raid0.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529
  1. /*
  2. raid0.c : Multiple Devices driver for Linux
  3. Copyright (C) 1994-96 Marc ZYNGIER
  4. <zyngier@ufr-info-p7.ibp.fr> or
  5. <maz@gloups.fdn.fr>
  6. Copyright (C) 1999, 2000 Ingo Molnar, Red Hat
  7. RAID-0 management functions.
  8. This program is free software; you can redistribute it and/or modify
  9. it under the terms of the GNU General Public License as published by
  10. the Free Software Foundation; either version 2, or (at your option)
  11. any later version.
  12. You should have received a copy of the GNU General Public License
  13. (for example /usr/src/linux/COPYING); if not, write to the Free
  14. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. */
  16. #include <linux/module.h>
  17. #include <linux/raid/raid0.h>
  18. #define MAJOR_NR MD_MAJOR
  19. #define MD_DRIVER
  20. #define MD_PERSONALITY
  21. static void raid0_unplug(struct request_queue *q)
  22. {
  23. mddev_t *mddev = q->queuedata;
  24. raid0_conf_t *conf = mddev_to_conf(mddev);
  25. mdk_rdev_t **devlist = conf->strip_zone[0].dev;
  26. int i;
  27. for (i=0; i<mddev->raid_disks; i++) {
  28. struct request_queue *r_queue = bdev_get_queue(devlist[i]->bdev);
  29. blk_unplug(r_queue);
  30. }
  31. }
  32. static int raid0_congested(void *data, int bits)
  33. {
  34. mddev_t *mddev = data;
  35. raid0_conf_t *conf = mddev_to_conf(mddev);
  36. mdk_rdev_t **devlist = conf->strip_zone[0].dev;
  37. int i, ret = 0;
  38. for (i = 0; i < mddev->raid_disks && !ret ; i++) {
  39. struct request_queue *q = bdev_get_queue(devlist[i]->bdev);
  40. ret |= bdi_congested(&q->backing_dev_info, bits);
  41. }
  42. return ret;
  43. }
  44. static int create_strip_zones (mddev_t *mddev)
  45. {
  46. int i, c, j;
  47. sector_t current_offset, curr_zone_offset;
  48. sector_t min_spacing;
  49. raid0_conf_t *conf = mddev_to_conf(mddev);
  50. mdk_rdev_t *smallest, *rdev1, *rdev2, *rdev;
  51. struct list_head *tmp1, *tmp2;
  52. struct strip_zone *zone;
  53. int cnt;
  54. char b[BDEVNAME_SIZE];
  55. /*
  56. * The number of 'same size groups'
  57. */
  58. conf->nr_strip_zones = 0;
  59. rdev_for_each(rdev1, tmp1, mddev) {
  60. printk("raid0: looking at %s\n",
  61. bdevname(rdev1->bdev,b));
  62. c = 0;
  63. rdev_for_each(rdev2, tmp2, mddev) {
  64. printk("raid0: comparing %s(%llu)",
  65. bdevname(rdev1->bdev,b),
  66. (unsigned long long)rdev1->size);
  67. printk(" with %s(%llu)\n",
  68. bdevname(rdev2->bdev,b),
  69. (unsigned long long)rdev2->size);
  70. if (rdev2 == rdev1) {
  71. printk("raid0: END\n");
  72. break;
  73. }
  74. if (rdev2->size == rdev1->size)
  75. {
  76. /*
  77. * Not unique, don't count it as a new
  78. * group
  79. */
  80. printk("raid0: EQUAL\n");
  81. c = 1;
  82. break;
  83. }
  84. printk("raid0: NOT EQUAL\n");
  85. }
  86. if (!c) {
  87. printk("raid0: ==> UNIQUE\n");
  88. conf->nr_strip_zones++;
  89. printk("raid0: %d zones\n", conf->nr_strip_zones);
  90. }
  91. }
  92. printk("raid0: FINAL %d zones\n", conf->nr_strip_zones);
