page_tables.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742
  1. /*P:700 The pagetable code, on the other hand, still shows the scars of
  2. * previous encounters. It's functional, and as neat as it can be in the
  3. * circumstances, but be wary, for these things are subtle and break easily.
  4. * The Guest provides a virtual to physical mapping, but we can neither trust
  5. * it nor use it: we verify and convert it here then point the CPU to the
  6. * converted Guest pages when running the Guest. :*/
  7. /* Copyright (C) Rusty Russell IBM Corporation 2006.
  8. * GPL v2 and any later version */
  9. #include <linux/mm.h>
  10. #include <linux/types.h>
  11. #include <linux/spinlock.h>
  12. #include <linux/random.h>
  13. #include <linux/percpu.h>
  14. #include <asm/tlbflush.h>
  15. #include <asm/uaccess.h>
  16. #include "lg.h"
  17. /*M:008 We hold reference to pages, which prevents them from being swapped.
  18. * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
  19. * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
  20. * could probably consider launching Guests as non-root. :*/
  21. /*H:300
  22. * The Page Table Code
  23. *
  24. * We use two-level page tables for the Guest. If you're not entirely
  25. * comfortable with virtual addresses, physical addresses and page tables then
  26. * I recommend you review arch/x86/lguest/boot.c's "Page Table Handling" (with
  27. * diagrams!).
  28. *
  29. * The Guest keeps page tables, but we maintain the actual ones here: these are
  30. * called "shadow" page tables. Which is a very Guest-centric name: these are
  31. * the real page tables the CPU uses, although we keep them up to date to
  32. * reflect the Guest's. (See what I mean about weird naming? Since when do
  33. * shadows reflect anything?)
  34. *
  35. * Anyway, this is the most complicated part of the Host code. There are seven
  36. * parts to this:
  37. * (i) Looking up a page table entry when the Guest faults,
  38. * (ii) Making sure the Guest stack is mapped,
  39. * (iii) Setting up a page table entry when the Guest tells us one has changed,
  40. * (iv) Switching page tables,
  41. * (v) Flushing (throwing away) page tables,
  42. * (vi) Mapping the Switcher when the Guest is about to run,
  43. * (vii) Setting up the page tables initially.
  44. :*/
  45. /* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is
  46. * conveniently placed at the top 4MB, so it uses a separate, complete PTE
  47. * page. */
  48. #define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
  49. /* We actually need a separate PTE page for each CPU. Remember that after the
  50. * Switcher code itself comes two pages for each CPU, and we don't want this
  51. * CPU's guest to see the pages of any other CPU. */
  52. static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
  53. #define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
  54. /*H:320 The page table code is curly enough to need helper functions to keep it
  55. * clear and clean.
  56. *
  57. * There are two functions which return pointers to the shadow (aka "real")
  58. * page tables.
  59. *
  60. * spgd_addr() takes the virtual address and returns a pointer to the top-level
  61. * page directory entry (PGD) for that address. Since we keep track of several
  62. * page tables, the "i" argument tells us which one we're interested in (it's
  63. * usually the current one). */
  64. static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
  65. {
  66. unsigned int index = pgd_index(vaddr);
  67. /* We kill any Guest trying to touch the Switcher addresses. */
  68. if (index >= SWITCHER_PGD_INDEX) {
  69. kill_guest(cpu, "attempt to access switcher pages");
  70. index = 0;
  71. }
  72. /* Return a pointer index'th pgd entry for the i'th page table. */
  73. return &cpu->lg->pgdirs[i].pgdir[index];
  74. }
  75. /* This routine then takes the page directory entry returned above, which
  76. * contains the address of the page table entry (PTE) page. It then returns a
  77. * pointer to the PTE entry for the given address. */
  78. static pte_t *spte_addr(pgd_t spgd, unsigned long vaddr)
  79. {
  80. pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
  81. /* You should never call this if the PGD entry wasn't valid */
  82. BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
  83. return &page[(vaddr >> PAGE_SHIFT) % PTRS_PER_PTE];
  84. }
  85. /* These two functions just like the above two, except they access the Guest
  86. * page tables. Hence they return a Guest address. */
  87. static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
  88. {
  89. unsigned int index = vaddr >> (PGDIR_SHIFT);
  90. return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
  91. }
  92. static unsigned long gpte_addr(pgd_t gpgd, unsigned long vaddr)
  93. {
  94. unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
  95. BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
  96. return gpage + ((vaddr>>PAGE_SHIFT) % PTRS_PER_PTE) * sizeof(pte_t);
  97. }
  98. /*:*/
  99. /*M:014 get_pfn is slow; it takes the mmap sem and calls get_user_pages. We
  100. * could probably try to grab batches of pages here as an optimization
  101. * (ie. pre-faulting). :*/
  102. /*H:350 This routine takes a page number given by the Guest and converts it to
  103. * an actual, physical page number. It can fail for several reasons: the
  104. * virtual address might not be mapped by the Launcher, the write flag is set
  105. * and the page is read-only, or the write flag was set and the page was
  106. * shared so had to be copied, but we ran out of memory.
