pgtable.h 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
  1. /*
  2. * include/asm-s390/pgtable.h
  3. *
  4. * S390 version
  5. * Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
  6. * Author(s): Hartmut Penner (hp@de.ibm.com)
  7. * Ulrich Weigand (weigand@de.ibm.com)
  8. * Martin Schwidefsky (schwidefsky@de.ibm.com)
  9. *
  10. * Derived from "include/asm-i386/pgtable.h"
  11. */
  12. #ifndef _ASM_S390_PGTABLE_H
  13. #define _ASM_S390_PGTABLE_H
  14. /*
  15. * The Linux memory management assumes a three-level page table setup. For
  16. * s390 31 bit we "fold" the mid level into the top-level page table, so
  17. * that we physically have the same two-level page table as the s390 mmu
  18. * expects in 31 bit mode. For s390 64 bit we use three of the five levels
  19. * the hardware provides (region first and region second tables are not
  20. * used).
  21. *
  22. * The "pgd_xxx()" functions are trivial for a folded two-level
  23. * setup: the pgd is never bad, and a pmd always exists (as it's folded
  24. * into the pgd entry)
  25. *
  26. * This file contains the functions and defines necessary to modify and use
  27. * the S390 page table tree.
  28. */
  29. #ifndef __ASSEMBLY__
  30. #include <linux/mm_types.h>
  31. #include <asm/bug.h>
  32. #include <asm/processor.h>
  33. extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
  34. extern void paging_init(void);
  35. extern void vmem_map_init(void);
  36. /*
  37. * The S390 doesn't have any external MMU info: the kernel page
  38. * tables contain all the necessary information.
  39. */
  40. #define update_mmu_cache(vma, address, pte) do { } while (0)
  41. /*
  42. * ZERO_PAGE is a global shared page that is always zero: used
  43. * for zero-mapped memory areas etc..
  44. */
  45. extern char empty_zero_page[PAGE_SIZE];
  46. #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
  47. #endif /* !__ASSEMBLY__ */
  48. /*
  49. * PMD_SHIFT determines the size of the area a second-level page
  50. * table can map
  51. * PGDIR_SHIFT determines what a third-level page table entry can map
  52. */
  53. #ifndef __s390x__
  54. # define PMD_SHIFT 20
  55. # define PUD_SHIFT 20
  56. # define PGDIR_SHIFT 20
  57. #else /* __s390x__ */
  58. # define PMD_SHIFT 20
  59. # define PUD_SHIFT 31
  60. # define PGDIR_SHIFT 42
  61. #endif /* __s390x__ */
  62. #define PMD_SIZE (1UL << PMD_SHIFT)
  63. #define PMD_MASK (~(PMD_SIZE-1))
  64. #define PUD_SIZE (1UL << PUD_SHIFT)
  65. #define PUD_MASK (~(PUD_SIZE-1))
  66. #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
  67. #define PGDIR_MASK (~(PGDIR_SIZE-1))
  68. /*
  69. * entries per page directory level: the S390 is two-level, so
  70. * we don't really have any PMD directory physically.
  71. * for S390 segment-table entries are combined to one PGD
  72. * that leads to 1024 pte per pgd
  73. */
  74. #define PTRS_PER_PTE 256
  75. #ifndef __s390x__
  76. #define PTRS_PER_PMD 1
  77. #define PTRS_PER_PUD 1
  78. #else /* __s390x__ */
  79. #define PTRS_PER_PMD 2048
  80. #define PTRS_PER_PUD 2048
  81. #endif /* __s390x__ */
  82. #define PTRS_PER_PGD 2048
  83. #define FIRST_USER_ADDRESS 0
  84. #define pte_ERROR(e) \
  85. printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
  86. #define pmd_ERROR(e) \
  87. printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
  88. #define pud_ERROR(e) \
  89. printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
  90. #define pgd_ERROR(e) \
  91. printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
  92. #ifndef __ASSEMBLY__
  93. /*
  94. * The vmalloc area will always be on the topmost area of the kernel
  95. * mapping. We reserve 96MB (31bit) / 1GB (64bit) for vmalloc,
  96. * which should be enough for any sane case.
