ide-iops.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141
  1. /*
  2. * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
  3. * Copyright (C) 2003 Red Hat <alan@redhat.com>
  4. *
  5. */
  6. #include <linux/module.h>
  7. #include <linux/types.h>
  8. #include <linux/string.h>
  9. #include <linux/kernel.h>
  10. #include <linux/timer.h>
  11. #include <linux/mm.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/major.h>
  14. #include <linux/errno.h>
  15. #include <linux/genhd.h>
  16. #include <linux/blkpg.h>
  17. #include <linux/slab.h>
  18. #include <linux/pci.h>
  19. #include <linux/delay.h>
  20. #include <linux/hdreg.h>
  21. #include <linux/ide.h>
  22. #include <linux/bitops.h>
  23. #include <linux/nmi.h>
  24. #include <asm/byteorder.h>
  25. #include <asm/irq.h>
  26. #include <asm/uaccess.h>
  27. #include <asm/io.h>
  28. /*
  29. * Conventional PIO operations for ATA devices
  30. */
  31. static u8 ide_inb (unsigned long port)
  32. {
  33. return (u8) inb(port);
  34. }
  35. static u16 ide_inw (unsigned long port)
  36. {
  37. return (u16) inw(port);
  38. }
  39. static void ide_insw (unsigned long port, void *addr, u32 count)
  40. {
  41. insw(port, addr, count);
  42. }
  43. static void ide_insl (unsigned long port, void *addr, u32 count)
  44. {
  45. insl(port, addr, count);
  46. }
  47. static void ide_outb (u8 val, unsigned long port)
  48. {
  49. outb(val, port);
  50. }
  51. static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
  52. {
  53. outb(addr, port);
  54. }
  55. static void ide_outw (u16 val, unsigned long port)
  56. {
  57. outw(val, port);
  58. }
  59. static void ide_outsw (unsigned long port, void *addr, u32 count)
  60. {
  61. outsw(port, addr, count);
  62. }
  63. static void ide_outsl (unsigned long port, void *addr, u32 count)
  64. {
  65. outsl(port, addr, count);
  66. }
  67. void default_hwif_iops (ide_hwif_t *hwif)
  68. {
  69. hwif->OUTB = ide_outb;
  70. hwif->OUTBSYNC = ide_outbsync;
  71. hwif->OUTW = ide_outw;
  72. hwif->OUTSW = ide_outsw;
  73. hwif->OUTSL = ide_outsl;
  74. hwif->INB = ide_inb;
  75. hwif->INW = ide_inw;
  76. hwif->INSW = ide_insw;
  77. hwif->INSL = ide_insl;
  78. }
  79. /*
  80. * MMIO operations, typically used for SATA controllers
  81. */
  82. static u8 ide_mm_inb (unsigned long port)
  83. {
  84. return (u8) readb((void __iomem *) port);
  85. }
  86. static u16 ide_mm_inw (unsigned long port)
  87. {
  88. return (u16) readw((void __iomem *) port);
  89. }
  90. static void ide_mm_insw (unsigned long port, void *addr, u32 count)
  91. {
  92. __ide_mm_insw((void __iomem *) port, addr, count);
  93. }
  94. static void ide_mm_insl (unsigned long port, void *addr, u32 count)
  95. {
  96. __ide_mm_insl((void __iomem *) port, addr, count);
  97. }
  98. static void ide_mm_outb (u8 value, unsigned long port)
  99. {
  100. writeb(value, (void __iomem *) port);
  101. }
  102. static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
  103. {
  104. writeb(value, (void __iomem *) port);
  105. }
  106. static void ide_mm_outw (u16 value, unsigned long port)
  107. {
  108. writew(value, (void __iomem *) port);
  109. }
  110. static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
  111. {
  112. __ide_mm_outsw((void __iomem *) port, addr, count);
  113. }
  114. static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
  115. {
  116. __ide_mm_outsl((void __iomem *) port, addr, count);
  117. }
  118. void default_hwif_mmiops (ide_hwif_t *hwif)
  119. {
  120. hwif->OUTB = ide_mm_outb;
  121. /* Most systems will need to override OUTBSYNC, alas however
  122. this one is controller specific! */
  123. hwif->OUTBSYNC = ide_mm_outbsync;
  124. hwif->OUTW = ide_mm_outw;
  125. hwif->OUTSW = ide_mm_outsw;
  126. hwif->OUTSL = ide_mm_outsl;
  127. hwif->INB = ide_mm_inb;
  128. hwif->INW = ide_mm_inw;
  129. hwif->INSW = ide_mm_insw;
  130. hwif->INSL = ide_mm_insl;
  131. }
  132. EXPORT_SYMBOL(default_hwif_mmiops);
  133. void SELECT_DRIVE (ide_drive_t *drive)
  134. {
  135. ide_hwif_t *hwif = drive->hwif;
  136. if (hwif->selectproc)
  137. hwif->selectproc(drive);
  138. hwif->OUTB(drive->select.all, hwif->io_ports[IDE_SELECT_OFFSET]);
  139. }
  140. void SELECT_MASK (ide_drive_t *drive, int mask)
  141. {
  142. if (HWIF(drive)->maskproc)
  143. HWIF(drive)->maskproc(drive, mask);
  144. }
  145. /*
  146. * Some localbus EIDE interfaces require a special access sequence
  147. * when using 32-bit I/O instructions to transfer data. We call this
  148. * the "vlb_sync" sequence, which consists of three successive reads
  149. * of the sector count register location, with interrupts disabled
  150. * to ensure that the reads all happen together.