  107. *
  108. * This holds a reference to the page, so release_pte() is careful to put that
  109. * back. */
  110. static unsigned long get_pfn(unsigned long virtpfn, int write)
  111. {
  112. struct page *page;
  113. /* This value indicates failure. */
  114. unsigned long ret = -1UL;
  115. /* get_user_pages() is a complex interface: it gets the "struct
  116. * vm_area_struct" and "struct page" assocated with a range of pages.
  117. * It also needs the task's mmap_sem held, and is not very quick.
  118. * It returns the number of pages it got. */
  119. down_read(&current->mm->mmap_sem);
  120. if (get_user_pages(current, current->mm, virtpfn << PAGE_SHIFT,
  121. 1, write, 1, &page, NULL) == 1)
  122. ret = page_to_pfn(page);
  123. up_read(&current->mm->mmap_sem);
  124. return ret;
  125. }
  126. /*H:340 Converting a Guest page table entry to a shadow (ie. real) page table
  127. * entry can be a little tricky. The flags are (almost) the same, but the
  128. * Guest PTE contains a virtual page number: the CPU needs the real page
  129. * number. */
  130. static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
  131. {
  132. unsigned long pfn, base, flags;
  133. /* The Guest sets the global flag, because it thinks that it is using
  134. * PGE. We only told it to use PGE so it would tell us whether it was
  135. * flushing a kernel mapping or a userspace mapping. We don't actually
  136. * use the global bit, so throw it away. */
  137. flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
  138. /* The Guest's pages are offset inside the Launcher. */
  139. base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
  140. /* We need a temporary "unsigned long" variable to hold the answer from
  141. * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
  142. * fit in spte.pfn. get_pfn() finds the real physical number of the
  143. * page, given the virtual number. */
  144. pfn = get_pfn(base + pte_pfn(gpte), write);
  145. if (pfn == -1UL) {
  146. kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
  147. /* When we destroy the Guest, we'll go through the shadow page
  148. * tables and release_pte() them. Make sure we don't think
  149. * this one is valid! */
  150. flags = 0;
  151. }
  152. /* Now we assemble our shadow PTE from the page number and flags. */
  153. return pfn_pte(pfn, __pgprot(flags));
  154. }
  155. /*H:460 And to complete the chain, release_pte() looks like this: */
  156. static void release_pte(pte_t pte)
  157. {
  158. /* Remember that get_user_pages() took a reference to the page, in
  159. * get_pfn()? We have to put it back now. */
  160. if (pte_flags(pte) & _PAGE_PRESENT)
  161. put_page(pfn_to_page(pte_pfn(pte)));
  162. }
  163. /*:*/
  164. static void check_gpte(struct lg_cpu *cpu, pte_t gpte)
  165. {
  166. if ((pte_flags(gpte) & _PAGE_PSE) ||
  167. pte_pfn(gpte) >= cpu->lg->pfn_limit)
  168. kill_guest(cpu, "bad page table entry");
  169. }
  170. static void check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
  171. {
  172. if ((pgd_flags(gpgd) & ~_PAGE_TABLE) ||
  173. (pgd_pfn(gpgd) >= cpu->lg->pfn_limit))
  174. kill_guest(cpu, "bad page directory entry");
  175. }
  176. /*H:330
  177. * (i) Looking up a page table entry when the Guest faults.
  178. *
  179. * We saw this call in run_guest(): when we see a page fault in the Guest, we
  180. * come here. That's because we only set up the shadow page tables lazily as
  181. * they're needed, so we get page faults all the time and quietly fix them up
  182. * and return to the Guest without it knowing.
