xfs_log_recover.c 111 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_dir2.h"
  28. #include "xfs_dmapi.h"
  29. #include "xfs_mount.h"
  30. #include "xfs_error.h"
  31. #include "xfs_bmap_btree.h"
  32. #include "xfs_alloc_btree.h"
  33. #include "xfs_ialloc_btree.h"
  34. #include "xfs_dir2_sf.h"
  35. #include "xfs_attr_sf.h"
  36. #include "xfs_dinode.h"
  37. #include "xfs_inode.h"
  38. #include "xfs_inode_item.h"
  39. #include "xfs_imap.h"
  40. #include "xfs_alloc.h"
  41. #include "xfs_ialloc.h"
  42. #include "xfs_log_priv.h"
  43. #include "xfs_buf_item.h"
  44. #include "xfs_log_recover.h"
  45. #include "xfs_extfree_item.h"
  46. #include "xfs_trans_priv.h"
  47. #include "xfs_quota.h"
  48. #include "xfs_rw.h"
  49. #include "xfs_utils.h"
  50. STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  51. STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  52. STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
  53. xlog_recover_item_t *item);
  54. #if defined(DEBUG)
  55. STATIC void xlog_recover_check_summary(xlog_t *);
  56. STATIC void xlog_recover_check_ail(xfs_mount_t *, xfs_log_item_t *, int);
  57. #else
  58. #define xlog_recover_check_summary(log)
  59. #define xlog_recover_check_ail(mp, lip, gen)
  60. #endif
  61. /*
  62. * Sector aligned buffer routines for buffer create/read/write/access
  63. */
  64. #define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
  65. ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
  66. ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
  67. #define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
  68. xfs_buf_t *
  69. xlog_get_bp(
  70. xlog_t *log,
  71. int num_bblks)
  72. {
  73. ASSERT(num_bblks > 0);
  74. if (log->l_sectbb_log) {
  75. if (num_bblks > 1)
  76. num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  77. num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
  78. }
  79. return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
  80. }
  81. void
  82. xlog_put_bp(
  83. xfs_buf_t *bp)
  84. {
  85. xfs_buf_free(bp);
  86. }
  87. /*
  88. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  89. */
  90. int
  91. xlog_bread(
  92. xlog_t *log,
  93. xfs_daddr_t blk_no,
  94. int nbblks,
  95. xfs_buf_t *bp)
  96. {
  97. int error;
  98. if (log->l_sectbb_log) {
  99. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  100. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  101. }
  102. ASSERT(nbblks > 0);
  103. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  104. ASSERT(bp);
  105. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  106. XFS_BUF_READ(bp);
  107. XFS_BUF_BUSY(bp);
  108. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  109. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  110. xfsbdstrat(log->l_mp, bp);
  111. error = xfs_iowait(bp);
  112. if (error)
  113. xfs_ioerror_alert("xlog_bread", log->l_mp,
  114. bp, XFS_BUF_ADDR(bp));
  115. return error;
  116. }
  117. /*
  118. * Write out the buffer at the given block for the given number of blocks.
  119. * The buffer is kept locked across the write and is returned locked.
  120. * This can only be used for synchronous log writes.
  121. */
  122. STATIC int
  123. xlog_bwrite(
  124. xlog_t *log,
  125. xfs_daddr_t blk_no,
  126. int nbblks,
  127. xfs_buf_t *bp)
  128. {
  129. int error;
  130. if (log->l_sectbb_log) {
  131. blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
  132. nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
  133. }
  134. ASSERT(nbblks > 0);
  135. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  136. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  137. XFS_BUF_ZEROFLAGS(bp);
  138. XFS_BUF_BUSY(bp);
  139. XFS_BUF_HOLD(bp);
  140. XFS_BUF_PSEMA(bp, PRIBIO);
  141. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  142. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  143. if ((error = xfs_bwrite(log->l_mp, bp)))
  144. xfs_ioerror_alert("xlog_bwrite", log->l_mp,
  145. bp, XFS_BUF_ADDR(bp));
  146. return error;
  147. }
  148. STATIC xfs_caddr_t
  149. xlog_align(
  150. xlog_t *log,
  151. xfs_daddr_t blk_no,
  152. int nbblks,
  153. xfs_buf_t *bp)
  154. {
  155. xfs_caddr_t ptr;
  156. if (!log->l_sectbb_log)
  157. return XFS_BUF_PTR(bp);
  158. ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
  159. ASSERT(XFS_BUF_SIZE(bp) >=
  160. BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
  161. return ptr;
  162. }
  163. #ifdef DEBUG
  164. /*
  165. * dump debug superblock and log record information
  166. */
  167. STATIC void
  168. xlog_header_check_dump(
  169. xfs_mount_t *mp,
  170. xlog_rec_header_t *head)
  171. {
  172. int b;
  173. cmn_err(CE_DEBUG, "%s: SB : uuid = ", __func__);
  174. for (b = 0; b < 16; b++)
  175. cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
  176. cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
  177. cmn_err(CE_DEBUG, " log : uuid = ");
  178. for (b = 0; b < 16; b++)
  179. cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
  180. cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
  181. }
  182. #else
  183. #define xlog_header_check_dump(mp, head)
  184. #endif
  185. /*
  186. * check log record header for recovery
  187. */
  188. STATIC int
  189. xlog_header_check_recover(
  190. xfs_mount_t *mp,
  191. xlog_rec_header_t *head)
  192. {
  193. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  194. /*
  195. * IRIX doesn't write the h_fmt field and leaves it zeroed
  196. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  197. * a dirty log created in IRIX.
  198. */
  199. if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
  200. xlog_warn(
  201. "XFS: dirty log written in incompatible format - can't recover");
  202. xlog_header_check_dump(mp, head);
  203. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  204. XFS_ERRLEVEL_HIGH, mp);
  205. return XFS_ERROR(EFSCORRUPTED);
  206. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  207. xlog_warn(
  208. "XFS: dirty log entry has mismatched uuid - can't recover");
  209. xlog_header_check_dump(mp, head);
  210. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  211. XFS_ERRLEVEL_HIGH, mp);
  212. return XFS_ERROR(EFSCORRUPTED);
  213. }
  214. return 0;
  215. }
  216. /*
  217. * read the head block of the log and check the header
  218. */
  219. STATIC int
  220. xlog_header_check_mount(
  221. xfs_mount_t *mp,
  222. xlog_rec_header_t *head)
  223. {
  224. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  225. if (uuid_is_nil(&head->h_fs_uuid)) {
  226. /*
  227. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  228. * h_fs_uuid is nil, we assume this log was last mounted
  229. * by IRIX and continue.
  230. */
  231. xlog_warn("XFS: nil uuid in log - IRIX style log");
  232. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  233. xlog_warn("XFS: log has mismatched uuid - can't recover");
  234. xlog_header_check_dump(mp, head);
  235. XFS_ERROR_REPORT("xlog_header_check_mount",
  236. XFS_ERRLEVEL_HIGH, mp);
  237. return XFS_ERROR(EFSCORRUPTED);
  238. }
  239. return 0;
  240. }
  241. STATIC void
  242. xlog_recover_iodone(
  243. struct xfs_buf *bp)
  244. {
  245. xfs_mount_t *mp;
  246. ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
  247. if (XFS_BUF_GETERROR(bp)) {
  248. /*
  249. * We're not going to bother about retrying
  250. * this during recovery. One strike!
  251. */
  252. mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
  253. xfs_ioerror_alert("xlog_recover_iodone",
  254. mp, bp, XFS_BUF_ADDR(bp));
  255. xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
  256. }
  257. XFS_BUF_SET_FSPRIVATE(bp, NULL);
  258. XFS_BUF_CLR_IODONE_FUNC(bp);
  259. xfs_biodone(bp);
  260. }
  261. /*
  262. * This routine finds (to an approximation) the first block in the physical
  263. * log which contains the given cycle. It uses a binary search algorithm.
  264. * Note that the algorithm can not be perfect because the disk will not
  265. * necessarily be perfect.
  266. */
  267. STATIC int
  268. xlog_find_cycle_start(
  269. xlog_t *log,
  270. xfs_buf_t *bp,
  271. xfs_daddr_t first_blk,
  272. xfs_daddr_t *last_blk,
  273. uint cycle)
  274. {
  275. xfs_caddr_t offset;
  276. xfs_daddr_t mid_blk;
  277. uint mid_cycle;
  278. int error;
  279. mid_blk = BLK_AVG(first_blk, *last_blk);
  280. while (mid_blk != first_blk && mid_blk != *last_blk) {
  281. if ((error = xlog_bread(log, mid_blk, 1, bp)))
  282. return error;
  283. offset = xlog_align(log, mid_blk, 1, bp);
  284. mid_cycle = xlog_get_cycle(offset);
  285. if (mid_cycle == cycle) {
  286. *last_blk = mid_blk;
  287. /* last_half_cycle == mid_cycle */
  288. } else {
  289. first_blk = mid_blk;
  290. /* first_half_cycle == mid_cycle */
  291. }
  292. mid_blk = BLK_AVG(first_blk, *last_blk);
  293. }
  294. ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
  295. (mid_blk == *last_blk && mid_blk-1 == first_blk));
  296. return 0;
  297. }
  298. /*
  299. * Check that the range of blocks does not contain the cycle number
  300. * given. The scan needs to occur from front to back and the ptr into the
  301. * region must be updated since a later routine will need to perform another
  302. * test. If the region is completely good, we end up returning the same
  303. * last block number.
  304. *
  305. * Set blkno to -1 if we encounter no errors. This is an invalid block number
  306. * since we don't ever expect logs to get this large.
  307. */
  308. STATIC int
  309. xlog_find_verify_cycle(
  310. xlog_t *log,
  311. xfs_daddr_t start_blk,
  312. int nbblks,
  313. uint stop_on_cycle_no,
  314. xfs_daddr_t *new_blk)
  315. {
  316. xfs_daddr_t i, j;
  317. uint cycle;
  318. xfs_buf_t *bp;
  319. xfs_daddr_t bufblks;
  320. xfs_caddr_t buf = NULL;
  321. int error = 0;
  322. bufblks = 1 << ffs(nbblks);
  323. while (!(bp = xlog_get_bp(log, bufblks))) {
  324. /* can't get enough memory to do everything in one big buffer */
  325. bufblks >>= 1;
  326. if (bufblks <= log->l_sectbb_log)
  327. return ENOMEM;
  328. }
  329. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  330. int bcount;
  331. bcount = min(bufblks, (start_blk + nbblks - i));
  332. if ((error = xlog_bread(log, i, bcount, bp)))
  333. goto out;
  334. buf = xlog_align(log, i, bcount, bp);
  335. for (j = 0; j < bcount; j++) {
  336. cycle = xlog_get_cycle(buf);
  337. if (cycle == stop_on_cycle_no) {
  338. *new_blk = i+j;
  339. goto out;
  340. }
  341. buf += BBSIZE;
  342. }
  343. }
  344. *new_blk = -1;
  345. out:
  346. xlog_put_bp(bp);
  347. return error;
  348. }
  349. /*
  350. * Potentially backup over partial log record write.
  351. *
  352. * In the typical case, last_blk is the number of the block directly after
  353. * a good log record. Therefore, we subtract one to get the block number
  354. * of the last block in the given buffer. extra_bblks contains the number
  355. * of blocks we would have read on a previous read. This happens when the
  356. * last log record is split over the end of the physical log.
  357. *
  358. * extra_bblks is the number of blocks potentially verified on a previous
  359. * call to this routine.
  360. */
  361. STATIC int
  362. xlog_find_verify_log_record(
  363. xlog_t *log,
  364. xfs_daddr_t start_blk,
  365. xfs_daddr_t *last_blk,
  366. int extra_bblks)
  367. {
  368. xfs_daddr_t i;
  369. xfs_buf_t *bp;
  370. xfs_caddr_t offset = NULL;
  371. xlog_rec_header_t *head = NULL;
  372. int error = 0;
  373. int smallmem = 0;
  374. int num_blks = *last_blk - start_blk;
  375. int xhdrs;
  376. ASSERT(start_blk != 0 || *last_blk != start_blk);
  377. if (!(bp = xlog_get_bp(log, num_blks))) {
  378. if (!(bp = xlog_get_bp(log, 1)))
  379. return ENOMEM;
  380. smallmem = 1;
  381. } else {
  382. if ((error = xlog_bread(log, start_blk, num_blks, bp)))
  383. goto out;
  384. offset = xlog_align(log, start_blk, num_blks, bp);
  385. offset += ((num_blks - 1) << BBSHIFT);
  386. }
  387. for (i = (*last_blk) - 1; i >= 0; i--) {
  388. if (i < start_blk) {
  389. /* valid log record not found */
  390. xlog_warn(
  391. "XFS: Log inconsistent (didn't find previous header)");
  392. ASSERT(0);
  393. error = XFS_ERROR(EIO);
  394. goto out;
  395. }
  396. if (smallmem) {
  397. if ((error = xlog_bread(log, i, 1, bp)))
  398. goto out;
  399. offset = xlog_align(log, i, 1, bp);
  400. }
  401. head = (xlog_rec_header_t *)offset;
  402. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
  403. break;
  404. if (!smallmem)
  405. offset -= BBSIZE;
  406. }
  407. /*
  408. * We hit the beginning of the physical log & still no header. Return
  409. * to caller. If caller can handle a return of -1, then this routine
  410. * will be called again for the end of the physical log.
  411. */
  412. if (i == -1) {
  413. error = -1;
  414. goto out;
  415. }
  416. /*
  417. * We have the final block of the good log (the first block
  418. * of the log record _before_ the head. So we check the uuid.
  419. */
  420. if ((error = xlog_header_check_mount(log->l_mp, head)))
  421. goto out;
  422. /*
  423. * We may have found a log record header before we expected one.
  424. * last_blk will be the 1st block # with a given cycle #. We may end
  425. * up reading an entire log record. In this case, we don't want to
  426. * reset last_blk. Only when last_blk points in the middle of a log
  427. * record do we update last_blk.
  428. */
  429. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  430. uint h_size = be32_to_cpu(head->h_size);
  431. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  432. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  433. xhdrs++;
  434. } else {
  435. xhdrs = 1;
  436. }
  437. if (*last_blk - i + extra_bblks !=
  438. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  439. *last_blk = i;
  440. out:
  441. xlog_put_bp(bp);
  442. return error;
  443. }
  444. /*
  445. * Head is defined to be the point of the log where the next log write
  446. * write could go. This means that incomplete LR writes at the end are
  447. * eliminated when calculating the head. We aren't guaranteed that previous
  448. * LR have complete transactions. We only know that a cycle number of
  449. * current cycle number -1 won't be present in the log if we start writing
  450. * from our current block number.
  451. *
  452. * last_blk contains the block number of the first block with a given
  453. * cycle number.
  454. *
  455. * Return: zero if normal, non-zero if error.
  456. */
  457. STATIC int
  458. xlog_find_head(
  459. xlog_t *log,
  460. xfs_daddr_t *return_head_blk)
  461. {
  462. xfs_buf_t *bp;
  463. xfs_caddr_t offset;
  464. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  465. int num_scan_bblks;
  466. uint first_half_cycle, last_half_cycle;
  467. uint stop_on_cycle;
  468. int error, log_bbnum = log->l_logBBsize;
  469. /* Is the end of the log device zeroed? */
  470. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  471. *return_head_blk = first_blk;
  472. /* Is the whole lot zeroed? */
  473. if (!first_blk) {
  474. /* Linux XFS shouldn't generate totally zeroed logs -
  475. * mkfs etc write a dummy unmount record to a fresh
  476. * log so we can store the uuid in there
  477. */
  478. xlog_warn("XFS: totally zeroed log");
  479. }
  480. return 0;
  481. } else if (error) {
  482. xlog_warn("XFS: empty log check failed");
  483. return error;
  484. }
  485. first_blk = 0; /* get cycle # of 1st block */
  486. bp = xlog_get_bp(log, 1);
  487. if (!bp)
  488. return ENOMEM;
  489. if ((error = xlog_bread(log, 0, 1, bp)))
  490. goto bp_err;
  491. offset = xlog_align(log, 0, 1, bp);
  492. first_half_cycle = xlog_get_cycle(offset);
  493. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  494. if ((error = xlog_bread(log, last_blk, 1, bp)))
  495. goto bp_err;
  496. offset = xlog_align(log, last_blk, 1, bp);
  497. last_half_cycle = xlog_get_cycle(offset);
  498. ASSERT(last_half_cycle != 0);
  499. /*
  500. * If the 1st half cycle number is equal to the last half cycle number,
  501. * then the entire log is stamped with the same cycle number. In this
  502. * case, head_blk can't be set to zero (which makes sense). The below
  503. * math doesn't work out properly with head_blk equal to zero. Instead,
  504. * we set it to log_bbnum which is an invalid block number, but this
  505. * value makes the math correct. If head_blk doesn't changed through
  506. * all the tests below, *head_blk is set to zero at the very end rather
  507. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  508. * in a circular file.
