  220. char mountopts[] =
  221. "cpuset,noprefix,"
  222. "release_agent=/sbin/cpuset_release_agent";
  223. ret = cgroup_fs->get_sb(cgroup_fs, flags,
  224. unused_dev_name, mountopts, mnt);
  225. put_filesystem(cgroup_fs);
  226. }
  227. return ret;
  228. }
  229. static struct file_system_type cpuset_fs_type = {
  230. .name = "cpuset",
  231. .get_sb = cpuset_get_sb,
  232. };
  233. /*
  234. * Return in *pmask the portion of a cpusets's cpus_allowed that
  235. * are online. If none are online, walk up the cpuset hierarchy
  236. * until we find one that does have some online cpus. If we get
  237. * all the way to the top and still haven't found any online cpus,
  238. * return cpu_online_map. Or if passed a NULL cs from an exit'ing
  239. * task, return cpu_online_map.
  240. *
  241. * One way or another, we guarantee to return some non-empty subset
  242. * of cpu_online_map.
  243. *
  244. * Call with callback_mutex held.
  245. */
  246. static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
  247. {
  248. while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
  249. cs = cs->parent;
  250. if (cs)
  251. cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
  252. else
  253. *pmask = cpu_online_map;
  254. BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
  255. }
  256. /*
  257. * Return in *pmask the portion of a cpusets's mems_allowed that
  258. * are online, with memory. If none are online with memory, walk
  259. * up the cpuset hierarchy until we find one that does have some
  260. * online mems. If we get all the way to the top and still haven't
  261. * found any online mems, return node_states[N_HIGH_MEMORY].
  262. *
  263. * One way or another, we guarantee to return some non-empty subset
  264. * of node_states[N_HIGH_MEMORY].
  265. *
  266. * Call with callback_mutex held.
  267. */
  268. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  269. {
  270. while (cs && !nodes_intersects(cs->mems_allowed,
  271. node_states[N_HIGH_MEMORY]))
  272. cs = cs->parent;
  273. if (cs)
  274. nodes_and(*pmask, cs->mems_allowed,
  275. node_states[N_HIGH_MEMORY]);
  276. else
  277. *pmask = node_states[N_HIGH_MEMORY];
  278. BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
  279. }
  280. /**
  281. * cpuset_update_task_memory_state - update task memory placement
  282. *
  283. * If the current tasks cpusets mems_allowed changed behind our
  284. * backs, update current->mems_allowed, mems_generation and task NUMA
  285. * mempolicy to the new value.
  286. *
  287. * Task mempolicy is updated by rebinding it relative to the
  288. * current->cpuset if a task has its memory placement changed.
  289. * Do not call this routine if in_interrupt().
  290. *
  291. * Call without callback_mutex or task_lock() held. May be
  292. * called with or without cgroup_mutex held. Thanks in part to
  293. * 'the_top_cpuset_hack', the task's cpuset pointer will never
  294. * be NULL. This routine also might acquire callback_mutex during
  295. * call.
  296. *
  297. * Reading current->cpuset->mems_generation doesn't need task_lock
  298. * to guard the current->cpuset derefence, because it is guarded
  299. * from concurrent freeing of current->cpuset using RCU.
  300. *
  301. * The rcu_dereference() is technically probably not needed,
  302. * as I don't actually mind if I see a new cpuset pointer but
  303. * an old value of mems_generation. However this really only
  304. * matters on alpha systems using cpusets heavily. If I dropped
  305. * that rcu_dereference(), it would save them a memory barrier.
  306. * For all other arch's, rcu_dereference is a no-op anyway, and for
  307. * alpha systems not using cpusets, another planned optimization,
  308. * avoiding the rcu critical section for tasks in the root cpuset
  309. * which is statically allocated, so can't vanish, will make this
  310. * irrelevant. Better to use RCU as intended, than to engage in
  311. * some cute trick to save a memory barrier that is impossible to
  312. * test, for alpha systems using cpusets heavily, which might not
  313. * even exist.
  314. *
  315. * This routine is needed to update the per-task mems_allowed data,
  316. * within the tasks context, when it is trying to allocate memory
  317. * (in various mm/mempolicy.c routines) and notices that some other
  318. * task has been modifying its cpuset.
  319. */
  320. void cpuset_update_task_memory_state(void)
  321. {
  322. int my_cpusets_mem_gen;
  323. struct task_struct *tsk = current;
  324. struct cpuset *cs;
  325. if (task_cs(tsk) == &top_cpuset) {
  326. /* Don't need rcu for top_cpuset. It's never freed. */
  327. my_cpusets_mem_gen = top_cpuset.mems_generation;
  328. } else {
  329. rcu_read_lock();
  330. my_cpusets_mem_gen = task_cs(current)->mems_generation;
  331. rcu_read_unlock();
  332. }
  333. if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
  334. mutex_lock(&callback_mutex);
  335. task_lock(tsk);
  336. cs = task_cs(tsk); /* Maybe changed when task not locked */
  337. guarantee_online_mems(cs, &tsk->mems_allowed);
  338. tsk->cpuset_mems_generation = cs->mems_generation;
  339. if (is_spread_page(cs))
  340. tsk->flags |= PF_SPREAD_PAGE;
  341. else
  342. tsk->flags &= ~PF_SPREAD_PAGE;
  343. if (is_spread_slab(cs))
  344. tsk->flags |= PF_SPREAD_SLAB;
  345. else
  346. tsk->flags &= ~PF_SPREAD_SLAB;
  347. task_unlock(tsk);
  348. mutex_unlock(&callback_mutex);
  349. mpol_rebind_task(tsk, &tsk->mems_allowed);
  350. }
  351. }
  352. /*
  353. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  354. *
  355. * One cpuset is a subset of another if all its allowed CPUs and
  356. * Memory Nodes are a subset of the other, and its exclusive flags
  357. * are only set if the other's are set. Call holding cgroup_mutex.
  358. */
  359. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  360. {
  361. return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
  362. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  363. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  364. is_mem_exclusive(p) <= is_mem_exclusive(q);
  365. }
  366. /*
  367. * validate_change() - Used to validate that any proposed cpuset change
  368. * follows the structural rules for cpusets.
  369. *
  370. * If we replaced the flag and mask values of the current cpuset
  371. * (cur) with those values in the trial cpuset (trial), would
  372. * our various subset and exclusive rules still be valid? Presumes
  373. * cgroup_mutex held.
  374. *
  375. * 'cur' is the address of an actual, in-use cpuset. Operations
  376. * such as list traversal that depend on the actual address of the
  377. * cpuset in the list must use cur below, not trial.
  378. *
  379. * 'trial' is the address of bulk structure copy of cur, with
  380. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  381. * or flags changed to new, trial values.
  382. *
  383. * Return 0 if valid, -errno if not.
  384. */
  385. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  386. {
  387. struct cgroup *cont;
  388. struct cpuset *c, *par;
  389. /* Each of our child cpusets must be a subset of us */
  390. list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
  391. if (!is_cpuset_subset(cgroup_cs(cont), trial))
  392. return -EBUSY;
  393. }
  394. /* Remaining checks don't apply to root cpuset */
  395. if (cur == &top_cpuset)
  396. return 0;
  397. par = cur->parent;
  398. /* We must be a subset of our parent cpuset */
  399. if (!is_cpuset_subset(trial, par))
  400. return -EACCES;
  401. /*
  402. * If either I or some sibling (!= me) is exclusive, we can't
  403. * overlap
  404. */
  405. list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
  406. c = cgroup_cs(cont);
  407. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  408. c != cur &&
  409. cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
  410. return -EINVAL;
  411. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  412. c != cur &&
  413. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  414. return -EINVAL;
  415. }
  416. /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
  417. if (cgroup_task_count(cur->css.cgroup)) {
  418. if (cpus_empty(trial->cpus_allowed) ||
  419. nodes_empty(trial->mems_allowed)) {
  420. return -ENOSPC;
  421. }
  422. }
  423. return 0;
  424. }
  425. /*
  426. * Helper routine for rebuild_sched_domains().
  427. * Do cpusets a, b have overlapping cpus_allowed masks?
  428. */
  429. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  430. {
  431. return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
  432. }
  433. static void
  434. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  435. {
  436. if (!dattr)
  437. return;
  438. if (dattr->relax_domain_level < c->relax_domain_level)
  439. dattr->relax_domain_level = c->relax_domain_level;
  440. return;
  441. }
  442. /*
  443. * rebuild_sched_domains()
  444. *
  445. * If the flag 'sched_load_balance' of any cpuset with non-empty
  446. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  447. * which has that flag enabled, or if any cpuset with a non-empty
  448. * 'cpus' is removed, then call this routine to rebuild the
  449. * scheduler's dynamic sched domains.
  450. *
  451. * This routine builds a partial partition of the systems CPUs
  452. * (the set of non-overlappping cpumask_t's in the array 'part'
  453. * below), and passes that partial partition to the kernel/sched.c
  454. * partition_sched_domains() routine, which will rebuild the
  455. * schedulers load balancing domains (sched domains) as specified
  456. * by that partial partition. A 'partial partition' is a set of
  457. * non-overlapping subsets whose union is a subset of that set.
