pxa2xx_spi.c 42 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/spi/spi.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/delay.h>
  29. #include <linux/clk.h>
  30. #include <asm/io.h>
  31. #include <asm/irq.h>
  32. #include <asm/hardware.h>
  33. #include <asm/delay.h>
  34. #include <asm/dma.h>
  35. #include <asm/arch/hardware.h>
  36. #include <asm/arch/pxa-regs.h>
  37. #include <asm/arch/regs-ssp.h>
  38. #include <asm/arch/ssp.h>
  39. #include <asm/arch/pxa2xx_spi.h>
  40. MODULE_AUTHOR("Stephen Street");
  41. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  42. MODULE_LICENSE("GPL");
  43. MODULE_ALIAS("platform:pxa2xx-spi");
  44. #define MAX_BUSES 3
  45. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  46. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  47. #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
  48. /*
  49. * for testing SSCR1 changes that require SSP restart, basically
  50. * everything except the service and interrupt enables, the pxa270 developer
  51. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  52. * list, but the PXA255 dev man says all bits without really meaning the
  53. * service and interrupt enables
  54. */
  55. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  56. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  57. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  58. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  59. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  60. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  61. #define DEFINE_SSP_REG(reg, off) \
  62. static inline u32 read_##reg(void *p) { return __raw_readl(p + (off)); } \
  63. static inline void write_##reg(u32 v, void *p) { __raw_writel(v, p + (off)); }
  64. DEFINE_SSP_REG(SSCR0, 0x00)
  65. DEFINE_SSP_REG(SSCR1, 0x04)
  66. DEFINE_SSP_REG(SSSR, 0x08)
  67. DEFINE_SSP_REG(SSITR, 0x0c)
  68. DEFINE_SSP_REG(SSDR, 0x10)
  69. DEFINE_SSP_REG(SSTO, 0x28)
  70. DEFINE_SSP_REG(SSPSP, 0x2c)
  71. #define START_STATE ((void*)0)
  72. #define RUNNING_STATE ((void*)1)
  73. #define DONE_STATE ((void*)2)
  74. #define ERROR_STATE ((void*)-1)
  75. #define QUEUE_RUNNING 0
  76. #define QUEUE_STOPPED 1
  77. struct driver_data {
  78. /* Driver model hookup */
  79. struct platform_device *pdev;
  80. /* SSP Info */
  81. struct ssp_device *ssp;
  82. /* SPI framework hookup */
  83. enum pxa_ssp_type ssp_type;
  84. struct spi_master *master;
  85. /* PXA hookup */
  86. struct pxa2xx_spi_master *master_info;
  87. /* DMA setup stuff */
  88. int rx_channel;
  89. int tx_channel;
  90. u32 *null_dma_buf;
  91. /* SSP register addresses */
  92. void *ioaddr;
  93. u32 ssdr_physical;
  94. /* SSP masks*/
  95. u32 dma_cr1;
  96. u32 int_cr1;
  97. u32 clear_sr;
  98. u32 mask_sr;
  99. /* Driver message queue */
  100. struct workqueue_struct *workqueue;
  101. struct work_struct pump_messages;
  102. spinlock_t lock;
  103. struct list_head queue;
  104. int busy;
  105. int run;
  106. /* Message Transfer pump */
  107. struct tasklet_struct pump_transfers;
  108. /* Current message transfer state info */
  109. struct spi_message* cur_msg;
  110. struct spi_transfer* cur_transfer;
  111. struct chip_data *cur_chip;
  112. size_t len;
  113. void *tx;
  114. void *tx_end;
  115. void *rx;
  116. void *rx_end;
  117. int dma_mapped;
  118. dma_addr_t rx_dma;
  119. dma_addr_t tx_dma;
  120. size_t rx_map_len;
  121. size_t tx_map_len;
  122. u8 n_bytes;
  123. u32 dma_width;
  124. int cs_change;
  125. int (*write)(struct driver_data *drv_data);
  126. int (*read)(struct driver_data *drv_data);
  127. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  128. void (*cs_control)(u32 command);
  129. };
  130. struct chip_data {
  131. u32 cr0;
  132. u32 cr1;
  133. u32 psp;
  134. u32 timeout;
  135. u8 n_bytes;
  136. u32 dma_width;
  137. u32 dma_burst_size;
  138. u32 threshold;
  139. u32 dma_threshold;
  140. u8 enable_dma;
  141. u8 bits_per_word;
  142. u32 speed_hz;
  143. int (*write)(struct driver_data *drv_data);
  144. int (*read)(struct driver_data *drv_data);
  145. void (*cs_control)(u32 command);
  146. };
  147. static void pump_messages(struct work_struct *work);
  148. static int flush(struct driver_data *drv_data)
  149. {
  150. unsigned long limit = loops_per_jiffy << 1;
  151. void *reg = drv_data->ioaddr;
  152. do {
  153. while (read_SSSR(reg) & SSSR_RNE) {
  154. read_SSDR(reg);
  155. }
  156. } while ((read_SSSR(reg) & SSSR_BSY) && limit--);
  157. write_SSSR(SSSR_ROR, reg);
  158. return limit;
  159. }
  160. static void null_cs_control(u32 command)
  161. {
  162. }
  163. static int null_writer(struct driver_data *drv_data)
  164. {
  165. void *reg = drv_data->ioaddr;
  166. u8 n_bytes = drv_data->n_bytes;
  167. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  168. || (drv_data->tx == drv_data->tx_end))
  169. return 0;
  170. write_SSDR(0, reg);
  171. drv_data->tx += n_bytes;
  172. return 1;
  173. }
  174. static int null_reader(struct driver_data *drv_data)
  175. {
  176. void *reg = drv_data->ioaddr;
  177. u8 n_bytes = drv_data->n_bytes;
  178. while ((read_SSSR(reg) & SSSR_RNE)
  179. && (drv_data->rx < drv_data->rx_end)) {
  180. read_SSDR(reg);
  181. drv_data->rx += n_bytes;
  182. }
  183. return drv_data->rx == drv_data->rx_end;
  184. }
  185. static int u8_writer(struct driver_data *drv_data)
  186. {
  187. void *reg = drv_data->ioaddr;
  188. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  189. || (drv_data->tx == drv_data->tx_end))
  190. return 0;
  191. write_SSDR(*(u8 *)(drv_data->tx), reg);
  192. ++drv_data->tx;
  193. return 1;
  194. }
  195. static int u8_reader(struct driver_data *drv_data)
  196. {
  197. void *reg = drv_data->ioaddr;
  198. while ((read_SSSR(reg) & SSSR_RNE)
  199. && (drv_data->rx < drv_data->rx_end)) {
  200. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  201. ++drv_data->rx;
  202. }
  203. return drv_data->rx == drv_data->rx_end;
  204. }
  205. static int u16_writer(struct driver_data *drv_data)