  509. */
  510. if (first_half_cycle == last_half_cycle) {
  511. /*
  512. * In this case we believe that the entire log should have
  513. * cycle number last_half_cycle. We need to scan backwards
  514. * from the end verifying that there are no holes still
  515. * containing last_half_cycle - 1. If we find such a hole,
  516. * then the start of that hole will be the new head. The
  517. * simple case looks like
  518. * x | x ... | x - 1 | x
  519. * Another case that fits this picture would be
  520. * x | x + 1 | x ... | x
  521. * In this case the head really is somewhere at the end of the
  522. * log, as one of the latest writes at the beginning was
  523. * incomplete.
  524. * One more case is
  525. * x | x + 1 | x ... | x - 1 | x
  526. * This is really the combination of the above two cases, and
  527. * the head has to end up at the start of the x-1 hole at the
  528. * end of the log.
  529. *
  530. * In the 256k log case, we will read from the beginning to the
  531. * end of the log and search for cycle numbers equal to x-1.
  532. * We don't worry about the x+1 blocks that we encounter,
  533. * because we know that they cannot be the head since the log
  534. * started with x.
  535. */
  536. head_blk = log_bbnum;
  537. stop_on_cycle = last_half_cycle - 1;
  538. } else {
  539. /*
  540. * In this case we want to find the first block with cycle
  541. * number matching last_half_cycle. We expect the log to be
  542. * some variation on
  543. * x + 1 ... | x ...
  544. * The first block with cycle number x (last_half_cycle) will
  545. * be where the new head belongs. First we do a binary search
  546. * for the first occurrence of last_half_cycle. The binary
  547. * search may not be totally accurate, so then we scan back
  548. * from there looking for occurrences of last_half_cycle before
  549. * us. If that backwards scan wraps around the beginning of
  550. * the log, then we look for occurrences of last_half_cycle - 1
  551. * at the end of the log. The cases we're looking for look
  552. * like
  553. * x + 1 ... | x | x + 1 | x ...
  554. * ^ binary search stopped here
  555. * or
  556. * x + 1 ... | x ... | x - 1 | x
  557. * <---------> less than scan distance
  558. */
  559. stop_on_cycle = last_half_cycle;
  560. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  561. &head_blk, last_half_cycle)))
  562. goto bp_err;
  563. }
  564. /*
  565. * Now validate the answer. Scan back some number of maximum possible
  566. * blocks and make sure each one has the expected cycle number. The
  567. * maximum is determined by the total possible amount of buffering
  568. * in the in-core log. The following number can be made tighter if
  569. * we actually look at the block size of the filesystem.
  570. */
  571. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  572. if (head_blk >= num_scan_bblks) {
  573. /*
  574. * We are guaranteed that the entire check can be performed
  575. * in one buffer.
  576. */
  577. start_blk = head_blk - num_scan_bblks;
  578. if ((error = xlog_find_verify_cycle(log,
  579. start_blk, num_scan_bblks,
  580. stop_on_cycle, &new_blk)))
  581. goto bp_err;
  582. if (new_blk != -1)
  583. head_blk = new_blk;
  584. } else { /* need to read 2 parts of log */
  585. /*
  586. * We are going to scan backwards in the log in two parts.
  587. * First we scan the physical end of the log. In this part
  588. * of the log, we are looking for blocks with cycle number
  589. * last_half_cycle - 1.
  590. * If we find one, then we know that the log starts there, as
  591. * we've found a hole that didn't get written in going around
  592. * the end of the physical log. The simple case for this is
  593. * x + 1 ... | x ... | x - 1 | x
  594. * <---------> less than scan distance
  595. * If all of the blocks at the end of the log have cycle number
  596. * last_half_cycle, then we check the blocks at the start of
  597. * the log looking for occurrences of last_half_cycle. If we
  598. * find one, then our current estimate for the location of the
  599. * first occurrence of last_half_cycle is wrong and we move
  600. * back to the hole we've found. This case looks like
  601. * x + 1 ... | x | x + 1 | x ...
  602. * ^ binary search stopped here
  603. * Another case we need to handle that only occurs in 256k
  604. * logs is
  605. * x + 1 ... | x ... | x+1 | x ...
  606. * ^ binary search stops here
  607. * In a 256k log, the scan at the end of the log will see the
  608. * x + 1 blocks. We need to skip past those since that is
  609. * certainly not the head of the log. By searching for
  610. * last_half_cycle-1 we accomplish that.
  611. */
  612. start_blk = log_bbnum - num_scan_bblks + head_blk;
  613. ASSERT(head_blk <= INT_MAX &&
  614. (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
  615. if ((error = xlog_find_verify_cycle(log, start_blk,
  616. num_scan_bblks - (int)head_blk,
  617. (stop_on_cycle - 1), &new_blk)))
  618. goto bp_err;
  619. if (new_blk != -1) {
  620. head_blk = new_blk;
  621. goto bad_blk;
  622. }
  623. /*
  624. * Scan beginning of log now. The last part of the physical
  625. * log is good. This scan needs to verify that it doesn't find
  626. * the last_half_cycle.
  627. */
  628. start_blk = 0;
  629. ASSERT(head_blk <= INT_MAX);
  630. if ((error = xlog_find_verify_cycle(log,
  631. start_blk, (int)head_blk,
  632. stop_on_cycle, &new_blk)))
  633. goto bp_err;
  634. if (new_blk != -1)
  635. head_blk = new_blk;
  636. }
  637. bad_blk:
  638. /*
  639. * Now we need to make sure head_blk is not pointing to a block in
  640. * the middle of a log record.
  641. */
  642. num_scan_bblks = XLOG_REC_SHIFT(log);
  643. if (head_blk >= num_scan_bblks) {
  644. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  645. /* start ptr at last block ptr before head_blk */
  646. if ((error = xlog_find_verify_log_record(log, start_blk,
  647. &head_blk, 0)) == -1) {
  648. error = XFS_ERROR(EIO);
  649. goto bp_err;
  650. } else if (error)
  651. goto bp_err;
  652. } else {
  653. start_blk = 0;
  654. ASSERT(head_blk <= INT_MAX);
  655. if ((error = xlog_find_verify_log_record(log, start_blk,
  656. &head_blk, 0)) == -1) {
  657. /* We hit the beginning of the log during our search */
  658. start_blk = log_bbnum - num_scan_bblks + head_blk;
  659. new_blk = log_bbnum;
  660. ASSERT(start_blk <= INT_MAX &&
  661. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  662. ASSERT(head_blk <= INT_MAX);
  663. if ((error = xlog_find_verify_log_record(log,
  664. start_blk, &new_blk,
  665. (int)head_blk)) == -1) {
  666. error = XFS_ERROR(EIO);
  667. goto bp_err;
  668. } else if (error)
  669. goto bp_err;
  670. if (new_blk != log_bbnum)
  671. head_blk = new_blk;
  672. } else if (error)
  673. goto bp_err;
  674. }
  675. xlog_put_bp(bp);
  676. if (head_blk == log_bbnum)
  677. *return_head_blk = 0;
  678. else
  679. *return_head_blk = head_blk;
  680. /*
  681. * When returning here, we have a good block number. Bad block
  682. * means that during a previous crash, we didn't have a clean break
  683. * from cycle number N to cycle number N-1. In this case, we need
  684. * to find the first block with cycle number N-1.
  685. */
  686. return 0;
  687. bp_err:
  688. xlog_put_bp(bp);
  689. if (error)
  690. xlog_warn("XFS: failed to find log head");
  691. return error;
  692. }
  693. /*
  694. * Find the sync block number or the tail of the log.
  695. *
  696. * This will be the block number of the last record to have its
  697. * associated buffers synced to disk. Every log record header has
  698. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  699. * to get a sync block number. The only concern is to figure out which
  700. * log record header to believe.
  701. *
  702. * The following algorithm uses the log record header with the largest
  703. * lsn. The entire log record does not need to be valid. We only care
  704. * that the header is valid.
  705. *
  706. * We could speed up search by using current head_blk buffer, but it is not
  707. * available.
  708. */
  709. int
  710. xlog_find_tail(
  711. xlog_t *log,
  712. xfs_daddr_t *head_blk,
  713. xfs_daddr_t *tail_blk)
  714. {
  715. xlog_rec_header_t *rhead;
  716. xlog_op_header_t *op_head;
  717. xfs_caddr_t offset = NULL;
  718. xfs_buf_t *bp;
  719. int error, i, found;
  720. xfs_daddr_t umount_data_blk;
  721. xfs_daddr_t after_umount_blk;
  722. xfs_lsn_t tail_lsn;
  723. int hblks;
  724. found = 0;
  725. /*
  726. * Find previous log record
  727. */
  728. if ((error = xlog_find_head(log, head_blk)))
  729. return error;
  730. bp = xlog_get_bp(log, 1);
  731. if (!bp)
  732. return ENOMEM;
  733. if (*head_blk == 0) { /* special case */
  734. if ((error = xlog_bread(log, 0, 1, bp)))
  735. goto bread_err;
  736. offset = xlog_align(log, 0, 1, bp);
  737. if (xlog_get_cycle(offset) == 0) {
  738. *tail_blk = 0;
  739. /* leave all other log inited values alone */
  740. goto exit;
  741. }
  742. }
  743. /*
  744. * Search backwards looking for log record header block
  745. */
  746. ASSERT(*head_blk < INT_MAX);
  747. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  748. if ((error = xlog_bread(log, i, 1, bp)))
  749. goto bread_err;
  750. offset = xlog_align(log, i, 1, bp);
  751. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
  752. found = 1;
  753. break;
  754. }
  755. }
  756. /*
  757. * If we haven't found the log record header block, start looking
  758. * again from the end of the physical log. XXXmiken: There should be
  759. * a check here to make sure we didn't search more than N blocks in
  760. * the previous code.
  761. */
  762. if (!found) {
  763. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  764. if ((error = xlog_bread(log, i, 1, bp)))
  765. goto bread_err;
  766. offset = xlog_align(log, i, 1, bp);
  767. if (XLOG_HEADER_MAGIC_NUM ==
  768. be32_to_cpu(*(__be32 *)offset)) {
  769. found = 2;
  770. break;
  771. }
  772. }
  773. }
  774. if (!found) {
  775. xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
  776. ASSERT(0);
  777. return XFS_ERROR(EIO);
  778. }
  779. /* find blk_no of tail of log */
  780. rhead = (xlog_rec_header_t *)offset;
  781. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  782. /*
  783. * Reset log values according to the state of the log when we
  784. * crashed. In the case where head_blk == 0, we bump curr_cycle
  785. * one because the next write starts a new cycle rather than
  786. * continuing the cycle of the last good log record. At this
  787. * point we have guaranteed that all partial log records have been
  788. * accounted for. Therefore, we know that the last good log record
  789. * written was complete and ended exactly on the end boundary
  790. * of the physical log.
  791. */
  792. log->l_prev_block = i;
  793. log->l_curr_block = (int)*head_blk;
  794. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  795. if (found == 2)
  796. log->l_curr_cycle++;
  797. log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
  798. log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
  799. log->l_grant_reserve_cycle = log->l_curr_cycle;
  800. log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
  801. log->l_grant_write_cycle = log->l_curr_cycle;
  802. log->l_grant_write_bytes = BBTOB(log->l_curr_block);
  803. /*
  804. * Look for unmount record. If we find it, then we know there
  805. * was a clean unmount. Since 'i' could be the last block in
  806. * the physical log, we convert to a log block before comparing
  807. * to the head_blk.
  808. *
  809. * Save the current tail lsn to use to pass to
  810. * xlog_clear_stale_blocks() below. We won't want to clear the
  811. * unmount record if there is one, so we pass the lsn of the
  812. * unmount record rather than the block after it.
  813. */
  814. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  815. int h_size = be32_to_cpu(rhead->h_size);
  816. int h_version = be32_to_cpu(rhead->h_version);
  817. if ((h_version & XLOG_VERSION_2) &&
  818. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  819. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  820. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  821. hblks++;
  822. } else {
  823. hblks = 1;
  824. }
  825. } else {
  826. hblks = 1;
  827. }
  828. after_umount_blk = (i + hblks + (int)
  829. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  830. tail_lsn = log->l_tail_lsn;
  831. if (*head_blk == after_umount_blk &&
  832. be32_to_cpu(rhead->h_num_logops) == 1) {
  833. umount_data_blk = (i + hblks) % log->l_logBBsize;
  834. if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
  835. goto bread_err;
  836. }
  837. offset = xlog_align(log, umount_data_blk, 1, bp);
  838. op_head = (xlog_op_header_t *)offset;
  839. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  840. /*
  841. * Set tail and last sync so that newly written
  842. * log records will point recovery to after the
  843. * current unmount record.
  844. */
  845. log->l_tail_lsn =
  846. xlog_assign_lsn(log->l_curr_cycle,
  847. after_umount_blk);
  848. log->l_last_sync_lsn =
  849. xlog_assign_lsn(log->l_curr_cycle,
  850. after_umount_blk);
  851. *tail_blk = after_umount_blk;
  852. /*
  853. * Note that the unmount was clean. If the unmount
  854. * was not clean, we need to know this to rebuild the
  855. * superblock counters from the perag headers if we
  856. * have a filesystem using non-persistent counters.
  857. */
  858. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  859. }
  860. }
  861. /*
  862. * Make sure that there are no blocks in front of the head
  863. * with the same cycle number as the head. This can happen
  864. * because we allow multiple outstanding log writes concurrently,
  865. * and the later writes might make it out before earlier ones.
  866. *
  867. * We use the lsn from before modifying it so that we'll never
  868. * overwrite the unmount record after a clean unmount.
  869. *
  870. * Do this only if we are going to recover the filesystem
  871. *
  872. * NOTE: This used to say "if (!readonly)"
  873. * However on Linux, we can & do recover a read-only filesystem.
  874. * We only skip recovery if NORECOVERY is specified on mount,
  875. * in which case we would not be here.
  876. *
  877. * But... if the -device- itself is readonly, just skip this.
  878. * We can't recover this device anyway, so it won't matter.
  879. */
  880. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
  881. error = xlog_clear_stale_blocks(log, tail_lsn);
  882. }
  883. bread_err:
  884. exit:
  885. xlog_put_bp(bp);
  886. if (error)
  887. xlog_warn("XFS: failed to locate log tail");
  888. return error;
  889. }
  890. /*
  891. * Is the log zeroed at all?
  892. *
  893. * The last binary search should be changed to perform an X block read
  894. * once X becomes small enough. You can then search linearly through
  895. * the X blocks. This will cut down on the number of reads we need to do.
  896. *
  897. * If the log is partially zeroed, this routine will pass back the blkno
  898. * of the first block with cycle number 0. It won't have a complete LR
  899. * preceding it.
  900. *
  901. * Return:
  902. * 0 => the log is completely written to
  903. * -1 => use *blk_no as the first block of the log
  904. * >0 => error has occurred
  905. */
  906. STATIC int
  907. xlog_find_zeroed(
  908. xlog_t *log,
  909. xfs_daddr_t *blk_no)
  910. {
  911. xfs_buf_t *bp;
  912. xfs_caddr_t offset;
  913. uint first_cycle, last_cycle;
  914. xfs_daddr_t new_blk, last_blk, start_blk;
  915. xfs_daddr_t num_scan_bblks;
  916. int error, log_bbnum = log->l_logBBsize;
  917. *blk_no = 0;
  918. /* check totally zeroed log */
  919. bp = xlog_get_bp(log, 1);
  920. if (!bp)
  921. return ENOMEM;
  922. if ((error = xlog_bread(log, 0, 1, bp)))
  923. goto bp_err;
  924. offset = xlog_align(log, 0, 1, bp);
  925. first_cycle = xlog_get_cycle(offset);
  926. if (first_cycle == 0) { /* completely zeroed log */
  927. *blk_no = 0;
  928. xlog_put_bp(bp);
  929. return -1;
  930. }
  931. /* check partially zeroed log */
  932. if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
  933. goto bp_err;
  934. offset = xlog_align(log, log_bbnum-1, 1, bp);
  935. last_cycle = xlog_get_cycle(offset);
  936. if (last_cycle != 0) { /* log completely written to */
  937. xlog_put_bp(bp);
  938. return 0;
  939. } else if (first_cycle != 1) {
  940. /*
  941. * If the cycle of the last block is zero, the cycle of
  942. * the first block must be 1. If it's not, maybe we're
  943. * not looking at a log... Bail out.
  944. */
  945. xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
  946. return XFS_ERROR(EINVAL);
  947. }
  948. /* we have a partially zeroed log */
  949. last_blk = log_bbnum-1;
  950. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  951. goto bp_err;
  952. /*
  953. * Validate the answer. Because there is no way to guarantee that
  954. * the entire log is made up of log records which are the same size,
  955. * we scan over the defined maximum blocks. At this point, the maximum
  956. * is not chosen to mean anything special. XXXmiken
  957. */
  958. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  959. ASSERT(num_scan_bblks <= INT_MAX);
  960. if (last_blk < num_scan_bblks)
  961. num_scan_bblks = last_blk;
  962. start_blk = last_blk - num_scan_bblks;
  963. /*
  964. * We search for any instances of cycle number 0 that occur before
  965. * our current estimate of the head. What we're trying to detect is
  966. * 1 ... | 0 | 1 | 0...