  458. *
  459. * See "What is sched_load_balance" in Documentation/cpusets.txt
  460. * for a background explanation of this.
  461. *
  462. * Does not return errors, on the theory that the callers of this
  463. * routine would rather not worry about failures to rebuild sched
  464. * domains when operating in the severe memory shortage situations
  465. * that could cause allocation failures below.
  466. *
  467. * Call with cgroup_mutex held. May take callback_mutex during
  468. * call due to the kfifo_alloc() and kmalloc() calls. May nest
  469. * a call to the get_online_cpus()/put_online_cpus() pair.
  470. * Must not be called holding callback_mutex, because we must not
  471. * call get_online_cpus() while holding callback_mutex. Elsewhere
  472. * the kernel nests callback_mutex inside get_online_cpus() calls.
  473. * So the reverse nesting would risk an ABBA deadlock.
  474. *
  475. * The three key local variables below are:
  476. * q - a kfifo queue of cpuset pointers, used to implement a
  477. * top-down scan of all cpusets. This scan loads a pointer
  478. * to each cpuset marked is_sched_load_balance into the
  479. * array 'csa'. For our purposes, rebuilding the schedulers
  480. * sched domains, we can ignore !is_sched_load_balance cpusets.
  481. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  482. * that need to be load balanced, for convenient iterative
  483. * access by the subsequent code that finds the best partition,
  484. * i.e the set of domains (subsets) of CPUs such that the
  485. * cpus_allowed of every cpuset marked is_sched_load_balance
  486. * is a subset of one of these domains, while there are as
  487. * many such domains as possible, each as small as possible.
  488. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  489. * the kernel/sched.c routine partition_sched_domains() in a
  490. * convenient format, that can be easily compared to the prior
  491. * value to determine what partition elements (sched domains)
  492. * were changed (added or removed.)
  493. *
  494. * Finding the best partition (set of domains):
  495. * The triple nested loops below over i, j, k scan over the
  496. * load balanced cpusets (using the array of cpuset pointers in
  497. * csa[]) looking for pairs of cpusets that have overlapping
  498. * cpus_allowed, but which don't have the same 'pn' partition
  499. * number and gives them in the same partition number. It keeps
  500. * looping on the 'restart' label until it can no longer find
  501. * any such pairs.
  502. *
  503. * The union of the cpus_allowed masks from the set of
  504. * all cpusets having the same 'pn' value then form the one
  505. * element of the partition (one sched domain) to be passed to
  506. * partition_sched_domains().
  507. */
  508. static void rebuild_sched_domains(void)
  509. {
  510. struct kfifo *q; /* queue of cpusets to be scanned */
  511. struct cpuset *cp; /* scans q */
  512. struct cpuset **csa; /* array of all cpuset ptrs */
  513. int csn; /* how many cpuset ptrs in csa so far */
  514. int i, j, k; /* indices for partition finding loops */
  515. cpumask_t *doms; /* resulting partition; i.e. sched domains */
  516. struct sched_domain_attr *dattr; /* attributes for custom domains */
  517. int ndoms; /* number of sched domains in result */
  518. int nslot; /* next empty doms[] cpumask_t slot */
  519. q = NULL;
  520. csa = NULL;
  521. doms = NULL;
  522. dattr = NULL;
  523. /* Special case for the 99% of systems with one, full, sched domain */
  524. if (is_sched_load_balance(&top_cpuset)) {
  525. ndoms = 1;
  526. doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  527. if (!doms)
  528. goto rebuild;
  529. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  530. if (dattr) {
  531. *dattr = SD_ATTR_INIT;
  532. update_domain_attr(dattr, &top_cpuset);
  533. }
  534. *doms = top_cpuset.cpus_allowed;
  535. goto rebuild;
  536. }
  537. q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
  538. if (IS_ERR(q))
  539. goto done;
  540. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  541. if (!csa)
  542. goto done;
  543. csn = 0;
  544. cp = &top_cpuset;
  545. __kfifo_put(q, (void *)&cp, sizeof(cp));
  546. while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
  547. struct cgroup *cont;
  548. struct cpuset *child; /* scans child cpusets of cp */
  549. if (is_sched_load_balance(cp))
  550. csa[csn++] = cp;
  551. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  552. child = cgroup_cs(cont);
  553. __kfifo_put(q, (void *)&child, sizeof(cp));
  554. }
  555. }
  556. for (i = 0; i < csn; i++)
  557. csa[i]->pn = i;
  558. ndoms = csn;
  559. restart:
  560. /* Find the best partition (set of sched domains) */
  561. for (i = 0; i < csn; i++) {
  562. struct cpuset *a = csa[i];
  563. int apn = a->pn;
  564. for (j = 0; j < csn; j++) {
  565. struct cpuset *b = csa[j];
  566. int bpn = b->pn;
  567. if (apn != bpn && cpusets_overlap(a, b)) {
  568. for (k = 0; k < csn; k++) {
  569. struct cpuset *c = csa[k];
  570. if (c->pn == bpn)
  571. c->pn = apn;
  572. }
  573. ndoms--; /* one less element */
  574. goto restart;
  575. }
  576. }
  577. }
  578. /* Convert <csn, csa> to <ndoms, doms> */
  579. doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
  580. if (!doms)
  581. goto rebuild;
  582. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  583. for (nslot = 0, i = 0; i < csn; i++) {
  584. struct cpuset *a = csa[i];
  585. int apn = a->pn;
  586. if (apn >= 0) {
  587. cpumask_t *dp = doms + nslot;
  588. if (nslot == ndoms) {
  589. static int warnings = 10;
  590. if (warnings) {
  591. printk(KERN_WARNING
  592. "rebuild_sched_domains confused:"
  593. " nslot %d, ndoms %d, csn %d, i %d,"
  594. " apn %d\n",
  595. nslot, ndoms, csn, i, apn);
  596. warnings--;
  597. }
  598. continue;
  599. }
  600. cpus_clear(*dp);
  601. if (dattr)
  602. *(dattr + nslot) = SD_ATTR_INIT;
  603. for (j = i; j < csn; j++) {
  604. struct cpuset *b = csa[j];
  605. if (apn == b->pn) {
  606. cpus_or(*dp, *dp, b->cpus_allowed);
  607. b->pn = -1;
  608. update_domain_attr(dattr, b);
  609. }
  610. }
  611. nslot++;
  612. }
  613. }
  614. BUG_ON(nslot != ndoms);
  615. rebuild:
  616. /* Have scheduler rebuild sched domains */
  617. get_online_cpus();
  618. partition_sched_domains(ndoms, doms, dattr);
  619. put_online_cpus();
  620. done:
  621. if (q && !IS_ERR(q))
  622. kfifo_free(q);
  623. kfree(csa);
  624. /* Don't kfree(doms) -- partition_sched_domains() does that. */
  625. /* Don't kfree(dattr) -- partition_sched_domains() does that. */
  626. }
  627. static inline int started_after_time(struct task_struct *t1,
  628. struct timespec *time,
  629. struct task_struct *t2)
  630. {
  631. int start_diff = timespec_compare(&t1->start_time, time);
  632. if (start_diff > 0) {
  633. return 1;
  634. } else if (start_diff < 0) {
  635. return 0;
  636. } else {
  637. /*
  638. * Arbitrarily, if two processes started at the same
  639. * time, we'll say that the lower pointer value
  640. * started first. Note that t2 may have exited by now
  641. * so this may not be a valid pointer any longer, but
  642. * that's fine - it still serves to distinguish
  643. * between two tasks started (effectively)
  644. * simultaneously.
  645. */
  646. return t1 > t2;
  647. }
  648. }
  649. static inline int started_after(void *p1, void *p2)
  650. {
  651. struct task_struct *t1 = p1;
  652. struct task_struct *t2 = p2;
  653. return started_after_time(t1, &t2->start_time, t2);
  654. }
  655. /**
  656. * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
  657. * @tsk: task to test
  658. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  659. *
  660. * Call with cgroup_mutex held. May take callback_mutex during call.
  661. * Called for each task in a cgroup by cgroup_scan_tasks().
  662. * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
  663. * words, if its mask is not equal to its cpuset's mask).
  664. */
  665. int cpuset_test_cpumask(struct task_struct *tsk, struct cgroup_scanner *scan)
  666. {
  667. return !cpus_equal(tsk->cpus_allowed,
  668. (cgroup_cs(scan->cg))->cpus_allowed);
  669. }
  670. /**
  671. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  672. * @tsk: task to test
  673. * @scan: struct cgroup_scanner containing the cgroup of the task
  674. *
  675. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  676. * cpus_allowed mask needs to be changed.
  677. *
  678. * We don't need to re-check for the cgroup/cpuset membership, since we're
  679. * holding cgroup_lock() at this point.
  680. */
  681. void cpuset_change_cpumask(struct task_struct *tsk, struct cgroup_scanner *scan)
  682. {
  683. set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
  684. }
  685. /**
  686. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  687. * @cs: the cpuset to consider
  688. * @buf: buffer of cpu numbers written to this cpuset
  689. */
  690. static int update_cpumask(struct cpuset *cs, char *buf)
  691. {
  692. struct cpuset trialcs;
  693. struct cgroup_scanner scan;
  694. struct ptr_heap heap;
  695. int retval;
  696. int is_load_balanced;
  697. /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
  698. if (cs == &top_cpuset)
  699. return -EACCES;
  700. trialcs = *cs;
  701. /*
  702. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  703. * Since cpulist_parse() fails on an empty mask, we special case
  704. * that parsing. The validate_change() call ensures that cpusets
  705. * with tasks have cpus.