  206. {
  207. void *reg = drv_data->ioaddr;
  208. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  209. || (drv_data->tx == drv_data->tx_end))
  210. return 0;
  211. write_SSDR(*(u16 *)(drv_data->tx), reg);
  212. drv_data->tx += 2;
  213. return 1;
  214. }
  215. static int u16_reader(struct driver_data *drv_data)
  216. {
  217. void *reg = drv_data->ioaddr;
  218. while ((read_SSSR(reg) & SSSR_RNE)
  219. && (drv_data->rx < drv_data->rx_end)) {
  220. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  221. drv_data->rx += 2;
  222. }
  223. return drv_data->rx == drv_data->rx_end;
  224. }
  225. static int u32_writer(struct driver_data *drv_data)
  226. {
  227. void *reg = drv_data->ioaddr;
  228. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  229. || (drv_data->tx == drv_data->tx_end))
  230. return 0;
  231. write_SSDR(*(u32 *)(drv_data->tx), reg);
  232. drv_data->tx += 4;
  233. return 1;
  234. }
  235. static int u32_reader(struct driver_data *drv_data)
  236. {
  237. void *reg = drv_data->ioaddr;
  238. while ((read_SSSR(reg) & SSSR_RNE)
  239. && (drv_data->rx < drv_data->rx_end)) {
  240. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  241. drv_data->rx += 4;
  242. }
  243. return drv_data->rx == drv_data->rx_end;
  244. }
  245. static void *next_transfer(struct driver_data *drv_data)
  246. {
  247. struct spi_message *msg = drv_data->cur_msg;
  248. struct spi_transfer *trans = drv_data->cur_transfer;
  249. /* Move to next transfer */
  250. if (trans->transfer_list.next != &msg->transfers) {
  251. drv_data->cur_transfer =
  252. list_entry(trans->transfer_list.next,
  253. struct spi_transfer,
  254. transfer_list);
  255. return RUNNING_STATE;
  256. } else
  257. return DONE_STATE;
  258. }
  259. static int map_dma_buffers(struct driver_data *drv_data)
  260. {
  261. struct spi_message *msg = drv_data->cur_msg;
  262. struct device *dev = &msg->spi->dev;
  263. if (!drv_data->cur_chip->enable_dma)
  264. return 0;
  265. if (msg->is_dma_mapped)
  266. return drv_data->rx_dma && drv_data->tx_dma;
  267. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  268. return 0;
  269. /* Modify setup if rx buffer is null */
  270. if (drv_data->rx == NULL) {
  271. *drv_data->null_dma_buf = 0;
  272. drv_data->rx = drv_data->null_dma_buf;
  273. drv_data->rx_map_len = 4;
  274. } else
  275. drv_data->rx_map_len = drv_data->len;
  276. /* Modify setup if tx buffer is null */
  277. if (drv_data->tx == NULL) {
  278. *drv_data->null_dma_buf = 0;
  279. drv_data->tx = drv_data->null_dma_buf;
  280. drv_data->tx_map_len = 4;
  281. } else
  282. drv_data->tx_map_len = drv_data->len;
  283. /* Stream map the rx buffer */
  284. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  285. drv_data->rx_map_len,
  286. DMA_FROM_DEVICE);
  287. if (dma_mapping_error(drv_data->rx_dma))
  288. return 0;
  289. /* Stream map the tx buffer */
  290. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  291. drv_data->tx_map_len,
  292. DMA_TO_DEVICE);
  293. if (dma_mapping_error(drv_data->tx_dma)) {
  294. dma_unmap_single(dev, drv_data->rx_dma,
  295. drv_data->rx_map_len, DMA_FROM_DEVICE);
  296. return 0;
  297. }
  298. return 1;
  299. }
  300. static void unmap_dma_buffers(struct driver_data *drv_data)
  301. {
  302. struct device *dev;
  303. if (!drv_data->dma_mapped)
  304. return;
  305. if (!drv_data->cur_msg->is_dma_mapped) {
  306. dev = &drv_data->cur_msg->spi->dev;
  307. dma_unmap_single(dev, drv_data->rx_dma,
  308. drv_data->rx_map_len, DMA_FROM_DEVICE);
  309. dma_unmap_single(dev, drv_data->tx_dma,
  310. drv_data->tx_map_len, DMA_TO_DEVICE);
  311. }
  312. drv_data->dma_mapped = 0;
  313. }
  314. /* caller already set message->status; dma and pio irqs are blocked */
  315. static void giveback(struct driver_data *drv_data)
  316. {
  317. struct spi_transfer* last_transfer;
  318. unsigned long flags;
  319. struct spi_message *msg;
  320. spin_lock_irqsave(&drv_data->lock, flags);
  321. msg = drv_data->cur_msg;
  322. drv_data->cur_msg = NULL;
  323. drv_data->cur_transfer = NULL;
  324. drv_data->cur_chip = NULL;
  325. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  326. spin_unlock_irqrestore(&drv_data->lock, flags);
  327. last_transfer = list_entry(msg->transfers.prev,
  328. struct spi_transfer,
  329. transfer_list);
  330. if (!last_transfer->cs_change)
  331. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  332. msg->state = NULL;
  333. if (msg->complete)
  334. msg->complete(msg->context);
  335. }
  336. static int wait_ssp_rx_stall(void *ioaddr)
  337. {
  338. unsigned long limit = loops_per_jiffy << 1;
  339. while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
  340. cpu_relax();
  341. return limit;
  342. }
  343. static int wait_dma_channel_stop(int channel)
  344. {
  345. unsigned long limit = loops_per_jiffy << 1;
  346. while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
  347. cpu_relax();
  348. return limit;
  349. }
  350. void dma_error_stop(struct driver_data *drv_data, const char *msg)
  351. {
  352. void *reg = drv_data->ioaddr;
  353. /* Stop and reset */
  354. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  355. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  356. write_SSSR(drv_data->clear_sr, reg);
  357. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  358. if (drv_data->ssp_type != PXA25x_SSP)
  359. write_SSTO(0, reg);
  360. flush(drv_data);
  361. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  362. unmap_dma_buffers(drv_data);
  363. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  364. drv_data->cur_msg->state = ERROR_STATE;
  365. tasklet_schedule(&drv_data->pump_transfers);
  366. }
  367. static void dma_transfer_complete(struct driver_data *drv_data)
  368. {
  369. void *reg = drv_data->ioaddr;
  370. struct spi_message *msg = drv_data->cur_msg;
  371. /* Clear and disable interrupts on SSP and DMA channels*/
  372. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  373. write_SSSR(drv_data->clear_sr, reg);
