inode.c 96 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308
  1. /*
  2. * linux/fs/ext3/inode.c
  3. *
  4. * Copyright (C) 1992, 1993, 1994, 1995
  5. * Remy Card (card@masi.ibp.fr)
  6. * Laboratoire MASI - Institut Blaise Pascal
  7. * Universite Pierre et Marie Curie (Paris VI)
  8. *
  9. * from
  10. *
  11. * linux/fs/minix/inode.c
  12. *
  13. * Copyright (C) 1991, 1992 Linus Torvalds
  14. *
  15. * Goal-directed block allocation by Stephen Tweedie
  16. * (sct@redhat.com), 1993, 1998
  17. * Big-endian to little-endian byte-swapping/bitmaps by
  18. * David S. Miller (davem@caip.rutgers.edu), 1995
  19. * 64-bit file support on 64-bit platforms by Jakub Jelinek
  20. * (jj@sunsite.ms.mff.cuni.cz)
  21. *
  22. * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23. */
  24. #include <linux/module.h>
  25. #include <linux/fs.h>
  26. #include <linux/time.h>
  27. #include <linux/ext3_jbd.h>
  28. #include <linux/jbd.h>
  29. #include <linux/highuid.h>
  30. #include <linux/pagemap.h>
  31. #include <linux/quotaops.h>
  32. #include <linux/string.h>
  33. #include <linux/buffer_head.h>
  34. #include <linux/writeback.h>
  35. #include <linux/mpage.h>
  36. #include <linux/uio.h>
  37. #include <linux/bio.h>
  38. #include "xattr.h"
  39. #include "acl.h"
  40. static int ext3_writepage_trans_blocks(struct inode *inode);
  41. /*
  42. * Test whether an inode is a fast symlink.
  43. */
  44. static int ext3_inode_is_fast_symlink(struct inode *inode)
  45. {
  46. int ea_blocks = EXT3_I(inode)->i_file_acl ?
  47. (inode->i_sb->s_blocksize >> 9) : 0;
  48. return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  49. }
  50. /*
  51. * The ext3 forget function must perform a revoke if we are freeing data
  52. * which has been journaled. Metadata (eg. indirect blocks) must be
  53. * revoked in all cases.
  54. *
  55. * "bh" may be NULL: a metadata block may have been freed from memory
  56. * but there may still be a record of it in the journal, and that record
  57. * still needs to be revoked.
  58. */
  59. int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  60. struct buffer_head *bh, ext3_fsblk_t blocknr)
  61. {
  62. int err;
  63. might_sleep();
  64. BUFFER_TRACE(bh, "enter");
  65. jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  66. "data mode %lx\n",
  67. bh, is_metadata, inode->i_mode,
  68. test_opt(inode->i_sb, DATA_FLAGS));
  69. /* Never use the revoke function if we are doing full data
  70. * journaling: there is no need to, and a V1 superblock won't
  71. * support it. Otherwise, only skip the revoke on un-journaled
  72. * data blocks. */
  73. if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  74. (!is_metadata && !ext3_should_journal_data(inode))) {
  75. if (bh) {
  76. BUFFER_TRACE(bh, "call journal_forget");
  77. return ext3_journal_forget(handle, bh);
  78. }
  79. return 0;
  80. }
  81. /*
  82. * data!=journal && (is_metadata || should_journal_data(inode))
  83. */
  84. BUFFER_TRACE(bh, "call ext3_journal_revoke");
  85. err = ext3_journal_revoke(handle, blocknr, bh);
  86. if (err)
  87. ext3_abort(inode->i_sb, __FUNCTION__,
  88. "error %d when attempting revoke", err);
  89. BUFFER_TRACE(bh, "exit");
  90. return err;
  91. }
  92. /*
  93. * Work out how many blocks we need to proceed with the next chunk of a
  94. * truncate transaction.
  95. */
  96. static unsigned long blocks_for_truncate(struct inode *inode)
  97. {
  98. unsigned long needed;
  99. needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
  100. /* Give ourselves just enough room to cope with inodes in which
  101. * i_blocks is corrupt: we've seen disk corruptions in the past
  102. * which resulted in random data in an inode which looked enough
  103. * like a regular file for ext3 to try to delete it. Things
  104. * will go a bit crazy if that happens, but at least we should
  105. * try not to panic the whole kernel. */
  106. if (needed < 2)
  107. needed = 2;
  108. /* But we need to bound the transaction so we don't overflow the
  109. * journal. */
  110. if (needed > EXT3_MAX_TRANS_DATA)
  111. needed = EXT3_MAX_TRANS_DATA;
  112. return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
  113. }
  114. /*
  115. * Truncate transactions can be complex and absolutely huge. So we need to
  116. * be able to restart the transaction at a conventient checkpoint to make
  117. * sure we don't overflow the journal.
  118. *
  119. * start_transaction gets us a new handle for a truncate transaction,
  120. * and extend_transaction tries to extend the existing one a bit. If
  121. * extend fails, we need to propagate the failure up and restart the
  122. * transaction in the top-level truncate loop. --sct
  123. */
  124. static handle_t *start_transaction(struct inode *inode)
  125. {
  126. handle_t *result;
  127. result = ext3_journal_start(inode, blocks_for_truncate(inode));
  128. if (!IS_ERR(result))
  129. return result;
  130. ext3_std_error(inode->i_sb, PTR_ERR(result));
  131. return result;
  132. }
  133. /*
  134. * Try to extend this transaction for the purposes of truncation.
  135. *
  136. * Returns 0 if we managed to create more room. If we can't create more
  137. * room, and the transaction must be restarted we return 1.
  138. */
  139. static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
  140. {
  141. if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
  142. return 0;
  143. if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
  144. return 0;
  145. return 1;
  146. }
  147. /*
  148. * Restart the transaction associated with *handle. This does a commit,
  149. * so before we call here everything must be consistently dirtied against
  150. * this transaction.
  151. */
  152. static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
  153. {
  154. jbd_debug(2, "restarting handle %p\n", handle);
  155. return ext3_journal_restart(handle, blocks_for_truncate(inode));
  156. }
  157. /*
  158. * Called at the last iput() if i_nlink is zero.
  159. */
  160. void ext3_delete_inode (struct inode * inode)
  161. {
  162. handle_t *handle;
  163. truncate_inode_pages(&inode->i_data, 0);
  164. if (is_bad_inode(inode))
  165. goto no_delete;
  166. handle = start_transaction(inode);
  167. if (IS_ERR(handle)) {
  168. /*
  169. * If we're going to skip the normal cleanup, we still need to
  170. * make sure that the in-core orphan linked list is properly
  171. * cleaned up.
  172. */
  173. ext3_orphan_del(NULL, inode);
  174. goto no_delete;
  175. }
  176. if (IS_SYNC(inode))
  177. handle->h_sync = 1;
  178. inode->i_size = 0;
  179. if (inode->i_blocks)
  180. ext3_truncate(inode);
  181. /*
  182. * Kill off the orphan record which ext3_truncate created.
  183. * AKPM: I think this can be inside the above `if'.
  184. * Note that ext3_orphan_del() has to be able to cope with the
  185. * deletion of a non-existent orphan - this is because we don't
  186. * know if ext3_truncate() actually created an orphan record.
  187. * (Well, we could do this if we need to, but heck - it works)
  188. */
  189. ext3_orphan_del(handle, inode);
  190. EXT3_I(inode)->i_dtime = get_seconds();
  191. /*
  192. * One subtle ordering requirement: if anything has gone wrong
  193. * (transaction abort, IO errors, whatever), then we can still
  194. * do these next steps (the fs will already have been marked as
  195. * having errors), but we can't free the inode if the mark_dirty
  196. * fails.
  197. */
  198. if (ext3_mark_inode_dirty(handle, inode))
  199. /* If that failed, just do the required in-core inode clear. */
  200. clear_inode(inode);
  201. else
  202. ext3_free_inode(handle, inode);
  203. ext3_journal_stop(handle);
  204. return;
  205. no_delete:
  206. clear_inode(inode); /* We must guarantee clearing of inode... */
  207. }
  208. typedef struct {
  209. __le32 *p;
  210. __le32 key;
  211. struct buffer_head *bh;
  212. } Indirect;
  213. static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  214. {
  215. p->key = *(p->p = v);
  216. p->bh = bh;
  217. }
  218. static int verify_chain(Indirect *from, Indirect *to)
  219. {
  220. while (from <= to && from->key == *from->p)
  221. from++;
  222. return (from > to);
  223. }
  224. /**
  225. * ext3_block_to_path - parse the block number into array of offsets
  226. * @inode: inode in question (we are only interested in its superblock)
  227. * @i_block: block number to be parsed
  228. * @offsets: array to store the offsets in
  229. * @boundary: set this non-zero if the referred-to block is likely to be
  230. * followed (on disk) by an indirect block.
  231. *
  232. * To store the locations of file's data ext3 uses a data structure common
  233. * for UNIX filesystems - tree of pointers anchored in the inode, with
  234. * data blocks at leaves and indirect blocks in intermediate nodes.
  235. * This function translates the block number into path in that tree -
  236. * return value is the path length and @offsets[n] is the offset of
  237. * pointer to (n+1)th node in the nth one. If @block is out of range
  238. * (negative or too large) warning is printed and zero returned.
  239. *
  240. * Note: function doesn't find node addresses, so no IO is needed. All
  241. * we need to know is the capacity of indirect blocks (taken from the
  242. * inode->i_sb).
  243. */
  244. /*
  245. * Portability note: the last comparison (check that we fit into triple
  246. * indirect block) is spelled differently, because otherwise on an
  247. * architecture with 32-bit longs and 8Kb pages we might get into trouble
  248. * if our filesystem had 8Kb blocks. We might use long long, but that would
  249. * kill us on x86. Oh, well, at least the sign propagation does not matter -
  250. * i_block would have to be negative in the very beginning, so we would not
  251. * get there at all.
  252. */
  253. static int ext3_block_to_path(struct inode *inode,
  254. long i_block, int offsets[4], int *boundary)
  255. {
  256. int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  257. int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
  258. const long direct_blocks = EXT3_NDIR_BLOCKS,
  259. indirect_blocks = ptrs,
  260. double_blocks = (1 << (ptrs_bits * 2));
  261. int n = 0;
  262. int final = 0;
  263. if (i_block < 0) {
  264. ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
  265. } else if (i_block < direct_blocks) {
  266. offsets[n++] = i_block;
  267. final = direct_blocks;
  268. } else if ( (i_block -= direct_blocks) < indirect_blocks) {
  269. offsets[n++] = EXT3_IND_BLOCK;
  270. offsets[n++] = i_block;
  271. final = ptrs;
  272. } else if ((i_block -= indirect_blocks) < double_blocks) {
  273. offsets[n++] = EXT3_DIND_BLOCK;
  274. offsets[n++] = i_block >> ptrs_bits;
  275. offsets[n++] = i_block & (ptrs - 1);
  276. final = ptrs;
  277. } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  278. offsets[n++] = EXT3_TIND_BLOCK;
  279. offsets[n++] = i_block >> (ptrs_bits * 2);
  280. offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
  281. offsets[n++] = i_block & (ptrs - 1);
  282. final = ptrs;
  283. } else {
  284. ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
  285. }
  286. if (boundary)
  287. *boundary = final - 1 - (i_block & (ptrs - 1));
  288. return n;
  289. }
  290. /**
  291. * ext3_get_branch - read the chain of indirect blocks leading to data
  292. * @inode: inode in question
  293. * @depth: depth of the chain (1 - direct pointer, etc.)
  294. * @offsets: offsets of pointers in inode/indirect blocks
  295. * @chain: place to store the result
  296. * @err: here we store the error value
  297. *
  298. * Function fills the array of triples <key, p, bh> and returns %NULL
  299. * if everything went OK or the pointer to the last filled triple
  300. * (incomplete one) otherwise. Upon the return chain[i].key contains
  301. * the number of (i+1)-th block in the chain (as it is stored in memory,
  302. * i.e. little-endian 32-bit), chain[i].p contains the address of that
  303. * number (it points into struct inode for i==0 and into the bh->b_data
  304. * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
  305. * block for i>0 and NULL for i==0. In other words, it holds the block
  306. * numbers of the chain, addresses they were taken from (and where we can
  307. * verify that chain did not change) and buffer_heads hosting these
  308. * numbers.
  309. *
  310. * Function stops when it stumbles upon zero pointer (absent block)
  311. * (pointer to last triple returned, *@err == 0)
  312. * or when it gets an IO error reading an indirect block
  313. * (ditto, *@err == -EIO)
  314. * or when it notices that chain had been changed while it was reading
  315. * (ditto, *@err == -EAGAIN)
  316. * or when it reads all @depth-1 indirect blocks successfully and finds
  317. * the whole chain, all way to the data (returns %NULL, *err == 0).
  318. */
  319. static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
  320. Indirect chain[4], int *err)
  321. {
  322. struct super_block *sb = inode->i_sb;
  323. Indirect *p = chain;
  324. struct buffer_head *bh;
  325. *err = 0;
  326. /* i_data is not going away, no lock needed */
  327. add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
  328. if (!p->key)
  329. goto no_block;
  330. while (--depth) {
  331. bh = sb_bread(sb, le32_to_cpu(p->key));
  332. if (!bh)
  333. goto failure;
  334. /* Reader: pointers */
  335. if (!verify_chain(chain, p))
  336. goto changed;
  337. add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
  338. /* Reader: end */
  339. if (!p->key)
  340. goto no_block;
  341. }
  342. return NULL;
  343. changed:
  344. brelse(bh);
  345. *err = -EAGAIN;
  346. goto no_block;
  347. failure:
  348. *err = -EIO;
  349. no_block:
  350. return p;
  351. }
  352. /**
  353. * ext3_find_near - find a place for allocation with sufficient locality
  354. * @inode: owner
  355. * @ind: descriptor of indirect block.
  356. *
  357. * This function returns the preferred place for block allocation.
  358. * It is used when heuristic for sequential allocation fails.
  359. * Rules are:
  360. * + if there is a block to the left of our position - allocate near it.
  361. * + if pointer will live in indirect block - allocate near that block.
  362. * + if pointer will live in inode - allocate in the same
  363. * cylinder group.
  364. *
  365. * In the latter case we colour the starting block by the callers PID to
  366. * prevent it from clashing with concurrent allocations for a different inode
  367. * in the same block group. The PID is used here so that functionally related
  368. * files will be close-by on-disk.
  369. *
  370. * Caller must make sure that @ind is valid and will stay that way.