  706. */
  707. buf = strstrip(buf);
  708. if (!*buf) {
  709. cpus_clear(trialcs.cpus_allowed);
  710. } else {
  711. retval = cpulist_parse(buf, trialcs.cpus_allowed);
  712. if (retval < 0)
  713. return retval;
  714. }
  715. cpus_and(trialcs.cpus_allowed, trialcs.cpus_allowed, cpu_online_map);
  716. retval = validate_change(cs, &trialcs);
  717. if (retval < 0)
  718. return retval;
  719. /* Nothing to do if the cpus didn't change */
  720. if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
  721. return 0;
  722. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, &started_after);
  723. if (retval)
  724. return retval;
  725. is_load_balanced = is_sched_load_balance(&trialcs);
  726. mutex_lock(&callback_mutex);
  727. cs->cpus_allowed = trialcs.cpus_allowed;
  728. mutex_unlock(&callback_mutex);
  729. /*
  730. * Scan tasks in the cpuset, and update the cpumasks of any
  731. * that need an update.
  732. */
  733. scan.cg = cs->css.cgroup;
  734. scan.test_task = cpuset_test_cpumask;
  735. scan.process_task = cpuset_change_cpumask;
  736. scan.heap = &heap;
  737. cgroup_scan_tasks(&scan);
  738. heap_free(&heap);
  739. if (is_load_balanced)
  740. rebuild_sched_domains();
  741. return 0;
  742. }
  743. /*
  744. * cpuset_migrate_mm
  745. *
  746. * Migrate memory region from one set of nodes to another.
  747. *
  748. * Temporarilly set tasks mems_allowed to target nodes of migration,
  749. * so that the migration code can allocate pages on these nodes.
  750. *
  751. * Call holding cgroup_mutex, so current's cpuset won't change
  752. * during this call, as manage_mutex holds off any cpuset_attach()
  753. * calls. Therefore we don't need to take task_lock around the
  754. * call to guarantee_online_mems(), as we know no one is changing
  755. * our task's cpuset.
  756. *
  757. * Hold callback_mutex around the two modifications of our tasks
  758. * mems_allowed to synchronize with cpuset_mems_allowed().
  759. *
  760. * While the mm_struct we are migrating is typically from some
  761. * other task, the task_struct mems_allowed that we are hacking
  762. * is for our current task, which must allocate new pages for that
  763. * migrating memory region.
  764. *
  765. * We call cpuset_update_task_memory_state() before hacking
  766. * our tasks mems_allowed, so that we are assured of being in
  767. * sync with our tasks cpuset, and in particular, callbacks to
  768. * cpuset_update_task_memory_state() from nested page allocations
  769. * won't see any mismatch of our cpuset and task mems_generation
  770. * values, so won't overwrite our hacked tasks mems_allowed
  771. * nodemask.
  772. */
  773. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  774. const nodemask_t *to)
  775. {
  776. struct task_struct *tsk = current;
  777. cpuset_update_task_memory_state();
  778. mutex_lock(&callback_mutex);
  779. tsk->mems_allowed = *to;
  780. mutex_unlock(&callback_mutex);
  781. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  782. mutex_lock(&callback_mutex);
  783. guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
  784. mutex_unlock(&callback_mutex);
  785. }
  786. /*
  787. * Handle user request to change the 'mems' memory placement
  788. * of a cpuset. Needs to validate the request, update the
  789. * cpusets mems_allowed and mems_generation, and for each
  790. * task in the cpuset, rebind any vma mempolicies and if
  791. * the cpuset is marked 'memory_migrate', migrate the tasks
  792. * pages to the new memory.
  793. *
  794. * Call with cgroup_mutex held. May take callback_mutex during call.
  795. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  796. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  797. * their mempolicies to the cpusets new mems_allowed.
  798. */
  799. static void *cpuset_being_rebound;
  800. static int update_nodemask(struct cpuset *cs, char *buf)
  801. {
  802. struct cpuset trialcs;
  803. nodemask_t oldmem;
  804. struct task_struct *p;
  805. struct mm_struct **mmarray;
  806. int i, n, ntasks;
  807. int migrate;
  808. int fudge;
  809. int retval;
  810. struct cgroup_iter it;
  811. /*
  812. * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
  813. * it's read-only
  814. */
  815. if (cs == &top_cpuset)
  816. return -EACCES;
  817. trialcs = *cs;
  818. /*
  819. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  820. * Since nodelist_parse() fails on an empty mask, we special case
  821. * that parsing. The validate_change() call ensures that cpusets
  822. * with tasks have memory.
  823. */
  824. buf = strstrip(buf);
  825. if (!*buf) {
  826. nodes_clear(trialcs.mems_allowed);
  827. } else {
  828. retval = nodelist_parse(buf, trialcs.mems_allowed);
  829. if (retval < 0)
  830. goto done;
  831. }
  832. nodes_and(trialcs.mems_allowed, trialcs.mems_allowed,
  833. node_states[N_HIGH_MEMORY]);
  834. oldmem = cs->mems_allowed;
  835. if (nodes_equal(oldmem, trialcs.mems_allowed)) {
  836. retval = 0; /* Too easy - nothing to do */
  837. goto done;
  838. }
  839. retval = validate_change(cs, &trialcs);
  840. if (retval < 0)
  841. goto done;
  842. mutex_lock(&callback_mutex);
  843. cs->mems_allowed = trialcs.mems_allowed;
  844. cs->mems_generation = cpuset_mems_generation++;
  845. mutex_unlock(&callback_mutex);
  846. cpuset_being_rebound = cs; /* causes mpol_copy() rebind */
  847. fudge = 10; /* spare mmarray[] slots */
  848. fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
  849. retval = -ENOMEM;
  850. /*
  851. * Allocate mmarray[] to hold mm reference for each task
  852. * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
  853. * tasklist_lock. We could use GFP_ATOMIC, but with a
  854. * few more lines of code, we can retry until we get a big
  855. * enough mmarray[] w/o using GFP_ATOMIC.
  856. */
  857. while (1) {
  858. ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
  859. ntasks += fudge;
  860. mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
  861. if (!mmarray)
  862. goto done;
  863. read_lock(&tasklist_lock); /* block fork */
  864. if (cgroup_task_count(cs->css.cgroup) <= ntasks)
  865. break; /* got enough */
  866. read_unlock(&tasklist_lock); /* try again */
  867. kfree(mmarray);
  868. }
  869. n = 0;
  870. /* Load up mmarray[] with mm reference for each task in cpuset. */
  871. cgroup_iter_start(cs->css.cgroup, &it);
  872. while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
  873. struct mm_struct *mm;
  874. if (n >= ntasks) {
  875. printk(KERN_WARNING
  876. "Cpuset mempolicy rebind incomplete.\n");
  877. break;
  878. }
  879. mm = get_task_mm(p);
  880. if (!mm)
  881. continue;
  882. mmarray[n++] = mm;
  883. }
  884. cgroup_iter_end(cs->css.cgroup, &it);
  885. read_unlock(&tasklist_lock);
  886. /*
  887. * Now that we've dropped the tasklist spinlock, we can
  888. * rebind the vma mempolicies of each mm in mmarray[] to their
  889. * new cpuset, and release that mm. The mpol_rebind_mm()
  890. * call takes mmap_sem, which we couldn't take while holding
  891. * tasklist_lock. Forks can happen again now - the mpol_copy()
  892. * cpuset_being_rebound check will catch such forks, and rebind
  893. * their vma mempolicies too. Because we still hold the global
  894. * cgroup_mutex, we know that no other rebind effort will
  895. * be contending for the global variable cpuset_being_rebound.
  896. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  897. * is idempotent. Also migrate pages in each mm to new nodes.
  898. */
  899. migrate = is_memory_migrate(cs);
  900. for (i = 0; i < n; i++) {
  901. struct mm_struct *mm = mmarray[i];
  902. mpol_rebind_mm(mm, &cs->mems_allowed);
  903. if (migrate)
  904. cpuset_migrate_mm(mm, &oldmem, &cs->mems_allowed);
  905. mmput(mm);
  906. }
  907. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  908. kfree(mmarray);
  909. cpuset_being_rebound = NULL;
  910. retval = 0;
  911. done:
  912. return retval;
  913. }
  914. int current_cpuset_is_being_rebound(void)
  915. {
  916. return task_cs(current) == cpuset_being_rebound;
  917. }
  918. /*
  919. * Call with cgroup_mutex held.