  93. conf->strip_zone = kzalloc(sizeof(struct strip_zone)*
  94. conf->nr_strip_zones, GFP_KERNEL);
  95. if (!conf->strip_zone)
  96. return 1;
  97. conf->devlist = kzalloc(sizeof(mdk_rdev_t*)*
  98. conf->nr_strip_zones*mddev->raid_disks,
  99. GFP_KERNEL);
  100. if (!conf->devlist)
  101. return 1;
  102. /* The first zone must contain all devices, so here we check that
  103. * there is a proper alignment of slots to devices and find them all
  104. */
  105. zone = &conf->strip_zone[0];
  106. cnt = 0;
  107. smallest = NULL;
  108. zone->dev = conf->devlist;
  109. rdev_for_each(rdev1, tmp1, mddev) {
  110. int j = rdev1->raid_disk;
  111. if (j < 0 || j >= mddev->raid_disks) {
  112. printk("raid0: bad disk number %d - aborting!\n", j);
  113. goto abort;
  114. }
  115. if (zone->dev[j]) {
  116. printk("raid0: multiple devices for %d - aborting!\n",
  117. j);
  118. goto abort;
  119. }
  120. zone->dev[j] = rdev1;
  121. blk_queue_stack_limits(mddev->queue,
  122. rdev1->bdev->bd_disk->queue);
  123. /* as we don't honour merge_bvec_fn, we must never risk
  124. * violating it, so limit ->max_sector to one PAGE, as
  125. * a one page request is never in violation.
  126. */
  127. if (rdev1->bdev->bd_disk->queue->merge_bvec_fn &&
  128. mddev->queue->max_sectors > (PAGE_SIZE>>9))
  129. blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
  130. if (!smallest || (rdev1->size <smallest->size))
  131. smallest = rdev1;
  132. cnt++;
  133. }
  134. if (cnt != mddev->raid_disks) {
  135. printk("raid0: too few disks (%d of %d) - aborting!\n",
  136. cnt, mddev->raid_disks);
  137. goto abort;
  138. }
  139. zone->nb_dev = cnt;
  140. zone->size = smallest->size * cnt;
  141. zone->zone_offset = 0;
  142. current_offset = smallest->size;
  143. curr_zone_offset = zone->size;
  144. /* now do the other zones */
  145. for (i = 1; i < conf->nr_strip_zones; i++)
  146. {
  147. zone = conf->strip_zone + i;
  148. zone->dev = conf->strip_zone[i-1].dev + mddev->raid_disks;
  149. printk("raid0: zone %d\n", i);
  150. zone->dev_offset = current_offset;
  151. smallest = NULL;
  152. c = 0;
  153. for (j=0; j<cnt; j++) {
  154. char b[BDEVNAME_SIZE];
  155. rdev = conf->strip_zone[0].dev[j];
  156. printk("raid0: checking %s ...", bdevname(rdev->bdev,b));
  157. if (rdev->size > current_offset)
  158. {
  159. printk(" contained as device %d\n", c);
  160. zone->dev[c] = rdev;
  161. c++;
  162. if (!smallest || (rdev->size <smallest->size)) {
  163. smallest = rdev;
  164. printk(" (%llu) is smallest!.\n",
  165. (unsigned long long)rdev->size);
  166. }
  167. } else
  168. printk(" nope.\n");
  169. }
  170. zone->nb_dev = c;
  171. zone->size = (smallest->size - current_offset) * c;
  172. printk("raid0: zone->nb_dev: %d, size: %llu\n",
  173. zone->nb_dev, (unsigned long long)zone->size);
  174. zone->zone_offset = curr_zone_offset;
  175. curr_zone_offset += zone->size;
  176. current_offset = smallest->size;
  177. printk("raid0: current zone offset: %llu\n",
  178. (unsigned long long)current_offset);
  179. }
  180. /* Now find appropriate hash spacing.