  371. */
  372. static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
  373. {
  374. struct ext3_inode_info *ei = EXT3_I(inode);
  375. __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
  376. __le32 *p;
  377. ext3_fsblk_t bg_start;
  378. ext3_grpblk_t colour;
  379. /* Try to find previous block */
  380. for (p = ind->p - 1; p >= start; p--) {
  381. if (*p)
  382. return le32_to_cpu(*p);
  383. }
  384. /* No such thing, so let's try location of indirect block */
  385. if (ind->bh)
  386. return ind->bh->b_blocknr;
  387. /*
  388. * It is going to be referred to from the inode itself? OK, just put it
  389. * into the same cylinder group then.
  390. */
  391. bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
  392. colour = (current->pid % 16) *
  393. (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
  394. return bg_start + colour;
  395. }
  396. /**
  397. * ext3_find_goal - find a preferred place for allocation.
  398. * @inode: owner
  399. * @block: block we want
  400. * @partial: pointer to the last triple within a chain
  401. *
  402. * Normally this function find the preferred place for block allocation,
  403. * returns it.
  404. */
  405. static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
  406. Indirect *partial)
  407. {
  408. struct ext3_block_alloc_info *block_i;
  409. block_i = EXT3_I(inode)->i_block_alloc_info;
  410. /*
  411. * try the heuristic for sequential allocation,
  412. * failing that at least try to get decent locality.
  413. */
  414. if (block_i && (block == block_i->last_alloc_logical_block + 1)
  415. && (block_i->last_alloc_physical_block != 0)) {
  416. return block_i->last_alloc_physical_block + 1;
  417. }
  418. return ext3_find_near(inode, partial);
  419. }
  420. /**
  421. * ext3_blks_to_allocate: Look up the block map and count the number
  422. * of direct blocks need to be allocated for the given branch.
  423. *
  424. * @branch: chain of indirect blocks
  425. * @k: number of blocks need for indirect blocks
  426. * @blks: number of data blocks to be mapped.
  427. * @blocks_to_boundary: the offset in the indirect block
  428. *
  429. * return the total number of blocks to be allocate, including the
  430. * direct and indirect blocks.
  431. */
  432. static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
  433. int blocks_to_boundary)
  434. {
  435. unsigned long count = 0;
  436. /*
  437. * Simple case, [t,d]Indirect block(s) has not allocated yet
  438. * then it's clear blocks on that path have not allocated
  439. */
  440. if (k > 0) {
  441. /* right now we don't handle cross boundary allocation */
  442. if (blks < blocks_to_boundary + 1)
  443. count += blks;
  444. else
  445. count += blocks_to_boundary + 1;
  446. return count;
  447. }
  448. count++;
  449. while (count < blks && count <= blocks_to_boundary &&
  450. le32_to_cpu(*(branch[0].p + count)) == 0) {
  451. count++;
  452. }
  453. return count;
  454. }
  455. /**
  456. * ext3_alloc_blocks: multiple allocate blocks needed for a branch
  457. * @indirect_blks: the number of blocks need to allocate for indirect
  458. * blocks
  459. *
  460. * @new_blocks: on return it will store the new block numbers for
  461. * the indirect blocks(if needed) and the first direct block,
  462. * @blks: on return it will store the total number of allocated
  463. * direct blocks
  464. */
  465. static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
  466. ext3_fsblk_t goal, int indirect_blks, int blks,
  467. ext3_fsblk_t new_blocks[4], int *err)
  468. {
  469. int target, i;
  470. unsigned long count = 0;
  471. int index = 0;
  472. ext3_fsblk_t current_block = 0;
  473. int ret = 0;
  474. /*
  475. * Here we try to allocate the requested multiple blocks at once,
  476. * on a best-effort basis.
  477. * To build a branch, we should allocate blocks for
  478. * the indirect blocks(if not allocated yet), and at least
  479. * the first direct block of this branch. That's the
  480. * minimum number of blocks need to allocate(required)
  481. */
  482. target = blks + indirect_blks;
  483. while (1) {
  484. count = target;
  485. /* allocating blocks for indirect blocks and direct blocks */
  486. current_block = ext3_new_blocks(handle,inode,goal,&count,err);
  487. if (*err)
  488. goto failed_out;
  489. target -= count;
  490. /* allocate blocks for indirect blocks */
  491. while (index < indirect_blks && count) {
  492. new_blocks[index++] = current_block++;
  493. count--;
  494. }
  495. if (count > 0)
  496. break;
  497. }
  498. /* save the new block number for the first direct block */
  499. new_blocks[index] = current_block;
  500. /* total number of blocks allocated for direct blocks */
  501. ret = count;
  502. *err = 0;
  503. return ret;
  504. failed_out:
  505. for (i = 0; i <index; i++)
  506. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  507. return ret;
  508. }
  509. /**
  510. * ext3_alloc_branch - allocate and set up a chain of blocks.
  511. * @inode: owner
  512. * @indirect_blks: number of allocated indirect blocks
  513. * @blks: number of allocated direct blocks
  514. * @offsets: offsets (in the blocks) to store the pointers to next.
  515. * @branch: place to store the chain in.
  516. *
  517. * This function allocates blocks, zeroes out all but the last one,
  518. * links them into chain and (if we are synchronous) writes them to disk.
  519. * In other words, it prepares a branch that can be spliced onto the
  520. * inode. It stores the information about that chain in the branch[], in
  521. * the same format as ext3_get_branch() would do. We are calling it after
  522. * we had read the existing part of chain and partial points to the last
  523. * triple of that (one with zero ->key). Upon the exit we have the same
  524. * picture as after the successful ext3_get_block(), except that in one
  525. * place chain is disconnected - *branch->p is still zero (we did not
  526. * set the last link), but branch->key contains the number that should
  527. * be placed into *branch->p to fill that gap.
  528. *
  529. * If allocation fails we free all blocks we've allocated (and forget
  530. * their buffer_heads) and return the error value the from failed
  531. * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
  532. * as described above and return 0.
  533. */
  534. static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
  535. int indirect_blks, int *blks, ext3_fsblk_t goal,
  536. int *offsets, Indirect *branch)
  537. {
  538. int blocksize = inode->i_sb->s_blocksize;
  539. int i, n = 0;
  540. int err = 0;
  541. struct buffer_head *bh;
  542. int num;
  543. ext3_fsblk_t new_blocks[4];
  544. ext3_fsblk_t current_block;
  545. num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
  546. *blks, new_blocks, &err);
  547. if (err)
  548. return err;
  549. branch[0].key = cpu_to_le32(new_blocks[0]);
  550. /*
  551. * metadata blocks and data blocks are allocated.
  552. */
  553. for (n = 1; n <= indirect_blks; n++) {
  554. /*
  555. * Get buffer_head for parent block, zero it out
  556. * and set the pointer to new one, then send
  557. * parent to disk.
  558. */
  559. bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
  560. branch[n].bh = bh;
  561. lock_buffer(bh);
  562. BUFFER_TRACE(bh, "call get_create_access");
  563. err = ext3_journal_get_create_access(handle, bh);
  564. if (err) {
  565. unlock_buffer(bh);
  566. brelse(bh);
  567. goto failed;
  568. }
  569. memset(bh->b_data, 0, blocksize);
  570. branch[n].p = (__le32 *) bh->b_data + offsets[n];
  571. branch[n].key = cpu_to_le32(new_blocks[n]);
  572. *branch[n].p = branch[n].key;
  573. if ( n == indirect_blks) {
  574. current_block = new_blocks[n];
  575. /*
  576. * End of chain, update the last new metablock of
  577. * the chain to point to the new allocated
  578. * data blocks numbers
  579. */
  580. for (i=1; i < num; i++)
  581. *(branch[n].p + i) = cpu_to_le32(++current_block);
  582. }
  583. BUFFER_TRACE(bh, "marking uptodate");
  584. set_buffer_uptodate(bh);
  585. unlock_buffer(bh);
  586. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  587. err = ext3_journal_dirty_metadata(handle, bh);
  588. if (err)
  589. goto failed;
  590. }
  591. *blks = num;
  592. return err;
  593. failed:
  594. /* Allocation failed, free what we already allocated */
  595. for (i = 1; i <= n ; i++) {
  596. BUFFER_TRACE(branch[i].bh, "call journal_forget");
  597. ext3_journal_forget(handle, branch[i].bh);
  598. }
  599. for (i = 0; i <indirect_blks; i++)
  600. ext3_free_blocks(handle, inode, new_blocks[i], 1);
  601. ext3_free_blocks(handle, inode, new_blocks[i], num);
  602. return err;
  603. }
  604. /**
  605. * ext3_splice_branch - splice the allocated branch onto inode.
  606. * @inode: owner
  607. * @block: (logical) number of block we are adding
  608. * @chain: chain of indirect blocks (with a missing link - see
  609. * ext3_alloc_branch)
  610. * @where: location of missing link
  611. * @num: number of indirect blocks we are adding
  612. * @blks: number of direct blocks we are adding
  613. *
  614. * This function fills the missing link and does all housekeeping needed in
  615. * inode (->i_blocks, etc.). In case of success we end up with the full
  616. * chain to new block and return 0.
  617. */
  618. static int ext3_splice_branch(handle_t *handle, struct inode *inode,
  619. long block, Indirect *where, int num, int blks)
  620. {
  621. int i;
  622. int err = 0;
  623. struct ext3_block_alloc_info *block_i;
  624. ext3_fsblk_t current_block;
  625. block_i = EXT3_I(inode)->i_block_alloc_info;
  626. /*
  627. * If we're splicing into a [td]indirect block (as opposed to the
  628. * inode) then we need to get write access to the [td]indirect block
  629. * before the splice.
  630. */
  631. if (where->bh) {
  632. BUFFER_TRACE(where->bh, "get_write_access");
  633. err = ext3_journal_get_write_access(handle, where->bh);
  634. if (err)
  635. goto err_out;
  636. }
  637. /* That's it */
  638. *where->p = where->key;
  639. /*
  640. * Update the host buffer_head or inode to point to more just allocated
  641. * direct blocks blocks
  642. */
  643. if (num == 0 && blks > 1) {
  644. current_block = le32_to_cpu(where->key) + 1;
  645. for (i = 1; i < blks; i++)
  646. *(where->p + i ) = cpu_to_le32(current_block++);
  647. }
  648. /*
  649. * update the most recently allocated logical & physical block
  650. * in i_block_alloc_info, to assist find the proper goal block for next
  651. * allocation
  652. */
  653. if (block_i) {
  654. block_i->last_alloc_logical_block = block + blks - 1;
  655. block_i->last_alloc_physical_block =
  656. le32_to_cpu(where[num].key) + blks - 1;
  657. }
  658. /* We are done with atomic stuff, now do the rest of housekeeping */
  659. inode->i_ctime = CURRENT_TIME_SEC;
  660. ext3_mark_inode_dirty(handle, inode);
  661. /* had we spliced it onto indirect block? */
  662. if (where->bh) {
  663. /*
  664. * If we spliced it onto an indirect block, we haven't
  665. * altered the inode. Note however that if it is being spliced
  666. * onto an indirect block at the very end of the file (the
  667. * file is growing) then we *will* alter the inode to reflect
  668. * the new i_size. But that is not done here - it is done in
  669. * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
  670. */
  671. jbd_debug(5, "splicing indirect only\n");
  672. BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
  673. err = ext3_journal_dirty_metadata(handle, where->bh);
  674. if (err)
  675. goto err_out;
  676. } else {
  677. /*
  678. * OK, we spliced it into the inode itself on a direct block.
  679. * Inode was dirtied above.
  680. */
  681. jbd_debug(5, "splicing direct\n");
  682. }
  683. return err;
  684. err_out:
  685. for (i = 1; i <= num; i++) {
  686. BUFFER_TRACE(where[i].bh, "call journal_forget");
  687. ext3_journal_forget(handle, where[i].bh);
  688. ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
  689. }
  690. ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
  691. return err;
  692. }
  693. /*
  694. * Allocation strategy is simple: if we have to allocate something, we will
  695. * have to go the whole way to leaf. So let's do it before attaching anything
  696. * to tree, set linkage between the newborn blocks, write them if sync is
  697. * required, recheck the path, free and repeat if check fails, otherwise
  698. * set the last missing link (that will protect us from any truncate-generated
  699. * removals - all blocks on the path are immune now) and possibly force the
  700. * write on the parent block.
  701. * That has a nice additional property: no special recovery from the failed
  702. * allocations is needed - we simply release blocks and do not touch anything
  703. * reachable from inode.
  704. *
  705. * `handle' can be NULL if create == 0.
  706. *
  707. * The BKL may not be held on entry here. Be sure to take it early.
  708. * return > 0, # of blocks mapped or allocated.
  709. * return = 0, if plain lookup failed.
  710. * return < 0, error case.
  711. */
  712. int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
  713. sector_t iblock, unsigned long maxblocks,
  714. struct buffer_head *bh_result,
  715. int create, int extend_disksize)
  716. {
  717. int err = -EIO;
  718. int offsets[4];
  719. Indirect chain[4];
  720. Indirect *partial;
  721. ext3_fsblk_t goal;
  722. int indirect_blks;
  723. int blocks_to_boundary = 0;
  724. int depth;
  725. struct ext3_inode_info *ei = EXT3_I(inode);
  726. int count = 0;
  727. ext3_fsblk_t first_block = 0;
  728. J_ASSERT(handle != NULL || create == 0);
  729. depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
  730. if (depth == 0)
  731. goto out;
  732. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  733. /* Simplest case - block found, no allocation needed */
  734. if (!partial) {
  735. first_block = le32_to_cpu(chain[depth - 1].key);
  736. clear_buffer_new(bh_result);
  737. count++;
  738. /*map more blocks*/
  739. while (count < maxblocks && count <= blocks_to_boundary) {
  740. ext3_fsblk_t blk;
  741. if (!verify_chain(chain, partial)) {
  742. /*
  743. * Indirect block might be removed by
  744. * truncate while we were reading it.
  745. * Handling of that case: forget what we've
  746. * got now. Flag the err as EAGAIN, so it
  747. * will reread.
  748. */
  749. err = -EAGAIN;
  750. count = 0;
  751. break;
  752. }
  753. blk = le32_to_cpu(*(chain[depth-1].p + count));
  754. if (blk == first_block + count)
  755. count++;
  756. else
  757. break;
  758. }
  759. if (err != -EAGAIN)
  760. goto got_it;
  761. }
  762. /* Next simple case - plain lookup or failed read of indirect block */
  763. if (!create || err == -EIO)
  764. goto cleanup;
  765. mutex_lock(&ei->truncate_mutex);
  766. /*
  767. * If the indirect block is missing while we are reading
  768. * the chain(ext3_get_branch() returns -EAGAIN err), or
  769. * if the chain has been changed after we grab the semaphore,
  770. * (either because another process truncated this branch, or
  771. * another get_block allocated this branch) re-grab the chain to see if
  772. * the request block has been allocated or not.
  773. *
  774. * Since we already block the truncate/other get_block
  775. * at this point, we will have the current copy of the chain when we
  776. * splice the branch into the tree.
