lm80.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627
  1. /*
  2. * lm80.c - From lm_sensors, Linux kernel modules for hardware
  3. * monitoring
  4. * Copyright (C) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
  5. * and Philip Edelbrock <phil@netroedge.com>
  6. *
  7. * Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  22. */
  23. #include <linux/module.h>
  24. #include <linux/init.h>
  25. #include <linux/slab.h>
  26. #include <linux/jiffies.h>
  27. #include <linux/i2c.h>
  28. #include <linux/hwmon.h>
  29. #include <linux/hwmon-sysfs.h>
  30. #include <linux/err.h>
  31. #include <linux/mutex.h>
  32. /* Addresses to scan */
  33. static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d,
  34. 0x2e, 0x2f, I2C_CLIENT_END };
  35. /* Insmod parameters */
  36. I2C_CLIENT_INSMOD_1(lm80);
  37. /* Many LM80 constants specified below */
  38. /* The LM80 registers */
  39. #define LM80_REG_IN_MAX(nr) (0x2a + (nr) * 2)
  40. #define LM80_REG_IN_MIN(nr) (0x2b + (nr) * 2)
  41. #define LM80_REG_IN(nr) (0x20 + (nr))
  42. #define LM80_REG_FAN1 0x28
  43. #define LM80_REG_FAN2 0x29
  44. #define LM80_REG_FAN_MIN(nr) (0x3b + (nr))
  45. #define LM80_REG_TEMP 0x27
  46. #define LM80_REG_TEMP_HOT_MAX 0x38
  47. #define LM80_REG_TEMP_HOT_HYST 0x39
  48. #define LM80_REG_TEMP_OS_MAX 0x3a
  49. #define LM80_REG_TEMP_OS_HYST 0x3b
  50. #define LM80_REG_CONFIG 0x00
  51. #define LM80_REG_ALARM1 0x01
  52. #define LM80_REG_ALARM2 0x02
  53. #define LM80_REG_MASK1 0x03
  54. #define LM80_REG_MASK2 0x04
  55. #define LM80_REG_FANDIV 0x05
  56. #define LM80_REG_RES 0x06
  57. /* Conversions. Rounding and limit checking is only done on the TO_REG
  58. variants. Note that you should be a bit careful with which arguments
  59. these macros are called: arguments may be evaluated more than once.
  60. Fixing this is just not worth it. */
  61. #define IN_TO_REG(val) (SENSORS_LIMIT(((val)+5)/10,0,255))
  62. #define IN_FROM_REG(val) ((val)*10)
  63. static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div)
  64. {
  65. if (rpm == 0)
  66. return 255;
  67. rpm = SENSORS_LIMIT(rpm, 1, 1000000);
  68. return SENSORS_LIMIT((1350000 + rpm*div / 2) / (rpm*div), 1, 254);
  69. }
  70. #define FAN_FROM_REG(val,div) ((val)==0?-1:\
  71. (val)==255?0:1350000/((div)*(val)))
  72. static inline long TEMP_FROM_REG(u16 temp)
  73. {
  74. long res;
  75. temp >>= 4;
  76. if (temp < 0x0800)
  77. res = 625 * (long) temp;
  78. else
  79. res = ((long) temp - 0x01000) * 625;
  80. return res / 10;
  81. }
  82. #define TEMP_LIMIT_FROM_REG(val) (((val)>0x80?(val)-0x100:(val))*1000)
  83. #define TEMP_LIMIT_TO_REG(val) SENSORS_LIMIT((val)<0?\
  84. ((val)-500)/1000:((val)+500)/1000,0,255)
  85. #define DIV_FROM_REG(val) (1 << (val))
  86. /*
  87. * Client data (each client gets its own)
  88. */
  89. struct lm80_data {
  90. struct i2c_client client;
  91. struct device *hwmon_dev;
  92. struct mutex update_lock;
  93. char valid; /* !=0 if following fields are valid */
  94. unsigned long last_updated; /* In jiffies */
  95. u8 in[7]; /* Register value */
  96. u8 in_max[7]; /* Register value */
  97. u8 in_min[7]; /* Register value */
  98. u8 fan[2]; /* Register value */
  99. u8 fan_min[2]; /* Register value */
  100. u8 fan_div[2]; /* Register encoding, shifted right */
  101. u16 temp; /* Register values, shifted right */
  102. u8 temp_hot_max; /* Register value */
  103. u8 temp_hot_hyst; /* Register value */