  920. */
  921. static int update_memory_pressure_enabled(struct cpuset *cs, char *buf)
  922. {
  923. if (simple_strtoul(buf, NULL, 10) != 0)
  924. cpuset_memory_pressure_enabled = 1;
  925. else
  926. cpuset_memory_pressure_enabled = 0;
  927. return 0;
  928. }
  929. static int update_relax_domain_level(struct cpuset *cs, char *buf)
  930. {
  931. int val = simple_strtol(buf, NULL, 10);
  932. if (val < 0)
  933. val = -1;
  934. if (val != cs->relax_domain_level) {
  935. cs->relax_domain_level = val;
  936. rebuild_sched_domains();
  937. }
  938. return 0;
  939. }
  940. /*
  941. * update_flag - read a 0 or a 1 in a file and update associated flag
  942. * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
  943. * CS_SCHED_LOAD_BALANCE,
  944. * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
  945. * CS_SPREAD_PAGE, CS_SPREAD_SLAB)
  946. * cs: the cpuset to update
  947. * buf: the buffer where we read the 0 or 1
  948. *
  949. * Call with cgroup_mutex held.
  950. */
  951. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, char *buf)
  952. {
  953. int turning_on;
  954. struct cpuset trialcs;
  955. int err;
  956. int cpus_nonempty, balance_flag_changed;
  957. turning_on = (simple_strtoul(buf, NULL, 10) != 0);
  958. trialcs = *cs;
  959. if (turning_on)
  960. set_bit(bit, &trialcs.flags);
  961. else
  962. clear_bit(bit, &trialcs.flags);
  963. err = validate_change(cs, &trialcs);
  964. if (err < 0)
  965. return err;
  966. cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
  967. balance_flag_changed = (is_sched_load_balance(cs) !=
  968. is_sched_load_balance(&trialcs));
  969. mutex_lock(&callback_mutex);
  970. cs->flags = trialcs.flags;
  971. mutex_unlock(&callback_mutex);
  972. if (cpus_nonempty && balance_flag_changed)
  973. rebuild_sched_domains();
  974. return 0;
  975. }
  976. /*
  977. * Frequency meter - How fast is some event occurring?
  978. *
  979. * These routines manage a digitally filtered, constant time based,
  980. * event frequency meter. There are four routines:
  981. * fmeter_init() - initialize a frequency meter.
  982. * fmeter_markevent() - called each time the event happens.
  983. * fmeter_getrate() - returns the recent rate of such events.
  984. * fmeter_update() - internal routine used to update fmeter.
  985. *
  986. * A common data structure is passed to each of these routines,
  987. * which is used to keep track of the state required to manage the
  988. * frequency meter and its digital filter.
  989. *
  990. * The filter works on the number of events marked per unit time.
  991. * The filter is single-pole low-pass recursive (IIR). The time unit
  992. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  993. * simulate 3 decimal digits of precision (multiplied by 1000).
  994. *
  995. * With an FM_COEF of 933, and a time base of 1 second, the filter
  996. * has a half-life of 10 seconds, meaning that if the events quit
  997. * happening, then the rate returned from the fmeter_getrate()
  998. * will be cut in half each 10 seconds, until it converges to zero.
  999. *
  1000. * It is not worth doing a real infinitely recursive filter. If more
  1001. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1002. * just compute FM_MAXTICKS ticks worth, by which point the level
  1003. * will be stable.
  1004. *
  1005. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1006. * arithmetic overflow in the fmeter_update() routine.
  1007. *
  1008. * Given the simple 32 bit integer arithmetic used, this meter works
  1009. * best for reporting rates between one per millisecond (msec) and
  1010. * one per 32 (approx) seconds. At constant rates faster than one
  1011. * per msec it maxes out at values just under 1,000,000. At constant
  1012. * rates between one per msec, and one per second it will stabilize
  1013. * to a value N*1000, where N is the rate of events per second.
  1014. * At constant rates between one per second and one per 32 seconds,
  1015. * it will be choppy, moving up on the seconds that have an event,
  1016. * and then decaying until the next event. At rates slower than
  1017. * about one in 32 seconds, it decays all the way back to zero between
  1018. * each event.
  1019. */
  1020. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1021. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1022. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1023. #define FM_SCALE 1000 /* faux fixed point scale */
  1024. /* Initialize a frequency meter */
  1025. static void fmeter_init(struct fmeter *fmp)
  1026. {
  1027. fmp->cnt = 0;
  1028. fmp->val = 0;
  1029. fmp->time = 0;
  1030. spin_lock_init(&fmp->lock);
  1031. }
  1032. /* Internal meter update - process cnt events and update value */
  1033. static void fmeter_update(struct fmeter *fmp)
  1034. {
  1035. time_t now = get_seconds();
  1036. time_t ticks = now - fmp->time;
  1037. if (ticks == 0)
  1038. return;
  1039. ticks = min(FM_MAXTICKS, ticks);
  1040. while (ticks-- > 0)
  1041. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1042. fmp->time = now;
  1043. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1044. fmp->cnt = 0;
  1045. }
  1046. /* Process any previous ticks, then bump cnt by one (times scale). */
  1047. static void fmeter_markevent(struct fmeter *fmp)
  1048. {
  1049. spin_lock(&fmp->lock);
  1050. fmeter_update(fmp);
  1051. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1052. spin_unlock(&fmp->lock);
  1053. }
  1054. /* Process any previous ticks, then return current value. */
  1055. static int fmeter_getrate(struct fmeter *fmp)
  1056. {
  1057. int val;
  1058. spin_lock(&fmp->lock);
  1059. fmeter_update(fmp);
  1060. val = fmp->val;
  1061. spin_unlock(&fmp->lock);
  1062. return val;
  1063. }
  1064. /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
  1065. static int cpuset_can_attach(struct cgroup_subsys *ss,
  1066. struct cgroup *cont, struct task_struct *tsk)
  1067. {
  1068. struct cpuset *cs = cgroup_cs(cont);
  1069. if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1070. return -ENOSPC;
  1071. return security_task_setscheduler(tsk, 0, NULL);
  1072. }
  1073. static void cpuset_attach(struct cgroup_subsys *ss,
  1074. struct cgroup *cont, struct cgroup *oldcont,
  1075. struct task_struct *tsk)
  1076. {
  1077. cpumask_t cpus;
  1078. nodemask_t from, to;
  1079. struct mm_struct *mm;
  1080. struct cpuset *cs = cgroup_cs(cont);
  1081. struct cpuset *oldcs = cgroup_cs(oldcont);
  1082. mutex_lock(&callback_mutex);
  1083. guarantee_online_cpus(cs, &cpus);
  1084. set_cpus_allowed_ptr(tsk, &cpus);
  1085. mutex_unlock(&callback_mutex);
  1086. from = oldcs->mems_allowed;
  1087. to = cs->mems_allowed;
  1088. mm = get_task_mm(tsk);
  1089. if (mm) {
  1090. mpol_rebind_mm(mm, &to);
  1091. if (is_memory_migrate(cs))
  1092. cpuset_migrate_mm(mm, &from, &to);
  1093. mmput(mm);
  1094. }
  1095. }
  1096. /* The various types of files and directories in a cpuset file system */
  1097. typedef enum {
  1098. FILE_MEMORY_MIGRATE,
  1099. FILE_CPULIST,
  1100. FILE_MEMLIST,
  1101. FILE_CPU_EXCLUSIVE,
  1102. FILE_MEM_EXCLUSIVE,
  1103. FILE_SCHED_LOAD_BALANCE,
  1104. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1105. FILE_MEMORY_PRESSURE_ENABLED,
  1106. FILE_MEMORY_PRESSURE,
  1107. FILE_SPREAD_PAGE,
  1108. FILE_SPREAD_SLAB,
  1109. } cpuset_filetype_t;
  1110. static ssize_t cpuset_common_file_write(struct cgroup *cont,
  1111. struct cftype *cft,
  1112. struct file *file,
  1113. const char __user *userbuf,
  1114. size_t nbytes, loff_t *unused_ppos)
  1115. {
  1116. struct cpuset *cs = cgroup_cs(cont);
  1117. cpuset_filetype_t type = cft->private;
  1118. char *buffer;
  1119. int retval = 0;
  1120. /* Crude upper limit on largest legitimate cpulist user might write. */
  1121. if (nbytes > 100U + 6 * max(NR_CPUS, MAX_NUMNODES))
  1122. return -E2BIG;
  1123. /* +1 for nul-terminator */
  1124. if ((buffer = kmalloc(nbytes + 1, GFP_KERNEL)) == 0)
  1125. return -ENOMEM;
  1126. if (copy_from_user(buffer, userbuf, nbytes)) {
  1127. retval = -EFAULT;
  1128. goto out1;
  1129. }
  1130. buffer[nbytes] = 0; /* nul-terminate */
  1131. cgroup_lock();
  1132. if (cgroup_is_removed(cont)) {
  1133. retval = -ENODEV;
  1134. goto out2;
  1135. }
  1136. switch (type) {
  1137. case FILE_CPULIST:
  1138. retval = update_cpumask(cs, buffer);
  1139. break;
  1140. case FILE_MEMLIST:
  1141. retval = update_nodemask(cs, buffer);
  1142. break;
  1143. case FILE_CPU_EXCLUSIVE:
  1144. retval = update_flag(CS_CPU_EXCLUSIVE, cs, buffer);
  1145. break;
  1146. case FILE_MEM_EXCLUSIVE:
  1147. retval = update_flag(CS_MEM_EXCLUSIVE, cs, buffer);
  1148. break;
  1149. case FILE_SCHED_LOAD_BALANCE:
  1150. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, buffer);
  1151. break;
  1152. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1153. retval = update_relax_domain_level(cs, buffer);
  1154. break;
  1155. case FILE_MEMORY_MIGRATE:
  1156. retval = update_flag(CS_MEMORY_MIGRATE, cs, buffer);
  1157. break;
  1158. case FILE_MEMORY_PRESSURE_ENABLED:
  1159. retval = update_memory_pressure_enabled(cs, buffer);
  1160. break;
  1161. case FILE_MEMORY_PRESSURE:
  1162. retval = -EACCES;
  1163. break;
  1164. case FILE_SPREAD_PAGE:
  1165. retval = update_flag(CS_SPREAD_PAGE, cs, buffer);
  1166. cs->mems_generation = cpuset_mems_generation++;
  1167. break;
  1168. case FILE_SPREAD_SLAB:
  1169. retval = update_flag(CS_SPREAD_SLAB, cs, buffer);
  1170. cs->mems_generation = cpuset_mems_generation++;
  1171. break;
  1172. default:
  1173. retval = -EINVAL;
  1174. goto out2;
  1175. }
  1176. if (retval == 0)
  1177. retval = nbytes;
  1178. out2:
  1179. cgroup_unlock();
  1180. out1:
  1181. kfree(buffer);
  1182. return retval;
  1183. }
  1184. /*
  1185. * These ascii lists should be read in a single call, by using a user
  1186. * buffer large enough to hold the entire map. If read in smaller
  1187. * chunks, there is no guarantee of atomicity. Since the display format
  1188. * used, list of ranges of sequential numbers, is variable length,
  1189. * and since these maps can change value dynamically, one could read
  1190. * gibberish by doing partial reads while a list was changing.