  183. *
  184. * If we fixed up the fault (ie. we mapped the address), this routine returns
  185. * true. Otherwise, it was a real fault and we need to tell the Guest. */
  186. int demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
  187. {
  188. pgd_t gpgd;
  189. pgd_t *spgd;
  190. unsigned long gpte_ptr;
  191. pte_t gpte;
  192. pte_t *spte;
  193. /* First step: get the top-level Guest page table entry. */
  194. gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
  195. /* Toplevel not present? We can't map it in. */
  196. if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
  197. return 0;
  198. /* Now look at the matching shadow entry. */
  199. spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
  200. if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
  201. /* No shadow entry: allocate a new shadow PTE page. */
  202. unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
  203. /* This is not really the Guest's fault, but killing it is
  204. * simple for this corner case. */
  205. if (!ptepage) {
  206. kill_guest(cpu, "out of memory allocating pte page");
  207. return 0;
  208. }
  209. /* We check that the Guest pgd is OK. */
  210. check_gpgd(cpu, gpgd);
  211. /* And we copy the flags to the shadow PGD entry. The page
  212. * number in the shadow PGD is the page we just allocated. */
  213. *spgd = __pgd(__pa(ptepage) | pgd_flags(gpgd));
  214. }
  215. /* OK, now we look at the lower level in the Guest page table: keep its
  216. * address, because we might update it later. */
  217. gpte_ptr = gpte_addr(gpgd, vaddr);
  218. gpte = lgread(cpu, gpte_ptr, pte_t);
  219. /* If this page isn't in the Guest page tables, we can't page it in. */
  220. if (!(pte_flags(gpte) & _PAGE_PRESENT))
  221. return 0;
  222. /* Check they're not trying to write to a page the Guest wants
  223. * read-only (bit 2 of errcode == write). */
  224. if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
  225. return 0;
  226. /* User access to a kernel-only page? (bit 3 == user access) */
  227. if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
  228. return 0;
  229. /* Check that the Guest PTE flags are OK, and the page number is below
  230. * the pfn_limit (ie. not mapping the Launcher binary). */
  231. check_gpte(cpu, gpte);
  232. /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
  233. gpte = pte_mkyoung(gpte);
  234. if (errcode & 2)
  235. gpte = pte_mkdirty(gpte);
  236. /* Get the pointer to the shadow PTE entry we're going to set. */
  237. spte = spte_addr(*spgd, vaddr);
  238. /* If there was a valid shadow PTE entry here before, we release it.
  239. * This can happen with a write to a previously read-only entry. */
  240. release_pte(*spte);
  241. /* If this is a write, we insist that the Guest page is writable (the
  242. * final arg to gpte_to_spte()). */
  243. if (pte_dirty(gpte))
  244. *spte = gpte_to_spte(cpu, gpte, 1);
  245. else
  246. /* If this is a read, don't set the "writable" bit in the page
  247. * table entry, even if the Guest says it's writable. That way
  248. * we will come back here when a write does actually occur, so
  249. * we can update the Guest's _PAGE_DIRTY flag. */
  250. *spte = gpte_to_spte(cpu, pte_wrprotect(gpte), 0);
  251. /* Finally, we write the Guest PTE entry back: we've set the
  252. * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
  253. lgwrite(cpu, gpte_ptr, pte_t, gpte);
  254. /* The fault is fixed, the page table is populated, the mapping
  255. * manipulated, the result returned and the code complete. A small
  256. * delay and a trace of alliteration are the only indications the Guest
  257. * has that a page fault occurred at all. */
  258. return 1;
  259. }
  260. /*H:360
  261. * (ii) Making sure the Guest stack is mapped.
  262. *
  263. * Remember that direct traps into the Guest need a mapped Guest kernel stack.
  264. * pin_stack_pages() calls us here: we could simply call demand_page(), but as
  265. * we've seen that logic is quite long, and usually the stack pages are already
  266. * mapped, so it's overkill.
