aio.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802
  1. /*
  2. * An async IO implementation for Linux
  3. * Written by Benjamin LaHaise <bcrl@kvack.org>
  4. *
  5. * Implements an efficient asynchronous io interface.
  6. *
  7. * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
  8. *
  9. * See ../COPYING for licensing terms.
  10. */
  11. #include <linux/kernel.h>
  12. #include <linux/init.h>
  13. #include <linux/errno.h>
  14. #include <linux/time.h>
  15. #include <linux/aio_abi.h>
  16. #include <linux/module.h>
  17. #include <linux/syscalls.h>
  18. #include <linux/uio.h>
  19. #define DEBUG 0
  20. #include <linux/sched.h>
  21. #include <linux/fs.h>
  22. #include <linux/file.h>
  23. #include <linux/mm.h>
  24. #include <linux/mman.h>
  25. #include <linux/slab.h>
  26. #include <linux/timer.h>
  27. #include <linux/aio.h>
  28. #include <linux/highmem.h>
  29. #include <linux/workqueue.h>
  30. #include <linux/security.h>
  31. #include <linux/eventfd.h>
  32. #include <asm/kmap_types.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/mmu_context.h>
  35. #if DEBUG > 1
  36. #define dprintk printk
  37. #else
  38. #define dprintk(x...) do { ; } while (0)
  39. #endif
  40. /*------ sysctl variables----*/
  41. static DEFINE_SPINLOCK(aio_nr_lock);
  42. unsigned long aio_nr; /* current system wide number of aio requests */
  43. unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  44. /*----end sysctl variables---*/
  45. static struct kmem_cache *kiocb_cachep;
  46. static struct kmem_cache *kioctx_cachep;
  47. static struct workqueue_struct *aio_wq;
  48. /* Used for rare fput completion. */
  49. static void aio_fput_routine(struct work_struct *);
  50. static DECLARE_WORK(fput_work, aio_fput_routine);
  51. static DEFINE_SPINLOCK(fput_lock);
  52. static LIST_HEAD(fput_head);
  53. static void aio_kick_handler(struct work_struct *);
  54. static void aio_queue_work(struct kioctx *);
  55. /* aio_setup
  56. * Creates the slab caches used by the aio routines, panic on
  57. * failure as this is done early during the boot sequence.
  58. */
  59. static int __init aio_setup(void)
  60. {
  61. kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  62. kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  63. aio_wq = create_workqueue("aio");
  64. pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
  65. return 0;
  66. }
  67. static void aio_free_ring(struct kioctx *ctx)
  68. {
  69. struct aio_ring_info *info = &ctx->ring_info;
  70. long i;
  71. for (i=0; i<info->nr_pages; i++)
  72. put_page(info->ring_pages[i]);
  73. if (info->mmap_size) {
  74. down_write(&ctx->mm->mmap_sem);
  75. do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
  76. up_write(&ctx->mm->mmap_sem);
  77. }
  78. if (info->ring_pages && info->ring_pages != info->internal_pages)
  79. kfree(info->ring_pages);
  80. info->ring_pages = NULL;
  81. info->nr = 0;
  82. }
  83. static int aio_setup_ring(struct kioctx *ctx)
  84. {
  85. struct aio_ring *ring;
  86. struct aio_ring_info *info = &ctx->ring_info;
  87. unsigned nr_events = ctx->max_reqs;
  88. unsigned long size;
  89. int nr_pages;
  90. /* Compensate for the ring buffer's head/tail overlap entry */
  91. nr_events += 2; /* 1 is required, 2 for good luck */
  92. size = sizeof(struct aio_ring);
  93. size += sizeof(struct io_event) * nr_events;
  94. nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
  95. if (nr_pages < 0)
  96. return -EINVAL;
  97. nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
  98. info->nr = 0;
  99. info->ring_pages = info->internal_pages;
  100. if (nr_pages > AIO_RING_PAGES) {
  101. info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
  102. if (!info->ring_pages)
  103. return -ENOMEM;
  104. }
  105. info->mmap_size = nr_pages * PAGE_SIZE;
  106. dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
  107. down_write(&ctx->mm->mmap_sem);
  108. info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
  109. PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
  110. 0);
  111. if (IS_ERR((void *)info->mmap_base)) {
  112. up_write(&ctx->mm->mmap_sem);
  113. info->mmap_size = 0;
  114. aio_free_ring(ctx);
  115. return -EAGAIN;
  116. }
  117. dprintk("mmap address: 0x%08lx\n", info->mmap_base);
  118. info->nr_pages = get_user_pages(current, ctx->mm,
  119. info->mmap_base, nr_pages,
  120. 1, 0, info->ring_pages, NULL);
  121. up_write(&ctx->mm->mmap_sem);
  122. if (unlikely(info->nr_pages != nr_pages)) {
  123. aio_free_ring(ctx);
  124. return -EAGAIN;
  125. }
  126. ctx->user_id = info->mmap_base;
  127. info->nr = nr_events; /* trusted copy */
  128. ring = kmap_atomic(info->ring_pages[0], KM_USER0);
  129. ring->nr = nr_events; /* user copy */
  130. ring->id = ctx->user_id;
  131. ring->head = ring->tail = 0;
  132. ring->magic = AIO_RING_MAGIC;
  133. ring->compat_features = AIO_RING_COMPAT_FEATURES;
  134. ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
  135. ring->header_length = sizeof(struct aio_ring);
  136. kunmap_atomic(ring, KM_USER0);
  137. return 0;
  138. }
  139. /* aio_ring_event: returns a pointer to the event at the given index from
  140. * kmap_atomic(, km). Release the pointer with put_aio_ring_event();
  141. */
  142. #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
  143. #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
  144. #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
  145. #define aio_ring_event(info, nr, km) ({ \
  146. unsigned pos = (nr) + AIO_EVENTS_OFFSET; \
  147. struct io_event *__event; \
  148. __event = kmap_atomic( \
  149. (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
  150. __event += pos % AIO_EVENTS_PER_PAGE; \
  151. __event; \
  152. })
  153. #define put_aio_ring_event(event, km) do { \
  154. struct io_event *__event = (event); \
  155. (void)__event; \
  156. kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
  157. } while(0)
  158. /* ioctx_alloc
  159. * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
  160. */
  161. static struct kioctx *ioctx_alloc(unsigned nr_events)
  162. {
  163. struct mm_struct *mm;
  164. struct kioctx *ctx;
  165. /* Prevent overflows */
  166. if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
  167. (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
  168. pr_debug("ENOMEM: nr_events too high\n");
  169. return ERR_PTR(-EINVAL);
  170. }
  171. if ((unsigned long)nr_events > aio_max_nr)
  172. return ERR_PTR(-EAGAIN);
  173. ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
  174. if (!ctx)
  175. return ERR_PTR(-ENOMEM);
  176. ctx->max_reqs = nr_events;
  177. mm = ctx->mm = current->mm;
  178. atomic_inc(&mm->mm_count);
  179. atomic_set(&ctx->users, 1);
  180. spin_lock_init(&ctx->ctx_lock);
  181. spin_lock_init(&ctx->ring_info.ring_lock);
  182. init_waitqueue_head(&ctx->wait);
  183. INIT_LIST_HEAD(&ctx->active_reqs);
  184. INIT_LIST_HEAD(&ctx->run_list);
  185. INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
  186. if (aio_setup_ring(ctx) < 0)
  187. goto out_freectx;
  188. /* limit the number of system wide aios */
  189. spin_lock(&aio_nr_lock);
  190. if (aio_nr + ctx->max_reqs > aio_max_nr ||
  191. aio_nr + ctx->max_reqs < aio_nr)
  192. ctx->max_reqs = 0;
  193. else
  194. aio_nr += ctx->max_reqs;
  195. spin_unlock(&aio_nr_lock);
  196. if (ctx->max_reqs == 0)
  197. goto out_cleanup;
  198. /* now link into global list. kludge. FIXME */
  199. write_lock(&mm->ioctx_list_lock);
  200. ctx->next = mm->ioctx_list;
  201. mm->ioctx_list = ctx;
  202. write_unlock(&mm->ioctx_list_lock);
  203. dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
  204. ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
  205. return ctx;
  206. out_cleanup:
  207. __put_ioctx(ctx);
  208. return ERR_PTR(-EAGAIN);
  209. out_freectx:
  210. mmdrop(mm);
  211. kmem_cache_free(kioctx_cachep, ctx);
  212. ctx = ERR_PTR(-ENOMEM);
  213. dprintk("aio: error allocating ioctx %p\n", ctx);
  214. return ctx;
  215. }
  216. /* aio_cancel_all
  217. * Cancels all outstanding aio requests on an aio context. Used
  218. * when the processes owning a context have all exited to encourage
  219. * the rapid destruction of the kioctx.