  151. */
  152. static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
  153. {
  154. (void) HWIF(drive)->INB(port);
  155. (void) HWIF(drive)->INB(port);
  156. (void) HWIF(drive)->INB(port);
  157. }
  158. /*
  159. * This is used for most PIO data transfers *from* the IDE interface
  160. */
  161. static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
  162. {
  163. ide_hwif_t *hwif = HWIF(drive);
  164. u8 io_32bit = drive->io_32bit;
  165. if (io_32bit) {
  166. if (io_32bit & 2) {
  167. unsigned long flags;
  168. local_irq_save(flags);
  169. ata_vlb_sync(drive, hwif->io_ports[IDE_NSECTOR_OFFSET]);
  170. hwif->INSL(hwif->io_ports[IDE_DATA_OFFSET], buffer,
  171. wcount);
  172. local_irq_restore(flags);
  173. } else
  174. hwif->INSL(hwif->io_ports[IDE_DATA_OFFSET], buffer,
  175. wcount);
  176. } else
  177. hwif->INSW(hwif->io_ports[IDE_DATA_OFFSET], buffer,
  178. wcount << 1);
  179. }
  180. /*
  181. * This is used for most PIO data transfers *to* the IDE interface
  182. */
  183. static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
  184. {
  185. ide_hwif_t *hwif = HWIF(drive);
  186. u8 io_32bit = drive->io_32bit;
  187. if (io_32bit) {
  188. if (io_32bit & 2) {
  189. unsigned long flags;
  190. local_irq_save(flags);
  191. ata_vlb_sync(drive, hwif->io_ports[IDE_NSECTOR_OFFSET]);
  192. hwif->OUTSL(hwif->io_ports[IDE_DATA_OFFSET], buffer,
  193. wcount);
  194. local_irq_restore(flags);
  195. } else
  196. hwif->OUTSL(hwif->io_ports[IDE_DATA_OFFSET], buffer,
  197. wcount);
  198. } else
  199. hwif->OUTSW(hwif->io_ports[IDE_DATA_OFFSET], buffer,
  200. wcount << 1);
  201. }
  202. /*
  203. * The following routines are mainly used by the ATAPI drivers.
  204. *
  205. * These routines will round up any request for an odd number of bytes,
  206. * so if an odd bytecount is specified, be sure that there's at least one
  207. * extra byte allocated for the buffer.
  208. */
  209. static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
  210. {
  211. ide_hwif_t *hwif = HWIF(drive);
  212. ++bytecount;
  213. #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
  214. if (MACH_IS_ATARI || MACH_IS_Q40) {
  215. /* Atari has a byte-swapped IDE interface */
  216. insw_swapw(hwif->io_ports[IDE_DATA_OFFSET], buffer,
  217. bytecount / 2);
  218. return;
  219. }
  220. #endif /* CONFIG_ATARI || CONFIG_Q40 */
  221. hwif->ata_input_data(drive, buffer, bytecount / 4);
  222. if ((bytecount & 0x03) >= 2)
  223. hwif->INSW(hwif->io_ports[IDE_DATA_OFFSET],
  224. (u8 *)buffer + (bytecount & ~0x03), 1);
  225. }
  226. static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
  227. {
  228. ide_hwif_t *hwif = HWIF(drive);
  229. ++bytecount;
  230. #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
  231. if (MACH_IS_ATARI || MACH_IS_Q40) {
  232. /* Atari has a byte-swapped IDE interface */
  233. outsw_swapw(hwif->io_ports[IDE_DATA_OFFSET], buffer,
  234. bytecount / 2);
  235. return;
  236. }
  237. #endif /* CONFIG_ATARI || CONFIG_Q40 */
  238. hwif->ata_output_data(drive, buffer, bytecount / 4);
  239. if ((bytecount & 0x03) >= 2)
  240. hwif->OUTSW(hwif->io_ports[IDE_DATA_OFFSET],
  241. (u8 *)buffer + (bytecount & ~0x03), 1);
  242. }
  243. void default_hwif_transport(ide_hwif_t *hwif)
  244. {
  245. hwif->ata_input_data = ata_input_data;
  246. hwif->ata_output_data = ata_output_data;
  247. hwif->atapi_input_bytes = atapi_input_bytes;
  248. hwif->atapi_output_bytes = atapi_output_bytes;
  249. }
  250. void ide_fix_driveid (struct hd_driveid *id)
  251. {
  252. #ifndef __LITTLE_ENDIAN
  253. # ifdef __BIG_ENDIAN
  254. int i;
  255. u16 *stringcast;
  256. id->config = __le16_to_cpu(id->config);
  257. id->cyls = __le16_to_cpu(id->cyls);
  258. id->reserved2 = __le16_to_cpu(id->reserved2);
  259. id->heads = __le16_to_cpu(id->heads);
  260. id->track_bytes = __le16_to_cpu(id->track_bytes);
  261. id->sector_bytes = __le16_to_cpu(id->sector_bytes);
  262. id->sectors = __le16_to_cpu(id->sectors);
  263. id->vendor0 = __le16_to_cpu(id->vendor0);
  264. id->vendor1 = __le16_to_cpu(id->vendor1);