  267. *
  268. * This is a quick version which answers the question: is this virtual address
  269. * mapped by the shadow page tables, and is it writable? */
  270. static int page_writable(struct lg_cpu *cpu, unsigned long vaddr)
  271. {
  272. pgd_t *spgd;
  273. unsigned long flags;
  274. /* Look at the current top level entry: is it present? */
  275. spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
  276. if (!(pgd_flags(*spgd) & _PAGE_PRESENT))
  277. return 0;
  278. /* Check the flags on the pte entry itself: it must be present and
  279. * writable. */
  280. flags = pte_flags(*(spte_addr(*spgd, vaddr)));
  281. return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
  282. }
  283. /* So, when pin_stack_pages() asks us to pin a page, we check if it's already
  284. * in the page tables, and if not, we call demand_page() with error code 2
  285. * (meaning "write"). */
  286. void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
  287. {
  288. if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
  289. kill_guest(cpu, "bad stack page %#lx", vaddr);
  290. }
  291. /*H:450 If we chase down the release_pgd() code, it looks like this: */
  292. static void release_pgd(struct lguest *lg, pgd_t *spgd)
  293. {
  294. /* If the entry's not present, there's nothing to release. */
  295. if (pgd_flags(*spgd) & _PAGE_PRESENT) {
  296. unsigned int i;
  297. /* Converting the pfn to find the actual PTE page is easy: turn
  298. * the page number into a physical address, then convert to a
  299. * virtual address (easy for kernel pages like this one). */
  300. pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
  301. /* For each entry in the page, we might need to release it. */
  302. for (i = 0; i < PTRS_PER_PTE; i++)
  303. release_pte(ptepage[i]);
  304. /* Now we can free the page of PTEs */
  305. free_page((long)ptepage);
  306. /* And zero out the PGD entry so we never release it twice. */
  307. *spgd = __pgd(0);
  308. }
  309. }
  310. /*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings()
  311. * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
  312. * It simply releases every PTE page from 0 up to the Guest's kernel address. */
  313. static void flush_user_mappings(struct lguest *lg, int idx)
  314. {
  315. unsigned int i;
  316. /* Release every pgd entry up to the kernel's address. */
  317. for (i = 0; i < pgd_index(lg->kernel_address); i++)
  318. release_pgd(lg, lg->pgdirs[idx].pgdir + i);
  319. }
  320. /*H:440 (v) Flushing (throwing away) page tables,
  321. *
  322. * The Guest has a hypercall to throw away the page tables: it's used when a
  323. * large number of mappings have been changed. */
  324. void guest_pagetable_flush_user(struct lg_cpu *cpu)
  325. {
  326. /* Drop the userspace part of the current page table. */
  327. flush_user_mappings(cpu->lg, cpu->cpu_pgd);
  328. }
  329. /*:*/
  330. /* We walk down the guest page tables to get a guest-physical address */
  331. unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
  332. {
  333. pgd_t gpgd;
  334. pte_t gpte;
  335. /* First step: get the top-level Guest page table entry. */
  336. gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
  337. /* Toplevel not present? We can't map it in. */
  338. if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
  339. kill_guest(cpu, "Bad address %#lx", vaddr);
  340. gpte = lgread(cpu, gpte_addr(gpgd, vaddr), pte_t);
  341. if (!(pte_flags(gpte) & _PAGE_PRESENT))
  342. kill_guest(cpu, "Bad address %#lx", vaddr);
  343. return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
  344. }
  345. /* We keep several page tables. This is a simple routine to find the page
  346. * table (if any) corresponding to this top-level address the Guest has given
  347. * us. */
  348. static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
  349. {
  350. unsigned int i;
  351. for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
  352. if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
  353. break;
  354. return i;
  355. }
  356. /*H:435 And this is us, creating the new page directory. If we really do
  357. * allocate a new one (and so the kernel parts are not there), we set
  358. * blank_pgdir. */
  359. static unsigned int new_pgdir(struct lg_cpu *cpu,
  360. unsigned long gpgdir,
  361. int *blank_pgdir)
  362. {
  363. unsigned int next;
  364. /* We pick one entry at random to throw out. Choosing the Least
  365. * Recently Used might be better, but this is easy. */
  366. next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
  367. /* If it's never been allocated at all before, try now. */
  368. if (!cpu->lg->pgdirs[next].pgdir) {
  369. cpu->lg->pgdirs[next].pgdir =
  370. (pgd_t *)get_zeroed_page(GFP_KERNEL);
  371. /* If the allocation fails, just keep using the one we have */