  777. */
  778. if (err == -EAGAIN || !verify_chain(chain, partial)) {
  779. while (partial > chain) {
  780. brelse(partial->bh);
  781. partial--;
  782. }
  783. partial = ext3_get_branch(inode, depth, offsets, chain, &err);
  784. if (!partial) {
  785. count++;
  786. mutex_unlock(&ei->truncate_mutex);
  787. if (err)
  788. goto cleanup;
  789. clear_buffer_new(bh_result);
  790. goto got_it;
  791. }
  792. }
  793. /*
  794. * Okay, we need to do block allocation. Lazily initialize the block
  795. * allocation info here if necessary
  796. */
  797. if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
  798. ext3_init_block_alloc_info(inode);
  799. goal = ext3_find_goal(inode, iblock, partial);
  800. /* the number of blocks need to allocate for [d,t]indirect blocks */
  801. indirect_blks = (chain + depth) - partial - 1;
  802. /*
  803. * Next look up the indirect map to count the totoal number of
  804. * direct blocks to allocate for this branch.
  805. */
  806. count = ext3_blks_to_allocate(partial, indirect_blks,
  807. maxblocks, blocks_to_boundary);
  808. /*
  809. * Block out ext3_truncate while we alter the tree
  810. */
  811. err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
  812. offsets + (partial - chain), partial);
  813. /*
  814. * The ext3_splice_branch call will free and forget any buffers
  815. * on the new chain if there is a failure, but that risks using
  816. * up transaction credits, especially for bitmaps where the
  817. * credits cannot be returned. Can we handle this somehow? We
  818. * may need to return -EAGAIN upwards in the worst case. --sct
  819. */
  820. if (!err)
  821. err = ext3_splice_branch(handle, inode, iblock,
  822. partial, indirect_blks, count);
  823. /*
  824. * i_disksize growing is protected by truncate_mutex. Don't forget to
  825. * protect it if you're about to implement concurrent
  826. * ext3_get_block() -bzzz
  827. */
  828. if (!err && extend_disksize && inode->i_size > ei->i_disksize)
  829. ei->i_disksize = inode->i_size;
  830. mutex_unlock(&ei->truncate_mutex);
  831. if (err)
  832. goto cleanup;
  833. set_buffer_new(bh_result);
  834. got_it:
  835. map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
  836. if (count > blocks_to_boundary)
  837. set_buffer_boundary(bh_result);
  838. err = count;
  839. /* Clean up and exit */
  840. partial = chain + depth - 1; /* the whole chain */
  841. cleanup:
  842. while (partial > chain) {
  843. BUFFER_TRACE(partial->bh, "call brelse");
  844. brelse(partial->bh);
  845. partial--;
  846. }
  847. BUFFER_TRACE(bh_result, "returned");
  848. out:
  849. return err;
  850. }
  851. /* Maximum number of blocks we map for direct IO at once. */
  852. #define DIO_MAX_BLOCKS 4096
  853. /*
  854. * Number of credits we need for writing DIO_MAX_BLOCKS:
  855. * We need sb + group descriptor + bitmap + inode -> 4
  856. * For B blocks with A block pointers per block we need:
  857. * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
  858. * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
  859. */
  860. #define DIO_CREDITS 25
  861. static int ext3_get_block(struct inode *inode, sector_t iblock,
  862. struct buffer_head *bh_result, int create)
  863. {
  864. handle_t *handle = ext3_journal_current_handle();
  865. int ret = 0, started = 0;
  866. unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
  867. if (create && !handle) { /* Direct IO write... */
  868. if (max_blocks > DIO_MAX_BLOCKS)
  869. max_blocks = DIO_MAX_BLOCKS;
  870. handle = ext3_journal_start(inode, DIO_CREDITS +
  871. 2 * EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb));
  872. if (IS_ERR(handle)) {
  873. ret = PTR_ERR(handle);
  874. goto out;
  875. }
  876. started = 1;
  877. }
  878. ret = ext3_get_blocks_handle(handle, inode, iblock,
  879. max_blocks, bh_result, create, 0);
  880. if (ret > 0) {
  881. bh_result->b_size = (ret << inode->i_blkbits);
  882. ret = 0;
  883. }
  884. if (started)
  885. ext3_journal_stop(handle);
  886. out:
  887. return ret;
  888. }
  889. /*
  890. * `handle' can be NULL if create is zero
  891. */
  892. struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
  893. long block, int create, int *errp)
  894. {
  895. struct buffer_head dummy;
  896. int fatal = 0, err;
  897. J_ASSERT(handle != NULL || create == 0);
  898. dummy.b_state = 0;
  899. dummy.b_blocknr = -1000;
  900. buffer_trace_init(&dummy.b_history);
  901. err = ext3_get_blocks_handle(handle, inode, block, 1,
  902. &dummy, create, 1);
  903. /*
  904. * ext3_get_blocks_handle() returns number of blocks
  905. * mapped. 0 in case of a HOLE.
  906. */
  907. if (err > 0) {
  908. if (err > 1)
  909. WARN_ON(1);
  910. err = 0;
  911. }
  912. *errp = err;
  913. if (!err && buffer_mapped(&dummy)) {
  914. struct buffer_head *bh;
  915. bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
  916. if (!bh) {
  917. *errp = -EIO;
  918. goto err;
  919. }
  920. if (buffer_new(&dummy)) {
  921. J_ASSERT(create != 0);
  922. J_ASSERT(handle != NULL);
  923. /*
  924. * Now that we do not always journal data, we should
  925. * keep in mind whether this should always journal the
  926. * new buffer as metadata. For now, regular file
  927. * writes use ext3_get_block instead, so it's not a
  928. * problem.
  929. */
  930. lock_buffer(bh);
  931. BUFFER_TRACE(bh, "call get_create_access");
  932. fatal = ext3_journal_get_create_access(handle, bh);
  933. if (!fatal && !buffer_uptodate(bh)) {
  934. memset(bh->b_data,0,inode->i_sb->s_blocksize);
  935. set_buffer_uptodate(bh);
  936. }
  937. unlock_buffer(bh);
  938. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  939. err = ext3_journal_dirty_metadata(handle, bh);
  940. if (!fatal)
  941. fatal = err;
  942. } else {
  943. BUFFER_TRACE(bh, "not a new buffer");
  944. }
  945. if (fatal) {
  946. *errp = fatal;
  947. brelse(bh);
  948. bh = NULL;
  949. }
  950. return bh;
  951. }
  952. err:
  953. return NULL;
  954. }
  955. struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
  956. int block, int create, int *err)
  957. {
  958. struct buffer_head * bh;
  959. bh = ext3_getblk(handle, inode, block, create, err);
  960. if (!bh)
  961. return bh;
  962. if (buffer_uptodate(bh))
  963. return bh;
  964. ll_rw_block(READ_META, 1, &bh);
  965. wait_on_buffer(bh);
  966. if (buffer_uptodate(bh))
  967. return bh;
  968. put_bh(bh);
  969. *err = -EIO;
  970. return NULL;
  971. }
  972. static int walk_page_buffers( handle_t *handle,
  973. struct buffer_head *head,
  974. unsigned from,
  975. unsigned to,
  976. int *partial,
  977. int (*fn)( handle_t *handle,
  978. struct buffer_head *bh))
  979. {
  980. struct buffer_head *bh;
  981. unsigned block_start, block_end;
  982. unsigned blocksize = head->b_size;
  983. int err, ret = 0;
  984. struct buffer_head *next;
  985. for ( bh = head, block_start = 0;
  986. ret == 0 && (bh != head || !block_start);
  987. block_start = block_end, bh = next)
  988. {
  989. next = bh->b_this_page;
  990. block_end = block_start + blocksize;
  991. if (block_end <= from || block_start >= to) {
  992. if (partial && !buffer_uptodate(bh))
  993. *partial = 1;
  994. continue;
  995. }
  996. err = (*fn)(handle, bh);
  997. if (!ret)
  998. ret = err;
  999. }
  1000. return ret;
  1001. }
  1002. /*
  1003. * To preserve ordering, it is essential that the hole instantiation and
  1004. * the data write be encapsulated in a single transaction. We cannot
  1005. * close off a transaction and start a new one between the ext3_get_block()
  1006. * and the commit_write(). So doing the journal_start at the start of
  1007. * prepare_write() is the right place.
  1008. *
  1009. * Also, this function can nest inside ext3_writepage() ->
  1010. * block_write_full_page(). In that case, we *know* that ext3_writepage()
  1011. * has generated enough buffer credits to do the whole page. So we won't
  1012. * block on the journal in that case, which is good, because the caller may
  1013. * be PF_MEMALLOC.
  1014. *
  1015. * By accident, ext3 can be reentered when a transaction is open via
  1016. * quota file writes. If we were to commit the transaction while thus
  1017. * reentered, there can be a deadlock - we would be holding a quota
  1018. * lock, and the commit would never complete if another thread had a
  1019. * transaction open and was blocking on the quota lock - a ranking
  1020. * violation.
  1021. *
  1022. * So what we do is to rely on the fact that journal_stop/journal_start
  1023. * will _not_ run commit under these circumstances because handle->h_ref
  1024. * is elevated. We'll still have enough credits for the tiny quotafile
  1025. * write.
  1026. */
  1027. static int do_journal_get_write_access(handle_t *handle,
  1028. struct buffer_head *bh)
  1029. {
  1030. if (!buffer_mapped(bh) || buffer_freed(bh))
  1031. return 0;
  1032. return ext3_journal_get_write_access(handle, bh);
  1033. }
  1034. static int ext3_write_begin(struct file *file, struct address_space *mapping,
  1035. loff_t pos, unsigned len, unsigned flags,
  1036. struct page **pagep, void **fsdata)
  1037. {
  1038. struct inode *inode = mapping->host;
  1039. int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
  1040. handle_t *handle;
  1041. int retries = 0;
  1042. struct page *page;
  1043. pgoff_t index;
  1044. unsigned from, to;
  1045. index = pos >> PAGE_CACHE_SHIFT;
  1046. from = pos & (PAGE_CACHE_SIZE - 1);
  1047. to = from + len;
  1048. retry:
  1049. page = __grab_cache_page(mapping, index);
  1050. if (!page)
  1051. return -ENOMEM;
  1052. *pagep = page;
  1053. handle = ext3_journal_start(inode, needed_blocks);
  1054. if (IS_ERR(handle)) {
  1055. unlock_page(page);
  1056. page_cache_release(page);
  1057. ret = PTR_ERR(handle);
  1058. goto out;
  1059. }
  1060. ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
  1061. ext3_get_block);
  1062. if (ret)
  1063. goto write_begin_failed;
  1064. if (ext3_should_journal_data(inode)) {
  1065. ret = walk_page_buffers(handle, page_buffers(page),
  1066. from, to, NULL, do_journal_get_write_access);
  1067. }
  1068. write_begin_failed:
  1069. if (ret) {
  1070. ext3_journal_stop(handle);
  1071. unlock_page(page);
  1072. page_cache_release(page);
  1073. }
  1074. if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
  1075. goto retry;
  1076. out:
  1077. return ret;
  1078. }
  1079. int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
  1080. {
  1081. int err = journal_dirty_data(handle, bh);
  1082. if (err)
  1083. ext3_journal_abort_handle(__FUNCTION__, __FUNCTION__,
  1084. bh, handle, err);
  1085. return err;
  1086. }
  1087. /* For write_end() in data=journal mode */
  1088. static int write_end_fn(handle_t *handle, struct buffer_head *bh)
  1089. {
  1090. if (!buffer_mapped(bh) || buffer_freed(bh))
  1091. return 0;
  1092. set_buffer_uptodate(bh);
  1093. return ext3_journal_dirty_metadata(handle, bh);
  1094. }
  1095. /*
  1096. * Generic write_end handler for ordered and writeback ext3 journal modes.
  1097. * We can't use generic_write_end, because that unlocks the page and we need to
  1098. * unlock the page after ext3_journal_stop, but ext3_journal_stop must run
  1099. * after block_write_end.
  1100. */
  1101. static int ext3_generic_write_end(struct file *file,
  1102. struct address_space *mapping,
  1103. loff_t pos, unsigned len, unsigned copied,
  1104. struct page *page, void *fsdata)
  1105. {
  1106. struct inode *inode = file->f_mapping->host;
  1107. copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
  1108. if (pos+copied > inode->i_size) {
  1109. i_size_write(inode, pos+copied);
  1110. mark_inode_dirty(inode);
  1111. }
  1112. return copied;
  1113. }
  1114. /*
  1115. * We need to pick up the new inode size which generic_commit_write gave us
  1116. * `file' can be NULL - eg, when called from page_symlink().
  1117. *
  1118. * ext3 never places buffers on inode->i_mapping->private_list. metadata
  1119. * buffers are managed internally.
  1120. */
  1121. static int ext3_ordered_write_end(struct file *file,
  1122. struct address_space *mapping,
  1123. loff_t pos, unsigned len, unsigned copied,
  1124. struct page *page, void *fsdata)
  1125. {
  1126. handle_t *handle = ext3_journal_current_handle();
  1127. struct inode *inode = file->f_mapping->host;
  1128. unsigned from, to;
  1129. int ret = 0, ret2;
  1130. from = pos & (PAGE_CACHE_SIZE - 1);
  1131. to = from + len;
  1132. ret = walk_page_buffers(handle, page_buffers(page),
  1133. from, to, NULL, ext3_journal_dirty_data);
  1134. if (ret == 0) {
  1135. /*
  1136. * generic_write_end() will run mark_inode_dirty() if i_size
  1137. * changes. So let's piggyback the i_disksize mark_inode_dirty
  1138. * into that.