  220. */
  221. static void aio_cancel_all(struct kioctx *ctx)
  222. {
  223. int (*cancel)(struct kiocb *, struct io_event *);
  224. struct io_event res;
  225. spin_lock_irq(&ctx->ctx_lock);
  226. ctx->dead = 1;
  227. while (!list_empty(&ctx->active_reqs)) {
  228. struct list_head *pos = ctx->active_reqs.next;
  229. struct kiocb *iocb = list_kiocb(pos);
  230. list_del_init(&iocb->ki_list);
  231. cancel = iocb->ki_cancel;
  232. kiocbSetCancelled(iocb);
  233. if (cancel) {
  234. iocb->ki_users++;
  235. spin_unlock_irq(&ctx->ctx_lock);
  236. cancel(iocb, &res);
  237. spin_lock_irq(&ctx->ctx_lock);
  238. }
  239. }
  240. spin_unlock_irq(&ctx->ctx_lock);
  241. }
  242. static void wait_for_all_aios(struct kioctx *ctx)
  243. {
  244. struct task_struct *tsk = current;
  245. DECLARE_WAITQUEUE(wait, tsk);
  246. spin_lock_irq(&ctx->ctx_lock);
  247. if (!ctx->reqs_active)
  248. goto out;
  249. add_wait_queue(&ctx->wait, &wait);
  250. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  251. while (ctx->reqs_active) {
  252. spin_unlock_irq(&ctx->ctx_lock);
  253. io_schedule();
  254. set_task_state(tsk, TASK_UNINTERRUPTIBLE);
  255. spin_lock_irq(&ctx->ctx_lock);
  256. }
  257. __set_task_state(tsk, TASK_RUNNING);
  258. remove_wait_queue(&ctx->wait, &wait);
  259. out:
  260. spin_unlock_irq(&ctx->ctx_lock);
  261. }
  262. /* wait_on_sync_kiocb:
  263. * Waits on the given sync kiocb to complete.
  264. */
  265. ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
  266. {
  267. while (iocb->ki_users) {
  268. set_current_state(TASK_UNINTERRUPTIBLE);
  269. if (!iocb->ki_users)
  270. break;
  271. io_schedule();
  272. }
  273. __set_current_state(TASK_RUNNING);
  274. return iocb->ki_user_data;
  275. }
  276. /* exit_aio: called when the last user of mm goes away. At this point,
  277. * there is no way for any new requests to be submited or any of the
  278. * io_* syscalls to be called on the context. However, there may be
  279. * outstanding requests which hold references to the context; as they
  280. * go away, they will call put_ioctx and release any pinned memory
  281. * associated with the request (held via struct page * references).
  282. */
  283. void exit_aio(struct mm_struct *mm)
  284. {
  285. struct kioctx *ctx = mm->ioctx_list;
  286. mm->ioctx_list = NULL;
  287. while (ctx) {
  288. struct kioctx *next = ctx->next;
  289. ctx->next = NULL;
  290. aio_cancel_all(ctx);
  291. wait_for_all_aios(ctx);
  292. /*
  293. * Ensure we don't leave the ctx on the aio_wq
  294. */
  295. cancel_work_sync(&ctx->wq.work);
  296. if (1 != atomic_read(&ctx->users))
  297. printk(KERN_DEBUG
  298. "exit_aio:ioctx still alive: %d %d %d\n",
  299. atomic_read(&ctx->users), ctx->dead,
  300. ctx->reqs_active);
  301. put_ioctx(ctx);
  302. ctx = next;
  303. }
  304. }
  305. /* __put_ioctx
  306. * Called when the last user of an aio context has gone away,
  307. * and the struct needs to be freed.
  308. */
  309. void __put_ioctx(struct kioctx *ctx)
  310. {
  311. unsigned nr_events = ctx->max_reqs;
  312. BUG_ON(ctx->reqs_active);
  313. cancel_delayed_work(&ctx->wq);
  314. cancel_work_sync(&ctx->wq.work);
  315. aio_free_ring(ctx);
  316. mmdrop(ctx->mm);
  317. ctx->mm = NULL;
  318. pr_debug("__put_ioctx: freeing %p\n", ctx);
  319. kmem_cache_free(kioctx_cachep, ctx);
  320. if (nr_events) {
  321. spin_lock(&aio_nr_lock);
  322. BUG_ON(aio_nr - nr_events > aio_nr);
  323. aio_nr -= nr_events;
  324. spin_unlock(&aio_nr_lock);
  325. }
  326. }
  327. /* aio_get_req
  328. * Allocate a slot for an aio request. Increments the users count
  329. * of the kioctx so that the kioctx stays around until all requests are
  330. * complete. Returns NULL if no requests are free.
  331. *
  332. * Returns with kiocb->users set to 2. The io submit code path holds
  333. * an extra reference while submitting the i/o.
  334. * This prevents races between the aio code path referencing the
  335. * req (after submitting it) and aio_complete() freeing the req.
  336. */
  337. static struct kiocb *__aio_get_req(struct kioctx *ctx)
  338. {
  339. struct kiocb *req = NULL;
  340. struct aio_ring *ring;
  341. int okay = 0;
  342. req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
  343. if (unlikely(!req))
  344. return NULL;
  345. req->ki_flags = 0;
  346. req->ki_users = 2;
  347. req->ki_key = 0;
  348. req->ki_ctx = ctx;
  349. req->ki_cancel = NULL;
  350. req->ki_retry = NULL;
  351. req->ki_dtor = NULL;
  352. req->private = NULL;
  353. req->ki_iovec = NULL;
  354. INIT_LIST_HEAD(&req->ki_run_list);
  355. req->ki_eventfd = ERR_PTR(-EINVAL);
  356. /* Check if the completion queue has enough free space to
  357. * accept an event from this io.
  358. */
  359. spin_lock_irq(&ctx->ctx_lock);
  360. ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
  361. if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
  362. list_add(&req->ki_list, &ctx->active_reqs);
  363. ctx->reqs_active++;
  364. okay = 1;
  365. }
  366. kunmap_atomic(ring, KM_USER0);
  367. spin_unlock_irq(&ctx->ctx_lock);
  368. if (!okay) {
  369. kmem_cache_free(kiocb_cachep, req);
  370. req = NULL;
  371. }
  372. return req;
  373. }
  374. static inline struct kiocb *aio_get_req(struct kioctx *ctx)
  375. {
  376. struct kiocb *req;
  377. /* Handle a potential starvation case -- should be exceedingly rare as
  378. * requests will be stuck on fput_head only if the aio_fput_routine is
  379. * delayed and the requests were the last user of the struct file.