  181. * We want a number which causes most hash entries to cover
  182. * at most two strips, but the hash table must be at most
  183. * 1 PAGE. We choose the smallest strip, or contiguous collection
  184. * of strips, that has big enough size. We never consider the last
  185. * strip though as it's size has no bearing on the efficacy of the hash
  186. * table.
  187. */
  188. conf->hash_spacing = curr_zone_offset;
  189. min_spacing = curr_zone_offset;
  190. sector_div(min_spacing, PAGE_SIZE/sizeof(struct strip_zone*));
  191. for (i=0; i < conf->nr_strip_zones-1; i++) {
  192. sector_t sz = 0;
  193. for (j=i; j<conf->nr_strip_zones-1 &&
  194. sz < min_spacing ; j++)
  195. sz += conf->strip_zone[j].size;
  196. if (sz >= min_spacing && sz < conf->hash_spacing)
  197. conf->hash_spacing = sz;
  198. }
  199. mddev->queue->unplug_fn = raid0_unplug;
  200. mddev->queue->backing_dev_info.congested_fn = raid0_congested;
  201. mddev->queue->backing_dev_info.congested_data = mddev;
  202. printk("raid0: done.\n");
  203. return 0;
  204. abort:
  205. return 1;
  206. }
  207. /**
  208. * raid0_mergeable_bvec -- tell bio layer if a two requests can be merged
  209. * @q: request queue
  210. * @bio: the buffer head that's been built up so far
  211. * @biovec: the request that could be merged to it.
  212. *
  213. * Return amount of bytes we can accept at this offset
  214. */
  215. static int raid0_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
  216. {
  217. mddev_t *mddev = q->queuedata;
  218. sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
  219. int max;
  220. unsigned int chunk_sectors = mddev->chunk_size >> 9;
  221. unsigned int bio_sectors = bio->bi_size >> 9;
  222. max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
  223. if (max < 0) max = 0; /* bio_add cannot handle a negative return */
  224. if (max <= biovec->bv_len && bio_sectors == 0)
  225. return biovec->bv_len;
  226. else
  227. return max;
  228. }
  229. static int raid0_run (mddev_t *mddev)
  230. {
  231. unsigned cur=0, i=0, nb_zone;
  232. s64 size;
  233. raid0_conf_t *conf;
  234. mdk_rdev_t *rdev;
  235. struct list_head *tmp;
  236. if (mddev->chunk_size == 0) {
  237. printk(KERN_ERR "md/raid0: non-zero chunk size required.\n");
  238. return -EINVAL;
  239. }
  240. printk(KERN_INFO "%s: setting max_sectors to %d, segment boundary to %d\n",
  241. mdname(mddev),
  242. mddev->chunk_size >> 9,
  243. (mddev->chunk_size>>1)-1);
  244. blk_queue_max_sectors(mddev->queue, mddev->chunk_size >> 9);
  245. blk_queue_segment_boundary(mddev->queue, (mddev->chunk_size>>1) - 1);
  246. conf = kmalloc(sizeof (raid0_conf_t), GFP_KERNEL);
  247. if (!conf)
  248. goto out;
  249. mddev->private = (void *)conf;
  250. conf->strip_zone = NULL;
  251. conf->devlist = NULL;
  252. if (create_strip_zones (mddev))
  253. goto out_free_conf;
  254. /* calculate array device size */
  255. mddev->array_size = 0;
  256. rdev_for_each(rdev, tmp, mddev)
  257. mddev->array_size += rdev->size;
  258. printk("raid0 : md_size is %llu blocks.\n",
  259. (unsigned long long)mddev->array_size);
  260. printk("raid0 : conf->hash_spacing is %llu blocks.\n",
  261. (unsigned long long)conf->hash_spacing);
  262. {
  263. sector_t s = mddev->array_size;
  264. sector_t space = conf->hash_spacing;
  265. int round;
  266. conf->preshift = 0;
  267. if (sizeof(sector_t) > sizeof(u32)) {
  268. /*shift down space and s so that sector_div will work */
  269. while (space > (sector_t) (~(u32)0)) {
  270. s >>= 1;