  1191. * A single large read to a buffer that crosses a page boundary is
  1192. * ok, because the result being copied to user land is not recomputed
  1193. * across a page fault.
  1194. */
  1195. static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1196. {
  1197. cpumask_t mask;
  1198. mutex_lock(&callback_mutex);
  1199. mask = cs->cpus_allowed;
  1200. mutex_unlock(&callback_mutex);
  1201. return cpulist_scnprintf(page, PAGE_SIZE, mask);
  1202. }
  1203. static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1204. {
  1205. nodemask_t mask;
  1206. mutex_lock(&callback_mutex);
  1207. mask = cs->mems_allowed;
  1208. mutex_unlock(&callback_mutex);
  1209. return nodelist_scnprintf(page, PAGE_SIZE, mask);
  1210. }
  1211. static ssize_t cpuset_common_file_read(struct cgroup *cont,
  1212. struct cftype *cft,
  1213. struct file *file,
  1214. char __user *buf,
  1215. size_t nbytes, loff_t *ppos)
  1216. {
  1217. struct cpuset *cs = cgroup_cs(cont);
  1218. cpuset_filetype_t type = cft->private;
  1219. char *page;
  1220. ssize_t retval = 0;
  1221. char *s;
  1222. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1223. return -ENOMEM;
  1224. s = page;
  1225. switch (type) {
  1226. case FILE_CPULIST:
  1227. s += cpuset_sprintf_cpulist(s, cs);
  1228. break;
  1229. case FILE_MEMLIST:
  1230. s += cpuset_sprintf_memlist(s, cs);
  1231. break;
  1232. case FILE_CPU_EXCLUSIVE:
  1233. *s++ = is_cpu_exclusive(cs) ? '1' : '0';
  1234. break;
  1235. case FILE_MEM_EXCLUSIVE:
  1236. *s++ = is_mem_exclusive(cs) ? '1' : '0';
  1237. break;
  1238. case FILE_SCHED_LOAD_BALANCE:
  1239. *s++ = is_sched_load_balance(cs) ? '1' : '0';
  1240. break;
  1241. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1242. s += sprintf(s, "%d", cs->relax_domain_level);
  1243. break;
  1244. case FILE_MEMORY_MIGRATE:
  1245. *s++ = is_memory_migrate(cs) ? '1' : '0';
  1246. break;
  1247. case FILE_MEMORY_PRESSURE_ENABLED:
  1248. *s++ = cpuset_memory_pressure_enabled ? '1' : '0';
  1249. break;
  1250. case FILE_MEMORY_PRESSURE:
  1251. s += sprintf(s, "%d", fmeter_getrate(&cs->fmeter));
  1252. break;
  1253. case FILE_SPREAD_PAGE:
  1254. *s++ = is_spread_page(cs) ? '1' : '0';
  1255. break;
  1256. case FILE_SPREAD_SLAB:
  1257. *s++ = is_spread_slab(cs) ? '1' : '0';
  1258. break;
  1259. default:
  1260. retval = -EINVAL;
  1261. goto out;
  1262. }
  1263. *s++ = '\n';
  1264. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1265. out:
  1266. free_page((unsigned long)page);
  1267. return retval;
  1268. }
  1269. /*
  1270. * for the common functions, 'private' gives the type of file
  1271. */
  1272. static struct cftype cft_cpus = {
  1273. .name = "cpus",
  1274. .read = cpuset_common_file_read,
  1275. .write = cpuset_common_file_write,
  1276. .private = FILE_CPULIST,
  1277. };
  1278. static struct cftype cft_mems = {
  1279. .name = "mems",
  1280. .read = cpuset_common_file_read,
  1281. .write = cpuset_common_file_write,
  1282. .private = FILE_MEMLIST,
  1283. };
  1284. static struct cftype cft_cpu_exclusive = {
  1285. .name = "cpu_exclusive",
  1286. .read = cpuset_common_file_read,
  1287. .write = cpuset_common_file_write,
  1288. .private = FILE_CPU_EXCLUSIVE,
  1289. };
  1290. static struct cftype cft_mem_exclusive = {
  1291. .name = "mem_exclusive",
  1292. .read = cpuset_common_file_read,
  1293. .write = cpuset_common_file_write,
  1294. .private = FILE_MEM_EXCLUSIVE,
  1295. };
  1296. static struct cftype cft_sched_load_balance = {
  1297. .name = "sched_load_balance",
  1298. .read = cpuset_common_file_read,
  1299. .write = cpuset_common_file_write,
  1300. .private = FILE_SCHED_LOAD_BALANCE,
  1301. };
  1302. static struct cftype cft_sched_relax_domain_level = {
  1303. .name = "sched_relax_domain_level",
  1304. .read = cpuset_common_file_read,
  1305. .write = cpuset_common_file_write,
  1306. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1307. };
  1308. static struct cftype cft_memory_migrate = {
  1309. .name = "memory_migrate",
  1310. .read = cpuset_common_file_read,
  1311. .write = cpuset_common_file_write,
  1312. .private = FILE_MEMORY_MIGRATE,
  1313. };
  1314. static struct cftype cft_memory_pressure_enabled = {
  1315. .name = "memory_pressure_enabled",
  1316. .read = cpuset_common_file_read,
  1317. .write = cpuset_common_file_write,
  1318. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1319. };
  1320. static struct cftype cft_memory_pressure = {
  1321. .name = "memory_pressure",
  1322. .read = cpuset_common_file_read,
  1323. .write = cpuset_common_file_write,
  1324. .private = FILE_MEMORY_PRESSURE,
  1325. };
  1326. static struct cftype cft_spread_page = {
  1327. .name = "memory_spread_page",
  1328. .read = cpuset_common_file_read,
  1329. .write = cpuset_common_file_write,
  1330. .private = FILE_SPREAD_PAGE,
  1331. };
  1332. static struct cftype cft_spread_slab = {
  1333. .name = "memory_spread_slab",
  1334. .read = cpuset_common_file_read,
  1335. .write = cpuset_common_file_write,
  1336. .private = FILE_SPREAD_SLAB,
  1337. };
  1338. static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  1339. {
  1340. int err;
  1341. if ((err = cgroup_add_file(cont, ss, &cft_cpus)) < 0)
  1342. return err;
  1343. if ((err = cgroup_add_file(cont, ss, &cft_mems)) < 0)
  1344. return err;
  1345. if ((err = cgroup_add_file(cont, ss, &cft_cpu_exclusive)) < 0)
  1346. return err;
  1347. if ((err = cgroup_add_file(cont, ss, &cft_mem_exclusive)) < 0)
  1348. return err;
  1349. if ((err = cgroup_add_file(cont, ss, &cft_memory_migrate)) < 0)
  1350. return err;
  1351. if ((err = cgroup_add_file(cont, ss, &cft_sched_load_balance)) < 0)
  1352. return err;
  1353. if ((err = cgroup_add_file(cont, ss,
  1354. &cft_sched_relax_domain_level)) < 0)
  1355. return err;
  1356. if ((err = cgroup_add_file(cont, ss, &cft_memory_pressure)) < 0)
  1357. return err;
  1358. if ((err = cgroup_add_file(cont, ss, &cft_spread_page)) < 0)
  1359. return err;
  1360. if ((err = cgroup_add_file(cont, ss, &cft_spread_slab)) < 0)
  1361. return err;
  1362. /* memory_pressure_enabled is in root cpuset only */
  1363. if (err == 0 && !cont->parent)
  1364. err = cgroup_add_file(cont, ss,
  1365. &cft_memory_pressure_enabled);
  1366. return 0;
  1367. }
  1368. /*
  1369. * post_clone() is called at the end of cgroup_clone().