  380. */
  381. req = __aio_get_req(ctx);
  382. if (unlikely(NULL == req)) {
  383. aio_fput_routine(NULL);
  384. req = __aio_get_req(ctx);
  385. }
  386. return req;
  387. }
  388. static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
  389. {
  390. assert_spin_locked(&ctx->ctx_lock);
  391. if (!IS_ERR(req->ki_eventfd))
  392. fput(req->ki_eventfd);
  393. if (req->ki_dtor)
  394. req->ki_dtor(req);
  395. if (req->ki_iovec != &req->ki_inline_vec)
  396. kfree(req->ki_iovec);
  397. kmem_cache_free(kiocb_cachep, req);
  398. ctx->reqs_active--;
  399. if (unlikely(!ctx->reqs_active && ctx->dead))
  400. wake_up(&ctx->wait);
  401. }
  402. static void aio_fput_routine(struct work_struct *data)
  403. {
  404. spin_lock_irq(&fput_lock);
  405. while (likely(!list_empty(&fput_head))) {
  406. struct kiocb *req = list_kiocb(fput_head.next);
  407. struct kioctx *ctx = req->ki_ctx;
  408. list_del(&req->ki_list);
  409. spin_unlock_irq(&fput_lock);
  410. /* Complete the fput */
  411. __fput(req->ki_filp);
  412. /* Link the iocb into the context's free list */
  413. spin_lock_irq(&ctx->ctx_lock);
  414. really_put_req(ctx, req);
  415. spin_unlock_irq(&ctx->ctx_lock);
  416. put_ioctx(ctx);
  417. spin_lock_irq(&fput_lock);
  418. }
  419. spin_unlock_irq(&fput_lock);
  420. }
  421. /* __aio_put_req
  422. * Returns true if this put was the last user of the request.
  423. */
  424. static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
  425. {
  426. dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
  427. req, atomic_read(&req->ki_filp->f_count));
  428. assert_spin_locked(&ctx->ctx_lock);
  429. req->ki_users --;
  430. BUG_ON(req->ki_users < 0);
  431. if (likely(req->ki_users))
  432. return 0;
  433. list_del(&req->ki_list); /* remove from active_reqs */
  434. req->ki_cancel = NULL;
  435. req->ki_retry = NULL;
  436. /* Must be done under the lock to serialise against cancellation.
  437. * Call this aio_fput as it duplicates fput via the fput_work.
  438. */
  439. if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
  440. get_ioctx(ctx);
  441. spin_lock(&fput_lock);
  442. list_add(&req->ki_list, &fput_head);
  443. spin_unlock(&fput_lock);
  444. queue_work(aio_wq, &fput_work);
  445. } else
  446. really_put_req(ctx, req);
  447. return 1;
  448. }
  449. /* aio_put_req
  450. * Returns true if this put was the last user of the kiocb,
  451. * false if the request is still in use.
  452. */
  453. int aio_put_req(struct kiocb *req)
  454. {
  455. struct kioctx *ctx = req->ki_ctx;
  456. int ret;
  457. spin_lock_irq(&ctx->ctx_lock);
  458. ret = __aio_put_req(ctx, req);
  459. spin_unlock_irq(&ctx->ctx_lock);
  460. return ret;
  461. }
  462. /* Lookup an ioctx id. ioctx_list is lockless for reads.
  463. * FIXME: this is O(n) and is only suitable for development.
  464. */
  465. struct kioctx *lookup_ioctx(unsigned long ctx_id)
  466. {
  467. struct kioctx *ioctx;
  468. struct mm_struct *mm;
  469. mm = current->mm;
  470. read_lock(&mm->ioctx_list_lock);
  471. for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
  472. if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
  473. get_ioctx(ioctx);
  474. break;
  475. }
  476. read_unlock(&mm->ioctx_list_lock);
  477. return ioctx;
  478. }
  479. /*
  480. * use_mm
  481. * Makes the calling kernel thread take on the specified
  482. * mm context.
  483. * Called by the retry thread execute retries within the
  484. * iocb issuer's mm context, so that copy_from/to_user
  485. * operations work seamlessly for aio.
  486. * (Note: this routine is intended to be called only
  487. * from a kernel thread context)
  488. */
  489. static void use_mm(struct mm_struct *mm)
  490. {
  491. struct mm_struct *active_mm;
  492. struct task_struct *tsk = current;
  493. task_lock(tsk);
  494. tsk->flags |= PF_BORROWED_MM;
  495. active_mm = tsk->active_mm;
  496. atomic_inc(&mm->mm_count);
  497. tsk->mm = mm;
  498. tsk->active_mm = mm;
  499. /*
  500. * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
  501. * it won't work. Update it accordingly if you change it here
  502. */
  503. switch_mm(active_mm, mm, tsk);
  504. task_unlock(tsk);
  505. mmdrop(active_mm);
  506. }
  507. /*
  508. * unuse_mm
  509. * Reverses the effect of use_mm, i.e. releases the
  510. * specified mm context which was earlier taken on
  511. * by the calling kernel thread
  512. * (Note: this routine is intended to be called only
  513. * from a kernel thread context)
  514. */
  515. static void unuse_mm(struct mm_struct *mm)
  516. {
  517. struct task_struct *tsk = current;
  518. task_lock(tsk);
  519. tsk->flags &= ~PF_BORROWED_MM;
  520. tsk->mm = NULL;
  521. /* active_mm is still 'mm' */
  522. enter_lazy_tlb(mm, tsk);
  523. task_unlock(tsk);
  524. }
  525. /*
  526. * Queue up a kiocb to be retried. Assumes that the kiocb
  527. * has already been marked as kicked, and places it on
  528. * the retry run list for the corresponding ioctx, if it
  529. * isn't already queued. Returns 1 if it actually queued
  530. * the kiocb (to tell the caller to activate the work
  531. * queue to process it), or 0, if it found that it was
  532. * already queued.
  533. */
  534. static inline int __queue_kicked_iocb(struct kiocb *iocb)
  535. {
  536. struct kioctx *ctx = iocb->ki_ctx;
  537. assert_spin_locked(&ctx->ctx_lock);
  538. if (list_empty(&iocb->ki_run_list)) {
  539. list_add_tail(&iocb->ki_run_list,
  540. &ctx->run_list);
  541. return 1;
  542. }
  543. return 0;
  544. }
  545. /* aio_run_iocb
  546. * This is the core aio execution routine. It is
  547. * invoked both for initial i/o submission and
  548. * subsequent retries via the aio_kick_handler.
  549. * Expects to be invoked with iocb->ki_ctx->lock
  550. * already held. The lock is released and reacquired
  551. * as needed during processing.
  552. *
  553. * Calls the iocb retry method (already setup for the
  554. * iocb on initial submission) for operation specific
  555. * handling, but takes care of most of common retry
  556. * execution details for a given iocb. The retry method
  557. * needs to be non-blocking as far as possible, to avoid
  558. * holding up other iocbs waiting to be serviced by the
  559. * retry kernel thread.
  560. *
  561. * The trickier parts in this code have to do with
  562. * ensuring that only one retry instance is in progress
  563. * for a given iocb at any time. Providing that guarantee
  564. * simplifies the coding of individual aio operations as
  565. * it avoids various potential races.
  566. */
  567. static ssize_t aio_run_iocb(struct kiocb *iocb)
  568. {
  569. struct kioctx *ctx = iocb->ki_ctx;
  570. ssize_t (*retry)(struct kiocb *);
  571. ssize_t ret;
  572. if (!(retry = iocb->ki_retry)) {
  573. printk("aio_run_iocb: iocb->ki_retry = NULL\n");
  574. return 0;
  575. }
  576. /*
  577. * We don't want the next retry iteration for this
  578. * operation to start until this one has returned and
  579. * updated the iocb state. However, wait_queue functions
  580. * can trigger a kick_iocb from interrupt context in the
  581. * meantime, indicating that data is available for the next
  582. * iteration. We want to remember that and enable the
  583. * next retry iteration _after_ we are through with
  584. * this one.
