vtbl.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. * Copyright (c) Nokia Corporation, 2006, 2007
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13. * the GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. * Author: Artem Bityutskiy (Битюцкий Артём)
  20. */
  21. /*
  22. * This file includes volume table manipulation code. The volume table is an
  23. * on-flash table containing volume meta-data like name, number of reserved
  24. * physical eraseblocks, type, etc. The volume table is stored in the so-called
  25. * "layout volume".
  26. *
  27. * The layout volume is an internal volume which is organized as follows. It
  28. * consists of two logical eraseblocks - LEB 0 and LEB 1. Each logical
  29. * eraseblock stores one volume table copy, i.e. LEB 0 and LEB 1 duplicate each
  30. * other. This redundancy guarantees robustness to unclean reboots. The volume
  31. * table is basically an array of volume table records. Each record contains
  32. * full information about the volume and protected by a CRC checksum.
  33. *
  34. * The volume table is changed, it is first changed in RAM. Then LEB 0 is
  35. * erased, and the updated volume table is written back to LEB 0. Then same for
  36. * LEB 1. This scheme guarantees recoverability from unclean reboots.
  37. *
  38. * In this UBI implementation the on-flash volume table does not contain any
  39. * information about how many data static volumes contain. This information may
  40. * be found from the scanning data.
  41. *
  42. * But it would still be beneficial to store this information in the volume
  43. * table. For example, suppose we have a static volume X, and all its physical
  44. * eraseblocks became bad for some reasons. Suppose we are attaching the
  45. * corresponding MTD device, the scanning has found no logical eraseblocks
  46. * corresponding to the volume X. According to the volume table volume X does
  47. * exist. So we don't know whether it is just empty or all its physical
  48. * eraseblocks went bad. So we cannot alarm the user about this corruption.
  49. *
  50. * The volume table also stores so-called "update marker", which is used for
  51. * volume updates. Before updating the volume, the update marker is set, and
  52. * after the update operation is finished, the update marker is cleared. So if
  53. * the update operation was interrupted (e.g. by an unclean reboot) - the
  54. * update marker is still there and we know that the volume's contents is
  55. * damaged.
  56. */
  57. #include <linux/crc32.h>
  58. #include <linux/err.h>
  59. #include <asm/div64.h>
  60. #include "ubi.h"
  61. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  62. static void paranoid_vtbl_check(const struct ubi_device *ubi);
  63. #else
  64. #define paranoid_vtbl_check(ubi)
  65. #endif
  66. /* Empty volume table record */
  67. static struct ubi_vtbl_record empty_vtbl_record;
  68. /**
  69. * ubi_change_vtbl_record - change volume table record.
  70. * @ubi: UBI device description object
  71. * @idx: table index to change
  72. * @vtbl_rec: new volume table record
  73. *
  74. * This function changes volume table record @idx. If @vtbl_rec is %NULL, empty
  75. * volume table record is written. The caller does not have to calculate CRC of
  76. * the record as it is done by this function. Returns zero in case of success
  77. * and a negative error code in case of failure.
  78. */
  79. int ubi_change_vtbl_record(struct ubi_device *ubi, int idx,
  80. struct ubi_vtbl_record *vtbl_rec)
  81. {
  82. int i, err;
  83. uint32_t crc;
  84. struct ubi_volume *layout_vol;
  85. ubi_assert(idx >= 0 && idx < ubi->vtbl_slots);
  86. layout_vol = ubi->volumes[vol_id2idx(ubi, UBI_LAYOUT_VOLUME_ID)];
  87. if (!vtbl_rec)
  88. vtbl_rec = &empty_vtbl_record;
  89. else {
  90. crc = crc32(UBI_CRC32_INIT, vtbl_rec, UBI_VTBL_RECORD_SIZE_CRC);
  91. vtbl_rec->crc = cpu_to_be32(crc);
  92. }
  93. memcpy(&ubi->vtbl[idx], vtbl_rec, sizeof(struct ubi_vtbl_record));
  94. for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
  95. err = ubi_eba_unmap_leb(ubi, layout_vol, i);
  96. if (err)
  97. return err;
  98. err = ubi_eba_write_leb(ubi, layout_vol, i, ubi->vtbl, 0,
  99. ubi->vtbl_size, UBI_LONGTERM);
  100. if (err)
  101. return err;
  102. }
  103. paranoid_vtbl_check(ubi);
  104. return 0;
  105. }
  106. /**
  107. * vtbl_check - check if volume table is not corrupted and contains sensible
  108. * data.