  1139. */
  1140. loff_t new_i_size;
  1141. new_i_size = pos + copied;
  1142. if (new_i_size > EXT3_I(inode)->i_disksize)
  1143. EXT3_I(inode)->i_disksize = new_i_size;
  1144. copied = ext3_generic_write_end(file, mapping, pos, len, copied,
  1145. page, fsdata);
  1146. if (copied < 0)
  1147. ret = copied;
  1148. }
  1149. ret2 = ext3_journal_stop(handle);
  1150. if (!ret)
  1151. ret = ret2;
  1152. unlock_page(page);
  1153. page_cache_release(page);
  1154. return ret ? ret : copied;
  1155. }
  1156. static int ext3_writeback_write_end(struct file *file,
  1157. struct address_space *mapping,
  1158. loff_t pos, unsigned len, unsigned copied,
  1159. struct page *page, void *fsdata)
  1160. {
  1161. handle_t *handle = ext3_journal_current_handle();
  1162. struct inode *inode = file->f_mapping->host;
  1163. int ret = 0, ret2;
  1164. loff_t new_i_size;
  1165. new_i_size = pos + copied;
  1166. if (new_i_size > EXT3_I(inode)->i_disksize)
  1167. EXT3_I(inode)->i_disksize = new_i_size;
  1168. copied = ext3_generic_write_end(file, mapping, pos, len, copied,
  1169. page, fsdata);
  1170. if (copied < 0)
  1171. ret = copied;
  1172. ret2 = ext3_journal_stop(handle);
  1173. if (!ret)
  1174. ret = ret2;
  1175. unlock_page(page);
  1176. page_cache_release(page);
  1177. return ret ? ret : copied;
  1178. }
  1179. static int ext3_journalled_write_end(struct file *file,
  1180. struct address_space *mapping,
  1181. loff_t pos, unsigned len, unsigned copied,
  1182. struct page *page, void *fsdata)
  1183. {
  1184. handle_t *handle = ext3_journal_current_handle();
  1185. struct inode *inode = mapping->host;
  1186. int ret = 0, ret2;
  1187. int partial = 0;
  1188. unsigned from, to;
  1189. from = pos & (PAGE_CACHE_SIZE - 1);
  1190. to = from + len;
  1191. if (copied < len) {
  1192. if (!PageUptodate(page))
  1193. copied = 0;
  1194. page_zero_new_buffers(page, from+copied, to);
  1195. }
  1196. ret = walk_page_buffers(handle, page_buffers(page), from,
  1197. to, &partial, write_end_fn);
  1198. if (!partial)
  1199. SetPageUptodate(page);
  1200. if (pos+copied > inode->i_size)
  1201. i_size_write(inode, pos+copied);
  1202. EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
  1203. if (inode->i_size > EXT3_I(inode)->i_disksize) {
  1204. EXT3_I(inode)->i_disksize = inode->i_size;
  1205. ret2 = ext3_mark_inode_dirty(handle, inode);
  1206. if (!ret)
  1207. ret = ret2;
  1208. }
  1209. ret2 = ext3_journal_stop(handle);
  1210. if (!ret)
  1211. ret = ret2;
  1212. unlock_page(page);
  1213. page_cache_release(page);
  1214. return ret ? ret : copied;
  1215. }
  1216. /*
  1217. * bmap() is special. It gets used by applications such as lilo and by
  1218. * the swapper to find the on-disk block of a specific piece of data.
  1219. *
  1220. * Naturally, this is dangerous if the block concerned is still in the
  1221. * journal. If somebody makes a swapfile on an ext3 data-journaling
  1222. * filesystem and enables swap, then they may get a nasty shock when the
  1223. * data getting swapped to that swapfile suddenly gets overwritten by
  1224. * the original zero's written out previously to the journal and
  1225. * awaiting writeback in the kernel's buffer cache.
  1226. *
  1227. * So, if we see any bmap calls here on a modified, data-journaled file,
  1228. * take extra steps to flush any blocks which might be in the cache.
  1229. */
  1230. static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
  1231. {
  1232. struct inode *inode = mapping->host;
  1233. journal_t *journal;
  1234. int err;
  1235. if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
  1236. /*
  1237. * This is a REALLY heavyweight approach, but the use of
  1238. * bmap on dirty files is expected to be extremely rare:
  1239. * only if we run lilo or swapon on a freshly made file
  1240. * do we expect this to happen.
  1241. *
  1242. * (bmap requires CAP_SYS_RAWIO so this does not
  1243. * represent an unprivileged user DOS attack --- we'd be
  1244. * in trouble if mortal users could trigger this path at
  1245. * will.)
  1246. *
  1247. * NB. EXT3_STATE_JDATA is not set on files other than
  1248. * regular files. If somebody wants to bmap a directory
  1249. * or symlink and gets confused because the buffer
  1250. * hasn't yet been flushed to disk, they deserve
  1251. * everything they get.
  1252. */
  1253. EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
  1254. journal = EXT3_JOURNAL(inode);
  1255. journal_lock_updates(journal);
  1256. err = journal_flush(journal);
  1257. journal_unlock_updates(journal);
  1258. if (err)
  1259. return 0;
  1260. }
  1261. return generic_block_bmap(mapping,block,ext3_get_block);
  1262. }
  1263. static int bget_one(handle_t *handle, struct buffer_head *bh)
  1264. {
  1265. get_bh(bh);
  1266. return 0;
  1267. }
  1268. static int bput_one(handle_t *handle, struct buffer_head *bh)
  1269. {
  1270. put_bh(bh);
  1271. return 0;
  1272. }
  1273. static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
  1274. {
  1275. if (buffer_mapped(bh))
  1276. return ext3_journal_dirty_data(handle, bh);
  1277. return 0;
  1278. }
  1279. /*
  1280. * Note that we always start a transaction even if we're not journalling
  1281. * data. This is to preserve ordering: any hole instantiation within
  1282. * __block_write_full_page -> ext3_get_block() should be journalled
  1283. * along with the data so we don't crash and then get metadata which
  1284. * refers to old data.
  1285. *
  1286. * In all journalling modes block_write_full_page() will start the I/O.
  1287. *
  1288. * Problem:
  1289. *
  1290. * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
  1291. * ext3_writepage()
  1292. *
  1293. * Similar for:
  1294. *
  1295. * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
  1296. *
  1297. * Same applies to ext3_get_block(). We will deadlock on various things like
  1298. * lock_journal and i_truncate_mutex.
  1299. *
  1300. * Setting PF_MEMALLOC here doesn't work - too many internal memory
  1301. * allocations fail.
  1302. *
  1303. * 16May01: If we're reentered then journal_current_handle() will be
  1304. * non-zero. We simply *return*.
  1305. *
  1306. * 1 July 2001: @@@ FIXME:
  1307. * In journalled data mode, a data buffer may be metadata against the
  1308. * current transaction. But the same file is part of a shared mapping
  1309. * and someone does a writepage() on it.
  1310. *
  1311. * We will move the buffer onto the async_data list, but *after* it has
  1312. * been dirtied. So there's a small window where we have dirty data on
  1313. * BJ_Metadata.
  1314. *
  1315. * Note that this only applies to the last partial page in the file. The
  1316. * bit which block_write_full_page() uses prepare/commit for. (That's
  1317. * broken code anyway: it's wrong for msync()).
  1318. *
  1319. * It's a rare case: affects the final partial page, for journalled data
  1320. * where the file is subject to bith write() and writepage() in the same
  1321. * transction. To fix it we'll need a custom block_write_full_page().
  1322. * We'll probably need that anyway for journalling writepage() output.
  1323. *
  1324. * We don't honour synchronous mounts for writepage(). That would be
  1325. * disastrous. Any write() or metadata operation will sync the fs for
  1326. * us.
  1327. *
  1328. * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
  1329. * we don't need to open a transaction here.
  1330. */
  1331. static int ext3_ordered_writepage(struct page *page,
  1332. struct writeback_control *wbc)
  1333. {
  1334. struct inode *inode = page->mapping->host;
  1335. struct buffer_head *page_bufs;
  1336. handle_t *handle = NULL;
  1337. int ret = 0;
  1338. int err;
  1339. J_ASSERT(PageLocked(page));
  1340. /*
  1341. * We give up here if we're reentered, because it might be for a
  1342. * different filesystem.
  1343. */
  1344. if (ext3_journal_current_handle())
  1345. goto out_fail;
  1346. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1347. if (IS_ERR(handle)) {
  1348. ret = PTR_ERR(handle);
  1349. goto out_fail;
  1350. }
  1351. if (!page_has_buffers(page)) {
  1352. create_empty_buffers(page, inode->i_sb->s_blocksize,
  1353. (1 << BH_Dirty)|(1 << BH_Uptodate));
  1354. }
  1355. page_bufs = page_buffers(page);
  1356. walk_page_buffers(handle, page_bufs, 0,
  1357. PAGE_CACHE_SIZE, NULL, bget_one);
  1358. ret = block_write_full_page(page, ext3_get_block, wbc);
  1359. /*
  1360. * The page can become unlocked at any point now, and
  1361. * truncate can then come in and change things. So we
  1362. * can't touch *page from now on. But *page_bufs is
  1363. * safe due to elevated refcount.
  1364. */
  1365. /*
  1366. * And attach them to the current transaction. But only if
  1367. * block_write_full_page() succeeded. Otherwise they are unmapped,
  1368. * and generally junk.
  1369. */
  1370. if (ret == 0) {
  1371. err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
  1372. NULL, journal_dirty_data_fn);
  1373. if (!ret)
  1374. ret = err;
  1375. }
  1376. walk_page_buffers(handle, page_bufs, 0,
  1377. PAGE_CACHE_SIZE, NULL, bput_one);
  1378. err = ext3_journal_stop(handle);
  1379. if (!ret)
  1380. ret = err;
  1381. return ret;
  1382. out_fail:
  1383. redirty_page_for_writepage(wbc, page);
  1384. unlock_page(page);
  1385. return ret;
  1386. }
  1387. static int ext3_writeback_writepage(struct page *page,
  1388. struct writeback_control *wbc)
  1389. {
  1390. struct inode *inode = page->mapping->host;
  1391. handle_t *handle = NULL;
  1392. int ret = 0;
  1393. int err;
  1394. if (ext3_journal_current_handle())
  1395. goto out_fail;
  1396. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1397. if (IS_ERR(handle)) {
  1398. ret = PTR_ERR(handle);
  1399. goto out_fail;
  1400. }
  1401. if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
  1402. ret = nobh_writepage(page, ext3_get_block, wbc);
  1403. else
  1404. ret = block_write_full_page(page, ext3_get_block, wbc);
  1405. err = ext3_journal_stop(handle);
  1406. if (!ret)
  1407. ret = err;
  1408. return ret;
  1409. out_fail:
  1410. redirty_page_for_writepage(wbc, page);
  1411. unlock_page(page);
  1412. return ret;
  1413. }
  1414. static int ext3_journalled_writepage(struct page *page,
  1415. struct writeback_control *wbc)
  1416. {
  1417. struct inode *inode = page->mapping->host;
  1418. handle_t *handle = NULL;
  1419. int ret = 0;
  1420. int err;
  1421. if (ext3_journal_current_handle())
  1422. goto no_write;
  1423. handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
  1424. if (IS_ERR(handle)) {
  1425. ret = PTR_ERR(handle);
  1426. goto no_write;
  1427. }
  1428. if (!page_has_buffers(page) || PageChecked(page)) {
  1429. /*
  1430. * It's mmapped pagecache. Add buffers and journal it. There
  1431. * doesn't seem much point in redirtying the page here.
  1432. */
  1433. ClearPageChecked(page);
  1434. ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
  1435. ext3_get_block);
  1436. if (ret != 0) {
  1437. ext3_journal_stop(handle);
  1438. goto out_unlock;
  1439. }
  1440. ret = walk_page_buffers(handle, page_buffers(page), 0,
  1441. PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
  1442. err = walk_page_buffers(handle, page_buffers(page), 0,
  1443. PAGE_CACHE_SIZE, NULL, write_end_fn);
  1444. if (ret == 0)
  1445. ret = err;
  1446. EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
  1447. unlock_page(page);
  1448. } else {
  1449. /*
  1450. * It may be a page full of checkpoint-mode buffers. We don't
  1451. * really know unless we go poke around in the buffer_heads.
  1452. * But block_write_full_page will do the right thing.
  1453. */
  1454. ret = block_write_full_page(page, ext3_get_block, wbc);
  1455. }
  1456. err = ext3_journal_stop(handle);
  1457. if (!ret)
  1458. ret = err;
  1459. out:
  1460. return ret;
  1461. no_write:
  1462. redirty_page_for_writepage(wbc, page);
  1463. out_unlock:
  1464. unlock_page(page);
  1465. goto out;
  1466. }
  1467. static int ext3_readpage(struct file *file, struct page *page)
  1468. {
  1469. return mpage_readpage(page, ext3_get_block);
  1470. }
  1471. static int
  1472. ext3_readpages(struct file *file, struct address_space *mapping,
  1473. struct list_head *pages, unsigned nr_pages)
  1474. {
  1475. return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
  1476. }
  1477. static void ext3_invalidatepage(struct page *page, unsigned long offset)
  1478. {
  1479. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1480. /*
  1481. * If it's a full truncate we just forget about the pending dirtying
  1482. */
  1483. if (offset == 0)
  1484. ClearPageChecked(page);
  1485. journal_invalidatepage(journal, page, offset);
  1486. }
  1487. static int ext3_releasepage(struct page *page, gfp_t wait)
  1488. {
  1489. journal_t *journal = EXT3_JOURNAL(page->mapping->host);
  1490. WARN_ON(PageChecked(page));
  1491. if (!page_has_buffers(page))
  1492. return 0;
  1493. return journal_try_to_free_buffers(journal, page, wait);
  1494. }
  1495. /*
  1496. * If the O_DIRECT write will extend the file then add this inode to the
  1497. * orphan list. So recovery will truncate it back to the original size
  1498. * if the machine crashes during the write.
  1499. *
  1500. * If the O_DIRECT write is intantiating holes inside i_size and the machine
  1501. * crashes then stale disk data _may_ be exposed inside the file. But current
  1502. * VFS code falls back into buffered path in that case so we are safe.
  1503. */
  1504. static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
  1505. const struct iovec *iov, loff_t offset,
  1506. unsigned long nr_segs)
  1507. {
  1508. struct file *file = iocb->ki_filp;
  1509. struct inode *inode = file->f_mapping->host;
  1510. struct ext3_inode_info *ei = EXT3_I(inode);
  1511. handle_t *handle;
  1512. ssize_t ret;
  1513. int orphan = 0;
  1514. size_t count = iov_length(iov, nr_segs);
  1515. if (rw == WRITE) {
  1516. loff_t final_size = offset + count;
  1517. if (final_size > inode->i_size) {
  1518. /* Credits for sb + inode write */
  1519. handle = ext3_journal_start(inode, 2);
  1520. if (IS_ERR(handle)) {
  1521. ret = PTR_ERR(handle);
  1522. goto out;
  1523. }
  1524. ret = ext3_orphan_add(handle, inode);
  1525. if (ret) {
  1526. ext3_journal_stop(handle);
  1527. goto out;
  1528. }
  1529. orphan = 1;
  1530. ei->i_disksize = inode->i_size;
  1531. ext3_journal_stop(handle);
  1532. }
  1533. }
  1534. ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
  1535. offset, nr_segs,
  1536. ext3_get_block, NULL);
  1537. if (orphan) {
  1538. int err;
  1539. /* Credits for sb + inode write */
  1540. handle = ext3_journal_start(inode, 2);
  1541. if (IS_ERR(handle)) {
  1542. /* This is really bad luck. We've written the data
  1543. * but cannot extend i_size. Bail out and pretend
  1544. * the write failed... */
  1545. ret = PTR_ERR(handle);
  1546. goto out;
  1547. }
  1548. if (inode->i_nlink)
  1549. ext3_orphan_del(handle, inode);
  1550. if (ret > 0) {
  1551. loff_t end = offset + ret;
  1552. if (end > inode->i_size) {
  1553. ei->i_disksize = end;
  1554. i_size_write(inode, end);
  1555. /*
  1556. * We're going to return a positive `ret'
  1557. * here due to non-zero-length I/O, so there's
  1558. * no way of reporting error returns from
  1559. * ext3_mark_inode_dirty() to userspace. So
  1560. * ignore it.