  585. *
  586. * So, in order to be able to register a "kick", but
  587. * prevent it from being queued now, we clear the kick
  588. * flag, but make the kick code *think* that the iocb is
  589. * still on the run list until we are actually done.
  590. * When we are done with this iteration, we check if
  591. * the iocb was kicked in the meantime and if so, queue
  592. * it up afresh.
  593. */
  594. kiocbClearKicked(iocb);
  595. /*
  596. * This is so that aio_complete knows it doesn't need to
  597. * pull the iocb off the run list (We can't just call
  598. * INIT_LIST_HEAD because we don't want a kick_iocb to
  599. * queue this on the run list yet)
  600. */
  601. iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
  602. spin_unlock_irq(&ctx->ctx_lock);
  603. /* Quit retrying if the i/o has been cancelled */
  604. if (kiocbIsCancelled(iocb)) {
  605. ret = -EINTR;
  606. aio_complete(iocb, ret, 0);
  607. /* must not access the iocb after this */
  608. goto out;
  609. }
  610. /*
  611. * Now we are all set to call the retry method in async
  612. * context.
  613. */
  614. ret = retry(iocb);
  615. if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
  616. BUG_ON(!list_empty(&iocb->ki_wait.task_list));
  617. aio_complete(iocb, ret, 0);
  618. }
  619. out:
  620. spin_lock_irq(&ctx->ctx_lock);
  621. if (-EIOCBRETRY == ret) {
  622. /*
  623. * OK, now that we are done with this iteration
  624. * and know that there is more left to go,
  625. * this is where we let go so that a subsequent
  626. * "kick" can start the next iteration
  627. */
  628. /* will make __queue_kicked_iocb succeed from here on */
  629. INIT_LIST_HEAD(&iocb->ki_run_list);
  630. /* we must queue the next iteration ourselves, if it
  631. * has already been kicked */
  632. if (kiocbIsKicked(iocb)) {
  633. __queue_kicked_iocb(iocb);
  634. /*
  635. * __queue_kicked_iocb will always return 1 here, because
  636. * iocb->ki_run_list is empty at this point so it should
  637. * be safe to unconditionally queue the context into the
  638. * work queue.
  639. */
  640. aio_queue_work(ctx);
  641. }
  642. }
  643. return ret;
  644. }
  645. /*
  646. * __aio_run_iocbs:
  647. * Process all pending retries queued on the ioctx
  648. * run list.
  649. * Assumes it is operating within the aio issuer's mm
  650. * context.
  651. */
  652. static int __aio_run_iocbs(struct kioctx *ctx)
  653. {
  654. struct kiocb *iocb;
  655. struct list_head run_list;
  656. assert_spin_locked(&ctx->ctx_lock);
  657. list_replace_init(&ctx->run_list, &run_list);
  658. while (!list_empty(&run_list)) {
  659. iocb = list_entry(run_list.next, struct kiocb,
  660. ki_run_list);
  661. list_del(&iocb->ki_run_list);
  662. /*
  663. * Hold an extra reference while retrying i/o.
  664. */
  665. iocb->ki_users++; /* grab extra reference */
  666. aio_run_iocb(iocb);
  667. __aio_put_req(ctx, iocb);
  668. }
  669. if (!list_empty(&ctx->run_list))
  670. return 1;
  671. return 0;
  672. }
  673. static void aio_queue_work(struct kioctx * ctx)
  674. {
  675. unsigned long timeout;
  676. /*
  677. * if someone is waiting, get the work started right
  678. * away, otherwise, use a longer delay
  679. */
  680. smp_mb();
  681. if (waitqueue_active(&ctx->wait))
  682. timeout = 1;
  683. else
  684. timeout = HZ/10;
  685. queue_delayed_work(aio_wq, &ctx->wq, timeout);
  686. }
  687. /*
  688. * aio_run_iocbs:
  689. * Process all pending retries queued on the ioctx
  690. * run list.
  691. * Assumes it is operating within the aio issuer's mm
  692. * context.
  693. */
  694. static inline void aio_run_iocbs(struct kioctx *ctx)
  695. {
  696. int requeue;
  697. spin_lock_irq(&ctx->ctx_lock);
  698. requeue = __aio_run_iocbs(ctx);
  699. spin_unlock_irq(&ctx->ctx_lock);
  700. if (requeue)
  701. aio_queue_work(ctx);
  702. }
  703. /*
  704. * just like aio_run_iocbs, but keeps running them until
  705. * the list stays empty
  706. */
  707. static inline void aio_run_all_iocbs(struct kioctx *ctx)
  708. {
  709. spin_lock_irq(&ctx->ctx_lock);
  710. while (__aio_run_iocbs(ctx))
  711. ;
  712. spin_unlock_irq(&ctx->ctx_lock);
  713. }
  714. /*
  715. * aio_kick_handler:
  716. * Work queue handler triggered to process pending
  717. * retries on an ioctx. Takes on the aio issuer's
  718. * mm context before running the iocbs, so that
  719. * copy_xxx_user operates on the issuer's address
  720. * space.
  721. * Run on aiod's context.
  722. */
  723. static void aio_kick_handler(struct work_struct *work)
  724. {
  725. struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
  726. mm_segment_t oldfs = get_fs();
  727. struct mm_struct *mm;
  728. int requeue;
  729. set_fs(USER_DS);
  730. use_mm(ctx->mm);
  731. spin_lock_irq(&ctx->ctx_lock);
  732. requeue =__aio_run_iocbs(ctx);
  733. mm = ctx->mm;
  734. spin_unlock_irq(&ctx->ctx_lock);
  735. unuse_mm(mm);
  736. set_fs(oldfs);
  737. /*
  738. * we're in a worker thread already, don't use queue_delayed_work,
  739. */
  740. if (requeue)
  741. queue_delayed_work(aio_wq, &ctx->wq, 0);
  742. }
  743. /*
  744. * Called by kick_iocb to queue the kiocb for retry
  745. * and if required activate the aio work queue to process
  746. * it
  747. */
  748. static void try_queue_kicked_iocb(struct kiocb *iocb)
  749. {
  750. struct kioctx *ctx = iocb->ki_ctx;
  751. unsigned long flags;
  752. int run = 0;
  753. /* We're supposed to be the only path putting the iocb back on the run
  754. * list. If we find that the iocb is *back* on a wait queue already
  755. * than retry has happened before we could queue the iocb. This also
  756. * means that the retry could have completed and freed our iocb, no
  757. * good. */
  758. BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
  759. spin_lock_irqsave(&ctx->ctx_lock, flags);
  760. /* set this inside the lock so that we can't race with aio_run_iocb()
  761. * testing it and putting the iocb on the run list under the lock */
  762. if (!kiocbTryKick(iocb))
  763. run = __queue_kicked_iocb(iocb);
  764. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  765. if (run)
  766. aio_queue_work(ctx);
  767. }
  768. /*
  769. * kick_iocb:
  770. * Called typically from a wait queue callback context
  771. * (aio_wake_function) to trigger a retry of the iocb.
  772. * The retry is usually executed by aio workqueue
  773. * threads (See aio_kick_handler).
  774. */
  775. void kick_iocb(struct kiocb *iocb)
  776. {
  777. /* sync iocbs are easy: they can only ever be executing from a
  778. * single context. */
  779. if (is_sync_kiocb(iocb)) {
  780. kiocbSetKicked(iocb);
  781. wake_up_process(iocb->ki_obj.tsk);
  782. return;
  783. }
  784. try_queue_kicked_iocb(iocb);
  785. }
  786. EXPORT_SYMBOL(kick_iocb);
  787. /* aio_complete
  788. * Called when the io request on the given iocb is complete.