  97. * By putting vmalloc at the top, we maximise the gap between physical
  98. * memory and vmalloc to catch misplaced memory accesses. As a side
  99. * effect, this also makes sure that 64 bit module code cannot be used
  100. * as system call address.
  101. */
  102. #ifndef __s390x__
  103. #define VMALLOC_START 0x78000000UL
  104. #define VMALLOC_END 0x7e000000UL
  105. #define VMEM_MAP_END 0x80000000UL
  106. #else /* __s390x__ */
  107. #define VMALLOC_START 0x3e000000000UL
  108. #define VMALLOC_END 0x3e040000000UL
  109. #define VMEM_MAP_END 0x40000000000UL
  110. #endif /* __s390x__ */
  111. /*
  112. * VMEM_MAX_PHYS is the highest physical address that can be added to the 1:1
  113. * mapping. This needs to be calculated at compile time since the size of the
  114. * VMEM_MAP is static but the size of struct page can change.
  115. */
  116. #define VMEM_MAX_PAGES ((VMEM_MAP_END - VMALLOC_END) / sizeof(struct page))
  117. #define VMEM_MAX_PFN min(VMALLOC_START >> PAGE_SHIFT, VMEM_MAX_PAGES)
  118. #define VMEM_MAX_PHYS ((VMEM_MAX_PFN << PAGE_SHIFT) & ~((16 << 20) - 1))
  119. #define VMEM_MAP ((struct page *) VMALLOC_END)
  120. /*
  121. * A 31 bit pagetable entry of S390 has following format:
  122. * | PFRA | | OS |
  123. * 0 0IP0
  124. * 00000000001111111111222222222233
  125. * 01234567890123456789012345678901
  126. *
  127. * I Page-Invalid Bit: Page is not available for address-translation
  128. * P Page-Protection Bit: Store access not possible for page
  129. *
  130. * A 31 bit segmenttable entry of S390 has following format:
  131. * | P-table origin | |PTL
  132. * 0 IC
  133. * 00000000001111111111222222222233
  134. * 01234567890123456789012345678901
  135. *
  136. * I Segment-Invalid Bit: Segment is not available for address-translation
  137. * C Common-Segment Bit: Segment is not private (PoP 3-30)
  138. * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
  139. *
  140. * The 31 bit segmenttable origin of S390 has following format:
  141. *
  142. * |S-table origin | | STL |
  143. * X **GPS
  144. * 00000000001111111111222222222233
  145. * 01234567890123456789012345678901
  146. *
  147. * X Space-Switch event:
  148. * G Segment-Invalid Bit: *
  149. * P Private-Space Bit: Segment is not private (PoP 3-30)
  150. * S Storage-Alteration:
  151. * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
  152. *
  153. * A 64 bit pagetable entry of S390 has following format:
  154. * | PFRA |0IP0| OS |
  155. * 0000000000111111111122222222223333333333444444444455555555556666
  156. * 0123456789012345678901234567890123456789012345678901234567890123
  157. *
  158. * I Page-Invalid Bit: Page is not available for address-translation
  159. * P Page-Protection Bit: Store access not possible for page
  160. *
  161. * A 64 bit segmenttable entry of S390 has following format:
  162. * | P-table origin | TT
  163. * 0000000000111111111122222222223333333333444444444455555555556666
  164. * 0123456789012345678901234567890123456789012345678901234567890123
  165. *
  166. * I Segment-Invalid Bit: Segment is not available for address-translation
  167. * C Common-Segment Bit: Segment is not private (PoP 3-30)
  168. * P Page-Protection Bit: Store access not possible for page
  169. * TT Type 00
  170. *
  171. * A 64 bit region table entry of S390 has following format:
  172. * | S-table origin | TF TTTL
  173. * 0000000000111111111122222222223333333333444444444455555555556666
  174. * 0123456789012345678901234567890123456789012345678901234567890123
  175. *
  176. * I Segment-Invalid Bit: Segment is not available for address-translation
  177. * TT Type 01
  178. * TF
  179. * TL Table length
  180. *
  181. * The 64 bit regiontable origin of S390 has following format:
  182. * | region table origon | DTTL
  183. * 0000000000111111111122222222223333333333444444444455555555556666
  184. * 0123456789012345678901234567890123456789012345678901234567890123
  185. *
  186. * X Space-Switch event:
  187. * G Segment-Invalid Bit:
  188. * P Private-Space Bit:
  189. * S Storage-Alteration:
  190. * R Real space
  191. * TL Table-Length:
  192. *
  193. * A storage key has the following format:
  194. * | ACC |F|R|C|0|
  195. * 0 3 4 5 6 7
  196. * ACC: access key
  197. * F : fetch protection bit
  198. * R : referenced bit
  199. * C : changed bit
  200. */
  201. /* Hardware bits in the page table entry */
  202. #define _PAGE_RO 0x200 /* HW read-only bit */
  203. #define _PAGE_INVALID 0x400 /* HW invalid bit */
  204. /* Software bits in the page table entry */
  205. #define _PAGE_SWT 0x001 /* SW pte type bit t */
  206. #define _PAGE_SWX 0x002 /* SW pte type bit x */