  1561. */
  1562. ext3_mark_inode_dirty(handle, inode);
  1563. }
  1564. }
  1565. err = ext3_journal_stop(handle);
  1566. if (ret == 0)
  1567. ret = err;
  1568. }
  1569. out:
  1570. return ret;
  1571. }
  1572. /*
  1573. * Pages can be marked dirty completely asynchronously from ext3's journalling
  1574. * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
  1575. * much here because ->set_page_dirty is called under VFS locks. The page is
  1576. * not necessarily locked.
  1577. *
  1578. * We cannot just dirty the page and leave attached buffers clean, because the
  1579. * buffers' dirty state is "definitive". We cannot just set the buffers dirty
  1580. * or jbddirty because all the journalling code will explode.
  1581. *
  1582. * So what we do is to mark the page "pending dirty" and next time writepage
  1583. * is called, propagate that into the buffers appropriately.
  1584. */
  1585. static int ext3_journalled_set_page_dirty(struct page *page)
  1586. {
  1587. SetPageChecked(page);
  1588. return __set_page_dirty_nobuffers(page);
  1589. }
  1590. static const struct address_space_operations ext3_ordered_aops = {
  1591. .readpage = ext3_readpage,
  1592. .readpages = ext3_readpages,
  1593. .writepage = ext3_ordered_writepage,
  1594. .sync_page = block_sync_page,
  1595. .write_begin = ext3_write_begin,
  1596. .write_end = ext3_ordered_write_end,
  1597. .bmap = ext3_bmap,
  1598. .invalidatepage = ext3_invalidatepage,
  1599. .releasepage = ext3_releasepage,
  1600. .direct_IO = ext3_direct_IO,
  1601. .migratepage = buffer_migrate_page,
  1602. };
  1603. static const struct address_space_operations ext3_writeback_aops = {
  1604. .readpage = ext3_readpage,
  1605. .readpages = ext3_readpages,
  1606. .writepage = ext3_writeback_writepage,
  1607. .sync_page = block_sync_page,
  1608. .write_begin = ext3_write_begin,
  1609. .write_end = ext3_writeback_write_end,
  1610. .bmap = ext3_bmap,
  1611. .invalidatepage = ext3_invalidatepage,
  1612. .releasepage = ext3_releasepage,
  1613. .direct_IO = ext3_direct_IO,
  1614. .migratepage = buffer_migrate_page,
  1615. };
  1616. static const struct address_space_operations ext3_journalled_aops = {
  1617. .readpage = ext3_readpage,
  1618. .readpages = ext3_readpages,
  1619. .writepage = ext3_journalled_writepage,
  1620. .sync_page = block_sync_page,
  1621. .write_begin = ext3_write_begin,
  1622. .write_end = ext3_journalled_write_end,
  1623. .set_page_dirty = ext3_journalled_set_page_dirty,
  1624. .bmap = ext3_bmap,
  1625. .invalidatepage = ext3_invalidatepage,
  1626. .releasepage = ext3_releasepage,
  1627. };
  1628. void ext3_set_aops(struct inode *inode)
  1629. {
  1630. if (ext3_should_order_data(inode))
  1631. inode->i_mapping->a_ops = &ext3_ordered_aops;
  1632. else if (ext3_should_writeback_data(inode))
  1633. inode->i_mapping->a_ops = &ext3_writeback_aops;
  1634. else
  1635. inode->i_mapping->a_ops = &ext3_journalled_aops;
  1636. }
  1637. /*
  1638. * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
  1639. * up to the end of the block which corresponds to `from'.
  1640. * This required during truncate. We need to physically zero the tail end
  1641. * of that block so it doesn't yield old data if the file is later grown.
  1642. */
  1643. static int ext3_block_truncate_page(handle_t *handle, struct page *page,
  1644. struct address_space *mapping, loff_t from)
  1645. {
  1646. ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
  1647. unsigned offset = from & (PAGE_CACHE_SIZE-1);
  1648. unsigned blocksize, iblock, length, pos;
  1649. struct inode *inode = mapping->host;
  1650. struct buffer_head *bh;
  1651. int err = 0;
  1652. blocksize = inode->i_sb->s_blocksize;
  1653. length = blocksize - (offset & (blocksize - 1));
  1654. iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
  1655. /*
  1656. * For "nobh" option, we can only work if we don't need to
  1657. * read-in the page - otherwise we create buffers to do the IO.
  1658. */
  1659. if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
  1660. ext3_should_writeback_data(inode) && PageUptodate(page)) {
  1661. zero_user(page, offset, length);
  1662. set_page_dirty(page);
  1663. goto unlock;
  1664. }
  1665. if (!page_has_buffers(page))
  1666. create_empty_buffers(page, blocksize, 0);
  1667. /* Find the buffer that contains "offset" */
  1668. bh = page_buffers(page);
  1669. pos = blocksize;
  1670. while (offset >= pos) {
  1671. bh = bh->b_this_page;
  1672. iblock++;
  1673. pos += blocksize;
  1674. }
  1675. err = 0;
  1676. if (buffer_freed(bh)) {
  1677. BUFFER_TRACE(bh, "freed: skip");
  1678. goto unlock;
  1679. }
  1680. if (!buffer_mapped(bh)) {
  1681. BUFFER_TRACE(bh, "unmapped");
  1682. ext3_get_block(inode, iblock, bh, 0);
  1683. /* unmapped? It's a hole - nothing to do */
  1684. if (!buffer_mapped(bh)) {
  1685. BUFFER_TRACE(bh, "still unmapped");
  1686. goto unlock;
  1687. }
  1688. }
  1689. /* Ok, it's mapped. Make sure it's up-to-date */
  1690. if (PageUptodate(page))
  1691. set_buffer_uptodate(bh);
  1692. if (!buffer_uptodate(bh)) {
  1693. err = -EIO;
  1694. ll_rw_block(READ, 1, &bh);
  1695. wait_on_buffer(bh);
  1696. /* Uhhuh. Read error. Complain and punt. */
  1697. if (!buffer_uptodate(bh))
  1698. goto unlock;
  1699. }
  1700. if (ext3_should_journal_data(inode)) {
  1701. BUFFER_TRACE(bh, "get write access");
  1702. err = ext3_journal_get_write_access(handle, bh);
  1703. if (err)
  1704. goto unlock;
  1705. }
  1706. zero_user(page, offset, length);
  1707. BUFFER_TRACE(bh, "zeroed end of block");
  1708. err = 0;
  1709. if (ext3_should_journal_data(inode)) {
  1710. err = ext3_journal_dirty_metadata(handle, bh);
  1711. } else {
  1712. if (ext3_should_order_data(inode))
  1713. err = ext3_journal_dirty_data(handle, bh);
  1714. mark_buffer_dirty(bh);
  1715. }
  1716. unlock:
  1717. unlock_page(page);
  1718. page_cache_release(page);
  1719. return err;
  1720. }
  1721. /*
  1722. * Probably it should be a library function... search for first non-zero word
  1723. * or memcmp with zero_page, whatever is better for particular architecture.
  1724. * Linus?
  1725. */
  1726. static inline int all_zeroes(__le32 *p, __le32 *q)
  1727. {
  1728. while (p < q)
  1729. if (*p++)
  1730. return 0;
  1731. return 1;
  1732. }
  1733. /**
  1734. * ext3_find_shared - find the indirect blocks for partial truncation.
  1735. * @inode: inode in question
  1736. * @depth: depth of the affected branch
  1737. * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
  1738. * @chain: place to store the pointers to partial indirect blocks
  1739. * @top: place to the (detached) top of branch
  1740. *
  1741. * This is a helper function used by ext3_truncate().
  1742. *
  1743. * When we do truncate() we may have to clean the ends of several
  1744. * indirect blocks but leave the blocks themselves alive. Block is
  1745. * partially truncated if some data below the new i_size is refered
  1746. * from it (and it is on the path to the first completely truncated
  1747. * data block, indeed). We have to free the top of that path along
  1748. * with everything to the right of the path. Since no allocation
  1749. * past the truncation point is possible until ext3_truncate()
  1750. * finishes, we may safely do the latter, but top of branch may
  1751. * require special attention - pageout below the truncation point
  1752. * might try to populate it.
  1753. *
  1754. * We atomically detach the top of branch from the tree, store the
  1755. * block number of its root in *@top, pointers to buffer_heads of
  1756. * partially truncated blocks - in @chain[].bh and pointers to
  1757. * their last elements that should not be removed - in
  1758. * @chain[].p. Return value is the pointer to last filled element
  1759. * of @chain.
  1760. *
  1761. * The work left to caller to do the actual freeing of subtrees:
  1762. * a) free the subtree starting from *@top
  1763. * b) free the subtrees whose roots are stored in
  1764. * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
  1765. * c) free the subtrees growing from the inode past the @chain[0].
  1766. * (no partially truncated stuff there). */
  1767. static Indirect *ext3_find_shared(struct inode *inode, int depth,
  1768. int offsets[4], Indirect chain[4], __le32 *top)
  1769. {
  1770. Indirect *partial, *p;
  1771. int k, err;
  1772. *top = 0;
  1773. /* Make k index the deepest non-null offest + 1 */
  1774. for (k = depth; k > 1 && !offsets[k-1]; k--)
  1775. ;
  1776. partial = ext3_get_branch(inode, k, offsets, chain, &err);
  1777. /* Writer: pointers */
  1778. if (!partial)
  1779. partial = chain + k-1;
  1780. /*
  1781. * If the branch acquired continuation since we've looked at it -
  1782. * fine, it should all survive and (new) top doesn't belong to us.
  1783. */
  1784. if (!partial->key && *partial->p)
  1785. /* Writer: end */
  1786. goto no_top;
  1787. for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
  1788. ;
  1789. /*
  1790. * OK, we've found the last block that must survive. The rest of our
  1791. * branch should be detached before unlocking. However, if that rest
  1792. * of branch is all ours and does not grow immediately from the inode
  1793. * it's easier to cheat and just decrement partial->p.
  1794. */
  1795. if (p == chain + k - 1 && p > chain) {
  1796. p->p--;
  1797. } else {
  1798. *top = *p->p;
  1799. /* Nope, don't do this in ext3. Must leave the tree intact */
  1800. #if 0
  1801. *p->p = 0;
  1802. #endif
  1803. }
  1804. /* Writer: end */
  1805. while(partial > p) {
  1806. brelse(partial->bh);
  1807. partial--;
  1808. }
  1809. no_top:
  1810. return partial;
  1811. }
  1812. /*
  1813. * Zero a number of block pointers in either an inode or an indirect block.
  1814. * If we restart the transaction we must again get write access to the
  1815. * indirect block for further modification.
  1816. *
  1817. * We release `count' blocks on disk, but (last - first) may be greater
  1818. * than `count' because there can be holes in there.
  1819. */
  1820. static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
  1821. struct buffer_head *bh, ext3_fsblk_t block_to_free,
  1822. unsigned long count, __le32 *first, __le32 *last)
  1823. {
  1824. __le32 *p;
  1825. if (try_to_extend_transaction(handle, inode)) {
  1826. if (bh) {
  1827. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  1828. ext3_journal_dirty_metadata(handle, bh);
  1829. }
  1830. ext3_mark_inode_dirty(handle, inode);
  1831. ext3_journal_test_restart(handle, inode);
  1832. if (bh) {
  1833. BUFFER_TRACE(bh, "retaking write access");
  1834. ext3_journal_get_write_access(handle, bh);
  1835. }
  1836. }
  1837. /*
  1838. * Any buffers which are on the journal will be in memory. We find
  1839. * them on the hash table so journal_revoke() will run journal_forget()
  1840. * on them. We've already detached each block from the file, so
  1841. * bforget() in journal_forget() should be safe.
  1842. *
  1843. * AKPM: turn on bforget in journal_forget()!!!
  1844. */
  1845. for (p = first; p < last; p++) {
  1846. u32 nr = le32_to_cpu(*p);
  1847. if (nr) {
  1848. struct buffer_head *bh;
  1849. *p = 0;
  1850. bh = sb_find_get_block(inode->i_sb, nr);
  1851. ext3_forget(handle, 0, inode, bh, nr);
  1852. }
  1853. }
  1854. ext3_free_blocks(handle, inode, block_to_free, count);
  1855. }
  1856. /**
  1857. * ext3_free_data - free a list of data blocks
  1858. * @handle: handle for this transaction
  1859. * @inode: inode we are dealing with
  1860. * @this_bh: indirect buffer_head which contains *@first and *@last
  1861. * @first: array of block numbers
  1862. * @last: points immediately past the end of array
  1863. *
  1864. * We are freeing all blocks refered from that array (numbers are stored as
  1865. * little-endian 32-bit) and updating @inode->i_blocks appropriately.
  1866. *
  1867. * We accumulate contiguous runs of blocks to free. Conveniently, if these
  1868. * blocks are contiguous then releasing them at one time will only affect one
  1869. * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
  1870. * actually use a lot of journal space.
  1871. *
  1872. * @this_bh will be %NULL if @first and @last point into the inode's direct
  1873. * block pointers.
  1874. */
  1875. static void ext3_free_data(handle_t *handle, struct inode *inode,
  1876. struct buffer_head *this_bh,
  1877. __le32 *first, __le32 *last)
  1878. {
  1879. ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
  1880. unsigned long count = 0; /* Number of blocks in the run */
  1881. __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
  1882. corresponding to
  1883. block_to_free */
  1884. ext3_fsblk_t nr; /* Current block # */
  1885. __le32 *p; /* Pointer into inode/ind
  1886. for current block */
  1887. int err;
  1888. if (this_bh) { /* For indirect block */
  1889. BUFFER_TRACE(this_bh, "get_write_access");
  1890. err = ext3_journal_get_write_access(handle, this_bh);
  1891. /* Important: if we can't update the indirect pointers
  1892. * to the blocks, we can't free them. */
  1893. if (err)
  1894. return;
  1895. }
  1896. for (p = first; p < last; p++) {
  1897. nr = le32_to_cpu(*p);
  1898. if (nr) {
  1899. /* accumulate blocks to free if they're contiguous */
  1900. if (count == 0) {
  1901. block_to_free = nr;
  1902. block_to_free_p = p;
  1903. count = 1;
  1904. } else if (nr == block_to_free + count) {
  1905. count++;
  1906. } else {
  1907. ext3_clear_blocks(handle, inode, this_bh,
  1908. block_to_free,
  1909. count, block_to_free_p, p);
  1910. block_to_free = nr;
  1911. block_to_free_p = p;
  1912. count = 1;
  1913. }
  1914. }
  1915. }
  1916. if (count > 0)
  1917. ext3_clear_blocks(handle, inode, this_bh, block_to_free,
  1918. count, block_to_free_p, p);
  1919. if (this_bh) {
  1920. BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
  1921. ext3_journal_dirty_metadata(handle, this_bh);
  1922. }
  1923. }
  1924. /**
  1925. * ext3_free_branches - free an array of branches
  1926. * @handle: JBD handle for this transaction
  1927. * @inode: inode we are dealing with
  1928. * @parent_bh: the buffer_head which contains *@first and *@last
  1929. * @first: array of block numbers
  1930. * @last: pointer immediately past the end of array
  1931. * @depth: depth of the branches to free
  1932. *
  1933. * We are freeing all blocks refered from these branches (numbers are
  1934. * stored as little-endian 32-bit) and updating @inode->i_blocks
  1935. * appropriately.