  374. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  375. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  376. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  377. dev_err(&drv_data->pdev->dev,
  378. "dma_handler: dma rx channel stop failed\n");
  379. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  380. dev_err(&drv_data->pdev->dev,
  381. "dma_transfer: ssp rx stall failed\n");
  382. unmap_dma_buffers(drv_data);
  383. /* update the buffer pointer for the amount completed in dma */
  384. drv_data->rx += drv_data->len -
  385. (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
  386. /* read trailing data from fifo, it does not matter how many
  387. * bytes are in the fifo just read until buffer is full
  388. * or fifo is empty, which ever occurs first */
  389. drv_data->read(drv_data);
  390. /* return count of what was actually read */
  391. msg->actual_length += drv_data->len -
  392. (drv_data->rx_end - drv_data->rx);
  393. /* Release chip select if requested, transfer delays are
  394. * handled in pump_transfers */
  395. if (drv_data->cs_change)
  396. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  397. /* Move to next transfer */
  398. msg->state = next_transfer(drv_data);
  399. /* Schedule transfer tasklet */
  400. tasklet_schedule(&drv_data->pump_transfers);
  401. }
  402. static void dma_handler(int channel, void *data)
  403. {
  404. struct driver_data *drv_data = data;
  405. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  406. if (irq_status & DCSR_BUSERR) {
  407. if (channel == drv_data->tx_channel)
  408. dma_error_stop(drv_data,
  409. "dma_handler: "
  410. "bad bus address on tx channel");
  411. else
  412. dma_error_stop(drv_data,
  413. "dma_handler: "
  414. "bad bus address on rx channel");
  415. return;
  416. }
  417. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  418. if ((channel == drv_data->tx_channel)
  419. && (irq_status & DCSR_ENDINTR)
  420. && (drv_data->ssp_type == PXA25x_SSP)) {
  421. /* Wait for rx to stall */
  422. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  423. dev_err(&drv_data->pdev->dev,
  424. "dma_handler: ssp rx stall failed\n");
  425. /* finish this transfer, start the next */
  426. dma_transfer_complete(drv_data);
  427. }
  428. }
  429. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  430. {
  431. u32 irq_status;
  432. void *reg = drv_data->ioaddr;
  433. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  434. if (irq_status & SSSR_ROR) {
  435. dma_error_stop(drv_data, "dma_transfer: fifo overrun");
  436. return IRQ_HANDLED;
  437. }
  438. /* Check for false positive timeout */
  439. if ((irq_status & SSSR_TINT)
  440. && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
  441. write_SSSR(SSSR_TINT, reg);
  442. return IRQ_HANDLED;
  443. }
  444. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  445. /* Clear and disable timeout interrupt, do the rest in
  446. * dma_transfer_complete */
  447. if (drv_data->ssp_type != PXA25x_SSP)
  448. write_SSTO(0, reg);
  449. /* finish this transfer, start the next */
  450. dma_transfer_complete(drv_data);
  451. return IRQ_HANDLED;
  452. }
  453. /* Opps problem detected */
  454. return IRQ_NONE;
  455. }
  456. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  457. {
  458. void *reg = drv_data->ioaddr;
  459. /* Stop and reset SSP */
  460. write_SSSR(drv_data->clear_sr, reg);
  461. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  462. if (drv_data->ssp_type != PXA25x_SSP)
  463. write_SSTO(0, reg);
  464. flush(drv_data);
  465. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  466. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  467. drv_data->cur_msg->state = ERROR_STATE;
  468. tasklet_schedule(&drv_data->pump_transfers);
  469. }
  470. static void int_transfer_complete(struct driver_data *drv_data)
  471. {
  472. void *reg = drv_data->ioaddr;
  473. /* Stop SSP */
  474. write_SSSR(drv_data->clear_sr, reg);
  475. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  476. if (drv_data->ssp_type != PXA25x_SSP)
  477. write_SSTO(0, reg);
  478. /* Update total byte transfered return count actual bytes read */
  479. drv_data->cur_msg->actual_length += drv_data->len -
  480. (drv_data->rx_end - drv_data->rx);
  481. /* Release chip select if requested, transfer delays are
  482. * handled in pump_transfers */
  483. if (drv_data->cs_change)
  484. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  485. /* Move to next transfer */
  486. drv_data->cur_msg->state = next_transfer(drv_data);
  487. /* Schedule transfer tasklet */
  488. tasklet_schedule(&drv_data->pump_transfers);
  489. }
  490. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  491. {
  492. void *reg = drv_data->ioaddr;
  493. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  494. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  495. u32 irq_status = read_SSSR(reg) & irq_mask;
  496. if (irq_status & SSSR_ROR) {
  497. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  498. return IRQ_HANDLED;
  499. }
  500. if (irq_status & SSSR_TINT) {
  501. write_SSSR(SSSR_TINT, reg);
  502. if (drv_data->read(drv_data)) {
  503. int_transfer_complete(drv_data);
  504. return IRQ_HANDLED;
  505. }
  506. }
  507. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  508. do {
  509. if (drv_data->read(drv_data)) {
  510. int_transfer_complete(drv_data);
  511. return IRQ_HANDLED;
  512. }
  513. } while (drv_data->write(drv_data));
  514. if (drv_data->read(drv_data)) {
  515. int_transfer_complete(drv_data);
  516. return IRQ_HANDLED;
  517. }
  518. if (drv_data->tx == drv_data->tx_end) {
  519. write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
  520. /* PXA25x_SSP has no timeout, read trailing bytes */
  521. if (drv_data->ssp_type == PXA25x_SSP) {
  522. if (!wait_ssp_rx_stall(reg))
  523. {
  524. int_error_stop(drv_data, "interrupt_transfer: "
  525. "rx stall failed");
  526. return IRQ_HANDLED;