  967. * ^ binary search ends here
  968. */
  969. if ((error = xlog_find_verify_cycle(log, start_blk,
  970. (int)num_scan_bblks, 0, &new_blk)))
  971. goto bp_err;
  972. if (new_blk != -1)
  973. last_blk = new_blk;
  974. /*
  975. * Potentially backup over partial log record write. We don't need
  976. * to search the end of the log because we know it is zero.
  977. */
  978. if ((error = xlog_find_verify_log_record(log, start_blk,
  979. &last_blk, 0)) == -1) {
  980. error = XFS_ERROR(EIO);
  981. goto bp_err;
  982. } else if (error)
  983. goto bp_err;
  984. *blk_no = last_blk;
  985. bp_err:
  986. xlog_put_bp(bp);
  987. if (error)
  988. return error;
  989. return -1;
  990. }
  991. /*
  992. * These are simple subroutines used by xlog_clear_stale_blocks() below
  993. * to initialize a buffer full of empty log record headers and write
  994. * them into the log.
  995. */
  996. STATIC void
  997. xlog_add_record(
  998. xlog_t *log,
  999. xfs_caddr_t buf,
  1000. int cycle,
  1001. int block,
  1002. int tail_cycle,
  1003. int tail_block)
  1004. {
  1005. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1006. memset(buf, 0, BBSIZE);
  1007. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1008. recp->h_cycle = cpu_to_be32(cycle);
  1009. recp->h_version = cpu_to_be32(
  1010. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1011. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1012. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1013. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1014. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1015. }
  1016. STATIC int
  1017. xlog_write_log_records(
  1018. xlog_t *log,
  1019. int cycle,
  1020. int start_block,
  1021. int blocks,
  1022. int tail_cycle,
  1023. int tail_block)
  1024. {
  1025. xfs_caddr_t offset;
  1026. xfs_buf_t *bp;
  1027. int balign, ealign;
  1028. int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
  1029. int end_block = start_block + blocks;
  1030. int bufblks;
  1031. int error = 0;
  1032. int i, j = 0;
  1033. bufblks = 1 << ffs(blocks);
  1034. while (!(bp = xlog_get_bp(log, bufblks))) {
  1035. bufblks >>= 1;
  1036. if (bufblks <= log->l_sectbb_log)
  1037. return ENOMEM;
  1038. }
  1039. /* We may need to do a read at the start to fill in part of
  1040. * the buffer in the starting sector not covered by the first
  1041. * write below.
  1042. */
  1043. balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
  1044. if (balign != start_block) {
  1045. if ((error = xlog_bread(log, start_block, 1, bp))) {
  1046. xlog_put_bp(bp);
  1047. return error;
  1048. }
  1049. j = start_block - balign;
  1050. }
  1051. for (i = start_block; i < end_block; i += bufblks) {
  1052. int bcount, endcount;
  1053. bcount = min(bufblks, end_block - start_block);
  1054. endcount = bcount - j;
  1055. /* We may need to do a read at the end to fill in part of
  1056. * the buffer in the final sector not covered by the write.
  1057. * If this is the same sector as the above read, skip it.
  1058. */
  1059. ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
  1060. if (j == 0 && (start_block + endcount > ealign)) {
  1061. offset = XFS_BUF_PTR(bp);
  1062. balign = BBTOB(ealign - start_block);
  1063. error = XFS_BUF_SET_PTR(bp, offset + balign,
  1064. BBTOB(sectbb));
  1065. if (!error)
  1066. error = xlog_bread(log, ealign, sectbb, bp);
  1067. if (!error)
  1068. error = XFS_BUF_SET_PTR(bp, offset, bufblks);
  1069. if (error)
  1070. break;
  1071. }
  1072. offset = xlog_align(log, start_block, endcount, bp);
  1073. for (; j < endcount; j++) {
  1074. xlog_add_record(log, offset, cycle, i+j,
  1075. tail_cycle, tail_block);
  1076. offset += BBSIZE;
  1077. }
  1078. error = xlog_bwrite(log, start_block, endcount, bp);
  1079. if (error)
  1080. break;
  1081. start_block += endcount;
  1082. j = 0;
  1083. }
  1084. xlog_put_bp(bp);
  1085. return error;
  1086. }
  1087. /*
  1088. * This routine is called to blow away any incomplete log writes out
  1089. * in front of the log head. We do this so that we won't become confused
  1090. * if we come up, write only a little bit more, and then crash again.
  1091. * If we leave the partial log records out there, this situation could
  1092. * cause us to think those partial writes are valid blocks since they
  1093. * have the current cycle number. We get rid of them by overwriting them
  1094. * with empty log records with the old cycle number rather than the
  1095. * current one.
  1096. *
  1097. * The tail lsn is passed in rather than taken from
  1098. * the log so that we will not write over the unmount record after a
  1099. * clean unmount in a 512 block log. Doing so would leave the log without
  1100. * any valid log records in it until a new one was written. If we crashed
  1101. * during that time we would not be able to recover.
  1102. */
  1103. STATIC int
  1104. xlog_clear_stale_blocks(
  1105. xlog_t *log,
  1106. xfs_lsn_t tail_lsn)
  1107. {
  1108. int tail_cycle, head_cycle;
  1109. int tail_block, head_block;
  1110. int tail_distance, max_distance;
  1111. int distance;
  1112. int error;
  1113. tail_cycle = CYCLE_LSN(tail_lsn);
  1114. tail_block = BLOCK_LSN(tail_lsn);
  1115. head_cycle = log->l_curr_cycle;
  1116. head_block = log->l_curr_block;
  1117. /*
  1118. * Figure out the distance between the new head of the log
  1119. * and the tail. We want to write over any blocks beyond the
  1120. * head that we may have written just before the crash, but
  1121. * we don't want to overwrite the tail of the log.
  1122. */
  1123. if (head_cycle == tail_cycle) {
  1124. /*
  1125. * The tail is behind the head in the physical log,
  1126. * so the distance from the head to the tail is the
  1127. * distance from the head to the end of the log plus
  1128. * the distance from the beginning of the log to the
  1129. * tail.
  1130. */
  1131. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1132. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1133. XFS_ERRLEVEL_LOW, log->l_mp);
  1134. return XFS_ERROR(EFSCORRUPTED);
  1135. }
  1136. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1137. } else {
  1138. /*
  1139. * The head is behind the tail in the physical log,
  1140. * so the distance from the head to the tail is just
  1141. * the tail block minus the head block.
  1142. */
  1143. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1144. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1145. XFS_ERRLEVEL_LOW, log->l_mp);
  1146. return XFS_ERROR(EFSCORRUPTED);
  1147. }
  1148. tail_distance = tail_block - head_block;
  1149. }
  1150. /*
  1151. * If the head is right up against the tail, we can't clear
  1152. * anything.
  1153. */
  1154. if (tail_distance <= 0) {
  1155. ASSERT(tail_distance == 0);
  1156. return 0;
  1157. }
  1158. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1159. /*
  1160. * Take the smaller of the maximum amount of outstanding I/O
  1161. * we could have and the distance to the tail to clear out.
  1162. * We take the smaller so that we don't overwrite the tail and
  1163. * we don't waste all day writing from the head to the tail
  1164. * for no reason.
  1165. */
  1166. max_distance = MIN(max_distance, tail_distance);
  1167. if ((head_block + max_distance) <= log->l_logBBsize) {
  1168. /*
  1169. * We can stomp all the blocks we need to without
  1170. * wrapping around the end of the log. Just do it
  1171. * in a single write. Use the cycle number of the
  1172. * current cycle minus one so that the log will look like:
  1173. * n ... | n - 1 ...
  1174. */
  1175. error = xlog_write_log_records(log, (head_cycle - 1),
  1176. head_block, max_distance, tail_cycle,
  1177. tail_block);
  1178. if (error)
  1179. return error;
  1180. } else {
  1181. /*
  1182. * We need to wrap around the end of the physical log in
  1183. * order to clear all the blocks. Do it in two separate
  1184. * I/Os. The first write should be from the head to the
  1185. * end of the physical log, and it should use the current
  1186. * cycle number minus one just like above.
  1187. */
  1188. distance = log->l_logBBsize - head_block;
  1189. error = xlog_write_log_records(log, (head_cycle - 1),
  1190. head_block, distance, tail_cycle,
  1191. tail_block);
  1192. if (error)
  1193. return error;
  1194. /*
  1195. * Now write the blocks at the start of the physical log.
  1196. * This writes the remainder of the blocks we want to clear.
  1197. * It uses the current cycle number since we're now on the
  1198. * same cycle as the head so that we get:
  1199. * n ... n ... | n - 1 ...
  1200. * ^^^^^ blocks we're writing
  1201. */
  1202. distance = max_distance - (log->l_logBBsize - head_block);
  1203. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1204. tail_cycle, tail_block);
  1205. if (error)
  1206. return error;
  1207. }
  1208. return 0;
  1209. }
  1210. /******************************************************************************
  1211. *
  1212. * Log recover routines
  1213. *
  1214. ******************************************************************************
  1215. */
  1216. STATIC xlog_recover_t *
  1217. xlog_recover_find_tid(
  1218. xlog_recover_t *q,
  1219. xlog_tid_t tid)
  1220. {
  1221. xlog_recover_t *p = q;
  1222. while (p != NULL) {
  1223. if (p->r_log_tid == tid)
  1224. break;
  1225. p = p->r_next;
  1226. }
  1227. return p;
  1228. }
  1229. STATIC void
  1230. xlog_recover_put_hashq(
  1231. xlog_recover_t **q,
  1232. xlog_recover_t *trans)
  1233. {
  1234. trans->r_next = *q;
  1235. *q = trans;
  1236. }
  1237. STATIC void
  1238. xlog_recover_add_item(
  1239. xlog_recover_item_t **itemq)
  1240. {
  1241. xlog_recover_item_t *item;
  1242. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1243. xlog_recover_insert_item_backq(itemq, item);
  1244. }
  1245. STATIC int
  1246. xlog_recover_add_to_cont_trans(
  1247. xlog_recover_t *trans,
  1248. xfs_caddr_t dp,
  1249. int len)
  1250. {
  1251. xlog_recover_item_t *item;
  1252. xfs_caddr_t ptr, old_ptr;
  1253. int old_len;
  1254. item = trans->r_itemq;
  1255. if (item == NULL) {
  1256. /* finish copying rest of trans header */
  1257. xlog_recover_add_item(&trans->r_itemq);
  1258. ptr = (xfs_caddr_t) &trans->r_theader +
  1259. sizeof(xfs_trans_header_t) - len;
  1260. memcpy(ptr, dp, len); /* d, s, l */
  1261. return 0;
  1262. }
  1263. item = item->ri_prev;
  1264. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1265. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1266. ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
  1267. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1268. item->ri_buf[item->ri_cnt-1].i_len += len;
  1269. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1270. return 0;
  1271. }
  1272. /*
  1273. * The next region to add is the start of a new region. It could be
  1274. * a whole region or it could be the first part of a new region. Because
  1275. * of this, the assumption here is that the type and size fields of all
  1276. * format structures fit into the first 32 bits of the structure.
  1277. *
  1278. * This works because all regions must be 32 bit aligned. Therefore, we
  1279. * either have both fields or we have neither field. In the case we have
  1280. * neither field, the data part of the region is zero length. We only have
  1281. * a log_op_header and can throw away the header since a new one will appear
  1282. * later. If we have at least 4 bytes, then we can determine how many regions
  1283. * will appear in the current log item.
  1284. */
  1285. STATIC int
  1286. xlog_recover_add_to_trans(
  1287. xlog_recover_t *trans,
  1288. xfs_caddr_t dp,
  1289. int len)
  1290. {
  1291. xfs_inode_log_format_t *in_f; /* any will do */
  1292. xlog_recover_item_t *item;
  1293. xfs_caddr_t ptr;
  1294. if (!len)
  1295. return 0;
  1296. item = trans->r_itemq;
  1297. if (item == NULL) {
  1298. ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
  1299. if (len == sizeof(xfs_trans_header_t))
  1300. xlog_recover_add_item(&trans->r_itemq);
  1301. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1302. return 0;
  1303. }
  1304. ptr = kmem_alloc(len, KM_SLEEP);
  1305. memcpy(ptr, dp, len);
  1306. in_f = (xfs_inode_log_format_t *)ptr;
  1307. if (item->ri_prev->ri_total != 0 &&
  1308. item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
  1309. xlog_recover_add_item(&trans->r_itemq);
  1310. }
  1311. item = trans->r_itemq;
  1312. item = item->ri_prev;
  1313. if (item->ri_total == 0) { /* first region to be added */
  1314. item->ri_total = in_f->ilf_size;
  1315. ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
  1316. item->ri_buf = kmem_zalloc((item->ri_total *
  1317. sizeof(xfs_log_iovec_t)), KM_SLEEP);
  1318. }
  1319. ASSERT(item->ri_total > item->ri_cnt);
  1320. /* Description region is ri_buf[0] */
  1321. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1322. item->ri_buf[item->ri_cnt].i_len = len;
  1323. item->ri_cnt++;
  1324. return 0;
  1325. }
  1326. STATIC void
  1327. xlog_recover_new_tid(
  1328. xlog_recover_t **q,
  1329. xlog_tid_t tid,
  1330. xfs_lsn_t lsn)
  1331. {
  1332. xlog_recover_t *trans;
  1333. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1334. trans->r_log_tid = tid;
  1335. trans->r_lsn = lsn;
  1336. xlog_recover_put_hashq(q, trans);
  1337. }
  1338. STATIC int
  1339. xlog_recover_unlink_tid(
  1340. xlog_recover_t **q,
  1341. xlog_recover_t *trans)
  1342. {
  1343. xlog_recover_t *tp;
  1344. int found = 0;
  1345. ASSERT(trans != NULL);
  1346. if (trans == *q) {
  1347. *q = (*q)->r_next;
  1348. } else {
  1349. tp = *q;
  1350. while (tp) {
  1351. if (tp->r_next == trans) {
  1352. found = 1;
  1353. break;
  1354. }
  1355. tp = tp->r_next;
  1356. }
  1357. if (!found) {
  1358. xlog_warn(
  1359. "XFS: xlog_recover_unlink_tid: trans not found");
  1360. ASSERT(0);
  1361. return XFS_ERROR(EIO);
  1362. }
  1363. tp->r_next = tp->r_next->r_next;
  1364. }
  1365. return 0;
  1366. }
  1367. STATIC void
  1368. xlog_recover_insert_item_backq(
  1369. xlog_recover_item_t **q,
  1370. xlog_recover_item_t *item)
  1371. {
  1372. if (*q == NULL) {
  1373. item->ri_prev = item->ri_next = item;
  1374. *q = item;
  1375. } else {
  1376. item->ri_next = *q;
  1377. item->ri_prev = (*q)->ri_prev;
  1378. (*q)->ri_prev = item;
  1379. item->ri_prev->ri_next = item;
  1380. }
  1381. }
  1382. STATIC void
  1383. xlog_recover_insert_item_frontq(
  1384. xlog_recover_item_t **q,
  1385. xlog_recover_item_t *item)
  1386. {
  1387. xlog_recover_insert_item_backq(q, item);
  1388. *q = item;
  1389. }
  1390. STATIC int
  1391. xlog_recover_reorder_trans(
  1392. xlog_recover_t *trans)
  1393. {
  1394. xlog_recover_item_t *first_item, *itemq, *itemq_next;
  1395. xfs_buf_log_format_t *buf_f;
  1396. ushort flags = 0;
  1397. first_item = itemq = trans->r_itemq;
  1398. trans->r_itemq = NULL;
  1399. do {
  1400. itemq_next = itemq->ri_next;
  1401. buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
  1402. switch (ITEM_TYPE(itemq)) {
  1403. case XFS_LI_BUF:
  1404. flags = buf_f->blf_flags;
  1405. if (!(flags & XFS_BLI_CANCEL)) {
  1406. xlog_recover_insert_item_frontq(&trans->r_itemq,
  1407. itemq);
  1408. break;
  1409. }
  1410. case XFS_LI_INODE:
  1411. case XFS_LI_DQUOT:
  1412. case XFS_LI_QUOTAOFF:
  1413. case XFS_LI_EFD:
  1414. case XFS_LI_EFI:
  1415. xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
  1416. break;
  1417. default:
  1418. xlog_warn(
  1419. "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
  1420. ASSERT(0);
  1421. return XFS_ERROR(EIO);
  1422. }
  1423. itemq = itemq_next;
  1424. } while (first_item != itemq);
  1425. return 0;
  1426. }
  1427. /*
  1428. * Build up the table of buf cancel records so that we don't replay
  1429. * cancelled data in the second pass. For buffer records that are
  1430. * not cancel records, there is nothing to do here so we just return.