  1936. */
  1937. static void ext3_free_branches(handle_t *handle, struct inode *inode,
  1938. struct buffer_head *parent_bh,
  1939. __le32 *first, __le32 *last, int depth)
  1940. {
  1941. ext3_fsblk_t nr;
  1942. __le32 *p;
  1943. if (is_handle_aborted(handle))
  1944. return;
  1945. if (depth--) {
  1946. struct buffer_head *bh;
  1947. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  1948. p = last;
  1949. while (--p >= first) {
  1950. nr = le32_to_cpu(*p);
  1951. if (!nr)
  1952. continue; /* A hole */
  1953. /* Go read the buffer for the next level down */
  1954. bh = sb_bread(inode->i_sb, nr);
  1955. /*
  1956. * A read failure? Report error and clear slot
  1957. * (should be rare).
  1958. */
  1959. if (!bh) {
  1960. ext3_error(inode->i_sb, "ext3_free_branches",
  1961. "Read failure, inode=%lu, block="E3FSBLK,
  1962. inode->i_ino, nr);
  1963. continue;
  1964. }
  1965. /* This zaps the entire block. Bottom up. */
  1966. BUFFER_TRACE(bh, "free child branches");
  1967. ext3_free_branches(handle, inode, bh,
  1968. (__le32*)bh->b_data,
  1969. (__le32*)bh->b_data + addr_per_block,
  1970. depth);
  1971. /*
  1972. * We've probably journalled the indirect block several
  1973. * times during the truncate. But it's no longer
  1974. * needed and we now drop it from the transaction via
  1975. * journal_revoke().
  1976. *
  1977. * That's easy if it's exclusively part of this
  1978. * transaction. But if it's part of the committing
  1979. * transaction then journal_forget() will simply
  1980. * brelse() it. That means that if the underlying
  1981. * block is reallocated in ext3_get_block(),
  1982. * unmap_underlying_metadata() will find this block
  1983. * and will try to get rid of it. damn, damn.
  1984. *
  1985. * If this block has already been committed to the
  1986. * journal, a revoke record will be written. And
  1987. * revoke records must be emitted *before* clearing
  1988. * this block's bit in the bitmaps.
  1989. */
  1990. ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
  1991. /*
  1992. * Everything below this this pointer has been
  1993. * released. Now let this top-of-subtree go.
  1994. *
  1995. * We want the freeing of this indirect block to be
  1996. * atomic in the journal with the updating of the
  1997. * bitmap block which owns it. So make some room in
  1998. * the journal.
  1999. *
  2000. * We zero the parent pointer *after* freeing its
  2001. * pointee in the bitmaps, so if extend_transaction()
  2002. * for some reason fails to put the bitmap changes and
  2003. * the release into the same transaction, recovery
  2004. * will merely complain about releasing a free block,
  2005. * rather than leaking blocks.
  2006. */
  2007. if (is_handle_aborted(handle))
  2008. return;
  2009. if (try_to_extend_transaction(handle, inode)) {
  2010. ext3_mark_inode_dirty(handle, inode);
  2011. ext3_journal_test_restart(handle, inode);
  2012. }
  2013. ext3_free_blocks(handle, inode, nr, 1);
  2014. if (parent_bh) {
  2015. /*
  2016. * The block which we have just freed is
  2017. * pointed to by an indirect block: journal it
  2018. */
  2019. BUFFER_TRACE(parent_bh, "get_write_access");
  2020. if (!ext3_journal_get_write_access(handle,
  2021. parent_bh)){
  2022. *p = 0;
  2023. BUFFER_TRACE(parent_bh,
  2024. "call ext3_journal_dirty_metadata");
  2025. ext3_journal_dirty_metadata(handle,
  2026. parent_bh);
  2027. }
  2028. }
  2029. }
  2030. } else {
  2031. /* We have reached the bottom of the tree. */
  2032. BUFFER_TRACE(parent_bh, "free data blocks");
  2033. ext3_free_data(handle, inode, parent_bh, first, last);
  2034. }
  2035. }
  2036. /*
  2037. * ext3_truncate()
  2038. *
  2039. * We block out ext3_get_block() block instantiations across the entire
  2040. * transaction, and VFS/VM ensures that ext3_truncate() cannot run
  2041. * simultaneously on behalf of the same inode.
  2042. *
  2043. * As we work through the truncate and commmit bits of it to the journal there
  2044. * is one core, guiding principle: the file's tree must always be consistent on
  2045. * disk. We must be able to restart the truncate after a crash.
  2046. *
  2047. * The file's tree may be transiently inconsistent in memory (although it
  2048. * probably isn't), but whenever we close off and commit a journal transaction,
  2049. * the contents of (the filesystem + the journal) must be consistent and
  2050. * restartable. It's pretty simple, really: bottom up, right to left (although
  2051. * left-to-right works OK too).
  2052. *
  2053. * Note that at recovery time, journal replay occurs *before* the restart of
  2054. * truncate against the orphan inode list.
  2055. *
  2056. * The committed inode has the new, desired i_size (which is the same as
  2057. * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
  2058. * that this inode's truncate did not complete and it will again call
  2059. * ext3_truncate() to have another go. So there will be instantiated blocks
  2060. * to the right of the truncation point in a crashed ext3 filesystem. But
  2061. * that's fine - as long as they are linked from the inode, the post-crash
  2062. * ext3_truncate() run will find them and release them.
  2063. */
  2064. void ext3_truncate(struct inode *inode)
  2065. {
  2066. handle_t *handle;
  2067. struct ext3_inode_info *ei = EXT3_I(inode);
  2068. __le32 *i_data = ei->i_data;
  2069. int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
  2070. struct address_space *mapping = inode->i_mapping;
  2071. int offsets[4];
  2072. Indirect chain[4];
  2073. Indirect *partial;
  2074. __le32 nr = 0;
  2075. int n;
  2076. long last_block;
  2077. unsigned blocksize = inode->i_sb->s_blocksize;
  2078. struct page *page;
  2079. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  2080. S_ISLNK(inode->i_mode)))
  2081. return;
  2082. if (ext3_inode_is_fast_symlink(inode))
  2083. return;
  2084. if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
  2085. return;
  2086. /*
  2087. * We have to lock the EOF page here, because lock_page() nests
  2088. * outside journal_start().
  2089. */
  2090. if ((inode->i_size & (blocksize - 1)) == 0) {
  2091. /* Block boundary? Nothing to do */
  2092. page = NULL;
  2093. } else {
  2094. page = grab_cache_page(mapping,
  2095. inode->i_size >> PAGE_CACHE_SHIFT);
  2096. if (!page)
  2097. return;
  2098. }
  2099. handle = start_transaction(inode);
  2100. if (IS_ERR(handle)) {
  2101. if (page) {
  2102. clear_highpage(page);
  2103. flush_dcache_page(page);
  2104. unlock_page(page);
  2105. page_cache_release(page);
  2106. }
  2107. return; /* AKPM: return what? */
  2108. }
  2109. last_block = (inode->i_size + blocksize-1)
  2110. >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
  2111. if (page)
  2112. ext3_block_truncate_page(handle, page, mapping, inode->i_size);
  2113. n = ext3_block_to_path(inode, last_block, offsets, NULL);
  2114. if (n == 0)
  2115. goto out_stop; /* error */
  2116. /*
  2117. * OK. This truncate is going to happen. We add the inode to the
  2118. * orphan list, so that if this truncate spans multiple transactions,
  2119. * and we crash, we will resume the truncate when the filesystem
  2120. * recovers. It also marks the inode dirty, to catch the new size.
  2121. *
  2122. * Implication: the file must always be in a sane, consistent
  2123. * truncatable state while each transaction commits.
  2124. */
  2125. if (ext3_orphan_add(handle, inode))
  2126. goto out_stop;
  2127. /*
  2128. * The orphan list entry will now protect us from any crash which
  2129. * occurs before the truncate completes, so it is now safe to propagate
  2130. * the new, shorter inode size (held for now in i_size) into the
  2131. * on-disk inode. We do this via i_disksize, which is the value which
  2132. * ext3 *really* writes onto the disk inode.
  2133. */
  2134. ei->i_disksize = inode->i_size;
  2135. /*
  2136. * From here we block out all ext3_get_block() callers who want to
  2137. * modify the block allocation tree.
  2138. */
  2139. mutex_lock(&ei->truncate_mutex);
  2140. if (n == 1) { /* direct blocks */
  2141. ext3_free_data(handle, inode, NULL, i_data+offsets[0],
  2142. i_data + EXT3_NDIR_BLOCKS);
  2143. goto do_indirects;
  2144. }
  2145. partial = ext3_find_shared(inode, n, offsets, chain, &nr);
  2146. /* Kill the top of shared branch (not detached) */
  2147. if (nr) {
  2148. if (partial == chain) {
  2149. /* Shared branch grows from the inode */
  2150. ext3_free_branches(handle, inode, NULL,
  2151. &nr, &nr+1, (chain+n-1) - partial);
  2152. *partial->p = 0;
  2153. /*
  2154. * We mark the inode dirty prior to restart,
  2155. * and prior to stop. No need for it here.
  2156. */
  2157. } else {
  2158. /* Shared branch grows from an indirect block */
  2159. BUFFER_TRACE(partial->bh, "get_write_access");
  2160. ext3_free_branches(handle, inode, partial->bh,
  2161. partial->p,
  2162. partial->p+1, (chain+n-1) - partial);
  2163. }
  2164. }
  2165. /* Clear the ends of indirect blocks on the shared branch */
  2166. while (partial > chain) {
  2167. ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
  2168. (__le32*)partial->bh->b_data+addr_per_block,
  2169. (chain+n-1) - partial);
  2170. BUFFER_TRACE(partial->bh, "call brelse");
  2171. brelse (partial->bh);
  2172. partial--;
  2173. }
  2174. do_indirects:
  2175. /* Kill the remaining (whole) subtrees */
  2176. switch (offsets[0]) {
  2177. default:
  2178. nr = i_data[EXT3_IND_BLOCK];
  2179. if (nr) {
  2180. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
  2181. i_data[EXT3_IND_BLOCK] = 0;
  2182. }
  2183. case EXT3_IND_BLOCK:
  2184. nr = i_data[EXT3_DIND_BLOCK];
  2185. if (nr) {
  2186. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
  2187. i_data[EXT3_DIND_BLOCK] = 0;
  2188. }
  2189. case EXT3_DIND_BLOCK:
  2190. nr = i_data[EXT3_TIND_BLOCK];
  2191. if (nr) {
  2192. ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
  2193. i_data[EXT3_TIND_BLOCK] = 0;
  2194. }
  2195. case EXT3_TIND_BLOCK:
  2196. ;
  2197. }
  2198. ext3_discard_reservation(inode);
  2199. mutex_unlock(&ei->truncate_mutex);
  2200. inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
  2201. ext3_mark_inode_dirty(handle, inode);
  2202. /*
  2203. * In a multi-transaction truncate, we only make the final transaction
  2204. * synchronous
  2205. */
  2206. if (IS_SYNC(inode))
  2207. handle->h_sync = 1;
  2208. out_stop:
  2209. /*
  2210. * If this was a simple ftruncate(), and the file will remain alive
  2211. * then we need to clear up the orphan record which we created above.
  2212. * However, if this was a real unlink then we were called by
  2213. * ext3_delete_inode(), and we allow that function to clean up the
  2214. * orphan info for us.
  2215. */
  2216. if (inode->i_nlink)
  2217. ext3_orphan_del(handle, inode);
  2218. ext3_journal_stop(handle);
  2219. }
  2220. static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
  2221. unsigned long ino, struct ext3_iloc *iloc)
  2222. {
  2223. unsigned long desc, group_desc, block_group;
  2224. unsigned long offset;
  2225. ext3_fsblk_t block;
  2226. struct buffer_head *bh;
  2227. struct ext3_group_desc * gdp;
  2228. if (!ext3_valid_inum(sb, ino)) {
  2229. /*
  2230. * This error is already checked for in namei.c unless we are
  2231. * looking at an NFS filehandle, in which case no error
  2232. * report is needed
  2233. */
  2234. return 0;
  2235. }
  2236. block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
  2237. if (block_group >= EXT3_SB(sb)->s_groups_count) {
  2238. ext3_error(sb,"ext3_get_inode_block","group >= groups count");
  2239. return 0;
  2240. }
  2241. smp_rmb();
  2242. group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
  2243. desc = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
  2244. bh = EXT3_SB(sb)->s_group_desc[group_desc];
  2245. if (!bh) {
  2246. ext3_error (sb, "ext3_get_inode_block",
  2247. "Descriptor not loaded");
  2248. return 0;
  2249. }
  2250. gdp = (struct ext3_group_desc *)bh->b_data;
  2251. /*
  2252. * Figure out the offset within the block group inode table
  2253. */
  2254. offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
  2255. EXT3_INODE_SIZE(sb);
  2256. block = le32_to_cpu(gdp[desc].bg_inode_table) +
  2257. (offset >> EXT3_BLOCK_SIZE_BITS(sb));
  2258. iloc->block_group = block_group;
  2259. iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
  2260. return block;
  2261. }
  2262. /*
  2263. * ext3_get_inode_loc returns with an extra refcount against the inode's
  2264. * underlying buffer_head on success. If 'in_mem' is true, we have all
  2265. * data in memory that is needed to recreate the on-disk version of this
  2266. * inode.
