md.c 152 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/module.h>
  27. #include <linux/kernel.h>
  28. #include <linux/kthread.h>
  29. #include <linux/linkage.h>
  30. #include <linux/raid/md.h>
  31. #include <linux/raid/bitmap.h>
  32. #include <linux/sysctl.h>
  33. #include <linux/buffer_head.h> /* for invalidate_bdev */
  34. #include <linux/poll.h>
  35. #include <linux/mutex.h>
  36. #include <linux/ctype.h>
  37. #include <linux/freezer.h>
  38. #include <linux/init.h>
  39. #include <linux/file.h>
  40. #ifdef CONFIG_KMOD
  41. #include <linux/kmod.h>
  42. #endif
  43. #include <asm/unaligned.h>
  44. #define MAJOR_NR MD_MAJOR
  45. #define MD_DRIVER
  46. /* 63 partitions with the alternate major number (mdp) */
  47. #define MdpMinorShift 6
  48. #define DEBUG 0
  49. #define dprintk(x...) ((void)(DEBUG && printk(x)))
  50. #ifndef MODULE
  51. static void autostart_arrays (int part);
  52. #endif
  53. static LIST_HEAD(pers_list);
  54. static DEFINE_SPINLOCK(pers_lock);
  55. static void md_print_devices(void);
  56. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  57. /*
  58. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  59. * is 1000 KB/sec, so the extra system load does not show up that much.
  60. * Increase it if you want to have more _guaranteed_ speed. Note that
  61. * the RAID driver will use the maximum available bandwidth if the IO
  62. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  63. * speed limit - in case reconstruction slows down your system despite
  64. * idle IO detection.
  65. *
  66. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  67. * or /sys/block/mdX/md/sync_speed_{min,max}
  68. */
  69. static int sysctl_speed_limit_min = 1000;
  70. static int sysctl_speed_limit_max = 200000;
  71. static inline int speed_min(mddev_t *mddev)
  72. {
  73. return mddev->sync_speed_min ?
  74. mddev->sync_speed_min : sysctl_speed_limit_min;
  75. }
  76. static inline int speed_max(mddev_t *mddev)
  77. {
  78. return mddev->sync_speed_max ?
  79. mddev->sync_speed_max : sysctl_speed_limit_max;
  80. }
  81. static struct ctl_table_header *raid_table_header;
  82. static ctl_table raid_table[] = {
  83. {
  84. .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
  85. .procname = "speed_limit_min",
  86. .data = &sysctl_speed_limit_min,
  87. .maxlen = sizeof(int),
  88. .mode = S_IRUGO|S_IWUSR,
  89. .proc_handler = &proc_dointvec,
  90. },
  91. {
  92. .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
  93. .procname = "speed_limit_max",
  94. .data = &sysctl_speed_limit_max,
  95. .maxlen = sizeof(int),
  96. .mode = S_IRUGO|S_IWUSR,
  97. .proc_handler = &proc_dointvec,
  98. },
  99. { .ctl_name = 0 }
  100. };
  101. static ctl_table raid_dir_table[] = {
  102. {
  103. .ctl_name = DEV_RAID,
  104. .procname = "raid",
  105. .maxlen = 0,
  106. .mode = S_IRUGO|S_IXUGO,
  107. .child = raid_table,
  108. },
  109. { .ctl_name = 0 }
  110. };
  111. static ctl_table raid_root_table[] = {
  112. {
  113. .ctl_name = CTL_DEV,
  114. .procname = "dev",
  115. .maxlen = 0,
  116. .mode = 0555,
  117. .child = raid_dir_table,
  118. },
  119. { .ctl_name = 0 }
  120. };
  121. static struct block_device_operations md_fops;
  122. static int start_readonly;
  123. /*
  124. * We have a system wide 'event count' that is incremented
  125. * on any 'interesting' event, and readers of /proc/mdstat
  126. * can use 'poll' or 'select' to find out when the event
  127. * count increases.
  128. *
  129. * Events are:
  130. * start array, stop array, error, add device, remove device,
  131. * start build, activate spare
  132. */
  133. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  134. static atomic_t md_event_count;
  135. void md_new_event(mddev_t *mddev)
  136. {
  137. atomic_inc(&md_event_count);
  138. wake_up(&md_event_waiters);
  139. sysfs_notify(&mddev->kobj, NULL, "sync_action");
  140. }
  141. EXPORT_SYMBOL_GPL(md_new_event);
  142. /* Alternate version that can be called from interrupts
  143. * when calling sysfs_notify isn't needed.
  144. */
  145. static void md_new_event_inintr(mddev_t *mddev)
  146. {
  147. atomic_inc(&md_event_count);
  148. wake_up(&md_event_waiters);
  149. }
  150. /*
  151. * Enables to iterate over all existing md arrays
  152. * all_mddevs_lock protects this list.
  153. */
  154. static LIST_HEAD(all_mddevs);
  155. static DEFINE_SPINLOCK(all_mddevs_lock);
  156. /*
  157. * iterates through all used mddevs in the system.
  158. * We take care to grab the all_mddevs_lock whenever navigating
  159. * the list, and to always hold a refcount when unlocked.
  160. * Any code which breaks out of this loop while own
  161. * a reference to the current mddev and must mddev_put it.
  162. */
  163. #define for_each_mddev(mddev,tmp) \
  164. \
  165. for (({ spin_lock(&all_mddevs_lock); \
  166. tmp = all_mddevs.next; \
  167. mddev = NULL;}); \
  168. ({ if (tmp != &all_mddevs) \
  169. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  170. spin_unlock(&all_mddevs_lock); \
  171. if (mddev) mddev_put(mddev); \
  172. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  173. tmp != &all_mddevs;}); \
  174. ({ spin_lock(&all_mddevs_lock); \
  175. tmp = tmp->next;}) \
  176. )
  177. static int md_fail_request (struct request_queue *q, struct bio *bio)
  178. {
  179. bio_io_error(bio);
  180. return 0;
  181. }
  182. static inline mddev_t *mddev_get(mddev_t *mddev)
  183. {
  184. atomic_inc(&mddev->active);
  185. return mddev;
  186. }
  187. static void mddev_put(mddev_t *mddev)
  188. {
  189. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  190. return;
  191. if (!mddev->raid_disks && list_empty(&mddev->disks)) {
  192. list_del(&mddev->all_mddevs);
  193. spin_unlock(&all_mddevs_lock);
  194. blk_cleanup_queue(mddev->queue);
  195. kobject_put(&mddev->kobj);
  196. } else
  197. spin_unlock(&all_mddevs_lock);
  198. }
  199. static mddev_t * mddev_find(dev_t unit)
  200. {
  201. mddev_t *mddev, *new = NULL;
  202. retry:
  203. spin_lock(&all_mddevs_lock);
  204. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  205. if (mddev->unit == unit) {
  206. mddev_get(mddev);
  207. spin_unlock(&all_mddevs_lock);
  208. kfree(new);
  209. return mddev;
  210. }
  211. if (new) {
  212. list_add(&new->all_mddevs, &all_mddevs);
  213. spin_unlock(&all_mddevs_lock);
  214. return new;
  215. }
  216. spin_unlock(&all_mddevs_lock);
  217. new = kzalloc(sizeof(*new), GFP_KERNEL);
  218. if (!new)
  219. return NULL;
  220. new->unit = unit;
  221. if (MAJOR(unit) == MD_MAJOR)
  222. new->md_minor = MINOR(unit);
  223. else
  224. new->md_minor = MINOR(unit) >> MdpMinorShift;
  225. mutex_init(&new->reconfig_mutex);
  226. INIT_LIST_HEAD(&new->disks);
  227. INIT_LIST_HEAD(&new->all_mddevs);
  228. init_timer(&new->safemode_timer);
  229. atomic_set(&new->active, 1);
  230. spin_lock_init(&new->write_lock);
  231. init_waitqueue_head(&new->sb_wait);
  232. new->reshape_position = MaxSector;
  233. new->resync_max = MaxSector;
  234. new->queue = blk_alloc_queue(GFP_KERNEL);
  235. if (!new->queue) {
  236. kfree(new);
  237. return NULL;
  238. }
  239. set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
  240. blk_queue_make_request(new->queue, md_fail_request);
  241. goto retry;
  242. }
  243. static inline int mddev_lock(mddev_t * mddev)
  244. {
  245. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  246. }
  247. static inline int mddev_trylock(mddev_t * mddev)
  248. {
  249. return mutex_trylock(&mddev->reconfig_mutex);
  250. }
  251. static inline void mddev_unlock(mddev_t * mddev)
  252. {
  253. mutex_unlock(&mddev->reconfig_mutex);
  254. md_wakeup_thread(mddev->thread);
  255. }
  256. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  257. {
  258. mdk_rdev_t * rdev;
  259. struct list_head *tmp;
  260. rdev_for_each(rdev, tmp, mddev) {
  261. if (rdev->desc_nr == nr)
  262. return rdev;
  263. }
  264. return NULL;
  265. }
  266. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  267. {
  268. struct list_head *tmp;
  269. mdk_rdev_t *rdev;
  270. rdev_for_each(rdev, tmp, mddev) {
  271. if (rdev->bdev->bd_dev == dev)
  272. return rdev;
  273. }
  274. return NULL;
  275. }
  276. static struct mdk_personality *find_pers(int level, char *clevel)
  277. {
  278. struct mdk_personality *pers;
  279. list_for_each_entry(pers, &pers_list, list) {
  280. if (level != LEVEL_NONE && pers->level == level)
  281. return pers;
  282. if (strcmp(pers->name, clevel)==0)
  283. return pers;
  284. }
  285. return NULL;
  286. }
  287. static inline sector_t calc_dev_sboffset(struct block_device *bdev)
  288. {
  289. sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  290. return MD_NEW_SIZE_BLOCKS(size);
  291. }
  292. static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
  293. {
  294. sector_t size;
  295. size = rdev->sb_offset;
  296. if (chunk_size)
  297. size &= ~((sector_t)chunk_size/1024 - 1);
  298. return size;
  299. }
  300. static int alloc_disk_sb(mdk_rdev_t * rdev)
  301. {
  302. if (rdev->sb_page)
  303. MD_BUG();
  304. rdev->sb_page = alloc_page(GFP_KERNEL);
  305. if (!rdev->sb_page) {
  306. printk(KERN_ALERT "md: out of memory.\n");
  307. return -EINVAL;
  308. }
  309. return 0;
  310. }
  311. static void free_disk_sb(mdk_rdev_t * rdev)
  312. {
  313. if (rdev->sb_page) {
  314. put_page(rdev->sb_page);
  315. rdev->sb_loaded = 0;
  316. rdev->sb_page = NULL;
  317. rdev->sb_offset = 0;
  318. rdev->size = 0;
  319. }
  320. }
  321. static void super_written(struct bio *bio, int error)
  322. {
  323. mdk_rdev_t *rdev = bio->bi_private;
  324. mddev_t *mddev = rdev->mddev;
  325. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  326. printk("md: super_written gets error=%d, uptodate=%d\n",
  327. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  328. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  329. md_error(mddev, rdev);
  330. }
  331. if (atomic_dec_and_test(&mddev->pending_writes))
  332. wake_up(&mddev->sb_wait);
  333. bio_put(bio);
  334. }
  335. static void super_written_barrier(struct bio *bio, int error)
  336. {
  337. struct bio *bio2 = bio->bi_private;
  338. mdk_rdev_t *rdev = bio2->bi_private;
  339. mddev_t *mddev = rdev->mddev;
  340. if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
  341. error == -EOPNOTSUPP) {
  342. unsigned long flags;
  343. /* barriers don't appear to be supported :-( */
  344. set_bit(BarriersNotsupp, &rdev->flags);
  345. mddev->barriers_work = 0;
  346. spin_lock_irqsave(&mddev->write_lock, flags);
  347. bio2->bi_next = mddev->biolist;
  348. mddev->biolist = bio2;
  349. spin_unlock_irqrestore(&mddev->write_lock, flags);
  350. wake_up(&mddev->sb_wait);
  351. bio_put(bio);
  352. } else {
  353. bio_put(bio2);
  354. bio->bi_private = rdev;
  355. super_written(bio, error);
  356. }
  357. }
  358. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  359. sector_t sector, int size, struct page *page)
  360. {
  361. /* write first size bytes of page to sector of rdev
  362. * Increment mddev->pending_writes before returning
  363. * and decrement it on completion, waking up sb_wait
  364. * if zero is reached.
  365. * If an error occurred, call md_error
  366. *
  367. * As we might need to resubmit the request if BIO_RW_BARRIER
  368. * causes ENOTSUPP, we allocate a spare bio...
  369. */
  370. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  371. int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
  372. bio->bi_bdev = rdev->bdev;
  373. bio->bi_sector = sector;
  374. bio_add_page(bio, page, size, 0);
  375. bio->bi_private = rdev;
  376. bio->bi_end_io = super_written;
  377. bio->bi_rw = rw;
  378. atomic_inc(&mddev->pending_writes);
  379. if (!test_bit(BarriersNotsupp, &rdev->flags)) {
  380. struct bio *rbio;
  381. rw |= (1<<BIO_RW_BARRIER);
  382. rbio = bio_clone(bio, GFP_NOIO);
  383. rbio->bi_private = bio;
  384. rbio->bi_end_io = super_written_barrier;
  385. submit_bio(rw, rbio);
  386. } else
  387. submit_bio(rw, bio);
  388. }
  389. void md_super_wait(mddev_t *mddev)
  390. {
  391. /* wait for all superblock writes that were scheduled to complete.
  392. * if any had to be retried (due to BARRIER problems), retry them
  393. */
  394. DEFINE_WAIT(wq);
  395. for(;;) {
  396. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  397. if (atomic_read(&mddev->pending_writes)==0)
  398. break;
  399. while (mddev->biolist) {
  400. struct bio *bio;
  401. spin_lock_irq(&mddev->write_lock);
  402. bio = mddev->biolist;
  403. mddev->biolist = bio->bi_next ;
  404. bio->bi_next = NULL;
  405. spin_unlock_irq(&mddev->write_lock);
  406. submit_bio(bio->bi_rw, bio);
  407. }
  408. schedule();
  409. }
  410. finish_wait(&mddev->sb_wait, &wq);
  411. }
  412. static void bi_complete(struct bio *bio, int error)
  413. {
  414. complete((struct completion*)bio->bi_private);
  415. }
  416. int sync_page_io(struct block_device *bdev, sector_t sector, int size,
  417. struct page *page, int rw)
  418. {
  419. struct bio *bio = bio_alloc(GFP_NOIO, 1);
  420. struct completion event;
  421. int ret;
  422. rw |= (1 << BIO_RW_SYNC);
  423. bio->bi_bdev = bdev;
  424. bio->bi_sector = sector;
  425. bio_add_page(bio, page, size, 0);
  426. init_completion(&event);
  427. bio->bi_private = &event;
  428. bio->bi_end_io = bi_complete;
  429. submit_bio(rw, bio);
  430. wait_for_completion(&event);
  431. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  432. bio_put(bio);
  433. return ret;
  434. }
  435. EXPORT_SYMBOL_GPL(sync_page_io);
  436. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  437. {
  438. char b[BDEVNAME_SIZE];
  439. if (!rdev->sb_page) {
  440. MD_BUG();
  441. return -EINVAL;
  442. }
  443. if (rdev->sb_loaded)
  444. return 0;
  445. if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
  446. goto fail;
  447. rdev->sb_loaded = 1;
  448. return 0;
  449. fail:
  450. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  451. bdevname(rdev->bdev,b));
  452. return -EINVAL;
  453. }
  454. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  455. {
  456. if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
  457. (sb1->set_uuid1 == sb2->set_uuid1) &&
  458. (sb1->set_uuid2 == sb2->set_uuid2) &&
  459. (sb1->set_uuid3 == sb2->set_uuid3))
  460. return 1;
  461. return 0;
  462. }
  463. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  464. {
  465. int ret;
  466. mdp_super_t *tmp1, *tmp2;
  467. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  468. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  469. if (!tmp1 || !tmp2) {
  470. ret = 0;
  471. printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
  472. goto abort;
  473. }
  474. *tmp1 = *sb1;
  475. *tmp2 = *sb2;
  476. /*
  477. * nr_disks is not constant
  478. */
  479. tmp1->nr_disks = 0;
  480. tmp2->nr_disks = 0;
  481. if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
  482. ret = 0;
  483. else
  484. ret = 1;
  485. abort:
  486. kfree(tmp1);
  487. kfree(tmp2);
  488. return ret;
  489. }
  490. static u32 md_csum_fold(u32 csum)
  491. {
  492. csum = (csum & 0xffff) + (csum >> 16);
  493. return (csum & 0xffff) + (csum >> 16);
  494. }
  495. static unsigned int calc_sb_csum(mdp_super_t * sb)
  496. {
  497. u64 newcsum = 0;
  498. u32 *sb32 = (u32*)sb;
  499. int i;
  500. unsigned int disk_csum, csum;
  501. disk_csum = sb->sb_csum;
  502. sb->sb_csum = 0;
  503. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  504. newcsum += sb32[i];
  505. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  506. #ifdef CONFIG_ALPHA
  507. /* This used to use csum_partial, which was wrong for several
  508. * reasons including that different results are returned on
  509. * different architectures. It isn't critical that we get exactly
  510. * the same return value as before (we always csum_fold before
  511. * testing, and that removes any differences). However as we
  512. * know that csum_partial always returned a 16bit value on
  513. * alphas, do a fold to maximise conformity to previous behaviour.
  514. */
  515. sb->sb_csum = md_csum_fold(disk_csum);
  516. #else
  517. sb->sb_csum = disk_csum;
  518. #endif
  519. return csum;
  520. }
  521. /*
  522. * Handle superblock details.
  523. * We want to be able to handle multiple superblock formats
  524. * so we have a common interface to them all, and an array of
  525. * different handlers.
  526. * We rely on user-space to write the initial superblock, and support
  527. * reading and updating of superblocks.
  528. * Interface methods are:
  529. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  530. * loads and validates a superblock on dev.
  531. * if refdev != NULL, compare superblocks on both devices
  532. * Return:
  533. * 0 - dev has a superblock that is compatible with refdev
  534. * 1 - dev has a superblock that is compatible and newer than refdev
  535. * so dev should be used as the refdev in future
  536. * -EINVAL superblock incompatible or invalid
  537. * -othererror e.g. -EIO
  538. *
  539. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  540. * Verify that dev is acceptable into mddev.
  541. * The first time, mddev->raid_disks will be 0, and data from
  542. * dev should be merged in. Subsequent calls check that dev
  543. * is new enough. Return 0 or -EINVAL
  544. *
  545. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  546. * Update the superblock for rdev with data in mddev
  547. * This does not write to disc.
  548. *
  549. */
  550. struct super_type {
  551. char *name;
  552. struct module *owner;
  553. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
  554. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  555. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  556. };
  557. /*
  558. * load_super for 0.90.0
  559. */
  560. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  561. {
  562. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  563. mdp_super_t *sb;
  564. int ret;
  565. sector_t sb_offset;
  566. /*
  567. * Calculate the position of the superblock,
  568. * it's at the end of the disk.
  569. *
  570. * It also happens to be a multiple of 4Kb.
  571. */
  572. sb_offset = calc_dev_sboffset(rdev->bdev);
  573. rdev->sb_offset = sb_offset;
  574. ret = read_disk_sb(rdev, MD_SB_BYTES);
  575. if (ret) return ret;
  576. ret = -EINVAL;
  577. bdevname(rdev->bdev, b);
  578. sb = (mdp_super_t*)page_address(rdev->sb_page);
  579. if (sb->md_magic != MD_SB_MAGIC) {
  580. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  581. b);
  582. goto abort;
  583. }
  584. if (sb->major_version != 0 ||
  585. sb->minor_version < 90 ||
  586. sb->minor_version > 91) {
  587. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  588. sb->major_version, sb->minor_version,
  589. b);
  590. goto abort;
  591. }
  592. if (sb->raid_disks <= 0)
  593. goto abort;
  594. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  595. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  596. b);
  597. goto abort;
  598. }
  599. rdev->preferred_minor = sb->md_minor;
  600. rdev->data_offset = 0;
  601. rdev->sb_size = MD_SB_BYTES;
  602. if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
  603. if (sb->level != 1 && sb->level != 4
  604. && sb->level != 5 && sb->level != 6
  605. && sb->level != 10) {
  606. /* FIXME use a better test */
  607. printk(KERN_WARNING
  608. "md: bitmaps not supported for this level.\n");
  609. goto abort;
  610. }
  611. }
  612. if (sb->level == LEVEL_MULTIPATH)
  613. rdev->desc_nr = -1;
  614. else
  615. rdev->desc_nr = sb->this_disk.number;
  616. if (refdev == 0)
  617. ret = 1;
  618. else {
  619. __u64 ev1, ev2;
  620. mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
  621. if (!uuid_equal(refsb, sb)) {
  622. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  623. b, bdevname(refdev->bdev,b2));
  624. goto abort;
  625. }
  626. if (!sb_equal(refsb, sb)) {
  627. printk(KERN_WARNING "md: %s has same UUID"
  628. " but different superblock to %s\n",
  629. b, bdevname(refdev->bdev, b2));
  630. goto abort;
  631. }
  632. ev1 = md_event(sb);
  633. ev2 = md_event(refsb);
  634. if (ev1 > ev2)
  635. ret = 1;
  636. else
  637. ret = 0;
  638. }
  639. rdev->size = calc_dev_size(rdev, sb->chunk_size);
  640. if (rdev->size < sb->size && sb->level > 1)
  641. /* "this cannot possibly happen" ... */
  642. ret = -EINVAL;
  643. abort:
  644. return ret;
  645. }
  646. /*
  647. * validate_super for 0.90.0
  648. */
  649. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  650. {
  651. mdp_disk_t *desc;
  652. mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
  653. __u64 ev1 = md_event(sb);
  654. rdev->raid_disk = -1;
  655. clear_bit(Faulty, &rdev->flags);
  656. clear_bit(In_sync, &rdev->flags);
  657. clear_bit(WriteMostly, &rdev->flags);
  658. clear_bit(BarriersNotsupp, &rdev->flags);
  659. if (mddev->raid_disks == 0) {
  660. mddev->major_version = 0;
  661. mddev->minor_version = sb->minor_version;
  662. mddev->patch_version = sb->patch_version;
  663. mddev->external = 0;
  664. mddev->chunk_size = sb->chunk_size;
  665. mddev->ctime = sb->ctime;
  666. mddev->utime = sb->utime;
  667. mddev->level = sb->level;
  668. mddev->clevel[0] = 0;
  669. mddev->layout = sb->layout;
  670. mddev->raid_disks = sb->raid_disks;
  671. mddev->size = sb->size;
  672. mddev->events = ev1;
  673. mddev->bitmap_offset = 0;
  674. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  675. if (mddev->minor_version >= 91) {
  676. mddev->reshape_position = sb->reshape_position;
  677. mddev->delta_disks = sb->delta_disks;
  678. mddev->new_level = sb->new_level;
  679. mddev->new_layout = sb->new_layout;
  680. mddev->new_chunk = sb->new_chunk;
  681. } else {
  682. mddev->reshape_position = MaxSector;
  683. mddev->delta_disks = 0;
  684. mddev->new_level = mddev->level;
  685. mddev->new_layout = mddev->layout;
  686. mddev->new_chunk = mddev->chunk_size;
  687. }
  688. if (sb->state & (1<<MD_SB_CLEAN))
  689. mddev->recovery_cp = MaxSector;
  690. else {
  691. if (sb->events_hi == sb->cp_events_hi &&
  692. sb->events_lo == sb->cp_events_lo) {
  693. mddev->recovery_cp = sb->recovery_cp;
  694. } else
  695. mddev->recovery_cp = 0;
  696. }
  697. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  698. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  699. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  700. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  701. mddev->max_disks = MD_SB_DISKS;
  702. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  703. mddev->bitmap_file == NULL)
  704. mddev->bitmap_offset = mddev->default_bitmap_offset;
  705. } else if (mddev->pers == NULL) {
  706. /* Insist on good event counter while assembling */
  707. ++ev1;
  708. if (ev1 < mddev->events)
  709. return -EINVAL;
  710. } else if (mddev->bitmap) {
  711. /* if adding to array with a bitmap, then we can accept an
  712. * older device ... but not too old.