  265. id->vendor2 = __le16_to_cpu(id->vendor2);
  266. stringcast = (u16 *)&id->serial_no[0];
  267. for (i = 0; i < (20/2); i++)
  268. stringcast[i] = __le16_to_cpu(stringcast[i]);
  269. id->buf_type = __le16_to_cpu(id->buf_type);
  270. id->buf_size = __le16_to_cpu(id->buf_size);
  271. id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
  272. stringcast = (u16 *)&id->fw_rev[0];
  273. for (i = 0; i < (8/2); i++)
  274. stringcast[i] = __le16_to_cpu(stringcast[i]);
  275. stringcast = (u16 *)&id->model[0];
  276. for (i = 0; i < (40/2); i++)
  277. stringcast[i] = __le16_to_cpu(stringcast[i]);
  278. id->dword_io = __le16_to_cpu(id->dword_io);
  279. id->reserved50 = __le16_to_cpu(id->reserved50);
  280. id->field_valid = __le16_to_cpu(id->field_valid);
  281. id->cur_cyls = __le16_to_cpu(id->cur_cyls);
  282. id->cur_heads = __le16_to_cpu(id->cur_heads);
  283. id->cur_sectors = __le16_to_cpu(id->cur_sectors);
  284. id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
  285. id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
  286. id->lba_capacity = __le32_to_cpu(id->lba_capacity);
  287. id->dma_1word = __le16_to_cpu(id->dma_1word);
  288. id->dma_mword = __le16_to_cpu(id->dma_mword);
  289. id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
  290. id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
  291. id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
  292. id->eide_pio = __le16_to_cpu(id->eide_pio);
  293. id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
  294. for (i = 0; i < 2; ++i)
  295. id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
  296. for (i = 0; i < 4; ++i)
  297. id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
  298. id->queue_depth = __le16_to_cpu(id->queue_depth);
  299. for (i = 0; i < 4; ++i)
  300. id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
  301. id->major_rev_num = __le16_to_cpu(id->major_rev_num);
  302. id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
  303. id->command_set_1 = __le16_to_cpu(id->command_set_1);
  304. id->command_set_2 = __le16_to_cpu(id->command_set_2);
  305. id->cfsse = __le16_to_cpu(id->cfsse);
  306. id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
  307. id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
  308. id->csf_default = __le16_to_cpu(id->csf_default);
  309. id->dma_ultra = __le16_to_cpu(id->dma_ultra);
  310. id->trseuc = __le16_to_cpu(id->trseuc);
  311. id->trsEuc = __le16_to_cpu(id->trsEuc);
  312. id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
  313. id->mprc = __le16_to_cpu(id->mprc);
  314. id->hw_config = __le16_to_cpu(id->hw_config);
  315. id->acoustic = __le16_to_cpu(id->acoustic);
  316. id->msrqs = __le16_to_cpu(id->msrqs);
  317. id->sxfert = __le16_to_cpu(id->sxfert);
  318. id->sal = __le16_to_cpu(id->sal);
  319. id->spg = __le32_to_cpu(id->spg);
  320. id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
  321. for (i = 0; i < 22; i++)
  322. id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
  323. id->last_lun = __le16_to_cpu(id->last_lun);
  324. id->word127 = __le16_to_cpu(id->word127);
  325. id->dlf = __le16_to_cpu(id->dlf);
  326. id->csfo = __le16_to_cpu(id->csfo);
  327. for (i = 0; i < 26; i++)
  328. id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
  329. id->word156 = __le16_to_cpu(id->word156);
  330. for (i = 0; i < 3; i++)
  331. id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
  332. id->cfa_power = __le16_to_cpu(id->cfa_power);
  333. for (i = 0; i < 14; i++)
  334. id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
  335. for (i = 0; i < 31; i++)
  336. id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
  337. for (i = 0; i < 48; i++)
  338. id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
  339. id->integrity_word = __le16_to_cpu(id->integrity_word);
  340. # else
  341. # error "Please fix <asm/byteorder.h>"
  342. # endif
  343. #endif
  344. }
  345. /*
  346. * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
  347. * removing leading/trailing blanks and compressing internal blanks.