  789. * Returns true if this is the last user of the request. The
  790. * only other user of the request can be the cancellation code.
  791. */
  792. int aio_complete(struct kiocb *iocb, long res, long res2)
  793. {
  794. struct kioctx *ctx = iocb->ki_ctx;
  795. struct aio_ring_info *info;
  796. struct aio_ring *ring;
  797. struct io_event *event;
  798. unsigned long flags;
  799. unsigned long tail;
  800. int ret;
  801. /*
  802. * Special case handling for sync iocbs:
  803. * - events go directly into the iocb for fast handling
  804. * - the sync task with the iocb in its stack holds the single iocb
  805. * ref, no other paths have a way to get another ref
  806. * - the sync task helpfully left a reference to itself in the iocb
  807. */
  808. if (is_sync_kiocb(iocb)) {
  809. BUG_ON(iocb->ki_users != 1);
  810. iocb->ki_user_data = res;
  811. iocb->ki_users = 0;
  812. wake_up_process(iocb->ki_obj.tsk);
  813. return 1;
  814. }
  815. info = &ctx->ring_info;
  816. /* add a completion event to the ring buffer.
  817. * must be done holding ctx->ctx_lock to prevent
  818. * other code from messing with the tail
  819. * pointer since we might be called from irq
  820. * context.
  821. */
  822. spin_lock_irqsave(&ctx->ctx_lock, flags);
  823. if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
  824. list_del_init(&iocb->ki_run_list);
  825. /*
  826. * cancelled requests don't get events, userland was given one
  827. * when the event got cancelled.
  828. */
  829. if (kiocbIsCancelled(iocb))
  830. goto put_rq;
  831. ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
  832. tail = info->tail;
  833. event = aio_ring_event(info, tail, KM_IRQ0);
  834. if (++tail >= info->nr)
  835. tail = 0;
  836. event->obj = (u64)(unsigned long)iocb->ki_obj.user;
  837. event->data = iocb->ki_user_data;
  838. event->res = res;
  839. event->res2 = res2;
  840. dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
  841. ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
  842. res, res2);
  843. /* after flagging the request as done, we
  844. * must never even look at it again
  845. */
  846. smp_wmb(); /* make event visible before updating tail */
  847. info->tail = tail;
  848. ring->tail = tail;
  849. put_aio_ring_event(event, KM_IRQ0);
  850. kunmap_atomic(ring, KM_IRQ1);
  851. pr_debug("added to ring %p at [%lu]\n", iocb, tail);
  852. /*
  853. * Check if the user asked us to deliver the result through an
  854. * eventfd. The eventfd_signal() function is safe to be called
  855. * from IRQ context.
  856. */
  857. if (!IS_ERR(iocb->ki_eventfd))
  858. eventfd_signal(iocb->ki_eventfd, 1);
  859. put_rq:
  860. /* everything turned out well, dispose of the aiocb. */
  861. ret = __aio_put_req(ctx, iocb);
  862. /*
  863. * We have to order our ring_info tail store above and test
  864. * of the wait list below outside the wait lock. This is
  865. * like in wake_up_bit() where clearing a bit has to be
  866. * ordered with the unlocked test.
  867. */
  868. smp_mb();
  869. if (waitqueue_active(&ctx->wait))
  870. wake_up(&ctx->wait);
  871. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  872. return ret;
  873. }
  874. /* aio_read_evt
  875. * Pull an event off of the ioctx's event ring. Returns the number of
  876. * events fetched (0 or 1 ;-)
  877. * FIXME: make this use cmpxchg.
  878. * TODO: make the ringbuffer user mmap()able (requires FIXME).
  879. */
  880. static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
  881. {
  882. struct aio_ring_info *info = &ioctx->ring_info;
  883. struct aio_ring *ring;
  884. unsigned long head;
  885. int ret = 0;
  886. ring = kmap_atomic(info->ring_pages[0], KM_USER0);
  887. dprintk("in aio_read_evt h%lu t%lu m%lu\n",
  888. (unsigned long)ring->head, (unsigned long)ring->tail,
  889. (unsigned long)ring->nr);
  890. if (ring->head == ring->tail)
  891. goto out;
  892. spin_lock(&info->ring_lock);
  893. head = ring->head % info->nr;
  894. if (head != ring->tail) {
  895. struct io_event *evp = aio_ring_event(info, head, KM_USER1);
  896. *ent = *evp;
  897. head = (head + 1) % info->nr;
  898. smp_mb(); /* finish reading the event before updatng the head */
  899. ring->head = head;
  900. ret = 1;
  901. put_aio_ring_event(evp, KM_USER1);
  902. }
  903. spin_unlock(&info->ring_lock);
  904. out:
  905. kunmap_atomic(ring, KM_USER0);
  906. dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret,
  907. (unsigned long)ring->head, (unsigned long)ring->tail);
  908. return ret;
  909. }
  910. struct aio_timeout {
  911. struct timer_list timer;
  912. int timed_out;
  913. struct task_struct *p;
  914. };
  915. static void timeout_func(unsigned long data)
  916. {
  917. struct aio_timeout *to = (struct aio_timeout *)data;
  918. to->timed_out = 1;
  919. wake_up_process(to->p);
  920. }
  921. static inline void init_timeout(struct aio_timeout *to)
  922. {
  923. init_timer(&to->timer);
  924. to->timer.data = (unsigned long)to;
  925. to->timer.function = timeout_func;
  926. to->timed_out = 0;
  927. to->p = current;
  928. }
  929. static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
  930. const struct timespec *ts)
  931. {
  932. to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
  933. if (time_after(to->timer.expires, jiffies))
  934. add_timer(&to->timer);
  935. else
  936. to->timed_out = 1;
  937. }
  938. static inline void clear_timeout(struct aio_timeout *to)
  939. {
  940. del_singleshot_timer_sync(&to->timer);
  941. }
  942. static int read_events(struct kioctx *ctx,
  943. long min_nr, long nr,
  944. struct io_event __user *event,
  945. struct timespec __user *timeout)
  946. {
  947. long start_jiffies = jiffies;
  948. struct task_struct *tsk = current;
  949. DECLARE_WAITQUEUE(wait, tsk);
  950. int ret;
  951. int i = 0;
  952. struct io_event ent;
  953. struct aio_timeout to;
  954. int retry = 0;
  955. /* needed to zero any padding within an entry (there shouldn't be
  956. * any, but C is fun!