  713. */
  714. if (ev1 < mddev->bitmap->events_cleared)
  715. return 0;
  716. } else {
  717. if (ev1 < mddev->events)
  718. /* just a hot-add of a new device, leave raid_disk at -1 */
  719. return 0;
  720. }
  721. if (mddev->level != LEVEL_MULTIPATH) {
  722. desc = sb->disks + rdev->desc_nr;
  723. if (desc->state & (1<<MD_DISK_FAULTY))
  724. set_bit(Faulty, &rdev->flags);
  725. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  726. desc->raid_disk < mddev->raid_disks */) {
  727. set_bit(In_sync, &rdev->flags);
  728. rdev->raid_disk = desc->raid_disk;
  729. }
  730. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  731. set_bit(WriteMostly, &rdev->flags);
  732. } else /* MULTIPATH are always insync */
  733. set_bit(In_sync, &rdev->flags);
  734. return 0;
  735. }
  736. /*
  737. * sync_super for 0.90.0
  738. */
  739. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  740. {
  741. mdp_super_t *sb;
  742. struct list_head *tmp;
  743. mdk_rdev_t *rdev2;
  744. int next_spare = mddev->raid_disks;
  745. /* make rdev->sb match mddev data..
  746. *
  747. * 1/ zero out disks
  748. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  749. * 3/ any empty disks < next_spare become removed
  750. *
  751. * disks[0] gets initialised to REMOVED because
  752. * we cannot be sure from other fields if it has
  753. * been initialised or not.
  754. */
  755. int i;
  756. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  757. rdev->sb_size = MD_SB_BYTES;
  758. sb = (mdp_super_t*)page_address(rdev->sb_page);
  759. memset(sb, 0, sizeof(*sb));
  760. sb->md_magic = MD_SB_MAGIC;
  761. sb->major_version = mddev->major_version;
  762. sb->patch_version = mddev->patch_version;
  763. sb->gvalid_words = 0; /* ignored */
  764. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  765. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  766. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  767. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  768. sb->ctime = mddev->ctime;
  769. sb->level = mddev->level;
  770. sb->size = mddev->size;
  771. sb->raid_disks = mddev->raid_disks;
  772. sb->md_minor = mddev->md_minor;
  773. sb->not_persistent = 0;
  774. sb->utime = mddev->utime;
  775. sb->state = 0;
  776. sb->events_hi = (mddev->events>>32);
  777. sb->events_lo = (u32)mddev->events;
  778. if (mddev->reshape_position == MaxSector)
  779. sb->minor_version = 90;
  780. else {
  781. sb->minor_version = 91;
  782. sb->reshape_position = mddev->reshape_position;
  783. sb->new_level = mddev->new_level;
  784. sb->delta_disks = mddev->delta_disks;
  785. sb->new_layout = mddev->new_layout;
  786. sb->new_chunk = mddev->new_chunk;
  787. }
  788. mddev->minor_version = sb->minor_version;
  789. if (mddev->in_sync)
  790. {
  791. sb->recovery_cp = mddev->recovery_cp;
  792. sb->cp_events_hi = (mddev->events>>32);
  793. sb->cp_events_lo = (u32)mddev->events;
  794. if (mddev->recovery_cp == MaxSector)
  795. sb->state = (1<< MD_SB_CLEAN);
  796. } else
  797. sb->recovery_cp = 0;
  798. sb->layout = mddev->layout;
  799. sb->chunk_size = mddev->chunk_size;
  800. if (mddev->bitmap && mddev->bitmap_file == NULL)
  801. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  802. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  803. rdev_for_each(rdev2, tmp, mddev) {
  804. mdp_disk_t *d;
  805. int desc_nr;
  806. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  807. && !test_bit(Faulty, &rdev2->flags))
  808. desc_nr = rdev2->raid_disk;
  809. else
  810. desc_nr = next_spare++;
  811. rdev2->desc_nr = desc_nr;
  812. d = &sb->disks[rdev2->desc_nr];
  813. nr_disks++;
  814. d->number = rdev2->desc_nr;
  815. d->major = MAJOR(rdev2->bdev->bd_dev);
  816. d->minor = MINOR(rdev2->bdev->bd_dev);
  817. if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
  818. && !test_bit(Faulty, &rdev2->flags))
  819. d->raid_disk = rdev2->raid_disk;
  820. else
  821. d->raid_disk = rdev2->desc_nr; /* compatibility */
  822. if (test_bit(Faulty, &rdev2->flags))
  823. d->state = (1<<MD_DISK_FAULTY);
  824. else if (test_bit(In_sync, &rdev2->flags)) {
  825. d->state = (1<<MD_DISK_ACTIVE);
  826. d->state |= (1<<MD_DISK_SYNC);
  827. active++;
  828. working++;
  829. } else {
  830. d->state = 0;
  831. spare++;
  832. working++;
  833. }
  834. if (test_bit(WriteMostly, &rdev2->flags))
  835. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  836. }
  837. /* now set the "removed" and "faulty" bits on any missing devices */
  838. for (i=0 ; i < mddev->raid_disks ; i++) {
  839. mdp_disk_t *d = &sb->disks[i];
  840. if (d->state == 0 && d->number == 0) {
  841. d->number = i;
  842. d->raid_disk = i;
  843. d->state = (1<<MD_DISK_REMOVED);
  844. d->state |= (1<<MD_DISK_FAULTY);
  845. failed++;
  846. }
  847. }
  848. sb->nr_disks = nr_disks;
  849. sb->active_disks = active;
  850. sb->working_disks = working;
  851. sb->failed_disks = failed;
  852. sb->spare_disks = spare;
  853. sb->this_disk = sb->disks[rdev->desc_nr];
  854. sb->sb_csum = calc_sb_csum(sb);
  855. }
  856. /*
  857. * version 1 superblock
  858. */
  859. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  860. {
  861. __le32 disk_csum;
  862. u32 csum;
  863. unsigned long long newcsum;
  864. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  865. __le32 *isuper = (__le32*)sb;
  866. int i;
  867. disk_csum = sb->sb_csum;
  868. sb->sb_csum = 0;
  869. newcsum = 0;
  870. for (i=0; size>=4; size -= 4 )
  871. newcsum += le32_to_cpu(*isuper++);
  872. if (size == 2)
  873. newcsum += le16_to_cpu(*(__le16*) isuper);
  874. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  875. sb->sb_csum = disk_csum;
  876. return cpu_to_le32(csum);
  877. }
  878. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  879. {
  880. struct mdp_superblock_1 *sb;
  881. int ret;
  882. sector_t sb_offset;
  883. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  884. int bmask;
  885. /*
  886. * Calculate the position of the superblock.
  887. * It is always aligned to a 4K boundary and
  888. * depeding on minor_version, it can be:
  889. * 0: At least 8K, but less than 12K, from end of device
  890. * 1: At start of device
  891. * 2: 4K from start of device.
  892. */
  893. switch(minor_version) {
  894. case 0:
  895. sb_offset = rdev->bdev->bd_inode->i_size >> 9;
  896. sb_offset -= 8*2;
  897. sb_offset &= ~(sector_t)(4*2-1);
  898. /* convert from sectors to K */
  899. sb_offset /= 2;
  900. break;
  901. case 1:
  902. sb_offset = 0;
  903. break;
  904. case 2:
  905. sb_offset = 4;
  906. break;
  907. default:
  908. return -EINVAL;
  909. }
  910. rdev->sb_offset = sb_offset;
  911. /* superblock is rarely larger than 1K, but it can be larger,
  912. * and it is safe to read 4k, so we do that
  913. */
  914. ret = read_disk_sb(rdev, 4096);
  915. if (ret) return ret;
  916. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  917. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  918. sb->major_version != cpu_to_le32(1) ||
  919. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  920. le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
  921. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  922. return -EINVAL;
  923. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  924. printk("md: invalid superblock checksum on %s\n",
  925. bdevname(rdev->bdev,b));
  926. return -EINVAL;
  927. }
  928. if (le64_to_cpu(sb->data_size) < 10) {
  929. printk("md: data_size too small on %s\n",
  930. bdevname(rdev->bdev,b));
  931. return -EINVAL;
  932. }
  933. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
  934. if (sb->level != cpu_to_le32(1) &&
  935. sb->level != cpu_to_le32(4) &&
  936. sb->level != cpu_to_le32(5) &&
  937. sb->level != cpu_to_le32(6) &&
  938. sb->level != cpu_to_le32(10)) {
  939. printk(KERN_WARNING
  940. "md: bitmaps not supported for this level.\n");
  941. return -EINVAL;
  942. }
  943. }
  944. rdev->preferred_minor = 0xffff;
  945. rdev->data_offset = le64_to_cpu(sb->data_offset);
  946. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  947. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  948. bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
  949. if (rdev->sb_size & bmask)
  950. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  951. if (minor_version
  952. && rdev->data_offset < sb_offset + (rdev->sb_size/512))
  953. return -EINVAL;
  954. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  955. rdev->desc_nr = -1;
  956. else
  957. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  958. if (refdev == 0)
  959. ret = 1;
  960. else {
  961. __u64 ev1, ev2;
  962. struct mdp_superblock_1 *refsb =
  963. (struct mdp_superblock_1*)page_address(refdev->sb_page);
  964. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  965. sb->level != refsb->level ||
  966. sb->layout != refsb->layout ||
  967. sb->chunksize != refsb->chunksize) {
  968. printk(KERN_WARNING "md: %s has strangely different"
  969. " superblock to %s\n",
  970. bdevname(rdev->bdev,b),
  971. bdevname(refdev->bdev,b2));
  972. return -EINVAL;
  973. }
  974. ev1 = le64_to_cpu(sb->events);
  975. ev2 = le64_to_cpu(refsb->events);
  976. if (ev1 > ev2)
  977. ret = 1;
  978. else
  979. ret = 0;
  980. }
  981. if (minor_version)
  982. rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
  983. else
  984. rdev->size = rdev->sb_offset;
  985. if (rdev->size < le64_to_cpu(sb->data_size)/2)
  986. return -EINVAL;
  987. rdev->size = le64_to_cpu(sb->data_size)/2;
  988. if (le32_to_cpu(sb->chunksize))
  989. rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
  990. if (le64_to_cpu(sb->size) > rdev->size*2)
  991. return -EINVAL;
  992. return ret;
  993. }
  994. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  995. {
  996. struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  997. __u64 ev1 = le64_to_cpu(sb->events);
  998. rdev->raid_disk = -1;
  999. clear_bit(Faulty, &rdev->flags);
  1000. clear_bit(In_sync, &rdev->flags);
  1001. clear_bit(WriteMostly, &rdev->flags);
  1002. clear_bit(BarriersNotsupp, &rdev->flags);
  1003. if (mddev->raid_disks == 0) {
  1004. mddev->major_version = 1;
  1005. mddev->patch_version = 0;
  1006. mddev->external = 0;
  1007. mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
  1008. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1009. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1010. mddev->level = le32_to_cpu(sb->level);
  1011. mddev->clevel[0] = 0;
  1012. mddev->layout = le32_to_cpu(sb->layout);
  1013. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1014. mddev->size = le64_to_cpu(sb->size)/2;
  1015. mddev->events = ev1;
  1016. mddev->bitmap_offset = 0;
  1017. mddev->default_bitmap_offset = 1024 >> 9;
  1018. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1019. memcpy(mddev->uuid, sb->set_uuid, 16);
  1020. mddev->max_disks = (4096-256)/2;
  1021. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1022. mddev->bitmap_file == NULL )
  1023. mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
  1024. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1025. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1026. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1027. mddev->new_level = le32_to_cpu(sb->new_level);
  1028. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1029. mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
  1030. } else {
  1031. mddev->reshape_position = MaxSector;
  1032. mddev->delta_disks = 0;
  1033. mddev->new_level = mddev->level;
  1034. mddev->new_layout = mddev->layout;
  1035. mddev->new_chunk = mddev->chunk_size;
  1036. }
  1037. } else if (mddev->pers == NULL) {
  1038. /* Insist of good event counter while assembling */
  1039. ++ev1;
  1040. if (ev1 < mddev->events)
  1041. return -EINVAL;
  1042. } else if (mddev->bitmap) {
  1043. /* If adding to array with a bitmap, then we can accept an
  1044. * older device, but not too old.
  1045. */
  1046. if (ev1 < mddev->bitmap->events_cleared)
  1047. return 0;
  1048. } else {
  1049. if (ev1 < mddev->events)
  1050. /* just a hot-add of a new device, leave raid_disk at -1 */
  1051. return 0;
  1052. }
  1053. if (mddev->level != LEVEL_MULTIPATH) {
  1054. int role;
  1055. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1056. switch(role) {
  1057. case 0xffff: /* spare */
  1058. break;
  1059. case 0xfffe: /* faulty */
  1060. set_bit(Faulty, &rdev->flags);
  1061. break;
  1062. default:
  1063. if ((le32_to_cpu(sb->feature_map) &
  1064. MD_FEATURE_RECOVERY_OFFSET))
  1065. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1066. else
  1067. set_bit(In_sync, &rdev->flags);
  1068. rdev->raid_disk = role;
  1069. break;
  1070. }
  1071. if (sb->devflags & WriteMostly1)
  1072. set_bit(WriteMostly, &rdev->flags);
  1073. } else /* MULTIPATH are always insync */
  1074. set_bit(In_sync, &rdev->flags);
  1075. return 0;
  1076. }
  1077. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1078. {
  1079. struct mdp_superblock_1 *sb;
  1080. struct list_head *tmp;
  1081. mdk_rdev_t *rdev2;
  1082. int max_dev, i;
  1083. /* make rdev->sb match mddev and rdev data. */
  1084. sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
  1085. sb->feature_map = 0;
  1086. sb->pad0 = 0;
  1087. sb->recovery_offset = cpu_to_le64(0);
  1088. memset(sb->pad1, 0, sizeof(sb->pad1));
  1089. memset(sb->pad2, 0, sizeof(sb->pad2));
  1090. memset(sb->pad3, 0, sizeof(sb->pad3));
  1091. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1092. sb->events = cpu_to_le64(mddev->events);
  1093. if (mddev->in_sync)
  1094. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1095. else
  1096. sb->resync_offset = cpu_to_le64(0);
  1097. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1098. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1099. sb->size = cpu_to_le64(mddev->size<<1);
  1100. if (mddev->bitmap && mddev->bitmap_file == NULL) {
  1101. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
  1102. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1103. }
  1104. if (rdev->raid_disk >= 0 &&
  1105. !test_bit(In_sync, &rdev->flags) &&
  1106. rdev->recovery_offset > 0) {
  1107. sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1108. sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
  1109. }
  1110. if (mddev->reshape_position != MaxSector) {
  1111. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1112. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1113. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1114. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1115. sb->new_level = cpu_to_le32(mddev->new_level);
  1116. sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
  1117. }
  1118. max_dev = 0;
  1119. rdev_for_each(rdev2, tmp, mddev)
  1120. if (rdev2->desc_nr+1 > max_dev)
  1121. max_dev = rdev2->desc_nr+1;
  1122. if (max_dev > le32_to_cpu(sb->max_dev))
  1123. sb->max_dev = cpu_to_le32(max_dev);
  1124. for (i=0; i<max_dev;i++)
  1125. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1126. rdev_for_each(rdev2, tmp, mddev) {
  1127. i = rdev2->desc_nr;
  1128. if (test_bit(Faulty, &rdev2->flags))
  1129. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1130. else if (test_bit(In_sync, &rdev2->flags))
  1131. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1132. else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
  1133. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1134. else
  1135. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1136. }
  1137. sb->sb_csum = calc_sb_1_csum(sb);
  1138. }
  1139. static struct super_type super_types[] = {
  1140. [0] = {
  1141. .name = "0.90.0",
  1142. .owner = THIS_MODULE,
  1143. .load_super = super_90_load,
  1144. .validate_super = super_90_validate,
  1145. .sync_super = super_90_sync,
  1146. },
  1147. [1] = {
  1148. .name = "md-1",
  1149. .owner = THIS_MODULE,
  1150. .load_super = super_1_load,
  1151. .validate_super = super_1_validate,
  1152. .sync_super = super_1_sync,
  1153. },
  1154. };
  1155. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1156. {
  1157. struct list_head *tmp, *tmp2;
  1158. mdk_rdev_t *rdev, *rdev2;
  1159. rdev_for_each(rdev, tmp, mddev1)
  1160. rdev_for_each(rdev2, tmp2, mddev2)
  1161. if (rdev->bdev->bd_contains ==
  1162. rdev2->bdev->bd_contains)
  1163. return 1;
  1164. return 0;
  1165. }
  1166. static LIST_HEAD(pending_raid_disks);
  1167. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1168. {
  1169. char b[BDEVNAME_SIZE];
  1170. struct kobject *ko;
  1171. char *s;
  1172. int err;
  1173. if (rdev->mddev) {
  1174. MD_BUG();
  1175. return -EINVAL;
  1176. }
  1177. /* make sure rdev->size exceeds mddev->size */
  1178. if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
  1179. if (mddev->pers) {
  1180. /* Cannot change size, so fail
  1181. * If mddev->level <= 0, then we don't care
  1182. * about aligning sizes (e.g. linear)
  1183. */
  1184. if (mddev->level > 0)
  1185. return -ENOSPC;
  1186. } else
  1187. mddev->size = rdev->size;
  1188. }
  1189. /* Verify rdev->desc_nr is unique.
  1190. * If it is -1, assign a free number, else
  1191. * check number is not in use
  1192. */
  1193. if (rdev->desc_nr < 0) {
  1194. int choice = 0;
  1195. if (mddev->pers) choice = mddev->raid_disks;
  1196. while (find_rdev_nr(mddev, choice))
  1197. choice++;
  1198. rdev->desc_nr = choice;
  1199. } else {
  1200. if (find_rdev_nr(mddev, rdev->desc_nr))
  1201. return -EBUSY;
  1202. }
  1203. bdevname(rdev->bdev,b);
  1204. while ( (s=strchr(b, '/')) != NULL)
  1205. *s = '!';
  1206. rdev->mddev = mddev;
  1207. printk(KERN_INFO "md: bind<%s>\n", b);
  1208. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1209. goto fail;
  1210. if (rdev->bdev->bd_part)
  1211. ko = &rdev->bdev->bd_part->dev.kobj;
  1212. else
  1213. ko = &rdev->bdev->bd_disk->dev.kobj;
  1214. if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
  1215. kobject_del(&rdev->kobj);
  1216. goto fail;
  1217. }
  1218. list_add(&rdev->same_set, &mddev->disks);
  1219. bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
  1220. return 0;
  1221. fail:
  1222. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1223. b, mdname(mddev));
  1224. return err;
  1225. }
  1226. static void md_delayed_delete(struct work_struct *ws)
  1227. {
  1228. mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
  1229. kobject_del(&rdev->kobj);
  1230. kobject_put(&rdev->kobj);
  1231. }
  1232. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1233. {
  1234. char b[BDEVNAME_SIZE];
  1235. if (!rdev->mddev) {
  1236. MD_BUG();
  1237. return;
  1238. }
  1239. bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
  1240. list_del_init(&rdev->same_set);
  1241. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1242. rdev->mddev = NULL;
  1243. sysfs_remove_link(&rdev->kobj, "block");
  1244. /* We need to delay this, otherwise we can deadlock when
  1245. * writing to 'remove' to "dev/state"
  1246. */
  1247. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1248. kobject_get(&rdev->kobj);
  1249. schedule_work(&rdev->del_work);
  1250. }
  1251. /*
  1252. * prevent the device from being mounted, repartitioned or
  1253. * otherwise reused by a RAID array (or any other kernel
  1254. * subsystem), by bd_claiming the device.
  1255. */
  1256. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
  1257. {
  1258. int err = 0;
  1259. struct block_device *bdev;
  1260. char b[BDEVNAME_SIZE];
  1261. bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
  1262. if (IS_ERR(bdev)) {
  1263. printk(KERN_ERR "md: could not open %s.\n",
  1264. __bdevname(dev, b));
  1265. return PTR_ERR(bdev);
  1266. }
  1267. err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
  1268. if (err) {
  1269. printk(KERN_ERR "md: could not bd_claim %s.\n",
  1270. bdevname(bdev, b));
  1271. blkdev_put(bdev);
  1272. return err;
  1273. }
  1274. if (!shared)
  1275. set_bit(AllReserved, &rdev->flags);
  1276. rdev->bdev = bdev;
  1277. return err;
  1278. }
  1279. static void unlock_rdev(mdk_rdev_t *rdev)
  1280. {
  1281. struct block_device *bdev = rdev->bdev;
  1282. rdev->bdev = NULL;
  1283. if (!bdev)
  1284. MD_BUG();
  1285. bd_release(bdev);
  1286. blkdev_put(bdev);
  1287. }
  1288. void md_autodetect_dev(dev_t dev);
  1289. static void export_rdev(mdk_rdev_t * rdev)
  1290. {
  1291. char b[BDEVNAME_SIZE];
  1292. printk(KERN_INFO "md: export_rdev(%s)\n",
  1293. bdevname(rdev->bdev,b));
  1294. if (rdev->mddev)
  1295. MD_BUG();
  1296. free_disk_sb(rdev);
  1297. list_del_init(&rdev->same_set);
  1298. #ifndef MODULE
  1299. if (test_bit(AutoDetected, &rdev->flags))
  1300. md_autodetect_dev(rdev->bdev->bd_dev);
  1301. #endif
  1302. unlock_rdev(rdev);
  1303. kobject_put(&rdev->kobj);
  1304. }
  1305. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1306. {
  1307. unbind_rdev_from_array(rdev);
  1308. export_rdev(rdev);
  1309. }
  1310. static void export_array(mddev_t *mddev)
  1311. {
  1312. struct list_head *tmp;
  1313. mdk_rdev_t *rdev;
  1314. rdev_for_each(rdev, tmp, mddev) {
  1315. if (!rdev->mddev) {
  1316. MD_BUG();
  1317. continue;
  1318. }
  1319. kick_rdev_from_array(rdev);
  1320. }
  1321. if (!list_empty(&mddev->disks))
  1322. MD_BUG();
  1323. mddev->raid_disks = 0;
  1324. mddev->major_version = 0;
  1325. }
  1326. static void print_desc(mdp_disk_t *desc)
  1327. {
  1328. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1329. desc->major,desc->minor,desc->raid_disk,desc->state);
  1330. }
  1331. static void print_sb(mdp_super_t *sb)
  1332. {
  1333. int i;
  1334. printk(KERN_INFO
  1335. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1336. sb->major_version, sb->minor_version, sb->patch_version,
  1337. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1338. sb->ctime);
  1339. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1340. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1341. sb->md_minor, sb->layout, sb->chunk_size);
  1342. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1343. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1344. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1345. sb->failed_disks, sb->spare_disks,
  1346. sb->sb_csum, (unsigned long)sb->events_lo);
  1347. printk(KERN_INFO);
  1348. for (i = 0; i < MD_SB_DISKS; i++) {
  1349. mdp_disk_t *desc;
  1350. desc = sb->disks + i;
  1351. if (desc->number || desc->major || desc->minor ||
  1352. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1353. printk(" D %2d: ", i);
  1354. print_desc(desc);
  1355. }
  1356. }
  1357. printk(KERN_INFO "md: THIS: ");
  1358. print_desc(&sb->this_disk);
  1359. }
  1360. static void print_rdev(mdk_rdev_t *rdev)
  1361. {
  1362. char b[BDEVNAME_SIZE];
  1363. printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
  1364. bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
  1365. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  1366. rdev->desc_nr);
  1367. if (rdev->sb_loaded) {
  1368. printk(KERN_INFO "md: rdev superblock:\n");
  1369. print_sb((mdp_super_t*)page_address(rdev->sb_page));
  1370. } else
  1371. printk(KERN_INFO "md: no rdev superblock!\n");
  1372. }
  1373. static void md_print_devices(void)
  1374. {
  1375. struct list_head *tmp, *tmp2;
  1376. mdk_rdev_t *rdev;
  1377. mddev_t *mddev;
  1378. char b[BDEVNAME_SIZE];
  1379. printk("\n");
  1380. printk("md: **********************************\n");
  1381. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  1382. printk("md: **********************************\n");
  1383. for_each_mddev(mddev, tmp) {
  1384. if (mddev->bitmap)
  1385. bitmap_print_sb(mddev->bitmap);
  1386. else
  1387. printk("%s: ", mdname(mddev));
  1388. rdev_for_each(rdev, tmp2, mddev)
  1389. printk("<%s>", bdevname(rdev->bdev,b));
  1390. printk("\n");
  1391. rdev_for_each(rdev, tmp2, mddev)
  1392. print_rdev(rdev);
  1393. }
  1394. printk("md: **********************************\n");
  1395. printk("\n");
  1396. }
  1397. static void sync_sbs(mddev_t * mddev, int nospares)
  1398. {
  1399. /* Update each superblock (in-memory image), but
  1400. * if we are allowed to, skip spares which already
  1401. * have the right event counter, or have one earlier
  1402. * (which would mean they aren't being marked as dirty
  1403. * with the rest of the array)
  1404. */
  1405. mdk_rdev_t *rdev;
  1406. struct list_head *tmp;
  1407. rdev_for_each(rdev, tmp, mddev) {
  1408. if (rdev->sb_events == mddev->events ||
  1409. (nospares &&
  1410. rdev->raid_disk < 0 &&
  1411. (rdev->sb_events&1)==0 &&
  1412. rdev->sb_events+1 == mddev->events)) {
  1413. /* Don't update this superblock */
  1414. rdev->sb_loaded = 2;
  1415. } else {
  1416. super_types[mddev->major_version].