  348. * It is primarily used to tidy up the model name/number fields as
  349. * returned by the WIN_[P]IDENTIFY commands.
  350. */
  351. void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
  352. {
  353. u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
  354. if (byteswap) {
  355. /* convert from big-endian to host byte order */
  356. for (p = end ; p != s;) {
  357. unsigned short *pp = (unsigned short *) (p -= 2);
  358. *pp = ntohs(*pp);
  359. }
  360. }
  361. /* strip leading blanks */
  362. while (s != end && *s == ' ')
  363. ++s;
  364. /* compress internal blanks and strip trailing blanks */
  365. while (s != end && *s) {
  366. if (*s++ != ' ' || (s != end && *s && *s != ' '))
  367. *p++ = *(s-1);
  368. }
  369. /* wipe out trailing garbage */
  370. while (p != end)
  371. *p++ = '\0';
  372. }
  373. EXPORT_SYMBOL(ide_fixstring);
  374. /*
  375. * Needed for PCI irq sharing
  376. */
  377. int drive_is_ready (ide_drive_t *drive)
  378. {
  379. ide_hwif_t *hwif = HWIF(drive);
  380. u8 stat = 0;
  381. if (drive->waiting_for_dma)
  382. return hwif->ide_dma_test_irq(drive);
  383. #if 0
  384. /* need to guarantee 400ns since last command was issued */
  385. udelay(1);
  386. #endif
  387. /*
  388. * We do a passive status test under shared PCI interrupts on
  389. * cards that truly share the ATA side interrupt, but may also share
  390. * an interrupt with another pci card/device. We make no assumptions
  391. * about possible isa-pnp and pci-pnp issues yet.
  392. */
  393. if (hwif->io_ports[IDE_CONTROL_OFFSET])
  394. stat = ide_read_altstatus(drive);
  395. else
  396. /* Note: this may clear a pending IRQ!! */
  397. stat = ide_read_status(drive);
  398. if (stat & BUSY_STAT)
  399. /* drive busy: definitely not interrupting */
  400. return 0;
  401. /* drive ready: *might* be interrupting */
  402. return 1;
  403. }
  404. EXPORT_SYMBOL(drive_is_ready);
  405. /*
  406. * This routine busy-waits for the drive status to be not "busy".
  407. * It then checks the status for all of the "good" bits and none
  408. * of the "bad" bits, and if all is okay it returns 0. All other
  409. * cases return error -- caller may then invoke ide_error().
  410. *
  411. * This routine should get fixed to not hog the cpu during extra long waits..
  412. * That could be done by busy-waiting for the first jiffy or two, and then
  413. * setting a timer to wake up at half second intervals thereafter,
  414. * until timeout is achieved, before timing out.
  415. */
  416. static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
  417. {
  418. unsigned long flags;
  419. int i;
  420. u8 stat;
  421. udelay(1); /* spec allows drive 400ns to assert "BUSY" */
  422. stat = ide_read_status(drive);
  423. if (stat & BUSY_STAT) {
  424. local_irq_set(flags);
  425. timeout += jiffies;
  426. while ((stat = ide_read_status(drive)) & BUSY_STAT) {
  427. if (time_after(jiffies, timeout)) {
  428. /*
  429. * One last read after the timeout in case
  430. * heavy interrupt load made us not make any
  431. * progress during the timeout..
  432. */
  433. stat = ide_read_status(drive);
  434. if (!(stat & BUSY_STAT))
  435. break;
  436. local_irq_restore(flags);
  437. *rstat = stat;
  438. return -EBUSY;
  439. }
  440. }
  441. local_irq_restore(flags);
  442. }
  443. /*
  444. * Allow status to settle, then read it again.
  445. * A few rare drives vastly violate the 400ns spec here,
  446. * so we'll wait up to 10usec for a "good" status
  447. * rather than expensively fail things immediately.
  448. * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
  449. */
  450. for (i = 0; i < 10; i++) {
  451. udelay(1);
  452. stat = ide_read_status(drive);
  453. if (OK_STAT(stat, good, bad)) {
  454. *rstat = stat;
  455. return 0;
  456. }
  457. }
  458. *rstat = stat;
  459. return -EFAULT;
  460. }
  461. /*
  462. * In case of error returns error value after doing "*startstop = ide_error()".
  463. * The caller should return the updated value of "startstop" in this case,
  464. * "startstop" is unchanged when the function returns 0.
  465. */
  466. int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
  467. {
  468. int err;
  469. u8 stat;
  470. /* bail early if we've exceeded max_failures */
  471. if (drive->max_failures && (drive->failures > drive->max_failures)) {
  472. *startstop = ide_stopped;
  473. return 1;
  474. }
  475. err = __ide_wait_stat(drive, good, bad, timeout, &stat);
  476. if (err) {
  477. char *s = (err == -EBUSY) ? "status timeout" : "status error";
  478. *startstop = ide_error(drive, s, stat);
  479. }
  480. return err;
  481. }
  482. EXPORT_SYMBOL(ide_wait_stat);
  483. /**
  484. * ide_in_drive_list - look for drive in black/white list
  485. * @id: drive identifier
  486. * @drive_table: list to inspect
  487. *
  488. * Look for a drive in the blacklist and the whitelist tables
  489. * Returns 1 if the drive is found in the table.