  104. u8 temp_os_max; /* Register value */
  105. u8 temp_os_hyst; /* Register value */
  106. u16 alarms; /* Register encoding, combined */
  107. };
  108. /*
  109. * Functions declaration
  110. */
  111. static int lm80_attach_adapter(struct i2c_adapter *adapter);
  112. static int lm80_detect(struct i2c_adapter *adapter, int address, int kind);
  113. static void lm80_init_client(struct i2c_client *client);
  114. static int lm80_detach_client(struct i2c_client *client);
  115. static struct lm80_data *lm80_update_device(struct device *dev);
  116. static int lm80_read_value(struct i2c_client *client, u8 reg);
  117. static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value);
  118. /*
  119. * Driver data (common to all clients)
  120. */
  121. static struct i2c_driver lm80_driver = {
  122. .driver = {
  123. .name = "lm80",
  124. },
  125. .attach_adapter = lm80_attach_adapter,
  126. .detach_client = lm80_detach_client,
  127. };
  128. /*
  129. * Sysfs stuff
  130. */
  131. #define show_in(suffix, value) \
  132. static ssize_t show_in_##suffix(struct device *dev, struct device_attribute *attr, char *buf) \
  133. { \
  134. int nr = to_sensor_dev_attr(attr)->index; \
  135. struct lm80_data *data = lm80_update_device(dev); \
  136. return sprintf(buf, "%d\n", IN_FROM_REG(data->value[nr])); \
  137. }
  138. show_in(min, in_min)
  139. show_in(max, in_max)
  140. show_in(input, in)
  141. #define set_in(suffix, value, reg) \
  142. static ssize_t set_in_##suffix(struct device *dev, struct device_attribute *attr, const char *buf, \
  143. size_t count) \
  144. { \
  145. int nr = to_sensor_dev_attr(attr)->index; \
  146. struct i2c_client *client = to_i2c_client(dev); \
  147. struct lm80_data *data = i2c_get_clientdata(client); \
  148. long val = simple_strtol(buf, NULL, 10); \
  149. \
  150. mutex_lock(&data->update_lock);\
  151. data->value[nr] = IN_TO_REG(val); \
  152. lm80_write_value(client, reg(nr), data->value[nr]); \
  153. mutex_unlock(&data->update_lock);\
  154. return count; \
  155. }
  156. set_in(min, in_min, LM80_REG_IN_MIN)
  157. set_in(max, in_max, LM80_REG_IN_MAX)
  158. #define show_fan(suffix, value) \
  159. static ssize_t show_fan_##suffix(struct device *dev, struct device_attribute *attr, char *buf) \
  160. { \
  161. int nr = to_sensor_dev_attr(attr)->index; \
  162. struct lm80_data *data = lm80_update_device(dev); \
  163. return sprintf(buf, "%d\n", FAN_FROM_REG(data->value[nr], \
  164. DIV_FROM_REG(data->fan_div[nr]))); \
  165. }
  166. show_fan(min, fan_min)
  167. show_fan(input, fan)
  168. static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
  169. char *buf)
  170. {
  171. int nr = to_sensor_dev_attr(attr)->index;
  172. struct lm80_data *data = lm80_update_device(dev);
  173. return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
  174. }
  175. static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
  176. const char *buf, size_t count)
  177. {
  178. int nr = to_sensor_dev_attr(attr)->index;
  179. struct i2c_client *client = to_i2c_client(dev);
  180. struct lm80_data *data = i2c_get_clientdata(client);
  181. long val = simple_strtoul(buf, NULL, 10);
  182. mutex_lock(&data->update_lock);
  183. data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
  184. lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1), data->fan_min[nr]);
  185. mutex_unlock(&data->update_lock);
  186. return count;
  187. }