  1417. sync_super(mddev, rdev);
  1418. rdev->sb_loaded = 1;
  1419. }
  1420. }
  1421. }
  1422. static void md_update_sb(mddev_t * mddev, int force_change)
  1423. {
  1424. struct list_head *tmp;
  1425. mdk_rdev_t *rdev;
  1426. int sync_req;
  1427. int nospares = 0;
  1428. repeat:
  1429. spin_lock_irq(&mddev->write_lock);
  1430. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  1431. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  1432. force_change = 1;
  1433. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  1434. /* just a clean<-> dirty transition, possibly leave spares alone,
  1435. * though if events isn't the right even/odd, we will have to do
  1436. * spares after all
  1437. */
  1438. nospares = 1;
  1439. if (force_change)
  1440. nospares = 0;
  1441. if (mddev->degraded)
  1442. /* If the array is degraded, then skipping spares is both
  1443. * dangerous and fairly pointless.
  1444. * Dangerous because a device that was removed from the array
  1445. * might have a event_count that still looks up-to-date,
  1446. * so it can be re-added without a resync.
  1447. * Pointless because if there are any spares to skip,
  1448. * then a recovery will happen and soon that array won't
  1449. * be degraded any more and the spare can go back to sleep then.
  1450. */
  1451. nospares = 0;
  1452. sync_req = mddev->in_sync;
  1453. mddev->utime = get_seconds();
  1454. /* If this is just a dirty<->clean transition, and the array is clean
  1455. * and 'events' is odd, we can roll back to the previous clean state */
  1456. if (nospares
  1457. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  1458. && (mddev->events & 1)
  1459. && mddev->events != 1)
  1460. mddev->events--;
  1461. else {
  1462. /* otherwise we have to go forward and ... */
  1463. mddev->events ++;
  1464. if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
  1465. /* .. if the array isn't clean, insist on an odd 'events' */
  1466. if ((mddev->events&1)==0) {
  1467. mddev->events++;
  1468. nospares = 0;
  1469. }
  1470. } else {
  1471. /* otherwise insist on an even 'events' (for clean states) */
  1472. if ((mddev->events&1)) {
  1473. mddev->events++;
  1474. nospares = 0;
  1475. }
  1476. }
  1477. }
  1478. if (!mddev->events) {
  1479. /*
  1480. * oops, this 64-bit counter should never wrap.
  1481. * Either we are in around ~1 trillion A.C., assuming
  1482. * 1 reboot per second, or we have a bug:
  1483. */
  1484. MD_BUG();
  1485. mddev->events --;
  1486. }
  1487. /*
  1488. * do not write anything to disk if using
  1489. * nonpersistent superblocks
  1490. */
  1491. if (!mddev->persistent) {
  1492. if (!mddev->external)
  1493. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1494. spin_unlock_irq(&mddev->write_lock);
  1495. wake_up(&mddev->sb_wait);
  1496. return;
  1497. }
  1498. sync_sbs(mddev, nospares);
  1499. spin_unlock_irq(&mddev->write_lock);
  1500. dprintk(KERN_INFO
  1501. "md: updating %s RAID superblock on device (in sync %d)\n",
  1502. mdname(mddev),mddev->in_sync);
  1503. bitmap_update_sb(mddev->bitmap);
  1504. rdev_for_each(rdev, tmp, mddev) {
  1505. char b[BDEVNAME_SIZE];
  1506. dprintk(KERN_INFO "md: ");
  1507. if (rdev->sb_loaded != 1)
  1508. continue; /* no noise on spare devices */
  1509. if (test_bit(Faulty, &rdev->flags))
  1510. dprintk("(skipping faulty ");
  1511. dprintk("%s ", bdevname(rdev->bdev,b));
  1512. if (!test_bit(Faulty, &rdev->flags)) {
  1513. md_super_write(mddev,rdev,
  1514. rdev->sb_offset<<1, rdev->sb_size,
  1515. rdev->sb_page);
  1516. dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
  1517. bdevname(rdev->bdev,b),
  1518. (unsigned long long)rdev->sb_offset);
  1519. rdev->sb_events = mddev->events;
  1520. } else
  1521. dprintk(")\n");
  1522. if (mddev->level == LEVEL_MULTIPATH)
  1523. /* only need to write one superblock... */
  1524. break;
  1525. }
  1526. md_super_wait(mddev);
  1527. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  1528. spin_lock_irq(&mddev->write_lock);
  1529. if (mddev->in_sync != sync_req ||
  1530. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  1531. /* have to write it out again */
  1532. spin_unlock_irq(&mddev->write_lock);
  1533. goto repeat;
  1534. }
  1535. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  1536. spin_unlock_irq(&mddev->write_lock);
  1537. wake_up(&mddev->sb_wait);
  1538. }
  1539. /* words written to sysfs files may, or my not, be \n terminated.
  1540. * We want to accept with case. For this we use cmd_match.
  1541. */
  1542. static int cmd_match(const char *cmd, const char *str)
  1543. {
  1544. /* See if cmd, written into a sysfs file, matches
  1545. * str. They must either be the same, or cmd can
  1546. * have a trailing newline
  1547. */
  1548. while (*cmd && *str && *cmd == *str) {
  1549. cmd++;
  1550. str++;
  1551. }
  1552. if (*cmd == '\n')
  1553. cmd++;
  1554. if (*str || *cmd)
  1555. return 0;
  1556. return 1;
  1557. }
  1558. struct rdev_sysfs_entry {
  1559. struct attribute attr;
  1560. ssize_t (*show)(mdk_rdev_t *, char *);
  1561. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  1562. };
  1563. static ssize_t
  1564. state_show(mdk_rdev_t *rdev, char *page)
  1565. {
  1566. char *sep = "";
  1567. size_t len = 0;
  1568. if (test_bit(Faulty, &rdev->flags)) {
  1569. len+= sprintf(page+len, "%sfaulty",sep);
  1570. sep = ",";
  1571. }
  1572. if (test_bit(In_sync, &rdev->flags)) {
  1573. len += sprintf(page+len, "%sin_sync",sep);
  1574. sep = ",";
  1575. }
  1576. if (test_bit(WriteMostly, &rdev->flags)) {
  1577. len += sprintf(page+len, "%swrite_mostly",sep);
  1578. sep = ",";
  1579. }
  1580. if (!test_bit(Faulty, &rdev->flags) &&
  1581. !test_bit(In_sync, &rdev->flags)) {
  1582. len += sprintf(page+len, "%sspare", sep);
  1583. sep = ",";
  1584. }
  1585. return len+sprintf(page+len, "\n");
  1586. }
  1587. static ssize_t
  1588. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1589. {
  1590. /* can write
  1591. * faulty - simulates and error
  1592. * remove - disconnects the device
  1593. * writemostly - sets write_mostly
  1594. * -writemostly - clears write_mostly
  1595. */
  1596. int err = -EINVAL;
  1597. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  1598. md_error(rdev->mddev, rdev);
  1599. err = 0;
  1600. } else if (cmd_match(buf, "remove")) {
  1601. if (rdev->raid_disk >= 0)
  1602. err = -EBUSY;
  1603. else {
  1604. mddev_t *mddev = rdev->mddev;
  1605. kick_rdev_from_array(rdev);
  1606. if (mddev->pers)
  1607. md_update_sb(mddev, 1);
  1608. md_new_event(mddev);
  1609. err = 0;
  1610. }
  1611. } else if (cmd_match(buf, "writemostly")) {
  1612. set_bit(WriteMostly, &rdev->flags);
  1613. err = 0;
  1614. } else if (cmd_match(buf, "-writemostly")) {
  1615. clear_bit(WriteMostly, &rdev->flags);
  1616. err = 0;
  1617. }
  1618. return err ? err : len;
  1619. }
  1620. static struct rdev_sysfs_entry rdev_state =
  1621. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  1622. static ssize_t
  1623. errors_show(mdk_rdev_t *rdev, char *page)
  1624. {
  1625. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  1626. }
  1627. static ssize_t
  1628. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1629. {
  1630. char *e;
  1631. unsigned long n = simple_strtoul(buf, &e, 10);
  1632. if (*buf && (*e == 0 || *e == '\n')) {
  1633. atomic_set(&rdev->corrected_errors, n);
  1634. return len;
  1635. }
  1636. return -EINVAL;
  1637. }
  1638. static struct rdev_sysfs_entry rdev_errors =
  1639. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  1640. static ssize_t
  1641. slot_show(mdk_rdev_t *rdev, char *page)
  1642. {
  1643. if (rdev->raid_disk < 0)
  1644. return sprintf(page, "none\n");
  1645. else
  1646. return sprintf(page, "%d\n", rdev->raid_disk);
  1647. }
  1648. static ssize_t
  1649. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1650. {
  1651. char *e;
  1652. int err;
  1653. char nm[20];
  1654. int slot = simple_strtoul(buf, &e, 10);
  1655. if (strncmp(buf, "none", 4)==0)
  1656. slot = -1;
  1657. else if (e==buf || (*e && *e!= '\n'))
  1658. return -EINVAL;
  1659. if (rdev->mddev->pers) {
  1660. /* Setting 'slot' on an active array requires also
  1661. * updating the 'rd%d' link, and communicating
  1662. * with the personality with ->hot_*_disk.
  1663. * For now we only support removing
  1664. * failed/spare devices. This normally happens automatically,
  1665. * but not when the metadata is externally managed.
  1666. */
  1667. if (slot != -1)
  1668. return -EBUSY;
  1669. if (rdev->raid_disk == -1)
  1670. return -EEXIST;
  1671. /* personality does all needed checks */
  1672. if (rdev->mddev->pers->hot_add_disk == NULL)
  1673. return -EINVAL;
  1674. err = rdev->mddev->pers->
  1675. hot_remove_disk(rdev->mddev, rdev->raid_disk);
  1676. if (err)
  1677. return err;
  1678. sprintf(nm, "rd%d", rdev->raid_disk);
  1679. sysfs_remove_link(&rdev->mddev->kobj, nm);
  1680. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  1681. md_wakeup_thread(rdev->mddev->thread);
  1682. } else {
  1683. if (slot >= rdev->mddev->raid_disks)
  1684. return -ENOSPC;
  1685. rdev->raid_disk = slot;
  1686. /* assume it is working */
  1687. clear_bit(Faulty, &rdev->flags);
  1688. clear_bit(WriteMostly, &rdev->flags);
  1689. set_bit(In_sync, &rdev->flags);
  1690. }
  1691. return len;
  1692. }
  1693. static struct rdev_sysfs_entry rdev_slot =
  1694. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  1695. static ssize_t
  1696. offset_show(mdk_rdev_t *rdev, char *page)
  1697. {
  1698. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  1699. }
  1700. static ssize_t
  1701. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1702. {
  1703. char *e;
  1704. unsigned long long offset = simple_strtoull(buf, &e, 10);
  1705. if (e==buf || (*e && *e != '\n'))
  1706. return -EINVAL;
  1707. if (rdev->mddev->pers)
  1708. return -EBUSY;
  1709. if (rdev->size && rdev->mddev->external)
  1710. /* Must set offset before size, so overlap checks
  1711. * can be sane */
  1712. return -EBUSY;
  1713. rdev->data_offset = offset;
  1714. return len;
  1715. }
  1716. static struct rdev_sysfs_entry rdev_offset =
  1717. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  1718. static ssize_t
  1719. rdev_size_show(mdk_rdev_t *rdev, char *page)
  1720. {
  1721. return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
  1722. }
  1723. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  1724. {
  1725. /* check if two start/length pairs overlap */
  1726. if (s1+l1 <= s2)
  1727. return 0;
  1728. if (s2+l2 <= s1)
  1729. return 0;
  1730. return 1;
  1731. }
  1732. static ssize_t
  1733. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  1734. {
  1735. char *e;
  1736. unsigned long long size = simple_strtoull(buf, &e, 10);
  1737. unsigned long long oldsize = rdev->size;
  1738. mddev_t *my_mddev = rdev->mddev;
  1739. if (e==buf || (*e && *e != '\n'))
  1740. return -EINVAL;
  1741. if (my_mddev->pers)
  1742. return -EBUSY;
  1743. rdev->size = size;
  1744. if (size > oldsize && rdev->mddev->external) {
  1745. /* need to check that all other rdevs with the same ->bdev
  1746. * do not overlap. We need to unlock the mddev to avoid
  1747. * a deadlock. We have already changed rdev->size, and if
  1748. * we have to change it back, we will have the lock again.
  1749. */
  1750. mddev_t *mddev;
  1751. int overlap = 0;
  1752. struct list_head *tmp, *tmp2;
  1753. mddev_unlock(my_mddev);
  1754. for_each_mddev(mddev, tmp) {
  1755. mdk_rdev_t *rdev2;
  1756. mddev_lock(mddev);
  1757. rdev_for_each(rdev2, tmp2, mddev)
  1758. if (test_bit(AllReserved, &rdev2->flags) ||
  1759. (rdev->bdev == rdev2->bdev &&
  1760. rdev != rdev2 &&
  1761. overlaps(rdev->data_offset, rdev->size,
  1762. rdev2->data_offset, rdev2->size))) {
  1763. overlap = 1;
  1764. break;
  1765. }
  1766. mddev_unlock(mddev);
  1767. if (overlap) {
  1768. mddev_put(mddev);
  1769. break;
  1770. }
  1771. }
  1772. mddev_lock(my_mddev);
  1773. if (overlap) {
  1774. /* Someone else could have slipped in a size
  1775. * change here, but doing so is just silly.
  1776. * We put oldsize back because we *know* it is
  1777. * safe, and trust userspace not to race with
  1778. * itself
  1779. */
  1780. rdev->size = oldsize;
  1781. return -EBUSY;
  1782. }
  1783. }
  1784. if (size < my_mddev->size || my_mddev->size == 0)
  1785. my_mddev->size = size;
  1786. return len;
  1787. }
  1788. static struct rdev_sysfs_entry rdev_size =
  1789. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  1790. static struct attribute *rdev_default_attrs[] = {
  1791. &rdev_state.attr,
  1792. &rdev_errors.attr,
  1793. &rdev_slot.attr,
  1794. &rdev_offset.attr,
  1795. &rdev_size.attr,
  1796. NULL,
  1797. };
  1798. static ssize_t
  1799. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  1800. {
  1801. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1802. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1803. mddev_t *mddev = rdev->mddev;
  1804. ssize_t rv;
  1805. if (!entry->show)
  1806. return -EIO;
  1807. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  1808. if (!rv) {
  1809. if (rdev->mddev == NULL)
  1810. rv = -EBUSY;
  1811. else
  1812. rv = entry->show(rdev, page);
  1813. mddev_unlock(mddev);
  1814. }
  1815. return rv;
  1816. }
  1817. static ssize_t
  1818. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  1819. const char *page, size_t length)
  1820. {
  1821. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  1822. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  1823. ssize_t rv;
  1824. mddev_t *mddev = rdev->mddev;
  1825. if (!entry->store)
  1826. return -EIO;
  1827. if (!capable(CAP_SYS_ADMIN))
  1828. return -EACCES;
  1829. rv = mddev ? mddev_lock(mddev): -EBUSY;
  1830. if (!rv) {
  1831. if (rdev->mddev == NULL)
  1832. rv = -EBUSY;
  1833. else
  1834. rv = entry->store(rdev, page, length);
  1835. mddev_unlock(rdev->mddev);
  1836. }
  1837. return rv;
  1838. }
  1839. static void rdev_free(struct kobject *ko)
  1840. {
  1841. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  1842. kfree(rdev);
  1843. }
  1844. static struct sysfs_ops rdev_sysfs_ops = {
  1845. .show = rdev_attr_show,
  1846. .store = rdev_attr_store,
  1847. };
  1848. static struct kobj_type rdev_ktype = {
  1849. .release = rdev_free,
  1850. .sysfs_ops = &rdev_sysfs_ops,
  1851. .default_attrs = rdev_default_attrs,
  1852. };
  1853. /*
  1854. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  1855. *
  1856. * mark the device faulty if:
  1857. *
  1858. * - the device is nonexistent (zero size)
  1859. * - the device has no valid superblock
  1860. *
  1861. * a faulty rdev _never_ has rdev->sb set.
  1862. */
  1863. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  1864. {
  1865. char b[BDEVNAME_SIZE];
  1866. int err;
  1867. mdk_rdev_t *rdev;
  1868. sector_t size;
  1869. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  1870. if (!rdev) {
  1871. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  1872. return ERR_PTR(-ENOMEM);
  1873. }
  1874. if ((err = alloc_disk_sb(rdev)))
  1875. goto abort_free;
  1876. err = lock_rdev(rdev, newdev, super_format == -2);
  1877. if (err)
  1878. goto abort_free;
  1879. kobject_init(&rdev->kobj, &rdev_ktype);
  1880. rdev->desc_nr = -1;
  1881. rdev->saved_raid_disk = -1;
  1882. rdev->raid_disk = -1;
  1883. rdev->flags = 0;
  1884. rdev->data_offset = 0;
  1885. rdev->sb_events = 0;
  1886. atomic_set(&rdev->nr_pending, 0);
  1887. atomic_set(&rdev->read_errors, 0);
  1888. atomic_set(&rdev->corrected_errors, 0);
  1889. size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  1890. if (!size) {
  1891. printk(KERN_WARNING
  1892. "md: %s has zero or unknown size, marking faulty!\n",
  1893. bdevname(rdev->bdev,b));
  1894. err = -EINVAL;
  1895. goto abort_free;
  1896. }
  1897. if (super_format >= 0) {
  1898. err = super_types[super_format].
  1899. load_super(rdev, NULL, super_minor);
  1900. if (err == -EINVAL) {
  1901. printk(KERN_WARNING
  1902. "md: %s does not have a valid v%d.%d "
  1903. "superblock, not importing!\n",
  1904. bdevname(rdev->bdev,b),
  1905. super_format, super_minor);
  1906. goto abort_free;
  1907. }
  1908. if (err < 0) {
  1909. printk(KERN_WARNING
  1910. "md: could not read %s's sb, not importing!\n",
  1911. bdevname(rdev->bdev,b));
  1912. goto abort_free;
  1913. }
  1914. }
  1915. INIT_LIST_HEAD(&rdev->same_set);
  1916. return rdev;
  1917. abort_free:
  1918. if (rdev->sb_page) {
  1919. if (rdev->bdev)
  1920. unlock_rdev(rdev);
  1921. free_disk_sb(rdev);
  1922. }
  1923. kfree(rdev);
  1924. return ERR_PTR(err);
  1925. }
  1926. /*
  1927. * Check a full RAID array for plausibility
  1928. */
  1929. static void analyze_sbs(mddev_t * mddev)
  1930. {
  1931. int i;
  1932. struct list_head *tmp;
  1933. mdk_rdev_t *rdev, *freshest;
  1934. char b[BDEVNAME_SIZE];
  1935. freshest = NULL;
  1936. rdev_for_each(rdev, tmp, mddev)
  1937. switch (super_types[mddev->major_version].
  1938. load_super(rdev, freshest, mddev->minor_version)) {
  1939. case 1:
  1940. freshest = rdev;
  1941. break;
  1942. case 0:
  1943. break;
  1944. default:
  1945. printk( KERN_ERR \
  1946. "md: fatal superblock inconsistency in %s"
  1947. " -- removing from array\n",
  1948. bdevname(rdev->bdev,b));
  1949. kick_rdev_from_array(rdev);
  1950. }
  1951. super_types[mddev->major_version].
  1952. validate_super(mddev, freshest);
  1953. i = 0;
  1954. rdev_for_each(rdev, tmp, mddev) {
  1955. if (rdev != freshest)
  1956. if (super_types[mddev->major_version].