  1431. *
  1432. * If we get a cancel record which is already in the table, this indicates
  1433. * that the buffer was cancelled multiple times. In order to ensure
  1434. * that during pass 2 we keep the record in the table until we reach its
  1435. * last occurrence in the log, we keep a reference count in the cancel
  1436. * record in the table to tell us how many times we expect to see this
  1437. * record during the second pass.
  1438. */
  1439. STATIC void
  1440. xlog_recover_do_buffer_pass1(
  1441. xlog_t *log,
  1442. xfs_buf_log_format_t *buf_f)
  1443. {
  1444. xfs_buf_cancel_t *bcp;
  1445. xfs_buf_cancel_t *nextp;
  1446. xfs_buf_cancel_t *prevp;
  1447. xfs_buf_cancel_t **bucket;
  1448. xfs_daddr_t blkno = 0;
  1449. uint len = 0;
  1450. ushort flags = 0;
  1451. switch (buf_f->blf_type) {
  1452. case XFS_LI_BUF:
  1453. blkno = buf_f->blf_blkno;
  1454. len = buf_f->blf_len;
  1455. flags = buf_f->blf_flags;
  1456. break;
  1457. }
  1458. /*
  1459. * If this isn't a cancel buffer item, then just return.
  1460. */
  1461. if (!(flags & XFS_BLI_CANCEL))
  1462. return;
  1463. /*
  1464. * Insert an xfs_buf_cancel record into the hash table of
  1465. * them. If there is already an identical record, bump
  1466. * its reference count.
  1467. */
  1468. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1469. XLOG_BC_TABLE_SIZE];
  1470. /*
  1471. * If the hash bucket is empty then just insert a new record into
  1472. * the bucket.
  1473. */
  1474. if (*bucket == NULL) {
  1475. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1476. KM_SLEEP);
  1477. bcp->bc_blkno = blkno;
  1478. bcp->bc_len = len;
  1479. bcp->bc_refcount = 1;
  1480. bcp->bc_next = NULL;
  1481. *bucket = bcp;
  1482. return;
  1483. }
  1484. /*
  1485. * The hash bucket is not empty, so search for duplicates of our
  1486. * record. If we find one them just bump its refcount. If not
  1487. * then add us at the end of the list.
  1488. */
  1489. prevp = NULL;
  1490. nextp = *bucket;
  1491. while (nextp != NULL) {
  1492. if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
  1493. nextp->bc_refcount++;
  1494. return;
  1495. }
  1496. prevp = nextp;
  1497. nextp = nextp->bc_next;
  1498. }
  1499. ASSERT(prevp != NULL);
  1500. bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
  1501. KM_SLEEP);
  1502. bcp->bc_blkno = blkno;
  1503. bcp->bc_len = len;
  1504. bcp->bc_refcount = 1;
  1505. bcp->bc_next = NULL;
  1506. prevp->bc_next = bcp;
  1507. }
  1508. /*
  1509. * Check to see whether the buffer being recovered has a corresponding
  1510. * entry in the buffer cancel record table. If it does then return 1
  1511. * so that it will be cancelled, otherwise return 0. If the buffer is
  1512. * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
  1513. * the refcount on the entry in the table and remove it from the table
  1514. * if this is the last reference.
  1515. *
  1516. * We remove the cancel record from the table when we encounter its
  1517. * last occurrence in the log so that if the same buffer is re-used
  1518. * again after its last cancellation we actually replay the changes
  1519. * made at that point.
  1520. */
  1521. STATIC int
  1522. xlog_check_buffer_cancelled(
  1523. xlog_t *log,
  1524. xfs_daddr_t blkno,
  1525. uint len,
  1526. ushort flags)
  1527. {
  1528. xfs_buf_cancel_t *bcp;
  1529. xfs_buf_cancel_t *prevp;
  1530. xfs_buf_cancel_t **bucket;
  1531. if (log->l_buf_cancel_table == NULL) {
  1532. /*
  1533. * There is nothing in the table built in pass one,
  1534. * so this buffer must not be cancelled.
  1535. */
  1536. ASSERT(!(flags & XFS_BLI_CANCEL));
  1537. return 0;
  1538. }
  1539. bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
  1540. XLOG_BC_TABLE_SIZE];
  1541. bcp = *bucket;
  1542. if (bcp == NULL) {
  1543. /*
  1544. * There is no corresponding entry in the table built
  1545. * in pass one, so this buffer has not been cancelled.
  1546. */
  1547. ASSERT(!(flags & XFS_BLI_CANCEL));
  1548. return 0;
  1549. }
  1550. /*
  1551. * Search for an entry in the buffer cancel table that
  1552. * matches our buffer.
  1553. */
  1554. prevp = NULL;
  1555. while (bcp != NULL) {
  1556. if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
  1557. /*
  1558. * We've go a match, so return 1 so that the
  1559. * recovery of this buffer is cancelled.
  1560. * If this buffer is actually a buffer cancel
  1561. * log item, then decrement the refcount on the
  1562. * one in the table and remove it if this is the
  1563. * last reference.
  1564. */
  1565. if (flags & XFS_BLI_CANCEL) {
  1566. bcp->bc_refcount--;
  1567. if (bcp->bc_refcount == 0) {
  1568. if (prevp == NULL) {
  1569. *bucket = bcp->bc_next;
  1570. } else {
  1571. prevp->bc_next = bcp->bc_next;
  1572. }
  1573. kmem_free(bcp,
  1574. sizeof(xfs_buf_cancel_t));
  1575. }
  1576. }
  1577. return 1;
  1578. }
  1579. prevp = bcp;
  1580. bcp = bcp->bc_next;
  1581. }
  1582. /*
  1583. * We didn't find a corresponding entry in the table, so
  1584. * return 0 so that the buffer is NOT cancelled.
  1585. */
  1586. ASSERT(!(flags & XFS_BLI_CANCEL));
  1587. return 0;
  1588. }
  1589. STATIC int
  1590. xlog_recover_do_buffer_pass2(
  1591. xlog_t *log,
  1592. xfs_buf_log_format_t *buf_f)
  1593. {
  1594. xfs_daddr_t blkno = 0;
  1595. ushort flags = 0;
  1596. uint len = 0;
  1597. switch (buf_f->blf_type) {
  1598. case XFS_LI_BUF:
  1599. blkno = buf_f->blf_blkno;
  1600. flags = buf_f->blf_flags;
  1601. len = buf_f->blf_len;
  1602. break;
  1603. }
  1604. return xlog_check_buffer_cancelled(log, blkno, len, flags);
  1605. }
  1606. /*
  1607. * Perform recovery for a buffer full of inodes. In these buffers,
  1608. * the only data which should be recovered is that which corresponds
  1609. * to the di_next_unlinked pointers in the on disk inode structures.
  1610. * The rest of the data for the inodes is always logged through the
  1611. * inodes themselves rather than the inode buffer and is recovered
  1612. * in xlog_recover_do_inode_trans().
  1613. *
  1614. * The only time when buffers full of inodes are fully recovered is
  1615. * when the buffer is full of newly allocated inodes. In this case
  1616. * the buffer will not be marked as an inode buffer and so will be
  1617. * sent to xlog_recover_do_reg_buffer() below during recovery.
  1618. */
  1619. STATIC int
  1620. xlog_recover_do_inode_buffer(
  1621. xfs_mount_t *mp,
  1622. xlog_recover_item_t *item,
  1623. xfs_buf_t *bp,
  1624. xfs_buf_log_format_t *buf_f)
  1625. {
  1626. int i;
  1627. int item_index;
  1628. int bit;
  1629. int nbits;
  1630. int reg_buf_offset;
  1631. int reg_buf_bytes;
  1632. int next_unlinked_offset;
  1633. int inodes_per_buf;
  1634. xfs_agino_t *logged_nextp;
  1635. xfs_agino_t *buffer_nextp;
  1636. unsigned int *data_map = NULL;
  1637. unsigned int map_size = 0;
  1638. switch (buf_f->blf_type) {
  1639. case XFS_LI_BUF:
  1640. data_map = buf_f->blf_data_map;
  1641. map_size = buf_f->blf_map_size;
  1642. break;
  1643. }
  1644. /*
  1645. * Set the variables corresponding to the current region to
  1646. * 0 so that we'll initialize them on the first pass through
  1647. * the loop.
  1648. */
  1649. reg_buf_offset = 0;
  1650. reg_buf_bytes = 0;
  1651. bit = 0;
  1652. nbits = 0;
  1653. item_index = 0;
  1654. inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
  1655. for (i = 0; i < inodes_per_buf; i++) {
  1656. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1657. offsetof(xfs_dinode_t, di_next_unlinked);
  1658. while (next_unlinked_offset >=
  1659. (reg_buf_offset + reg_buf_bytes)) {
  1660. /*
  1661. * The next di_next_unlinked field is beyond
  1662. * the current logged region. Find the next
  1663. * logged region that contains or is beyond
  1664. * the current di_next_unlinked field.
  1665. */
  1666. bit += nbits;
  1667. bit = xfs_next_bit(data_map, map_size, bit);
  1668. /*
  1669. * If there are no more logged regions in the
  1670. * buffer, then we're done.
  1671. */
  1672. if (bit == -1) {
  1673. return 0;
  1674. }
  1675. nbits = xfs_contig_bits(data_map, map_size,
  1676. bit);
  1677. ASSERT(nbits > 0);
  1678. reg_buf_offset = bit << XFS_BLI_SHIFT;
  1679. reg_buf_bytes = nbits << XFS_BLI_SHIFT;
  1680. item_index++;
  1681. }
  1682. /*
  1683. * If the current logged region starts after the current
  1684. * di_next_unlinked field, then move on to the next
  1685. * di_next_unlinked field.
  1686. */
  1687. if (next_unlinked_offset < reg_buf_offset) {
  1688. continue;
  1689. }
  1690. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1691. ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
  1692. ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
  1693. /*
  1694. * The current logged region contains a copy of the
  1695. * current di_next_unlinked field. Extract its value
  1696. * and copy it to the buffer copy.
  1697. */
  1698. logged_nextp = (xfs_agino_t *)
  1699. ((char *)(item->ri_buf[item_index].i_addr) +
  1700. (next_unlinked_offset - reg_buf_offset));
  1701. if (unlikely(*logged_nextp == 0)) {
  1702. xfs_fs_cmn_err(CE_ALERT, mp,
  1703. "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
  1704. item, bp);
  1705. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1706. XFS_ERRLEVEL_LOW, mp);
  1707. return XFS_ERROR(EFSCORRUPTED);
  1708. }
  1709. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1710. next_unlinked_offset);
  1711. *buffer_nextp = *logged_nextp;
  1712. }
  1713. return 0;
  1714. }
  1715. /*
  1716. * Perform a 'normal' buffer recovery. Each logged region of the
  1717. * buffer should be copied over the corresponding region in the
  1718. * given buffer. The bitmap in the buf log format structure indicates
  1719. * where to place the logged data.
  1720. */
  1721. /*ARGSUSED*/
  1722. STATIC void
  1723. xlog_recover_do_reg_buffer(
  1724. xlog_recover_item_t *item,
  1725. xfs_buf_t *bp,
  1726. xfs_buf_log_format_t *buf_f)
  1727. {
  1728. int i;
  1729. int bit;
  1730. int nbits;
  1731. unsigned int *data_map = NULL;
  1732. unsigned int map_size = 0;
  1733. int error;
  1734. switch (buf_f->blf_type) {
  1735. case XFS_LI_BUF:
  1736. data_map = buf_f->blf_data_map;
  1737. map_size = buf_f->blf_map_size;
  1738. break;
  1739. }
  1740. bit = 0;
  1741. i = 1; /* 0 is the buf format structure */
  1742. while (1) {
  1743. bit = xfs_next_bit(data_map, map_size, bit);
  1744. if (bit == -1)
  1745. break;
  1746. nbits = xfs_contig_bits(data_map, map_size, bit);
  1747. ASSERT(nbits > 0);
  1748. ASSERT(item->ri_buf[i].i_addr != NULL);
  1749. ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
  1750. ASSERT(XFS_BUF_COUNT(bp) >=
  1751. ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
  1752. /*
  1753. * Do a sanity check if this is a dquot buffer. Just checking
  1754. * the first dquot in the buffer should do. XXXThis is
  1755. * probably a good thing to do for other buf types also.
  1756. */
  1757. error = 0;
  1758. if (buf_f->blf_flags &
  1759. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  1760. error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
  1761. item->ri_buf[i].i_addr,
  1762. -1, 0, XFS_QMOPT_DOWARN,
  1763. "dquot_buf_recover");
  1764. }
  1765. if (!error)
  1766. memcpy(xfs_buf_offset(bp,
  1767. (uint)bit << XFS_BLI_SHIFT), /* dest */
  1768. item->ri_buf[i].i_addr, /* source */
  1769. nbits<<XFS_BLI_SHIFT); /* length */
  1770. i++;
  1771. bit += nbits;
  1772. }
  1773. /* Shouldn't be any more regions */
  1774. ASSERT(i == item->ri_total);
  1775. }
  1776. /*
  1777. * Do some primitive error checking on ondisk dquot data structures.
  1778. */
  1779. int
  1780. xfs_qm_dqcheck(
  1781. xfs_disk_dquot_t *ddq,
  1782. xfs_dqid_t id,
  1783. uint type, /* used only when IO_dorepair is true */
  1784. uint flags,
  1785. char *str)
  1786. {
  1787. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1788. int errs = 0;
  1789. /*
  1790. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1791. * 1. If we crash while deleting the quotainode(s), and those blks got
  1792. * used for user data. This is because we take the path of regular
  1793. * file deletion; however, the size field of quotainodes is never
  1794. * updated, so all the tricks that we play in itruncate_finish
  1795. * don't quite matter.
  1796. *
  1797. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1798. * But the allocation will be replayed so we'll end up with an
  1799. * uninitialized quota block.
  1800. *
  1801. * This is all fine; things are still consistent, and we haven't lost
  1802. * any quota information. Just don't complain about bad dquot blks.
  1803. */
  1804. if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
  1805. if (flags & XFS_QMOPT_DOWARN)
  1806. cmn_err(CE_ALERT,
  1807. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1808. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1809. errs++;
  1810. }
  1811. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1812. if (flags & XFS_QMOPT_DOWARN)
  1813. cmn_err(CE_ALERT,
  1814. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1815. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1816. errs++;
  1817. }
  1818. if (ddq->d_flags != XFS_DQ_USER &&
  1819. ddq->d_flags != XFS_DQ_PROJ &&
  1820. ddq->d_flags != XFS_DQ_GROUP) {
  1821. if (flags & XFS_QMOPT_DOWARN)
  1822. cmn_err(CE_ALERT,
  1823. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1824. str, id, ddq->d_flags);
  1825. errs++;
  1826. }
  1827. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1828. if (flags & XFS_QMOPT_DOWARN)
  1829. cmn_err(CE_ALERT,
  1830. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1831. "0x%x expected, found id 0x%x",
  1832. str, ddq, id, be32_to_cpu(ddq->d_id));
  1833. errs++;
  1834. }
  1835. if (!errs && ddq->d_id) {
  1836. if (ddq->d_blk_softlimit &&
  1837. be64_to_cpu(ddq->d_bcount) >=
  1838. be64_to_cpu(ddq->d_blk_softlimit)) {
  1839. if (!ddq->d_btimer) {
  1840. if (flags & XFS_QMOPT_DOWARN)
  1841. cmn_err(CE_ALERT,
  1842. "%s : Dquot ID 0x%x (0x%p) "
  1843. "BLK TIMER NOT STARTED",
  1844. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1845. errs++;
  1846. }
  1847. }
  1848. if (ddq->d_ino_softlimit &&
  1849. be64_to_cpu(ddq->d_icount) >=
  1850. be64_to_cpu(ddq->d_ino_softlimit)) {
  1851. if (!ddq->d_itimer) {
  1852. if (flags & XFS_QMOPT_DOWARN)
  1853. cmn_err(CE_ALERT,
  1854. "%s : Dquot ID 0x%x (0x%p) "
  1855. "INODE TIMER NOT STARTED",
  1856. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1857. errs++;
  1858. }
  1859. }
  1860. if (ddq->d_rtb_softlimit &&
  1861. be64_to_cpu(ddq->d_rtbcount) >=
  1862. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1863. if (!ddq->d_rtbtimer) {
  1864. if (flags & XFS_QMOPT_DOWARN)
  1865. cmn_err(CE_ALERT,
  1866. "%s : Dquot ID 0x%x (0x%p) "
  1867. "RTBLK TIMER NOT STARTED",
  1868. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1869. errs++;
  1870. }
  1871. }
  1872. }
  1873. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1874. return errs;
  1875. if (flags & XFS_QMOPT_DOWARN)
  1876. cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
  1877. /*
  1878. * Typically, a repair is only requested by quotacheck.