  109. * @ubi: UBI device description object
  110. * @vtbl: volume table
  111. *
  112. * This function returns zero if @vtbl is all right, %1 if CRC is incorrect,
  113. * and %-EINVAL if it contains inconsistent data.
  114. */
  115. static int vtbl_check(const struct ubi_device *ubi,
  116. const struct ubi_vtbl_record *vtbl)
  117. {
  118. int i, n, reserved_pebs, alignment, data_pad, vol_type, name_len;
  119. int upd_marker;
  120. uint32_t crc;
  121. const char *name;
  122. for (i = 0; i < ubi->vtbl_slots; i++) {
  123. cond_resched();
  124. reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
  125. alignment = be32_to_cpu(vtbl[i].alignment);
  126. data_pad = be32_to_cpu(vtbl[i].data_pad);
  127. upd_marker = vtbl[i].upd_marker;
  128. vol_type = vtbl[i].vol_type;
  129. name_len = be16_to_cpu(vtbl[i].name_len);
  130. name = &vtbl[i].name[0];
  131. crc = crc32(UBI_CRC32_INIT, &vtbl[i], UBI_VTBL_RECORD_SIZE_CRC);
  132. if (be32_to_cpu(vtbl[i].crc) != crc) {
  133. ubi_err("bad CRC at record %u: %#08x, not %#08x",
  134. i, crc, be32_to_cpu(vtbl[i].crc));
  135. ubi_dbg_dump_vtbl_record(&vtbl[i], i);
  136. return 1;
  137. }
  138. if (reserved_pebs == 0) {
  139. if (memcmp(&vtbl[i], &empty_vtbl_record,
  140. UBI_VTBL_RECORD_SIZE)) {
  141. dbg_err("bad empty record");
  142. goto bad;
  143. }
  144. continue;
  145. }
  146. if (reserved_pebs < 0 || alignment < 0 || data_pad < 0 ||
  147. name_len < 0) {
  148. dbg_err("negative values");
  149. goto bad;
  150. }
  151. if (alignment > ubi->leb_size || alignment == 0) {
  152. dbg_err("bad alignment");
  153. goto bad;
  154. }
  155. n = alignment % ubi->min_io_size;
  156. if (alignment != 1 && n) {
  157. dbg_err("alignment is not multiple of min I/O unit");
  158. goto bad;
  159. }
  160. n = ubi->leb_size % alignment;
  161. if (data_pad != n) {
  162. dbg_err("bad data_pad, has to be %d", n);
  163. goto bad;
  164. }
  165. if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
  166. dbg_err("bad vol_type");
  167. goto bad;
  168. }
  169. if (upd_marker != 0 && upd_marker != 1) {
  170. dbg_err("bad upd_marker");
  171. goto bad;
  172. }
  173. if (reserved_pebs > ubi->good_peb_count) {
  174. dbg_err("too large reserved_pebs, good PEBs %d",
  175. ubi->good_peb_count);
  176. goto bad;
  177. }
  178. if (name_len > UBI_VOL_NAME_MAX) {
  179. dbg_err("too long volume name, max %d",
  180. UBI_VOL_NAME_MAX);
  181. goto bad;
  182. }
  183. if (name[0] == '\0') {
  184. dbg_err("NULL volume name");
  185. goto bad;
  186. }
  187. if (name_len != strnlen(name, name_len + 1)) {
  188. dbg_err("bad name_len");
  189. goto bad;
  190. }
  191. }
  192. /* Checks that all names are unique */
  193. for (i = 0; i < ubi->vtbl_slots - 1; i++) {