  372. if (!cpu->lg->pgdirs[next].pgdir)
  373. next = cpu->cpu_pgd;
  374. else
  375. /* This is a blank page, so there are no kernel
  376. * mappings: caller must map the stack! */
  377. *blank_pgdir = 1;
  378. }
  379. /* Record which Guest toplevel this shadows. */
  380. cpu->lg->pgdirs[next].gpgdir = gpgdir;
  381. /* Release all the non-kernel mappings. */
  382. flush_user_mappings(cpu->lg, next);
  383. return next;
  384. }
  385. /*H:430 (iv) Switching page tables
  386. *
  387. * Now we've seen all the page table setting and manipulation, let's see what
  388. * what happens when the Guest changes page tables (ie. changes the top-level
  389. * pgdir). This occurs on almost every context switch. */
  390. void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
  391. {
  392. int newpgdir, repin = 0;
  393. /* Look to see if we have this one already. */
  394. newpgdir = find_pgdir(cpu->lg, pgtable);
  395. /* If not, we allocate or mug an existing one: if it's a fresh one,
  396. * repin gets set to 1. */
  397. if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
  398. newpgdir = new_pgdir(cpu, pgtable, &repin);
  399. /* Change the current pgd index to the new one. */
  400. cpu->cpu_pgd = newpgdir;
  401. /* If it was completely blank, we map in the Guest kernel stack */
  402. if (repin)
  403. pin_stack_pages(cpu);
  404. }
  405. /*H:470 Finally, a routine which throws away everything: all PGD entries in all
  406. * the shadow page tables, including the Guest's kernel mappings. This is used
  407. * when we destroy the Guest. */
  408. static void release_all_pagetables(struct lguest *lg)
  409. {
  410. unsigned int i, j;
  411. /* Every shadow pagetable this Guest has */
  412. for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
  413. if (lg->pgdirs[i].pgdir)
  414. /* Every PGD entry except the Switcher at the top */
  415. for (j = 0; j < SWITCHER_PGD_INDEX; j++)
  416. release_pgd(lg, lg->pgdirs[i].pgdir + j);
  417. }
  418. /* We also throw away everything when a Guest tells us it's changed a kernel
  419. * mapping. Since kernel mappings are in every page table, it's easiest to
  420. * throw them all away. This traps the Guest in amber for a while as
  421. * everything faults back in, but it's rare. */
  422. void guest_pagetable_clear_all(struct lg_cpu *cpu)
  423. {
  424. release_all_pagetables(cpu->lg);
  425. /* We need the Guest kernel stack mapped again. */
  426. pin_stack_pages(cpu);
  427. }
  428. /*:*/
  429. /*M:009 Since we throw away all mappings when a kernel mapping changes, our
  430. * performance sucks for guests using highmem. In fact, a guest with
  431. * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
  432. * usually slower than a Guest with less memory.
  433. *
  434. * This, of course, cannot be fixed. It would take some kind of... well, I
  435. * don't know, but the term "puissant code-fu" comes to mind. :*/
  436. /*H:420 This is the routine which actually sets the page table entry for then
  437. * "idx"'th shadow page table.
  438. *
  439. * Normally, we can just throw out the old entry and replace it with 0: if they
  440. * use it demand_page() will put the new entry in. We need to do this anyway:
  441. * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
  442. * is read from, and _PAGE_DIRTY when it's written to.
  443. *
  444. * But Avi Kivity pointed out that most Operating Systems (Linux included) set
  445. * these bits on PTEs immediately anyway. This is done to save the CPU from
  446. * having to update them, but it helps us the same way: if they set
  447. * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
  448. * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
  449. */
  450. static void do_set_pte(struct lg_cpu *cpu, int idx,
  451. unsigned long vaddr, pte_t gpte)
  452. {
  453. /* Look up the matching shadow page directory entry. */
  454. pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
  455. /* If the top level isn't present, there's no entry to update. */
  456. if (pgd_flags(*spgd) & _PAGE_PRESENT) {
  457. /* Otherwise, we start by releasing the existing entry. */
  458. pte_t *spte = spte_addr(*spgd, vaddr);
  459. release_pte(*spte);
  460. /* If they're setting this entry as dirty or accessed, we might
  461. * as well put that entry they've given us in now. This shaves
  462. * 10% off a copy-on-write micro-benchmark. */
  463. if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
  464. check_gpte(cpu, gpte);
  465. *spte = gpte_to_spte(cpu, gpte,
  466. pte_flags(gpte) & _PAGE_DIRTY);
  467. } else
  468. /* Otherwise kill it and we can demand_page() it in
  469. * later. */
  470. *spte = __pte(0);
  471. }
  472. }
  473. /*H:410 Updating a PTE entry is a little trickier.