  1879. */
  1880. ASSERT(id != -1);
  1881. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1882. memset(d, 0, sizeof(xfs_dqblk_t));
  1883. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1884. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1885. d->dd_diskdq.d_flags = type;
  1886. d->dd_diskdq.d_id = cpu_to_be32(id);
  1887. return errs;
  1888. }
  1889. /*
  1890. * Perform a dquot buffer recovery.
  1891. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1892. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1893. * Else, treat it as a regular buffer and do recovery.
  1894. */
  1895. STATIC void
  1896. xlog_recover_do_dquot_buffer(
  1897. xfs_mount_t *mp,
  1898. xlog_t *log,
  1899. xlog_recover_item_t *item,
  1900. xfs_buf_t *bp,
  1901. xfs_buf_log_format_t *buf_f)
  1902. {
  1903. uint type;
  1904. /*
  1905. * Filesystems are required to send in quota flags at mount time.
  1906. */
  1907. if (mp->m_qflags == 0) {
  1908. return;
  1909. }
  1910. type = 0;
  1911. if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
  1912. type |= XFS_DQ_USER;
  1913. if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
  1914. type |= XFS_DQ_PROJ;
  1915. if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
  1916. type |= XFS_DQ_GROUP;
  1917. /*
  1918. * This type of quotas was turned off, so ignore this buffer
  1919. */
  1920. if (log->l_quotaoffs_flag & type)
  1921. return;
  1922. xlog_recover_do_reg_buffer(item, bp, buf_f);
  1923. }
  1924. /*
  1925. * This routine replays a modification made to a buffer at runtime.
  1926. * There are actually two types of buffer, regular and inode, which
  1927. * are handled differently. Inode buffers are handled differently
  1928. * in that we only recover a specific set of data from them, namely
  1929. * the inode di_next_unlinked fields. This is because all other inode
  1930. * data is actually logged via inode records and any data we replay
  1931. * here which overlaps that may be stale.
  1932. *
  1933. * When meta-data buffers are freed at run time we log a buffer item
  1934. * with the XFS_BLI_CANCEL bit set to indicate that previous copies
  1935. * of the buffer in the log should not be replayed at recovery time.
  1936. * This is so that if the blocks covered by the buffer are reused for
  1937. * file data before we crash we don't end up replaying old, freed
  1938. * meta-data into a user's file.
  1939. *
  1940. * To handle the cancellation of buffer log items, we make two passes
  1941. * over the log during recovery. During the first we build a table of
  1942. * those buffers which have been cancelled, and during the second we
  1943. * only replay those buffers which do not have corresponding cancel
  1944. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1945. * for more details on the implementation of the table of cancel records.
  1946. */
  1947. STATIC int
  1948. xlog_recover_do_buffer_trans(
  1949. xlog_t *log,
  1950. xlog_recover_item_t *item,
  1951. int pass)
  1952. {
  1953. xfs_buf_log_format_t *buf_f;
  1954. xfs_mount_t *mp;
  1955. xfs_buf_t *bp;
  1956. int error;
  1957. int cancel;
  1958. xfs_daddr_t blkno;
  1959. int len;
  1960. ushort flags;
  1961. buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
  1962. if (pass == XLOG_RECOVER_PASS1) {
  1963. /*
  1964. * In this pass we're only looking for buf items
  1965. * with the XFS_BLI_CANCEL bit set.
  1966. */
  1967. xlog_recover_do_buffer_pass1(log, buf_f);
  1968. return 0;
  1969. } else {
  1970. /*
  1971. * In this pass we want to recover all the buffers
  1972. * which have not been cancelled and are not
  1973. * cancellation buffers themselves. The routine
  1974. * we call here will tell us whether or not to
  1975. * continue with the replay of this buffer.
  1976. */
  1977. cancel = xlog_recover_do_buffer_pass2(log, buf_f);
  1978. if (cancel) {
  1979. return 0;
  1980. }
  1981. }
  1982. switch (buf_f->blf_type) {
  1983. case XFS_LI_BUF:
  1984. blkno = buf_f->blf_blkno;
  1985. len = buf_f->blf_len;
  1986. flags = buf_f->blf_flags;
  1987. break;
  1988. default:
  1989. xfs_fs_cmn_err(CE_ALERT, log->l_mp,
  1990. "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
  1991. buf_f->blf_type, log->l_mp->m_logname ?
  1992. log->l_mp->m_logname : "internal");
  1993. XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
  1994. XFS_ERRLEVEL_LOW, log->l_mp);
  1995. return XFS_ERROR(EFSCORRUPTED);
  1996. }
  1997. mp = log->l_mp;
  1998. if (flags & XFS_BLI_INODE_BUF) {
  1999. bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
  2000. XFS_BUF_LOCK);
  2001. } else {
  2002. bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
  2003. }
  2004. if (XFS_BUF_ISERROR(bp)) {
  2005. xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
  2006. bp, blkno);
  2007. error = XFS_BUF_GETERROR(bp);
  2008. xfs_buf_relse(bp);
  2009. return error;
  2010. }
  2011. error = 0;
  2012. if (flags & XFS_BLI_INODE_BUF) {
  2013. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  2014. } else if (flags &
  2015. (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
  2016. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  2017. } else {
  2018. xlog_recover_do_reg_buffer(item, bp, buf_f);
  2019. }
  2020. if (error)
  2021. return XFS_ERROR(error);
  2022. /*
  2023. * Perform delayed write on the buffer. Asynchronous writes will be
  2024. * slower when taking into account all the buffers to be flushed.
  2025. *
  2026. * Also make sure that only inode buffers with good sizes stay in
  2027. * the buffer cache. The kernel moves inodes in buffers of 1 block
  2028. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  2029. * buffers in the log can be a different size if the log was generated
  2030. * by an older kernel using unclustered inode buffers or a newer kernel
  2031. * running with a different inode cluster size. Regardless, if the
  2032. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  2033. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  2034. * the buffer out of the buffer cache so that the buffer won't
  2035. * overlap with future reads of those inodes.
  2036. */
  2037. if (XFS_DINODE_MAGIC ==
  2038. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  2039. (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
  2040. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  2041. XFS_BUF_STALE(bp);
  2042. error = xfs_bwrite(mp, bp);
  2043. } else {
  2044. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
  2045. XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
  2046. XFS_BUF_SET_FSPRIVATE(bp, mp);
  2047. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2048. xfs_bdwrite(mp, bp);
  2049. }
  2050. return (error);
  2051. }
  2052. STATIC int
  2053. xlog_recover_do_inode_trans(
  2054. xlog_t *log,
  2055. xlog_recover_item_t *item,
  2056. int pass)
  2057. {
  2058. xfs_inode_log_format_t *in_f;
  2059. xfs_mount_t *mp;
  2060. xfs_buf_t *bp;
  2061. xfs_imap_t imap;
  2062. xfs_dinode_t *dip;
  2063. xfs_ino_t ino;
  2064. int len;
  2065. xfs_caddr_t src;
  2066. xfs_caddr_t dest;
  2067. int error;
  2068. int attr_index;
  2069. uint fields;
  2070. xfs_icdinode_t *dicp;
  2071. int need_free = 0;
  2072. if (pass == XLOG_RECOVER_PASS1) {
  2073. return 0;
  2074. }
  2075. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  2076. in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
  2077. } else {
  2078. in_f = (xfs_inode_log_format_t *)kmem_alloc(
  2079. sizeof(xfs_inode_log_format_t), KM_SLEEP);
  2080. need_free = 1;
  2081. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  2082. if (error)
  2083. goto error;
  2084. }
  2085. ino = in_f->ilf_ino;
  2086. mp = log->l_mp;
  2087. if (ITEM_TYPE(item) == XFS_LI_INODE) {
  2088. imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
  2089. imap.im_len = in_f->ilf_len;
  2090. imap.im_boffset = in_f->ilf_boffset;
  2091. } else {
  2092. /*
  2093. * It's an old inode format record. We don't know where
  2094. * its cluster is located on disk, and we can't allow
  2095. * xfs_imap() to figure it out because the inode btrees
  2096. * are not ready to be used. Therefore do not pass the
  2097. * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
  2098. * us only the single block in which the inode lives
  2099. * rather than its cluster, so we must make sure to
  2100. * invalidate the buffer when we write it out below.
  2101. */
  2102. imap.im_blkno = 0;
  2103. error = xfs_imap(log->l_mp, NULL, ino, &imap, 0);
  2104. if (error)
  2105. goto error;
  2106. }
  2107. /*
  2108. * Inode buffers can be freed, look out for it,
  2109. * and do not replay the inode.
  2110. */
  2111. if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
  2112. error = 0;
  2113. goto error;
  2114. }
  2115. bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
  2116. XFS_BUF_LOCK);
  2117. if (XFS_BUF_ISERROR(bp)) {
  2118. xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
  2119. bp, imap.im_blkno);
  2120. error = XFS_BUF_GETERROR(bp);
  2121. xfs_buf_relse(bp);
  2122. goto error;
  2123. }
  2124. error = 0;
  2125. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2126. dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
  2127. /*
  2128. * Make sure the place we're flushing out to really looks
  2129. * like an inode!
  2130. */
  2131. if (unlikely(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC)) {
  2132. xfs_buf_relse(bp);
  2133. xfs_fs_cmn_err(CE_ALERT, mp,
  2134. "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
  2135. dip, bp, ino);
  2136. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
  2137. XFS_ERRLEVEL_LOW, mp);
  2138. error = EFSCORRUPTED;
  2139. goto error;
  2140. }
  2141. dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
  2142. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2143. xfs_buf_relse(bp);
  2144. xfs_fs_cmn_err(CE_ALERT, mp,
  2145. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2146. item, ino);
  2147. XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
  2148. XFS_ERRLEVEL_LOW, mp);
  2149. error = EFSCORRUPTED;
  2150. goto error;
  2151. }
  2152. /* Skip replay when the on disk inode is newer than the log one */
  2153. if (dicp->di_flushiter < be16_to_cpu(dip->di_core.di_flushiter)) {
  2154. /*
  2155. * Deal with the wrap case, DI_MAX_FLUSH is less
  2156. * than smaller numbers
  2157. */
  2158. if (be16_to_cpu(dip->di_core.di_flushiter) == DI_MAX_FLUSH &&
  2159. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2160. /* do nothing */
  2161. } else {
  2162. xfs_buf_relse(bp);
  2163. error = 0;
  2164. goto error;
  2165. }
  2166. }
  2167. /* Take the opportunity to reset the flush iteration count */
  2168. dicp->di_flushiter = 0;
  2169. if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
  2170. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2171. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2172. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
  2173. XFS_ERRLEVEL_LOW, mp, dicp);
  2174. xfs_buf_relse(bp);
  2175. xfs_fs_cmn_err(CE_ALERT, mp,
  2176. "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2177. item, dip, bp, ino);
  2178. error = EFSCORRUPTED;
  2179. goto error;
  2180. }
  2181. } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
  2182. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2183. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2184. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2185. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
  2186. XFS_ERRLEVEL_LOW, mp, dicp);
  2187. xfs_buf_relse(bp);
  2188. xfs_fs_cmn_err(CE_ALERT, mp,
  2189. "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2190. item, dip, bp, ino);
  2191. error = EFSCORRUPTED;
  2192. goto error;
  2193. }
  2194. }
  2195. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2196. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
  2197. XFS_ERRLEVEL_LOW, mp, dicp);
  2198. xfs_buf_relse(bp);
  2199. xfs_fs_cmn_err(CE_ALERT, mp,
  2200. "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2201. item, dip, bp, ino,
  2202. dicp->di_nextents + dicp->di_anextents,
  2203. dicp->di_nblocks);
  2204. error = EFSCORRUPTED;
  2205. goto error;
  2206. }
  2207. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2208. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
  2209. XFS_ERRLEVEL_LOW, mp, dicp);
  2210. xfs_buf_relse(bp);
  2211. xfs_fs_cmn_err(CE_ALERT, mp,
  2212. "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
  2213. item, dip, bp, ino, dicp->di_forkoff);
  2214. error = EFSCORRUPTED;
  2215. goto error;
  2216. }
  2217. if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
  2218. XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
  2219. XFS_ERRLEVEL_LOW, mp, dicp);
  2220. xfs_buf_relse(bp);
  2221. xfs_fs_cmn_err(CE_ALERT, mp,
  2222. "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
  2223. item->ri_buf[1].i_len, item);
  2224. error = EFSCORRUPTED;
  2225. goto error;
  2226. }
  2227. /* The core is in in-core format */
  2228. xfs_dinode_to_disk(&dip->di_core,
  2229. (xfs_icdinode_t *)item->ri_buf[1].i_addr);
  2230. /* the rest is in on-disk format */
  2231. if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
  2232. memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
  2233. item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
  2234. item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
  2235. }
  2236. fields = in_f->ilf_fields;
  2237. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2238. case XFS_ILOG_DEV:
  2239. dip->di_u.di_dev = cpu_to_be32(in_f->ilf_u.ilfu_rdev);
  2240. break;
  2241. case XFS_ILOG_UUID:
  2242. dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
  2243. break;
  2244. }
  2245. if (in_f->ilf_size == 2)
  2246. goto write_inode_buffer;
  2247. len = item->ri_buf[2].i_len;
  2248. src = item->ri_buf[2].i_addr;
  2249. ASSERT(in_f->ilf_size <= 4);
  2250. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2251. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2252. (len == in_f->ilf_dsize));
  2253. switch (fields & XFS_ILOG_DFORK) {
  2254. case XFS_ILOG_DDATA:
  2255. case XFS_ILOG_DEXT:
  2256. memcpy(&dip->di_u, src, len);
  2257. break;
  2258. case XFS_ILOG_DBROOT:
  2259. xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
  2260. &(dip->di_u.di_bmbt),
  2261. XFS_DFORK_DSIZE(dip, mp));
  2262. break;
  2263. default:
  2264. /*
  2265. * There are no data fork flags set.
  2266. */
  2267. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2268. break;
  2269. }
  2270. /*
  2271. * If we logged any attribute data, recover it. There may or
  2272. * may not have been any other non-core data logged in this
  2273. * transaction.
  2274. */
  2275. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2276. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2277. attr_index = 3;
  2278. } else {
  2279. attr_index = 2;
  2280. }
  2281. len = item->ri_buf[attr_index].i_len;
  2282. src = item->ri_buf[attr_index].i_addr;
  2283. ASSERT(len == in_f->ilf_asize);
  2284. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2285. case XFS_ILOG_ADATA:
  2286. case XFS_ILOG_AEXT:
  2287. dest = XFS_DFORK_APTR(dip);
  2288. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2289. memcpy(dest, src, len);
  2290. break;
  2291. case XFS_ILOG_ABROOT:
  2292. dest = XFS_DFORK_APTR(dip);
  2293. xfs_bmbt_to_bmdr((xfs_bmbt_block_t *)src, len,
  2294. (xfs_bmdr_block_t*)dest,
  2295. XFS_DFORK_ASIZE(dip, mp));
  2296. break;
  2297. default:
  2298. xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
  2299. ASSERT(0);
  2300. xfs_buf_relse(bp);
  2301. error = EIO;
  2302. goto error;
  2303. }
  2304. }
  2305. write_inode_buffer:
  2306. if (ITEM_TYPE(item) == XFS_LI_INODE) {
  2307. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
  2308. XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
  2309. XFS_BUF_SET_FSPRIVATE(bp, mp);
  2310. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2311. xfs_bdwrite(mp, bp);
  2312. } else {
  2313. XFS_BUF_STALE(bp);
  2314. error = xfs_bwrite(mp, bp);
  2315. }
  2316. error:
  2317. if (need_free)
  2318. kmem_free(in_f, sizeof(*in_f));
  2319. return XFS_ERROR(error);
  2320. }
  2321. /*
  2322. * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
  2323. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2324. * of that type.
  2325. */
  2326. STATIC int
  2327. xlog_recover_do_quotaoff_trans(
  2328. xlog_t *log,
  2329. xlog_recover_item_t *item,
  2330. int pass)
  2331. {
  2332. xfs_qoff_logformat_t *qoff_f;
  2333. if (pass == XLOG_RECOVER_PASS2) {
  2334. return (0);
  2335. }
  2336. qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
  2337. ASSERT(qoff_f);
  2338. /*
  2339. * The logitem format's flag tells us if this was user quotaoff,
  2340. * group/project quotaoff or both.
  2341. */
  2342. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2343. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2344. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2345. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2346. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2347. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2348. return (0);
  2349. }
  2350. /*
  2351. * Recover a dquot record
  2352. */
  2353. STATIC int
  2354. xlog_recover_do_dquot_trans(
  2355. xlog_t *log,
  2356. xlog_recover_item_t *item,
  2357. int pass)
  2358. {
  2359. xfs_mount_t *mp;
  2360. xfs_buf_t *bp;
  2361. struct xfs_disk_dquot *ddq, *recddq;
  2362. int error;
  2363. xfs_dq_logformat_t *dq_f;
  2364. uint type;
  2365. if (pass == XLOG_RECOVER_PASS1) {
  2366. return 0;
  2367. }
  2368. mp = log->l_mp;
  2369. /*
  2370. * Filesystems are required to send in quota flags at mount time.