  194. for (n = i + 1; n < ubi->vtbl_slots; n++) {
  195. int len1 = be16_to_cpu(vtbl[i].name_len);
  196. int len2 = be16_to_cpu(vtbl[n].name_len);
  197. if (len1 > 0 && len1 == len2 &&
  198. !strncmp(vtbl[i].name, vtbl[n].name, len1)) {
  199. ubi_err("volumes %d and %d have the same name"
  200. " \"%s\"", i, n, vtbl[i].name);
  201. ubi_dbg_dump_vtbl_record(&vtbl[i], i);
  202. ubi_dbg_dump_vtbl_record(&vtbl[n], n);
  203. return -EINVAL;
  204. }
  205. }
  206. }
  207. return 0;
  208. bad:
  209. ubi_err("volume table check failed, record %d", i);
  210. ubi_dbg_dump_vtbl_record(&vtbl[i], i);
  211. return -EINVAL;
  212. }
  213. /**
  214. * create_vtbl - create a copy of volume table.
  215. * @ubi: UBI device description object
  216. * @si: scanning information
  217. * @copy: number of the volume table copy
  218. * @vtbl: contents of the volume table
  219. *
  220. * This function returns zero in case of success and a negative error code in
  221. * case of failure.
  222. */
  223. static int create_vtbl(struct ubi_device *ubi, struct ubi_scan_info *si,
  224. int copy, void *vtbl)
  225. {
  226. int err, tries = 0;
  227. static struct ubi_vid_hdr *vid_hdr;
  228. struct ubi_scan_volume *sv;
  229. struct ubi_scan_leb *new_seb, *old_seb = NULL;
  230. ubi_msg("create volume table (copy #%d)", copy + 1);
  231. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
  232. if (!vid_hdr)
  233. return -ENOMEM;
  234. /*
  235. * Check if there is a logical eraseblock which would have to contain
  236. * this volume table copy was found during scanning. It has to be wiped
  237. * out.
  238. */
  239. sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
  240. if (sv)
  241. old_seb = ubi_scan_find_seb(sv, copy);
  242. retry:
  243. new_seb = ubi_scan_get_free_peb(ubi, si);
  244. if (IS_ERR(new_seb)) {
  245. err = PTR_ERR(new_seb);
  246. goto out_free;
  247. }
  248. vid_hdr->vol_type = UBI_VID_DYNAMIC;
  249. vid_hdr->vol_id = cpu_to_be32(UBI_LAYOUT_VOLUME_ID);
  250. vid_hdr->compat = UBI_LAYOUT_VOLUME_COMPAT;
  251. vid_hdr->data_size = vid_hdr->used_ebs =
  252. vid_hdr->data_pad = cpu_to_be32(0);
  253. vid_hdr->lnum = cpu_to_be32(copy);
  254. vid_hdr->sqnum = cpu_to_be64(++si->max_sqnum);
  255. vid_hdr->leb_ver = cpu_to_be32(old_seb ? old_seb->leb_ver + 1: 0);
  256. /* The EC header is already there, write the VID header */
  257. err = ubi_io_write_vid_hdr(ubi, new_seb->pnum, vid_hdr);
  258. if (err)
  259. goto write_error;
  260. /* Write the layout volume contents */
  261. err = ubi_io_write_data(ubi, vtbl, new_seb->pnum, 0, ubi->vtbl_size);
  262. if (err)
  263. goto write_error;
  264. /*
  265. * And add it to the scanning information. Don't delete the old
  266. * @old_seb as it will be deleted and freed in 'ubi_scan_add_used()'.