  2267. */
  2268. static int __ext3_get_inode_loc(struct inode *inode,
  2269. struct ext3_iloc *iloc, int in_mem)
  2270. {
  2271. ext3_fsblk_t block;
  2272. struct buffer_head *bh;
  2273. block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
  2274. if (!block)
  2275. return -EIO;
  2276. bh = sb_getblk(inode->i_sb, block);
  2277. if (!bh) {
  2278. ext3_error (inode->i_sb, "ext3_get_inode_loc",
  2279. "unable to read inode block - "
  2280. "inode=%lu, block="E3FSBLK,
  2281. inode->i_ino, block);
  2282. return -EIO;
  2283. }
  2284. if (!buffer_uptodate(bh)) {
  2285. lock_buffer(bh);
  2286. if (buffer_uptodate(bh)) {
  2287. /* someone brought it uptodate while we waited */
  2288. unlock_buffer(bh);
  2289. goto has_buffer;
  2290. }
  2291. /*
  2292. * If we have all information of the inode in memory and this
  2293. * is the only valid inode in the block, we need not read the
  2294. * block.
  2295. */
  2296. if (in_mem) {
  2297. struct buffer_head *bitmap_bh;
  2298. struct ext3_group_desc *desc;
  2299. int inodes_per_buffer;
  2300. int inode_offset, i;
  2301. int block_group;
  2302. int start;
  2303. block_group = (inode->i_ino - 1) /
  2304. EXT3_INODES_PER_GROUP(inode->i_sb);
  2305. inodes_per_buffer = bh->b_size /
  2306. EXT3_INODE_SIZE(inode->i_sb);
  2307. inode_offset = ((inode->i_ino - 1) %
  2308. EXT3_INODES_PER_GROUP(inode->i_sb));
  2309. start = inode_offset & ~(inodes_per_buffer - 1);
  2310. /* Is the inode bitmap in cache? */
  2311. desc = ext3_get_group_desc(inode->i_sb,
  2312. block_group, NULL);
  2313. if (!desc)
  2314. goto make_io;
  2315. bitmap_bh = sb_getblk(inode->i_sb,
  2316. le32_to_cpu(desc->bg_inode_bitmap));
  2317. if (!bitmap_bh)
  2318. goto make_io;
  2319. /*
  2320. * If the inode bitmap isn't in cache then the
  2321. * optimisation may end up performing two reads instead
  2322. * of one, so skip it.
  2323. */
  2324. if (!buffer_uptodate(bitmap_bh)) {
  2325. brelse(bitmap_bh);
  2326. goto make_io;
  2327. }
  2328. for (i = start; i < start + inodes_per_buffer; i++) {
  2329. if (i == inode_offset)
  2330. continue;
  2331. if (ext3_test_bit(i, bitmap_bh->b_data))
  2332. break;
  2333. }
  2334. brelse(bitmap_bh);
  2335. if (i == start + inodes_per_buffer) {
  2336. /* all other inodes are free, so skip I/O */
  2337. memset(bh->b_data, 0, bh->b_size);
  2338. set_buffer_uptodate(bh);
  2339. unlock_buffer(bh);
  2340. goto has_buffer;
  2341. }
  2342. }
  2343. make_io:
  2344. /*
  2345. * There are other valid inodes in the buffer, this inode
  2346. * has in-inode xattrs, or we don't have this inode in memory.
  2347. * Read the block from disk.
  2348. */
  2349. get_bh(bh);
  2350. bh->b_end_io = end_buffer_read_sync;
  2351. submit_bh(READ_META, bh);
  2352. wait_on_buffer(bh);
  2353. if (!buffer_uptodate(bh)) {
  2354. ext3_error(inode->i_sb, "ext3_get_inode_loc",
  2355. "unable to read inode block - "
  2356. "inode=%lu, block="E3FSBLK,
  2357. inode->i_ino, block);
  2358. brelse(bh);
  2359. return -EIO;
  2360. }
  2361. }
  2362. has_buffer:
  2363. iloc->bh = bh;
  2364. return 0;
  2365. }
  2366. int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
  2367. {
  2368. /* We have all inode data except xattrs in memory here. */
  2369. return __ext3_get_inode_loc(inode, iloc,
  2370. !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
  2371. }
  2372. void ext3_set_inode_flags(struct inode *inode)
  2373. {
  2374. unsigned int flags = EXT3_I(inode)->i_flags;
  2375. inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
  2376. if (flags & EXT3_SYNC_FL)
  2377. inode->i_flags |= S_SYNC;
  2378. if (flags & EXT3_APPEND_FL)
  2379. inode->i_flags |= S_APPEND;
  2380. if (flags & EXT3_IMMUTABLE_FL)
  2381. inode->i_flags |= S_IMMUTABLE;
  2382. if (flags & EXT3_NOATIME_FL)
  2383. inode->i_flags |= S_NOATIME;
  2384. if (flags & EXT3_DIRSYNC_FL)
  2385. inode->i_flags |= S_DIRSYNC;
  2386. }
  2387. /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
  2388. void ext3_get_inode_flags(struct ext3_inode_info *ei)
  2389. {
  2390. unsigned int flags = ei->vfs_inode.i_flags;
  2391. ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
  2392. EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
  2393. if (flags & S_SYNC)
  2394. ei->i_flags |= EXT3_SYNC_FL;
  2395. if (flags & S_APPEND)
  2396. ei->i_flags |= EXT3_APPEND_FL;
  2397. if (flags & S_IMMUTABLE)
  2398. ei->i_flags |= EXT3_IMMUTABLE_FL;
  2399. if (flags & S_NOATIME)
  2400. ei->i_flags |= EXT3_NOATIME_FL;
  2401. if (flags & S_DIRSYNC)
  2402. ei->i_flags |= EXT3_DIRSYNC_FL;
  2403. }
  2404. struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
  2405. {
  2406. struct ext3_iloc iloc;
  2407. struct ext3_inode *raw_inode;
  2408. struct ext3_inode_info *ei;
  2409. struct buffer_head *bh;
  2410. struct inode *inode;
  2411. long ret;
  2412. int block;
  2413. inode = iget_locked(sb, ino);
  2414. if (!inode)
  2415. return ERR_PTR(-ENOMEM);
  2416. if (!(inode->i_state & I_NEW))
  2417. return inode;
  2418. ei = EXT3_I(inode);
  2419. #ifdef CONFIG_EXT3_FS_POSIX_ACL
  2420. ei->i_acl = EXT3_ACL_NOT_CACHED;
  2421. ei->i_default_acl = EXT3_ACL_NOT_CACHED;
  2422. #endif
  2423. ei->i_block_alloc_info = NULL;
  2424. ret = __ext3_get_inode_loc(inode, &iloc, 0);
  2425. if (ret < 0)
  2426. goto bad_inode;
  2427. bh = iloc.bh;
  2428. raw_inode = ext3_raw_inode(&iloc);
  2429. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  2430. inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
  2431. inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
  2432. if(!(test_opt (inode->i_sb, NO_UID32))) {
  2433. inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
  2434. inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
  2435. }
  2436. inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
  2437. inode->i_size = le32_to_cpu(raw_inode->i_size);
  2438. inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
  2439. inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
  2440. inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
  2441. inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
  2442. ei->i_state = 0;
  2443. ei->i_dir_start_lookup = 0;
  2444. ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
  2445. /* We now have enough fields to check if the inode was active or not.
  2446. * This is needed because nfsd might try to access dead inodes
  2447. * the test is that same one that e2fsck uses
  2448. * NeilBrown 1999oct15
  2449. */
  2450. if (inode->i_nlink == 0) {
  2451. if (inode->i_mode == 0 ||
  2452. !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
  2453. /* this inode is deleted */
  2454. brelse (bh);
  2455. ret = -ESTALE;
  2456. goto bad_inode;
  2457. }
  2458. /* The only unlinked inodes we let through here have
  2459. * valid i_mode and are being read by the orphan
  2460. * recovery code: that's fine, we're about to complete
  2461. * the process of deleting those. */
  2462. }
  2463. inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
  2464. ei->i_flags = le32_to_cpu(raw_inode->i_flags);
  2465. #ifdef EXT3_FRAGMENTS
  2466. ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
  2467. ei->i_frag_no = raw_inode->i_frag;
  2468. ei->i_frag_size = raw_inode->i_fsize;
  2469. #endif
  2470. ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
  2471. if (!S_ISREG(inode->i_mode)) {
  2472. ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
  2473. } else {
  2474. inode->i_size |=
  2475. ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
  2476. }
  2477. ei->i_disksize = inode->i_size;
  2478. inode->i_generation = le32_to_cpu(raw_inode->i_generation);
  2479. ei->i_block_group = iloc.block_group;
  2480. /*
  2481. * NOTE! The in-memory inode i_data array is in little-endian order
  2482. * even on big-endian machines: we do NOT byteswap the block numbers!
  2483. */
  2484. for (block = 0; block < EXT3_N_BLOCKS; block++)
  2485. ei->i_data[block] = raw_inode->i_block[block];
  2486. INIT_LIST_HEAD(&ei->i_orphan);
  2487. if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
  2488. EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
  2489. /*
  2490. * When mke2fs creates big inodes it does not zero out
  2491. * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
  2492. * so ignore those first few inodes.
  2493. */
  2494. ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
  2495. if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
  2496. EXT3_INODE_SIZE(inode->i_sb)) {
  2497. brelse (bh);
  2498. ret = -EIO;
  2499. goto bad_inode;
  2500. }
  2501. if (ei->i_extra_isize == 0) {
  2502. /* The extra space is currently unused. Use it. */
  2503. ei->i_extra_isize = sizeof(struct ext3_inode) -
  2504. EXT3_GOOD_OLD_INODE_SIZE;
  2505. } else {
  2506. __le32 *magic = (void *)raw_inode +
  2507. EXT3_GOOD_OLD_INODE_SIZE +
  2508. ei->i_extra_isize;
  2509. if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
  2510. ei->i_state |= EXT3_STATE_XATTR;
  2511. }
  2512. } else
  2513. ei->i_extra_isize = 0;
  2514. if (S_ISREG(inode->i_mode)) {
  2515. inode->i_op = &ext3_file_inode_operations;
  2516. inode->i_fop = &ext3_file_operations;
  2517. ext3_set_aops(inode);
  2518. } else if (S_ISDIR(inode->i_mode)) {
  2519. inode->i_op = &ext3_dir_inode_operations;
  2520. inode->i_fop = &ext3_dir_operations;
  2521. } else if (S_ISLNK(inode->i_mode)) {
  2522. if (ext3_inode_is_fast_symlink(inode))
  2523. inode->i_op = &ext3_fast_symlink_inode_operations;
  2524. else {
  2525. inode->i_op = &ext3_symlink_inode_operations;
  2526. ext3_set_aops(inode);
  2527. }
  2528. } else {
  2529. inode->i_op = &ext3_special_inode_operations;
  2530. if (raw_inode->i_block[0])
  2531. init_special_inode(inode, inode->i_mode,
  2532. old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
  2533. else
  2534. init_special_inode(inode, inode->i_mode,
  2535. new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
  2536. }
  2537. brelse (iloc.bh);
  2538. ext3_set_inode_flags(inode);
  2539. unlock_new_inode(inode);
  2540. return inode;
  2541. bad_inode:
  2542. iget_failed(inode);
  2543. return ERR_PTR(ret);
  2544. }
  2545. /*
  2546. * Post the struct inode info into an on-disk inode location in the
  2547. * buffer-cache. This gobbles the caller's reference to the
  2548. * buffer_head in the inode location struct.
  2549. *
  2550. * The caller must have write access to iloc->bh.
  2551. */
  2552. static int ext3_do_update_inode(handle_t *handle,
  2553. struct inode *inode,
  2554. struct ext3_iloc *iloc)
  2555. {
  2556. struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
  2557. struct ext3_inode_info *ei = EXT3_I(inode);
  2558. struct buffer_head *bh = iloc->bh;
  2559. int err = 0, rc, block;
  2560. /* For fields not not tracking in the in-memory inode,
  2561. * initialise them to zero for new inodes. */
  2562. if (ei->i_state & EXT3_STATE_NEW)
  2563. memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
  2564. ext3_get_inode_flags(ei);
  2565. raw_inode->i_mode = cpu_to_le16(inode->i_mode);
  2566. if(!(test_opt(inode->i_sb, NO_UID32))) {
  2567. raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
  2568. raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
  2569. /*
  2570. * Fix up interoperability with old kernels. Otherwise, old inodes get
  2571. * re-used with the upper 16 bits of the uid/gid intact
  2572. */
  2573. if(!ei->i_dtime) {
  2574. raw_inode->i_uid_high =
  2575. cpu_to_le16(high_16_bits(inode->i_uid));
  2576. raw_inode->i_gid_high =
  2577. cpu_to_le16(high_16_bits(inode->i_gid));
  2578. } else {
  2579. raw_inode->i_uid_high = 0;
  2580. raw_inode->i_gid_high = 0;
  2581. }
  2582. } else {
  2583. raw_inode->i_uid_low =
  2584. cpu_to_le16(fs_high2lowuid(inode->i_uid));
  2585. raw_inode->i_gid_low =
  2586. cpu_to_le16(fs_high2lowgid(inode->i_gid));
  2587. raw_inode->i_uid_high = 0;
  2588. raw_inode->i_gid_high = 0;
  2589. }
  2590. raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
  2591. raw_inode->i_size = cpu_to_le32(ei->i_disksize);
  2592. raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
  2593. raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
  2594. raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
  2595. raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
  2596. raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
  2597. raw_inode->i_flags = cpu_to_le32(ei->i_flags);
  2598. #ifdef EXT3_FRAGMENTS
  2599. raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
  2600. raw_inode->i_frag = ei->i_frag_no;
  2601. raw_inode->i_fsize = ei->i_frag_size;
  2602. #endif
  2603. raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
  2604. if (!S_ISREG(inode->i_mode)) {
  2605. raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
  2606. } else {
  2607. raw_inode->i_size_high =
  2608. cpu_to_le32(ei->i_disksize >> 32);
  2609. if (ei->i_disksize > 0x7fffffffULL) {
  2610. struct super_block *sb = inode->i_sb;
  2611. if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
  2612. EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
  2613. EXT3_SB(sb)->s_es->s_rev_level ==
  2614. cpu_to_le32(EXT3_GOOD_OLD_REV)) {
  2615. /* If this is the first large file
  2616. * created, add a flag to the superblock.