  490. */
  491. int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
  492. {
  493. for ( ; drive_table->id_model; drive_table++)
  494. if ((!strcmp(drive_table->id_model, id->model)) &&
  495. (!drive_table->id_firmware ||
  496. strstr(id->fw_rev, drive_table->id_firmware)))
  497. return 1;
  498. return 0;
  499. }
  500. EXPORT_SYMBOL_GPL(ide_in_drive_list);
  501. /*
  502. * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
  503. * We list them here and depend on the device side cable detection for them.
  504. *
  505. * Some optical devices with the buggy firmwares have the same problem.
  506. */
  507. static const struct drive_list_entry ivb_list[] = {
  508. { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
  509. { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
  510. { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
  511. { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
  512. { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
  513. { NULL , NULL }
  514. };
  515. /*
  516. * All hosts that use the 80c ribbon must use!
  517. * The name is derived from upper byte of word 93 and the 80c ribbon.
  518. */
  519. u8 eighty_ninty_three (ide_drive_t *drive)
  520. {
  521. ide_hwif_t *hwif = drive->hwif;
  522. struct hd_driveid *id = drive->id;
  523. int ivb = ide_in_drive_list(id, ivb_list);
  524. if (hwif->cbl == ATA_CBL_PATA40_SHORT)
  525. return 1;
  526. if (ivb)
  527. printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
  528. drive->name);
  529. if (ide_dev_is_sata(id) && !ivb)
  530. return 1;
  531. if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
  532. goto no_80w;
  533. /*
  534. * FIXME:
  535. * - change master/slave IDENTIFY order
  536. * - force bit13 (80c cable present) check also for !ivb devices
  537. * (unless the slave device is pre-ATA3)
  538. */
  539. if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
  540. return 1;
  541. no_80w:
  542. if (drive->udma33_warned == 1)
  543. return 0;
  544. printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
  545. "limiting max speed to UDMA33\n",
  546. drive->name,
  547. hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
  548. drive->udma33_warned = 1;
  549. return 0;
  550. }
  551. int ide_driveid_update(ide_drive_t *drive)
  552. {
  553. ide_hwif_t *hwif = drive->hwif;
  554. struct hd_driveid *id;
  555. unsigned long timeout, flags;
  556. u8 stat;
  557. /*
  558. * Re-read drive->id for possible DMA mode
  559. * change (copied from ide-probe.c)
  560. */
  561. SELECT_MASK(drive, 1);
  562. ide_set_irq(drive, 1);
  563. msleep(50);
  564. hwif->OUTB(WIN_IDENTIFY, hwif->io_ports[IDE_COMMAND_OFFSET]);
  565. timeout = jiffies + WAIT_WORSTCASE;
  566. do {
  567. if (time_after(jiffies, timeout)) {
  568. SELECT_MASK(drive, 0);
  569. return 0; /* drive timed-out */
  570. }
  571. msleep(50); /* give drive a breather */
  572. stat = ide_read_altstatus(drive);
  573. } while (stat & BUSY_STAT);
  574. msleep(50); /* wait for IRQ and DRQ_STAT */
  575. stat = ide_read_status(drive);
  576. if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
  577. SELECT_MASK(drive, 0);
  578. printk("%s: CHECK for good STATUS\n", drive->name);
  579. return 0;
  580. }
  581. local_irq_save(flags);
  582. SELECT_MASK(drive, 0);
  583. id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
  584. if (!id) {
  585. local_irq_restore(flags);
  586. return 0;
  587. }
  588. hwif->ata_input_data(drive, id, SECTOR_WORDS);
  589. (void)ide_read_status(drive); /* clear drive IRQ */
  590. local_irq_enable();
  591. local_irq_restore(flags);
  592. ide_fix_driveid(id);
  593. if (id) {
  594. drive->id->dma_ultra = id->dma_ultra;
  595. drive->id->dma_mword = id->dma_mword;
  596. drive->id->dma_1word = id->dma_1word;
  597. /* anything more ? */
  598. kfree(id);
  599. if (drive->using_dma && ide_id_dma_bug(drive))
  600. ide_dma_off(drive);
  601. }
  602. return 1;
  603. }
  604. int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
  605. {
  606. ide_hwif_t *hwif = drive->hwif;
  607. int error = 0;
  608. u8 stat;
  609. // while (HWGROUP(drive)->busy)
  610. // msleep(50);
  611. #ifdef CONFIG_BLK_DEV_IDEDMA
  612. if (hwif->dma_host_set) /* check if host supports DMA */
  613. hwif->dma_host_set(drive, 0);
  614. #endif
  615. /* Skip setting PIO flow-control modes on pre-EIDE drives */
  616. if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
  617. goto skip;
  618. /*
  619. * Don't use ide_wait_cmd here - it will
  620. * attempt to set_geometry and recalibrate,
  621. * but for some reason these don't work at
  622. * this point (lost interrupt).