  1957. validate_super(mddev, rdev)) {
  1958. printk(KERN_WARNING "md: kicking non-fresh %s"
  1959. " from array!\n",
  1960. bdevname(rdev->bdev,b));
  1961. kick_rdev_from_array(rdev);
  1962. continue;
  1963. }
  1964. if (mddev->level == LEVEL_MULTIPATH) {
  1965. rdev->desc_nr = i++;
  1966. rdev->raid_disk = rdev->desc_nr;
  1967. set_bit(In_sync, &rdev->flags);
  1968. } else if (rdev->raid_disk >= mddev->raid_disks) {
  1969. rdev->raid_disk = -1;
  1970. clear_bit(In_sync, &rdev->flags);
  1971. }
  1972. }
  1973. if (mddev->recovery_cp != MaxSector &&
  1974. mddev->level >= 1)
  1975. printk(KERN_ERR "md: %s: raid array is not clean"
  1976. " -- starting background reconstruction\n",
  1977. mdname(mddev));
  1978. }
  1979. static ssize_t
  1980. safe_delay_show(mddev_t *mddev, char *page)
  1981. {
  1982. int msec = (mddev->safemode_delay*1000)/HZ;
  1983. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  1984. }
  1985. static ssize_t
  1986. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  1987. {
  1988. int scale=1;
  1989. int dot=0;
  1990. int i;
  1991. unsigned long msec;
  1992. char buf[30];
  1993. char *e;
  1994. /* remove a period, and count digits after it */
  1995. if (len >= sizeof(buf))
  1996. return -EINVAL;
  1997. strlcpy(buf, cbuf, len);
  1998. buf[len] = 0;
  1999. for (i=0; i<len; i++) {
  2000. if (dot) {
  2001. if (isdigit(buf[i])) {
  2002. buf[i-1] = buf[i];
  2003. scale *= 10;
  2004. }
  2005. buf[i] = 0;
  2006. } else if (buf[i] == '.') {
  2007. dot=1;
  2008. buf[i] = 0;
  2009. }
  2010. }
  2011. msec = simple_strtoul(buf, &e, 10);
  2012. if (e == buf || (*e && *e != '\n'))
  2013. return -EINVAL;
  2014. msec = (msec * 1000) / scale;
  2015. if (msec == 0)
  2016. mddev->safemode_delay = 0;
  2017. else {
  2018. mddev->safemode_delay = (msec*HZ)/1000;
  2019. if (mddev->safemode_delay == 0)
  2020. mddev->safemode_delay = 1;
  2021. }
  2022. return len;
  2023. }
  2024. static struct md_sysfs_entry md_safe_delay =
  2025. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2026. static ssize_t
  2027. level_show(mddev_t *mddev, char *page)
  2028. {
  2029. struct mdk_personality *p = mddev->pers;
  2030. if (p)
  2031. return sprintf(page, "%s\n", p->name);
  2032. else if (mddev->clevel[0])
  2033. return sprintf(page, "%s\n", mddev->clevel);
  2034. else if (mddev->level != LEVEL_NONE)
  2035. return sprintf(page, "%d\n", mddev->level);
  2036. else
  2037. return 0;
  2038. }
  2039. static ssize_t
  2040. level_store(mddev_t *mddev, const char *buf, size_t len)
  2041. {
  2042. ssize_t rv = len;
  2043. if (mddev->pers)
  2044. return -EBUSY;
  2045. if (len == 0)
  2046. return 0;
  2047. if (len >= sizeof(mddev->clevel))
  2048. return -ENOSPC;
  2049. strncpy(mddev->clevel, buf, len);
  2050. if (mddev->clevel[len-1] == '\n')
  2051. len--;
  2052. mddev->clevel[len] = 0;
  2053. mddev->level = LEVEL_NONE;
  2054. return rv;
  2055. }
  2056. static struct md_sysfs_entry md_level =
  2057. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  2058. static ssize_t
  2059. layout_show(mddev_t *mddev, char *page)
  2060. {
  2061. /* just a number, not meaningful for all levels */
  2062. if (mddev->reshape_position != MaxSector &&
  2063. mddev->layout != mddev->new_layout)
  2064. return sprintf(page, "%d (%d)\n",
  2065. mddev->new_layout, mddev->layout);
  2066. return sprintf(page, "%d\n", mddev->layout);
  2067. }
  2068. static ssize_t
  2069. layout_store(mddev_t *mddev, const char *buf, size_t len)
  2070. {
  2071. char *e;
  2072. unsigned long n = simple_strtoul(buf, &e, 10);
  2073. if (!*buf || (*e && *e != '\n'))
  2074. return -EINVAL;
  2075. if (mddev->pers)
  2076. return -EBUSY;
  2077. if (mddev->reshape_position != MaxSector)
  2078. mddev->new_layout = n;
  2079. else
  2080. mddev->layout = n;
  2081. return len;
  2082. }
  2083. static struct md_sysfs_entry md_layout =
  2084. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  2085. static ssize_t
  2086. raid_disks_show(mddev_t *mddev, char *page)
  2087. {
  2088. if (mddev->raid_disks == 0)
  2089. return 0;
  2090. if (mddev->reshape_position != MaxSector &&
  2091. mddev->delta_disks != 0)
  2092. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  2093. mddev->raid_disks - mddev->delta_disks);
  2094. return sprintf(page, "%d\n", mddev->raid_disks);
  2095. }
  2096. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  2097. static ssize_t
  2098. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  2099. {
  2100. char *e;
  2101. int rv = 0;
  2102. unsigned long n = simple_strtoul(buf, &e, 10);
  2103. if (!*buf || (*e && *e != '\n'))
  2104. return -EINVAL;
  2105. if (mddev->pers)
  2106. rv = update_raid_disks(mddev, n);
  2107. else if (mddev->reshape_position != MaxSector) {
  2108. int olddisks = mddev->raid_disks - mddev->delta_disks;
  2109. mddev->delta_disks = n - olddisks;
  2110. mddev->raid_disks = n;
  2111. } else
  2112. mddev->raid_disks = n;
  2113. return rv ? rv : len;
  2114. }
  2115. static struct md_sysfs_entry md_raid_disks =
  2116. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  2117. static ssize_t
  2118. chunk_size_show(mddev_t *mddev, char *page)
  2119. {
  2120. if (mddev->reshape_position != MaxSector &&
  2121. mddev->chunk_size != mddev->new_chunk)
  2122. return sprintf(page, "%d (%d)\n", mddev->new_chunk,
  2123. mddev->chunk_size);
  2124. return sprintf(page, "%d\n", mddev->chunk_size);
  2125. }
  2126. static ssize_t
  2127. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  2128. {
  2129. /* can only set chunk_size if array is not yet active */
  2130. char *e;
  2131. unsigned long n = simple_strtoul(buf, &e, 10);
  2132. if (!*buf || (*e && *e != '\n'))
  2133. return -EINVAL;
  2134. if (mddev->pers)
  2135. return -EBUSY;
  2136. else if (mddev->reshape_position != MaxSector)
  2137. mddev->new_chunk = n;
  2138. else
  2139. mddev->chunk_size = n;
  2140. return len;
  2141. }
  2142. static struct md_sysfs_entry md_chunk_size =
  2143. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  2144. static ssize_t
  2145. resync_start_show(mddev_t *mddev, char *page)
  2146. {
  2147. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  2148. }
  2149. static ssize_t
  2150. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  2151. {
  2152. /* can only set chunk_size if array is not yet active */
  2153. char *e;
  2154. unsigned long long n = simple_strtoull(buf, &e, 10);
  2155. if (mddev->pers)
  2156. return -EBUSY;
  2157. if (!*buf || (*e && *e != '\n'))
  2158. return -EINVAL;
  2159. mddev->recovery_cp = n;
  2160. return len;
  2161. }
  2162. static struct md_sysfs_entry md_resync_start =
  2163. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  2164. /*
  2165. * The array state can be:
  2166. *
  2167. * clear
  2168. * No devices, no size, no level
  2169. * Equivalent to STOP_ARRAY ioctl
  2170. * inactive
  2171. * May have some settings, but array is not active
  2172. * all IO results in error
  2173. * When written, doesn't tear down array, but just stops it
  2174. * suspended (not supported yet)
  2175. * All IO requests will block. The array can be reconfigured.
  2176. * Writing this, if accepted, will block until array is quiessent
  2177. * readonly
  2178. * no resync can happen. no superblocks get written.
  2179. * write requests fail
  2180. * read-auto
  2181. * like readonly, but behaves like 'clean' on a write request.
  2182. *
  2183. * clean - no pending writes, but otherwise active.
  2184. * When written to inactive array, starts without resync
  2185. * If a write request arrives then
  2186. * if metadata is known, mark 'dirty' and switch to 'active'.
  2187. * if not known, block and switch to write-pending
  2188. * If written to an active array that has pending writes, then fails.
  2189. * active
  2190. * fully active: IO and resync can be happening.
  2191. * When written to inactive array, starts with resync
  2192. *
  2193. * write-pending
  2194. * clean, but writes are blocked waiting for 'active' to be written.
  2195. *
  2196. * active-idle
  2197. * like active, but no writes have been seen for a while (100msec).
  2198. *
  2199. */
  2200. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  2201. write_pending, active_idle, bad_word};
  2202. static char *array_states[] = {
  2203. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  2204. "write-pending", "active-idle", NULL };
  2205. static int match_word(const char *word, char **list)
  2206. {
  2207. int n;
  2208. for (n=0; list[n]; n++)
  2209. if (cmd_match(word, list[n]))
  2210. break;
  2211. return n;
  2212. }
  2213. static ssize_t
  2214. array_state_show(mddev_t *mddev, char *page)
  2215. {
  2216. enum array_state st = inactive;
  2217. if (mddev->pers)
  2218. switch(mddev->ro) {
  2219. case 1:
  2220. st = readonly;
  2221. break;
  2222. case 2:
  2223. st = read_auto;
  2224. break;
  2225. case 0:
  2226. if (mddev->in_sync)
  2227. st = clean;
  2228. else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2229. st = write_pending;
  2230. else if (mddev->safemode)
  2231. st = active_idle;
  2232. else
  2233. st = active;
  2234. }
  2235. else {
  2236. if (list_empty(&mddev->disks) &&
  2237. mddev->raid_disks == 0 &&
  2238. mddev->size == 0)
  2239. st = clear;
  2240. else
  2241. st = inactive;
  2242. }
  2243. return sprintf(page, "%s\n", array_states[st]);
  2244. }
  2245. static int do_md_stop(mddev_t * mddev, int ro);
  2246. static int do_md_run(mddev_t * mddev);
  2247. static int restart_array(mddev_t *mddev);
  2248. static ssize_t
  2249. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  2250. {
  2251. int err = -EINVAL;
  2252. enum array_state st = match_word(buf, array_states);
  2253. switch(st) {
  2254. case bad_word:
  2255. break;
  2256. case clear:
  2257. /* stopping an active array */
  2258. if (atomic_read(&mddev->active) > 1)
  2259. return -EBUSY;
  2260. err = do_md_stop(mddev, 0);
  2261. break;
  2262. case inactive:
  2263. /* stopping an active array */
  2264. if (mddev->pers) {
  2265. if (atomic_read(&mddev->active) > 1)
  2266. return -EBUSY;
  2267. err = do_md_stop(mddev, 2);
  2268. } else
  2269. err = 0; /* already inactive */
  2270. break;
  2271. case suspended:
  2272. break; /* not supported yet */
  2273. case readonly:
  2274. if (mddev->pers)
  2275. err = do_md_stop(mddev, 1);
  2276. else {
  2277. mddev->ro = 1;
  2278. err = do_md_run(mddev);
  2279. }
  2280. break;
  2281. case read_auto:
  2282. /* stopping an active array */
  2283. if (mddev->pers) {
  2284. err = do_md_stop(mddev, 1);
  2285. if (err == 0)
  2286. mddev->ro = 2; /* FIXME mark devices writable */
  2287. } else {
  2288. mddev->ro = 2;
  2289. err = do_md_run(mddev);
  2290. }
  2291. break;
  2292. case clean:
  2293. if (mddev->pers) {
  2294. restart_array(mddev);
  2295. spin_lock_irq(&mddev->write_lock);
  2296. if (atomic_read(&mddev->writes_pending) == 0) {
  2297. if (mddev->in_sync == 0) {
  2298. mddev->in_sync = 1;
  2299. if (mddev->persistent)
  2300. set_bit(MD_CHANGE_CLEAN,
  2301. &mddev->flags);
  2302. }
  2303. err = 0;
  2304. } else
  2305. err = -EBUSY;
  2306. spin_unlock_irq(&mddev->write_lock);
  2307. } else {
  2308. mddev->ro = 0;
  2309. mddev->recovery_cp = MaxSector;
  2310. err = do_md_run(mddev);
  2311. }
  2312. break;
  2313. case active:
  2314. if (mddev->pers) {
  2315. restart_array(mddev);
  2316. if (mddev->external)
  2317. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2318. wake_up(&mddev->sb_wait);
  2319. err = 0;
  2320. } else {
  2321. mddev->ro = 0;
  2322. err = do_md_run(mddev);
  2323. }
  2324. break;
  2325. case write_pending:
  2326. case active_idle:
  2327. /* these cannot be set */
  2328. break;
  2329. }
  2330. if (err)
  2331. return err;
  2332. else
  2333. return len;
  2334. }
  2335. static struct md_sysfs_entry md_array_state =
  2336. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  2337. static ssize_t
  2338. null_show(mddev_t *mddev, char *page)
  2339. {
  2340. return -EINVAL;
  2341. }
  2342. static ssize_t
  2343. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  2344. {
  2345. /* buf must be %d:%d\n? giving major and minor numbers */
  2346. /* The new device is added to the array.
  2347. * If the array has a persistent superblock, we read the
  2348. * superblock to initialise info and check validity.
  2349. * Otherwise, only checking done is that in bind_rdev_to_array,
  2350. * which mainly checks size.
  2351. */
  2352. char *e;
  2353. int major = simple_strtoul(buf, &e, 10);
  2354. int minor;
  2355. dev_t dev;
  2356. mdk_rdev_t *rdev;
  2357. int err;
  2358. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  2359. return -EINVAL;
  2360. minor = simple_strtoul(e+1, &e, 10);
  2361. if (*e && *e != '\n')
  2362. return -EINVAL;
  2363. dev = MKDEV(major, minor);
  2364. if (major != MAJOR(dev) ||
  2365. minor != MINOR(dev))
  2366. return -EOVERFLOW;
  2367. if (mddev->persistent) {
  2368. rdev = md_import_device(dev, mddev->major_version,
  2369. mddev->minor_version);
  2370. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  2371. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  2372. mdk_rdev_t, same_set);
  2373. err = super_types[mddev->major_version]
  2374. .load_super(rdev, rdev0, mddev->minor_version);
  2375. if (err < 0)
  2376. goto out;
  2377. }
  2378. } else if (mddev->external)
  2379. rdev = md_import_device(dev, -2, -1);
  2380. else
  2381. rdev = md_import_device(dev, -1, -1);
  2382. if (IS_ERR(rdev))
  2383. return PTR_ERR(rdev);
  2384. err = bind_rdev_to_array(rdev, mddev);
  2385. out:
  2386. if (err)
  2387. export_rdev(rdev);
  2388. return err ? err : len;
  2389. }
  2390. static struct md_sysfs_entry md_new_device =
  2391. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  2392. static ssize_t
  2393. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  2394. {
  2395. char *end;
  2396. unsigned long chunk, end_chunk;
  2397. if (!mddev->bitmap)
  2398. goto out;
  2399. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  2400. while (*buf) {
  2401. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  2402. if (buf == end) break;
  2403. if (*end == '-') { /* range */
  2404. buf = end + 1;
  2405. end_chunk = simple_strtoul(buf, &end, 0);
  2406. if (buf == end) break;
  2407. }
  2408. if (*end && !isspace(*end)) break;
  2409. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  2410. buf = end;
  2411. while (isspace(*buf)) buf++;
  2412. }
  2413. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  2414. out:
  2415. return len;
  2416. }
  2417. static struct md_sysfs_entry md_bitmap =
  2418. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  2419. static ssize_t
  2420. size_show(mddev_t *mddev, char *page)
  2421. {
  2422. return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
  2423. }
  2424. static int update_size(mddev_t *mddev, unsigned long size);
  2425. static ssize_t
  2426. size_store(mddev_t *mddev, const char *buf, size_t len)
  2427. {
  2428. /* If array is inactive, we can reduce the component size, but
  2429. * not increase it (except from 0).
  2430. * If array is active, we can try an on-line resize
  2431. */
  2432. char *e;
  2433. int err = 0;
  2434. unsigned long long size = simple_strtoull(buf, &e, 10);
  2435. if (!*buf || *buf == '\n' ||
  2436. (*e && *e != '\n'))
  2437. return -EINVAL;
  2438. if (mddev->pers) {
  2439. err = update_size(mddev, size);
  2440. md_update_sb(mddev, 1);
  2441. } else {
  2442. if (mddev->size == 0 ||
  2443. mddev->size > size)
  2444. mddev->size = size;
  2445. else
  2446. err = -ENOSPC;
  2447. }
  2448. return err ? err : len;
  2449. }
  2450. static struct md_sysfs_entry md_size =
  2451. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  2452. /* Metdata version.
  2453. * This is one of
  2454. * 'none' for arrays with no metadata (good luck...)
  2455. * 'external' for arrays with externally managed metadata,
  2456. * or N.M for internally known formats
  2457. */
  2458. static ssize_t
  2459. metadata_show(mddev_t *mddev, char *page)
  2460. {
  2461. if (mddev->persistent)
  2462. return sprintf(page, "%d.%d\n",
  2463. mddev->major_version, mddev->minor_version);
  2464. else if (mddev->external)
  2465. return sprintf(page, "external:%s\n", mddev->metadata_type);
  2466. else
  2467. return sprintf(page, "none\n");
  2468. }
  2469. static ssize_t
  2470. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  2471. {
  2472. int major, minor;
  2473. char *e;
  2474. if (!list_empty(&mddev->disks))
  2475. return -EBUSY;
  2476. if (cmd_match(buf, "none")) {
  2477. mddev->persistent = 0;
  2478. mddev->external = 0;
  2479. mddev->major_version = 0;
  2480. mddev->minor_version = 90;
  2481. return len;
  2482. }
  2483. if (strncmp(buf, "external:", 9) == 0) {
  2484. size_t namelen = len-9;
  2485. if (namelen >= sizeof(mddev->metadata_type))
  2486. namelen = sizeof(mddev->metadata_type)-1;
  2487. strncpy(mddev->metadata_type, buf+9, namelen);
  2488. mddev->metadata_type[namelen] = 0;
  2489. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  2490. mddev->metadata_type[--namelen] = 0;
  2491. mddev->persistent = 0;
  2492. mddev->external = 1;
  2493. mddev->major_version = 0;
  2494. mddev->minor_version = 90;
  2495. return len;
  2496. }
  2497. major = simple_strtoul(buf, &e, 10);
  2498. if (e==buf || *e != '.')
  2499. return -EINVAL;
  2500. buf = e+1;
  2501. minor = simple_strtoul(buf, &e, 10);
  2502. if (e==buf || (*e && *e != '\n') )
  2503. return -EINVAL;
  2504. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  2505. return -ENOENT;
  2506. mddev->major_version = major;
  2507. mddev->minor_version = minor;
  2508. mddev->persistent = 1;
  2509. mddev->external = 0;
  2510. return len;
  2511. }
  2512. static struct md_sysfs_entry md_metadata =
  2513. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  2514. static ssize_t
  2515. action_show(mddev_t *mddev, char *page)
  2516. {
  2517. char *type = "idle";
  2518. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2519. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  2520. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  2521. type = "reshape";
  2522. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  2523. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  2524. type = "resync";
  2525. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  2526. type = "check";
  2527. else
  2528. type = "repair";
  2529. } else
  2530. type = "recover";
  2531. }
  2532. return sprintf(page, "%s\n", type);
  2533. }
  2534. static ssize_t
  2535. action_store(mddev_t *mddev, const char *page, size_t len)
  2536. {
  2537. if (!mddev->pers || !mddev->pers->sync_request)
  2538. return -EINVAL;
  2539. if (cmd_match(page, "idle")) {
  2540. if (mddev->sync_thread) {
  2541. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  2542. md_unregister_thread(mddev->sync_thread);
  2543. mddev->sync_thread = NULL;
  2544. mddev->recovery = 0;
  2545. }
  2546. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  2547. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  2548. return -EBUSY;
  2549. else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
  2550. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2551. else if (cmd_match(page, "reshape")) {
  2552. int err;
  2553. if (mddev->pers->start_reshape == NULL)
  2554. return -EINVAL;
  2555. err = mddev->pers->start_reshape(mddev);
  2556. if (err)
  2557. return err;
  2558. } else {
  2559. if (cmd_match(page, "check"))
  2560. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  2561. else if (!cmd_match(page, "repair"))
  2562. return -EINVAL;
  2563. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  2564. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  2565. }
  2566. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  2567. md_wakeup_thread(mddev->thread);
  2568. return len;
  2569. }
  2570. static ssize_t
  2571. mismatch_cnt_show(mddev_t *mddev, char *page)
  2572. {
  2573. return sprintf(page, "%llu\n",
  2574. (unsigned long long) mddev->resync_mismatches);
  2575. }
  2576. static struct md_sysfs_entry md_scan_mode =
  2577. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  2578. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  2579. static ssize_t
  2580. sync_min_show(mddev_t *mddev, char *page)
  2581. {
  2582. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  2583. mddev->sync_speed_min ? "local": "system");
  2584. }
  2585. static ssize_t
  2586. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  2587. {
  2588. int min;
  2589. char *e;
  2590. if (strncmp(buf, "system", 6)==0) {
  2591. mddev->sync_speed_min = 0;
  2592. return len;
  2593. }
  2594. min = simple_strtoul(buf, &e, 10);
  2595. if (buf == e || (*e && *e != '\n') || min <= 0)
  2596. return -EINVAL;
  2597. mddev->sync_speed_min = min;
  2598. return len;
  2599. }
  2600. static struct md_sysfs_entry md_sync_min =
  2601. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  2602. static ssize_t
  2603. sync_max_show(mddev_t *mddev, char *page)
  2604. {
  2605. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  2606. mddev->sync_speed_max ? "local": "system");
  2607. }
  2608. static ssize_t
  2609. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  2610. {
  2611. int max;
  2612. char *e;
  2613. if (strncmp(buf, "system", 6)==0) {
  2614. mddev->sync_speed_max = 0;
  2615. return len;
  2616. }
  2617. max = simple_strtoul(buf, &e, 10);
  2618. if (buf == e || (*e && *e != '\n') || max <= 0)
  2619. return -EINVAL;
  2620. mddev->sync_speed_max = max;
  2621. return len;
  2622. }
  2623. static struct md_sysfs_entry md_sync_max =
  2624. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  2625. static ssize_t
  2626. degraded_show(mddev_t *mddev, char *page)
  2627. {
  2628. return sprintf(page, "%d\n", mddev->degraded);
  2629. }
  2630. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  2631. static ssize_t
  2632. sync_speed_show(mddev_t *mddev, char *page)
  2633. {
  2634. unsigned long resync, dt, db;
  2635. resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
  2636. dt = ((jiffies - mddev->resync_mark) / HZ);
  2637. if (!dt) dt++;
  2638. db = resync - (mddev->resync_mark_cnt);
  2639. return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
  2640. }
  2641. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  2642. static ssize_t
  2643. sync_completed_show(mddev_t *mddev, char *page)
  2644. {
  2645. unsigned long max_blocks, resync;
  2646. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  2647. max_blocks = mddev->resync_max_sectors;
  2648. else
  2649. max_blocks = mddev->size << 1;
  2650. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
  2651. return sprintf(page, "%lu / %lu\n", resync, max_blocks);
  2652. }
  2653. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  2654. static ssize_t
  2655. max_sync_show(mddev_t *mddev, char *page)
  2656. {
  2657. if (mddev->resync_max == MaxSector)
  2658. return sprintf(page, "max\n");
  2659. else
  2660. return sprintf(page, "%llu\n",
  2661. (unsigned long long)mddev->resync_max);
  2662. }
  2663. static ssize_t
  2664. max_sync_store(mddev_t *mddev, const char *buf, size_t len)
  2665. {
  2666. if (strncmp(buf, "max", 3) == 0)
  2667. mddev->resync_max = MaxSector;
  2668. else {
  2669. char *ep;
  2670. unsigned long long max = simple_strtoull(buf, &ep, 10);
  2671. if (ep == buf || (*ep != 0 && *ep != '\n'))
  2672. return -EINVAL;