  957. */
  958. memset(&ent, 0, sizeof(ent));
  959. retry:
  960. ret = 0;
  961. while (likely(i < nr)) {
  962. ret = aio_read_evt(ctx, &ent);
  963. if (unlikely(ret <= 0))
  964. break;
  965. dprintk("read event: %Lx %Lx %Lx %Lx\n",
  966. ent.data, ent.obj, ent.res, ent.res2);
  967. /* Could we split the check in two? */
  968. ret = -EFAULT;
  969. if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
  970. dprintk("aio: lost an event due to EFAULT.\n");
  971. break;
  972. }
  973. ret = 0;
  974. /* Good, event copied to userland, update counts. */
  975. event ++;
  976. i ++;
  977. }
  978. if (min_nr <= i)
  979. return i;
  980. if (ret)
  981. return ret;
  982. /* End fast path */
  983. /* racey check, but it gets redone */
  984. if (!retry && unlikely(!list_empty(&ctx->run_list))) {
  985. retry = 1;
  986. aio_run_all_iocbs(ctx);
  987. goto retry;
  988. }
  989. init_timeout(&to);
  990. if (timeout) {
  991. struct timespec ts;
  992. ret = -EFAULT;
  993. if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
  994. goto out;
  995. set_timeout(start_jiffies, &to, &ts);
  996. }
  997. while (likely(i < nr)) {
  998. add_wait_queue_exclusive(&ctx->wait, &wait);
  999. do {
  1000. set_task_state(tsk, TASK_INTERRUPTIBLE);
  1001. ret = aio_read_evt(ctx, &ent);
  1002. if (ret)
  1003. break;
  1004. if (min_nr <= i)
  1005. break;
  1006. ret = 0;
  1007. if (to.timed_out) /* Only check after read evt */
  1008. break;
  1009. /* Try to only show up in io wait if there are ops
  1010. * in flight */
  1011. if (ctx->reqs_active)
  1012. io_schedule();
  1013. else
  1014. schedule();
  1015. if (signal_pending(tsk)) {
  1016. ret = -EINTR;
  1017. break;
  1018. }
  1019. /*ret = aio_read_evt(ctx, &ent);*/
  1020. } while (1) ;
  1021. set_task_state(tsk, TASK_RUNNING);
  1022. remove_wait_queue(&ctx->wait, &wait);
  1023. if (unlikely(ret <= 0))
  1024. break;
  1025. ret = -EFAULT;
  1026. if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
  1027. dprintk("aio: lost an event due to EFAULT.\n");
  1028. break;
  1029. }
  1030. /* Good, event copied to userland, update counts. */
  1031. event ++;
  1032. i ++;
  1033. }
  1034. if (timeout)
  1035. clear_timeout(&to);
  1036. out:
  1037. return i ? i : ret;
  1038. }
  1039. /* Take an ioctx and remove it from the list of ioctx's. Protects
  1040. * against races with itself via ->dead.
  1041. */
  1042. static void io_destroy(struct kioctx *ioctx)
  1043. {
  1044. struct mm_struct *mm = current->mm;
  1045. struct kioctx **tmp;
  1046. int was_dead;
  1047. /* delete the entry from the list is someone else hasn't already */
  1048. write_lock(&mm->ioctx_list_lock);
  1049. was_dead = ioctx->dead;
  1050. ioctx->dead = 1;
  1051. for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
  1052. tmp = &(*tmp)->next)
  1053. ;
  1054. if (*tmp)
  1055. *tmp = ioctx->next;
  1056. write_unlock(&mm->ioctx_list_lock);
  1057. dprintk("aio_release(%p)\n", ioctx);
  1058. if (likely(!was_dead))
  1059. put_ioctx(ioctx); /* twice for the list */
  1060. aio_cancel_all(ioctx);
  1061. wait_for_all_aios(ioctx);
  1062. put_ioctx(ioctx); /* once for the lookup */
  1063. }
  1064. /* sys_io_setup:
  1065. * Create an aio_context capable of receiving at least nr_events.
  1066. * ctxp must not point to an aio_context that already exists, and
  1067. * must be initialized to 0 prior to the call. On successful
  1068. * creation of the aio_context, *ctxp is filled in with the resulting
  1069. * handle. May fail with -EINVAL if *ctxp is not initialized,
  1070. * if the specified nr_events exceeds internal limits. May fail
  1071. * with -EAGAIN if the specified nr_events exceeds the user's limit
  1072. * of available events. May fail with -ENOMEM if insufficient kernel
  1073. * resources are available. May fail with -EFAULT if an invalid
  1074. * pointer is passed for ctxp. Will fail with -ENOSYS if not
  1075. * implemented.
  1076. */
  1077. asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
  1078. {
  1079. struct kioctx *ioctx = NULL;
  1080. unsigned long ctx;
  1081. long ret;
  1082. ret = get_user(ctx, ctxp);
  1083. if (unlikely(ret))
  1084. goto out;
  1085. ret = -EINVAL;
  1086. if (unlikely(ctx || nr_events == 0)) {
  1087. pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
  1088. ctx, nr_events);
  1089. goto out;
  1090. }
  1091. ioctx = ioctx_alloc(nr_events);
  1092. ret = PTR_ERR(ioctx);
  1093. if (!IS_ERR(ioctx)) {
  1094. ret = put_user(ioctx->user_id, ctxp);
  1095. if (!ret)
  1096. return 0;
  1097. get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
  1098. io_destroy(ioctx);
  1099. }
  1100. out:
  1101. return ret;
  1102. }
  1103. /* sys_io_destroy:
  1104. * Destroy the aio_context specified. May cancel any outstanding
  1105. * AIOs and block on completion. Will fail with -ENOSYS if not
  1106. * implemented. May fail with -EFAULT if the context pointed to
  1107. * is invalid.
  1108. */
  1109. asmlinkage long sys_io_destroy(aio_context_t ctx)
  1110. {
  1111. struct kioctx *ioctx = lookup_ioctx(ctx);
  1112. if (likely(NULL != ioctx)) {
  1113. io_destroy(ioctx);
  1114. return 0;
  1115. }
  1116. pr_debug("EINVAL: io_destroy: invalid context id\n");
  1117. return -EINVAL;
  1118. }
  1119. static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
  1120. {
  1121. struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
  1122. BUG_ON(ret <= 0);
  1123. while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
  1124. ssize_t this = min((ssize_t)iov->iov_len, ret);
  1125. iov->iov_base += this;
  1126. iov->iov_len -= this;
  1127. iocb->ki_left -= this;
  1128. ret -= this;
  1129. if (iov->iov_len == 0) {
  1130. iocb->ki_cur_seg++;
  1131. iov++;
  1132. }
  1133. }
  1134. /* the caller should not have done more io than what fit in
  1135. * the remaining iovecs */
  1136. BUG_ON(ret > 0 && iocb->ki_left == 0);
  1137. }
  1138. static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
  1139. {
  1140. struct file *file = iocb->ki_filp;
  1141. struct address_space *mapping = file->f_mapping;
  1142. struct inode *inode = mapping->host;
  1143. ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
  1144. unsigned long, loff_t);
  1145. ssize_t ret = 0;
  1146. unsigned short opcode;
  1147. if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
  1148. (iocb->ki_opcode == IOCB_CMD_PREAD)) {
  1149. rw_op = file->f_op->aio_read;
  1150. opcode = IOCB_CMD_PREADV;
  1151. } else {
  1152. rw_op = file->f_op->aio_write;
  1153. opcode = IOCB_CMD_PWRITEV;
  1154. }
  1155. /* This matches the pread()/pwrite() logic */
  1156. if (iocb->ki_pos < 0)
  1157. return -EINVAL;
  1158. do {
  1159. ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
  1160. iocb->ki_nr_segs - iocb->ki_cur_seg,
  1161. iocb->ki_pos);
  1162. if (ret > 0)
  1163. aio_advance_iovec(iocb, ret);
  1164. /* retry all partial writes. retry partial reads as long as its a
  1165. * regular file. */
  1166. } while (ret > 0 && iocb->ki_left > 0 &&
  1167. (opcode == IOCB_CMD_PWRITEV ||
  1168. (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
  1169. /* This means we must have transferred all that we could */
  1170. /* No need to retry anymore */
  1171. if ((ret == 0) || (iocb->ki_left == 0))
  1172. ret = iocb->ki_nbytes - iocb->ki_left;
  1173. /* If we managed to write some out we return that, rather than
  1174. * the eventual error. */
  1175. if (opcode == IOCB_CMD_PWRITEV
  1176. && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
  1177. && iocb->ki_nbytes - iocb->ki_left)
  1178. ret = iocb->ki_nbytes - iocb->ki_left;
  1179. return ret;
  1180. }
  1181. static ssize_t aio_fdsync(struct kiocb *iocb)
  1182. {
  1183. struct file *file = iocb->ki_filp;
  1184. ssize_t ret = -EINVAL;
  1185. if (file->f_op->aio_fsync)
  1186. ret = file->f_op->aio_fsync(iocb, 1);
  1187. return ret;
  1188. }
  1189. static ssize_t aio_fsync(struct kiocb *iocb)
  1190. {
  1191. struct file *file = iocb->ki_filp;
  1192. ssize_t ret = -EINVAL;
  1193. if (file->f_op->aio_fsync)
  1194. ret = file->f_op->aio_fsync(iocb, 0);
  1195. return ret;
  1196. }
  1197. static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
  1198. {
  1199. ssize_t ret;
  1200. ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
  1201. kiocb->ki_nbytes, 1,
  1202. &kiocb->ki_inline_vec, &kiocb->ki_iovec);
  1203. if (ret < 0)
  1204. goto out;
  1205. kiocb->ki_nr_segs = kiocb->ki_nbytes;
  1206. kiocb->ki_cur_seg = 0;
  1207. /* ki_nbytes/left now reflect bytes instead of segs */
  1208. kiocb->ki_nbytes = ret;
  1209. kiocb->ki_left = ret;
  1210. ret = 0;
  1211. out:
  1212. return ret;
  1213. }
  1214. static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
  1215. {
  1216. kiocb->ki_iovec = &kiocb->ki_inline_vec;
  1217. kiocb->ki_iovec->iov_base = kiocb->ki_buf;
  1218. kiocb->ki_iovec->iov_len = kiocb->ki_left;
  1219. kiocb->ki_nr_segs = 1;
  1220. kiocb->ki_cur_seg = 0;
  1221. return 0;
  1222. }
  1223. /*
  1224. * aio_setup_iocb:
  1225. * Performs the initial checks and aio retry method
  1226. * setup for the kiocb at the time of io submission.