  623. */
  624. /*
  625. * Select the drive, and issue the SETFEATURES command
  626. */
  627. disable_irq_nosync(hwif->irq);
  628. /*
  629. * FIXME: we race against the running IRQ here if
  630. * this is called from non IRQ context. If we use
  631. * disable_irq() we hang on the error path. Work
  632. * is needed.
  633. */
  634. udelay(1);
  635. SELECT_DRIVE(drive);
  636. SELECT_MASK(drive, 0);
  637. udelay(1);
  638. ide_set_irq(drive, 0);
  639. hwif->OUTB(speed, hwif->io_ports[IDE_NSECTOR_OFFSET]);
  640. hwif->OUTB(SETFEATURES_XFER, hwif->io_ports[IDE_FEATURE_OFFSET]);
  641. hwif->OUTBSYNC(drive, WIN_SETFEATURES,
  642. hwif->io_ports[IDE_COMMAND_OFFSET]);
  643. if (drive->quirk_list == 2)
  644. ide_set_irq(drive, 1);
  645. error = __ide_wait_stat(drive, drive->ready_stat,
  646. BUSY_STAT|DRQ_STAT|ERR_STAT,
  647. WAIT_CMD, &stat);
  648. SELECT_MASK(drive, 0);
  649. enable_irq(hwif->irq);
  650. if (error) {
  651. (void) ide_dump_status(drive, "set_drive_speed_status", stat);
  652. return error;
  653. }
  654. drive->id->dma_ultra &= ~0xFF00;
  655. drive->id->dma_mword &= ~0x0F00;
  656. drive->id->dma_1word &= ~0x0F00;
  657. skip:
  658. #ifdef CONFIG_BLK_DEV_IDEDMA
  659. if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
  660. drive->using_dma)
  661. hwif->dma_host_set(drive, 1);
  662. else if (hwif->dma_host_set) /* check if host supports DMA */
  663. ide_dma_off_quietly(drive);
  664. #endif
  665. switch(speed) {
  666. case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
  667. case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
  668. case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
  669. case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
  670. case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
  671. case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
  672. case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
  673. case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
  674. case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
  675. case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
  676. case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
  677. case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
  678. case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
  679. case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
  680. default: break;
  681. }
  682. if (!drive->init_speed)
  683. drive->init_speed = speed;
  684. drive->current_speed = speed;
  685. return error;
  686. }
  687. /*
  688. * This should get invoked any time we exit the driver to
  689. * wait for an interrupt response from a drive. handler() points
  690. * at the appropriate code to handle the next interrupt, and a
  691. * timer is started to prevent us from waiting forever in case
  692. * something goes wrong (see the ide_timer_expiry() handler later on).
  693. *
  694. * See also ide_execute_command
  695. */
  696. static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
  697. unsigned int timeout, ide_expiry_t *expiry)
  698. {
  699. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  700. BUG_ON(hwgroup->handler);
  701. hwgroup->handler = handler;
  702. hwgroup->expiry = expiry;
  703. hwgroup->timer.expires = jiffies + timeout;
  704. hwgroup->req_gen_timer = hwgroup->req_gen;
  705. add_timer(&hwgroup->timer);
  706. }
  707. void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
  708. unsigned int timeout, ide_expiry_t *expiry)
  709. {
  710. unsigned long flags;
  711. spin_lock_irqsave(&ide_lock, flags);
  712. __ide_set_handler(drive, handler, timeout, expiry);
  713. spin_unlock_irqrestore(&ide_lock, flags);
  714. }
  715. EXPORT_SYMBOL(ide_set_handler);
  716. /**
  717. * ide_execute_command - execute an IDE command
  718. * @drive: IDE drive to issue the command against
  719. * @command: command byte to write
  720. * @handler: handler for next phase
  721. * @timeout: timeout for command
  722. * @expiry: handler to run on timeout
  723. *
  724. * Helper function to issue an IDE command. This handles the
  725. * atomicity requirements, command timing and ensures that the
  726. * handler and IRQ setup do not race. All IDE command kick off
  727. * should go via this function or do equivalent locking.
  728. */
  729. void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
  730. unsigned timeout, ide_expiry_t *expiry)
  731. {
  732. unsigned long flags;
  733. ide_hwif_t *hwif = HWIF(drive);
  734. spin_lock_irqsave(&ide_lock, flags);
  735. __ide_set_handler(drive, handler, timeout, expiry);
  736. hwif->OUTBSYNC(drive, cmd, hwif->io_ports[IDE_COMMAND_OFFSET]);
  737. /*
  738. * Drive takes 400nS to respond, we must avoid the IRQ being
  739. * serviced before that.