  2673. if (max < mddev->resync_max &&
  2674. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2675. return -EBUSY;
  2676. /* Must be a multiple of chunk_size */
  2677. if (mddev->chunk_size) {
  2678. if (max & (sector_t)((mddev->chunk_size>>9)-1))
  2679. return -EINVAL;
  2680. }
  2681. mddev->resync_max = max;
  2682. }
  2683. wake_up(&mddev->recovery_wait);
  2684. return len;
  2685. }
  2686. static struct md_sysfs_entry md_max_sync =
  2687. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  2688. static ssize_t
  2689. suspend_lo_show(mddev_t *mddev, char *page)
  2690. {
  2691. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  2692. }
  2693. static ssize_t
  2694. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  2695. {
  2696. char *e;
  2697. unsigned long long new = simple_strtoull(buf, &e, 10);
  2698. if (mddev->pers->quiesce == NULL)
  2699. return -EINVAL;
  2700. if (buf == e || (*e && *e != '\n'))
  2701. return -EINVAL;
  2702. if (new >= mddev->suspend_hi ||
  2703. (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
  2704. mddev->suspend_lo = new;
  2705. mddev->pers->quiesce(mddev, 2);
  2706. return len;
  2707. } else
  2708. return -EINVAL;
  2709. }
  2710. static struct md_sysfs_entry md_suspend_lo =
  2711. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  2712. static ssize_t
  2713. suspend_hi_show(mddev_t *mddev, char *page)
  2714. {
  2715. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  2716. }
  2717. static ssize_t
  2718. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  2719. {
  2720. char *e;
  2721. unsigned long long new = simple_strtoull(buf, &e, 10);
  2722. if (mddev->pers->quiesce == NULL)
  2723. return -EINVAL;
  2724. if (buf == e || (*e && *e != '\n'))
  2725. return -EINVAL;
  2726. if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
  2727. (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
  2728. mddev->suspend_hi = new;
  2729. mddev->pers->quiesce(mddev, 1);
  2730. mddev->pers->quiesce(mddev, 0);
  2731. return len;
  2732. } else
  2733. return -EINVAL;
  2734. }
  2735. static struct md_sysfs_entry md_suspend_hi =
  2736. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  2737. static ssize_t
  2738. reshape_position_show(mddev_t *mddev, char *page)
  2739. {
  2740. if (mddev->reshape_position != MaxSector)
  2741. return sprintf(page, "%llu\n",
  2742. (unsigned long long)mddev->reshape_position);
  2743. strcpy(page, "none\n");
  2744. return 5;
  2745. }
  2746. static ssize_t
  2747. reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
  2748. {
  2749. char *e;
  2750. unsigned long long new = simple_strtoull(buf, &e, 10);
  2751. if (mddev->pers)
  2752. return -EBUSY;
  2753. if (buf == e || (*e && *e != '\n'))
  2754. return -EINVAL;
  2755. mddev->reshape_position = new;
  2756. mddev->delta_disks = 0;
  2757. mddev->new_level = mddev->level;
  2758. mddev->new_layout = mddev->layout;
  2759. mddev->new_chunk = mddev->chunk_size;
  2760. return len;
  2761. }
  2762. static struct md_sysfs_entry md_reshape_position =
  2763. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  2764. reshape_position_store);
  2765. static struct attribute *md_default_attrs[] = {
  2766. &md_level.attr,
  2767. &md_layout.attr,
  2768. &md_raid_disks.attr,
  2769. &md_chunk_size.attr,
  2770. &md_size.attr,
  2771. &md_resync_start.attr,
  2772. &md_metadata.attr,
  2773. &md_new_device.attr,
  2774. &md_safe_delay.attr,
  2775. &md_array_state.attr,
  2776. &md_reshape_position.attr,
  2777. NULL,
  2778. };
  2779. static struct attribute *md_redundancy_attrs[] = {
  2780. &md_scan_mode.attr,
  2781. &md_mismatches.attr,
  2782. &md_sync_min.attr,
  2783. &md_sync_max.attr,
  2784. &md_sync_speed.attr,
  2785. &md_sync_completed.attr,
  2786. &md_max_sync.attr,
  2787. &md_suspend_lo.attr,
  2788. &md_suspend_hi.attr,
  2789. &md_bitmap.attr,
  2790. &md_degraded.attr,
  2791. NULL,
  2792. };
  2793. static struct attribute_group md_redundancy_group = {
  2794. .name = NULL,
  2795. .attrs = md_redundancy_attrs,
  2796. };
  2797. static ssize_t
  2798. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2799. {
  2800. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2801. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2802. ssize_t rv;
  2803. if (!entry->show)
  2804. return -EIO;
  2805. rv = mddev_lock(mddev);
  2806. if (!rv) {
  2807. rv = entry->show(mddev, page);
  2808. mddev_unlock(mddev);
  2809. }
  2810. return rv;
  2811. }
  2812. static ssize_t
  2813. md_attr_store(struct kobject *kobj, struct attribute *attr,
  2814. const char *page, size_t length)
  2815. {
  2816. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  2817. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  2818. ssize_t rv;
  2819. if (!entry->store)
  2820. return -EIO;
  2821. if (!capable(CAP_SYS_ADMIN))
  2822. return -EACCES;
  2823. rv = mddev_lock(mddev);
  2824. if (!rv) {
  2825. rv = entry->store(mddev, page, length);
  2826. mddev_unlock(mddev);
  2827. }
  2828. return rv;
  2829. }
  2830. static void md_free(struct kobject *ko)
  2831. {
  2832. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  2833. kfree(mddev);
  2834. }
  2835. static struct sysfs_ops md_sysfs_ops = {
  2836. .show = md_attr_show,
  2837. .store = md_attr_store,
  2838. };
  2839. static struct kobj_type md_ktype = {
  2840. .release = md_free,
  2841. .sysfs_ops = &md_sysfs_ops,
  2842. .default_attrs = md_default_attrs,
  2843. };
  2844. int mdp_major = 0;
  2845. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  2846. {
  2847. static DEFINE_MUTEX(disks_mutex);
  2848. mddev_t *mddev = mddev_find(dev);
  2849. struct gendisk *disk;
  2850. int partitioned = (MAJOR(dev) != MD_MAJOR);
  2851. int shift = partitioned ? MdpMinorShift : 0;
  2852. int unit = MINOR(dev) >> shift;
  2853. int error;
  2854. if (!mddev)
  2855. return NULL;
  2856. mutex_lock(&disks_mutex);
  2857. if (mddev->gendisk) {
  2858. mutex_unlock(&disks_mutex);
  2859. mddev_put(mddev);
  2860. return NULL;
  2861. }
  2862. disk = alloc_disk(1 << shift);
  2863. if (!disk) {
  2864. mutex_unlock(&disks_mutex);
  2865. mddev_put(mddev);
  2866. return NULL;
  2867. }
  2868. disk->major = MAJOR(dev);
  2869. disk->first_minor = unit << shift;
  2870. if (partitioned)
  2871. sprintf(disk->disk_name, "md_d%d", unit);
  2872. else
  2873. sprintf(disk->disk_name, "md%d", unit);
  2874. disk->fops = &md_fops;
  2875. disk->private_data = mddev;
  2876. disk->queue = mddev->queue;
  2877. add_disk(disk);
  2878. mddev->gendisk = disk;
  2879. mutex_unlock(&disks_mutex);
  2880. error = kobject_init_and_add(&mddev->kobj, &md_ktype, &disk->dev.kobj,
  2881. "%s", "md");
  2882. if (error)
  2883. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  2884. disk->disk_name);
  2885. else
  2886. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  2887. return NULL;
  2888. }
  2889. static void md_safemode_timeout(unsigned long data)
  2890. {
  2891. mddev_t *mddev = (mddev_t *) data;
  2892. mddev->safemode = 1;
  2893. md_wakeup_thread(mddev->thread);
  2894. }
  2895. static int start_dirty_degraded;
  2896. static int do_md_run(mddev_t * mddev)
  2897. {
  2898. int err;
  2899. int chunk_size;
  2900. struct list_head *tmp;
  2901. mdk_rdev_t *rdev;
  2902. struct gendisk *disk;
  2903. struct mdk_personality *pers;
  2904. char b[BDEVNAME_SIZE];
  2905. if (list_empty(&mddev->disks))
  2906. /* cannot run an array with no devices.. */
  2907. return -EINVAL;
  2908. if (mddev->pers)
  2909. return -EBUSY;
  2910. /*
  2911. * Analyze all RAID superblock(s)
  2912. */
  2913. if (!mddev->raid_disks) {
  2914. if (!mddev->persistent)
  2915. return -EINVAL;
  2916. analyze_sbs(mddev);
  2917. }
  2918. chunk_size = mddev->chunk_size;
  2919. if (chunk_size) {
  2920. if (chunk_size > MAX_CHUNK_SIZE) {
  2921. printk(KERN_ERR "too big chunk_size: %d > %d\n",
  2922. chunk_size, MAX_CHUNK_SIZE);
  2923. return -EINVAL;
  2924. }
  2925. /*
  2926. * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
  2927. */
  2928. if ( (1 << ffz(~chunk_size)) != chunk_size) {
  2929. printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
  2930. return -EINVAL;
  2931. }
  2932. if (chunk_size < PAGE_SIZE) {
  2933. printk(KERN_ERR "too small chunk_size: %d < %ld\n",
  2934. chunk_size, PAGE_SIZE);
  2935. return -EINVAL;
  2936. }
  2937. /* devices must have minimum size of one chunk */
  2938. rdev_for_each(rdev, tmp, mddev) {
  2939. if (test_bit(Faulty, &rdev->flags))
  2940. continue;
  2941. if (rdev->size < chunk_size / 1024) {
  2942. printk(KERN_WARNING
  2943. "md: Dev %s smaller than chunk_size:"
  2944. " %lluk < %dk\n",
  2945. bdevname(rdev->bdev,b),
  2946. (unsigned long long)rdev->size,
  2947. chunk_size / 1024);
  2948. return -EINVAL;
  2949. }
  2950. }
  2951. }
  2952. #ifdef CONFIG_KMOD
  2953. if (mddev->level != LEVEL_NONE)
  2954. request_module("md-level-%d", mddev->level);
  2955. else if (mddev->clevel[0])
  2956. request_module("md-%s", mddev->clevel);
  2957. #endif
  2958. /*
  2959. * Drop all container device buffers, from now on
  2960. * the only valid external interface is through the md
  2961. * device.
  2962. */
  2963. rdev_for_each(rdev, tmp, mddev) {
  2964. if (test_bit(Faulty, &rdev->flags))
  2965. continue;
  2966. sync_blockdev(rdev->bdev);
  2967. invalidate_bdev(rdev->bdev);
  2968. /* perform some consistency tests on the device.
  2969. * We don't want the data to overlap the metadata,
  2970. * Internal Bitmap issues has handled elsewhere.
  2971. */
  2972. if (rdev->data_offset < rdev->sb_offset) {
  2973. if (mddev->size &&
  2974. rdev->data_offset + mddev->size*2
  2975. > rdev->sb_offset*2) {
  2976. printk("md: %s: data overlaps metadata\n",
  2977. mdname(mddev));
  2978. return -EINVAL;
  2979. }
  2980. } else {
  2981. if (rdev->sb_offset*2 + rdev->sb_size/512
  2982. > rdev->data_offset) {
  2983. printk("md: %s: metadata overlaps data\n",
  2984. mdname(mddev));
  2985. return -EINVAL;
  2986. }
  2987. }
  2988. }
  2989. md_probe(mddev->unit, NULL, NULL);
  2990. disk = mddev->gendisk;
  2991. if (!disk)
  2992. return -ENOMEM;
  2993. spin_lock(&pers_lock);
  2994. pers = find_pers(mddev->level, mddev->clevel);
  2995. if (!pers || !try_module_get(pers->owner)) {
  2996. spin_unlock(&pers_lock);
  2997. if (mddev->level != LEVEL_NONE)
  2998. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  2999. mddev->level);
  3000. else
  3001. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  3002. mddev->clevel);
  3003. return -EINVAL;
  3004. }
  3005. mddev->pers = pers;
  3006. spin_unlock(&pers_lock);
  3007. mddev->level = pers->level;
  3008. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3009. if (mddev->reshape_position != MaxSector &&
  3010. pers->start_reshape == NULL) {
  3011. /* This personality cannot handle reshaping... */
  3012. mddev->pers = NULL;
  3013. module_put(pers->owner);
  3014. return -EINVAL;
  3015. }
  3016. if (pers->sync_request) {
  3017. /* Warn if this is a potentially silly
  3018. * configuration.
  3019. */
  3020. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3021. mdk_rdev_t *rdev2;
  3022. struct list_head *tmp2;
  3023. int warned = 0;
  3024. rdev_for_each(rdev, tmp, mddev) {
  3025. rdev_for_each(rdev2, tmp2, mddev) {
  3026. if (rdev < rdev2 &&
  3027. rdev->bdev->bd_contains ==
  3028. rdev2->bdev->bd_contains) {
  3029. printk(KERN_WARNING
  3030. "%s: WARNING: %s appears to be"
  3031. " on the same physical disk as"
  3032. " %s.\n",
  3033. mdname(mddev),
  3034. bdevname(rdev->bdev,b),
  3035. bdevname(rdev2->bdev,b2));
  3036. warned = 1;
  3037. }
  3038. }
  3039. }
  3040. if (warned)
  3041. printk(KERN_WARNING
  3042. "True protection against single-disk"
  3043. " failure might be compromised.\n");
  3044. }
  3045. mddev->recovery = 0;
  3046. mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
  3047. mddev->barriers_work = 1;
  3048. mddev->ok_start_degraded = start_dirty_degraded;
  3049. if (start_readonly)
  3050. mddev->ro = 2; /* read-only, but switch on first write */
  3051. err = mddev->pers->run(mddev);
  3052. if (!err && mddev->pers->sync_request) {
  3053. err = bitmap_create(mddev);
  3054. if (err) {
  3055. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  3056. mdname(mddev), err);
  3057. mddev->pers->stop(mddev);
  3058. }
  3059. }
  3060. if (err) {
  3061. printk(KERN_ERR "md: pers->run() failed ...\n");
  3062. module_put(mddev->pers->owner);
  3063. mddev->pers = NULL;
  3064. bitmap_destroy(mddev);
  3065. return err;
  3066. }
  3067. if (mddev->pers->sync_request) {
  3068. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  3069. printk(KERN_WARNING
  3070. "md: cannot register extra attributes for %s\n",
  3071. mdname(mddev));
  3072. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  3073. mddev->ro = 0;
  3074. atomic_set(&mddev->writes_pending,0);
  3075. mddev->safemode = 0;
  3076. mddev->safemode_timer.function = md_safemode_timeout;
  3077. mddev->safemode_timer.data = (unsigned long) mddev;
  3078. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  3079. mddev->in_sync = 1;
  3080. rdev_for_each(rdev, tmp, mddev)
  3081. if (rdev->raid_disk >= 0) {
  3082. char nm[20];
  3083. sprintf(nm, "rd%d", rdev->raid_disk);
  3084. if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
  3085. printk("md: cannot register %s for %s\n",
  3086. nm, mdname(mddev));
  3087. }
  3088. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3089. if (mddev->flags)
  3090. md_update_sb(mddev, 0);
  3091. set_capacity(disk, mddev->array_size<<1);
  3092. /* If we call blk_queue_make_request here, it will
  3093. * re-initialise max_sectors etc which may have been
  3094. * refined inside -> run. So just set the bits we need to set.
  3095. * Most initialisation happended when we called
  3096. * blk_queue_make_request(..., md_fail_request)
  3097. * earlier.
  3098. */
  3099. mddev->queue->queuedata = mddev;
  3100. mddev->queue->make_request_fn = mddev->pers->make_request;
  3101. /* If there is a partially-recovered drive we need to
  3102. * start recovery here. If we leave it to md_check_recovery,
  3103. * it will remove the drives and not do the right thing
  3104. */
  3105. if (mddev->degraded && !mddev->sync_thread) {
  3106. struct list_head *rtmp;
  3107. int spares = 0;
  3108. rdev_for_each(rdev, rtmp, mddev)
  3109. if (rdev->raid_disk >= 0 &&
  3110. !test_bit(In_sync, &rdev->flags) &&
  3111. !test_bit(Faulty, &rdev->flags))
  3112. /* complete an interrupted recovery */
  3113. spares++;
  3114. if (spares && mddev->pers->sync_request) {
  3115. mddev->recovery = 0;
  3116. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  3117. mddev->sync_thread = md_register_thread(md_do_sync,
  3118. mddev,
  3119. "%s_resync");
  3120. if (!mddev->sync_thread) {
  3121. printk(KERN_ERR "%s: could not start resync"
  3122. " thread...\n",
  3123. mdname(mddev));
  3124. /* leave the spares where they are, it shouldn't hurt */
  3125. mddev->recovery = 0;
  3126. }
  3127. }
  3128. }
  3129. md_wakeup_thread(mddev->thread);
  3130. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  3131. mddev->changed = 1;
  3132. md_new_event(mddev);
  3133. kobject_uevent(&mddev->gendisk->dev.kobj, KOBJ_CHANGE);
  3134. return 0;
  3135. }
  3136. static int restart_array(mddev_t *mddev)
  3137. {
  3138. struct gendisk *disk = mddev->gendisk;
  3139. int err;
  3140. /*
  3141. * Complain if it has no devices
  3142. */
  3143. err = -ENXIO;
  3144. if (list_empty(&mddev->disks))
  3145. goto out;
  3146. if (mddev->pers) {
  3147. err = -EBUSY;
  3148. if (!mddev->ro)
  3149. goto out;
  3150. mddev->safemode = 0;
  3151. mddev->ro = 0;
  3152. set_disk_ro(disk, 0);
  3153. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  3154. mdname(mddev));
  3155. /*
  3156. * Kick recovery or resync if necessary
  3157. */
  3158. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3159. md_wakeup_thread(mddev->thread);
  3160. md_wakeup_thread(mddev->sync_thread);
  3161. err = 0;
  3162. } else
  3163. err = -EINVAL;
  3164. out:
  3165. return err;
  3166. }
  3167. /* similar to deny_write_access, but accounts for our holding a reference
  3168. * to the file ourselves */
  3169. static int deny_bitmap_write_access(struct file * file)
  3170. {
  3171. struct inode *inode = file->f_mapping->host;
  3172. spin_lock(&inode->i_lock);
  3173. if (atomic_read(&inode->i_writecount) > 1) {
  3174. spin_unlock(&inode->i_lock);
  3175. return -ETXTBSY;
  3176. }
  3177. atomic_set(&inode->i_writecount, -1);
  3178. spin_unlock(&inode->i_lock);
  3179. return 0;
  3180. }
  3181. static void restore_bitmap_write_access(struct file *file)
  3182. {
  3183. struct inode *inode = file->f_mapping->host;
  3184. spin_lock(&inode->i_lock);
  3185. atomic_set(&inode->i_writecount, 1);
  3186. spin_unlock(&inode->i_lock);
  3187. }
  3188. /* mode:
  3189. * 0 - completely stop and dis-assemble array
  3190. * 1 - switch to readonly
  3191. * 2 - stop but do not disassemble array
  3192. */
  3193. static int do_md_stop(mddev_t * mddev, int mode)
  3194. {
  3195. int err = 0;
  3196. struct gendisk *disk = mddev->gendisk;
  3197. if (mddev->pers) {
  3198. if (atomic_read(&mddev->active)>2) {
  3199. printk("md: %s still in use.\n",mdname(mddev));
  3200. return -EBUSY;
  3201. }
  3202. if (mddev->sync_thread) {
  3203. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3204. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3205. md_unregister_thread(mddev->sync_thread);
  3206. mddev->sync_thread = NULL;
  3207. }
  3208. del_timer_sync(&mddev->safemode_timer);
  3209. invalidate_partition(disk, 0);
  3210. switch(mode) {
  3211. case 1: /* readonly */
  3212. err = -ENXIO;
  3213. if (mddev->ro==1)
  3214. goto out;
  3215. mddev->ro = 1;
  3216. break;
  3217. case 0: /* disassemble */
  3218. case 2: /* stop */
  3219. bitmap_flush(mddev);
  3220. md_super_wait(mddev);
  3221. if (mddev->ro)
  3222. set_disk_ro(disk, 0);
  3223. blk_queue_make_request(mddev->queue, md_fail_request);
  3224. mddev->pers->stop(mddev);
  3225. mddev->queue->merge_bvec_fn = NULL;
  3226. mddev->queue->unplug_fn = NULL;
  3227. mddev->queue->backing_dev_info.congested_fn = NULL;
  3228. if (mddev->pers->sync_request)
  3229. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  3230. module_put(mddev->pers->owner);
  3231. mddev->pers = NULL;
  3232. set_capacity(disk, 0);
  3233. mddev->changed = 1;
  3234. if (mddev->ro)
  3235. mddev->ro = 0;
  3236. }
  3237. if (!mddev->in_sync || mddev->flags) {
  3238. /* mark array as shutdown cleanly */
  3239. mddev->in_sync = 1;
  3240. md_update_sb(mddev, 1);
  3241. }
  3242. if (mode == 1)
  3243. set_disk_ro(disk, 1);
  3244. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3245. }
  3246. /*
  3247. * Free resources if final stop
  3248. */
  3249. if (mode == 0) {
  3250. mdk_rdev_t *rdev;
  3251. struct list_head *tmp;
  3252. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  3253. bitmap_destroy(mddev);
  3254. if (mddev->bitmap_file) {
  3255. restore_bitmap_write_access(mddev->bitmap_file);
  3256. fput(mddev->bitmap_file);
  3257. mddev->bitmap_file = NULL;
  3258. }
  3259. mddev->bitmap_offset = 0;
  3260. rdev_for_each(rdev, tmp, mddev)
  3261. if (rdev->raid_disk >= 0) {
  3262. char nm[20];
  3263. sprintf(nm, "rd%d", rdev->raid_disk);
  3264. sysfs_remove_link(&mddev->kobj, nm);
  3265. }
  3266. /* make sure all md_delayed_delete calls have finished */
  3267. flush_scheduled_work();
  3268. export_array(mddev);
  3269. mddev->array_size = 0;
  3270. mddev->size = 0;
  3271. mddev->raid_disks = 0;
  3272. mddev->recovery_cp = 0;
  3273. mddev->resync_max = MaxSector;
  3274. mddev->reshape_position = MaxSector;
  3275. mddev->external = 0;
  3276. mddev->persistent = 0;
  3277. } else if (mddev->pers)
  3278. printk(KERN_INFO "md: %s switched to read-only mode.\n",
  3279. mdname(mddev));
  3280. err = 0;
  3281. md_new_event(mddev);
  3282. out:
  3283. return err;
  3284. }
  3285. #ifndef MODULE
  3286. static void autorun_array(mddev_t *mddev)
  3287. {
  3288. mdk_rdev_t *rdev;
  3289. struct list_head *tmp;
  3290. int err;
  3291. if (list_empty(&mddev->disks))
  3292. return;
  3293. printk(KERN_INFO "md: running: ");
  3294. rdev_for_each(rdev, tmp, mddev) {
  3295. char b[BDEVNAME_SIZE];
  3296. printk("<%s>", bdevname(rdev->bdev,b));
  3297. }
  3298. printk("\n");
  3299. err = do_md_run (mddev);
  3300. if (err) {
  3301. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  3302. do_md_stop (mddev, 0);
  3303. }
  3304. }
  3305. /*
  3306. * lets try to run arrays based on all disks that have arrived
  3307. * until now. (those are in pending_raid_disks)
  3308. *
  3309. * the method: pick the first pending disk, collect all disks with
  3310. * the same UUID, remove all from the pending list and put them into
  3311. * the 'same_array' list. Then order this list based on superblock
  3312. * update time (freshest comes first), kick out 'old' disks and
  3313. * compare superblocks. If everything's fine then run it.
  3314. *
  3315. * If "unit" is allocated, then bump its reference count
  3316. */
  3317. static void autorun_devices(int part)
  3318. {
  3319. struct list_head *tmp;
  3320. mdk_rdev_t *rdev0, *rdev;
  3321. mddev_t *mddev;
  3322. char b[BDEVNAME_SIZE];
  3323. printk(KERN_INFO "md: autorun ...\n");
  3324. while (!list_empty(&pending_raid_disks)) {
  3325. int unit;
  3326. dev_t dev;
  3327. LIST_HEAD(candidates);
  3328. rdev0 = list_entry(pending_raid_disks.next,
  3329. mdk_rdev_t, same_set);
  3330. printk(KERN_INFO "md: considering %s ...\n",
  3331. bdevname(rdev0->bdev,b));
  3332. INIT_LIST_HEAD(&candidates);
  3333. rdev_for_each_list(rdev, tmp, pending_raid_disks)
  3334. if (super_90_load(rdev, rdev0, 0) >= 0) {
  3335. printk(KERN_INFO "md: adding %s ...\n",
  3336. bdevname(rdev->bdev,b));
  3337. list_move(&rdev->same_set, &candidates);
  3338. }
  3339. /*
  3340. * now we have a set of devices, with all of them having
  3341. * mostly sane superblocks. It's time to allocate the
  3342. * mddev.
  3343. */
  3344. if (part) {
  3345. dev = MKDEV(mdp_major,
  3346. rdev0->preferred_minor << MdpMinorShift);
  3347. unit = MINOR(dev) >> MdpMinorShift;
  3348. } else {
  3349. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  3350. unit = MINOR(dev);
  3351. }
  3352. if (rdev0->preferred_minor != unit) {
  3353. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  3354. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  3355. break;
  3356. }
  3357. md_probe(dev, NULL, NULL);
  3358. mddev = mddev_find(dev);
  3359. if (!mddev) {
  3360. printk(KERN_ERR
  3361. "md: cannot allocate memory for md drive.\n");
  3362. break;
  3363. }
  3364. if (mddev_lock(mddev))
  3365. printk(KERN_WARNING "md: %s locked, cannot run\n",
  3366. mdname(mddev));
  3367. else if (mddev->raid_disks || mddev->major_version
  3368. || !list_empty(&mddev->disks)) {
  3369. printk(KERN_WARNING
  3370. "md: %s already running, cannot run %s\n",
  3371. mdname(mddev), bdevname(rdev0->bdev,b));
  3372. mddev_unlock(mddev);
  3373. } else {
  3374. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  3375. mddev->persistent = 1;
  3376. rdev_for_each_list(rdev, tmp, candidates) {
  3377. list_del_init(&rdev->same_set);
  3378. if (bind_rdev_to_array(rdev, mddev))
  3379. export_rdev(rdev);
  3380. }
  3381. autorun_array(mddev);
  3382. mddev_unlock(mddev);
  3383. }
  3384. /* on success, candidates will be empty, on error
  3385. * it won't...