  1227. */
  1228. static ssize_t aio_setup_iocb(struct kiocb *kiocb)
  1229. {
  1230. struct file *file = kiocb->ki_filp;
  1231. ssize_t ret = 0;
  1232. switch (kiocb->ki_opcode) {
  1233. case IOCB_CMD_PREAD:
  1234. ret = -EBADF;
  1235. if (unlikely(!(file->f_mode & FMODE_READ)))
  1236. break;
  1237. ret = -EFAULT;
  1238. if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
  1239. kiocb->ki_left)))
  1240. break;
  1241. ret = security_file_permission(file, MAY_READ);
  1242. if (unlikely(ret))
  1243. break;
  1244. ret = aio_setup_single_vector(kiocb);
  1245. if (ret)
  1246. break;
  1247. ret = -EINVAL;
  1248. if (file->f_op->aio_read)
  1249. kiocb->ki_retry = aio_rw_vect_retry;
  1250. break;
  1251. case IOCB_CMD_PWRITE:
  1252. ret = -EBADF;
  1253. if (unlikely(!(file->f_mode & FMODE_WRITE)))
  1254. break;
  1255. ret = -EFAULT;
  1256. if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
  1257. kiocb->ki_left)))
  1258. break;
  1259. ret = security_file_permission(file, MAY_WRITE);
  1260. if (unlikely(ret))
  1261. break;
  1262. ret = aio_setup_single_vector(kiocb);
  1263. if (ret)
  1264. break;
  1265. ret = -EINVAL;
  1266. if (file->f_op->aio_write)
  1267. kiocb->ki_retry = aio_rw_vect_retry;
  1268. break;
  1269. case IOCB_CMD_PREADV:
  1270. ret = -EBADF;
  1271. if (unlikely(!(file->f_mode & FMODE_READ)))
  1272. break;
  1273. ret = security_file_permission(file, MAY_READ);
  1274. if (unlikely(ret))
  1275. break;
  1276. ret = aio_setup_vectored_rw(READ, kiocb);
  1277. if (ret)
  1278. break;
  1279. ret = -EINVAL;
  1280. if (file->f_op->aio_read)
  1281. kiocb->ki_retry = aio_rw_vect_retry;
  1282. break;
  1283. case IOCB_CMD_PWRITEV:
  1284. ret = -EBADF;
  1285. if (unlikely(!(file->f_mode & FMODE_WRITE)))
  1286. break;
  1287. ret = security_file_permission(file, MAY_WRITE);
  1288. if (unlikely(ret))
  1289. break;
  1290. ret = aio_setup_vectored_rw(WRITE, kiocb);
  1291. if (ret)
  1292. break;
  1293. ret = -EINVAL;
  1294. if (file->f_op->aio_write)
  1295. kiocb->ki_retry = aio_rw_vect_retry;
  1296. break;
  1297. case IOCB_CMD_FDSYNC:
  1298. ret = -EINVAL;
  1299. if (file->f_op->aio_fsync)
  1300. kiocb->ki_retry = aio_fdsync;
  1301. break;
  1302. case IOCB_CMD_FSYNC:
  1303. ret = -EINVAL;
  1304. if (file->f_op->aio_fsync)
  1305. kiocb->ki_retry = aio_fsync;
  1306. break;
  1307. default:
  1308. dprintk("EINVAL: io_submit: no operation provided\n");
  1309. ret = -EINVAL;
  1310. }
  1311. if (!kiocb->ki_retry)
  1312. return ret;
  1313. return 0;
  1314. }
  1315. /*
  1316. * aio_wake_function:
  1317. * wait queue callback function for aio notification,
  1318. * Simply triggers a retry of the operation via kick_iocb.
  1319. *
  1320. * This callback is specified in the wait queue entry in
  1321. * a kiocb.
  1322. *
  1323. * Note:
  1324. * This routine is executed with the wait queue lock held.
  1325. * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
  1326. * the ioctx lock inside the wait queue lock. This is safe
  1327. * because this callback isn't used for wait queues which
  1328. * are nested inside ioctx lock (i.e. ctx->wait)
  1329. */
  1330. static int aio_wake_function(wait_queue_t *wait, unsigned mode,
  1331. int sync, void *key)
  1332. {
  1333. struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
  1334. list_del_init(&wait->task_list);
  1335. kick_iocb(iocb);
  1336. return 1;
  1337. }
  1338. int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
  1339. struct iocb *iocb)
  1340. {
  1341. struct kiocb *req;
  1342. struct file *file;
  1343. ssize_t ret;
  1344. /* enforce forwards compatibility on users */
  1345. if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
  1346. pr_debug("EINVAL: io_submit: reserve field set\n");
  1347. return -EINVAL;
  1348. }
  1349. /* prevent overflows */
  1350. if (unlikely(
  1351. (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
  1352. (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
  1353. ((ssize_t)iocb->aio_nbytes < 0)
  1354. )) {
  1355. pr_debug("EINVAL: io_submit: overflow check\n");
  1356. return -EINVAL;
  1357. }
  1358. file = fget(iocb->aio_fildes);
  1359. if (unlikely(!file))
  1360. return -EBADF;
  1361. req = aio_get_req(ctx); /* returns with 2 references to req */
  1362. if (unlikely(!req)) {
  1363. fput(file);
  1364. return -EAGAIN;
  1365. }
  1366. req->ki_filp = file;
  1367. if (iocb->aio_flags & IOCB_FLAG_RESFD) {
  1368. /*
  1369. * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
  1370. * instance of the file* now. The file descriptor must be
  1371. * an eventfd() fd, and will be signaled for each completed
  1372. * event using the eventfd_signal() function.