  2617. */
  2618. err = ext3_journal_get_write_access(handle,
  2619. EXT3_SB(sb)->s_sbh);
  2620. if (err)
  2621. goto out_brelse;
  2622. ext3_update_dynamic_rev(sb);
  2623. EXT3_SET_RO_COMPAT_FEATURE(sb,
  2624. EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
  2625. sb->s_dirt = 1;
  2626. handle->h_sync = 1;
  2627. err = ext3_journal_dirty_metadata(handle,
  2628. EXT3_SB(sb)->s_sbh);
  2629. }
  2630. }
  2631. }
  2632. raw_inode->i_generation = cpu_to_le32(inode->i_generation);
  2633. if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
  2634. if (old_valid_dev(inode->i_rdev)) {
  2635. raw_inode->i_block[0] =
  2636. cpu_to_le32(old_encode_dev(inode->i_rdev));
  2637. raw_inode->i_block[1] = 0;
  2638. } else {
  2639. raw_inode->i_block[0] = 0;
  2640. raw_inode->i_block[1] =
  2641. cpu_to_le32(new_encode_dev(inode->i_rdev));
  2642. raw_inode->i_block[2] = 0;
  2643. }
  2644. } else for (block = 0; block < EXT3_N_BLOCKS; block++)
  2645. raw_inode->i_block[block] = ei->i_data[block];
  2646. if (ei->i_extra_isize)
  2647. raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
  2648. BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
  2649. rc = ext3_journal_dirty_metadata(handle, bh);
  2650. if (!err)
  2651. err = rc;
  2652. ei->i_state &= ~EXT3_STATE_NEW;
  2653. out_brelse:
  2654. brelse (bh);
  2655. ext3_std_error(inode->i_sb, err);
  2656. return err;
  2657. }
  2658. /*
  2659. * ext3_write_inode()
  2660. *
  2661. * We are called from a few places:
  2662. *
  2663. * - Within generic_file_write() for O_SYNC files.
  2664. * Here, there will be no transaction running. We wait for any running
  2665. * trasnaction to commit.
  2666. *
  2667. * - Within sys_sync(), kupdate and such.
  2668. * We wait on commit, if tol to.
  2669. *
  2670. * - Within prune_icache() (PF_MEMALLOC == true)
  2671. * Here we simply return. We can't afford to block kswapd on the
  2672. * journal commit.
  2673. *
  2674. * In all cases it is actually safe for us to return without doing anything,
  2675. * because the inode has been copied into a raw inode buffer in
  2676. * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
  2677. * knfsd.
  2678. *
  2679. * Note that we are absolutely dependent upon all inode dirtiers doing the
  2680. * right thing: they *must* call mark_inode_dirty() after dirtying info in
  2681. * which we are interested.
  2682. *
  2683. * It would be a bug for them to not do this. The code:
  2684. *
  2685. * mark_inode_dirty(inode)
  2686. * stuff();
  2687. * inode->i_size = expr;
  2688. *
  2689. * is in error because a kswapd-driven write_inode() could occur while
  2690. * `stuff()' is running, and the new i_size will be lost. Plus the inode
  2691. * will no longer be on the superblock's dirty inode list.
  2692. */
  2693. int ext3_write_inode(struct inode *inode, int wait)
  2694. {
  2695. if (current->flags & PF_MEMALLOC)
  2696. return 0;
  2697. if (ext3_journal_current_handle()) {
  2698. jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
  2699. dump_stack();
  2700. return -EIO;
  2701. }
  2702. if (!wait)
  2703. return 0;
  2704. return ext3_force_commit(inode->i_sb);
  2705. }
  2706. /*
  2707. * ext3_setattr()
  2708. *
  2709. * Called from notify_change.
  2710. *
  2711. * We want to trap VFS attempts to truncate the file as soon as
  2712. * possible. In particular, we want to make sure that when the VFS
  2713. * shrinks i_size, we put the inode on the orphan list and modify
  2714. * i_disksize immediately, so that during the subsequent flushing of
  2715. * dirty pages and freeing of disk blocks, we can guarantee that any
  2716. * commit will leave the blocks being flushed in an unused state on
  2717. * disk. (On recovery, the inode will get truncated and the blocks will
  2718. * be freed, so we have a strong guarantee that no future commit will
  2719. * leave these blocks visible to the user.)
  2720. *
  2721. * Called with inode->sem down.
  2722. */
  2723. int ext3_setattr(struct dentry *dentry, struct iattr *attr)
  2724. {
  2725. struct inode *inode = dentry->d_inode;
  2726. int error, rc = 0;
  2727. const unsigned int ia_valid = attr->ia_valid;
  2728. error = inode_change_ok(inode, attr);
  2729. if (error)
  2730. return error;
  2731. if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
  2732. (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
  2733. handle_t *handle;
  2734. /* (user+group)*(old+new) structure, inode write (sb,
  2735. * inode block, ? - but truncate inode update has it) */
  2736. handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
  2737. EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
  2738. if (IS_ERR(handle)) {
  2739. error = PTR_ERR(handle);
  2740. goto err_out;
  2741. }
  2742. error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
  2743. if (error) {
  2744. ext3_journal_stop(handle);
  2745. return error;
  2746. }
  2747. /* Update corresponding info in inode so that everything is in
  2748. * one transaction */
  2749. if (attr->ia_valid & ATTR_UID)
  2750. inode->i_uid = attr->ia_uid;
  2751. if (attr->ia_valid & ATTR_GID)
  2752. inode->i_gid = attr->ia_gid;
  2753. error = ext3_mark_inode_dirty(handle, inode);
  2754. ext3_journal_stop(handle);
  2755. }
  2756. if (S_ISREG(inode->i_mode) &&
  2757. attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
  2758. handle_t *handle;
  2759. handle = ext3_journal_start(inode, 3);
  2760. if (IS_ERR(handle)) {
  2761. error = PTR_ERR(handle);
  2762. goto err_out;
  2763. }
  2764. error = ext3_orphan_add(handle, inode);
  2765. EXT3_I(inode)->i_disksize = attr->ia_size;
  2766. rc = ext3_mark_inode_dirty(handle, inode);
  2767. if (!error)
  2768. error = rc;
  2769. ext3_journal_stop(handle);
  2770. }
  2771. rc = inode_setattr(inode, attr);
  2772. /* If inode_setattr's call to ext3_truncate failed to get a
  2773. * transaction handle at all, we need to clean up the in-core
  2774. * orphan list manually. */
  2775. if (inode->i_nlink)
  2776. ext3_orphan_del(NULL, inode);
  2777. if (!rc && (ia_valid & ATTR_MODE))
  2778. rc = ext3_acl_chmod(inode);
  2779. err_out:
  2780. ext3_std_error(inode->i_sb, error);
  2781. if (!error)
  2782. error = rc;
  2783. return error;
  2784. }
  2785. /*
  2786. * How many blocks doth make a writepage()?
  2787. *
  2788. * With N blocks per page, it may be:
  2789. * N data blocks
  2790. * 2 indirect block
  2791. * 2 dindirect
  2792. * 1 tindirect
  2793. * N+5 bitmap blocks (from the above)
  2794. * N+5 group descriptor summary blocks
  2795. * 1 inode block
  2796. * 1 superblock.
  2797. * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
  2798. *
  2799. * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
  2800. *
  2801. * With ordered or writeback data it's the same, less the N data blocks.
  2802. *
  2803. * If the inode's direct blocks can hold an integral number of pages then a
  2804. * page cannot straddle two indirect blocks, and we can only touch one indirect
  2805. * and dindirect block, and the "5" above becomes "3".
  2806. *
  2807. * This still overestimates under most circumstances. If we were to pass the
  2808. * start and end offsets in here as well we could do block_to_path() on each
  2809. * block and work out the exact number of indirects which are touched. Pah.
  2810. */
  2811. static int ext3_writepage_trans_blocks(struct inode *inode)
  2812. {
  2813. int bpp = ext3_journal_blocks_per_page(inode);
  2814. int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
  2815. int ret;
  2816. if (ext3_should_journal_data(inode))
  2817. ret = 3 * (bpp + indirects) + 2;
  2818. else
  2819. ret = 2 * (bpp + indirects) + 2;
  2820. #ifdef CONFIG_QUOTA
  2821. /* We know that structure was already allocated during DQUOT_INIT so
  2822. * we will be updating only the data blocks + inodes */
  2823. ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
  2824. #endif
  2825. return ret;
  2826. }
  2827. /*
  2828. * The caller must have previously called ext3_reserve_inode_write().
  2829. * Give this, we know that the caller already has write access to iloc->bh.
  2830. */
  2831. int ext3_mark_iloc_dirty(handle_t *handle,
  2832. struct inode *inode, struct ext3_iloc *iloc)
  2833. {
  2834. int err = 0;
  2835. /* the do_update_inode consumes one bh->b_count */
  2836. get_bh(iloc->bh);
  2837. /* ext3_do_update_inode() does journal_dirty_metadata */
  2838. err = ext3_do_update_inode(handle, inode, iloc);
  2839. put_bh(iloc->bh);
  2840. return err;
  2841. }
  2842. /*
  2843. * On success, We end up with an outstanding reference count against
  2844. * iloc->bh. This _must_ be cleaned up later.
  2845. */
  2846. int
  2847. ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
  2848. struct ext3_iloc *iloc)
  2849. {
  2850. int err = 0;
  2851. if (handle) {
  2852. err = ext3_get_inode_loc(inode, iloc);
  2853. if (!err) {
  2854. BUFFER_TRACE(iloc->bh, "get_write_access");
  2855. err = ext3_journal_get_write_access(handle, iloc->bh);
  2856. if (err) {
  2857. brelse(iloc->bh);
  2858. iloc->bh = NULL;
  2859. }
  2860. }
  2861. }
  2862. ext3_std_error(inode->i_sb, err);
  2863. return err;
  2864. }
  2865. /*
  2866. * What we do here is to mark the in-core inode as clean with respect to inode
  2867. * dirtiness (it may still be data-dirty).
  2868. * This means that the in-core inode may be reaped by prune_icache
  2869. * without having to perform any I/O. This is a very good thing,
  2870. * because *any* task may call prune_icache - even ones which
  2871. * have a transaction open against a different journal.
  2872. *
  2873. * Is this cheating? Not really. Sure, we haven't written the
  2874. * inode out, but prune_icache isn't a user-visible syncing function.
  2875. * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
  2876. * we start and wait on commits.
  2877. *
  2878. * Is this efficient/effective? Well, we're being nice to the system
  2879. * by cleaning up our inodes proactively so they can be reaped
  2880. * without I/O. But we are potentially leaving up to five seconds'
  2881. * worth of inodes floating about which prune_icache wants us to
  2882. * write out. One way to fix that would be to get prune_icache()
  2883. * to do a write_super() to free up some memory. It has the desired
  2884. * effect.
  2885. */
  2886. int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
  2887. {
  2888. struct ext3_iloc iloc;
  2889. int err;
  2890. might_sleep();
  2891. err = ext3_reserve_inode_write(handle, inode, &iloc);
  2892. if (!err)
  2893. err = ext3_mark_iloc_dirty(handle, inode, &iloc);
  2894. return err;
  2895. }
  2896. /*
  2897. * ext3_dirty_inode() is called from __mark_inode_dirty()
  2898. *
  2899. * We're really interested in the case where a file is being extended.
  2900. * i_size has been changed by generic_commit_write() and we thus need
  2901. * to include the updated inode in the current transaction.
  2902. *
  2903. * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
  2904. * are allocated to the file.
  2905. *
  2906. * If the inode is marked synchronous, we don't honour that here - doing
  2907. * so would cause a commit on atime updates, which we don't bother doing.
  2908. * We handle synchronous inodes at the highest possible level.
  2909. */
  2910. void ext3_dirty_inode(struct inode *inode)
  2911. {
  2912. handle_t *current_handle = ext3_journal_current_handle();
  2913. handle_t *handle;
  2914. handle = ext3_journal_start(inode, 2);
  2915. if (IS_ERR(handle))
  2916. goto out;
  2917. if (current_handle &&
  2918. current_handle->h_transaction != handle->h_transaction) {
  2919. /* This task has a transaction open against a different fs */
  2920. printk(KERN_EMERG "%s: transactions do not match!\n",
  2921. __FUNCTION__);
  2922. } else {
  2923. jbd_debug(5, "marking dirty. outer handle=%p\n",
  2924. current_handle);
  2925. ext3_mark_inode_dirty(handle, inode);
  2926. }
  2927. ext3_journal_stop(handle);
  2928. out:
  2929. return;
  2930. }
  2931. #if 0
  2932. /*
  2933. * Bind an inode's backing buffer_head into this transaction, to prevent
  2934. * it from being flushed to disk early. Unlike
  2935. * ext3_reserve_inode_write, this leaves behind no bh reference and
  2936. * returns no iloc structure, so the caller needs to repeat the iloc
  2937. * lookup to mark the inode dirty later.
  2938. */
  2939. static int ext3_pin_inode(handle_t *handle, struct inode *inode)
  2940. {
  2941. struct ext3_iloc iloc;
  2942. int err = 0;
  2943. if (handle) {
  2944. err = ext3_get_inode_loc(inode, &iloc);
  2945. if (!err) {
  2946. BUFFER_TRACE(iloc.bh, "get_write_access");
  2947. err = journal_get_write_access(handle, iloc.bh);
  2948. if (!err)
  2949. err = ext3_journal_dirty_metadata(handle,
  2950. iloc.bh);
  2951. brelse(iloc.bh);
  2952. }
  2953. }
  2954. ext3_std_error(inode->i_sb, err);
  2955. return err;
  2956. }
  2957. #endif
  2958. int ext3_change_inode_journal_flag(struct inode *inode, int val)
  2959. {
  2960. journal_t *journal;
  2961. handle_t *handle;
  2962. int err;
  2963. /*
  2964. * We have to be very careful here: changing a data block's
  2965. * journaling status dynamically is dangerous. If we write a
  2966. * data block to the journal, change the status and then delete
  2967. * that block, we risk forgetting to revoke the old log record
  2968. * from the journal and so a subsequent replay can corrupt data.
  2969. * So, first we make sure that the journal is empty and that
  2970. * nobody is changing anything.
  2971. */
  2972. journal = EXT3_JOURNAL(inode);
  2973. if (is_journal_aborted(journal))
  2974. return -EROFS;
  2975. journal_lock_updates(journal);
  2976. journal_flush(journal);
  2977. /*
  2978. * OK, there are no updates running now, and all cached data is
  2979. * synced to disk. We are now in a completely consistent state
  2980. * which doesn't have anything in the journal, and we know that
  2981. * no filesystem updates are running, so it is safe to modify
  2982. * the inode's in-core data-journaling state flag now.
  2983. */
  2984. if (val)
  2985. EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
  2986. else
  2987. EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
  2988. ext3_set_aops(inode);
  2989. journal_unlock_updates(journal);
  2990. /* Finally we can mark the inode as dirty. */
  2991. handle = ext3_journal_start(inode, 1);
  2992. if (IS_ERR(handle))
  2993. return PTR_ERR(handle);
  2994. err = ext3_mark_inode_dirty(handle, inode);
  2995. handle->h_sync = 1;
  2996. ext3_journal_stop(handle);
  2997. ext3_std_error(inode->i_sb, err);
  2998. return err;
  2999. }