  3386. */
  3387. rdev_for_each_list(rdev, tmp, candidates)
  3388. export_rdev(rdev);
  3389. mddev_put(mddev);
  3390. }
  3391. printk(KERN_INFO "md: ... autorun DONE.\n");
  3392. }
  3393. #endif /* !MODULE */
  3394. static int get_version(void __user * arg)
  3395. {
  3396. mdu_version_t ver;
  3397. ver.major = MD_MAJOR_VERSION;
  3398. ver.minor = MD_MINOR_VERSION;
  3399. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  3400. if (copy_to_user(arg, &ver, sizeof(ver)))
  3401. return -EFAULT;
  3402. return 0;
  3403. }
  3404. static int get_array_info(mddev_t * mddev, void __user * arg)
  3405. {
  3406. mdu_array_info_t info;
  3407. int nr,working,active,failed,spare;
  3408. mdk_rdev_t *rdev;
  3409. struct list_head *tmp;
  3410. nr=working=active=failed=spare=0;
  3411. rdev_for_each(rdev, tmp, mddev) {
  3412. nr++;
  3413. if (test_bit(Faulty, &rdev->flags))
  3414. failed++;
  3415. else {
  3416. working++;
  3417. if (test_bit(In_sync, &rdev->flags))
  3418. active++;
  3419. else
  3420. spare++;
  3421. }
  3422. }
  3423. info.major_version = mddev->major_version;
  3424. info.minor_version = mddev->minor_version;
  3425. info.patch_version = MD_PATCHLEVEL_VERSION;
  3426. info.ctime = mddev->ctime;
  3427. info.level = mddev->level;
  3428. info.size = mddev->size;
  3429. if (info.size != mddev->size) /* overflow */
  3430. info.size = -1;
  3431. info.nr_disks = nr;
  3432. info.raid_disks = mddev->raid_disks;
  3433. info.md_minor = mddev->md_minor;
  3434. info.not_persistent= !mddev->persistent;
  3435. info.utime = mddev->utime;
  3436. info.state = 0;
  3437. if (mddev->in_sync)
  3438. info.state = (1<<MD_SB_CLEAN);
  3439. if (mddev->bitmap && mddev->bitmap_offset)
  3440. info.state = (1<<MD_SB_BITMAP_PRESENT);
  3441. info.active_disks = active;
  3442. info.working_disks = working;
  3443. info.failed_disks = failed;
  3444. info.spare_disks = spare;
  3445. info.layout = mddev->layout;
  3446. info.chunk_size = mddev->chunk_size;
  3447. if (copy_to_user(arg, &info, sizeof(info)))
  3448. return -EFAULT;
  3449. return 0;
  3450. }
  3451. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  3452. {
  3453. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  3454. char *ptr, *buf = NULL;
  3455. int err = -ENOMEM;
  3456. md_allow_write(mddev);
  3457. file = kmalloc(sizeof(*file), GFP_KERNEL);
  3458. if (!file)
  3459. goto out;
  3460. /* bitmap disabled, zero the first byte and copy out */
  3461. if (!mddev->bitmap || !mddev->bitmap->file) {
  3462. file->pathname[0] = '\0';
  3463. goto copy_out;
  3464. }
  3465. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  3466. if (!buf)
  3467. goto out;
  3468. ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
  3469. if (!ptr)
  3470. goto out;
  3471. strcpy(file->pathname, ptr);
  3472. copy_out:
  3473. err = 0;
  3474. if (copy_to_user(arg, file, sizeof(*file)))
  3475. err = -EFAULT;
  3476. out:
  3477. kfree(buf);
  3478. kfree(file);
  3479. return err;
  3480. }
  3481. static int get_disk_info(mddev_t * mddev, void __user * arg)
  3482. {
  3483. mdu_disk_info_t info;
  3484. unsigned int nr;
  3485. mdk_rdev_t *rdev;
  3486. if (copy_from_user(&info, arg, sizeof(info)))
  3487. return -EFAULT;
  3488. nr = info.number;
  3489. rdev = find_rdev_nr(mddev, nr);
  3490. if (rdev) {
  3491. info.major = MAJOR(rdev->bdev->bd_dev);
  3492. info.minor = MINOR(rdev->bdev->bd_dev);
  3493. info.raid_disk = rdev->raid_disk;
  3494. info.state = 0;
  3495. if (test_bit(Faulty, &rdev->flags))
  3496. info.state |= (1<<MD_DISK_FAULTY);
  3497. else if (test_bit(In_sync, &rdev->flags)) {
  3498. info.state |= (1<<MD_DISK_ACTIVE);
  3499. info.state |= (1<<MD_DISK_SYNC);
  3500. }
  3501. if (test_bit(WriteMostly, &rdev->flags))
  3502. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  3503. } else {
  3504. info.major = info.minor = 0;
  3505. info.raid_disk = -1;
  3506. info.state = (1<<MD_DISK_REMOVED);
  3507. }
  3508. if (copy_to_user(arg, &info, sizeof(info)))
  3509. return -EFAULT;
  3510. return 0;
  3511. }
  3512. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  3513. {
  3514. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  3515. mdk_rdev_t *rdev;
  3516. dev_t dev = MKDEV(info->major,info->minor);
  3517. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  3518. return -EOVERFLOW;
  3519. if (!mddev->raid_disks) {
  3520. int err;
  3521. /* expecting a device which has a superblock */
  3522. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  3523. if (IS_ERR(rdev)) {
  3524. printk(KERN_WARNING
  3525. "md: md_import_device returned %ld\n",
  3526. PTR_ERR(rdev));
  3527. return PTR_ERR(rdev);
  3528. }
  3529. if (!list_empty(&mddev->disks)) {
  3530. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3531. mdk_rdev_t, same_set);
  3532. int err = super_types[mddev->major_version]
  3533. .load_super(rdev, rdev0, mddev->minor_version);
  3534. if (err < 0) {
  3535. printk(KERN_WARNING
  3536. "md: %s has different UUID to %s\n",
  3537. bdevname(rdev->bdev,b),
  3538. bdevname(rdev0->bdev,b2));
  3539. export_rdev(rdev);
  3540. return -EINVAL;
  3541. }
  3542. }
  3543. err = bind_rdev_to_array(rdev, mddev);
  3544. if (err)
  3545. export_rdev(rdev);
  3546. return err;
  3547. }
  3548. /*
  3549. * add_new_disk can be used once the array is assembled
  3550. * to add "hot spares". They must already have a superblock
  3551. * written
  3552. */
  3553. if (mddev->pers) {
  3554. int err;
  3555. if (!mddev->pers->hot_add_disk) {
  3556. printk(KERN_WARNING
  3557. "%s: personality does not support diskops!\n",
  3558. mdname(mddev));
  3559. return -EINVAL;
  3560. }
  3561. if (mddev->persistent)
  3562. rdev = md_import_device(dev, mddev->major_version,
  3563. mddev->minor_version);
  3564. else
  3565. rdev = md_import_device(dev, -1, -1);
  3566. if (IS_ERR(rdev)) {
  3567. printk(KERN_WARNING
  3568. "md: md_import_device returned %ld\n",
  3569. PTR_ERR(rdev));
  3570. return PTR_ERR(rdev);
  3571. }
  3572. /* set save_raid_disk if appropriate */
  3573. if (!mddev->persistent) {
  3574. if (info->state & (1<<MD_DISK_SYNC) &&
  3575. info->raid_disk < mddev->raid_disks)
  3576. rdev->raid_disk = info->raid_disk;
  3577. else
  3578. rdev->raid_disk = -1;
  3579. } else
  3580. super_types[mddev->major_version].
  3581. validate_super(mddev, rdev);
  3582. rdev->saved_raid_disk = rdev->raid_disk;
  3583. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  3584. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3585. set_bit(WriteMostly, &rdev->flags);
  3586. rdev->raid_disk = -1;
  3587. err = bind_rdev_to_array(rdev, mddev);
  3588. if (!err && !mddev->pers->hot_remove_disk) {
  3589. /* If there is hot_add_disk but no hot_remove_disk
  3590. * then added disks for geometry changes,
  3591. * and should be added immediately.
  3592. */
  3593. super_types[mddev->major_version].
  3594. validate_super(mddev, rdev);
  3595. err = mddev->pers->hot_add_disk(mddev, rdev);
  3596. if (err)
  3597. unbind_rdev_from_array(rdev);
  3598. }
  3599. if (err)
  3600. export_rdev(rdev);
  3601. md_update_sb(mddev, 1);
  3602. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3603. md_wakeup_thread(mddev->thread);
  3604. return err;
  3605. }
  3606. /* otherwise, add_new_disk is only allowed
  3607. * for major_version==0 superblocks
  3608. */
  3609. if (mddev->major_version != 0) {
  3610. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  3611. mdname(mddev));
  3612. return -EINVAL;
  3613. }
  3614. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  3615. int err;
  3616. rdev = md_import_device (dev, -1, 0);
  3617. if (IS_ERR(rdev)) {
  3618. printk(KERN_WARNING
  3619. "md: error, md_import_device() returned %ld\n",
  3620. PTR_ERR(rdev));
  3621. return PTR_ERR(rdev);
  3622. }
  3623. rdev->desc_nr = info->number;
  3624. if (info->raid_disk < mddev->raid_disks)
  3625. rdev->raid_disk = info->raid_disk;
  3626. else
  3627. rdev->raid_disk = -1;
  3628. if (rdev->raid_disk < mddev->raid_disks)
  3629. if (info->state & (1<<MD_DISK_SYNC))
  3630. set_bit(In_sync, &rdev->flags);
  3631. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  3632. set_bit(WriteMostly, &rdev->flags);
  3633. if (!mddev->persistent) {
  3634. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  3635. rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3636. } else
  3637. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3638. rdev->size = calc_dev_size(rdev, mddev->chunk_size);
  3639. err = bind_rdev_to_array(rdev, mddev);
  3640. if (err) {
  3641. export_rdev(rdev);
  3642. return err;
  3643. }
  3644. }
  3645. return 0;
  3646. }
  3647. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  3648. {
  3649. char b[BDEVNAME_SIZE];
  3650. mdk_rdev_t *rdev;
  3651. if (!mddev->pers)
  3652. return -ENODEV;
  3653. rdev = find_rdev(mddev, dev);
  3654. if (!rdev)
  3655. return -ENXIO;
  3656. if (rdev->raid_disk >= 0)
  3657. goto busy;
  3658. kick_rdev_from_array(rdev);
  3659. md_update_sb(mddev, 1);
  3660. md_new_event(mddev);
  3661. return 0;
  3662. busy:
  3663. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  3664. bdevname(rdev->bdev,b), mdname(mddev));
  3665. return -EBUSY;
  3666. }
  3667. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  3668. {
  3669. char b[BDEVNAME_SIZE];
  3670. int err;
  3671. unsigned int size;
  3672. mdk_rdev_t *rdev;
  3673. if (!mddev->pers)
  3674. return -ENODEV;
  3675. if (mddev->major_version != 0) {
  3676. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  3677. " version-0 superblocks.\n",
  3678. mdname(mddev));
  3679. return -EINVAL;
  3680. }
  3681. if (!mddev->pers->hot_add_disk) {
  3682. printk(KERN_WARNING
  3683. "%s: personality does not support diskops!\n",
  3684. mdname(mddev));
  3685. return -EINVAL;
  3686. }
  3687. rdev = md_import_device (dev, -1, 0);
  3688. if (IS_ERR(rdev)) {
  3689. printk(KERN_WARNING
  3690. "md: error, md_import_device() returned %ld\n",
  3691. PTR_ERR(rdev));
  3692. return -EINVAL;
  3693. }
  3694. if (mddev->persistent)
  3695. rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
  3696. else
  3697. rdev->sb_offset =
  3698. rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
  3699. size = calc_dev_size(rdev, mddev->chunk_size);
  3700. rdev->size = size;
  3701. if (test_bit(Faulty, &rdev->flags)) {
  3702. printk(KERN_WARNING
  3703. "md: can not hot-add faulty %s disk to %s!\n",
  3704. bdevname(rdev->bdev,b), mdname(mddev));
  3705. err = -EINVAL;
  3706. goto abort_export;
  3707. }
  3708. clear_bit(In_sync, &rdev->flags);
  3709. rdev->desc_nr = -1;
  3710. rdev->saved_raid_disk = -1;
  3711. err = bind_rdev_to_array(rdev, mddev);
  3712. if (err)
  3713. goto abort_export;
  3714. /*
  3715. * The rest should better be atomic, we can have disk failures
  3716. * noticed in interrupt contexts ...
  3717. */
  3718. if (rdev->desc_nr == mddev->max_disks) {
  3719. printk(KERN_WARNING "%s: can not hot-add to full array!\n",
  3720. mdname(mddev));
  3721. err = -EBUSY;
  3722. goto abort_unbind_export;
  3723. }
  3724. rdev->raid_disk = -1;
  3725. md_update_sb(mddev, 1);
  3726. /*
  3727. * Kick recovery, maybe this spare has to be added to the
  3728. * array immediately.
  3729. */
  3730. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3731. md_wakeup_thread(mddev->thread);
  3732. md_new_event(mddev);
  3733. return 0;
  3734. abort_unbind_export:
  3735. unbind_rdev_from_array(rdev);
  3736. abort_export:
  3737. export_rdev(rdev);
  3738. return err;
  3739. }
  3740. static int set_bitmap_file(mddev_t *mddev, int fd)
  3741. {
  3742. int err;
  3743. if (mddev->pers) {
  3744. if (!mddev->pers->quiesce)
  3745. return -EBUSY;
  3746. if (mddev->recovery || mddev->sync_thread)
  3747. return -EBUSY;
  3748. /* we should be able to change the bitmap.. */
  3749. }
  3750. if (fd >= 0) {
  3751. if (mddev->bitmap)
  3752. return -EEXIST; /* cannot add when bitmap is present */
  3753. mddev->bitmap_file = fget(fd);
  3754. if (mddev->bitmap_file == NULL) {
  3755. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  3756. mdname(mddev));
  3757. return -EBADF;
  3758. }
  3759. err = deny_bitmap_write_access(mddev->bitmap_file);
  3760. if (err) {
  3761. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  3762. mdname(mddev));
  3763. fput(mddev->bitmap_file);
  3764. mddev->bitmap_file = NULL;
  3765. return err;
  3766. }
  3767. mddev->bitmap_offset = 0; /* file overrides offset */
  3768. } else if (mddev->bitmap == NULL)
  3769. return -ENOENT; /* cannot remove what isn't there */
  3770. err = 0;
  3771. if (mddev->pers) {
  3772. mddev->pers->quiesce(mddev, 1);
  3773. if (fd >= 0)
  3774. err = bitmap_create(mddev);
  3775. if (fd < 0 || err) {
  3776. bitmap_destroy(mddev);
  3777. fd = -1; /* make sure to put the file */
  3778. }
  3779. mddev->pers->quiesce(mddev, 0);
  3780. }
  3781. if (fd < 0) {
  3782. if (mddev->bitmap_file) {
  3783. restore_bitmap_write_access(mddev->bitmap_file);
  3784. fput(mddev->bitmap_file);
  3785. }
  3786. mddev->bitmap_file = NULL;
  3787. }
  3788. return err;
  3789. }
  3790. /*
  3791. * set_array_info is used two different ways
  3792. * The original usage is when creating a new array.
  3793. * In this usage, raid_disks is > 0 and it together with
  3794. * level, size, not_persistent,layout,chunksize determine the
  3795. * shape of the array.
  3796. * This will always create an array with a type-0.90.0 superblock.
  3797. * The newer usage is when assembling an array.
  3798. * In this case raid_disks will be 0, and the major_version field is
  3799. * use to determine which style super-blocks are to be found on the devices.
  3800. * The minor and patch _version numbers are also kept incase the
  3801. * super_block handler wishes to interpret them.
  3802. */
  3803. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  3804. {
  3805. if (info->raid_disks == 0) {
  3806. /* just setting version number for superblock loading */
  3807. if (info->major_version < 0 ||
  3808. info->major_version >= ARRAY_SIZE(super_types) ||
  3809. super_types[info->major_version].name == NULL) {
  3810. /* maybe try to auto-load a module? */
  3811. printk(KERN_INFO
  3812. "md: superblock version %d not known\n",
  3813. info->major_version);
  3814. return -EINVAL;
  3815. }
  3816. mddev->major_version = info->major_version;
  3817. mddev->minor_version = info->minor_version;
  3818. mddev->patch_version = info->patch_version;
  3819. mddev->persistent = !info->not_persistent;
  3820. return 0;
  3821. }
  3822. mddev->major_version = MD_MAJOR_VERSION;
  3823. mddev->minor_version = MD_MINOR_VERSION;
  3824. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  3825. mddev->ctime = get_seconds();
  3826. mddev->level = info->level;
  3827. mddev->clevel[0] = 0;
  3828. mddev->size = info->size;
  3829. mddev->raid_disks = info->raid_disks;
  3830. /* don't set md_minor, it is determined by which /dev/md* was
  3831. * openned
  3832. */
  3833. if (info->state & (1<<MD_SB_CLEAN))
  3834. mddev->recovery_cp = MaxSector;
  3835. else
  3836. mddev->recovery_cp = 0;
  3837. mddev->persistent = ! info->not_persistent;
  3838. mddev->external = 0;
  3839. mddev->layout = info->layout;
  3840. mddev->chunk_size = info->chunk_size;
  3841. mddev->max_disks = MD_SB_DISKS;
  3842. if (mddev->persistent)
  3843. mddev->flags = 0;
  3844. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3845. mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
  3846. mddev->bitmap_offset = 0;
  3847. mddev->reshape_position = MaxSector;
  3848. /*
  3849. * Generate a 128 bit UUID
  3850. */
  3851. get_random_bytes(mddev->uuid, 16);
  3852. mddev->new_level = mddev->level;
  3853. mddev->new_chunk = mddev->chunk_size;
  3854. mddev->new_layout = mddev->layout;
  3855. mddev->delta_disks = 0;
  3856. return 0;
  3857. }
  3858. static int update_size(mddev_t *mddev, unsigned long size)
  3859. {
  3860. mdk_rdev_t * rdev;
  3861. int rv;
  3862. struct list_head *tmp;
  3863. int fit = (size == 0);
  3864. if (mddev->pers->resize == NULL)
  3865. return -EINVAL;
  3866. /* The "size" is the amount of each device that is used.
  3867. * This can only make sense for arrays with redundancy.
  3868. * linear and raid0 always use whatever space is available
  3869. * We can only consider changing the size if no resync
  3870. * or reconstruction is happening, and if the new size
  3871. * is acceptable. It must fit before the sb_offset or,
  3872. * if that is <data_offset, it must fit before the
  3873. * size of each device.
  3874. * If size is zero, we find the largest size that fits.
  3875. */
  3876. if (mddev->sync_thread)
  3877. return -EBUSY;
  3878. rdev_for_each(rdev, tmp, mddev) {
  3879. sector_t avail;
  3880. avail = rdev->size * 2;
  3881. if (fit && (size == 0 || size > avail/2))
  3882. size = avail/2;
  3883. if (avail < ((sector_t)size << 1))
  3884. return -ENOSPC;
  3885. }
  3886. rv = mddev->pers->resize(mddev, (sector_t)size *2);
  3887. if (!rv) {
  3888. struct block_device *bdev;
  3889. bdev = bdget_disk(mddev->gendisk, 0);
  3890. if (bdev) {
  3891. mutex_lock(&bdev->bd_inode->i_mutex);
  3892. i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
  3893. mutex_unlock(&bdev->bd_inode->i_mutex);
  3894. bdput(bdev);
  3895. }
  3896. }
  3897. return rv;
  3898. }
  3899. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  3900. {
  3901. int rv;
  3902. /* change the number of raid disks */
  3903. if (mddev->pers->check_reshape == NULL)
  3904. return -EINVAL;
  3905. if (raid_disks <= 0 ||
  3906. raid_disks >= mddev->max_disks)
  3907. return -EINVAL;
  3908. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  3909. return -EBUSY;
  3910. mddev->delta_disks = raid_disks - mddev->raid_disks;
  3911. rv = mddev->pers->check_reshape(mddev);
  3912. return rv;
  3913. }
  3914. /*
  3915. * update_array_info is used to change the configuration of an
  3916. * on-line array.
  3917. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  3918. * fields in the info are checked against the array.
  3919. * Any differences that cannot be handled will cause an error.
  3920. * Normally, only one change can be managed at a time.
  3921. */
  3922. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  3923. {
  3924. int rv = 0;
  3925. int cnt = 0;
  3926. int state = 0;
  3927. /* calculate expected state,ignoring low bits */
  3928. if (mddev->bitmap && mddev->bitmap_offset)
  3929. state |= (1 << MD_SB_BITMAP_PRESENT);
  3930. if (mddev->major_version != info->major_version ||
  3931. mddev->minor_version != info->minor_version ||
  3932. /* mddev->patch_version != info->patch_version || */
  3933. mddev->ctime != info->ctime ||
  3934. mddev->level != info->level ||
  3935. /* mddev->layout != info->layout || */
  3936. !mddev->persistent != info->not_persistent||
  3937. mddev->chunk_size != info->chunk_size ||
  3938. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  3939. ((state^info->state) & 0xfffffe00)
  3940. )
  3941. return -EINVAL;
  3942. /* Check there is only one change */
  3943. if (info->size >= 0 && mddev->size != info->size) cnt++;
  3944. if (mddev->raid_disks != info->raid_disks) cnt++;
  3945. if (mddev->layout != info->layout) cnt++;
  3946. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
  3947. if (cnt == 0) return 0;
  3948. if (cnt > 1) return -EINVAL;
  3949. if (mddev->layout != info->layout) {
  3950. /* Change layout
  3951. * we don't need to do anything at the md level, the
  3952. * personality will take care of it all.