  527. }
  528. if (!drv_data->read(drv_data))
  529. {
  530. int_error_stop(drv_data,
  531. "interrupt_transfer: "
  532. "trailing byte read failed");
  533. return IRQ_HANDLED;
  534. }
  535. int_transfer_complete(drv_data);
  536. }
  537. }
  538. /* We did something */
  539. return IRQ_HANDLED;
  540. }
  541. static irqreturn_t ssp_int(int irq, void *dev_id)
  542. {
  543. struct driver_data *drv_data = dev_id;
  544. void *reg = drv_data->ioaddr;
  545. if (!drv_data->cur_msg) {
  546. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  547. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  548. if (drv_data->ssp_type != PXA25x_SSP)
  549. write_SSTO(0, reg);
  550. write_SSSR(drv_data->clear_sr, reg);
  551. dev_err(&drv_data->pdev->dev, "bad message state "
  552. "in interrupt handler\n");
  553. /* Never fail */
  554. return IRQ_HANDLED;
  555. }
  556. return drv_data->transfer_handler(drv_data);
  557. }
  558. int set_dma_burst_and_threshold(struct chip_data *chip, struct spi_device *spi,
  559. u8 bits_per_word, u32 *burst_code,
  560. u32 *threshold)
  561. {
  562. struct pxa2xx_spi_chip *chip_info =
  563. (struct pxa2xx_spi_chip *)spi->controller_data;
  564. int bytes_per_word;
  565. int burst_bytes;
  566. int thresh_words;
  567. int req_burst_size;
  568. int retval = 0;
  569. /* Set the threshold (in registers) to equal the same amount of data
  570. * as represented by burst size (in bytes). The computation below
  571. * is (burst_size rounded up to nearest 8 byte, word or long word)
  572. * divided by (bytes/register); the tx threshold is the inverse of
  573. * the rx, so that there will always be enough data in the rx fifo
  574. * to satisfy a burst, and there will always be enough space in the
  575. * tx fifo to accept a burst (a tx burst will overwrite the fifo if
  576. * there is not enough space), there must always remain enough empty
  577. * space in the rx fifo for any data loaded to the tx fifo.
  578. * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
  579. * will be 8, or half the fifo;
  580. * The threshold can only be set to 2, 4 or 8, but not 16, because
  581. * to burst 16 to the tx fifo, the fifo would have to be empty;
  582. * however, the minimum fifo trigger level is 1, and the tx will
  583. * request service when the fifo is at this level, with only 15 spaces.
  584. */
  585. /* find bytes/word */
  586. if (bits_per_word <= 8)
  587. bytes_per_word = 1;
  588. else if (bits_per_word <= 16)
  589. bytes_per_word = 2;
  590. else
  591. bytes_per_word = 4;
  592. /* use struct pxa2xx_spi_chip->dma_burst_size if available */
  593. if (chip_info)
  594. req_burst_size = chip_info->dma_burst_size;
  595. else {
  596. switch (chip->dma_burst_size) {
  597. default:
  598. /* if the default burst size is not set,
  599. * do it now */
  600. chip->dma_burst_size = DCMD_BURST8;
  601. case DCMD_BURST8:
  602. req_burst_size = 8;
  603. break;
  604. case DCMD_BURST16:
  605. req_burst_size = 16;
  606. break;
  607. case DCMD_BURST32:
  608. req_burst_size = 32;
  609. break;
  610. }
  611. }
  612. if (req_burst_size <= 8) {
  613. *burst_code = DCMD_BURST8;
  614. burst_bytes = 8;
  615. } else if (req_burst_size <= 16) {
  616. if (bytes_per_word == 1) {
  617. /* don't burst more than 1/2 the fifo */
  618. *burst_code = DCMD_BURST8;
  619. burst_bytes = 8;
  620. retval = 1;
  621. } else {
  622. *burst_code = DCMD_BURST16;
  623. burst_bytes = 16;
  624. }
  625. } else {
  626. if (bytes_per_word == 1) {
  627. /* don't burst more than 1/2 the fifo */
  628. *burst_code = DCMD_BURST8;
  629. burst_bytes = 8;
  630. retval = 1;
  631. } else if (bytes_per_word == 2) {
  632. /* don't burst more than 1/2 the fifo */
  633. *burst_code = DCMD_BURST16;
  634. burst_bytes = 16;
  635. retval = 1;
  636. } else {
  637. *burst_code = DCMD_BURST32;
  638. burst_bytes = 32;
  639. }
  640. }
  641. thresh_words = burst_bytes / bytes_per_word;
  642. /* thresh_words will be between 2 and 8 */
  643. *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
  644. | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
  645. return retval;
  646. }
  647. static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
  648. {
  649. unsigned long ssp_clk = clk_get_rate(ssp->clk);
  650. if (ssp->type == PXA25x_SSP)
  651. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  652. else
  653. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  654. }
  655. static void pump_transfers(unsigned long data)
  656. {
  657. struct driver_data *drv_data = (struct driver_data *)data;
  658. struct spi_message *message = NULL;
  659. struct spi_transfer *transfer = NULL;
  660. struct spi_transfer *previous = NULL;
  661. struct chip_data *chip = NULL;
  662. struct ssp_device *ssp = drv_data->ssp;
  663. void *reg = drv_data->ioaddr;
  664. u32 clk_div = 0;
  665. u8 bits = 0;
  666. u32 speed = 0;
  667. u32 cr0;
  668. u32 cr1;
  669. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  670. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  671. /* Get current state information */
  672. message = drv_data->cur_msg;
  673. transfer = drv_data->cur_transfer;
  674. chip = drv_data->cur_chip;
  675. /* Handle for abort */
  676. if (message->state == ERROR_STATE) {
  677. message->status = -EIO;
  678. giveback(drv_data);
  679. return;
  680. }
  681. /* Handle end of message */
  682. if (message->state == DONE_STATE) {
  683. message->status = 0;
  684. giveback(drv_data);
  685. return;
  686. }
  687. /* Delay if requested at end of transfer*/
  688. if (message->state == RUNNING_STATE) {
  689. previous = list_entry(transfer->transfer_list.prev,
  690. struct spi_transfer,
  691. transfer_list);
  692. if (previous->delay_usecs)
  693. udelay(previous->delay_usecs);
  694. }
  695. /* Check transfer length */
  696. if (transfer->len > 8191)
  697. {
  698. dev_warn(&drv_data->pdev->dev, "pump_transfers: transfer "
  699. "length greater than 8191\n");
  700. message->status = -EINVAL;