  188. /* Note: we save and restore the fan minimum here, because its value is
  189. determined in part by the fan divisor. This follows the principle of
  190. least surprise; the user doesn't expect the fan minimum to change just
  191. because the divisor changed. */
  192. static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
  193. const char *buf, size_t count)
  194. {
  195. int nr = to_sensor_dev_attr(attr)->index;
  196. struct i2c_client *client = to_i2c_client(dev);
  197. struct lm80_data *data = i2c_get_clientdata(client);
  198. unsigned long min, val = simple_strtoul(buf, NULL, 10);
  199. u8 reg;
  200. /* Save fan_min */
  201. mutex_lock(&data->update_lock);
  202. min = FAN_FROM_REG(data->fan_min[nr],
  203. DIV_FROM_REG(data->fan_div[nr]));
  204. switch (val) {
  205. case 1: data->fan_div[nr] = 0; break;
  206. case 2: data->fan_div[nr] = 1; break;
  207. case 4: data->fan_div[nr] = 2; break;
  208. case 8: data->fan_div[nr] = 3; break;
  209. default:
  210. dev_err(&client->dev, "fan_div value %ld not "
  211. "supported. Choose one of 1, 2, 4 or 8!\n", val);
  212. mutex_unlock(&data->update_lock);
  213. return -EINVAL;
  214. }
  215. reg = (lm80_read_value(client, LM80_REG_FANDIV) & ~(3 << (2 * (nr + 1))))
  216. | (data->fan_div[nr] << (2 * (nr + 1)));
  217. lm80_write_value(client, LM80_REG_FANDIV, reg);
  218. /* Restore fan_min */
  219. data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
  220. lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1), data->fan_min[nr]);
  221. mutex_unlock(&data->update_lock);
  222. return count;
  223. }
  224. static ssize_t show_temp_input1(struct device *dev, struct device_attribute *attr, char *buf)
  225. {
  226. struct lm80_data *data = lm80_update_device(dev);
  227. return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp));
  228. }
  229. #define show_temp(suffix, value) \
  230. static ssize_t show_temp_##suffix(struct device *dev, struct device_attribute *attr, char *buf) \
  231. { \
  232. struct lm80_data *data = lm80_update_device(dev); \
  233. return sprintf(buf, "%d\n", TEMP_LIMIT_FROM_REG(data->value)); \
  234. }
  235. show_temp(hot_max, temp_hot_max);
  236. show_temp(hot_hyst, temp_hot_hyst);
  237. show_temp(os_max, temp_os_max);
  238. show_temp(os_hyst, temp_os_hyst);
  239. #define set_temp(suffix, value, reg) \
  240. static ssize_t set_temp_##suffix(struct device *dev, struct device_attribute *attr, const char *buf, \
  241. size_t count) \
  242. { \
  243. struct i2c_client *client = to_i2c_client(dev); \
  244. struct lm80_data *data = i2c_get_clientdata(client); \
  245. long val = simple_strtoul(buf, NULL, 10); \
  246. \
  247. mutex_lock(&data->update_lock); \
  248. data->value = TEMP_LIMIT_TO_REG(val); \
  249. lm80_write_value(client, reg, data->value); \
  250. mutex_unlock(&data->update_lock); \
  251. return count; \
  252. }
  253. set_temp(hot_max, temp_hot_max, LM80_REG_TEMP_HOT_MAX);
  254. set_temp(hot_hyst, temp_hot_hyst, LM80_REG_TEMP_HOT_HYST);
  255. set_temp(os_max, temp_os_max, LM80_REG_TEMP_OS_MAX);
  256. set_temp(os_hyst, temp_os_hyst, LM80_REG_TEMP_OS_HYST);
  257. static ssize_t show_alarms(struct device *dev, struct device_attribute *attr,
  258. char *buf)
  259. {
  260. struct lm80_data *data = lm80_update_device(dev);
  261. return sprintf(buf, "%u\n", data->alarms);
  262. }
  263. static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
  264. char *buf)
  265. {