  271. space >>= 1;
  272. s += 1; /* force round-up */
  273. conf->preshift++;
  274. }
  275. }
  276. round = sector_div(s, (u32)space) ? 1 : 0;
  277. nb_zone = s + round;
  278. }
  279. printk("raid0 : nb_zone is %d.\n", nb_zone);
  280. printk("raid0 : Allocating %Zd bytes for hash.\n",
  281. nb_zone*sizeof(struct strip_zone*));
  282. conf->hash_table = kmalloc (sizeof (struct strip_zone *)*nb_zone, GFP_KERNEL);
  283. if (!conf->hash_table)
  284. goto out_free_conf;
  285. size = conf->strip_zone[cur].size;
  286. conf->hash_table[0] = conf->strip_zone + cur;
  287. for (i=1; i< nb_zone; i++) {
  288. while (size <= conf->hash_spacing) {
  289. cur++;
  290. size += conf->strip_zone[cur].size;
  291. }
  292. size -= conf->hash_spacing;
  293. conf->hash_table[i] = conf->strip_zone + cur;
  294. }
  295. if (conf->preshift) {
  296. conf->hash_spacing >>= conf->preshift;
  297. /* round hash_spacing up so when we divide by it, we
  298. * err on the side of too-low, which is safest
  299. */
  300. conf->hash_spacing++;
  301. }
  302. /* calculate the max read-ahead size.
  303. * For read-ahead of large files to be effective, we need to
  304. * readahead at least twice a whole stripe. i.e. number of devices
  305. * multiplied by chunk size times 2.
  306. * If an individual device has an ra_pages greater than the
  307. * chunk size, then we will not drive that device as hard as it
  308. * wants. We consider this a configuration error: a larger
  309. * chunksize should be used in that case.
  310. */
  311. {
  312. int stripe = mddev->raid_disks * mddev->chunk_size / PAGE_SIZE;
  313. if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
  314. mddev->queue->backing_dev_info.ra_pages = 2* stripe;
  315. }
  316. blk_queue_merge_bvec(mddev->queue, raid0_mergeable_bvec);
  317. return 0;
  318. out_free_conf:
  319. kfree(conf->strip_zone);
  320. kfree(conf->devlist);
  321. kfree(conf);
  322. mddev->private = NULL;
  323. out:
  324. return -ENOMEM;
  325. }
  326. static int raid0_stop (mddev_t *mddev)
  327. {
  328. raid0_conf_t *conf = mddev_to_conf(mddev);
  329. blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
  330. kfree(conf->hash_table);
  331. conf->hash_table = NULL;
  332. kfree(conf->strip_zone);
  333. conf->strip_zone = NULL;
  334. kfree(conf);
  335. mddev->private = NULL;
  336. return 0;
  337. }
  338. static int raid0_make_request (struct request_queue *q, struct bio *bio)
  339. {
  340. mddev_t *mddev = q->queuedata;
  341. unsigned int sect_in_chunk, chunksize_bits, chunk_size, chunk_sects;
  342. raid0_conf_t *conf = mddev_to_conf(mddev);
  343. struct strip_zone *zone;
  344. mdk_rdev_t *tmp_dev;
  345. sector_t chunk;
  346. sector_t block, rsect;
  347. const int rw = bio_data_dir(bio);
  348. if (unlikely(bio_barrier(bio))) {
  349. bio_endio(bio, -EOPNOTSUPP);
  350. return 0;
  351. }
  352. disk_stat_inc(mddev->gendisk, ios[rw]);
  353. disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
  354. chunk_size = mddev->chunk_size >> 10;
  355. chunk_sects = mddev->chunk_size >> 9;
  356. chunksize_bits = ffz(~chunk_size);
  357. block = bio->bi_sector >> 1;
  358. if (unlikely(chunk_sects < (bio->bi_sector & (chunk_sects - 1)) + (bio->bi_size >> 9))) {
  359. struct bio_pair *bp;
  360. /* Sanity check -- queue functions should prevent this happening */
  361. if (bio->bi_vcnt != 1 ||
  362. bio->bi_idx != 0)
  363. goto bad_map;
  364. /* This is a one page bio that upper layers
  365. * refuse to split for us, so we need to split it.