  207. /* Six different types of pages. */
  208. #define _PAGE_TYPE_EMPTY 0x400
  209. #define _PAGE_TYPE_NONE 0x401
  210. #define _PAGE_TYPE_SWAP 0x403
  211. #define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
  212. #define _PAGE_TYPE_RO 0x200
  213. #define _PAGE_TYPE_RW 0x000
  214. #define _PAGE_TYPE_EX_RO 0x202
  215. #define _PAGE_TYPE_EX_RW 0x002
  216. /*
  217. * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
  218. * pte_none and pte_file to find out the pte type WITHOUT holding the page
  219. * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
  220. * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
  221. * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
  222. * This change is done while holding the lock, but the intermediate step
  223. * of a previously valid pte with the hw invalid bit set can be observed by
  224. * handle_pte_fault. That makes it necessary that all valid pte types with
  225. * the hw invalid bit set must be distinguishable from the four pte types
  226. * empty, none, swap and file.
  227. *
  228. * irxt ipte irxt
  229. * _PAGE_TYPE_EMPTY 1000 -> 1000
  230. * _PAGE_TYPE_NONE 1001 -> 1001
  231. * _PAGE_TYPE_SWAP 1011 -> 1011
  232. * _PAGE_TYPE_FILE 11?1 -> 11?1
  233. * _PAGE_TYPE_RO 0100 -> 1100
  234. * _PAGE_TYPE_RW 0000 -> 1000
  235. * _PAGE_TYPE_EX_RO 0110 -> 1110
  236. * _PAGE_TYPE_EX_RW 0010 -> 1010
  237. *
  238. * pte_none is true for bits combinations 1000, 1010, 1100, 1110
  239. * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
  240. * pte_file is true for bits combinations 1101, 1111
  241. * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
  242. */
  243. #ifndef __s390x__
  244. /* Bits in the segment table address-space-control-element */
  245. #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
  246. #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
  247. #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
  248. #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
  249. #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
  250. /* Bits in the segment table entry */
  251. #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
  252. #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
  253. #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
  254. #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
  255. #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
  256. #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
  257. #else /* __s390x__ */
  258. /* Bits in the segment/region table address-space-control-element */
  259. #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
  260. #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
  261. #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
  262. #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
  263. #define _ASCE_REAL_SPACE 0x20 /* real space control */
  264. #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
  265. #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
  266. #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
  267. #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
  268. #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
  269. #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
  270. /* Bits in the region table entry */
  271. #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
  272. #define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
  273. #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
  274. #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
  275. #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
  276. #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
  277. #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
  278. #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
  279. #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
  280. #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
  281. #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
  282. #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
  283. #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
  284. /* Bits in the segment table entry */
  285. #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
  286. #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
  287. #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
  288. #define _SEGMENT_ENTRY (0)
  289. #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
  290. #endif /* __s390x__ */
  291. /*
  292. * A user page table pointer has the space-switch-event bit, the
  293. * private-space-control bit and the storage-alteration-event-control
  294. * bit set. A kernel page table pointer doesn't need them.
  295. */
  296. #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
  297. _ASCE_ALT_EVENT)
  298. /* Bits int the storage key */
  299. #define _PAGE_CHANGED 0x02 /* HW changed bit */
  300. #define _PAGE_REFERENCED 0x04 /* HW referenced bit */
  301. /*
  302. * Page protection definitions.
  303. */
  304. #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
  305. #define PAGE_RO __pgprot(_PAGE_TYPE_RO)
  306. #define PAGE_RW __pgprot(_PAGE_TYPE_RW)
  307. #define PAGE_EX_RO __pgprot(_PAGE_TYPE_EX_RO)
  308. #define PAGE_EX_RW __pgprot(_PAGE_TYPE_EX_RW)
  309. #define PAGE_KERNEL PAGE_RW
  310. #define PAGE_COPY PAGE_RO
  311. /*
  312. * Dependent on the EXEC_PROTECT option s390 can do execute protection.
  313. * Write permission always implies read permission. In theory with a
  314. * primary/secondary page table execute only can be implemented but
  315. * it would cost an additional bit in the pte to distinguish all the
  316. * different pte types. To avoid that execute permission currently
  317. * implies read permission as well.
  318. */
  319. /*xwr*/
  320. #define __P000 PAGE_NONE
  321. #define __P001 PAGE_RO
  322. #define __P010 PAGE_RO
  323. #define __P011 PAGE_RO
  324. #define __P100 PAGE_EX_RO
  325. #define __P101 PAGE_EX_RO
  326. #define __P110 PAGE_EX_RO
  327. #define __P111 PAGE_EX_RO
  328. #define __S000 PAGE_NONE
  329. #define __S001 PAGE_RO
  330. #define __S010 PAGE_RW
  331. #define __S011 PAGE_RW
  332. #define __S100 PAGE_EX_RO
  333. #define __S101 PAGE_EX_RO
  334. #define __S110 PAGE_EX_RW
  335. #define __S111 PAGE_EX_RW
  336. #ifndef __s390x__
  337. # define PxD_SHADOW_SHIFT 1
  338. #else /* __s390x__ */
  339. # define PxD_SHADOW_SHIFT 2
  340. #endif /* __s390x__ */
  341. static inline void *get_shadow_table(void *table)
  342. {
  343. unsigned long addr, offset;
  344. struct page *page;
  345. addr = (unsigned long) table;
  346. offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
  347. page = virt_to_page((void *)(addr ^ offset));
  348. return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
  349. }
  350. /*
  351. * Certain architectures need to do special things when PTEs
  352. * within a page table are directly modified. Thus, the following
  353. * hook is made available.
  354. */
  355. static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
  356. pte_t *ptep, pte_t entry)
  357. {
  358. *ptep = entry;
  359. if (mm->context.noexec) {
  360. if (!(pte_val(entry) & _PAGE_INVALID) &&
  361. (pte_val(entry) & _PAGE_SWX))
  362. pte_val(entry) |= _PAGE_RO;
  363. else
  364. pte_val(entry) = _PAGE_TYPE_EMPTY;
  365. ptep[PTRS_PER_PTE] = entry;
  366. }
  367. }
  368. /*
  369. * pgd/pmd/pte query functions
  370. */
  371. #ifndef __s390x__
  372. static inline int pgd_present(pgd_t pgd) { return 1; }
  373. static inline int pgd_none(pgd_t pgd) { return 0; }
  374. static inline int pgd_bad(pgd_t pgd) { return 0; }
  375. static inline int pud_present(pud_t pud) { return 1; }
  376. static inline int pud_none(pud_t pud) { return 0; }
  377. static inline int pud_bad(pud_t pud) { return 0; }
  378. #else /* __s390x__ */
  379. static inline int pgd_present(pgd_t pgd)
  380. {
  381. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
  382. return 1;
  383. return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
  384. }
  385. static inline int pgd_none(pgd_t pgd)
  386. {
  387. if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
  388. return 0;
  389. return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
  390. }
  391. static inline int pgd_bad(pgd_t pgd)
  392. {
  393. /*
  394. * With dynamic page table levels the pgd can be a region table
  395. * entry or a segment table entry. Check for the bit that are
  396. * invalid for either table entry.
  397. */
  398. unsigned long mask =
  399. ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
  400. ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
  401. return (pgd_val(pgd) & mask) != 0;
  402. }
  403. static inline int pud_present(pud_t pud)
  404. {
  405. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  406. return 1;
  407. return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
  408. }
  409. static inline int pud_none(pud_t pud)
  410. {
  411. if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
  412. return 0;
  413. return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
  414. }
  415. static inline int pud_bad(pud_t pud)
  416. {
  417. /*
  418. * With dynamic page table levels the pud can be a region table
  419. * entry or a segment table entry. Check for the bit that are
  420. * invalid for either table entry.
  421. */
  422. unsigned long mask =
  423. ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
  424. ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
  425. return (pud_val(pud) & mask) != 0;
  426. }
  427. #endif /* __s390x__ */
  428. static inline int pmd_present(pmd_t pmd)
  429. {
  430. return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
  431. }
  432. static inline int pmd_none(pmd_t pmd)
  433. {
  434. return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
  435. }
  436. static inline int pmd_bad(pmd_t pmd)
  437. {
  438. unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
  439. return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
  440. }
  441. static inline int pte_none(pte_t pte)
  442. {
  443. return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
  444. }
  445. static inline int pte_present(pte_t pte)
  446. {
  447. unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
  448. return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
  449. (!(pte_val(pte) & _PAGE_INVALID) &&
  450. !(pte_val(pte) & _PAGE_SWT));
  451. }
  452. static inline int pte_file(pte_t pte)
  453. {
  454. unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
  455. return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
  456. }
  457. #define __HAVE_ARCH_PTE_SAME
  458. #define pte_same(a,b) (pte_val(a) == pte_val(b))
  459. /*
  460. * query functions pte_write/pte_dirty/pte_young only work if
  461. * pte_present() is true. Undefined behaviour if not..
  462. */
  463. static inline int pte_write(pte_t pte)
  464. {
  465. return (pte_val(pte) & _PAGE_RO) == 0;
  466. }
  467. static inline int pte_dirty(pte_t pte)
  468. {
  469. /* A pte is neither clean nor dirty on s/390. The dirty bit
  470. * is in the storage key. See page_test_and_clear_dirty for
  471. * details.
  472. */
  473. return 0;
  474. }
  475. static inline int pte_young(pte_t pte)
  476. {
  477. /* A pte is neither young nor old on s/390. The young bit
  478. * is in the storage key. See page_test_and_clear_young for
  479. * details.
  480. */
  481. return 0;
  482. }
  483. /*
  484. * pgd/pmd/pte modification functions
  485. */
  486. #ifndef __s390x__
  487. #define pgd_clear(pgd) do { } while (0)
  488. #define pud_clear(pud) do { } while (0)
  489. #else /* __s390x__ */
  490. static inline void pgd_clear_kernel(pgd_t * pgd)
  491. {
  492. if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  493. pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
  494. }
  495. static inline void pgd_clear(pgd_t * pgd)
  496. {
  497. pgd_t *shadow = get_shadow_table(pgd);
  498. pgd_clear_kernel(pgd);
  499. if (shadow)
  500. pgd_clear_kernel(shadow);
  501. }
  502. static inline void pud_clear_kernel(pud_t *pud)
  503. {
  504. if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  505. pud_val(*pud) = _REGION3_ENTRY_EMPTY;
  506. }
  507. static inline void pud_clear(pud_t *pud)
  508. {
  509. pud_t *shadow = get_shadow_table(pud);
  510. pud_clear_kernel(pud);
  511. if (shadow)
  512. pud_clear_kernel(shadow);
  513. }
  514. #endif /* __s390x__ */
  515. static inline void pmd_clear_kernel(pmd_t * pmdp)
  516. {
  517. pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
  518. }
  519. static inline void pmd_clear(pmd_t *pmd)
  520. {
  521. pmd_t *shadow = get_shadow_table(pmd);
  522. pmd_clear_kernel(pmd);
  523. if (shadow)
  524. pmd_clear_kernel(shadow);
  525. }
  526. static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
  527. {
  528. pte_val(*ptep) = _PAGE_TYPE_EMPTY;
  529. if (mm->context.noexec)
  530. pte_val(ptep[PTRS_PER_PTE]) = _PAGE_TYPE_EMPTY;
  531. }
  532. /*
  533. * The following pte modification functions only work if
  534. * pte_present() is true. Undefined behaviour if not..
  535. */
  536. static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
  537. {
  538. pte_val(pte) &= PAGE_MASK;
  539. pte_val(pte) |= pgprot_val(newprot);
  540. return pte;
  541. }
  542. static inline pte_t pte_wrprotect(pte_t pte)
  543. {
  544. /* Do not clobber _PAGE_TYPE_NONE pages! */
  545. if (!(pte_val(pte) & _PAGE_INVALID))
  546. pte_val(pte) |= _PAGE_RO;
  547. return pte;
  548. }
  549. static inline pte_t pte_mkwrite(pte_t pte)
  550. {
  551. pte_val(pte) &= ~_PAGE_RO;
  552. return pte;
  553. }
  554. static inline pte_t pte_mkclean(pte_t pte)
  555. {
  556. /* The only user of pte_mkclean is the fork() code.
  557. We must *not* clear the *physical* page dirty bit
  558. just because fork() wants to clear the dirty bit in
  559. *one* of the page's mappings. So we just do nothing. */
  560. return pte;
  561. }
  562. static inline pte_t pte_mkdirty(pte_t pte)
  563. {
  564. /* We do not explicitly set the dirty bit because the
  565. * sske instruction is slow. It is faster to let the
  566. * next instruction set the dirty bit.
  567. */
  568. return pte;
  569. }
  570. static inline pte_t pte_mkold(pte_t pte)
  571. {
  572. /* S/390 doesn't keep its dirty/referenced bit in the pte.
  573. * There is no point in clearing the real referenced bit.
  574. */
  575. return pte;
  576. }
  577. static inline pte_t pte_mkyoung(pte_t pte)
  578. {
  579. /* S/390 doesn't keep its dirty/referenced bit in the pte.
  580. * There is no point in setting the real referenced bit.
  581. */
  582. return pte;
  583. }
  584. #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
  585. static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
  586. unsigned long addr, pte_t *ptep)
  587. {
  588. return 0;
  589. }
  590. #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
  591. static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
  592. unsigned long address, pte_t *ptep)
  593. {
  594. /* No need to flush TLB; bits are in storage key */
  595. return 0;
  596. }
  597. static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
  598. {
  599. if (!(pte_val(*ptep) & _PAGE_INVALID)) {
  600. #ifndef __s390x__
  601. /* pto must point to the start of the segment table */
  602. pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
  603. #else
  604. /* ipte in zarch mode can do the math */
  605. pte_t *pto = ptep;
  606. #endif
  607. asm volatile(
  608. " ipte %2,%3"
  609. : "=m" (*ptep) : "m" (*ptep),
  610. "a" (pto), "a" (address));
  611. }
  612. pte_val(*ptep) = _PAGE_TYPE_EMPTY;
  613. }
  614. static inline void ptep_invalidate(struct mm_struct *mm,
  615. unsigned long address, pte_t *ptep)
  616. {
  617. __ptep_ipte(address, ptep);
  618. if (mm->context.noexec)
  619. __ptep_ipte(address, ptep + PTRS_PER_PTE);
  620. }
  621. /*
  622. * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
  623. * both clear the TLB for the unmapped pte. The reason is that
  624. * ptep_get_and_clear is used in common code (e.g. change_pte_range)
  625. * to modify an active pte. The sequence is
  626. * 1) ptep_get_and_clear
  627. * 2) set_pte_at
  628. * 3) flush_tlb_range
  629. * On s390 the tlb needs to get flushed with the modification of the pte
  630. * if the pte is active. The only way how this can be implemented is to
  631. * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
  632. * is a nop.
  633. */
  634. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
  635. #define ptep_get_and_clear(__mm, __address, __ptep) \
  636. ({ \
  637. pte_t __pte = *(__ptep); \
  638. if (atomic_read(&(__mm)->mm_users) > 1 || \
  639. (__mm) != current->active_mm) \
  640. ptep_invalidate(__mm, __address, __ptep); \
  641. else \
  642. pte_clear((__mm), (__address), (__ptep)); \
  643. __pte; \
  644. })
  645. #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
  646. static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
  647. unsigned long address, pte_t *ptep)
  648. {
  649. pte_t pte = *ptep;
  650. ptep_invalidate(vma->vm_mm, address, ptep);
  651. return pte;
  652. }
  653. /*
  654. * The batched pte unmap code uses ptep_get_and_clear_full to clear the
  655. * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
  656. * tlbs of an mm if it can guarantee that the ptes of the mm_struct
  657. * cannot be accessed while the batched unmap is running. In this case
  658. * full==1 and a simple pte_clear is enough. See tlb.h.
  659. */
  660. #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
  661. static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
  662. unsigned long addr,
  663. pte_t *ptep, int full)
  664. {
  665. pte_t pte = *ptep;
  666. if (full)
  667. pte_clear(mm, addr, ptep);
  668. else
  669. ptep_invalidate(mm, addr, ptep);
  670. return pte;
  671. }
  672. #define __HAVE_ARCH_PTEP_SET_WRPROTECT
  673. #define ptep_set_wrprotect(__mm, __addr, __ptep) \
  674. ({ \
  675. pte_t __pte = *(__ptep); \
  676. if (pte_write(__pte)) { \
  677. if (atomic_read(&(__mm)->mm_users) > 1 || \
  678. (__mm) != current->active_mm) \
  679. ptep_invalidate(__mm, __addr, __ptep); \
  680. set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \
  681. } \
  682. })
  683. #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
  684. #define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty) \
  685. ({ \
  686. int __changed = !pte_same(*(__ptep), __entry); \
  687. if (__changed) { \
  688. ptep_invalidate((__vma)->vm_mm, __addr, __ptep); \
  689. set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry); \
  690. } \
  691. __changed; \
  692. })
  693. /*
  694. * Test and clear dirty bit in storage key.
  695. * We can't clear the changed bit atomically. This is a potential
  696. * race against modification of the referenced bit. This function
  697. * should therefore only be called if it is not mapped in any
  698. * address space.
  699. */
  700. #define __HAVE_ARCH_PAGE_TEST_DIRTY
  701. static inline int page_test_dirty(struct page *page)
  702. {
  703. return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
  704. }
  705. #define __HAVE_ARCH_PAGE_CLEAR_DIRTY
  706. static inline void page_clear_dirty(struct page *page)
  707. {
  708. page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY);
  709. }
  710. /*
  711. * Test and clear referenced bit in storage key.
  712. */
  713. #define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
  714. static inline int page_test_and_clear_young(struct page *page)
  715. {
  716. unsigned long physpage = page_to_phys(page);
  717. int ccode;
  718. asm volatile(
  719. " rrbe 0,%1\n"
  720. " ipm %0\n"
  721. " srl %0,28\n"
  722. : "=d" (ccode) : "a" (physpage) : "cc" );
  723. return ccode & 2;
  724. }
  725. /*
  726. * Conversion functions: convert a page and protection to a page entry,
  727. * and a page entry and page directory to the page they refer to.
  728. */
  729. static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
  730. {
  731. pte_t __pte;
  732. pte_val(__pte) = physpage + pgprot_val(pgprot);
  733. return __pte;
  734. }
  735. static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
  736. {
  737. unsigned long physpage = page_to_phys(page);
  738. return mk_pte_phys(physpage, pgprot);
  739. }
  740. #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
  741. #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
  742. #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
  743. #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
  744. #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
  745. #define pgd_offset_k(address) pgd_offset(&init_mm, address)
  746. #ifndef __s390x__
  747. #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
  748. #define pud_deref(pmd) ({ BUG(); 0UL; })
  749. #define pgd_deref(pmd) ({ BUG(); 0UL; })
  750. #define pud_offset(pgd, address) ((pud_t *) pgd)
  751. #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
  752. #else /* __s390x__ */
  753. #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
  754. #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
  755. #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
  756. static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
  757. {
  758. pud_t *pud = (pud_t *) pgd;
  759. if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
  760. pud = (pud_t *) pgd_deref(*pgd);
  761. return pud + pud_index(address);
  762. }
  763. static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
  764. {
  765. pmd_t *pmd = (pmd_t *) pud;
  766. if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
  767. pmd = (pmd_t *) pud_deref(*pud);
  768. return pmd + pmd_index(address);
  769. }
  770. #endif /* __s390x__ */
  771. #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
  772. #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
  773. #define pte_page(x) pfn_to_page(pte_pfn(x))
  774. #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
  775. /* Find an entry in the lowest level page table.. */
  776. #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
  777. #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
  778. #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
  779. #define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
  780. #define pte_unmap(pte) do { } while (0)
  781. #define pte_unmap_nested(pte) do { } while (0)
  782. /*
  783. * 31 bit swap entry format:
  784. * A page-table entry has some bits we have to treat in a special way.
  785. * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
  786. * exception will occur instead of a page translation exception. The
  787. * specifiation exception has the bad habit not to store necessary
  788. * information in the lowcore.
  789. * Bit 21 and bit 22 are the page invalid bit and the page protection
  790. * bit. We set both to indicate a swapped page.
  791. * Bit 30 and 31 are used to distinguish the different page types. For
  792. * a swapped page these bits need to be zero.
  793. * This leaves the bits 1-19 and bits 24-29 to store type and offset.
  794. * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
  795. * plus 24 for the offset.
  796. * 0| offset |0110|o|type |00|
  797. * 0 0000000001111111111 2222 2 22222 33
  798. * 0 1234567890123456789 0123 4 56789 01
  799. *
  800. * 64 bit swap entry format:
  801. * A page-table entry has some bits we have to treat in a special way.
  802. * Bits 52 and bit 55 have to be zero, otherwise an specification
  803. * exception will occur instead of a page translation exception. The
  804. * specifiation exception has the bad habit not to store necessary
  805. * information in the lowcore.
  806. * Bit 53 and bit 54 are the page invalid bit and the page protection
  807. * bit. We set both to indicate a swapped page.
  808. * Bit 62 and 63 are used to distinguish the different page types. For
  809. * a swapped page these bits need to be zero.
  810. * This leaves the bits 0-51 and bits 56-61 to store type and offset.
  811. * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
  812. * plus 56 for the offset.
  813. * | offset |0110|o|type |00|
  814. * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
  815. * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
  816. */
  817. #ifndef __s390x__
  818. #define __SWP_OFFSET_MASK (~0UL >> 12)
  819. #else
  820. #define __SWP_OFFSET_MASK (~0UL >> 11)
  821. #endif
  822. static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
  823. {
  824. pte_t pte;
  825. offset &= __SWP_OFFSET_MASK;
  826. pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
  827. ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
  828. return pte;
  829. }
  830. #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
  831. #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
  832. #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
  833. #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
  834. #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
  835. #ifndef __s390x__
  836. # define PTE_FILE_MAX_BITS 26
  837. #else /* __s390x__ */
  838. # define PTE_FILE_MAX_BITS 59
  839. #endif /* __s390x__ */
  840. #define pte_to_pgoff(__pte) \
  841. ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
  842. #define pgoff_to_pte(__off) \
  843. ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
  844. | _PAGE_TYPE_FILE })
  845. #endif /* !__ASSEMBLY__ */
  846. #define kern_addr_valid(addr) (1)
  847. extern int add_shared_memory(unsigned long start, unsigned long size);
  848. extern int remove_shared_memory(unsigned long start, unsigned long size);
  849. /*
  850. * No page table caches to initialise
  851. */
  852. #define pgtable_cache_init() do { } while (0)
  853. #define __HAVE_ARCH_MEMMAP_INIT
  854. extern void memmap_init(unsigned long, int, unsigned long, unsigned long);
  855. #include <asm-generic/pgtable.h>
  856. #endif /* _S390_PAGE_H */