  474. *
  475. * We keep track of several different page tables (the Guest uses one for each
  476. * process, so it makes sense to cache at least a few). Each of these have
  477. * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
  478. * all processes. So when the page table above that address changes, we update
  479. * all the page tables, not just the current one. This is rare.
  480. *
  481. * The benefit is that when we have to track a new page table, we can keep all
  482. * the kernel mappings. This speeds up context switch immensely. */
  483. void guest_set_pte(struct lg_cpu *cpu,
  484. unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
  485. {
  486. /* Kernel mappings must be changed on all top levels. Slow, but doesn't
  487. * happen often. */
  488. if (vaddr >= cpu->lg->kernel_address) {
  489. unsigned int i;
  490. for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
  491. if (cpu->lg->pgdirs[i].pgdir)
  492. do_set_pte(cpu, i, vaddr, gpte);
  493. } else {
  494. /* Is this page table one we have a shadow for? */
  495. int pgdir = find_pgdir(cpu->lg, gpgdir);
  496. if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
  497. /* If so, do the update. */
  498. do_set_pte(cpu, pgdir, vaddr, gpte);
  499. }
  500. }
  501. /*H:400
  502. * (iii) Setting up a page table entry when the Guest tells us one has changed.
  503. *
  504. * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
  505. * with the other side of page tables while we're here: what happens when the
  506. * Guest asks for a page table to be updated?
  507. *
  508. * We already saw that demand_page() will fill in the shadow page tables when
  509. * needed, so we can simply remove shadow page table entries whenever the Guest
  510. * tells us they've changed. When the Guest tries to use the new entry it will
  511. * fault and demand_page() will fix it up.
  512. *
  513. * So with that in mind here's our code to to update a (top-level) PGD entry:
  514. */
  515. void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 idx)
  516. {
  517. int pgdir;
  518. /* The kernel seems to try to initialize this early on: we ignore its
  519. * attempts to map over the Switcher. */
  520. if (idx >= SWITCHER_PGD_INDEX)
  521. return;
  522. /* If they're talking about a page table we have a shadow for... */
  523. pgdir = find_pgdir(lg, gpgdir);
  524. if (pgdir < ARRAY_SIZE(lg->pgdirs))
  525. /* ... throw it away. */
  526. release_pgd(lg, lg->pgdirs[pgdir].pgdir + idx);
  527. }
  528. /*H:500 (vii) Setting up the page tables initially.
  529. *
  530. * When a Guest is first created, the Launcher tells us where the toplevel of
  531. * its first page table is. We set some things up here: */
  532. int init_guest_pagetable(struct lguest *lg, unsigned long pgtable)
  533. {
  534. /* We start on the first shadow page table, and give it a blank PGD
  535. * page. */
  536. lg->pgdirs[0].gpgdir = pgtable;
  537. lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
  538. if (!lg->pgdirs[0].pgdir)
  539. return -ENOMEM;
  540. lg->cpus[0].cpu_pgd = 0;
  541. return 0;
  542. }
  543. /* When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
  544. void page_table_guest_data_init(struct lg_cpu *cpu)
  545. {
  546. /* We get the kernel address: above this is all kernel memory. */
  547. if (get_user(cpu->lg->kernel_address,
  548. &cpu->lg->lguest_data->kernel_address)
  549. /* We tell the Guest that it can't use the top 4MB of virtual
  550. * addresses used by the Switcher. */
  551. || put_user(4U*1024*1024, &cpu->lg->lguest_data->reserve_mem)
  552. || put_user(cpu->lg->pgdirs[0].gpgdir, &cpu->lg->lguest_data->pgdir))
  553. kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
  554. /* In flush_user_mappings() we loop from 0 to
  555. * "pgd_index(lg->kernel_address)". This assumes it won't hit the
  556. * Switcher mappings, so check that now. */
  557. if (pgd_index(cpu->lg->kernel_address) >= SWITCHER_PGD_INDEX)
  558. kill_guest(cpu, "bad kernel address %#lx",
  559. cpu->lg->kernel_address);
  560. }
  561. /* When a Guest dies, our cleanup is fairly simple. */
  562. void free_guest_pagetable(struct lguest *lg)
  563. {
  564. unsigned int i;
  565. /* Throw away all page table pages. */
  566. release_all_pagetables(lg);
  567. /* Now free the top levels: free_page() can handle 0 just fine. */
  568. for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
  569. free_page((long)lg->pgdirs[i].pgdir);
  570. }
  571. /*H:480 (vi) Mapping the Switcher when the Guest is about to run.