  267. */
  268. err = ubi_scan_add_used(ubi, si, new_seb->pnum, new_seb->ec,
  269. vid_hdr, 0);
  270. kfree(new_seb);
  271. ubi_free_vid_hdr(ubi, vid_hdr);
  272. return err;
  273. write_error:
  274. if (err == -EIO && ++tries <= 5) {
  275. /*
  276. * Probably this physical eraseblock went bad, try to pick
  277. * another one.
  278. */
  279. list_add_tail(&new_seb->u.list, &si->corr);
  280. goto retry;
  281. }
  282. kfree(new_seb);
  283. out_free:
  284. ubi_free_vid_hdr(ubi, vid_hdr);
  285. return err;
  286. }
  287. /**
  288. * process_lvol - process the layout volume.
  289. * @ubi: UBI device description object
  290. * @si: scanning information
  291. * @sv: layout volume scanning information
  292. *
  293. * This function is responsible for reading the layout volume, ensuring it is
  294. * not corrupted, and recovering from corruptions if needed. Returns volume
  295. * table in case of success and a negative error code in case of failure.
  296. */
  297. static struct ubi_vtbl_record *process_lvol(struct ubi_device *ubi,
  298. struct ubi_scan_info *si,
  299. struct ubi_scan_volume *sv)
  300. {
  301. int err;
  302. struct rb_node *rb;
  303. struct ubi_scan_leb *seb;
  304. struct ubi_vtbl_record *leb[UBI_LAYOUT_VOLUME_EBS] = { NULL, NULL };
  305. int leb_corrupted[UBI_LAYOUT_VOLUME_EBS] = {1, 1};
  306. /*
  307. * UBI goes through the following steps when it changes the layout
  308. * volume:
  309. * a. erase LEB 0;
  310. * b. write new data to LEB 0;
  311. * c. erase LEB 1;
  312. * d. write new data to LEB 1.
  313. *
  314. * Before the change, both LEBs contain the same data.
  315. *
  316. * Due to unclean reboots, the contents of LEB 0 may be lost, but there
  317. * should LEB 1. So it is OK if LEB 0 is corrupted while LEB 1 is not.
  318. * Similarly, LEB 1 may be lost, but there should be LEB 0. And
  319. * finally, unclean reboots may result in a situation when neither LEB
  320. * 0 nor LEB 1 are corrupted, but they are different. In this case, LEB
  321. * 0 contains more recent information.
  322. *
  323. * So the plan is to first check LEB 0. Then
  324. * a. if LEB 0 is OK, it must be containing the most resent data; then
  325. * we compare it with LEB 1, and if they are different, we copy LEB
  326. * 0 to LEB 1;
  327. * b. if LEB 0 is corrupted, but LEB 1 has to be OK, and we copy LEB 1
  328. * to LEB 0.
  329. */
  330. dbg_msg("check layout volume");
  331. /* Read both LEB 0 and LEB 1 into memory */
  332. ubi_rb_for_each_entry(rb, seb, &sv->root, u.rb) {
  333. leb[seb->lnum] = vmalloc(ubi->vtbl_size);
  334. if (!leb[seb->lnum]) {
  335. err = -ENOMEM;
  336. goto out_free;
  337. }
  338. memset(leb[seb->lnum], 0, ubi->vtbl_size);
  339. err = ubi_io_read_data(ubi, leb[seb->lnum], seb->pnum, 0,
  340. ubi->vtbl_size);
  341. if (err == UBI_IO_BITFLIPS || err == -EBADMSG)
  342. /* Scrub the PEB later */
  343. seb->scrub = 1;
  344. else if (err)
  345. goto out_free;
  346. }
  347. err = -EINVAL;
  348. if (leb[0]) {
  349. leb_corrupted[0] = vtbl_check(ubi, leb[0]);
  350. if (leb_corrupted[0] < 0)
  351. goto out_free;
  352. }
  353. if (!leb_corrupted[0]) {