  3953. */
  3954. if (mddev->pers->reconfig == NULL)
  3955. return -EINVAL;
  3956. else
  3957. return mddev->pers->reconfig(mddev, info->layout, -1);
  3958. }
  3959. if (info->size >= 0 && mddev->size != info->size)
  3960. rv = update_size(mddev, info->size);
  3961. if (mddev->raid_disks != info->raid_disks)
  3962. rv = update_raid_disks(mddev, info->raid_disks);
  3963. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  3964. if (mddev->pers->quiesce == NULL)
  3965. return -EINVAL;
  3966. if (mddev->recovery || mddev->sync_thread)
  3967. return -EBUSY;
  3968. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  3969. /* add the bitmap */
  3970. if (mddev->bitmap)
  3971. return -EEXIST;
  3972. if (mddev->default_bitmap_offset == 0)
  3973. return -EINVAL;
  3974. mddev->bitmap_offset = mddev->default_bitmap_offset;
  3975. mddev->pers->quiesce(mddev, 1);
  3976. rv = bitmap_create(mddev);
  3977. if (rv)
  3978. bitmap_destroy(mddev);
  3979. mddev->pers->quiesce(mddev, 0);
  3980. } else {
  3981. /* remove the bitmap */
  3982. if (!mddev->bitmap)
  3983. return -ENOENT;
  3984. if (mddev->bitmap->file)
  3985. return -EINVAL;
  3986. mddev->pers->quiesce(mddev, 1);
  3987. bitmap_destroy(mddev);
  3988. mddev->pers->quiesce(mddev, 0);
  3989. mddev->bitmap_offset = 0;
  3990. }
  3991. }
  3992. md_update_sb(mddev, 1);
  3993. return rv;
  3994. }
  3995. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  3996. {
  3997. mdk_rdev_t *rdev;
  3998. if (mddev->pers == NULL)
  3999. return -ENODEV;
  4000. rdev = find_rdev(mddev, dev);
  4001. if (!rdev)
  4002. return -ENODEV;
  4003. md_error(mddev, rdev);
  4004. return 0;
  4005. }
  4006. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  4007. {
  4008. mddev_t *mddev = bdev->bd_disk->private_data;
  4009. geo->heads = 2;
  4010. geo->sectors = 4;
  4011. geo->cylinders = get_capacity(mddev->gendisk) / 8;
  4012. return 0;
  4013. }
  4014. static int md_ioctl(struct inode *inode, struct file *file,
  4015. unsigned int cmd, unsigned long arg)
  4016. {
  4017. int err = 0;
  4018. void __user *argp = (void __user *)arg;
  4019. mddev_t *mddev = NULL;
  4020. if (!capable(CAP_SYS_ADMIN))
  4021. return -EACCES;
  4022. /*
  4023. * Commands dealing with the RAID driver but not any
  4024. * particular array:
  4025. */
  4026. switch (cmd)
  4027. {
  4028. case RAID_VERSION:
  4029. err = get_version(argp);
  4030. goto done;
  4031. case PRINT_RAID_DEBUG:
  4032. err = 0;
  4033. md_print_devices();
  4034. goto done;
  4035. #ifndef MODULE
  4036. case RAID_AUTORUN:
  4037. err = 0;
  4038. autostart_arrays(arg);
  4039. goto done;
  4040. #endif
  4041. default:;
  4042. }
  4043. /*
  4044. * Commands creating/starting a new array:
  4045. */
  4046. mddev = inode->i_bdev->bd_disk->private_data;
  4047. if (!mddev) {
  4048. BUG();
  4049. goto abort;
  4050. }
  4051. err = mddev_lock(mddev);
  4052. if (err) {
  4053. printk(KERN_INFO
  4054. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  4055. err, cmd);
  4056. goto abort;
  4057. }
  4058. switch (cmd)
  4059. {
  4060. case SET_ARRAY_INFO:
  4061. {
  4062. mdu_array_info_t info;
  4063. if (!arg)
  4064. memset(&info, 0, sizeof(info));
  4065. else if (copy_from_user(&info, argp, sizeof(info))) {
  4066. err = -EFAULT;
  4067. goto abort_unlock;
  4068. }
  4069. if (mddev->pers) {
  4070. err = update_array_info(mddev, &info);
  4071. if (err) {
  4072. printk(KERN_WARNING "md: couldn't update"
  4073. " array info. %d\n", err);
  4074. goto abort_unlock;
  4075. }
  4076. goto done_unlock;
  4077. }
  4078. if (!list_empty(&mddev->disks)) {
  4079. printk(KERN_WARNING
  4080. "md: array %s already has disks!\n",
  4081. mdname(mddev));
  4082. err = -EBUSY;
  4083. goto abort_unlock;
  4084. }
  4085. if (mddev->raid_disks) {
  4086. printk(KERN_WARNING
  4087. "md: array %s already initialised!\n",
  4088. mdname(mddev));
  4089. err = -EBUSY;
  4090. goto abort_unlock;
  4091. }
  4092. err = set_array_info(mddev, &info);
  4093. if (err) {
  4094. printk(KERN_WARNING "md: couldn't set"
  4095. " array info. %d\n", err);
  4096. goto abort_unlock;
  4097. }
  4098. }
  4099. goto done_unlock;
  4100. default:;
  4101. }
  4102. /*
  4103. * Commands querying/configuring an existing array:
  4104. */
  4105. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  4106. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  4107. if ((!mddev->raid_disks && !mddev->external)
  4108. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  4109. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  4110. && cmd != GET_BITMAP_FILE) {
  4111. err = -ENODEV;
  4112. goto abort_unlock;
  4113. }
  4114. /*
  4115. * Commands even a read-only array can execute:
  4116. */
  4117. switch (cmd)
  4118. {
  4119. case GET_ARRAY_INFO:
  4120. err = get_array_info(mddev, argp);
  4121. goto done_unlock;
  4122. case GET_BITMAP_FILE:
  4123. err = get_bitmap_file(mddev, argp);
  4124. goto done_unlock;
  4125. case GET_DISK_INFO:
  4126. err = get_disk_info(mddev, argp);
  4127. goto done_unlock;
  4128. case RESTART_ARRAY_RW:
  4129. err = restart_array(mddev);
  4130. goto done_unlock;
  4131. case STOP_ARRAY:
  4132. err = do_md_stop (mddev, 0);
  4133. goto done_unlock;
  4134. case STOP_ARRAY_RO:
  4135. err = do_md_stop (mddev, 1);
  4136. goto done_unlock;
  4137. /*
  4138. * We have a problem here : there is no easy way to give a CHS
  4139. * virtual geometry. We currently pretend that we have a 2 heads
  4140. * 4 sectors (with a BIG number of cylinders...). This drives
  4141. * dosfs just mad... ;-)
  4142. */
  4143. }
  4144. /*
  4145. * The remaining ioctls are changing the state of the
  4146. * superblock, so we do not allow them on read-only arrays.
  4147. * However non-MD ioctls (e.g. get-size) will still come through
  4148. * here and hit the 'default' below, so only disallow
  4149. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  4150. */
  4151. if (_IOC_TYPE(cmd) == MD_MAJOR &&
  4152. mddev->ro && mddev->pers) {
  4153. if (mddev->ro == 2) {
  4154. mddev->ro = 0;
  4155. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4156. md_wakeup_thread(mddev->thread);
  4157. } else {
  4158. err = -EROFS;
  4159. goto abort_unlock;
  4160. }
  4161. }
  4162. switch (cmd)
  4163. {
  4164. case ADD_NEW_DISK:
  4165. {
  4166. mdu_disk_info_t info;
  4167. if (copy_from_user(&info, argp, sizeof(info)))
  4168. err = -EFAULT;
  4169. else
  4170. err = add_new_disk(mddev, &info);
  4171. goto done_unlock;
  4172. }
  4173. case HOT_REMOVE_DISK:
  4174. err = hot_remove_disk(mddev, new_decode_dev(arg));
  4175. goto done_unlock;
  4176. case HOT_ADD_DISK:
  4177. err = hot_add_disk(mddev, new_decode_dev(arg));
  4178. goto done_unlock;
  4179. case SET_DISK_FAULTY:
  4180. err = set_disk_faulty(mddev, new_decode_dev(arg));
  4181. goto done_unlock;
  4182. case RUN_ARRAY:
  4183. err = do_md_run (mddev);
  4184. goto done_unlock;
  4185. case SET_BITMAP_FILE:
  4186. err = set_bitmap_file(mddev, (int)arg);
  4187. goto done_unlock;
  4188. default:
  4189. err = -EINVAL;
  4190. goto abort_unlock;
  4191. }
  4192. done_unlock:
  4193. abort_unlock:
  4194. mddev_unlock(mddev);
  4195. return err;
  4196. done:
  4197. if (err)
  4198. MD_BUG();
  4199. abort:
  4200. return err;
  4201. }
  4202. static int md_open(struct inode *inode, struct file *file)
  4203. {
  4204. /*
  4205. * Succeed if we can lock the mddev, which confirms that
  4206. * it isn't being stopped right now.
  4207. */
  4208. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  4209. int err;
  4210. if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
  4211. goto out;
  4212. err = 0;
  4213. mddev_get(mddev);
  4214. mddev_unlock(mddev);
  4215. check_disk_change(inode->i_bdev);
  4216. out:
  4217. return err;
  4218. }
  4219. static int md_release(struct inode *inode, struct file * file)
  4220. {
  4221. mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
  4222. BUG_ON(!mddev);
  4223. mddev_put(mddev);
  4224. return 0;
  4225. }
  4226. static int md_media_changed(struct gendisk *disk)
  4227. {
  4228. mddev_t *mddev = disk->private_data;
  4229. return mddev->changed;
  4230. }
  4231. static int md_revalidate(struct gendisk *disk)
  4232. {
  4233. mddev_t *mddev = disk->private_data;
  4234. mddev->changed = 0;
  4235. return 0;
  4236. }
  4237. static struct block_device_operations md_fops =
  4238. {
  4239. .owner = THIS_MODULE,
  4240. .open = md_open,
  4241. .release = md_release,
  4242. .ioctl = md_ioctl,
  4243. .getgeo = md_getgeo,
  4244. .media_changed = md_media_changed,
  4245. .revalidate_disk= md_revalidate,
  4246. };
  4247. static int md_thread(void * arg)
  4248. {
  4249. mdk_thread_t *thread = arg;
  4250. /*
  4251. * md_thread is a 'system-thread', it's priority should be very
  4252. * high. We avoid resource deadlocks individually in each
  4253. * raid personality. (RAID5 does preallocation) We also use RR and
  4254. * the very same RT priority as kswapd, thus we will never get
  4255. * into a priority inversion deadlock.
  4256. *
  4257. * we definitely have to have equal or higher priority than
  4258. * bdflush, otherwise bdflush will deadlock if there are too
  4259. * many dirty RAID5 blocks.
  4260. */
  4261. allow_signal(SIGKILL);
  4262. while (!kthread_should_stop()) {
  4263. /* We need to wait INTERRUPTIBLE so that
  4264. * we don't add to the load-average.
  4265. * That means we need to be sure no signals are
  4266. * pending
  4267. */
  4268. if (signal_pending(current))
  4269. flush_signals(current);
  4270. wait_event_interruptible_timeout
  4271. (thread->wqueue,
  4272. test_bit(THREAD_WAKEUP, &thread->flags)
  4273. || kthread_should_stop(),
  4274. thread->timeout);
  4275. clear_bit(THREAD_WAKEUP, &thread->flags);
  4276. thread->run(thread->mddev);
  4277. }
  4278. return 0;
  4279. }
  4280. void md_wakeup_thread(mdk_thread_t *thread)
  4281. {
  4282. if (thread) {
  4283. dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
  4284. set_bit(THREAD_WAKEUP, &thread->flags);
  4285. wake_up(&thread->wqueue);
  4286. }
  4287. }
  4288. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  4289. const char *name)
  4290. {
  4291. mdk_thread_t *thread;
  4292. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  4293. if (!thread)
  4294. return NULL;
  4295. init_waitqueue_head(&thread->wqueue);
  4296. thread->run = run;
  4297. thread->mddev = mddev;
  4298. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  4299. thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
  4300. if (IS_ERR(thread->tsk)) {
  4301. kfree(thread);
  4302. return NULL;
  4303. }
  4304. return thread;
  4305. }
  4306. void md_unregister_thread(mdk_thread_t *thread)
  4307. {
  4308. dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  4309. kthread_stop(thread->tsk);
  4310. kfree(thread);
  4311. }
  4312. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  4313. {
  4314. if (!mddev) {
  4315. MD_BUG();
  4316. return;
  4317. }
  4318. if (!rdev || test_bit(Faulty, &rdev->flags))
  4319. return;
  4320. /*
  4321. dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
  4322. mdname(mddev),
  4323. MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
  4324. __builtin_return_address(0),__builtin_return_address(1),
  4325. __builtin_return_address(2),__builtin_return_address(3));
  4326. */
  4327. if (!mddev->pers)
  4328. return;
  4329. if (!mddev->pers->error_handler)
  4330. return;
  4331. mddev->pers->error_handler(mddev,rdev);
  4332. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4333. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4334. md_wakeup_thread(mddev->thread);
  4335. md_new_event_inintr(mddev);
  4336. }
  4337. /* seq_file implementation /proc/mdstat */
  4338. static void status_unused(struct seq_file *seq)
  4339. {
  4340. int i = 0;
  4341. mdk_rdev_t *rdev;
  4342. struct list_head *tmp;
  4343. seq_printf(seq, "unused devices: ");
  4344. rdev_for_each_list(rdev, tmp, pending_raid_disks) {
  4345. char b[BDEVNAME_SIZE];
  4346. i++;
  4347. seq_printf(seq, "%s ",
  4348. bdevname(rdev->bdev,b));
  4349. }
  4350. if (!i)
  4351. seq_printf(seq, "<none>");
  4352. seq_printf(seq, "\n");
  4353. }
  4354. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  4355. {
  4356. sector_t max_blocks, resync, res;
  4357. unsigned long dt, db, rt;
  4358. int scale;
  4359. unsigned int per_milli;
  4360. resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
  4361. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  4362. max_blocks = mddev->resync_max_sectors >> 1;
  4363. else
  4364. max_blocks = mddev->size;
  4365. /*
  4366. * Should not happen.
  4367. */
  4368. if (!max_blocks) {
  4369. MD_BUG();
  4370. return;
  4371. }
  4372. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  4373. * in a sector_t, and (max_blocks>>scale) will fit in a
  4374. * u32, as those are the requirements for sector_div.
  4375. * Thus 'scale' must be at least 10
  4376. */
  4377. scale = 10;
  4378. if (sizeof(sector_t) > sizeof(unsigned long)) {
  4379. while ( max_blocks/2 > (1ULL<<(scale+32)))
  4380. scale++;
  4381. }
  4382. res = (resync>>scale)*1000;
  4383. sector_div(res, (u32)((max_blocks>>scale)+1));
  4384. per_milli = res;
  4385. {
  4386. int i, x = per_milli/50, y = 20-x;
  4387. seq_printf(seq, "[");
  4388. for (i = 0; i < x; i++)
  4389. seq_printf(seq, "=");
  4390. seq_printf(seq, ">");
  4391. for (i = 0; i < y; i++)
  4392. seq_printf(seq, ".");
  4393. seq_printf(seq, "] ");
  4394. }
  4395. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  4396. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  4397. "reshape" :
  4398. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  4399. "check" :
  4400. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  4401. "resync" : "recovery"))),
  4402. per_milli/10, per_milli % 10,
  4403. (unsigned long long) resync,
  4404. (unsigned long long) max_blocks);
  4405. /*
  4406. * We do not want to overflow, so the order of operands and
  4407. * the * 100 / 100 trick are important. We do a +1 to be
  4408. * safe against division by zero. We only estimate anyway.
  4409. *
  4410. * dt: time from mark until now
  4411. * db: blocks written from mark until now
  4412. * rt: remaining time
  4413. */
  4414. dt = ((jiffies - mddev->resync_mark) / HZ);
  4415. if (!dt) dt++;
  4416. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  4417. - mddev->resync_mark_cnt;
  4418. rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
  4419. seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
  4420. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  4421. }
  4422. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  4423. {
  4424. struct list_head *tmp;
  4425. loff_t l = *pos;
  4426. mddev_t *mddev;
  4427. if (l >= 0x10000)
  4428. return NULL;
  4429. if (!l--)
  4430. /* header */
  4431. return (void*)1;
  4432. spin_lock(&all_mddevs_lock);
  4433. list_for_each(tmp,&all_mddevs)
  4434. if (!l--) {
  4435. mddev = list_entry(tmp, mddev_t, all_mddevs);
  4436. mddev_get(mddev);
  4437. spin_unlock(&all_mddevs_lock);
  4438. return mddev;
  4439. }
  4440. spin_unlock(&all_mddevs_lock);
  4441. if (!l--)
  4442. return (void*)2;/* tail */
  4443. return NULL;
  4444. }
  4445. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  4446. {
  4447. struct list_head *tmp;
  4448. mddev_t *next_mddev, *mddev = v;
  4449. ++*pos;
  4450. if (v == (void*)2)
  4451. return NULL;
  4452. spin_lock(&all_mddevs_lock);
  4453. if (v == (void*)1)
  4454. tmp = all_mddevs.next;
  4455. else
  4456. tmp = mddev->all_mddevs.next;
  4457. if (tmp != &all_mddevs)
  4458. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  4459. else {
  4460. next_mddev = (void*)2;
  4461. *pos = 0x10000;
  4462. }
  4463. spin_unlock(&all_mddevs_lock);
  4464. if (v != (void*)1)
  4465. mddev_put(mddev);
  4466. return next_mddev;
  4467. }
  4468. static void md_seq_stop(struct seq_file *seq, void *v)
  4469. {
  4470. mddev_t *mddev = v;
  4471. if (mddev && v != (void*)1 && v != (void*)2)
  4472. mddev_put(mddev);
  4473. }
  4474. struct mdstat_info {
  4475. int event;
  4476. };
  4477. static int md_seq_show(struct seq_file *seq, void *v)
  4478. {
  4479. mddev_t *mddev = v;
  4480. sector_t size;
  4481. struct list_head *tmp2;
  4482. mdk_rdev_t *rdev;
  4483. struct mdstat_info *mi = seq->private;
  4484. struct bitmap *bitmap;
  4485. if (v == (void*)1) {
  4486. struct mdk_personality *pers;
  4487. seq_printf(seq, "Personalities : ");
  4488. spin_lock(&pers_lock);
  4489. list_for_each_entry(pers, &pers_list, list)
  4490. seq_printf(seq, "[%s] ", pers->name);
  4491. spin_unlock(&pers_lock);
  4492. seq_printf(seq, "\n");
  4493. mi->event = atomic_read(&md_event_count);
  4494. return 0;
  4495. }
  4496. if (v == (void*)2) {
  4497. status_unused(seq);
  4498. return 0;
  4499. }
  4500. if (mddev_lock(mddev) < 0)
  4501. return -EINTR;
  4502. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  4503. seq_printf(seq, "%s : %sactive", mdname(mddev),
  4504. mddev->pers ? "" : "in");
  4505. if (mddev->pers) {
  4506. if (mddev->ro==1)
  4507. seq_printf(seq, " (read-only)");
  4508. if (mddev->ro==2)
  4509. seq_printf(seq, " (auto-read-only)");
  4510. seq_printf(seq, " %s", mddev->pers->name);
  4511. }
  4512. size = 0;
  4513. rdev_for_each(rdev, tmp2, mddev) {
  4514. char b[BDEVNAME_SIZE];
  4515. seq_printf(seq, " %s[%d]",
  4516. bdevname(rdev->bdev,b), rdev->desc_nr);
  4517. if (test_bit(WriteMostly, &rdev->flags))
  4518. seq_printf(seq, "(W)");
  4519. if (test_bit(Faulty, &rdev->flags)) {
  4520. seq_printf(seq, "(F)");
  4521. continue;
  4522. } else if (rdev->raid_disk < 0)
  4523. seq_printf(seq, "(S)"); /* spare */
  4524. size += rdev->size;
  4525. }
  4526. if (!list_empty(&mddev->disks)) {
  4527. if (mddev->pers)
  4528. seq_printf(seq, "\n %llu blocks",
  4529. (unsigned long long)mddev->array_size);
  4530. else
  4531. seq_printf(seq, "\n %llu blocks",
  4532. (unsigned long long)size);
  4533. }
  4534. if (mddev->persistent) {
  4535. if (mddev->major_version != 0 ||
  4536. mddev->minor_version != 90) {
  4537. seq_printf(seq," super %d.%d",
  4538. mddev->major_version,
  4539. mddev->minor_version);
  4540. }
  4541. } else if (mddev->external)
  4542. seq_printf(seq, " super external:%s",
  4543. mddev->metadata_type);
  4544. else
  4545. seq_printf(seq, " super non-persistent");
  4546. if (mddev->pers) {
  4547. mddev->pers->status (seq, mddev);
  4548. seq_printf(seq, "\n ");
  4549. if (mddev->pers->sync_request) {
  4550. if (mddev->curr_resync > 2) {
  4551. status_resync (seq, mddev);
  4552. seq_printf(seq, "\n ");
  4553. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  4554. seq_printf(seq, "\tresync=DELAYED\n ");
  4555. else if (mddev->recovery_cp < MaxSector)
  4556. seq_printf(seq, "\tresync=PENDING\n ");
  4557. }
  4558. } else
  4559. seq_printf(seq, "\n ");
  4560. if ((bitmap = mddev->bitmap)) {
  4561. unsigned long chunk_kb;
  4562. unsigned long flags;
  4563. spin_lock_irqsave(&bitmap->lock, flags);
  4564. chunk_kb = bitmap->chunksize >> 10;
  4565. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  4566. "%lu%s chunk",
  4567. bitmap->pages - bitmap->missing_pages,
  4568. bitmap->pages,
  4569. (bitmap->pages - bitmap->missing_pages)
  4570. << (PAGE_SHIFT - 10),
  4571. chunk_kb ? chunk_kb : bitmap->chunksize,
  4572. chunk_kb ? "KB" : "B");
  4573. if (bitmap->file) {
  4574. seq_printf(seq, ", file: ");
  4575. seq_path(seq, &bitmap->file->f_path, " \t\n");
  4576. }
  4577. seq_printf(seq, "\n");
  4578. spin_unlock_irqrestore(&bitmap->lock, flags);
  4579. }
  4580. seq_printf(seq, "\n");
  4581. }
  4582. mddev_unlock(mddev);
  4583. return 0;
  4584. }
  4585. static struct seq_operations md_seq_ops = {
  4586. .start = md_seq_start,
  4587. .next = md_seq_next,
  4588. .stop = md_seq_stop,
  4589. .show = md_seq_show,
  4590. };
  4591. static int md_seq_open(struct inode *inode, struct file *file)
  4592. {
  4593. int error;
  4594. struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
  4595. if (mi == NULL)
  4596. return -ENOMEM;
  4597. error = seq_open(file, &md_seq_ops);
  4598. if (error)
  4599. kfree(mi);
  4600. else {
  4601. struct seq_file *p = file->private_data;
  4602. p->private = mi;
  4603. mi->event = atomic_read(&md_event_count);
  4604. }
  4605. return error;
  4606. }
  4607. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  4608. {
  4609. struct seq_file *m = filp->private_data;
  4610. struct mdstat_info *mi = m->private;
  4611. int mask;
  4612. poll_wait(filp, &md_event_waiters, wait);
  4613. /* always allow read */
  4614. mask = POLLIN | POLLRDNORM;
  4615. if (mi->event != atomic_read(&md_event_count))
  4616. mask |= POLLERR | POLLPRI;
  4617. return mask;
  4618. }
  4619. static const struct file_operations md_seq_fops = {
  4620. .owner = THIS_MODULE,
  4621. .open = md_seq_open,
  4622. .read = seq_read,
  4623. .llseek = seq_lseek,
  4624. .release = seq_release_private,
  4625. .poll = mdstat_poll,
  4626. };
  4627. int register_md_personality(struct mdk_personality *p)
  4628. {
  4629. spin_lock(&pers_lock);
  4630. list_add_tail(&p->list, &pers_list);
  4631. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  4632. spin_unlock(&pers_lock);
  4633. return 0;
  4634. }
  4635. int unregister_md_personality(struct mdk_personality *p)
  4636. {
  4637. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  4638. spin_lock(&pers_lock);
  4639. list_del_init(&p->list);
  4640. spin_unlock(&pers_lock);
  4641. return 0;
  4642. }
  4643. static int is_mddev_idle(mddev_t *mddev)
  4644. {
  4645. mdk_rdev_t * rdev;
  4646. struct list_head *tmp;
  4647. int idle;
  4648. long curr_events;
  4649. idle = 1;
  4650. rdev_for_each(rdev, tmp, mddev) {
  4651. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  4652. curr_events = disk_stat_read(disk, sectors[0]) +
  4653. disk_stat_read(disk, sectors[1]) -
  4654. atomic_read(&disk->sync_io);
  4655. /* sync IO will cause sync_io to increase before the disk_stats
  4656. * as sync_io is counted when a request starts, and
  4657. * disk_stats is counted when it completes.
  4658. * So resync activity will cause curr_events to be smaller than
  4659. * when there was no such activity.
  4660. * non-sync IO will cause disk_stat to increase without
  4661. * increasing sync_io so curr_events will (eventually)
  4662. * be larger than it was before. Once it becomes
  4663. * substantially larger, the test below will cause
  4664. * the array to appear non-idle, and resync will slow
  4665. * down.
  4666. * If there is a lot of outstanding resync activity when
  4667. * we set last_event to curr_events, then all that activity
  4668. * completing might cause the array to appear non-idle
  4669. * and resync will be slowed down even though there might
  4670. * not have been non-resync activity. This will only
  4671. * happen once though. 'last_events' will soon reflect
  4672. * the state where there is little or no outstanding
  4673. * resync requests, and further resync activity will
  4674. * always make curr_events less than last_events.
  4675. *
  4676. */
  4677. if (curr_events - rdev->last_events > 4096) {
  4678. rdev->last_events = curr_events;
  4679. idle = 0;
  4680. }
  4681. }
  4682. return idle;
  4683. }
  4684. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  4685. {
  4686. /* another "blocks" (512byte) blocks have been synced */
  4687. atomic_sub(blocks, &mddev->recovery_active);
  4688. wake_up(&mddev->recovery_wait);
  4689. if (!ok) {
  4690. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4691. md_wakeup_thread(mddev->thread);
  4692. // stop recovery, signal do_sync ....
  4693. }
  4694. }
  4695. /* md_write_start(mddev, bi)
  4696. * If we need to update some array metadata (e.g. 'active' flag
  4697. * in superblock) before writing, schedule a superblock update
  4698. * and wait for it to complete.