  266. int bitnr = to_sensor_dev_attr(attr)->index;
  267. struct lm80_data *data = lm80_update_device(dev);
  268. return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
  269. }
  270. static SENSOR_DEVICE_ATTR(in0_min, S_IWUSR | S_IRUGO,
  271. show_in_min, set_in_min, 0);
  272. static SENSOR_DEVICE_ATTR(in1_min, S_IWUSR | S_IRUGO,
  273. show_in_min, set_in_min, 1);
  274. static SENSOR_DEVICE_ATTR(in2_min, S_IWUSR | S_IRUGO,
  275. show_in_min, set_in_min, 2);
  276. static SENSOR_DEVICE_ATTR(in3_min, S_IWUSR | S_IRUGO,
  277. show_in_min, set_in_min, 3);
  278. static SENSOR_DEVICE_ATTR(in4_min, S_IWUSR | S_IRUGO,
  279. show_in_min, set_in_min, 4);
  280. static SENSOR_DEVICE_ATTR(in5_min, S_IWUSR | S_IRUGO,
  281. show_in_min, set_in_min, 5);
  282. static SENSOR_DEVICE_ATTR(in6_min, S_IWUSR | S_IRUGO,
  283. show_in_min, set_in_min, 6);
  284. static SENSOR_DEVICE_ATTR(in0_max, S_IWUSR | S_IRUGO,
  285. show_in_max, set_in_max, 0);
  286. static SENSOR_DEVICE_ATTR(in1_max, S_IWUSR | S_IRUGO,
  287. show_in_max, set_in_max, 1);
  288. static SENSOR_DEVICE_ATTR(in2_max, S_IWUSR | S_IRUGO,
  289. show_in_max, set_in_max, 2);
  290. static SENSOR_DEVICE_ATTR(in3_max, S_IWUSR | S_IRUGO,
  291. show_in_max, set_in_max, 3);
  292. static SENSOR_DEVICE_ATTR(in4_max, S_IWUSR | S_IRUGO,
  293. show_in_max, set_in_max, 4);
  294. static SENSOR_DEVICE_ATTR(in5_max, S_IWUSR | S_IRUGO,
  295. show_in_max, set_in_max, 5);
  296. static SENSOR_DEVICE_ATTR(in6_max, S_IWUSR | S_IRUGO,
  297. show_in_max, set_in_max, 6);
  298. static SENSOR_DEVICE_ATTR(in0_input, S_IRUGO, show_in_input, NULL, 0);
  299. static SENSOR_DEVICE_ATTR(in1_input, S_IRUGO, show_in_input, NULL, 1);
  300. static SENSOR_DEVICE_ATTR(in2_input, S_IRUGO, show_in_input, NULL, 2);
  301. static SENSOR_DEVICE_ATTR(in3_input, S_IRUGO, show_in_input, NULL, 3);
  302. static SENSOR_DEVICE_ATTR(in4_input, S_IRUGO, show_in_input, NULL, 4);
  303. static SENSOR_DEVICE_ATTR(in5_input, S_IRUGO, show_in_input, NULL, 5);
  304. static SENSOR_DEVICE_ATTR(in6_input, S_IRUGO, show_in_input, NULL, 6);
  305. static SENSOR_DEVICE_ATTR(fan1_min, S_IWUSR | S_IRUGO,
  306. show_fan_min, set_fan_min, 0);
  307. static SENSOR_DEVICE_ATTR(fan2_min, S_IWUSR | S_IRUGO,
  308. show_fan_min, set_fan_min, 1);
  309. static SENSOR_DEVICE_ATTR(fan1_input, S_IRUGO, show_fan_input, NULL, 0);
  310. static SENSOR_DEVICE_ATTR(fan2_input, S_IRUGO, show_fan_input, NULL, 1);
  311. static SENSOR_DEVICE_ATTR(fan1_div, S_IWUSR | S_IRUGO,
  312. show_fan_div, set_fan_div, 0);
  313. static SENSOR_DEVICE_ATTR(fan2_div, S_IWUSR | S_IRUGO,
  314. show_fan_div, set_fan_div, 1);
  315. static DEVICE_ATTR(temp1_input, S_IRUGO, show_temp_input1, NULL);
  316. static DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp_hot_max,
  317. set_temp_hot_max);
  318. static DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO, show_temp_hot_hyst,
  319. set_temp_hot_hyst);
  320. static DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp_os_max,
  321. set_temp_os_max);
  322. static DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temp_os_hyst,
  323. set_temp_os_hyst);
  324. static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
  325. static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
  326. static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
  327. static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
  328. static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