  1370. * 'cgroup' was just created automatically as a result of
  1371. * a cgroup_clone(), and the current task is about to
  1372. * be moved into 'cgroup'.
  1373. *
  1374. * Currently we refuse to set up the cgroup - thereby
  1375. * refusing the task to be entered, and as a result refusing
  1376. * the sys_unshare() or clone() which initiated it - if any
  1377. * sibling cpusets have exclusive cpus or mem.
  1378. *
  1379. * If this becomes a problem for some users who wish to
  1380. * allow that scenario, then cpuset_post_clone() could be
  1381. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1382. * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
  1383. * held.
  1384. */
  1385. static void cpuset_post_clone(struct cgroup_subsys *ss,
  1386. struct cgroup *cgroup)
  1387. {
  1388. struct cgroup *parent, *child;
  1389. struct cpuset *cs, *parent_cs;
  1390. parent = cgroup->parent;
  1391. list_for_each_entry(child, &parent->children, sibling) {
  1392. cs = cgroup_cs(child);
  1393. if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
  1394. return;
  1395. }
  1396. cs = cgroup_cs(cgroup);
  1397. parent_cs = cgroup_cs(parent);
  1398. cs->mems_allowed = parent_cs->mems_allowed;
  1399. cs->cpus_allowed = parent_cs->cpus_allowed;
  1400. return;
  1401. }
  1402. /*
  1403. * cpuset_create - create a cpuset
  1404. * ss: cpuset cgroup subsystem
  1405. * cont: control group that the new cpuset will be part of
  1406. */
  1407. static struct cgroup_subsys_state *cpuset_create(
  1408. struct cgroup_subsys *ss,
  1409. struct cgroup *cont)
  1410. {
  1411. struct cpuset *cs;
  1412. struct cpuset *parent;
  1413. if (!cont->parent) {
  1414. /* This is early initialization for the top cgroup */
  1415. top_cpuset.mems_generation = cpuset_mems_generation++;
  1416. return &top_cpuset.css;
  1417. }
  1418. parent = cgroup_cs(cont->parent);
  1419. cs = kmalloc(sizeof(*cs), GFP_KERNEL);
  1420. if (!cs)
  1421. return ERR_PTR(-ENOMEM);
  1422. cpuset_update_task_memory_state();
  1423. cs->flags = 0;
  1424. if (is_spread_page(parent))
  1425. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1426. if (is_spread_slab(parent))
  1427. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1428. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1429. cpus_clear(cs->cpus_allowed);
  1430. nodes_clear(cs->mems_allowed);
  1431. cs->mems_generation = cpuset_mems_generation++;
  1432. fmeter_init(&cs->fmeter);
  1433. cs->relax_domain_level = -1;
  1434. cs->parent = parent;
  1435. number_of_cpusets++;
  1436. return &cs->css ;
  1437. }
  1438. /*
  1439. * Locking note on the strange update_flag() call below:
  1440. *
  1441. * If the cpuset being removed has its flag 'sched_load_balance'
  1442. * enabled, then simulate turning sched_load_balance off, which
  1443. * will call rebuild_sched_domains(). The get_online_cpus()
  1444. * call in rebuild_sched_domains() must not be made while holding
  1445. * callback_mutex. Elsewhere the kernel nests callback_mutex inside
  1446. * get_online_cpus() calls. So the reverse nesting would risk an
  1447. * ABBA deadlock.
  1448. */
  1449. static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  1450. {
  1451. struct cpuset *cs = cgroup_cs(cont);
  1452. cpuset_update_task_memory_state();
  1453. if (is_sched_load_balance(cs))
  1454. update_flag(CS_SCHED_LOAD_BALANCE, cs, "0");
  1455. number_of_cpusets--;
  1456. kfree(cs);
  1457. }
  1458. struct cgroup_subsys cpuset_subsys = {
  1459. .name = "cpuset",
  1460. .create = cpuset_create,
  1461. .destroy = cpuset_destroy,
  1462. .can_attach = cpuset_can_attach,
  1463. .attach = cpuset_attach,
  1464. .populate = cpuset_populate,
  1465. .post_clone = cpuset_post_clone,
  1466. .subsys_id = cpuset_subsys_id,
  1467. .early_init = 1,
  1468. };
  1469. /*
  1470. * cpuset_init_early - just enough so that the calls to
  1471. * cpuset_update_task_memory_state() in early init code
  1472. * are harmless.
  1473. */
  1474. int __init cpuset_init_early(void)
  1475. {
  1476. top_cpuset.mems_generation = cpuset_mems_generation++;
  1477. return 0;
  1478. }
  1479. /**
  1480. * cpuset_init - initialize cpusets at system boot
  1481. *
  1482. * Description: Initialize top_cpuset and the cpuset internal file system,
  1483. **/
  1484. int __init cpuset_init(void)
  1485. {
  1486. int err = 0;
  1487. cpus_setall(top_cpuset.cpus_allowed);
  1488. nodes_setall(top_cpuset.mems_allowed);
  1489. fmeter_init(&top_cpuset.fmeter);
  1490. top_cpuset.mems_generation = cpuset_mems_generation++;
  1491. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1492. top_cpuset.relax_domain_level = -1;
  1493. err = register_filesystem(&cpuset_fs_type);
  1494. if (err < 0)
  1495. return err;
  1496. number_of_cpusets = 1;
  1497. return 0;
  1498. }
  1499. /**
  1500. * cpuset_do_move_task - move a given task to another cpuset
  1501. * @tsk: pointer to task_struct the task to move
  1502. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  1503. *
  1504. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1505. * Return nonzero to stop the walk through the tasks.
  1506. */
  1507. void cpuset_do_move_task(struct task_struct *tsk, struct cgroup_scanner *scan)
  1508. {
  1509. struct cpuset_hotplug_scanner *chsp;
  1510. chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
  1511. cgroup_attach_task(chsp->to, tsk);
  1512. }
  1513. /**
  1514. * move_member_tasks_to_cpuset - move tasks from one cpuset to another
  1515. * @from: cpuset in which the tasks currently reside
  1516. * @to: cpuset to which the tasks will be moved
  1517. *
  1518. * Called with cgroup_mutex held
  1519. * callback_mutex must not be held, as cpuset_attach() will take it.
  1520. *
  1521. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1522. * calling callback functions for each.
  1523. */
  1524. static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
  1525. {
  1526. struct cpuset_hotplug_scanner scan;
  1527. scan.scan.cg = from->css.cgroup;
  1528. scan.scan.test_task = NULL; /* select all tasks in cgroup */
  1529. scan.scan.process_task = cpuset_do_move_task;
  1530. scan.scan.heap = NULL;
  1531. scan.to = to->css.cgroup;
  1532. if (cgroup_scan_tasks((struct cgroup_scanner *)&scan))
  1533. printk(KERN_ERR "move_member_tasks_to_cpuset: "
  1534. "cgroup_scan_tasks failed\n");
  1535. }
  1536. /*
  1537. * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
  1538. * or memory nodes, we need to walk over the cpuset hierarchy,
  1539. * removing that CPU or node from all cpusets. If this removes the
  1540. * last CPU or node from a cpuset, then move the tasks in the empty
  1541. * cpuset to its next-highest non-empty parent.
  1542. *
  1543. * Called with cgroup_mutex held
  1544. * callback_mutex must not be held, as cpuset_attach() will take it.
  1545. */
  1546. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1547. {
  1548. struct cpuset *parent;
  1549. /*
  1550. * The cgroup's css_sets list is in use if there are tasks
  1551. * in the cpuset; the list is empty if there are none;
  1552. * the cs->css.refcnt seems always 0.
  1553. */
  1554. if (list_empty(&cs->css.cgroup->css_sets))
  1555. return;
  1556. /*
  1557. * Find its next-highest non-empty parent, (top cpuset
  1558. * has online cpus, so can't be empty).
  1559. */
  1560. parent = cs->parent;
  1561. while (cpus_empty(parent->cpus_allowed) ||
  1562. nodes_empty(parent->mems_allowed))
  1563. parent = parent->parent;
  1564. move_member_tasks_to_cpuset(cs, parent);
  1565. }
  1566. /*
  1567. * Walk the specified cpuset subtree and look for empty cpusets.
  1568. * The tasks of such cpuset must be moved to a parent cpuset.
  1569. *
  1570. * Called with cgroup_mutex held. We take callback_mutex to modify
  1571. * cpus_allowed and mems_allowed.
  1572. *
  1573. * This walk processes the tree from top to bottom, completing one layer
  1574. * before dropping down to the next. It always processes a node before
  1575. * any of its children.