  701. giveback(drv_data);
  702. return;
  703. }
  704. /* Setup the transfer state based on the type of transfer */
  705. if (flush(drv_data) == 0) {
  706. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  707. message->status = -EIO;
  708. giveback(drv_data);
  709. return;
  710. }
  711. drv_data->n_bytes = chip->n_bytes;
  712. drv_data->dma_width = chip->dma_width;
  713. drv_data->cs_control = chip->cs_control;
  714. drv_data->tx = (void *)transfer->tx_buf;
  715. drv_data->tx_end = drv_data->tx + transfer->len;
  716. drv_data->rx = transfer->rx_buf;
  717. drv_data->rx_end = drv_data->rx + transfer->len;
  718. drv_data->rx_dma = transfer->rx_dma;
  719. drv_data->tx_dma = transfer->tx_dma;
  720. drv_data->len = transfer->len & DCMD_LENGTH;
  721. drv_data->write = drv_data->tx ? chip->write : null_writer;
  722. drv_data->read = drv_data->rx ? chip->read : null_reader;
  723. drv_data->cs_change = transfer->cs_change;
  724. /* Change speed and bit per word on a per transfer */
  725. cr0 = chip->cr0;
  726. if (transfer->speed_hz || transfer->bits_per_word) {
  727. bits = chip->bits_per_word;
  728. speed = chip->speed_hz;
  729. if (transfer->speed_hz)
  730. speed = transfer->speed_hz;
  731. if (transfer->bits_per_word)
  732. bits = transfer->bits_per_word;
  733. clk_div = ssp_get_clk_div(ssp, speed);
  734. if (bits <= 8) {
  735. drv_data->n_bytes = 1;
  736. drv_data->dma_width = DCMD_WIDTH1;
  737. drv_data->read = drv_data->read != null_reader ?
  738. u8_reader : null_reader;
  739. drv_data->write = drv_data->write != null_writer ?
  740. u8_writer : null_writer;
  741. } else if (bits <= 16) {
  742. drv_data->n_bytes = 2;
  743. drv_data->dma_width = DCMD_WIDTH2;
  744. drv_data->read = drv_data->read != null_reader ?
  745. u16_reader : null_reader;
  746. drv_data->write = drv_data->write != null_writer ?
  747. u16_writer : null_writer;
  748. } else if (bits <= 32) {
  749. drv_data->n_bytes = 4;
  750. drv_data->dma_width = DCMD_WIDTH4;
  751. drv_data->read = drv_data->read != null_reader ?
  752. u32_reader : null_reader;
  753. drv_data->write = drv_data->write != null_writer ?
  754. u32_writer : null_writer;
  755. }
  756. /* if bits/word is changed in dma mode, then must check the
  757. * thresholds and burst also */
  758. if (chip->enable_dma) {
  759. if (set_dma_burst_and_threshold(chip, message->spi,
  760. bits, &dma_burst,
  761. &dma_thresh))
  762. if (printk_ratelimit())
  763. dev_warn(&message->spi->dev,
  764. "pump_transfer: "
  765. "DMA burst size reduced to "
  766. "match bits_per_word\n");
  767. }
  768. cr0 = clk_div
  769. | SSCR0_Motorola
  770. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  771. | SSCR0_SSE
  772. | (bits > 16 ? SSCR0_EDSS : 0);
  773. }
  774. message->state = RUNNING_STATE;
  775. /* Try to map dma buffer and do a dma transfer if successful */
  776. if ((drv_data->dma_mapped = map_dma_buffers(drv_data))) {
  777. /* Ensure we have the correct interrupt handler */
  778. drv_data->transfer_handler = dma_transfer;
  779. /* Setup rx DMA Channel */
  780. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  781. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  782. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  783. if (drv_data->rx == drv_data->null_dma_buf)
  784. /* No target address increment */
  785. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  786. | drv_data->dma_width
  787. | dma_burst
  788. | drv_data->len;
  789. else
  790. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  791. | DCMD_FLOWSRC
  792. | drv_data->dma_width
  793. | dma_burst
  794. | drv_data->len;
  795. /* Setup tx DMA Channel */
  796. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  797. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  798. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  799. if (drv_data->tx == drv_data->null_dma_buf)
  800. /* No source address increment */
  801. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  802. | drv_data->dma_width
  803. | dma_burst
  804. | drv_data->len;
  805. else
  806. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  807. | DCMD_FLOWTRG
  808. | drv_data->dma_width
  809. | dma_burst
  810. | drv_data->len;
  811. /* Enable dma end irqs on SSP to detect end of transfer */
  812. if (drv_data->ssp_type == PXA25x_SSP)
  813. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  814. /* Clear status and start DMA engine */
  815. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  816. write_SSSR(drv_data->clear_sr, reg);
  817. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  818. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  819. } else {
  820. /* Ensure we have the correct interrupt handler */
  821. drv_data->transfer_handler = interrupt_transfer;
  822. /* Clear status */
  823. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  824. write_SSSR(drv_data->clear_sr, reg);
  825. }
  826. /* see if we need to reload the config registers */
  827. if ((read_SSCR0(reg) != cr0)
  828. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  829. (cr1 & SSCR1_CHANGE_MASK)) {
  830. /* stop the SSP, and update the other bits */
  831. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  832. if (drv_data->ssp_type != PXA25x_SSP)
  833. write_SSTO(chip->timeout, reg);
  834. /* first set CR1 without interrupt and service enables */
  835. write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
  836. /* restart the SSP */
  837. write_SSCR0(cr0, reg);
  838. } else {
  839. if (drv_data->ssp_type != PXA25x_SSP)
  840. write_SSTO(chip->timeout, reg);
  841. }
  842. /* FIXME, need to handle cs polarity,
  843. * this driver uses struct pxa2xx_spi_chip.cs_control to
  844. * specify a CS handling function, and it ignores most
  845. * struct spi_device.mode[s], including SPI_CS_HIGH */
  846. drv_data->cs_control(PXA2XX_CS_ASSERT);
  847. /* after chip select, release the data by enabling service
  848. * requests and interrupts, without changing any mode bits */