  329. static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 4);
  330. static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 5);
  331. static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 6);
  332. static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
  333. static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
  334. static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 8);
  335. static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 13);
  336. /*
  337. * Real code
  338. */
  339. static int lm80_attach_adapter(struct i2c_adapter *adapter)
  340. {
  341. if (!(adapter->class & I2C_CLASS_HWMON))
  342. return 0;
  343. return i2c_probe(adapter, &addr_data, lm80_detect);
  344. }
  345. static struct attribute *lm80_attributes[] = {
  346. &sensor_dev_attr_in0_min.dev_attr.attr,
  347. &sensor_dev_attr_in1_min.dev_attr.attr,
  348. &sensor_dev_attr_in2_min.dev_attr.attr,
  349. &sensor_dev_attr_in3_min.dev_attr.attr,
  350. &sensor_dev_attr_in4_min.dev_attr.attr,
  351. &sensor_dev_attr_in5_min.dev_attr.attr,
  352. &sensor_dev_attr_in6_min.dev_attr.attr,
  353. &sensor_dev_attr_in0_max.dev_attr.attr,
  354. &sensor_dev_attr_in1_max.dev_attr.attr,
  355. &sensor_dev_attr_in2_max.dev_attr.attr,
  356. &sensor_dev_attr_in3_max.dev_attr.attr,
  357. &sensor_dev_attr_in4_max.dev_attr.attr,
  358. &sensor_dev_attr_in5_max.dev_attr.attr,
  359. &sensor_dev_attr_in6_max.dev_attr.attr,
  360. &sensor_dev_attr_in0_input.dev_attr.attr,
  361. &sensor_dev_attr_in1_input.dev_attr.attr,
  362. &sensor_dev_attr_in2_input.dev_attr.attr,
  363. &sensor_dev_attr_in3_input.dev_attr.attr,
  364. &sensor_dev_attr_in4_input.dev_attr.attr,
  365. &sensor_dev_attr_in5_input.dev_attr.attr,
  366. &sensor_dev_attr_in6_input.dev_attr.attr,
  367. &sensor_dev_attr_fan1_min.dev_attr.attr,
  368. &sensor_dev_attr_fan2_min.dev_attr.attr,
  369. &sensor_dev_attr_fan1_input.dev_attr.attr,
  370. &sensor_dev_attr_fan2_input.dev_attr.attr,
  371. &sensor_dev_attr_fan1_div.dev_attr.attr,
  372. &sensor_dev_attr_fan2_div.dev_attr.attr,
  373. &dev_attr_temp1_input.attr,
  374. &dev_attr_temp1_max.attr,
  375. &dev_attr_temp1_max_hyst.attr,
  376. &dev_attr_temp1_crit.attr,
  377. &dev_attr_temp1_crit_hyst.attr,
  378. &dev_attr_alarms.attr,
  379. &sensor_dev_attr_in0_alarm.dev_attr.attr,
  380. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  381. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  382. &sensor_dev_attr_in3_alarm.dev_attr.attr,
  383. &sensor_dev_attr_in4_alarm.dev_attr.attr,
  384. &sensor_dev_attr_in5_alarm.dev_attr.attr,
  385. &sensor_dev_attr_in6_alarm.dev_attr.attr,
  386. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  387. &sensor_dev_attr_fan2_alarm.dev_attr.attr,
  388. &sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
  389. &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
  390. NULL
  391. };
  392. static const struct attribute_group lm80_group = {
  393. .attrs = lm80_attributes,
  394. };
  395. static int lm80_detect(struct i2c_adapter *adapter, int address, int kind)
  396. {
  397. int i, cur;
  398. struct i2c_client *client;
  399. struct lm80_data *data;
  400. int err = 0;
  401. const char *name;
  402. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
  403. goto exit;
  404. /* OK. For now, we presume we have a valid client. We now create the
  405. client structure, even though we cannot fill it completely yet.