  354. /* LEB 0 is OK */
  355. if (leb[1])
  356. leb_corrupted[1] = memcmp(leb[0], leb[1], ubi->vtbl_size);
  357. if (leb_corrupted[1]) {
  358. ubi_warn("volume table copy #2 is corrupted");
  359. err = create_vtbl(ubi, si, 1, leb[0]);
  360. if (err)
  361. goto out_free;
  362. ubi_msg("volume table was restored");
  363. }
  364. /* Both LEB 1 and LEB 2 are OK and consistent */
  365. vfree(leb[1]);
  366. return leb[0];
  367. } else {
  368. /* LEB 0 is corrupted or does not exist */
  369. if (leb[1]) {
  370. leb_corrupted[1] = vtbl_check(ubi, leb[1]);
  371. if (leb_corrupted[1] < 0)
  372. goto out_free;
  373. }
  374. if (leb_corrupted[1]) {
  375. /* Both LEB 0 and LEB 1 are corrupted */
  376. ubi_err("both volume tables are corrupted");
  377. goto out_free;
  378. }
  379. ubi_warn("volume table copy #1 is corrupted");
  380. err = create_vtbl(ubi, si, 0, leb[1]);
  381. if (err)
  382. goto out_free;
  383. ubi_msg("volume table was restored");
  384. vfree(leb[0]);
  385. return leb[1];
  386. }
  387. out_free:
  388. vfree(leb[0]);
  389. vfree(leb[1]);
  390. return ERR_PTR(err);
  391. }
  392. /**
  393. * create_empty_lvol - create empty layout volume.
  394. * @ubi: UBI device description object
  395. * @si: scanning information
  396. *
  397. * This function returns volume table contents in case of success and a
  398. * negative error code in case of failure.
  399. */
  400. static struct ubi_vtbl_record *create_empty_lvol(struct ubi_device *ubi,
  401. struct ubi_scan_info *si)
  402. {
  403. int i;
  404. struct ubi_vtbl_record *vtbl;
  405. vtbl = vmalloc(ubi->vtbl_size);
  406. if (!vtbl)
  407. return ERR_PTR(-ENOMEM);
  408. memset(vtbl, 0, ubi->vtbl_size);
  409. for (i = 0; i < ubi->vtbl_slots; i++)
  410. memcpy(&vtbl[i], &empty_vtbl_record, UBI_VTBL_RECORD_SIZE);
  411. for (i = 0; i < UBI_LAYOUT_VOLUME_EBS; i++) {
  412. int err;
  413. err = create_vtbl(ubi, si, i, vtbl);
  414. if (err) {
  415. vfree(vtbl);
  416. return ERR_PTR(err);
  417. }
  418. }
  419. return vtbl;
  420. }
  421. /**
  422. * init_volumes - initialize volume information for existing volumes.
  423. * @ubi: UBI device description object
  424. * @si: scanning information
  425. * @vtbl: volume table
  426. *
  427. * This function allocates volume description objects for existing volumes.
  428. * Returns zero in case of success and a negative error code in case of
  429. * failure.
  430. */
  431. static int init_volumes(struct ubi_device *ubi, const struct ubi_scan_info *si,
  432. const struct ubi_vtbl_record *vtbl)
  433. {
  434. int i, reserved_pebs = 0;
  435. struct ubi_scan_volume *sv;
  436. struct ubi_volume *vol;
  437. for (i = 0; i < ubi->vtbl_slots; i++) {
  438. cond_resched();
  439. if (be32_to_cpu(vtbl[i].reserved_pebs) == 0)
  440. continue; /* Empty record */
  441. vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
  442. if (!vol)
  443. return -ENOMEM;
  444. vol->reserved_pebs = be32_to_cpu(vtbl[i].reserved_pebs);
  445. vol->alignment = be32_to_cpu(vtbl[i].alignment);
  446. vol->data_pad = be32_to_cpu(vtbl[i].data_pad);
  447. vol->vol_type = vtbl[i].vol_type == UBI_VID_DYNAMIC ?