  849. write_SSCR1(cr1, reg);
  850. }
  851. static void pump_messages(struct work_struct *work)
  852. {
  853. struct driver_data *drv_data =
  854. container_of(work, struct driver_data, pump_messages);
  855. unsigned long flags;
  856. /* Lock queue and check for queue work */
  857. spin_lock_irqsave(&drv_data->lock, flags);
  858. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  859. drv_data->busy = 0;
  860. spin_unlock_irqrestore(&drv_data->lock, flags);
  861. return;
  862. }
  863. /* Make sure we are not already running a message */
  864. if (drv_data->cur_msg) {
  865. spin_unlock_irqrestore(&drv_data->lock, flags);
  866. return;
  867. }
  868. /* Extract head of queue */
  869. drv_data->cur_msg = list_entry(drv_data->queue.next,
  870. struct spi_message, queue);
  871. list_del_init(&drv_data->cur_msg->queue);
  872. /* Initial message state*/
  873. drv_data->cur_msg->state = START_STATE;
  874. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  875. struct spi_transfer,
  876. transfer_list);
  877. /* prepare to setup the SSP, in pump_transfers, using the per
  878. * chip configuration */
  879. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  880. /* Mark as busy and launch transfers */
  881. tasklet_schedule(&drv_data->pump_transfers);
  882. drv_data->busy = 1;
  883. spin_unlock_irqrestore(&drv_data->lock, flags);
  884. }
  885. static int transfer(struct spi_device *spi, struct spi_message *msg)
  886. {
  887. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  888. unsigned long flags;
  889. spin_lock_irqsave(&drv_data->lock, flags);
  890. if (drv_data->run == QUEUE_STOPPED) {
  891. spin_unlock_irqrestore(&drv_data->lock, flags);
  892. return -ESHUTDOWN;
  893. }
  894. msg->actual_length = 0;
  895. msg->status = -EINPROGRESS;
  896. msg->state = START_STATE;
  897. list_add_tail(&msg->queue, &drv_data->queue);
  898. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  899. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  900. spin_unlock_irqrestore(&drv_data->lock, flags);
  901. return 0;
  902. }
  903. /* the spi->mode bits understood by this driver: */
  904. #define MODEBITS (SPI_CPOL | SPI_CPHA)
  905. static int setup(struct spi_device *spi)
  906. {
  907. struct pxa2xx_spi_chip *chip_info = NULL;
  908. struct chip_data *chip;
  909. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  910. struct ssp_device *ssp = drv_data->ssp;
  911. unsigned int clk_div;
  912. if (!spi->bits_per_word)
  913. spi->bits_per_word = 8;
  914. if (drv_data->ssp_type != PXA25x_SSP
  915. && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
  916. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  917. "b/w not 4-32 for type non-PXA25x_SSP\n",
  918. drv_data->ssp_type, spi->bits_per_word);
  919. return -EINVAL;
  920. }
  921. else if (drv_data->ssp_type == PXA25x_SSP
  922. && (spi->bits_per_word < 4
  923. || spi->bits_per_word > 16)) {
  924. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  925. "b/w not 4-16 for type PXA25x_SSP\n",
  926. drv_data->ssp_type, spi->bits_per_word);
  927. return -EINVAL;
  928. }
  929. if (spi->mode & ~MODEBITS) {
  930. dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
  931. spi->mode & ~MODEBITS);
  932. return -EINVAL;
  933. }
  934. /* Only alloc on first setup */
  935. chip = spi_get_ctldata(spi);
  936. if (!chip) {
  937. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  938. if (!chip) {
  939. dev_err(&spi->dev,
  940. "failed setup: can't allocate chip data\n");
  941. return -ENOMEM;
  942. }
  943. chip->cs_control = null_cs_control;
  944. chip->enable_dma = 0;
  945. chip->timeout = 1000;
  946. chip->threshold = SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
  947. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  948. DCMD_BURST8 : 0;
  949. }
  950. /* protocol drivers may change the chip settings, so...
  951. * if chip_info exists, use it */
  952. chip_info = spi->controller_data;
  953. /* chip_info isn't always needed */
  954. chip->cr1 = 0;
  955. if (chip_info) {
  956. if (chip_info->cs_control)
  957. chip->cs_control = chip_info->cs_control;
  958. chip->timeout = chip_info->timeout;
  959. chip->threshold = (SSCR1_RxTresh(chip_info->rx_threshold) &
  960. SSCR1_RFT) |
  961. (SSCR1_TxTresh(chip_info->tx_threshold) &
  962. SSCR1_TFT);
  963. chip->enable_dma = chip_info->dma_burst_size != 0
  964. && drv_data->master_info->enable_dma;
  965. chip->dma_threshold = 0;
  966. if (chip_info->enable_loopback)
  967. chip->cr1 = SSCR1_LBM;
  968. }
  969. /* set dma burst and threshold outside of chip_info path so that if
  970. * chip_info goes away after setting chip->enable_dma, the
  971. * burst and threshold can still respond to changes in bits_per_word */
  972. if (chip->enable_dma) {
  973. /* set up legal burst and threshold for dma */
  974. if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
  975. &chip->dma_burst_size,
  976. &chip->dma_threshold)) {
  977. dev_warn(&spi->dev, "in setup: DMA burst size reduced "
  978. "to match bits_per_word\n");
  979. }
  980. }
  981. clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
  982. chip->speed_hz = spi->max_speed_hz;
  983. chip->cr0 = clk_div
  984. | SSCR0_Motorola
  985. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  986. spi->bits_per_word - 16 : spi->bits_per_word)
  987. | SSCR0_SSE
  988. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  989. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  990. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  991. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  992. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  993. if (drv_data->ssp_type != PXA25x_SSP)
  994. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d\n",
  995. spi->bits_per_word,
  996. clk_get_rate(ssp->clk)
  997. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  998. spi->mode & 0x3);
  999. else
  1000. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d\n",