  572. *
  573. * The Switcher and the two pages for this CPU need to be visible in the
  574. * Guest (and not the pages for other CPUs). We have the appropriate PTE pages
  575. * for each CPU already set up, we just need to hook them in now we know which
  576. * Guest is about to run on this CPU. */
  577. void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
  578. {
  579. pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
  580. pgd_t switcher_pgd;
  581. pte_t regs_pte;
  582. unsigned long pfn;
  583. /* Make the last PGD entry for this Guest point to the Switcher's PTE
  584. * page for this CPU (with appropriate flags). */
  585. switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL);
  586. cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
  587. /* We also change the Switcher PTE page. When we're running the Guest,
  588. * we want the Guest's "regs" page to appear where the first Switcher
  589. * page for this CPU is. This is an optimization: when the Switcher
  590. * saves the Guest registers, it saves them into the first page of this
  591. * CPU's "struct lguest_pages": if we make sure the Guest's register
  592. * page is already mapped there, we don't have to copy them out
  593. * again. */
  594. pfn = __pa(cpu->regs_page) >> PAGE_SHIFT;
  595. regs_pte = pfn_pte(pfn, __pgprot(__PAGE_KERNEL));
  596. switcher_pte_page[(unsigned long)pages/PAGE_SIZE%PTRS_PER_PTE] = regs_pte;
  597. }
  598. /*:*/
  599. static void free_switcher_pte_pages(void)
  600. {
  601. unsigned int i;
  602. for_each_possible_cpu(i)
  603. free_page((long)switcher_pte_page(i));
  604. }
  605. /*H:520 Setting up the Switcher PTE page for given CPU is fairly easy, given
  606. * the CPU number and the "struct page"s for the Switcher code itself.
  607. *
  608. * Currently the Switcher is less than a page long, so "pages" is always 1. */
  609. static __init void populate_switcher_pte_page(unsigned int cpu,
  610. struct page *switcher_page[],
  611. unsigned int pages)
  612. {
  613. unsigned int i;
  614. pte_t *pte = switcher_pte_page(cpu);
  615. /* The first entries are easy: they map the Switcher code. */
  616. for (i = 0; i < pages; i++) {
  617. pte[i] = mk_pte(switcher_page[i],
  618. __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
  619. }
  620. /* The only other thing we map is this CPU's pair of pages. */
  621. i = pages + cpu*2;
  622. /* First page (Guest registers) is writable from the Guest */
  623. pte[i] = pfn_pte(page_to_pfn(switcher_page[i]),
  624. __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW));
  625. /* The second page contains the "struct lguest_ro_state", and is
  626. * read-only. */
  627. pte[i+1] = pfn_pte(page_to_pfn(switcher_page[i+1]),
  628. __pgprot(_PAGE_PRESENT|_PAGE_ACCESSED));
  629. }
  630. /* We've made it through the page table code. Perhaps our tired brains are
  631. * still processing the details, or perhaps we're simply glad it's over.
  632. *
  633. * If nothing else, note that all this complexity in juggling shadow page tables
  634. * in sync with the Guest's page tables is for one reason: for most Guests this
  635. * page table dance determines how bad performance will be. This is why Xen
  636. * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
  637. * have implemented shadow page table support directly into hardware.
  638. *
  639. * There is just one file remaining in the Host. */
  640. /*H:510 At boot or module load time, init_pagetables() allocates and populates
  641. * the Switcher PTE page for each CPU. */
  642. __init int init_pagetables(struct page **switcher_page, unsigned int pages)
  643. {
  644. unsigned int i;
  645. for_each_possible_cpu(i) {
  646. switcher_pte_page(i) = (pte_t *)get_zeroed_page(GFP_KERNEL);
  647. if (!switcher_pte_page(i)) {
  648. free_switcher_pte_pages();
  649. return -ENOMEM;
  650. }
  651. populate_switcher_pte_page(i, switcher_page, pages);
  652. }
  653. return 0;
  654. }
  655. /*:*/
  656. /* Cleaning up simply involves freeing the PTE page for each CPU. */
  657. void free_pagetables(void)
  658. {
  659. free_switcher_pte_pages();
  660. }