  1576. *
  1577. * For now, since we lack memory hot unplug, we'll never see a cpuset
  1578. * that has tasks along with an empty 'mems'. But if we did see such
  1579. * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
  1580. */
  1581. static void scan_for_empty_cpusets(const struct cpuset *root)
  1582. {
  1583. struct cpuset *cp; /* scans cpusets being updated */
  1584. struct cpuset *child; /* scans child cpusets of cp */
  1585. struct list_head queue;
  1586. struct cgroup *cont;
  1587. INIT_LIST_HEAD(&queue);
  1588. list_add_tail((struct list_head *)&root->stack_list, &queue);
  1589. while (!list_empty(&queue)) {
  1590. cp = container_of(queue.next, struct cpuset, stack_list);
  1591. list_del(queue.next);
  1592. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  1593. child = cgroup_cs(cont);
  1594. list_add_tail(&child->stack_list, &queue);
  1595. }
  1596. cont = cp->css.cgroup;
  1597. /* Continue past cpusets with all cpus, mems online */
  1598. if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
  1599. nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
  1600. continue;
  1601. /* Remove offline cpus and mems from this cpuset. */
  1602. mutex_lock(&callback_mutex);
  1603. cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
  1604. nodes_and(cp->mems_allowed, cp->mems_allowed,
  1605. node_states[N_HIGH_MEMORY]);
  1606. mutex_unlock(&callback_mutex);
  1607. /* Move tasks from the empty cpuset to a parent */
  1608. if (cpus_empty(cp->cpus_allowed) ||
  1609. nodes_empty(cp->mems_allowed))
  1610. remove_tasks_in_empty_cpuset(cp);
  1611. }
  1612. }
  1613. /*
  1614. * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
  1615. * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
  1616. * track what's online after any CPU or memory node hotplug or unplug event.
  1617. *
  1618. * Since there are two callers of this routine, one for CPU hotplug
  1619. * events and one for memory node hotplug events, we could have coded
  1620. * two separate routines here. We code it as a single common routine
  1621. * in order to minimize text size.
  1622. */
  1623. static void common_cpu_mem_hotplug_unplug(void)
  1624. {
  1625. cgroup_lock();
  1626. top_cpuset.cpus_allowed = cpu_online_map;
  1627. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1628. scan_for_empty_cpusets(&top_cpuset);
  1629. cgroup_unlock();
  1630. }
  1631. /*
  1632. * The top_cpuset tracks what CPUs and Memory Nodes are online,
  1633. * period. This is necessary in order to make cpusets transparent
  1634. * (of no affect) on systems that are actively using CPU hotplug
  1635. * but making no active use of cpusets.
  1636. *
  1637. * This routine ensures that top_cpuset.cpus_allowed tracks
  1638. * cpu_online_map on each CPU hotplug (cpuhp) event.
  1639. */
  1640. static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
  1641. unsigned long phase, void *unused_cpu)
  1642. {
  1643. if (phase == CPU_DYING || phase == CPU_DYING_FROZEN)
  1644. return NOTIFY_DONE;
  1645. common_cpu_mem_hotplug_unplug();
  1646. return 0;
  1647. }
  1648. #ifdef CONFIG_MEMORY_HOTPLUG
  1649. /*
  1650. * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
  1651. * Call this routine anytime after you change
  1652. * node_states[N_HIGH_MEMORY].
  1653. * See also the previous routine cpuset_handle_cpuhp().
  1654. */
  1655. void cpuset_track_online_nodes(void)
  1656. {
  1657. common_cpu_mem_hotplug_unplug();
  1658. }
  1659. #endif
  1660. /**
  1661. * cpuset_init_smp - initialize cpus_allowed
  1662. *
  1663. * Description: Finish top cpuset after cpu, node maps are initialized
  1664. **/
  1665. void __init cpuset_init_smp(void)
  1666. {
  1667. top_cpuset.cpus_allowed = cpu_online_map;
  1668. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1669. hotcpu_notifier(cpuset_handle_cpuhp, 0);
  1670. }
  1671. /**
  1672. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1673. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1674. * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
  1675. *
  1676. * Description: Returns the cpumask_t cpus_allowed of the cpuset
  1677. * attached to the specified @tsk. Guaranteed to return some non-empty
  1678. * subset of cpu_online_map, even if this means going outside the
  1679. * tasks cpuset.
  1680. **/
  1681. void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
  1682. {
  1683. mutex_lock(&callback_mutex);
  1684. cpuset_cpus_allowed_locked(tsk, pmask);
  1685. mutex_unlock(&callback_mutex);
  1686. }
  1687. /**
  1688. * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
  1689. * Must be called with callback_mutex held.
  1690. **/
  1691. void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
  1692. {
  1693. task_lock(tsk);
  1694. guarantee_online_cpus(task_cs(tsk), pmask);
  1695. task_unlock(tsk);
  1696. }
  1697. void cpuset_init_current_mems_allowed(void)
  1698. {
  1699. nodes_setall(current->mems_allowed);
  1700. }
  1701. /**
  1702. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  1703. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  1704. *
  1705. * Description: Returns the nodemask_t mems_allowed of the cpuset
  1706. * attached to the specified @tsk. Guaranteed to return some non-empty
  1707. * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
  1708. * tasks cpuset.
  1709. **/
  1710. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  1711. {
  1712. nodemask_t mask;
  1713. mutex_lock(&callback_mutex);
  1714. task_lock(tsk);
  1715. guarantee_online_mems(task_cs(tsk), &mask);
  1716. task_unlock(tsk);
  1717. mutex_unlock(&callback_mutex);
  1718. return mask;
  1719. }
  1720. /**
  1721. * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
  1722. * @zl: the zonelist to be checked
  1723. *
  1724. * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
  1725. */
  1726. int cpuset_zonelist_valid_mems_allowed(struct zonelist *zl)
  1727. {
  1728. int i;
  1729. for (i = 0; zl->zones[i]; i++) {
  1730. int nid = zone_to_nid(zl->zones[i]);
  1731. if (node_isset(nid, current->mems_allowed))
  1732. return 1;
  1733. }
  1734. return 0;
  1735. }
  1736. /*
  1737. * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
  1738. * ancestor to the specified cpuset. Call holding callback_mutex.
  1739. * If no ancestor is mem_exclusive (an unusual configuration), then
  1740. * returns the root cpuset.
  1741. */
  1742. static const struct cpuset *nearest_exclusive_ancestor(const struct cpuset *cs)
  1743. {
  1744. while (!is_mem_exclusive(cs) && cs->parent)
  1745. cs = cs->parent;
  1746. return cs;
  1747. }
  1748. /**
  1749. * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
  1750. * @z: is this zone on an allowed node?
  1751. * @gfp_mask: memory allocation flags
  1752. *
  1753. * If we're in interrupt, yes, we can always allocate. If
  1754. * __GFP_THISNODE is set, yes, we can always allocate. If zone
  1755. * z's node is in our tasks mems_allowed, yes. If it's not a
  1756. * __GFP_HARDWALL request and this zone's nodes is in the nearest
  1757. * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
  1758. * If the task has been OOM killed and has access to memory reserves
  1759. * as specified by the TIF_MEMDIE flag, yes.
  1760. * Otherwise, no.
  1761. *
  1762. * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
  1763. * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
  1764. * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
  1765. * from an enclosing cpuset.
  1766. *
  1767. * cpuset_zone_allowed_hardwall() only handles the simpler case of
  1768. * hardwall cpusets, and never sleeps.
  1769. *
  1770. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1771. * by forcibly using a zonelist starting at a specified node, and by
  1772. * (in get_page_from_freelist()) refusing to consider the zones for
  1773. * any node on the zonelist except the first. By the time any such
  1774. * calls get to this routine, we should just shut up and say 'yes'.
  1775. *
  1776. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  1777. * and do not allow allocations outside the current tasks cpuset
  1778. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  1779. * GFP_KERNEL allocations are not so marked, so can escape to the
  1780. * nearest enclosing mem_exclusive ancestor cpuset.
  1781. *
  1782. * Scanning up parent cpusets requires callback_mutex. The
  1783. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  1784. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  1785. * current tasks mems_allowed came up empty on the first pass over
  1786. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  1787. * cpuset are short of memory, might require taking the callback_mutex
  1788. * mutex.
  1789. *
  1790. * The first call here from mm/page_alloc:get_page_from_freelist()
  1791. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  1792. * so no allocation on a node outside the cpuset is allowed (unless
  1793. * in interrupt, of course).
  1794. *
  1795. * The second pass through get_page_from_freelist() doesn't even call
  1796. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  1797. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  1798. * in alloc_flags. That logic and the checks below have the combined
  1799. * affect that:
  1800. * in_interrupt - any node ok (current task context irrelevant)
  1801. * GFP_ATOMIC - any node ok
  1802. * TIF_MEMDIE - any node ok
  1803. * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
  1804. * GFP_USER - only nodes in current tasks mems allowed ok.
  1805. *
  1806. * Rule:
  1807. * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
  1808. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  1809. * the code that might scan up ancestor cpusets and sleep.
  1810. */
  1811. int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
  1812. {
  1813. int node; /* node that zone z is on */
  1814. const struct cpuset *cs; /* current cpuset ancestors */
  1815. int allowed; /* is allocation in zone z allowed? */
  1816. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1817. return 1;
  1818. node = zone_to_nid(z);
  1819. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  1820. if (node_isset(node, current->mems_allowed))
  1821. return 1;
  1822. /*
  1823. * Allow tasks that have access to memory reserves because they have
  1824. * been OOM killed to get memory anywhere.