  1001. spi->bits_per_word,
  1002. clk_get_rate(ssp->clk)
  1003. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1004. spi->mode & 0x3);
  1005. if (spi->bits_per_word <= 8) {
  1006. chip->n_bytes = 1;
  1007. chip->dma_width = DCMD_WIDTH1;
  1008. chip->read = u8_reader;
  1009. chip->write = u8_writer;
  1010. } else if (spi->bits_per_word <= 16) {
  1011. chip->n_bytes = 2;
  1012. chip->dma_width = DCMD_WIDTH2;
  1013. chip->read = u16_reader;
  1014. chip->write = u16_writer;
  1015. } else if (spi->bits_per_word <= 32) {
  1016. chip->cr0 |= SSCR0_EDSS;
  1017. chip->n_bytes = 4;
  1018. chip->dma_width = DCMD_WIDTH4;
  1019. chip->read = u32_reader;
  1020. chip->write = u32_writer;
  1021. } else {
  1022. dev_err(&spi->dev, "invalid wordsize\n");
  1023. return -ENODEV;
  1024. }
  1025. chip->bits_per_word = spi->bits_per_word;
  1026. spi_set_ctldata(spi, chip);
  1027. return 0;
  1028. }
  1029. static void cleanup(struct spi_device *spi)
  1030. {
  1031. struct chip_data *chip = spi_get_ctldata(spi);
  1032. kfree(chip);
  1033. }
  1034. static int __init init_queue(struct driver_data *drv_data)
  1035. {
  1036. INIT_LIST_HEAD(&drv_data->queue);
  1037. spin_lock_init(&drv_data->lock);
  1038. drv_data->run = QUEUE_STOPPED;
  1039. drv_data->busy = 0;
  1040. tasklet_init(&drv_data->pump_transfers,
  1041. pump_transfers, (unsigned long)drv_data);
  1042. INIT_WORK(&drv_data->pump_messages, pump_messages);
  1043. drv_data->workqueue = create_singlethread_workqueue(
  1044. drv_data->master->dev.parent->bus_id);
  1045. if (drv_data->workqueue == NULL)
  1046. return -EBUSY;
  1047. return 0;
  1048. }
  1049. static int start_queue(struct driver_data *drv_data)
  1050. {
  1051. unsigned long flags;
  1052. spin_lock_irqsave(&drv_data->lock, flags);
  1053. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  1054. spin_unlock_irqrestore(&drv_data->lock, flags);
  1055. return -EBUSY;
  1056. }
  1057. drv_data->run = QUEUE_RUNNING;
  1058. drv_data->cur_msg = NULL;
  1059. drv_data->cur_transfer = NULL;
  1060. drv_data->cur_chip = NULL;
  1061. spin_unlock_irqrestore(&drv_data->lock, flags);
  1062. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1063. return 0;
  1064. }
  1065. static int stop_queue(struct driver_data *drv_data)
  1066. {
  1067. unsigned long flags;
  1068. unsigned limit = 500;
  1069. int status = 0;
  1070. spin_lock_irqsave(&drv_data->lock, flags);
  1071. /* This is a bit lame, but is optimized for the common execution path.
  1072. * A wait_queue on the drv_data->busy could be used, but then the common
  1073. * execution path (pump_messages) would be required to call wake_up or
  1074. * friends on every SPI message. Do this instead */
  1075. drv_data->run = QUEUE_STOPPED;
  1076. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1077. spin_unlock_irqrestore(&drv_data->lock, flags);
  1078. msleep(10);
  1079. spin_lock_irqsave(&drv_data->lock, flags);
  1080. }
  1081. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1082. status = -EBUSY;
  1083. spin_unlock_irqrestore(&drv_data->lock, flags);
  1084. return status;
  1085. }
  1086. static int destroy_queue(struct driver_data *drv_data)
  1087. {
  1088. int status;
  1089. status = stop_queue(drv_data);
  1090. /* we are unloading the module or failing to load (only two calls
  1091. * to this routine), and neither call can handle a return value.
  1092. * However, destroy_workqueue calls flush_workqueue, and that will
  1093. * block until all work is done. If the reason that stop_queue
  1094. * timed out is that the work will never finish, then it does no
  1095. * good to call destroy_workqueue, so return anyway. */
  1096. if (status != 0)
  1097. return status;
  1098. destroy_workqueue(drv_data->workqueue);
  1099. return 0;
  1100. }
  1101. static int __init pxa2xx_spi_probe(struct platform_device *pdev)
  1102. {
  1103. struct device *dev = &pdev->dev;
  1104. struct pxa2xx_spi_master *platform_info;
  1105. struct spi_master *master;
  1106. struct driver_data *drv_data = 0;
  1107. struct ssp_device *ssp;
  1108. int status = 0;
  1109. platform_info = dev->platform_data;
  1110. ssp = ssp_request(pdev->id, pdev->name);
  1111. if (ssp == NULL) {
  1112. dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
  1113. return -ENODEV;
  1114. }
  1115. /* Allocate master with space for drv_data and null dma buffer */
  1116. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1117. if (!master) {
  1118. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1119. ssp_free(ssp);
  1120. return -ENOMEM;
  1121. }
  1122. drv_data = spi_master_get_devdata(master);
  1123. drv_data->master = master;
  1124. drv_data->master_info = platform_info;
  1125. drv_data->pdev = pdev;
  1126. drv_data->ssp = ssp;
  1127. master->bus_num = pdev->id;
  1128. master->num_chipselect = platform_info->num_chipselect;
  1129. master->cleanup = cleanup;
  1130. master->setup = setup;
  1131. master->transfer = transfer;
  1132. drv_data->ssp_type = ssp->type;
  1133. drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
  1134. sizeof(struct driver_data)), 8);
  1135. drv_data->ioaddr = ssp->mmio_base;
  1136. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  1137. if (ssp->type == PXA25x_SSP) {
  1138. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1139. drv_data->dma_cr1 = 0;
  1140. drv_data->clear_sr = SSSR_ROR;
  1141. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1142. } else {
  1143. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1144. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  1145. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1146. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1147. }
  1148. status = request_irq(ssp->irq, ssp_int, 0, dev->bus_id, drv_data);
  1149. if (status < 0) {
  1150. dev_err(&pdev->dev, "can not get IRQ\n");
  1151. goto out_error_master_alloc;
  1152. }
  1153. /* Setup DMA if requested */
  1154. drv_data->tx_channel = -1;
  1155. drv_data->rx_channel = -1;