  448. UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
  449. vol->name_len = be16_to_cpu(vtbl[i].name_len);
  450. vol->usable_leb_size = ubi->leb_size - vol->data_pad;
  451. memcpy(vol->name, vtbl[i].name, vol->name_len);
  452. vol->name[vol->name_len] = '\0';
  453. vol->vol_id = i;
  454. if (vtbl[i].flags & UBI_VTBL_AUTORESIZE_FLG) {
  455. /* Auto re-size flag may be set only for one volume */
  456. if (ubi->autoresize_vol_id != -1) {
  457. ubi_err("more then one auto-resize volume (%d "
  458. "and %d)", ubi->autoresize_vol_id, i);
  459. kfree(vol);
  460. return -EINVAL;
  461. }
  462. ubi->autoresize_vol_id = i;
  463. }
  464. ubi_assert(!ubi->volumes[i]);
  465. ubi->volumes[i] = vol;
  466. ubi->vol_count += 1;
  467. vol->ubi = ubi;
  468. reserved_pebs += vol->reserved_pebs;
  469. /*
  470. * In case of dynamic volume UBI knows nothing about how many
  471. * data is stored there. So assume the whole volume is used.
  472. */
  473. if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
  474. vol->used_ebs = vol->reserved_pebs;
  475. vol->last_eb_bytes = vol->usable_leb_size;
  476. vol->used_bytes =
  477. (long long)vol->used_ebs * vol->usable_leb_size;
  478. continue;
  479. }
  480. /* Static volumes only */
  481. sv = ubi_scan_find_sv(si, i);
  482. if (!sv) {
  483. /*
  484. * No eraseblocks belonging to this volume found. We
  485. * don't actually know whether this static volume is
  486. * completely corrupted or just contains no data. And
  487. * we cannot know this as long as data size is not
  488. * stored on flash. So we just assume the volume is
  489. * empty. FIXME: this should be handled.
  490. */
  491. continue;
  492. }
  493. if (sv->leb_count != sv->used_ebs) {
  494. /*
  495. * We found a static volume which misses several
  496. * eraseblocks. Treat it as corrupted.
  497. */
  498. ubi_warn("static volume %d misses %d LEBs - corrupted",
  499. sv->vol_id, sv->used_ebs - sv->leb_count);
  500. vol->corrupted = 1;
  501. continue;
  502. }
  503. vol->used_ebs = sv->used_ebs;
  504. vol->used_bytes =
  505. (long long)(vol->used_ebs - 1) * vol->usable_leb_size;
  506. vol->used_bytes += sv->last_data_size;
  507. vol->last_eb_bytes = sv->last_data_size;
  508. }
  509. /* And add the layout volume */
  510. vol = kzalloc(sizeof(struct ubi_volume), GFP_KERNEL);
  511. if (!vol)
  512. return -ENOMEM;
  513. vol->reserved_pebs = UBI_LAYOUT_VOLUME_EBS;
  514. vol->alignment = 1;
  515. vol->vol_type = UBI_DYNAMIC_VOLUME;
  516. vol->name_len = sizeof(UBI_LAYOUT_VOLUME_NAME) - 1;
  517. memcpy(vol->name, UBI_LAYOUT_VOLUME_NAME, vol->name_len + 1);
  518. vol->usable_leb_size = ubi->leb_size;
  519. vol->used_ebs = vol->reserved_pebs;
  520. vol->last_eb_bytes = vol->reserved_pebs;
  521. vol->used_bytes =
  522. (long long)vol->used_ebs * (ubi->leb_size - vol->data_pad);
  523. vol->vol_id = UBI_LAYOUT_VOLUME_ID;
  524. vol->ref_count = 1;
  525. ubi_assert(!ubi->volumes[i]);
  526. ubi->volumes[vol_id2idx(ubi, vol->vol_id)] = vol;
  527. reserved_pebs += vol->reserved_pebs;
  528. ubi->vol_count += 1;
  529. vol->ubi = ubi;
  530. if (reserved_pebs > ubi->avail_pebs)
  531. ubi_err("not enough PEBs, required %d, available %d",
  532. reserved_pebs, ubi->avail_pebs);
  533. ubi->rsvd_pebs += reserved_pebs;
  534. ubi->avail_pebs -= reserved_pebs;
  535. return 0;
  536. }
  537. /**
  538. * check_sv - check volume scanning information.