  1373. */
  1374. req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd);
  1375. if (unlikely(IS_ERR(req->ki_eventfd))) {
  1376. ret = PTR_ERR(req->ki_eventfd);
  1377. goto out_put_req;
  1378. }
  1379. }
  1380. ret = put_user(req->ki_key, &user_iocb->aio_key);
  1381. if (unlikely(ret)) {
  1382. dprintk("EFAULT: aio_key\n");
  1383. goto out_put_req;
  1384. }
  1385. req->ki_obj.user = user_iocb;
  1386. req->ki_user_data = iocb->aio_data;
  1387. req->ki_pos = iocb->aio_offset;
  1388. req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
  1389. req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
  1390. req->ki_opcode = iocb->aio_lio_opcode;
  1391. init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
  1392. INIT_LIST_HEAD(&req->ki_wait.task_list);
  1393. ret = aio_setup_iocb(req);
  1394. if (ret)
  1395. goto out_put_req;
  1396. spin_lock_irq(&ctx->ctx_lock);
  1397. aio_run_iocb(req);
  1398. if (!list_empty(&ctx->run_list)) {
  1399. /* drain the run list */
  1400. while (__aio_run_iocbs(ctx))
  1401. ;
  1402. }
  1403. spin_unlock_irq(&ctx->ctx_lock);
  1404. aio_put_req(req); /* drop extra ref to req */
  1405. return 0;
  1406. out_put_req:
  1407. aio_put_req(req); /* drop extra ref to req */
  1408. aio_put_req(req); /* drop i/o ref to req */
  1409. return ret;
  1410. }
  1411. /* sys_io_submit:
  1412. * Queue the nr iocbs pointed to by iocbpp for processing. Returns
  1413. * the number of iocbs queued. May return -EINVAL if the aio_context
  1414. * specified by ctx_id is invalid, if nr is < 0, if the iocb at
  1415. * *iocbpp[0] is not properly initialized, if the operation specified
  1416. * is invalid for the file descriptor in the iocb. May fail with
  1417. * -EFAULT if any of the data structures point to invalid data. May
  1418. * fail with -EBADF if the file descriptor specified in the first
  1419. * iocb is invalid. May fail with -EAGAIN if insufficient resources
  1420. * are available to queue any iocbs. Will return 0 if nr is 0. Will
  1421. * fail with -ENOSYS if not implemented.
  1422. */
  1423. asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
  1424. struct iocb __user * __user *iocbpp)
  1425. {
  1426. struct kioctx *ctx;
  1427. long ret = 0;
  1428. int i;
  1429. if (unlikely(nr < 0))
  1430. return -EINVAL;
  1431. if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
  1432. return -EFAULT;
  1433. ctx = lookup_ioctx(ctx_id);
  1434. if (unlikely(!ctx)) {
  1435. pr_debug("EINVAL: io_submit: invalid context id\n");
  1436. return -EINVAL;
  1437. }
  1438. /*
  1439. * AKPM: should this return a partial result if some of the IOs were
  1440. * successfully submitted?
  1441. */
  1442. for (i=0; i<nr; i++) {
  1443. struct iocb __user *user_iocb;
  1444. struct iocb tmp;
  1445. if (unlikely(__get_user(user_iocb, iocbpp + i))) {
  1446. ret = -EFAULT;
  1447. break;
  1448. }
  1449. if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
  1450. ret = -EFAULT;
  1451. break;
  1452. }
  1453. ret = io_submit_one(ctx, user_iocb, &tmp);
  1454. if (ret)
  1455. break;
  1456. }
  1457. put_ioctx(ctx);
  1458. return i ? i : ret;
  1459. }
  1460. /* lookup_kiocb
  1461. * Finds a given iocb for cancellation.
  1462. */
  1463. static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
  1464. u32 key)
  1465. {
  1466. struct list_head *pos;
  1467. assert_spin_locked(&ctx->ctx_lock);
  1468. /* TODO: use a hash or array, this sucks. */
  1469. list_for_each(pos, &ctx->active_reqs) {
  1470. struct kiocb *kiocb = list_kiocb(pos);
  1471. if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
  1472. return kiocb;
  1473. }
  1474. return NULL;
  1475. }
  1476. /* sys_io_cancel:
  1477. * Attempts to cancel an iocb previously passed to io_submit. If
  1478. * the operation is successfully cancelled, the resulting event is
  1479. * copied into the memory pointed to by result without being placed
  1480. * into the completion queue and 0 is returned. May fail with
  1481. * -EFAULT if any of the data structures pointed to are invalid.
  1482. * May fail with -EINVAL if aio_context specified by ctx_id is
  1483. * invalid. May fail with -EAGAIN if the iocb specified was not
  1484. * cancelled. Will fail with -ENOSYS if not implemented.
  1485. */
  1486. asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
  1487. struct io_event __user *result)
  1488. {
  1489. int (*cancel)(struct kiocb *iocb, struct io_event *res);
  1490. struct kioctx *ctx;
  1491. struct kiocb *kiocb;
  1492. u32 key;
  1493. int ret;
  1494. ret = get_user(key, &iocb->aio_key);
  1495. if (unlikely(ret))
  1496. return -EFAULT;
  1497. ctx = lookup_ioctx(ctx_id);
  1498. if (unlikely(!ctx))
  1499. return -EINVAL;
  1500. spin_lock_irq(&ctx->ctx_lock);
  1501. ret = -EAGAIN;
  1502. kiocb = lookup_kiocb(ctx, iocb, key);
  1503. if (kiocb && kiocb->ki_cancel) {
  1504. cancel = kiocb->ki_cancel;
  1505. kiocb->ki_users ++;
  1506. kiocbSetCancelled(kiocb);
  1507. } else
  1508. cancel = NULL;
  1509. spin_unlock_irq(&ctx->ctx_lock);
  1510. if (NULL != cancel) {
  1511. struct io_event tmp;
  1512. pr_debug("calling cancel\n");
  1513. memset(&tmp, 0, sizeof(tmp));
  1514. tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
  1515. tmp.data = kiocb->ki_user_data;
  1516. ret = cancel(kiocb, &tmp);
  1517. if (!ret) {
  1518. /* Cancellation succeeded -- copy the result
  1519. * into the user's buffer.
  1520. */
  1521. if (copy_to_user(result, &tmp, sizeof(tmp)))
  1522. ret = -EFAULT;
  1523. }
  1524. } else
  1525. ret = -EINVAL;
  1526. put_ioctx(ctx);
  1527. return ret;
  1528. }
  1529. /* io_getevents:
  1530. * Attempts to read at least min_nr events and up to nr events from
  1531. * the completion queue for the aio_context specified by ctx_id. May
  1532. * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
  1533. * if nr is out of range, if when is out of range. May fail with
  1534. * -EFAULT if any of the memory specified to is invalid. May return
  1535. * 0 or < min_nr if no events are available and the timeout specified
  1536. * by when has elapsed, where when == NULL specifies an infinite
  1537. * timeout. Note that the timeout pointed to by when is relative and
  1538. * will be updated if not NULL and the operation blocks. Will fail
  1539. * with -ENOSYS if not implemented.
  1540. */
  1541. asmlinkage long sys_io_getevents(aio_context_t ctx_id,
  1542. long min_nr,
  1543. long nr,
  1544. struct io_event __user *events,
  1545. struct timespec __user *timeout)
  1546. {
  1547. struct kioctx *ioctx = lookup_ioctx(ctx_id);
  1548. long ret = -EINVAL;
  1549. if (likely(ioctx)) {
  1550. if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
  1551. ret = read_events(ioctx, min_nr, nr, events, timeout);
  1552. put_ioctx(ioctx);
  1553. }
  1554. asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
  1555. return ret;
  1556. }
  1557. __initcall(aio_setup);
  1558. EXPORT_SYMBOL(aio_complete);
  1559. EXPORT_SYMBOL(aio_put_req);
  1560. EXPORT_SYMBOL(wait_on_sync_kiocb);