  740. *
  741. * FIXME: we could skip this delay with care on non shared devices
  742. */
  743. ndelay(400);
  744. spin_unlock_irqrestore(&ide_lock, flags);
  745. }
  746. EXPORT_SYMBOL(ide_execute_command);
  747. /* needed below */
  748. static ide_startstop_t do_reset1 (ide_drive_t *, int);
  749. /*
  750. * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
  751. * during an atapi drive reset operation. If the drive has not yet responded,
  752. * and we have not yet hit our maximum waiting time, then the timer is restarted
  753. * for another 50ms.
  754. */
  755. static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
  756. {
  757. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  758. u8 stat;
  759. SELECT_DRIVE(drive);
  760. udelay (10);
  761. stat = ide_read_status(drive);
  762. if (OK_STAT(stat, 0, BUSY_STAT))
  763. printk("%s: ATAPI reset complete\n", drive->name);
  764. else {
  765. if (time_before(jiffies, hwgroup->poll_timeout)) {
  766. ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
  767. /* continue polling */
  768. return ide_started;
  769. }
  770. /* end of polling */
  771. hwgroup->polling = 0;
  772. printk("%s: ATAPI reset timed-out, status=0x%02x\n",
  773. drive->name, stat);
  774. /* do it the old fashioned way */
  775. return do_reset1(drive, 1);
  776. }
  777. /* done polling */
  778. hwgroup->polling = 0;
  779. hwgroup->resetting = 0;
  780. return ide_stopped;
  781. }
  782. /*
  783. * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
  784. * during an ide reset operation. If the drives have not yet responded,
  785. * and we have not yet hit our maximum waiting time, then the timer is restarted
  786. * for another 50ms.
  787. */
  788. static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
  789. {
  790. ide_hwgroup_t *hwgroup = HWGROUP(drive);
  791. ide_hwif_t *hwif = HWIF(drive);
  792. u8 tmp;
  793. if (hwif->reset_poll != NULL) {
  794. if (hwif->reset_poll(drive)) {
  795. printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
  796. hwif->name, drive->name);
  797. return ide_stopped;
  798. }
  799. }
  800. tmp = ide_read_status(drive);
  801. if (!OK_STAT(tmp, 0, BUSY_STAT)) {
  802. if (time_before(jiffies, hwgroup->poll_timeout)) {
  803. ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
  804. /* continue polling */
  805. return ide_started;
  806. }
  807. printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
  808. drive->failures++;
  809. } else {
  810. printk("%s: reset: ", hwif->name);
  811. tmp = ide_read_error(drive);
  812. if (tmp == 1) {
  813. printk("success\n");
  814. drive->failures = 0;
  815. } else {
  816. drive->failures++;
  817. printk("master: ");
  818. switch (tmp & 0x7f) {
  819. case 1: printk("passed");
  820. break;
  821. case 2: printk("formatter device error");
  822. break;
  823. case 3: printk("sector buffer error");
  824. break;
  825. case 4: printk("ECC circuitry error");
  826. break;
  827. case 5: printk("controlling MPU error");
  828. break;
  829. default:printk("error (0x%02x?)", tmp);
  830. }
  831. if (tmp & 0x80)
  832. printk("; slave: failed");
  833. printk("\n");
  834. }
  835. }
  836. hwgroup->polling = 0; /* done polling */
  837. hwgroup->resetting = 0; /* done reset attempt */
  838. return ide_stopped;
  839. }
  840. static void ide_disk_pre_reset(ide_drive_t *drive)
  841. {
  842. int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
  843. drive->special.all = 0;
  844. drive->special.b.set_geometry = legacy;
  845. drive->special.b.recalibrate = legacy;
  846. drive->mult_count = 0;
  847. if (!drive->keep_settings && !drive->using_dma)
  848. drive->mult_req = 0;
  849. if (drive->mult_req != drive->mult_count)
  850. drive->special.b.set_multmode = 1;
  851. }
  852. static void pre_reset(ide_drive_t *drive)
  853. {
  854. if (drive->media == ide_disk)
  855. ide_disk_pre_reset(drive);
  856. else
  857. drive->post_reset = 1;
  858. if (drive->using_dma) {
  859. if (drive->crc_count)
  860. ide_check_dma_crc(drive);
  861. else
  862. ide_dma_off(drive);
  863. }
  864. if (!drive->keep_settings) {
  865. if (!drive->using_dma) {
  866. drive->unmask = 0;
  867. drive->io_32bit = 0;
  868. }
  869. return;
  870. }
  871. if (HWIF(drive)->pre_reset != NULL)
  872. HWIF(drive)->pre_reset(drive);
  873. if (drive->current_speed != 0xff)
  874. drive->desired_speed = drive->current_speed;
  875. drive->current_speed = 0xff;
  876. }
  877. /*
  878. * do_reset1() attempts to recover a confused drive by resetting it.