  2371. */
  2372. if (mp->m_qflags == 0)
  2373. return (0);
  2374. recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
  2375. ASSERT(recddq);
  2376. /*
  2377. * This type of quotas was turned off, so ignore this record.
  2378. */
  2379. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2380. ASSERT(type);
  2381. if (log->l_quotaoffs_flag & type)
  2382. return (0);
  2383. /*
  2384. * At this point we know that quota was _not_ turned off.
  2385. * Since the mount flags are not indicating to us otherwise, this
  2386. * must mean that quota is on, and the dquot needs to be replayed.
  2387. * Remember that we may not have fully recovered the superblock yet,
  2388. * so we can't do the usual trick of looking at the SB quota bits.
  2389. *
  2390. * The other possibility, of course, is that the quota subsystem was
  2391. * removed since the last mount - ENOSYS.
  2392. */
  2393. dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
  2394. ASSERT(dq_f);
  2395. if ((error = xfs_qm_dqcheck(recddq,
  2396. dq_f->qlf_id,
  2397. 0, XFS_QMOPT_DOWARN,
  2398. "xlog_recover_do_dquot_trans (log copy)"))) {
  2399. return XFS_ERROR(EIO);
  2400. }
  2401. ASSERT(dq_f->qlf_len == 1);
  2402. error = xfs_read_buf(mp, mp->m_ddev_targp,
  2403. dq_f->qlf_blkno,
  2404. XFS_FSB_TO_BB(mp, dq_f->qlf_len),
  2405. 0, &bp);
  2406. if (error) {
  2407. xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
  2408. bp, dq_f->qlf_blkno);
  2409. return error;
  2410. }
  2411. ASSERT(bp);
  2412. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2413. /*
  2414. * At least the magic num portion should be on disk because this
  2415. * was among a chunk of dquots created earlier, and we did some
  2416. * minimal initialization then.
  2417. */
  2418. if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2419. "xlog_recover_do_dquot_trans")) {
  2420. xfs_buf_relse(bp);
  2421. return XFS_ERROR(EIO);
  2422. }
  2423. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2424. ASSERT(dq_f->qlf_size == 2);
  2425. ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
  2426. XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
  2427. XFS_BUF_SET_FSPRIVATE(bp, mp);
  2428. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2429. xfs_bdwrite(mp, bp);
  2430. return (0);
  2431. }
  2432. /*
  2433. * This routine is called to create an in-core extent free intent
  2434. * item from the efi format structure which was logged on disk.
  2435. * It allocates an in-core efi, copies the extents from the format
  2436. * structure into it, and adds the efi to the AIL with the given
  2437. * LSN.
  2438. */
  2439. STATIC int
  2440. xlog_recover_do_efi_trans(
  2441. xlog_t *log,
  2442. xlog_recover_item_t *item,
  2443. xfs_lsn_t lsn,
  2444. int pass)
  2445. {
  2446. int error;
  2447. xfs_mount_t *mp;
  2448. xfs_efi_log_item_t *efip;
  2449. xfs_efi_log_format_t *efi_formatp;
  2450. if (pass == XLOG_RECOVER_PASS1) {
  2451. return 0;
  2452. }
  2453. efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
  2454. mp = log->l_mp;
  2455. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2456. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2457. &(efip->efi_format)))) {
  2458. xfs_efi_item_free(efip);
  2459. return error;
  2460. }
  2461. efip->efi_next_extent = efi_formatp->efi_nextents;
  2462. efip->efi_flags |= XFS_EFI_COMMITTED;
  2463. spin_lock(&mp->m_ail_lock);
  2464. /*
  2465. * xfs_trans_update_ail() drops the AIL lock.
  2466. */
  2467. xfs_trans_update_ail(mp, (xfs_log_item_t *)efip, lsn);
  2468. return 0;
  2469. }
  2470. /*
  2471. * This routine is called when an efd format structure is found in
  2472. * a committed transaction in the log. It's purpose is to cancel
  2473. * the corresponding efi if it was still in the log. To do this
  2474. * it searches the AIL for the efi with an id equal to that in the
  2475. * efd format structure. If we find it, we remove the efi from the
  2476. * AIL and free it.
  2477. */
  2478. STATIC void
  2479. xlog_recover_do_efd_trans(
  2480. xlog_t *log,
  2481. xlog_recover_item_t *item,
  2482. int pass)
  2483. {
  2484. xfs_mount_t *mp;
  2485. xfs_efd_log_format_t *efd_formatp;
  2486. xfs_efi_log_item_t *efip = NULL;
  2487. xfs_log_item_t *lip;
  2488. int gen;
  2489. __uint64_t efi_id;
  2490. if (pass == XLOG_RECOVER_PASS1) {
  2491. return;
  2492. }
  2493. efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
  2494. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2495. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2496. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2497. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2498. efi_id = efd_formatp->efd_efi_id;
  2499. /*
  2500. * Search for the efi with the id in the efd format structure
  2501. * in the AIL.
  2502. */
  2503. mp = log->l_mp;
  2504. spin_lock(&mp->m_ail_lock);
  2505. lip = xfs_trans_first_ail(mp, &gen);
  2506. while (lip != NULL) {
  2507. if (lip->li_type == XFS_LI_EFI) {
  2508. efip = (xfs_efi_log_item_t *)lip;
  2509. if (efip->efi_format.efi_id == efi_id) {
  2510. /*
  2511. * xfs_trans_delete_ail() drops the
  2512. * AIL lock.
  2513. */
  2514. xfs_trans_delete_ail(mp, lip);
  2515. xfs_efi_item_free(efip);
  2516. return;
  2517. }
  2518. }
  2519. lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
  2520. }
  2521. spin_unlock(&mp->m_ail_lock);
  2522. }
  2523. /*
  2524. * Perform the transaction
  2525. *
  2526. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2527. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2528. */
  2529. STATIC int
  2530. xlog_recover_do_trans(
  2531. xlog_t *log,
  2532. xlog_recover_t *trans,
  2533. int pass)
  2534. {
  2535. int error = 0;
  2536. xlog_recover_item_t *item, *first_item;
  2537. if ((error = xlog_recover_reorder_trans(trans)))
  2538. return error;
  2539. first_item = item = trans->r_itemq;
  2540. do {
  2541. /*
  2542. * we don't need to worry about the block number being
  2543. * truncated in > 1 TB buffers because in user-land,
  2544. * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
  2545. * the blknos will get through the user-mode buffer
  2546. * cache properly. The only bad case is o32 kernels
  2547. * where xfs_daddr_t is 32-bits but mount will warn us
  2548. * off a > 1 TB filesystem before we get here.
  2549. */
  2550. if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
  2551. if ((error = xlog_recover_do_buffer_trans(log, item,
  2552. pass)))
  2553. break;
  2554. } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
  2555. if ((error = xlog_recover_do_inode_trans(log, item,
  2556. pass)))
  2557. break;
  2558. } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
  2559. if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
  2560. pass)))
  2561. break;
  2562. } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
  2563. xlog_recover_do_efd_trans(log, item, pass);
  2564. } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
  2565. if ((error = xlog_recover_do_dquot_trans(log, item,
  2566. pass)))
  2567. break;
  2568. } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
  2569. if ((error = xlog_recover_do_quotaoff_trans(log, item,
  2570. pass)))
  2571. break;
  2572. } else {
  2573. xlog_warn("XFS: xlog_recover_do_trans");
  2574. ASSERT(0);
  2575. error = XFS_ERROR(EIO);
  2576. break;
  2577. }
  2578. item = item->ri_next;
  2579. } while (first_item != item);
  2580. return error;
  2581. }
  2582. /*
  2583. * Free up any resources allocated by the transaction
  2584. *
  2585. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2586. */
  2587. STATIC void
  2588. xlog_recover_free_trans(
  2589. xlog_recover_t *trans)
  2590. {
  2591. xlog_recover_item_t *first_item, *item, *free_item;
  2592. int i;
  2593. item = first_item = trans->r_itemq;
  2594. do {
  2595. free_item = item;
  2596. item = item->ri_next;
  2597. /* Free the regions in the item. */
  2598. for (i = 0; i < free_item->ri_cnt; i++) {
  2599. kmem_free(free_item->ri_buf[i].i_addr,
  2600. free_item->ri_buf[i].i_len);
  2601. }
  2602. /* Free the item itself */
  2603. kmem_free(free_item->ri_buf,
  2604. (free_item->ri_total * sizeof(xfs_log_iovec_t)));
  2605. kmem_free(free_item, sizeof(xlog_recover_item_t));
  2606. } while (first_item != item);
  2607. /* Free the transaction recover structure */
  2608. kmem_free(trans, sizeof(xlog_recover_t));
  2609. }
  2610. STATIC int
  2611. xlog_recover_commit_trans(
  2612. xlog_t *log,
  2613. xlog_recover_t **q,
  2614. xlog_recover_t *trans,
  2615. int pass)
  2616. {
  2617. int error;
  2618. if ((error = xlog_recover_unlink_tid(q, trans)))
  2619. return error;
  2620. if ((error = xlog_recover_do_trans(log, trans, pass)))
  2621. return error;
  2622. xlog_recover_free_trans(trans); /* no error */
  2623. return 0;
  2624. }
  2625. STATIC int
  2626. xlog_recover_unmount_trans(
  2627. xlog_recover_t *trans)
  2628. {
  2629. /* Do nothing now */
  2630. xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
  2631. return 0;
  2632. }
  2633. /*
  2634. * There are two valid states of the r_state field. 0 indicates that the
  2635. * transaction structure is in a normal state. We have either seen the
  2636. * start of the transaction or the last operation we added was not a partial
  2637. * operation. If the last operation we added to the transaction was a
  2638. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2639. *
  2640. * NOTE: skip LRs with 0 data length.
  2641. */
  2642. STATIC int
  2643. xlog_recover_process_data(
  2644. xlog_t *log,
  2645. xlog_recover_t *rhash[],
  2646. xlog_rec_header_t *rhead,
  2647. xfs_caddr_t dp,
  2648. int pass)
  2649. {
  2650. xfs_caddr_t lp;
  2651. int num_logops;
  2652. xlog_op_header_t *ohead;
  2653. xlog_recover_t *trans;
  2654. xlog_tid_t tid;
  2655. int error;
  2656. unsigned long hash;
  2657. uint flags;
  2658. lp = dp + be32_to_cpu(rhead->h_len);
  2659. num_logops = be32_to_cpu(rhead->h_num_logops);
  2660. /* check the log format matches our own - else we can't recover */
  2661. if (xlog_header_check_recover(log->l_mp, rhead))
  2662. return (XFS_ERROR(EIO));
  2663. while ((dp < lp) && num_logops) {
  2664. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2665. ohead = (xlog_op_header_t *)dp;
  2666. dp += sizeof(xlog_op_header_t);
  2667. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2668. ohead->oh_clientid != XFS_LOG) {
  2669. xlog_warn(
  2670. "XFS: xlog_recover_process_data: bad clientid");
  2671. ASSERT(0);
  2672. return (XFS_ERROR(EIO));
  2673. }
  2674. tid = be32_to_cpu(ohead->oh_tid);
  2675. hash = XLOG_RHASH(tid);
  2676. trans = xlog_recover_find_tid(rhash[hash], tid);
  2677. if (trans == NULL) { /* not found; add new tid */
  2678. if (ohead->oh_flags & XLOG_START_TRANS)
  2679. xlog_recover_new_tid(&rhash[hash], tid,
  2680. be64_to_cpu(rhead->h_lsn));
  2681. } else {
  2682. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2683. xlog_warn(
  2684. "XFS: xlog_recover_process_data: bad length");
  2685. WARN_ON(1);
  2686. return (XFS_ERROR(EIO));
  2687. }
  2688. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2689. if (flags & XLOG_WAS_CONT_TRANS)
  2690. flags &= ~XLOG_CONTINUE_TRANS;
  2691. switch (flags) {
  2692. case XLOG_COMMIT_TRANS:
  2693. error = xlog_recover_commit_trans(log,
  2694. &rhash[hash], trans, pass);
  2695. break;
  2696. case XLOG_UNMOUNT_TRANS:
  2697. error = xlog_recover_unmount_trans(trans);
  2698. break;
  2699. case XLOG_WAS_CONT_TRANS:
  2700. error = xlog_recover_add_to_cont_trans(trans,
  2701. dp, be32_to_cpu(ohead->oh_len));
  2702. break;
  2703. case XLOG_START_TRANS:
  2704. xlog_warn(
  2705. "XFS: xlog_recover_process_data: bad transaction");
  2706. ASSERT(0);
  2707. error = XFS_ERROR(EIO);
  2708. break;
  2709. case 0:
  2710. case XLOG_CONTINUE_TRANS:
  2711. error = xlog_recover_add_to_trans(trans,
  2712. dp, be32_to_cpu(ohead->oh_len));
  2713. break;
  2714. default:
  2715. xlog_warn(
  2716. "XFS: xlog_recover_process_data: bad flag");
  2717. ASSERT(0);
  2718. error = XFS_ERROR(EIO);
  2719. break;
  2720. }
  2721. if (error)
  2722. return error;
  2723. }
  2724. dp += be32_to_cpu(ohead->oh_len);
  2725. num_logops--;
  2726. }
  2727. return 0;
  2728. }
  2729. /*
  2730. * Process an extent free intent item that was recovered from
  2731. * the log. We need to free the extents that it describes.
  2732. */
  2733. STATIC int
  2734. xlog_recover_process_efi(
  2735. xfs_mount_t *mp,
  2736. xfs_efi_log_item_t *efip)
  2737. {
  2738. xfs_efd_log_item_t *efdp;
  2739. xfs_trans_t *tp;
  2740. int i;
  2741. int error = 0;
  2742. xfs_extent_t *extp;
  2743. xfs_fsblock_t startblock_fsb;
  2744. ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
  2745. /*
  2746. * First check the validity of the extents described by the
  2747. * EFI. If any are bad, then assume that all are bad and
  2748. * just toss the EFI.
  2749. */
  2750. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2751. extp = &(efip->efi_format.efi_extents[i]);
  2752. startblock_fsb = XFS_BB_TO_FSB(mp,
  2753. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2754. if ((startblock_fsb == 0) ||
  2755. (extp->ext_len == 0) ||
  2756. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2757. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2758. /*
  2759. * This will pull the EFI from the AIL and
  2760. * free the memory associated with it.
  2761. */
  2762. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2763. return XFS_ERROR(EIO);
  2764. }
  2765. }
  2766. tp = xfs_trans_alloc(mp, 0);
  2767. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2768. if (error)
  2769. goto abort_error;
  2770. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2771. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2772. extp = &(efip->efi_format.efi_extents[i]);
  2773. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2774. if (error)
  2775. goto abort_error;
  2776. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2777. extp->ext_len);
  2778. }
  2779. efip->efi_flags |= XFS_EFI_RECOVERED;
  2780. error = xfs_trans_commit(tp, 0);
  2781. return error;
  2782. abort_error:
  2783. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2784. return error;
  2785. }
  2786. /*
  2787. * Verify that once we've encountered something other than an EFI
  2788. * in the AIL that there are no more EFIs in the AIL.
  2789. */
  2790. #if defined(DEBUG)
  2791. STATIC void
  2792. xlog_recover_check_ail(
  2793. xfs_mount_t *mp,
  2794. xfs_log_item_t *lip,
  2795. int gen)
  2796. {
  2797. int orig_gen = gen;
  2798. do {
  2799. ASSERT(lip->li_type != XFS_LI_EFI);
  2800. lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
  2801. /*
  2802. * The check will be bogus if we restart from the
  2803. * beginning of the AIL, so ASSERT that we don't.
  2804. * We never should since we're holding the AIL lock
  2805. * the entire time.
  2806. */
  2807. ASSERT(gen == orig_gen);
  2808. } while (lip != NULL);
  2809. }
  2810. #endif /* DEBUG */
  2811. /*
  2812. * When this is called, all of the EFIs which did not have
  2813. * corresponding EFDs should be in the AIL. What we do now
  2814. * is free the extents associated with each one.
  2815. *
  2816. * Since we process the EFIs in normal transactions, they
  2817. * will be removed at some point after the commit. This prevents
  2818. * us from just walking down the list processing each one.
  2819. * We'll use a flag in the EFI to skip those that we've already
  2820. * processed and use the AIL iteration mechanism's generation
  2821. * count to try to speed this up at least a bit.
  2822. *
  2823. * When we start, we know that the EFIs are the only things in
  2824. * the AIL. As we process them, however, other items are added
  2825. * to the AIL. Since everything added to the AIL must come after
  2826. * everything already in the AIL, we stop processing as soon as
  2827. * we see something other than an EFI in the AIL.