  406. But it allows us to access lm80_{read,write}_value. */
  407. if (!(data = kzalloc(sizeof(struct lm80_data), GFP_KERNEL))) {
  408. err = -ENOMEM;
  409. goto exit;
  410. }
  411. client = &data->client;
  412. i2c_set_clientdata(client, data);
  413. client->addr = address;
  414. client->adapter = adapter;
  415. client->driver = &lm80_driver;
  416. /* Now, we do the remaining detection. It is lousy. */
  417. if (lm80_read_value(client, LM80_REG_ALARM2) & 0xc0)
  418. goto error_free;
  419. for (i = 0x2a; i <= 0x3d; i++) {
  420. cur = i2c_smbus_read_byte_data(client, i);
  421. if ((i2c_smbus_read_byte_data(client, i + 0x40) != cur)
  422. || (i2c_smbus_read_byte_data(client, i + 0x80) != cur)
  423. || (i2c_smbus_read_byte_data(client, i + 0xc0) != cur))
  424. goto error_free;
  425. }
  426. /* Determine the chip type - only one kind supported! */
  427. kind = lm80;
  428. name = "lm80";
  429. /* Fill in the remaining client fields */
  430. strlcpy(client->name, name, I2C_NAME_SIZE);
  431. mutex_init(&data->update_lock);
  432. /* Tell the I2C layer a new client has arrived */
  433. if ((err = i2c_attach_client(client)))
  434. goto error_free;
  435. /* Initialize the LM80 chip */
  436. lm80_init_client(client);
  437. /* A few vars need to be filled upon startup */
  438. data->fan_min[0] = lm80_read_value(client, LM80_REG_FAN_MIN(1));
  439. data->fan_min[1] = lm80_read_value(client, LM80_REG_FAN_MIN(2));
  440. /* Register sysfs hooks */
  441. if ((err = sysfs_create_group(&client->dev.kobj, &lm80_group)))
  442. goto error_detach;
  443. data->hwmon_dev = hwmon_device_register(&client->dev);
  444. if (IS_ERR(data->hwmon_dev)) {
  445. err = PTR_ERR(data->hwmon_dev);
  446. goto error_remove;
  447. }
  448. return 0;
  449. error_remove:
  450. sysfs_remove_group(&client->dev.kobj, &lm80_group);
  451. error_detach:
  452. i2c_detach_client(client);
  453. error_free:
  454. kfree(data);
  455. exit:
  456. return err;
  457. }
  458. static int lm80_detach_client(struct i2c_client *client)
  459. {
  460. struct lm80_data *data = i2c_get_clientdata(client);
  461. int err;
  462. hwmon_device_unregister(data->hwmon_dev);
  463. sysfs_remove_group(&client->dev.kobj, &lm80_group);
  464. if ((err = i2c_detach_client(client)))
  465. return err;
  466. kfree(data);
  467. return 0;
  468. }
  469. static int lm80_read_value(struct i2c_client *client, u8 reg)
  470. {
  471. return i2c_smbus_read_byte_data(client, reg);
  472. }
  473. static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
  474. {
  475. return i2c_smbus_write_byte_data(client, reg, value);
  476. }
  477. /* Called when we have found a new LM80. */