  879. * Unfortunately, resetting a disk drive actually resets all devices on
  880. * the same interface, so it can really be thought of as resetting the
  881. * interface rather than resetting the drive.
  882. *
  883. * ATAPI devices have their own reset mechanism which allows them to be
  884. * individually reset without clobbering other devices on the same interface.
  885. *
  886. * Unfortunately, the IDE interface does not generate an interrupt to let
  887. * us know when the reset operation has finished, so we must poll for this.
  888. * Equally poor, though, is the fact that this may a very long time to complete,
  889. * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
  890. * we set a timer to poll at 50ms intervals.
  891. */
  892. static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
  893. {
  894. unsigned int unit;
  895. unsigned long flags;
  896. ide_hwif_t *hwif;
  897. ide_hwgroup_t *hwgroup;
  898. u8 ctl;
  899. spin_lock_irqsave(&ide_lock, flags);
  900. hwif = HWIF(drive);
  901. hwgroup = HWGROUP(drive);
  902. /* We must not reset with running handlers */
  903. BUG_ON(hwgroup->handler != NULL);
  904. /* For an ATAPI device, first try an ATAPI SRST. */
  905. if (drive->media != ide_disk && !do_not_try_atapi) {
  906. hwgroup->resetting = 1;
  907. pre_reset(drive);
  908. SELECT_DRIVE(drive);
  909. udelay (20);
  910. hwif->OUTBSYNC(drive, WIN_SRST,
  911. hwif->io_ports[IDE_COMMAND_OFFSET]);
  912. ndelay(400);
  913. hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
  914. hwgroup->polling = 1;
  915. __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
  916. spin_unlock_irqrestore(&ide_lock, flags);
  917. return ide_started;
  918. }
  919. /*
  920. * First, reset any device state data we were maintaining
  921. * for any of the drives on this interface.
  922. */
  923. for (unit = 0; unit < MAX_DRIVES; ++unit)
  924. pre_reset(&hwif->drives[unit]);
  925. if (hwif->io_ports[IDE_CONTROL_OFFSET] == 0) {
  926. spin_unlock_irqrestore(&ide_lock, flags);
  927. return ide_stopped;
  928. }
  929. hwgroup->resetting = 1;
  930. /*
  931. * Note that we also set nIEN while resetting the device,
  932. * to mask unwanted interrupts from the interface during the reset.
  933. * However, due to the design of PC hardware, this will cause an
  934. * immediate interrupt due to the edge transition it produces.
  935. * This single interrupt gives us a "fast poll" for drives that
  936. * recover from reset very quickly, saving us the first 50ms wait time.
  937. */
  938. /* set SRST and nIEN */
  939. hwif->OUTBSYNC(drive, drive->ctl|6, hwif->io_ports[IDE_CONTROL_OFFSET]);
  940. /* more than enough time */
  941. udelay(10);
  942. if (drive->quirk_list == 2)
  943. ctl = drive->ctl; /* clear SRST and nIEN */
  944. else
  945. ctl = drive->ctl | 2; /* clear SRST, leave nIEN */
  946. hwif->OUTBSYNC(drive, ctl, hwif->io_ports[IDE_CONTROL_OFFSET]);
  947. /* more than enough time */
  948. udelay(10);
  949. hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
  950. hwgroup->polling = 1;
  951. __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
  952. /*
  953. * Some weird controller like resetting themselves to a strange
  954. * state when the disks are reset this way. At least, the Winbond
  955. * 553 documentation says that
  956. */
  957. if (hwif->resetproc)
  958. hwif->resetproc(drive);
  959. spin_unlock_irqrestore(&ide_lock, flags);
  960. return ide_started;
  961. }
  962. /*
  963. * ide_do_reset() is the entry point to the drive/interface reset code.
  964. */
  965. ide_startstop_t ide_do_reset (ide_drive_t *drive)
  966. {
  967. return do_reset1(drive, 0);
  968. }
  969. EXPORT_SYMBOL(ide_do_reset);
  970. /*
  971. * ide_wait_not_busy() waits for the currently selected device on the hwif
  972. * to report a non-busy status, see comments in ide_probe_port().
  973. */
  974. int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
  975. {
  976. u8 stat = 0;
  977. while(timeout--) {
  978. /*
  979. * Turn this into a schedule() sleep once I'm sure
  980. * about locking issues (2.5 work ?).
  981. */
  982. mdelay(1);
  983. stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
  984. if ((stat & BUSY_STAT) == 0)
  985. return 0;
  986. /*
  987. * Assume a value of 0xff means nothing is connected to
  988. * the interface and it doesn't implement the pull-down
  989. * resistor on D7.
  990. */
  991. if (stat == 0xff)
  992. return -ENODEV;
  993. touch_softlockup_watchdog();
  994. touch_nmi_watchdog();
  995. }
  996. return -EBUSY;
  997. }
  998. EXPORT_SYMBOL_GPL(ide_wait_not_busy);