  366. */
  367. bp = bio_split(bio, bio_split_pool, chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
  368. if (raid0_make_request(q, &bp->bio1))
  369. generic_make_request(&bp->bio1);
  370. if (raid0_make_request(q, &bp->bio2))
  371. generic_make_request(&bp->bio2);
  372. bio_pair_release(bp);
  373. return 0;
  374. }
  375. {
  376. sector_t x = block >> conf->preshift;
  377. sector_div(x, (u32)conf->hash_spacing);
  378. zone = conf->hash_table[x];
  379. }
  380. while (block >= (zone->zone_offset + zone->size))
  381. zone++;
  382. sect_in_chunk = bio->bi_sector & ((chunk_size<<1) -1);
  383. {
  384. sector_t x = (block - zone->zone_offset) >> chunksize_bits;
  385. sector_div(x, zone->nb_dev);
  386. chunk = x;
  387. x = block >> chunksize_bits;
  388. tmp_dev = zone->dev[sector_div(x, zone->nb_dev)];
  389. }
  390. rsect = (((chunk << chunksize_bits) + zone->dev_offset)<<1)
  391. + sect_in_chunk;
  392. bio->bi_bdev = tmp_dev->bdev;
  393. bio->bi_sector = rsect + tmp_dev->data_offset;
  394. /*
  395. * Let the main block layer submit the IO and resolve recursion:
  396. */
  397. return 1;
  398. bad_map:
  399. printk("raid0_make_request bug: can't convert block across chunks"
  400. " or bigger than %dk %llu %d\n", chunk_size,
  401. (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
  402. bio_io_error(bio);
  403. return 0;
  404. }
  405. static void raid0_status (struct seq_file *seq, mddev_t *mddev)
  406. {
  407. #undef MD_DEBUG
  408. #ifdef MD_DEBUG
  409. int j, k, h;
  410. char b[BDEVNAME_SIZE];
  411. raid0_conf_t *conf = mddev_to_conf(mddev);
  412. h = 0;
  413. for (j = 0; j < conf->nr_strip_zones; j++) {
  414. seq_printf(seq, " z%d", j);
  415. if (conf->hash_table[h] == conf->strip_zone+j)
  416. seq_printf(seq, "(h%d)", h++);
  417. seq_printf(seq, "=[");
  418. for (k = 0; k < conf->strip_zone[j].nb_dev; k++)
  419. seq_printf(seq, "%s/", bdevname(
  420. conf->strip_zone[j].dev[k]->bdev,b));
  421. seq_printf(seq, "] zo=%d do=%d s=%d\n",
  422. conf->strip_zone[j].zone_offset,
  423. conf->strip_zone[j].dev_offset,
  424. conf->strip_zone[j].size);
  425. }
  426. #endif
  427. seq_printf(seq, " %dk chunks", mddev->chunk_size/1024);
  428. return;
  429. }
  430. static struct mdk_personality raid0_personality=
  431. {
  432. .name = "raid0",
  433. .level = 0,
  434. .owner = THIS_MODULE,
  435. .make_request = raid0_make_request,
  436. .run = raid0_run,
  437. .stop = raid0_stop,
  438. .status = raid0_status,
  439. };
  440. static int __init raid0_init (void)
  441. {
  442. return register_md_personality (&raid0_personality);
  443. }
  444. static void raid0_exit (void)
  445. {
  446. unregister_md_personality (&raid0_personality);
  447. }
  448. module_init(raid0_init);
  449. module_exit(raid0_exit);
  450. MODULE_LICENSE("GPL");
  451. MODULE_ALIAS("md-personality-2"); /* RAID0 */
  452. MODULE_ALIAS("md-raid0");
  453. MODULE_ALIAS("md-level-0");