  478. static void lm80_init_client(struct i2c_client *client)
  479. {
  480. /* Reset all except Watchdog values and last conversion values
  481. This sets fan-divs to 2, among others. This makes most other
  482. initializations unnecessary */
  483. lm80_write_value(client, LM80_REG_CONFIG, 0x80);
  484. /* Set 11-bit temperature resolution */
  485. lm80_write_value(client, LM80_REG_RES, 0x08);
  486. /* Start monitoring */
  487. lm80_write_value(client, LM80_REG_CONFIG, 0x01);
  488. }
  489. static struct lm80_data *lm80_update_device(struct device *dev)
  490. {
  491. struct i2c_client *client = to_i2c_client(dev);
  492. struct lm80_data *data = i2c_get_clientdata(client);
  493. int i;
  494. mutex_lock(&data->update_lock);
  495. if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
  496. dev_dbg(&client->dev, "Starting lm80 update\n");
  497. for (i = 0; i <= 6; i++) {
  498. data->in[i] =
  499. lm80_read_value(client, LM80_REG_IN(i));
  500. data->in_min[i] =
  501. lm80_read_value(client, LM80_REG_IN_MIN(i));
  502. data->in_max[i] =
  503. lm80_read_value(client, LM80_REG_IN_MAX(i));
  504. }
  505. data->fan[0] = lm80_read_value(client, LM80_REG_FAN1);
  506. data->fan_min[0] =
  507. lm80_read_value(client, LM80_REG_FAN_MIN(1));
  508. data->fan[1] = lm80_read_value(client, LM80_REG_FAN2);
  509. data->fan_min[1] =
  510. lm80_read_value(client, LM80_REG_FAN_MIN(2));
  511. data->temp =
  512. (lm80_read_value(client, LM80_REG_TEMP) << 8) |
  513. (lm80_read_value(client, LM80_REG_RES) & 0xf0);
  514. data->temp_os_max =
  515. lm80_read_value(client, LM80_REG_TEMP_OS_MAX);
  516. data->temp_os_hyst =
  517. lm80_read_value(client, LM80_REG_TEMP_OS_HYST);
  518. data->temp_hot_max =
  519. lm80_read_value(client, LM80_REG_TEMP_HOT_MAX);
  520. data->temp_hot_hyst =
  521. lm80_read_value(client, LM80_REG_TEMP_HOT_HYST);
  522. i = lm80_read_value(client, LM80_REG_FANDIV);
  523. data->fan_div[0] = (i >> 2) & 0x03;
  524. data->fan_div[1] = (i >> 4) & 0x03;
  525. data->alarms = lm80_read_value(client, LM80_REG_ALARM1) +
  526. (lm80_read_value(client, LM80_REG_ALARM2) << 8);
  527. data->last_updated = jiffies;
  528. data->valid = 1;
  529. }
  530. mutex_unlock(&data->update_lock);
  531. return data;
  532. }
  533. static int __init sensors_lm80_init(void)
  534. {
  535. return i2c_add_driver(&lm80_driver);
  536. }
  537. static void __exit sensors_lm80_exit(void)
  538. {
  539. i2c_del_driver(&lm80_driver);
  540. }
  541. MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and "
  542. "Philip Edelbrock <phil@netroedge.com>");
  543. MODULE_DESCRIPTION("LM80 driver");
  544. MODULE_LICENSE("GPL");
  545. module_init(sensors_lm80_init);
  546. module_exit(sensors_lm80_exit);