  4699. */
  4700. void md_write_start(mddev_t *mddev, struct bio *bi)
  4701. {
  4702. if (bio_data_dir(bi) != WRITE)
  4703. return;
  4704. BUG_ON(mddev->ro == 1);
  4705. if (mddev->ro == 2) {
  4706. /* need to switch to read/write */
  4707. mddev->ro = 0;
  4708. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4709. md_wakeup_thread(mddev->thread);
  4710. md_wakeup_thread(mddev->sync_thread);
  4711. }
  4712. atomic_inc(&mddev->writes_pending);
  4713. if (mddev->in_sync) {
  4714. spin_lock_irq(&mddev->write_lock);
  4715. if (mddev->in_sync) {
  4716. mddev->in_sync = 0;
  4717. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4718. md_wakeup_thread(mddev->thread);
  4719. }
  4720. spin_unlock_irq(&mddev->write_lock);
  4721. }
  4722. wait_event(mddev->sb_wait, mddev->flags==0);
  4723. }
  4724. void md_write_end(mddev_t *mddev)
  4725. {
  4726. if (atomic_dec_and_test(&mddev->writes_pending)) {
  4727. if (mddev->safemode == 2)
  4728. md_wakeup_thread(mddev->thread);
  4729. else if (mddev->safemode_delay)
  4730. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  4731. }
  4732. }
  4733. /* md_allow_write(mddev)
  4734. * Calling this ensures that the array is marked 'active' so that writes
  4735. * may proceed without blocking. It is important to call this before
  4736. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  4737. * Must be called with mddev_lock held.
  4738. */
  4739. void md_allow_write(mddev_t *mddev)
  4740. {
  4741. if (!mddev->pers)
  4742. return;
  4743. if (mddev->ro)
  4744. return;
  4745. spin_lock_irq(&mddev->write_lock);
  4746. if (mddev->in_sync) {
  4747. mddev->in_sync = 0;
  4748. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  4749. if (mddev->safemode_delay &&
  4750. mddev->safemode == 0)
  4751. mddev->safemode = 1;
  4752. spin_unlock_irq(&mddev->write_lock);
  4753. md_update_sb(mddev, 0);
  4754. } else
  4755. spin_unlock_irq(&mddev->write_lock);
  4756. }
  4757. EXPORT_SYMBOL_GPL(md_allow_write);
  4758. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  4759. #define SYNC_MARKS 10
  4760. #define SYNC_MARK_STEP (3*HZ)
  4761. void md_do_sync(mddev_t *mddev)
  4762. {
  4763. mddev_t *mddev2;
  4764. unsigned int currspeed = 0,
  4765. window;
  4766. sector_t max_sectors,j, io_sectors;
  4767. unsigned long mark[SYNC_MARKS];
  4768. sector_t mark_cnt[SYNC_MARKS];
  4769. int last_mark,m;
  4770. struct list_head *tmp;
  4771. sector_t last_check;
  4772. int skipped = 0;
  4773. struct list_head *rtmp;
  4774. mdk_rdev_t *rdev;
  4775. char *desc;
  4776. /* just incase thread restarts... */
  4777. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  4778. return;
  4779. if (mddev->ro) /* never try to sync a read-only array */
  4780. return;
  4781. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4782. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  4783. desc = "data-check";
  4784. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4785. desc = "requested-resync";
  4786. else
  4787. desc = "resync";
  4788. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4789. desc = "reshape";
  4790. else
  4791. desc = "recovery";
  4792. /* we overload curr_resync somewhat here.
  4793. * 0 == not engaged in resync at all
  4794. * 2 == checking that there is no conflict with another sync
  4795. * 1 == like 2, but have yielded to allow conflicting resync to
  4796. * commense
  4797. * other == active in resync - this many blocks
  4798. *
  4799. * Before starting a resync we must have set curr_resync to
  4800. * 2, and then checked that every "conflicting" array has curr_resync
  4801. * less than ours. When we find one that is the same or higher
  4802. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  4803. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  4804. * This will mean we have to start checking from the beginning again.
  4805. *
  4806. */
  4807. do {
  4808. mddev->curr_resync = 2;
  4809. try_again:
  4810. if (kthread_should_stop()) {
  4811. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4812. goto skip;
  4813. }
  4814. for_each_mddev(mddev2, tmp) {
  4815. if (mddev2 == mddev)
  4816. continue;
  4817. if (mddev2->curr_resync &&
  4818. match_mddev_units(mddev,mddev2)) {
  4819. DEFINE_WAIT(wq);
  4820. if (mddev < mddev2 && mddev->curr_resync == 2) {
  4821. /* arbitrarily yield */
  4822. mddev->curr_resync = 1;
  4823. wake_up(&resync_wait);
  4824. }
  4825. if (mddev > mddev2 && mddev->curr_resync == 1)
  4826. /* no need to wait here, we can wait the next
  4827. * time 'round when curr_resync == 2
  4828. */
  4829. continue;
  4830. prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
  4831. if (!kthread_should_stop() &&
  4832. mddev2->curr_resync >= mddev->curr_resync) {
  4833. printk(KERN_INFO "md: delaying %s of %s"
  4834. " until %s has finished (they"
  4835. " share one or more physical units)\n",
  4836. desc, mdname(mddev), mdname(mddev2));
  4837. mddev_put(mddev2);
  4838. schedule();
  4839. finish_wait(&resync_wait, &wq);
  4840. goto try_again;
  4841. }
  4842. finish_wait(&resync_wait, &wq);
  4843. }
  4844. }
  4845. } while (mddev->curr_resync < 2);
  4846. j = 0;
  4847. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4848. /* resync follows the size requested by the personality,
  4849. * which defaults to physical size, but can be virtual size
  4850. */
  4851. max_sectors = mddev->resync_max_sectors;
  4852. mddev->resync_mismatches = 0;
  4853. /* we don't use the checkpoint if there's a bitmap */
  4854. if (!mddev->bitmap &&
  4855. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  4856. j = mddev->recovery_cp;
  4857. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  4858. max_sectors = mddev->size << 1;
  4859. else {
  4860. /* recovery follows the physical size of devices */
  4861. max_sectors = mddev->size << 1;
  4862. j = MaxSector;
  4863. rdev_for_each(rdev, rtmp, mddev)
  4864. if (rdev->raid_disk >= 0 &&
  4865. !test_bit(Faulty, &rdev->flags) &&
  4866. !test_bit(In_sync, &rdev->flags) &&
  4867. rdev->recovery_offset < j)
  4868. j = rdev->recovery_offset;
  4869. }
  4870. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  4871. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  4872. " %d KB/sec/disk.\n", speed_min(mddev));
  4873. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  4874. "(but not more than %d KB/sec) for %s.\n",
  4875. speed_max(mddev), desc);
  4876. is_mddev_idle(mddev); /* this also initializes IO event counters */
  4877. io_sectors = 0;
  4878. for (m = 0; m < SYNC_MARKS; m++) {
  4879. mark[m] = jiffies;
  4880. mark_cnt[m] = io_sectors;
  4881. }
  4882. last_mark = 0;
  4883. mddev->resync_mark = mark[last_mark];
  4884. mddev->resync_mark_cnt = mark_cnt[last_mark];
  4885. /*
  4886. * Tune reconstruction:
  4887. */
  4888. window = 32*(PAGE_SIZE/512);
  4889. printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
  4890. window/2,(unsigned long long) max_sectors/2);
  4891. atomic_set(&mddev->recovery_active, 0);
  4892. init_waitqueue_head(&mddev->recovery_wait);
  4893. last_check = 0;
  4894. if (j>2) {
  4895. printk(KERN_INFO
  4896. "md: resuming %s of %s from checkpoint.\n",
  4897. desc, mdname(mddev));
  4898. mddev->curr_resync = j;
  4899. }
  4900. while (j < max_sectors) {
  4901. sector_t sectors;
  4902. skipped = 0;
  4903. if (j >= mddev->resync_max) {
  4904. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  4905. wait_event(mddev->recovery_wait,
  4906. mddev->resync_max > j
  4907. || kthread_should_stop());
  4908. }
  4909. if (kthread_should_stop())
  4910. goto interrupted;
  4911. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  4912. currspeed < speed_min(mddev));
  4913. if (sectors == 0) {
  4914. set_bit(MD_RECOVERY_ERR, &mddev->recovery);
  4915. goto out;
  4916. }
  4917. if (!skipped) { /* actual IO requested */
  4918. io_sectors += sectors;
  4919. atomic_add(sectors, &mddev->recovery_active);
  4920. }
  4921. j += sectors;
  4922. if (j>1) mddev->curr_resync = j;
  4923. mddev->curr_mark_cnt = io_sectors;
  4924. if (last_check == 0)
  4925. /* this is the earliers that rebuilt will be
  4926. * visible in /proc/mdstat
  4927. */
  4928. md_new_event(mddev);
  4929. if (last_check + window > io_sectors || j == max_sectors)
  4930. continue;
  4931. last_check = io_sectors;
  4932. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
  4933. test_bit(MD_RECOVERY_ERR, &mddev->recovery))
  4934. break;
  4935. repeat:
  4936. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  4937. /* step marks */
  4938. int next = (last_mark+1) % SYNC_MARKS;
  4939. mddev->resync_mark = mark[next];
  4940. mddev->resync_mark_cnt = mark_cnt[next];
  4941. mark[next] = jiffies;
  4942. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  4943. last_mark = next;
  4944. }
  4945. if (kthread_should_stop())
  4946. goto interrupted;
  4947. /*
  4948. * this loop exits only if either when we are slower than
  4949. * the 'hard' speed limit, or the system was IO-idle for
  4950. * a jiffy.
  4951. * the system might be non-idle CPU-wise, but we only care
  4952. * about not overloading the IO subsystem. (things like an
  4953. * e2fsck being done on the RAID array should execute fast)
  4954. */
  4955. blk_unplug(mddev->queue);
  4956. cond_resched();
  4957. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  4958. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  4959. if (currspeed > speed_min(mddev)) {
  4960. if ((currspeed > speed_max(mddev)) ||
  4961. !is_mddev_idle(mddev)) {
  4962. msleep(500);
  4963. goto repeat;
  4964. }
  4965. }
  4966. }
  4967. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  4968. /*
  4969. * this also signals 'finished resyncing' to md_stop
  4970. */
  4971. out:
  4972. blk_unplug(mddev->queue);
  4973. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  4974. /* tell personality that we are finished */
  4975. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  4976. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  4977. !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  4978. mddev->curr_resync > 2) {
  4979. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  4980. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  4981. if (mddev->curr_resync >= mddev->recovery_cp) {
  4982. printk(KERN_INFO
  4983. "md: checkpointing %s of %s.\n",
  4984. desc, mdname(mddev));
  4985. mddev->recovery_cp = mddev->curr_resync;
  4986. }
  4987. } else
  4988. mddev->recovery_cp = MaxSector;
  4989. } else {
  4990. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  4991. mddev->curr_resync = MaxSector;
  4992. rdev_for_each(rdev, rtmp, mddev)
  4993. if (rdev->raid_disk >= 0 &&
  4994. !test_bit(Faulty, &rdev->flags) &&
  4995. !test_bit(In_sync, &rdev->flags) &&
  4996. rdev->recovery_offset < mddev->curr_resync)
  4997. rdev->recovery_offset = mddev->curr_resync;
  4998. }
  4999. }
  5000. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5001. skip:
  5002. mddev->curr_resync = 0;
  5003. mddev->resync_max = MaxSector;
  5004. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  5005. wake_up(&resync_wait);
  5006. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  5007. md_wakeup_thread(mddev->thread);
  5008. return;
  5009. interrupted:
  5010. /*
  5011. * got a signal, exit.
  5012. */
  5013. printk(KERN_INFO
  5014. "md: md_do_sync() got signal ... exiting\n");
  5015. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5016. goto out;
  5017. }
  5018. EXPORT_SYMBOL_GPL(md_do_sync);
  5019. static int remove_and_add_spares(mddev_t *mddev)
  5020. {
  5021. mdk_rdev_t *rdev;
  5022. struct list_head *rtmp;
  5023. int spares = 0;
  5024. rdev_for_each(rdev, rtmp, mddev)
  5025. if (rdev->raid_disk >= 0 &&
  5026. !mddev->external &&
  5027. (test_bit(Faulty, &rdev->flags) ||
  5028. ! test_bit(In_sync, &rdev->flags)) &&
  5029. atomic_read(&rdev->nr_pending)==0) {
  5030. if (mddev->pers->hot_remove_disk(
  5031. mddev, rdev->raid_disk)==0) {
  5032. char nm[20];
  5033. sprintf(nm,"rd%d", rdev->raid_disk);
  5034. sysfs_remove_link(&mddev->kobj, nm);
  5035. rdev->raid_disk = -1;
  5036. }
  5037. }
  5038. if (mddev->degraded) {
  5039. rdev_for_each(rdev, rtmp, mddev)
  5040. if (rdev->raid_disk < 0
  5041. && !test_bit(Faulty, &rdev->flags)) {
  5042. rdev->recovery_offset = 0;
  5043. if (mddev->pers->hot_add_disk(mddev,rdev)) {
  5044. char nm[20];
  5045. sprintf(nm, "rd%d", rdev->raid_disk);
  5046. if (sysfs_create_link(&mddev->kobj,
  5047. &rdev->kobj, nm))
  5048. printk(KERN_WARNING
  5049. "md: cannot register "
  5050. "%s for %s\n",
  5051. nm, mdname(mddev));
  5052. spares++;
  5053. md_new_event(mddev);
  5054. } else
  5055. break;
  5056. }
  5057. }
  5058. return spares;
  5059. }
  5060. /*
  5061. * This routine is regularly called by all per-raid-array threads to
  5062. * deal with generic issues like resync and super-block update.
  5063. * Raid personalities that don't have a thread (linear/raid0) do not
  5064. * need this as they never do any recovery or update the superblock.
  5065. *
  5066. * It does not do any resync itself, but rather "forks" off other threads
  5067. * to do that as needed.
  5068. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  5069. * "->recovery" and create a thread at ->sync_thread.
  5070. * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
  5071. * and wakeups up this thread which will reap the thread and finish up.
  5072. * This thread also removes any faulty devices (with nr_pending == 0).
  5073. *
  5074. * The overall approach is:
  5075. * 1/ if the superblock needs updating, update it.
  5076. * 2/ If a recovery thread is running, don't do anything else.
  5077. * 3/ If recovery has finished, clean up, possibly marking spares active.
  5078. * 4/ If there are any faulty devices, remove them.
  5079. * 5/ If array is degraded, try to add spares devices
  5080. * 6/ If array has spares or is not in-sync, start a resync thread.
  5081. */
  5082. void md_check_recovery(mddev_t *mddev)
  5083. {
  5084. mdk_rdev_t *rdev;
  5085. struct list_head *rtmp;
  5086. if (mddev->bitmap)
  5087. bitmap_daemon_work(mddev->bitmap);
  5088. if (mddev->ro)
  5089. return;
  5090. if (signal_pending(current)) {
  5091. if (mddev->pers->sync_request) {
  5092. printk(KERN_INFO "md: %s in immediate safe mode\n",
  5093. mdname(mddev));
  5094. mddev->safemode = 2;
  5095. }
  5096. flush_signals(current);
  5097. }
  5098. if ( ! (
  5099. (mddev->flags && !mddev->external) ||
  5100. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  5101. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  5102. (mddev->safemode == 1) ||
  5103. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  5104. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  5105. ))
  5106. return;
  5107. if (mddev_trylock(mddev)) {
  5108. int spares = 0;
  5109. spin_lock_irq(&mddev->write_lock);
  5110. if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
  5111. !mddev->in_sync && mddev->recovery_cp == MaxSector) {
  5112. mddev->in_sync = 1;
  5113. if (mddev->persistent)
  5114. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  5115. }
  5116. if (mddev->safemode == 1)
  5117. mddev->safemode = 0;
  5118. spin_unlock_irq(&mddev->write_lock);
  5119. if (mddev->flags)
  5120. md_update_sb(mddev, 0);
  5121. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  5122. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  5123. /* resync/recovery still happening */
  5124. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5125. goto unlock;
  5126. }
  5127. if (mddev->sync_thread) {
  5128. /* resync has finished, collect result */
  5129. md_unregister_thread(mddev->sync_thread);
  5130. mddev->sync_thread = NULL;
  5131. if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
  5132. !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  5133. /* success...*/
  5134. /* activate any spares */
  5135. mddev->pers->spare_active(mddev);
  5136. }
  5137. md_update_sb(mddev, 1);
  5138. /* if array is no-longer degraded, then any saved_raid_disk
  5139. * information must be scrapped
  5140. */
  5141. if (!mddev->degraded)
  5142. rdev_for_each(rdev, rtmp, mddev)
  5143. rdev->saved_raid_disk = -1;
  5144. mddev->recovery = 0;
  5145. /* flag recovery needed just to double check */
  5146. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5147. md_new_event(mddev);
  5148. goto unlock;
  5149. }
  5150. /* Clear some bits that don't mean anything, but
  5151. * might be left set
  5152. */
  5153. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5154. clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
  5155. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5156. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  5157. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  5158. goto unlock;
  5159. /* no recovery is running.
  5160. * remove any failed drives, then
  5161. * add spares if possible.
  5162. * Spare are also removed and re-added, to allow
  5163. * the personality to fail the re-add.
  5164. */
  5165. if (mddev->reshape_position != MaxSector) {
  5166. if (mddev->pers->check_reshape(mddev) != 0)
  5167. /* Cannot proceed */
  5168. goto unlock;
  5169. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  5170. } else if ((spares = remove_and_add_spares(mddev))) {
  5171. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  5172. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  5173. } else if (mddev->recovery_cp < MaxSector) {
  5174. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  5175. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5176. /* nothing to be done ... */
  5177. goto unlock;
  5178. if (mddev->pers->sync_request) {
  5179. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  5180. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  5181. /* We are adding a device or devices to an array
  5182. * which has the bitmap stored on all devices.
  5183. * So make sure all bitmap pages get written
  5184. */
  5185. bitmap_write_all(mddev->bitmap);
  5186. }
  5187. mddev->sync_thread = md_register_thread(md_do_sync,
  5188. mddev,
  5189. "%s_resync");
  5190. if (!mddev->sync_thread) {
  5191. printk(KERN_ERR "%s: could not start resync"
  5192. " thread...\n",
  5193. mdname(mddev));
  5194. /* leave the spares where they are, it shouldn't hurt */
  5195. mddev->recovery = 0;
  5196. } else
  5197. md_wakeup_thread(mddev->sync_thread);
  5198. md_new_event(mddev);
  5199. }
  5200. unlock:
  5201. mddev_unlock(mddev);
  5202. }
  5203. }
  5204. static int md_notify_reboot(struct notifier_block *this,
  5205. unsigned long code, void *x)
  5206. {
  5207. struct list_head *tmp;
  5208. mddev_t *mddev;
  5209. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  5210. printk(KERN_INFO "md: stopping all md devices.\n");
  5211. for_each_mddev(mddev, tmp)
  5212. if (mddev_trylock(mddev)) {
  5213. do_md_stop (mddev, 1);
  5214. mddev_unlock(mddev);
  5215. }
  5216. /*
  5217. * certain more exotic SCSI devices are known to be
  5218. * volatile wrt too early system reboots. While the
  5219. * right place to handle this issue is the given
  5220. * driver, we do want to have a safe RAID driver ...
  5221. */
  5222. mdelay(1000*1);
  5223. }
  5224. return NOTIFY_DONE;
  5225. }
  5226. static struct notifier_block md_notifier = {
  5227. .notifier_call = md_notify_reboot,
  5228. .next = NULL,
  5229. .priority = INT_MAX, /* before any real devices */
  5230. };
  5231. static void md_geninit(void)
  5232. {
  5233. struct proc_dir_entry *p;
  5234. dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  5235. p = create_proc_entry("mdstat", S_IRUGO, NULL);
  5236. if (p)
  5237. p->proc_fops = &md_seq_fops;
  5238. }
  5239. static int __init md_init(void)
  5240. {
  5241. if (register_blkdev(MAJOR_NR, "md"))
  5242. return -1;
  5243. if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
  5244. unregister_blkdev(MAJOR_NR, "md");
  5245. return -1;
  5246. }
  5247. blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
  5248. md_probe, NULL, NULL);
  5249. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  5250. md_probe, NULL, NULL);
  5251. register_reboot_notifier(&md_notifier);
  5252. raid_table_header = register_sysctl_table(raid_root_table);
  5253. md_geninit();
  5254. return (0);
  5255. }
  5256. #ifndef MODULE
  5257. /*
  5258. * Searches all registered partitions for autorun RAID arrays
  5259. * at boot time.
  5260. */
  5261. static LIST_HEAD(all_detected_devices);
  5262. struct detected_devices_node {
  5263. struct list_head list;
  5264. dev_t dev;
  5265. };
  5266. void md_autodetect_dev(dev_t dev)
  5267. {
  5268. struct detected_devices_node *node_detected_dev;
  5269. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  5270. if (node_detected_dev) {
  5271. node_detected_dev->dev = dev;
  5272. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  5273. } else {
  5274. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  5275. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  5276. }
  5277. }
  5278. static void autostart_arrays(int part)
  5279. {
  5280. mdk_rdev_t *rdev;
  5281. struct detected_devices_node *node_detected_dev;
  5282. dev_t dev;
  5283. int i_scanned, i_passed;
  5284. i_scanned = 0;
  5285. i_passed = 0;
  5286. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  5287. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  5288. i_scanned++;
  5289. node_detected_dev = list_entry(all_detected_devices.next,
  5290. struct detected_devices_node, list);
  5291. list_del(&node_detected_dev->list);
  5292. dev = node_detected_dev->dev;
  5293. kfree(node_detected_dev);
  5294. rdev = md_import_device(dev,0, 90);
  5295. if (IS_ERR(rdev))
  5296. continue;
  5297. if (test_bit(Faulty, &rdev->flags)) {
  5298. MD_BUG();
  5299. continue;
  5300. }
  5301. set_bit(AutoDetected, &rdev->flags);
  5302. list_add(&rdev->same_set, &pending_raid_disks);
  5303. i_passed++;
  5304. }
  5305. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  5306. i_scanned, i_passed);
  5307. autorun_devices(part);
  5308. }
  5309. #endif /* !MODULE */
  5310. static __exit void md_exit(void)
  5311. {
  5312. mddev_t *mddev;
  5313. struct list_head *tmp;
  5314. blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
  5315. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  5316. unregister_blkdev(MAJOR_NR,"md");
  5317. unregister_blkdev(mdp_major, "mdp");
  5318. unregister_reboot_notifier(&md_notifier);
  5319. unregister_sysctl_table(raid_table_header);
  5320. remove_proc_entry("mdstat", NULL);
  5321. for_each_mddev(mddev, tmp) {
  5322. struct gendisk *disk = mddev->gendisk;
  5323. if (!disk)
  5324. continue;
  5325. export_array(mddev);
  5326. del_gendisk(disk);
  5327. put_disk(disk);
  5328. mddev->gendisk = NULL;
  5329. mddev_put(mddev);
  5330. }
  5331. }
  5332. subsys_initcall(md_init);
  5333. module_exit(md_exit)
  5334. static int get_ro(char *buffer, struct kernel_param *kp)
  5335. {
  5336. return sprintf(buffer, "%d", start_readonly);
  5337. }
  5338. static int set_ro(const char *val, struct kernel_param *kp)
  5339. {
  5340. char *e;
  5341. int num = simple_strtoul(val, &e, 10);
  5342. if (*val && (*e == '\0' || *e == '\n')) {
  5343. start_readonly = num;
  5344. return 0;
  5345. }
  5346. return -EINVAL;
  5347. }
  5348. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  5349. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  5350. EXPORT_SYMBOL(register_md_personality);
  5351. EXPORT_SYMBOL(unregister_md_personality);
  5352. EXPORT_SYMBOL(md_error);
  5353. EXPORT_SYMBOL(md_done_sync);
  5354. EXPORT_SYMBOL(md_write_start);
  5355. EXPORT_SYMBOL(md_write_end);
  5356. EXPORT_SYMBOL(md_register_thread);
  5357. EXPORT_SYMBOL(md_unregister_thread);
  5358. EXPORT_SYMBOL(md_wakeup_thread);
  5359. EXPORT_SYMBOL(md_check_recovery);
  5360. MODULE_LICENSE("GPL");
  5361. MODULE_ALIAS("md");
  5362. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);