  1825. */
  1826. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  1827. return 1;
  1828. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  1829. return 0;
  1830. if (current->flags & PF_EXITING) /* Let dying task have memory */
  1831. return 1;
  1832. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  1833. mutex_lock(&callback_mutex);
  1834. task_lock(current);
  1835. cs = nearest_exclusive_ancestor(task_cs(current));
  1836. task_unlock(current);
  1837. allowed = node_isset(node, cs->mems_allowed);
  1838. mutex_unlock(&callback_mutex);
  1839. return allowed;
  1840. }
  1841. /*
  1842. * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
  1843. * @z: is this zone on an allowed node?
  1844. * @gfp_mask: memory allocation flags
  1845. *
  1846. * If we're in interrupt, yes, we can always allocate.
  1847. * If __GFP_THISNODE is set, yes, we can always allocate. If zone
  1848. * z's node is in our tasks mems_allowed, yes. If the task has been
  1849. * OOM killed and has access to memory reserves as specified by the
  1850. * TIF_MEMDIE flag, yes. Otherwise, no.
  1851. *
  1852. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1853. * by forcibly using a zonelist starting at a specified node, and by
  1854. * (in get_page_from_freelist()) refusing to consider the zones for
  1855. * any node on the zonelist except the first. By the time any such
  1856. * calls get to this routine, we should just shut up and say 'yes'.
  1857. *
  1858. * Unlike the cpuset_zone_allowed_softwall() variant, above,
  1859. * this variant requires that the zone be in the current tasks
  1860. * mems_allowed or that we're in interrupt. It does not scan up the
  1861. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  1862. * It never sleeps.
  1863. */
  1864. int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
  1865. {
  1866. int node; /* node that zone z is on */
  1867. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1868. return 1;
  1869. node = zone_to_nid(z);
  1870. if (node_isset(node, current->mems_allowed))
  1871. return 1;
  1872. /*
  1873. * Allow tasks that have access to memory reserves because they have
  1874. * been OOM killed to get memory anywhere.
  1875. */
  1876. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  1877. return 1;
  1878. return 0;
  1879. }
  1880. /**
  1881. * cpuset_lock - lock out any changes to cpuset structures
  1882. *
  1883. * The out of memory (oom) code needs to mutex_lock cpusets
  1884. * from being changed while it scans the tasklist looking for a
  1885. * task in an overlapping cpuset. Expose callback_mutex via this
  1886. * cpuset_lock() routine, so the oom code can lock it, before
  1887. * locking the task list. The tasklist_lock is a spinlock, so
  1888. * must be taken inside callback_mutex.
  1889. */
  1890. void cpuset_lock(void)
  1891. {
  1892. mutex_lock(&callback_mutex);
  1893. }
  1894. /**
  1895. * cpuset_unlock - release lock on cpuset changes
  1896. *
  1897. * Undo the lock taken in a previous cpuset_lock() call.
  1898. */
  1899. void cpuset_unlock(void)
  1900. {
  1901. mutex_unlock(&callback_mutex);
  1902. }
  1903. /**
  1904. * cpuset_mem_spread_node() - On which node to begin search for a page
  1905. *
  1906. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  1907. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  1908. * and if the memory allocation used cpuset_mem_spread_node()
  1909. * to determine on which node to start looking, as it will for
  1910. * certain page cache or slab cache pages such as used for file
  1911. * system buffers and inode caches, then instead of starting on the
  1912. * local node to look for a free page, rather spread the starting
  1913. * node around the tasks mems_allowed nodes.
  1914. *
  1915. * We don't have to worry about the returned node being offline
  1916. * because "it can't happen", and even if it did, it would be ok.
  1917. *
  1918. * The routines calling guarantee_online_mems() are careful to
  1919. * only set nodes in task->mems_allowed that are online. So it
  1920. * should not be possible for the following code to return an
  1921. * offline node. But if it did, that would be ok, as this routine
  1922. * is not returning the node where the allocation must be, only
  1923. * the node where the search should start. The zonelist passed to
  1924. * __alloc_pages() will include all nodes. If the slab allocator
  1925. * is passed an offline node, it will fall back to the local node.
  1926. * See kmem_cache_alloc_node().
  1927. */
  1928. int cpuset_mem_spread_node(void)
  1929. {
  1930. int node;
  1931. node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
  1932. if (node == MAX_NUMNODES)
  1933. node = first_node(current->mems_allowed);
  1934. current->cpuset_mem_spread_rotor = node;
  1935. return node;
  1936. }
  1937. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  1938. /**
  1939. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  1940. * @tsk1: pointer to task_struct of some task.
  1941. * @tsk2: pointer to task_struct of some other task.
  1942. *
  1943. * Description: Return true if @tsk1's mems_allowed intersects the
  1944. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  1945. * one of the task's memory usage might impact the memory available
  1946. * to the other.
  1947. **/
  1948. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  1949. const struct task_struct *tsk2)
  1950. {
  1951. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  1952. }
  1953. /*
  1954. * Collection of memory_pressure is suppressed unless
  1955. * this flag is enabled by writing "1" to the special
  1956. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  1957. */
  1958. int cpuset_memory_pressure_enabled __read_mostly;
  1959. /**
  1960. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  1961. *
  1962. * Keep a running average of the rate of synchronous (direct)
  1963. * page reclaim efforts initiated by tasks in each cpuset.
  1964. *
  1965. * This represents the rate at which some task in the cpuset
  1966. * ran low on memory on all nodes it was allowed to use, and
  1967. * had to enter the kernels page reclaim code in an effort to
  1968. * create more free memory by tossing clean pages or swapping
  1969. * or writing dirty pages.
  1970. *
  1971. * Display to user space in the per-cpuset read-only file
  1972. * "memory_pressure". Value displayed is an integer
  1973. * representing the recent rate of entry into the synchronous
  1974. * (direct) page reclaim by any task attached to the cpuset.
  1975. **/
  1976. void __cpuset_memory_pressure_bump(void)
  1977. {
  1978. task_lock(current);
  1979. fmeter_markevent(&task_cs(current)->fmeter);
  1980. task_unlock(current);
  1981. }
  1982. #ifdef CONFIG_PROC_PID_CPUSET
  1983. /*
  1984. * proc_cpuset_show()
  1985. * - Print tasks cpuset path into seq_file.
  1986. * - Used for /proc/<pid>/cpuset.
  1987. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  1988. * doesn't really matter if tsk->cpuset changes after we read it,
  1989. * and we take cgroup_mutex, keeping cpuset_attach() from changing it
  1990. * anyway.
  1991. */
  1992. static int proc_cpuset_show(struct seq_file *m, void *unused_v)
  1993. {
  1994. struct pid *pid;
  1995. struct task_struct *tsk;
  1996. char *buf;
  1997. struct cgroup_subsys_state *css;
  1998. int retval;
  1999. retval = -ENOMEM;
  2000. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2001. if (!buf)
  2002. goto out;
  2003. retval = -ESRCH;
  2004. pid = m->private;
  2005. tsk = get_pid_task(pid, PIDTYPE_PID);
  2006. if (!tsk)
  2007. goto out_free;
  2008. retval = -EINVAL;
  2009. cgroup_lock();
  2010. css = task_subsys_state(tsk, cpuset_subsys_id);
  2011. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2012. if (retval < 0)
  2013. goto out_unlock;
  2014. seq_puts(m, buf);
  2015. seq_putc(m, '\n');
  2016. out_unlock:
  2017. cgroup_unlock();
  2018. put_task_struct(tsk);
  2019. out_free:
  2020. kfree(buf);
  2021. out:
  2022. return retval;
  2023. }
  2024. static int cpuset_open(struct inode *inode, struct file *file)
  2025. {
  2026. struct pid *pid = PROC_I(inode)->pid;
  2027. return single_open(file, proc_cpuset_show, pid);
  2028. }
  2029. const struct file_operations proc_cpuset_operations = {
  2030. .open = cpuset_open,
  2031. .read = seq_read,
  2032. .llseek = seq_lseek,
  2033. .release = single_release,
  2034. };
  2035. #endif /* CONFIG_PROC_PID_CPUSET */
  2036. /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
  2037. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2038. {
  2039. seq_printf(m, "Cpus_allowed:\t");
  2040. m->count += cpumask_scnprintf(m->buf + m->count, m->size - m->count,
  2041. task->cpus_allowed);
  2042. seq_printf(m, "\n");
  2043. seq_printf(m, "Cpus_allowed_list:\t");
  2044. m->count += cpulist_scnprintf(m->buf + m->count, m->size - m->count,
  2045. task->cpus_allowed);
  2046. seq_printf(m, "\n");
  2047. seq_printf(m, "Mems_allowed:\t");
  2048. m->count += nodemask_scnprintf(m->buf + m->count, m->size - m->count,
  2049. task->mems_allowed);
  2050. seq_printf(m, "\n");
  2051. seq_printf(m, "Mems_allowed_list:\t");
  2052. m->count += nodelist_scnprintf(m->buf + m->count, m->size - m->count,
  2053. task->mems_allowed);
  2054. seq_printf(m, "\n");
  2055. }