  539. * @vol: UBI volume description object
  540. * @sv: volume scanning information
  541. *
  542. * This function returns zero if the volume scanning information is consistent
  543. * to the data read from the volume tabla, and %-EINVAL if not.
  544. */
  545. static int check_sv(const struct ubi_volume *vol,
  546. const struct ubi_scan_volume *sv)
  547. {
  548. if (sv->highest_lnum >= vol->reserved_pebs) {
  549. dbg_err("bad highest_lnum");
  550. goto bad;
  551. }
  552. if (sv->leb_count > vol->reserved_pebs) {
  553. dbg_err("bad leb_count");
  554. goto bad;
  555. }
  556. if (sv->vol_type != vol->vol_type) {
  557. dbg_err("bad vol_type");
  558. goto bad;
  559. }
  560. if (sv->used_ebs > vol->reserved_pebs) {
  561. dbg_err("bad used_ebs");
  562. goto bad;
  563. }
  564. if (sv->data_pad != vol->data_pad) {
  565. dbg_err("bad data_pad");
  566. goto bad;
  567. }
  568. return 0;
  569. bad:
  570. ubi_err("bad scanning information");
  571. ubi_dbg_dump_sv(sv);
  572. ubi_dbg_dump_vol_info(vol);
  573. return -EINVAL;
  574. }
  575. /**
  576. * check_scanning_info - check that scanning information.
  577. * @ubi: UBI device description object
  578. * @si: scanning information
  579. *
  580. * Even though we protect on-flash data by CRC checksums, we still don't trust
  581. * the media. This function ensures that scanning information is consistent to
  582. * the information read from the volume table. Returns zero if the scanning
  583. * information is OK and %-EINVAL if it is not.
  584. */
  585. static int check_scanning_info(const struct ubi_device *ubi,
  586. struct ubi_scan_info *si)
  587. {
  588. int err, i;
  589. struct ubi_scan_volume *sv;
  590. struct ubi_volume *vol;
  591. if (si->vols_found > UBI_INT_VOL_COUNT + ubi->vtbl_slots) {
  592. ubi_err("scanning found %d volumes, maximum is %d + %d",
  593. si->vols_found, UBI_INT_VOL_COUNT, ubi->vtbl_slots);
  594. return -EINVAL;
  595. }
  596. if (si->highest_vol_id >= ubi->vtbl_slots + UBI_INT_VOL_COUNT&&
  597. si->highest_vol_id < UBI_INTERNAL_VOL_START) {
  598. ubi_err("too large volume ID %d found by scanning",
  599. si->highest_vol_id);
  600. return -EINVAL;
  601. }
  602. for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++) {
  603. cond_resched();
  604. sv = ubi_scan_find_sv(si, i);
  605. vol = ubi->volumes[i];
  606. if (!vol) {
  607. if (sv)
  608. ubi_scan_rm_volume(si, sv);
  609. continue;
  610. }
  611. if (vol->reserved_pebs == 0) {
  612. ubi_assert(i < ubi->vtbl_slots);
  613. if (!sv)
  614. continue;
  615. /*
  616. * During scanning we found a volume which does not
  617. * exist according to the information in the volume
  618. * table. This must have happened due to an unclean
  619. * reboot while the volume was being removed. Discard
  620. * these eraseblocks.