  1156. if (platform_info->enable_dma) {
  1157. /* Get two DMA channels (rx and tx) */
  1158. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  1159. DMA_PRIO_HIGH,
  1160. dma_handler,
  1161. drv_data);
  1162. if (drv_data->rx_channel < 0) {
  1163. dev_err(dev, "problem (%d) requesting rx channel\n",
  1164. drv_data->rx_channel);
  1165. status = -ENODEV;
  1166. goto out_error_irq_alloc;
  1167. }
  1168. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  1169. DMA_PRIO_MEDIUM,
  1170. dma_handler,
  1171. drv_data);
  1172. if (drv_data->tx_channel < 0) {
  1173. dev_err(dev, "problem (%d) requesting tx channel\n",
  1174. drv_data->tx_channel);
  1175. status = -ENODEV;
  1176. goto out_error_dma_alloc;
  1177. }
  1178. DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
  1179. DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
  1180. }
  1181. /* Enable SOC clock */
  1182. clk_enable(ssp->clk);
  1183. /* Load default SSP configuration */
  1184. write_SSCR0(0, drv_data->ioaddr);
  1185. write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data->ioaddr);
  1186. write_SSCR0(SSCR0_SerClkDiv(2)
  1187. | SSCR0_Motorola
  1188. | SSCR0_DataSize(8),
  1189. drv_data->ioaddr);
  1190. if (drv_data->ssp_type != PXA25x_SSP)
  1191. write_SSTO(0, drv_data->ioaddr);
  1192. write_SSPSP(0, drv_data->ioaddr);
  1193. /* Initial and start queue */
  1194. status = init_queue(drv_data);
  1195. if (status != 0) {
  1196. dev_err(&pdev->dev, "problem initializing queue\n");
  1197. goto out_error_clock_enabled;
  1198. }
  1199. status = start_queue(drv_data);
  1200. if (status != 0) {
  1201. dev_err(&pdev->dev, "problem starting queue\n");
  1202. goto out_error_clock_enabled;
  1203. }
  1204. /* Register with the SPI framework */
  1205. platform_set_drvdata(pdev, drv_data);
  1206. status = spi_register_master(master);
  1207. if (status != 0) {
  1208. dev_err(&pdev->dev, "problem registering spi master\n");
  1209. goto out_error_queue_alloc;
  1210. }
  1211. return status;
  1212. out_error_queue_alloc:
  1213. destroy_queue(drv_data);
  1214. out_error_clock_enabled:
  1215. clk_disable(ssp->clk);
  1216. out_error_dma_alloc:
  1217. if (drv_data->tx_channel != -1)
  1218. pxa_free_dma(drv_data->tx_channel);
  1219. if (drv_data->rx_channel != -1)
  1220. pxa_free_dma(drv_data->rx_channel);
  1221. out_error_irq_alloc:
  1222. free_irq(ssp->irq, drv_data);
  1223. out_error_master_alloc:
  1224. spi_master_put(master);
  1225. ssp_free(ssp);
  1226. return status;
  1227. }
  1228. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1229. {
  1230. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1231. struct ssp_device *ssp = drv_data->ssp;
  1232. int status = 0;
  1233. if (!drv_data)
  1234. return 0;
  1235. /* Remove the queue */
  1236. status = destroy_queue(drv_data);
  1237. if (status != 0)
  1238. /* the kernel does not check the return status of this
  1239. * this routine (mod->exit, within the kernel). Therefore
  1240. * nothing is gained by returning from here, the module is
  1241. * going away regardless, and we should not leave any more
  1242. * resources allocated than necessary. We cannot free the
  1243. * message memory in drv_data->queue, but we can release the
  1244. * resources below. I think the kernel should honor -EBUSY
  1245. * returns but... */
  1246. dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
  1247. "complete, message memory not freed\n");
  1248. /* Disable the SSP at the peripheral and SOC level */
  1249. write_SSCR0(0, drv_data->ioaddr);
  1250. clk_disable(ssp->clk);
  1251. /* Release DMA */
  1252. if (drv_data->master_info->enable_dma) {
  1253. DRCMR(ssp->drcmr_rx) = 0;
  1254. DRCMR(ssp->drcmr_tx) = 0;
  1255. pxa_free_dma(drv_data->tx_channel);
  1256. pxa_free_dma(drv_data->rx_channel);
  1257. }
  1258. /* Release IRQ */
  1259. free_irq(ssp->irq, drv_data);
  1260. /* Release SSP */
  1261. ssp_free(ssp);
  1262. /* Disconnect from the SPI framework */
  1263. spi_unregister_master(drv_data->master);
  1264. /* Prevent double remove */
  1265. platform_set_drvdata(pdev, NULL);
  1266. return 0;
  1267. }
  1268. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1269. {
  1270. int status = 0;
  1271. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1272. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1273. }
  1274. #ifdef CONFIG_PM
  1275. static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1276. {
  1277. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1278. struct ssp_device *ssp = drv_data->ssp;
  1279. int status = 0;
  1280. status = stop_queue(drv_data);
  1281. if (status != 0)
  1282. return status;
  1283. write_SSCR0(0, drv_data->ioaddr);
  1284. clk_disable(ssp->clk);
  1285. return 0;
  1286. }
  1287. static int pxa2xx_spi_resume(struct platform_device *pdev)
  1288. {
  1289. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1290. struct ssp_device *ssp = drv_data->ssp;
  1291. int status = 0;
  1292. /* Enable the SSP clock */
  1293. clk_disable(ssp->clk);
  1294. /* Start the queue running */
  1295. status = start_queue(drv_data);
  1296. if (status != 0) {
  1297. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1298. return status;
  1299. }
  1300. return 0;
  1301. }
  1302. #else
  1303. #define pxa2xx_spi_suspend NULL
  1304. #define pxa2xx_spi_resume NULL
  1305. #endif /* CONFIG_PM */
  1306. static struct platform_driver driver = {
  1307. .driver = {
  1308. .name = "pxa2xx-spi",
  1309. .owner = THIS_MODULE,
  1310. },
  1311. .remove = pxa2xx_spi_remove,
  1312. .shutdown = pxa2xx_spi_shutdown,
  1313. .suspend = pxa2xx_spi_suspend,
  1314. .resume = pxa2xx_spi_resume,
  1315. };
  1316. static int __init pxa2xx_spi_init(void)
  1317. {
  1318. return platform_driver_probe(&driver, pxa2xx_spi_probe);
  1319. }
  1320. module_init(pxa2xx_spi_init);
  1321. static void __exit pxa2xx_spi_exit(void)
  1322. {
  1323. platform_driver_unregister(&driver);
  1324. }
  1325. module_exit(pxa2xx_spi_exit);