  2828. */
  2829. STATIC int
  2830. xlog_recover_process_efis(
  2831. xlog_t *log)
  2832. {
  2833. xfs_log_item_t *lip;
  2834. xfs_efi_log_item_t *efip;
  2835. int gen;
  2836. xfs_mount_t *mp;
  2837. int error = 0;
  2838. mp = log->l_mp;
  2839. spin_lock(&mp->m_ail_lock);
  2840. lip = xfs_trans_first_ail(mp, &gen);
  2841. while (lip != NULL) {
  2842. /*
  2843. * We're done when we see something other than an EFI.
  2844. */
  2845. if (lip->li_type != XFS_LI_EFI) {
  2846. xlog_recover_check_ail(mp, lip, gen);
  2847. break;
  2848. }
  2849. /*
  2850. * Skip EFIs that we've already processed.
  2851. */
  2852. efip = (xfs_efi_log_item_t *)lip;
  2853. if (efip->efi_flags & XFS_EFI_RECOVERED) {
  2854. lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
  2855. continue;
  2856. }
  2857. spin_unlock(&mp->m_ail_lock);
  2858. error = xlog_recover_process_efi(mp, efip);
  2859. if (error)
  2860. return error;
  2861. spin_lock(&mp->m_ail_lock);
  2862. lip = xfs_trans_next_ail(mp, lip, &gen, NULL);
  2863. }
  2864. spin_unlock(&mp->m_ail_lock);
  2865. return error;
  2866. }
  2867. /*
  2868. * This routine performs a transaction to null out a bad inode pointer
  2869. * in an agi unlinked inode hash bucket.
  2870. */
  2871. STATIC void
  2872. xlog_recover_clear_agi_bucket(
  2873. xfs_mount_t *mp,
  2874. xfs_agnumber_t agno,
  2875. int bucket)
  2876. {
  2877. xfs_trans_t *tp;
  2878. xfs_agi_t *agi;
  2879. xfs_buf_t *agibp;
  2880. int offset;
  2881. int error;
  2882. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2883. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
  2884. if (!error)
  2885. error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
  2886. XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
  2887. XFS_FSS_TO_BB(mp, 1), 0, &agibp);
  2888. if (error)
  2889. goto out_abort;
  2890. error = EINVAL;
  2891. agi = XFS_BUF_TO_AGI(agibp);
  2892. if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC)
  2893. goto out_abort;
  2894. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2895. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2896. (sizeof(xfs_agino_t) * bucket);
  2897. xfs_trans_log_buf(tp, agibp, offset,
  2898. (offset + sizeof(xfs_agino_t) - 1));
  2899. error = xfs_trans_commit(tp, 0);
  2900. if (error)
  2901. goto out_error;
  2902. return;
  2903. out_abort:
  2904. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2905. out_error:
  2906. xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
  2907. "failed to clear agi %d. Continuing.", agno);
  2908. return;
  2909. }
  2910. /*
  2911. * xlog_iunlink_recover
  2912. *
  2913. * This is called during recovery to process any inodes which
  2914. * we unlinked but not freed when the system crashed. These
  2915. * inodes will be on the lists in the AGI blocks. What we do
  2916. * here is scan all the AGIs and fully truncate and free any
  2917. * inodes found on the lists. Each inode is removed from the
  2918. * lists when it has been fully truncated and is freed. The
  2919. * freeing of the inode and its removal from the list must be
  2920. * atomic.
  2921. */
  2922. void
  2923. xlog_recover_process_iunlinks(
  2924. xlog_t *log)
  2925. {
  2926. xfs_mount_t *mp;
  2927. xfs_agnumber_t agno;
  2928. xfs_agi_t *agi;
  2929. xfs_buf_t *agibp;
  2930. xfs_buf_t *ibp;
  2931. xfs_dinode_t *dip;
  2932. xfs_inode_t *ip;
  2933. xfs_agino_t agino;
  2934. xfs_ino_t ino;
  2935. int bucket;
  2936. int error;
  2937. uint mp_dmevmask;
  2938. mp = log->l_mp;
  2939. /*
  2940. * Prevent any DMAPI event from being sent while in this function.
  2941. */
  2942. mp_dmevmask = mp->m_dmevmask;
  2943. mp->m_dmevmask = 0;
  2944. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2945. /*
  2946. * Find the agi for this ag.
  2947. */
  2948. agibp = xfs_buf_read(mp->m_ddev_targp,
  2949. XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
  2950. XFS_FSS_TO_BB(mp, 1), 0);
  2951. if (XFS_BUF_ISERROR(agibp)) {
  2952. xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
  2953. log->l_mp, agibp,
  2954. XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
  2955. }
  2956. agi = XFS_BUF_TO_AGI(agibp);
  2957. ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
  2958. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  2959. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  2960. while (agino != NULLAGINO) {
  2961. /*
  2962. * Release the agi buffer so that it can
  2963. * be acquired in the normal course of the
  2964. * transaction to truncate and free the inode.
  2965. */
  2966. xfs_buf_relse(agibp);
  2967. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2968. error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
  2969. ASSERT(error || (ip != NULL));
  2970. if (!error) {
  2971. /*
  2972. * Get the on disk inode to find the
  2973. * next inode in the bucket.
  2974. */
  2975. error = xfs_itobp(mp, NULL, ip, &dip,
  2976. &ibp, 0, 0,
  2977. XFS_BUF_LOCK);
  2978. ASSERT(error || (dip != NULL));
  2979. }
  2980. if (!error) {
  2981. ASSERT(ip->i_d.di_nlink == 0);
  2982. /* setup for the next pass */
  2983. agino = be32_to_cpu(
  2984. dip->di_next_unlinked);
  2985. xfs_buf_relse(ibp);
  2986. /*
  2987. * Prevent any DMAPI event from
  2988. * being sent when the
  2989. * reference on the inode is
  2990. * dropped.
  2991. */
  2992. ip->i_d.di_dmevmask = 0;
  2993. /*
  2994. * If this is a new inode, handle
  2995. * it specially. Otherwise,
  2996. * just drop our reference to the
  2997. * inode. If there are no
  2998. * other references, this will
  2999. * send the inode to
  3000. * xfs_inactive() which will
  3001. * truncate the file and free
  3002. * the inode.
  3003. */
  3004. if (ip->i_d.di_mode == 0)
  3005. xfs_iput_new(ip, 0);
  3006. else
  3007. IRELE(ip);
  3008. } else {
  3009. /*
  3010. * We can't read in the inode
  3011. * this bucket points to, or
  3012. * this inode is messed up. Just
  3013. * ditch this bucket of inodes. We
  3014. * will lose some inodes and space,
  3015. * but at least we won't hang. Call
  3016. * xlog_recover_clear_agi_bucket()
  3017. * to perform a transaction to clear
  3018. * the inode pointer in the bucket.
  3019. */
  3020. xlog_recover_clear_agi_bucket(mp, agno,
  3021. bucket);
  3022. agino = NULLAGINO;
  3023. }
  3024. /*
  3025. * Reacquire the agibuffer and continue around
  3026. * the loop.
  3027. */
  3028. agibp = xfs_buf_read(mp->m_ddev_targp,
  3029. XFS_AG_DADDR(mp, agno,
  3030. XFS_AGI_DADDR(mp)),
  3031. XFS_FSS_TO_BB(mp, 1), 0);
  3032. if (XFS_BUF_ISERROR(agibp)) {
  3033. xfs_ioerror_alert(
  3034. "xlog_recover_process_iunlinks(#2)",
  3035. log->l_mp, agibp,
  3036. XFS_AG_DADDR(mp, agno,
  3037. XFS_AGI_DADDR(mp)));
  3038. }
  3039. agi = XFS_BUF_TO_AGI(agibp);
  3040. ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
  3041. agi->agi_magicnum));
  3042. }
  3043. }
  3044. /*
  3045. * Release the buffer for the current agi so we can
  3046. * go on to the next one.
  3047. */
  3048. xfs_buf_relse(agibp);
  3049. }
  3050. mp->m_dmevmask = mp_dmevmask;
  3051. }
  3052. #ifdef DEBUG
  3053. STATIC void
  3054. xlog_pack_data_checksum(
  3055. xlog_t *log,
  3056. xlog_in_core_t *iclog,
  3057. int size)
  3058. {
  3059. int i;
  3060. __be32 *up;
  3061. uint chksum = 0;
  3062. up = (__be32 *)iclog->ic_datap;
  3063. /* divide length by 4 to get # words */
  3064. for (i = 0; i < (size >> 2); i++) {
  3065. chksum ^= be32_to_cpu(*up);
  3066. up++;
  3067. }
  3068. iclog->ic_header.h_chksum = cpu_to_be32(chksum);
  3069. }
  3070. #else
  3071. #define xlog_pack_data_checksum(log, iclog, size)
  3072. #endif
  3073. /*
  3074. * Stamp cycle number in every block
  3075. */
  3076. void
  3077. xlog_pack_data(
  3078. xlog_t *log,
  3079. xlog_in_core_t *iclog,
  3080. int roundoff)
  3081. {
  3082. int i, j, k;
  3083. int size = iclog->ic_offset + roundoff;
  3084. __be32 cycle_lsn;
  3085. xfs_caddr_t dp;
  3086. xlog_in_core_2_t *xhdr;
  3087. xlog_pack_data_checksum(log, iclog, size);
  3088. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  3089. dp = iclog->ic_datap;
  3090. for (i = 0; i < BTOBB(size) &&
  3091. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3092. iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
  3093. *(__be32 *)dp = cycle_lsn;
  3094. dp += BBSIZE;
  3095. }
  3096. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3097. xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
  3098. for ( ; i < BTOBB(size); i++) {
  3099. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3100. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3101. xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
  3102. *(__be32 *)dp = cycle_lsn;
  3103. dp += BBSIZE;
  3104. }
  3105. for (i = 1; i < log->l_iclog_heads; i++) {
  3106. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  3107. }
  3108. }
  3109. }
  3110. #if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
  3111. STATIC void
  3112. xlog_unpack_data_checksum(
  3113. xlog_rec_header_t *rhead,
  3114. xfs_caddr_t dp,
  3115. xlog_t *log)
  3116. {
  3117. __be32 *up = (__be32 *)dp;
  3118. uint chksum = 0;
  3119. int i;
  3120. /* divide length by 4 to get # words */
  3121. for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
  3122. chksum ^= be32_to_cpu(*up);
  3123. up++;
  3124. }
  3125. if (chksum != be32_to_cpu(rhead->h_chksum)) {
  3126. if (rhead->h_chksum ||
  3127. ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
  3128. cmn_err(CE_DEBUG,
  3129. "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
  3130. be32_to_cpu(rhead->h_chksum), chksum);
  3131. cmn_err(CE_DEBUG,
  3132. "XFS: Disregard message if filesystem was created with non-DEBUG kernel");
  3133. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3134. cmn_err(CE_DEBUG,
  3135. "XFS: LogR this is a LogV2 filesystem\n");
  3136. }
  3137. log->l_flags |= XLOG_CHKSUM_MISMATCH;
  3138. }
  3139. }
  3140. }
  3141. #else
  3142. #define xlog_unpack_data_checksum(rhead, dp, log)
  3143. #endif
  3144. STATIC void
  3145. xlog_unpack_data(
  3146. xlog_rec_header_t *rhead,
  3147. xfs_caddr_t dp,
  3148. xlog_t *log)
  3149. {
  3150. int i, j, k;
  3151. xlog_in_core_2_t *xhdr;
  3152. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  3153. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  3154. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  3155. dp += BBSIZE;
  3156. }
  3157. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3158. xhdr = (xlog_in_core_2_t *)rhead;
  3159. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  3160. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3161. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  3162. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  3163. dp += BBSIZE;
  3164. }
  3165. }
  3166. xlog_unpack_data_checksum(rhead, dp, log);
  3167. }
  3168. STATIC int
  3169. xlog_valid_rec_header(
  3170. xlog_t *log,
  3171. xlog_rec_header_t *rhead,
  3172. xfs_daddr_t blkno)
  3173. {
  3174. int hlen;
  3175. if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
  3176. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  3177. XFS_ERRLEVEL_LOW, log->l_mp);
  3178. return XFS_ERROR(EFSCORRUPTED);
  3179. }
  3180. if (unlikely(
  3181. (!rhead->h_version ||
  3182. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  3183. xlog_warn("XFS: %s: unrecognised log version (%d).",
  3184. __func__, be32_to_cpu(rhead->h_version));
  3185. return XFS_ERROR(EIO);
  3186. }
  3187. /* LR body must have data or it wouldn't have been written */
  3188. hlen = be32_to_cpu(rhead->h_len);
  3189. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  3190. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  3191. XFS_ERRLEVEL_LOW, log->l_mp);
  3192. return XFS_ERROR(EFSCORRUPTED);
  3193. }
  3194. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  3195. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  3196. XFS_ERRLEVEL_LOW, log->l_mp);
  3197. return XFS_ERROR(EFSCORRUPTED);
  3198. }
  3199. return 0;
  3200. }
  3201. /*
  3202. * Read the log from tail to head and process the log records found.
  3203. * Handle the two cases where the tail and head are in the same cycle
  3204. * and where the active portion of the log wraps around the end of
  3205. * the physical log separately. The pass parameter is passed through
  3206. * to the routines called to process the data and is not looked at
  3207. * here.
  3208. */
  3209. STATIC int
  3210. xlog_do_recovery_pass(
  3211. xlog_t *log,
  3212. xfs_daddr_t head_blk,
  3213. xfs_daddr_t tail_blk,
  3214. int pass)
  3215. {
  3216. xlog_rec_header_t *rhead;
  3217. xfs_daddr_t blk_no;
  3218. xfs_caddr_t bufaddr, offset;
  3219. xfs_buf_t *hbp, *dbp;
  3220. int error = 0, h_size;
  3221. int bblks, split_bblks;
  3222. int hblks, split_hblks, wrapped_hblks;
  3223. xlog_recover_t *rhash[XLOG_RHASH_SIZE];
  3224. ASSERT(head_blk != tail_blk);
  3225. /*
  3226. * Read the header of the tail block and get the iclog buffer size from
  3227. * h_size. Use this to tell how many sectors make up the log header.
  3228. */
  3229. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3230. /*
  3231. * When using variable length iclogs, read first sector of
  3232. * iclog header and extract the header size from it. Get a
  3233. * new hbp that is the correct size.
  3234. */
  3235. hbp = xlog_get_bp(log, 1);
  3236. if (!hbp)
  3237. return ENOMEM;
  3238. if ((error = xlog_bread(log, tail_blk, 1, hbp)))
  3239. goto bread_err1;
  3240. offset = xlog_align(log, tail_blk, 1, hbp);
  3241. rhead = (xlog_rec_header_t *)offset;
  3242. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3243. if (error)
  3244. goto bread_err1;
  3245. h_size = be32_to_cpu(rhead->h_size);
  3246. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3247. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3248. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3249. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3250. hblks++;
  3251. xlog_put_bp(hbp);
  3252. hbp = xlog_get_bp(log, hblks);
  3253. } else {
  3254. hblks = 1;
  3255. }
  3256. } else {
  3257. ASSERT(log->l_sectbb_log == 0);
  3258. hblks = 1;
  3259. hbp = xlog_get_bp(log, 1);
  3260. h_size = XLOG_BIG_RECORD_BSIZE;
  3261. }
  3262. if (!hbp)
  3263. return ENOMEM;
  3264. dbp = xlog_get_bp(log, BTOBB(h_size));
  3265. if (!dbp) {
  3266. xlog_put_bp(hbp);
  3267. return ENOMEM;
  3268. }
  3269. memset(rhash, 0, sizeof(rhash));
  3270. if (tail_blk <= head_blk) {
  3271. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3272. if ((error = xlog_bread(log, blk_no, hblks, hbp)))
  3273. goto bread_err2;
  3274. offset = xlog_align(log, blk_no, hblks, hbp);
  3275. rhead = (xlog_rec_header_t *)offset;
  3276. error = xlog_valid_rec_header(log, rhead, blk_no);
  3277. if (error)
  3278. goto bread_err2;
  3279. /* blocks in data section */
  3280. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3281. error = xlog_bread(log, blk_no + hblks, bblks, dbp);
  3282. if (error)
  3283. goto bread_err2;
  3284. offset = xlog_align(log, blk_no + hblks, bblks, dbp);
  3285. xlog_unpack_data(rhead, offset, log);
  3286. if ((error = xlog_recover_process_data(log,
  3287. rhash, rhead, offset, pass)))
  3288. goto bread_err2;
  3289. blk_no += bblks + hblks;
  3290. }
  3291. } else {
  3292. /*
  3293. * Perform recovery around the end of the physical log.
  3294. * When the head is not on the same cycle number as the tail,
  3295. * we can't do a sequential recovery as above.
  3296. */
  3297. blk_no = tail_blk;
  3298. while (blk_no < log->l_logBBsize) {
  3299. /*
  3300. * Check for header wrapping around physical end-of-log
  3301. */
  3302. offset = NULL;
  3303. split_hblks = 0;
  3304. wrapped_hblks = 0;
  3305. if (blk_no + hblks <= log->l_logBBsize) {
  3306. /* Read header in one read */
  3307. error = xlog_bread(log, blk_no, hblks, hbp);
  3308. if (error)
  3309. goto bread_err2;
  3310. offset = xlog_align(log, blk_no, hblks, hbp);
  3311. } else {
  3312. /* This LR is split across physical log end */
  3313. if (blk_no != log->l_logBBsize) {
  3314. /* some data before physical log end */
  3315. ASSERT(blk_no <= INT_MAX);
  3316. split_hblks = log->l_logBBsize - (int)blk_no;
  3317. ASSERT(split_hblks > 0);
  3318. if ((error = xlog_bread(log, blk_no,
  3319. split_hblks, hbp)))
  3320. goto bread_err2;
  3321. offset = xlog_align(log, blk_no,
  3322. split_hblks, hbp);
  3323. }
  3324. /*
  3325. * Note: this black magic still works with
  3326. * large sector sizes (non-512) only because:
  3327. * - we increased the buffer size originally
  3328. * by 1 sector giving us enough extra space
  3329. * for the second read;
  3330. * - the log start is guaranteed to be sector
  3331. * aligned;
  3332. * - we read the log end (LR header start)
  3333. * _first_, then the log start (LR header end)
  3334. * - order is important.
  3335. */
  3336. wrapped_hblks = hblks - split_hblks;
  3337. bufaddr = XFS_BUF_PTR(hbp);
  3338. error = XFS_BUF_SET_PTR(hbp,
  3339. bufaddr + BBTOB(split_hblks),
  3340. BBTOB(hblks - split_hblks));
  3341. if (!error)
  3342. error = xlog_bread(log, 0,
  3343. wrapped_hblks, hbp);
  3344. if (!error)
  3345. error = XFS_BUF_SET_PTR(hbp, bufaddr,
  3346. BBTOB(hblks));
  3347. if (error)
  3348. goto bread_err2;
  3349. if (!offset)
  3350. offset = xlog_align(log, 0,
  3351. wrapped_hblks, hbp);
  3352. }
  3353. rhead = (xlog_rec_header_t *)offset;
  3354. error = xlog_valid_rec_header(log, rhead,
  3355. split_hblks ? blk_no : 0);
  3356. if (error)
  3357. goto bread_err2;
  3358. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3359. blk_no += hblks;
  3360. /* Read in data for log record */
  3361. if (blk_no + bblks <= log->l_logBBsize) {
  3362. error = xlog_bread(log, blk_no, bblks, dbp);
  3363. if (error)
  3364. goto bread_err2;
  3365. offset = xlog_align(log, blk_no, bblks, dbp);
  3366. } else {
  3367. /* This log record is split across the
  3368. * physical end of log */
  3369. offset = NULL;
  3370. split_bblks = 0;
  3371. if (blk_no != log->l_logBBsize) {
  3372. /* some data is before the physical
  3373. * end of log */
  3374. ASSERT(!wrapped_hblks);
  3375. ASSERT(blk_no <= INT_MAX);
  3376. split_bblks =
  3377. log->l_logBBsize - (int)blk_no;
  3378. ASSERT(split_bblks > 0);
  3379. if ((error = xlog_bread(log, blk_no,
  3380. split_bblks, dbp)))
  3381. goto bread_err2;
  3382. offset = xlog_align(log, blk_no,
  3383. split_bblks, dbp);
  3384. }
  3385. /*
  3386. * Note: this black magic still works with
  3387. * large sector sizes (non-512) only because:
  3388. * - we increased the buffer size originally
  3389. * by 1 sector giving us enough extra space
  3390. * for the second read;
  3391. * - the log start is guaranteed to be sector
  3392. * aligned;
  3393. * - we read the log end (LR header start)
  3394. * _first_, then the log start (LR header end)
  3395. * - order is important.
  3396. */
  3397. bufaddr = XFS_BUF_PTR(dbp);
  3398. error = XFS_BUF_SET_PTR(dbp,
  3399. bufaddr + BBTOB(split_bblks),
  3400. BBTOB(bblks - split_bblks));
  3401. if (!error)
  3402. error = xlog_bread(log, wrapped_hblks,
  3403. bblks - split_bblks,
  3404. dbp);
  3405. if (!error)
  3406. error = XFS_BUF_SET_PTR(dbp, bufaddr,
  3407. h_size);
  3408. if (error)
  3409. goto bread_err2;
  3410. if (!offset)
  3411. offset = xlog_align(log, wrapped_hblks,
  3412. bblks - split_bblks, dbp);
  3413. }
  3414. xlog_unpack_data(rhead, offset, log);
  3415. if ((error = xlog_recover_process_data(log, rhash,
  3416. rhead, offset, pass)))
  3417. goto bread_err2;
  3418. blk_no += bblks;
  3419. }
  3420. ASSERT(blk_no >= log->l_logBBsize);
  3421. blk_no -= log->l_logBBsize;
  3422. /* read first part of physical log */
  3423. while (blk_no < head_blk) {
  3424. if ((error = xlog_bread(log, blk_no, hblks, hbp)))
  3425. goto bread_err2;
  3426. offset = xlog_align(log, blk_no, hblks, hbp);
  3427. rhead = (xlog_rec_header_t *)offset;
  3428. error = xlog_valid_rec_header(log, rhead, blk_no);
  3429. if (error)
  3430. goto bread_err2;
  3431. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3432. if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
  3433. goto bread_err2;
  3434. offset = xlog_align(log, blk_no+hblks, bblks, dbp);
  3435. xlog_unpack_data(rhead, offset, log);
  3436. if ((error = xlog_recover_process_data(log, rhash,
  3437. rhead, offset, pass)))
  3438. goto bread_err2;
  3439. blk_no += bblks + hblks;
  3440. }
  3441. }
  3442. bread_err2:
  3443. xlog_put_bp(dbp);
  3444. bread_err1:
  3445. xlog_put_bp(hbp);
  3446. return error;
  3447. }
  3448. /*
  3449. * Do the recovery of the log. We actually do this in two phases.
  3450. * The two passes are necessary in order to implement the function
  3451. * of cancelling a record written into the log. The first pass
  3452. * determines those things which have been cancelled, and the
  3453. * second pass replays log items normally except for those which
  3454. * have been cancelled. The handling of the replay and cancellations
  3455. * takes place in the log item type specific routines.
  3456. *
  3457. * The table of items which have cancel records in the log is allocated
  3458. * and freed at this level, since only here do we know when all of
  3459. * the log recovery has been completed.
  3460. */
  3461. STATIC int
  3462. xlog_do_log_recovery(
  3463. xlog_t *log,
  3464. xfs_daddr_t head_blk,
  3465. xfs_daddr_t tail_blk)
  3466. {
  3467. int error;
  3468. ASSERT(head_blk != tail_blk);
  3469. /*
  3470. * First do a pass to find all of the cancelled buf log items.
  3471. * Store them in the buf_cancel_table for use in the second pass.
  3472. */
  3473. log->l_buf_cancel_table =
  3474. (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3475. sizeof(xfs_buf_cancel_t*),
  3476. KM_SLEEP);
  3477. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3478. XLOG_RECOVER_PASS1);
  3479. if (error != 0) {
  3480. kmem_free(log->l_buf_cancel_table,
  3481. XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
  3482. log->l_buf_cancel_table = NULL;
  3483. return error;
  3484. }
  3485. /*
  3486. * Then do a second pass to actually recover the items in the log.
  3487. * When it is complete free the table of buf cancel items.
  3488. */
  3489. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3490. XLOG_RECOVER_PASS2);
  3491. #ifdef DEBUG
  3492. if (!error) {
  3493. int i;
  3494. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3495. ASSERT(log->l_buf_cancel_table[i] == NULL);
  3496. }
  3497. #endif /* DEBUG */
  3498. kmem_free(log->l_buf_cancel_table,
  3499. XLOG_BC_TABLE_SIZE * sizeof(xfs_buf_cancel_t*));
  3500. log->l_buf_cancel_table = NULL;
  3501. return error;
  3502. }
  3503. /*
  3504. * Do the actual recovery
  3505. */
  3506. STATIC int
  3507. xlog_do_recover(
  3508. xlog_t *log,
  3509. xfs_daddr_t head_blk,
  3510. xfs_daddr_t tail_blk)
  3511. {
  3512. int error;
  3513. xfs_buf_t *bp;
  3514. xfs_sb_t *sbp;
  3515. /*
  3516. * First replay the images in the log.
  3517. */
  3518. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3519. if (error) {
  3520. return error;
  3521. }
  3522. XFS_bflush(log->l_mp->m_ddev_targp);
  3523. /*
  3524. * If IO errors happened during recovery, bail out.
  3525. */
  3526. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3527. return (EIO);
  3528. }
  3529. /*
  3530. * We now update the tail_lsn since much of the recovery has completed
  3531. * and there may be space available to use. If there were no extent
  3532. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3533. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3534. * lsn of the last known good LR on disk. If there are extent frees
  3535. * or iunlinks they will have some entries in the AIL; so we look at
  3536. * the AIL to determine how to set the tail_lsn.
  3537. */
  3538. xlog_assign_tail_lsn(log->l_mp);
  3539. /*
  3540. * Now that we've finished replaying all buffer and inode
  3541. * updates, re-read in the superblock.
  3542. */
  3543. bp = xfs_getsb(log->l_mp, 0);
  3544. XFS_BUF_UNDONE(bp);
  3545. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3546. ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
  3547. XFS_BUF_READ(bp);
  3548. XFS_BUF_UNASYNC(bp);
  3549. xfsbdstrat(log->l_mp, bp);
  3550. error = xfs_iowait(bp);
  3551. if (error) {
  3552. xfs_ioerror_alert("xlog_do_recover",
  3553. log->l_mp, bp, XFS_BUF_ADDR(bp));
  3554. ASSERT(0);
  3555. xfs_buf_relse(bp);
  3556. return error;
  3557. }
  3558. /* Convert superblock from on-disk format */
  3559. sbp = &log->l_mp->m_sb;
  3560. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  3561. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3562. ASSERT(xfs_sb_good_version(sbp));
  3563. xfs_buf_relse(bp);
  3564. /* We've re-read the superblock so re-initialize per-cpu counters */
  3565. xfs_icsb_reinit_counters(log->l_mp);
  3566. xlog_recover_check_summary(log);
  3567. /* Normal transactions can now occur */
  3568. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3569. return 0;
  3570. }
  3571. /*
  3572. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3573. *
  3574. * Return error or zero.
  3575. */
  3576. int
  3577. xlog_recover(
  3578. xlog_t *log)
  3579. {
  3580. xfs_daddr_t head_blk, tail_blk;
  3581. int error;
  3582. /* find the tail of the log */
  3583. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3584. return error;
  3585. if (tail_blk != head_blk) {
  3586. /* There used to be a comment here:
  3587. *
  3588. * disallow recovery on read-only mounts. note -- mount
  3589. * checks for ENOSPC and turns it into an intelligent
  3590. * error message.
  3591. * ...but this is no longer true. Now, unless you specify
  3592. * NORECOVERY (in which case this function would never be
  3593. * called), we just go ahead and recover. We do this all
  3594. * under the vfs layer, so we can get away with it unless
  3595. * the device itself is read-only, in which case we fail.
  3596. */
  3597. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3598. return error;
  3599. }
  3600. cmn_err(CE_NOTE,
  3601. "Starting XFS recovery on filesystem: %s (logdev: %s)",
  3602. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3603. log->l_mp->m_logname : "internal");
  3604. error = xlog_do_recover(log, head_blk, tail_blk);
  3605. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3606. }
  3607. return error;
  3608. }
  3609. /*
  3610. * In the first part of recovery we replay inodes and buffers and build
  3611. * up the list of extent free items which need to be processed. Here
  3612. * we process the extent free items and clean up the on disk unlinked
  3613. * inode lists. This is separated from the first part of recovery so
  3614. * that the root and real-time bitmap inodes can be read in from disk in
  3615. * between the two stages. This is necessary so that we can free space
  3616. * in the real-time portion of the file system.
  3617. */
  3618. int
  3619. xlog_recover_finish(
  3620. xlog_t *log,
  3621. int mfsi_flags)
  3622. {
  3623. /*
  3624. * Now we're ready to do the transactions needed for the
  3625. * rest of recovery. Start with completing all the extent
  3626. * free intent records and then process the unlinked inode
  3627. * lists. At this point, we essentially run in normal mode
  3628. * except that we're still performing recovery actions
  3629. * rather than accepting new requests.
  3630. */
  3631. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3632. int error;
  3633. error = xlog_recover_process_efis(log);
  3634. if (error) {
  3635. cmn_err(CE_ALERT,
  3636. "Failed to recover EFIs on filesystem: %s",
  3637. log->l_mp->m_fsname);
  3638. return error;
  3639. }
  3640. /*
  3641. * Sync the log to get all the EFIs out of the AIL.
  3642. * This isn't absolutely necessary, but it helps in
  3643. * case the unlink transactions would have problems
  3644. * pushing the EFIs out of the way.
  3645. */
  3646. xfs_log_force(log->l_mp, (xfs_lsn_t)0,
  3647. (XFS_LOG_FORCE | XFS_LOG_SYNC));
  3648. if ( (mfsi_flags & XFS_MFSI_NOUNLINK) == 0 ) {
  3649. xlog_recover_process_iunlinks(log);
  3650. }
  3651. xlog_recover_check_summary(log);
  3652. cmn_err(CE_NOTE,
  3653. "Ending XFS recovery on filesystem: %s (logdev: %s)",
  3654. log->l_mp->m_fsname, log->l_mp->m_logname ?
  3655. log->l_mp->m_logname : "internal");
  3656. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3657. } else {
  3658. cmn_err(CE_DEBUG,
  3659. "!Ending clean XFS mount for filesystem: %s\n",
  3660. log->l_mp->m_fsname);
  3661. }
  3662. return 0;
  3663. }
  3664. #if defined(DEBUG)
  3665. /*
  3666. * Read all of the agf and agi counters and check that they
  3667. * are consistent with the superblock counters.
  3668. */
  3669. void
  3670. xlog_recover_check_summary(
  3671. xlog_t *log)
  3672. {
  3673. xfs_mount_t *mp;
  3674. xfs_agf_t *agfp;
  3675. xfs_agi_t *agip;
  3676. xfs_buf_t *agfbp;
  3677. xfs_buf_t *agibp;
  3678. xfs_daddr_t agfdaddr;
  3679. xfs_daddr_t agidaddr;
  3680. xfs_buf_t *sbbp;
  3681. #ifdef XFS_LOUD_RECOVERY
  3682. xfs_sb_t *sbp;
  3683. #endif
  3684. xfs_agnumber_t agno;
  3685. __uint64_t freeblks;
  3686. __uint64_t itotal;
  3687. __uint64_t ifree;
  3688. mp = log->l_mp;
  3689. freeblks = 0LL;
  3690. itotal = 0LL;
  3691. ifree = 0LL;
  3692. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3693. agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
  3694. agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
  3695. XFS_FSS_TO_BB(mp, 1), 0);
  3696. if (XFS_BUF_ISERROR(agfbp)) {
  3697. xfs_ioerror_alert("xlog_recover_check_summary(agf)",
  3698. mp, agfbp, agfdaddr);
  3699. }
  3700. agfp = XFS_BUF_TO_AGF(agfbp);
  3701. ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
  3702. ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
  3703. ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
  3704. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3705. be32_to_cpu(agfp->agf_flcount);
  3706. xfs_buf_relse(agfbp);
  3707. agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
  3708. agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
  3709. XFS_FSS_TO_BB(mp, 1), 0);
  3710. if (XFS_BUF_ISERROR(agibp)) {
  3711. xfs_ioerror_alert("xlog_recover_check_summary(agi)",
  3712. mp, agibp, agidaddr);
  3713. }
  3714. agip = XFS_BUF_TO_AGI(agibp);
  3715. ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
  3716. ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
  3717. ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
  3718. itotal += be32_to_cpu(agip->agi_count);
  3719. ifree += be32_to_cpu(agip->agi_freecount);
  3720. xfs_buf_relse(agibp);
  3721. }
  3722. sbbp = xfs_getsb(mp, 0);
  3723. #ifdef XFS_LOUD_RECOVERY
  3724. sbp = &mp->m_sb;
  3725. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
  3726. cmn_err(CE_NOTE,
  3727. "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
  3728. sbp->sb_icount, itotal);
  3729. cmn_err(CE_NOTE,
  3730. "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
  3731. sbp->sb_ifree, ifree);
  3732. cmn_err(CE_NOTE,
  3733. "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
  3734. sbp->sb_fdblocks, freeblks);
  3735. #if 0
  3736. /*
  3737. * This is turned off until I account for the allocation
  3738. * btree blocks which live in free space.
  3739. */
  3740. ASSERT(sbp->sb_icount == itotal);
  3741. ASSERT(sbp->sb_ifree == ifree);
  3742. ASSERT(sbp->sb_fdblocks == freeblks);
  3743. #endif
  3744. #endif
  3745. xfs_buf_relse(sbbp);
  3746. }
  3747. #endif /* DEBUG */