  621. */
  622. ubi_msg("finish volume %d removal", sv->vol_id);
  623. ubi_scan_rm_volume(si, sv);
  624. } else if (sv) {
  625. err = check_sv(vol, sv);
  626. if (err)
  627. return err;
  628. }
  629. }
  630. return 0;
  631. }
  632. /**
  633. * ubi_read_volume_table - read volume table.
  634. * information.
  635. * @ubi: UBI device description object
  636. * @si: scanning information
  637. *
  638. * This function reads volume table, checks it, recover from errors if needed,
  639. * or creates it if needed. Returns zero in case of success and a negative
  640. * error code in case of failure.
  641. */
  642. int ubi_read_volume_table(struct ubi_device *ubi, struct ubi_scan_info *si)
  643. {
  644. int i, err;
  645. struct ubi_scan_volume *sv;
  646. empty_vtbl_record.crc = cpu_to_be32(0xf116c36b);
  647. /*
  648. * The number of supported volumes is limited by the eraseblock size
  649. * and by the UBI_MAX_VOLUMES constant.
  650. */
  651. ubi->vtbl_slots = ubi->leb_size / UBI_VTBL_RECORD_SIZE;
  652. if (ubi->vtbl_slots > UBI_MAX_VOLUMES)
  653. ubi->vtbl_slots = UBI_MAX_VOLUMES;
  654. ubi->vtbl_size = ubi->vtbl_slots * UBI_VTBL_RECORD_SIZE;
  655. ubi->vtbl_size = ALIGN(ubi->vtbl_size, ubi->min_io_size);
  656. sv = ubi_scan_find_sv(si, UBI_LAYOUT_VOLUME_ID);
  657. if (!sv) {
  658. /*
  659. * No logical eraseblocks belonging to the layout volume were
  660. * found. This could mean that the flash is just empty. In
  661. * this case we create empty layout volume.
  662. *
  663. * But if flash is not empty this must be a corruption or the
  664. * MTD device just contains garbage.
  665. */
  666. if (si->is_empty) {
  667. ubi->vtbl = create_empty_lvol(ubi, si);
  668. if (IS_ERR(ubi->vtbl))
  669. return PTR_ERR(ubi->vtbl);
  670. } else {
  671. ubi_err("the layout volume was not found");
  672. return -EINVAL;
  673. }
  674. } else {
  675. if (sv->leb_count > UBI_LAYOUT_VOLUME_EBS) {
  676. /* This must not happen with proper UBI images */
  677. dbg_err("too many LEBs (%d) in layout volume",
  678. sv->leb_count);
  679. return -EINVAL;
  680. }
  681. ubi->vtbl = process_lvol(ubi, si, sv);
  682. if (IS_ERR(ubi->vtbl))
  683. return PTR_ERR(ubi->vtbl);
  684. }
  685. ubi->avail_pebs = ubi->good_peb_count;
  686. /*
  687. * The layout volume is OK, initialize the corresponding in-RAM data
  688. * structures.
  689. */
  690. err = init_volumes(ubi, si, ubi->vtbl);
  691. if (err)
  692. goto out_free;
  693. /*
  694. * Get sure that the scanning information is consistent to the
  695. * information stored in the volume table.
  696. */
  697. err = check_scanning_info(ubi, si);
  698. if (err)
  699. goto out_free;
  700. return 0;
  701. out_free:
  702. vfree(ubi->vtbl);
  703. for (i = 0; i < ubi->vtbl_slots + UBI_INT_VOL_COUNT; i++)
  704. if (ubi->volumes[i]) {
  705. kfree(ubi->volumes[i]);
  706. ubi->volumes[i] = NULL;
  707. }
  708. return err;
  709. }
  710. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  711. /**
  712. * paranoid_vtbl_check - check volume table.
  713. * @ubi: UBI device description object
  714. */
  715. static void paranoid_vtbl_check(const struct ubi_device *ubi)
  716. {
  717. if (vtbl_check(ubi, ubi->vtbl)) {
  718. ubi_err("paranoid check failed");
  719. BUG();
  720. }
  721. }
  722. #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */